WO2023201901A1 - 一种aoa耦合高效自养脱氮水处理方法与系统 - Google Patents

一种aoa耦合高效自养脱氮水处理方法与系统 Download PDF

Info

Publication number
WO2023201901A1
WO2023201901A1 PCT/CN2022/104140 CN2022104140W WO2023201901A1 WO 2023201901 A1 WO2023201901 A1 WO 2023201901A1 CN 2022104140 W CN2022104140 W CN 2022104140W WO 2023201901 A1 WO2023201901 A1 WO 2023201901A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
ifas
autotrophic
area
sludge
Prior art date
Application number
PCT/CN2022/104140
Other languages
English (en)
French (fr)
Inventor
吴迪
韩文杰
王玉敏
顾瑞环
周家中
田海成
杜强强
杨忠启
纪庚好
徐康康
Original Assignee
青岛思普润水处理股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛思普润水处理股份有限公司 filed Critical 青岛思普润水处理股份有限公司
Publication of WO2023201901A1 publication Critical patent/WO2023201901A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to the technical field of sewage treatment, and specifically relates to an AOA coupled high-efficiency autotrophic denitrification water treatment method and system.
  • the AOA process utilizes a lower aerobic/anoxic pool volume ratio and a smaller aerobic residence time, which on the one hand reduces the consumption of internal carbon sources in the aerobic pool; on the other hand, it also ensures sufficient denitrification pool capacity.
  • the anoxic tank uses PHA synthesized in the anaerobic stage to ensure higher denitrification efficiency through endogenous denitrification effect, and higher biological removal efficiency through denitrification phosphorus removal. Phosphorus rate, thereby reducing the need for external carbon sources for sewage denitrification, achieving energy saving and consumption reduction in sewage treatment.
  • the anaerobic ammonium oxidation process achieves the autotrophic denitrification process of sewage by enriching autotrophic anaerobic ammonium oxidizing bacteria. For the treatment of ammonia nitrogen-type sewage, this process is often combined with a short-cut nitrification process. Compared with the traditional nitrification and denitrification process, , has the advantages of saving 60% of aeration volume, no need to add organic carbon sources, reducing sludge production by 90% and relatively less nitrogen oxide release. In addition, the anaerobic ammonium oxidation process has high denitrification load and low operating costs. , occupying a small space, and has been recognized as one of the most economical biological denitrification processes at present. As two high-efficiency and low-consumption denitrification processes, coupling AOA with anaerobic ammonium oxidation can further reduce the dependence of sewage denitrification on raw water carbon sources and achieve energy saving and consumption reduction in sewage treatment.
  • Application No. 201910358952.3 discloses a method and device for treating urban sewage using endogenous short-range denitrification coupled with anaerobic ammonium oxidation in the anoxic zone of the AOA process.
  • the device is an AOA process and uses activated sludge as the main body of internal carbon source synthesis and nitrification.
  • the nitrite produced in the aerobic zone is used to react with the remaining ammonia nitrogen in the raw water for anaerobic ammonium oxidation reaction.
  • the nitrite produced can be further removed in the anoxic zone through endogenous denitrification of the sludge.
  • 201910358964.6 discloses a full-process anaerobic ammonium oxidation-enhanced denitrification AOA process for treating urban sewage and a device.
  • the device adds biofilm filler to the AOA reactor.
  • the carbon source in the sludge accumulation in the anaerobic zone removes organic matter from the raw water. Then it enters the aerobic zone for nitrification reaction, and the nitrate nitrogen produced enters the anoxic zone for endogenous denitrification.
  • the anaerobic ammonium oxidation filler in the AOA reactor uses the nitrite nitrogen produced during the nitrification and denitrification process and the remaining ammonia nitrogen of the raw water.
  • Application No. 201910762403.2 discloses a device and method for realizing continuous flow AOA biofilm semi-short-range coupled anaerobic ammonium oxidation through hydroxylamine. It suppresses NOB activity by adding hydroxylamine reagent into the aerobic pool of the reactor, thereby making the continuous flow aerobic pool A semi-short-cut nitrification reaction occurs, and then the mixed liquid containing ammonia nitrogen and nitrite nitrogen enters the anoxic tank of the continuous flow AOA biofilm reactor.
  • the anaerobic ammonification bacteria growing on the biofilm use ammonia nitrogen and nitrite nitrogen to produce anaerobic reactions.
  • Application number 202110336253.6 discloses an AOA coupled anaerobic ammonium oxidation deep nitrogen and phosphorus removal process.
  • the process includes an anaerobic zone for internal carbon source storage and phosphate release, aerobic excess phosphorus absorption and short-range nitrification-anaerobic ammonia An aerobic zone for oxidation, and an anoxic zone for short-range denitrification of internal carbon sources and anaerobic ammonium oxidation. Both the aerobic zone and the anoxic zone are added with active biological fillers to enrich the main functional bacteria.
  • Application number 202110532485.9 discloses a low-oxygen aeration AOA-SBBR short-circuit nitrification anaerobic ammonium oxidation coupled denitrification and phosphorus removal integrated urban sewage treatment method, denitrifying phosphate-polymerizing bacteria and denitrifying polysaccharide bacteria in the anaerobic stage sludge
  • the easily degradable organic matter in the water is stored as an internal carbon source, and then the short-range effect is achieved through ammonia oxidizing bacteria during the aerobic aeration stage, and anaerobic ammonium oxidizing bacteria are used to convert the generated nitrous and ammonia nitrogen into the micro-hypoxic environment inside the filler.
  • denitrifying phosphorus-accumulating bacteria and denitrifying polysaccharide bacteria are used to remove the remaining nitrate nitrogen and phosphorus in the sewage through endogenous denitrification.
  • the activated sludge in the system will undergo an aerobic zone aeration process, causing aerobic decomposition of the internal carbon source stored in it, reducing the utilization rate of the raw water carbon source in the AOA process; secondly, it travels throughout the functional zones in the entire system
  • the activated sludge and anaerobic ammonium oxidation biofilm coexist in the anaerobic ammonium oxidation functional area.
  • the chaotic bacterial community composition in the activated sludge will affect the species composition of the anaerobic ammonium oxidizing bacteria biofilm.
  • this invention sets the total HRT of the system to be minimum. It is also more than 18h, which shows that it does not really improve the processing efficiency of the system.
  • process composition there are also the following problems.
  • the ordinary AOA process still relies on traditional nitrification and denitrification process technology, and the denitrification effect is still greatly affected by the C/N of the raw water.
  • the effluent TN still risks exceeding the standard; secondly, when fixing When the sedimentation effect of the liquid separation tank is poor, on the one hand, the high SS of the effluent supernatant will affect the subsequent nitrification effect of the nitrification tank, causing the nitrification effect of the nitrification tank to worsen, and the higher sludge overtake ratio also increases the nitrification effect.
  • the ammonia nitrogen load in the oxygen pool inlet requires an increase in the return ratio between the aerobic pool and the anoxic pool to meet the nitrification effect; thirdly, the nitrification effect is guaranteed by the nitrification pool and the aerobic pool.
  • the nitrification effect is bound to be different.
  • the main body of the nitrification system at this time is the aerobic tank using the activated sludge method. Too low nitrification load leads to the design of the aerobic tank. The capacity is too large; finally, phosphorus removal in this process relies on chemical phosphorus removal, denitrification phosphorus removal and biological phosphorus removal.
  • the traditional AOA process uses mud and water separation after the anaerobic zone. Although it can avoid aerobic decomposition of the internal carbon source, the design requirements for the process flow are higher and more rigorous, and the denitrification effect cannot be escaped.
  • the disadvantage of limiting the carbon source of the incoming water is that on the basis of the extreme lack of carbon sources in the incoming water, the TN of the effluent is easy to exceed the standard; and the AOA coupled anaerobic ammonium oxidation process, although theoretically it can further reduce the denitrification effect and is affected by the C/N of the raw water,
  • the AOA coupled anaerobic ammonium oxidation process although theoretically it can further reduce the denitrification effect and is affected by the C/N of the raw water.
  • One of the purposes of the present invention is to provide an AOA coupled high-efficiency autotrophic denitrification water treatment method, which redesigns the existing AOA sewage treatment process and realizes the synthesis of internal carbon sources and the hydrolysis of polyphosphorus through the anaerobic zone.
  • the carbon extraction area realizes the separation of mud and water from the mixed liquid in the anaerobic area.
  • the supernatant liquid enters the autotrophic IFAS area.
  • the sludge is transferred from the carbon extraction area to the anoxic IFAS area.
  • suspended carriers are added to the outside of the biofilm.
  • the first layer and the inner layer respectively enrich aerobic ammonia oxidizing bacteria (AOB) and anaerobic ammonium oxidizing bacteria (AnAOB).
  • AOB aerobic ammonia oxidizing bacteria
  • AnAOB anaerobic ammonium oxidizing bacteria
  • the autotrophic bacteria recovery area is equipped with a sludge self-return pipeline so that the supernatant enters the anoxic IFAS area and the sludge It flows from the bottom of the autotrophic bacteria recovery area to the water inlet end of the autotrophic IFAS area to realize the recovery of the core bacteria in the autotrophic IFAS area.
  • this method has the advantages of excellent denitrification effect, excellent nitrification effect and space saving.
  • An AOA coupled high-efficiency autotrophic denitrification water treatment method includes the following steps:
  • the HRT in the anaerobic zone is 1 to 2 hours;
  • the HRT of the carbon extraction zone is 0.4 ⁇ 0.6h
  • the surface hydraulic load is ⁇ 5m3 / m2 /h
  • the solid flux is ⁇ 20kg/ m2 /h
  • the effluent SS is ⁇ 50mg/L
  • the COD loss rate is ⁇ 30% ;
  • the autotrophic IFAS area In the autotrophic IFAS area, suspension-grade carriers are added to enrich aerobic ammonia oxidizing bacteria and anaerobic ammonium oxidizing bacteria in the outer and inner layers of the biofilm respectively.
  • the autotrophic IFAS area meets: the ammonia oxidation rate is 80 to 90%. , and the effluent nitrous oxide is ⁇ 2mg/L;
  • the autotrophic IFAS area is designed according to 80-90% of the designed nitrification HRT, and is graded ⁇ 2 levels through the interception screen, with the last level effluent SS ⁇ 150mg/L;
  • the effluent from the autotrophic IFAS area enters the autotrophic bacteria recovery area, and the internal sludge return pump connected to the sludge internal return pipeline between the autotrophic bacteria recovery area and the autotrophic IFAS area is turned on.
  • the reflux ratio is 10% to 20%.
  • the sludge flows back from the autotrophic bacteria recovery area to the autotrophic IFAS area, and the effluent supernatant enters the anoxic IFAS area;
  • the HRT of the autotrophic bacteria recovery area is 0.2 to 0.4 hours, and magnetic powder is added therein to enhance the effluent SS settling effect to ensure that the effluent SS is ⁇ 50 mg/L;
  • the anoxic IFAS area carries out endogenous short-range denitrification-anaerobic ammonium oxidation reaction and endogenous denitrification and phosphorus removal.
  • Ultra-fast mud-water separation can be achieved through the carbon extraction zone.
  • the supernatant enters the autotrophic IFAS zone, and the sludge enters the anoxic IFAS zone; denitrification is shared by the autotrophic IFAS zone and the anoxic IFAS zone, and the main denitrification
  • the zone adopts a mud film composite process, which can reduce the denitrification pressure in the anoxic IFAS zone.
  • the activated sludge enters the anoxic IFAS zone through transcendence, avoiding the loss of internal carbon sources in ordinary activated sludge and maintaining efficient denitrification effects.
  • the effective specific surface area of the suspended carrier in the autotrophic IFAS zone and anoxic IFAS zone is ⁇ 620m 2 /m 3
  • the void ratio is >90%
  • the autotrophic IFAS zone is The density of suspended carriers in both the IFAS zone and the anoxic IFAS zone is 0.97-1.03g/cm 3 .
  • interception screens are provided at the water outlet ends of the autotrophic IFAS zone and the anoxic IFAS zone.
  • an aeration pipeline is installed at the bottom of the autotrophic IFAS zone, and a submersible mixer is installed in the anaerobic zone and anoxic IFAS zone.
  • Another object of the present invention is to provide an AOA coupled high-efficiency autotrophic denitrification water treatment system.
  • the reaction tank is divided into an anaerobic zone, a carbon extraction zone, an autotrophic IFAS zone, an autotrophic bacteria recovery zone, and a deficient water treatment zone.
  • the outlet end of the bottom of the carbon extraction zone is connected to a sludge overflow pipe, and the other end of the sludge overflow pipe is connected to the anoxic IFAS zone, and the sludge overflow pipe is used to The sludge obtained by settling in the carbon extraction zone is transported to the bottom of the anoxic IFAS zone;
  • the outlet end of the secondary sedimentation zone is provided with an external sludge return pipeline, and the other end of the external sludge return pipeline is connected to the anaerobic zone, and the external sludge return pipeline is used to Part of the sludge obtained in the secondary sedimentation zone flows back to the anaerobic zone;
  • the autotrophic IFAS area and the autotrophic bacteria recovery area are provided with an internal sludge return pipeline, and the biofilm shed in the autotrophic IFAS area is returned from the autotrophic bacteria recovery area to the autotrophic via the internal sludge return pipeline.
  • the anaerobic zone is used to synthesize carbon sources and release phosphorus in the activated sludge, and the HRT of the anaerobic zone is 1 to 2 hours;
  • the HRT of the carbon extraction zone is 0.4 ⁇ 0.6h
  • the surface hydraulic load is ⁇ 5m3 / m2 /h
  • the solid flux is ⁇ 20kg/ m2 /h
  • the effluent SS is ⁇ 50mg/L
  • the COD loss rate is ⁇ 30% ;
  • the autotrophic IFAS area is designed according to 80-90% of the designed nitrification HRT, and is graded ⁇ 2 levels through the interception screen, with the last level effluent SS ⁇ 150mg/L;
  • the HRT of the autotrophic bacteria recovery area is 0.2 to 0.4h; the effluent SS sedimentation effect is enhanced by adding magnetic powder to ensure that the effluent SS is less than or equal to 50 mg/L;
  • the anoxic IFAS zone is designed according to 20-30% of the designed nitrification HRT.
  • the main denitrification zone uses a mud film composite process to couple short-cut nitrification and anaerobic ammonium oxidation in the same reactor for denitrification, which reduces the nitrogen load and reduces the denitrification pressure in the anoxic zone;
  • Separation of mud and water is achieved through the technology of the carbon extraction zone after the anaerobic zone, ensuring that ordinary activated sludge does not pass through the autotrophic IFAS zone, which is not only conducive to the enrichment of anaerobic ammonium oxidizing bacteria, but also fundamentally avoids the accumulation of ordinary activated sludge.
  • the loss of internal carbon sources lays the foundation for the anoxic IFAS zone to achieve efficient endogenous denitrification, nitrogen and phosphorus removal effects; finally, the anoxic IFAS zone uses a mud film composite process to denitrify through short-range denitrification and anaerobic ammonium oxidation. Nitrogen can further reduce the carbon source limitation of denitrification.
  • the effluent TN can be stably lower than 10 mg/L based on the inlet water C/N ⁇ 2, and can be further reduced to 5 mg/L after optimized operation.
  • the nitrification effect is excellent.
  • ammonia nitrogen removal is jointly undertaken by the autotrophic IFAS zone and the anoxic IFAS zone.
  • the autotrophic IFAS zone achieves the main deamination function through short-cut nitrification and anaerobic ammonium oxidation.
  • the anoxic IFAS zone targets the small amount of ammonia nitrogen carried by the effluent of the autotrophic IFAS zone and part of the ammonia nitrogen caused by sludge overflow, and at the same time couples short-range denitrification for targeted denitrification, which can achieve a system ammonia nitrogen removal rate of >95%.
  • Achieve effluent ammonia nitrogen ⁇ 0.5mg/L.
  • the main deamination zone and denitrification zone are both undertaken by the autotrophic IFAS zone, which uses the IFAS process based on sludge self-return, with a higher load, while the anoxic IFAS zone uses a mud film composite process, and its treatment
  • the load is also higher than that of the traditional activated sludge method, which has a significant land-saving effect.
  • the total HRT of the entire process is only less than 60% of the HRT of the traditional sewage treatment process.
  • Figure 1 is a flow chart of the treatment process of the present invention.
  • the present invention proposes an AOA coupled high-efficiency autotrophic denitrification water treatment method and system.
  • the present invention will be described in detail below with reference to specific embodiments.
  • spatially relative terms such as “below”, “below”, “lower”, “upper”, “above”, “upper”, etc., may be used to describe the relationship between one component or feature and another. The relationship of components or features in a drawing. It will be understood that the spatially relative terms are intended to encompass different orientations of the item in use or operation in addition to the orientation depicted in the figures. For example, if the object in the figures is turned over, components described as “below” or “beneath” other components or features would then be oriented “above” the components or features. Therefore, the exemplary term “below” may include both lower and upper directions. The components may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative terms used herein interpreted accordingly.
  • Design nitrification HRT nitrification residence time designed according to the activated sludge method design regulations in the "Outdoor Drainage Design Standards", h;
  • Design denitrification HRT denitrification residence time designed according to the activated sludge method design regulations in the "Outdoor Drainage Design Standards", h;
  • Solid flux the amount of incoming water SS that the unit area of the horizontal section of the carbon extraction area can withstand per hour, kg/m 2 /h;
  • the "sludge overrunning pump” in the present invention specifically refers to the sludge pump, which is a sludge pump connected on the pipeline between the carbon extraction area and the anoxic IFAS area. Its function is to pass the sludge at the bottom of the carbon extraction area. Enter the hypoxic IFAS zone.
  • the AOA process adopts an anaerobic ⁇ aerobic ⁇ anoxic process.
  • the anaerobic zone uses activated sludge to absorb organic matter contained in the incoming water, synthesize PHA (internal carbon source) and store it in the cells, and at the same time, phosphorus release occurs; aerobic
  • the zone mainly completes the nitrification of ammonia nitrogen, while the anoxic zone uses the internal carbon source synthesized by activated sludge in the anaerobic section to carry out denitrification, denitrification and denitrification and phosphorus removal, achieving dual use of nitrogen and phosphorus, and improving the carbon source of raw water. Utilization. Therefore, the core of the AOA process lies in the setting of the aerobic zone.
  • the present invention redesigned the reaction tank, mainly considering the following three aspects:
  • the process form is based on the BFM process and adopts pure membrane MBBR coupled magnetic loading precipitation technology to achieve absolute separation of biophases in the good/anoxic zone.
  • the aerobic zone adopts the form of pure membrane MBBR.
  • the anoxic zone operates in the form of activated sludge;
  • the impact of incoming water SS on biofilm mass transfer must be considered, and on the other hand, the impact of biofilm shedding (humic sludge) on the system treatment load must also be considered , based on the summary of a large number of test rules, on the basis of determining the SS influence boundary conditions of the pure membrane MBBR process, combined with the COD removal ability of the aerobic zone, the inlet SS boundary conditions were further determined; in addition, in view of the low sludge moisture content in the anaerobic zone, Due to the characteristics of easy gas production, the magnetic coagulation sedimentation process is adopted to achieve efficient and stable mud-water separation through high solid flux, combined with the sludge concentration that exceeds the sludge and the sludge in the system, and sets the appropriate hydraulic load;
  • the existing AOA process is coupled with anaerobic ammonium oxidation.
  • the short-cut nitrification-anaerobic ammonium oxidation process (CANON process) is used in the aerobic section.
  • AOB short-cut nitrifying bacteria
  • a return flow in the sludge is used to strengthen the enrichment of short-cut nitrifying bacteria.
  • the concentration efficiency achieves the stability of CANON flora; in view of the difficulty in operating anaerobic ammonium oxidation, a stable and efficient autotrophic denitrification effect is achieved through hydroxylamine dosing and biofilm thickness control; in addition, by setting up an anoxic IFAS zone, short-range reaction is used
  • PDN/A process nitrification-anaerobic ammonium oxidation process
  • the nitrification-anaerobic ammonium oxidation process (PDN/A process) through the low-load autotrophic denitrification effect, can on the one hand reduce the denitrification pressure of the autotrophic IFAS zone, and on the other hand, it can also target the nitrogen oxides carried by the sludge. Ammonia nitrogen can be removed in a targeted manner.
  • the carbon extraction zone ensures the operation status of pure membrane autotrophic IFAS through good mud-water separation effect.
  • the operation status of autotrophic IFAS fundamentally eliminates the common activated sludge in the aerobic zone.
  • the problem of carbon loss also strengthens the enrichment efficiency of anaerobic ammonium oxidizing bacteria by suspended carriers.
  • the autotrophic IFAS area is equipped with sludge self-return, hydroxylamine dosing and biofilm thickness control to maintain a stable and efficient autotrophic denitrification effect.
  • the setting up of the anoxic IFAS area further strengthens the proportion of autotrophic denitrification and achieves high standards of TN emissions.
  • the system of the present invention includes a reaction tank.
  • the reaction tank is re-divided into anaerobic zone, carbon extraction zone, autotrophic IFAS zone, and autotrophic bacteria recovery. area, anoxic IFAS area and secondary sedimentation area;
  • the main water inlet pipe is connected to the anaerobic zone.
  • the water to be treated first enters the anaerobic zone through the main water inlet pipe.
  • the incoming water organic matter is adsorbed by the activated sludge to generate PHA and store it in the body.
  • anaerobic Oxygen releases phosphorus, and the HRT in the anaerobic zone is 1 to 2 hours.
  • the anaerobic zone and the carbon extraction zone are connected.
  • the connection can be maintained through a water hole provided at the upper part of the water outlet of the anaerobic zone.
  • the treated water in the anaerobic zone enters the carbon extraction zone through the water hole.
  • the sludge is deposited at the bottom and the clean water is at the top.
  • a sludge overflow pump is provided on the sludge overflow pipeline connected to the water outlet at the bottom of the carbon extraction zone.
  • the other end of the sludge overflow pipe is connected to the selected anoxic IFAS zone to transport the sludge to the bottom of the anoxic IFAS zone.
  • a sludge overflow pipe is set at the bottom of the carbon extraction area to allow the supernatant to enter the autotrophic IFAS area.
  • the sludge flows from the carbon extraction area to the anoxic IFAS area, and COD is transferred to the anoxic IFAS area in the form of activated sludge.
  • AOB aerobic ammonia oxidizing bacteria
  • AnAOB anaerobic ammonia oxidizing bacteria
  • the anoxic IFAS area performs endogenous denitrification, denitrification, and phosphorus removal and anaerobic ammonium oxidation denitrification.
  • the sludge in the carbon extraction area is used to carry out endogenous denitrification, denitrification, and phosphorus removal using the internal carbon source carried and transformed by the sludge in the carbon extraction area.
  • the suspended carrier enriches anaerobic denitrification.
  • Oxygen ammonium oxidizing bacteria perform anaerobic ammonium oxidation autotrophic denitrification.
  • the carbon extraction area mainly uses the magnetic loading precipitation process.
  • the magnetic loading precipitation process has the best mud-water separation effect.
  • the carbon extraction zone must meet the following requirements:
  • the HRT of the carbon extraction zone is 0.4 ⁇ 0.6h
  • the surface hydraulic load is ⁇ 5m3 / m2 /h
  • the solid flux is ⁇ 20kg/ m2 /h
  • the effluent SS is ⁇ 50mg/L
  • the COD loss rate is ⁇ 30% ;
  • the autotrophic IFAS area is designed according to 80 to 90% of the designed nitrification HRT, and is graded ⁇ 2 through the interception screen, with the last stage effluent SS ⁇ 150 mg/L;
  • the HRT of the autotrophic bacteria recovery area is 0.2 ⁇ 0.4h; the effluent SS sedimentation effect is enhanced by adding magnetic powder to ensure that the effluent SS is less than or equal to 50 mg/L;
  • the anoxic IFAS area is set at a designed nitrification HRT of 20-30%.
  • the effective specific surface area of the suspended carrier in the autotrophic IFAS zone and the anoxic IFAS zone is ⁇ 620m 2 /m 3 , the void ratio is >90%, 30% ⁇ filling rate ⁇ 67%, the suspended carrier density in the autotrophic IFAS zone and the anoxic IFAS zone is 0.97-1.03g/cm 3 .
  • An interception screen is installed at the water outlet of the autotrophic IFAS zone and the anoxic IFAS zone, and its main function is to intercept suspended carriers.
  • the diameter of the through holes on the intercepting screen is smaller than the diameter of the suspended carrier.
  • the interception screen can be set to two levels to ensure that the water effluent SS of the last level is ⁇ 150mg/L.
  • An aeration pipeline is installed at the bottom of the autotrophic IFAS zone, and a submersible mixer is installed in the anaerobic zone and anoxic IFAS zone.
  • the specific structures of the aeration pipeline and submersible mixer can be achieved by referring to existing technologies.
  • the first step is to pass the sewage to be treated into the anaerobic zone.
  • the anaerobic zone Through the anaerobic zone, the synthesis of carbon sources in the activated sludge and the release of phosphorus are mainly carried out.
  • the HRT in the anaerobic zone is 1 to 2 hours;
  • the effluent from the anaerobic zone enters the carbon extraction zone connected behind it; in the carbon extraction zone, the solid-liquid separation of the mud-water mixture in the anaerobic zone is strengthened, and the supernatant obtained by separation enters the natural gas extraction zone connected behind the carbon extraction zone.
  • Raising IFAS area the separated sludge is discharged from the outlet end at the bottom of the carbon extraction area, and transported to the anoxic IFAS area through a pipeline connected to the sludge overflow pump, and COD is transferred to the anoxic IFAS area in the form of activated sludge.
  • the anoxic IFAS area and the autotrophic IFAS area are provided with an autotrophic bacteria recovery area;
  • the HRT of the carbon extraction zone is 0.4 ⁇ 0.6h
  • the surface hydraulic load is ⁇ 5m3 / m2 /h
  • the solid flux is ⁇ 20kg/ m2 /h
  • the effluent SS is ⁇ 50mg/L
  • the COD loss rate is ⁇ 30% ;
  • the third step is to enrich the aerobic ammonia oxidizing bacteria and anaerobic ammonium oxidizing bacteria in the outer and inner layers of the biofilm by adding suspension carriers in the autotrophic IFAS area.
  • the ammonia oxidation rate of the autotrophic IFAS area is 80 ⁇ 90%, and the effluent nitrous ⁇ 2mg/L;
  • the autotrophic IFAS area is designed according to 80-90% of the designed nitrification HRT, and is graded ⁇ 2 levels through the interception screen, with the last level effluent SS ⁇ 150mg/L;
  • Step 4 The effluent from the autotrophic IFAS area enters the autotrophic bacteria recovery area, and the internal sludge return pump connected to the sludge internal return pipeline between the autotrophic bacteria recovery area and the autotrophic IFAS area is turned on.
  • the reflux ratio is 10% ⁇ 20%, the sludge flows back from the autotrophic bacteria recovery area to the autotrophic IFAS area, and the effluent supernatant enters the anoxic IFAS area;
  • the HRT of the autotrophic bacteria recovery area is 0.2 to 0.4 hours, and magnetic powder is added therein to enhance the effluent SS settling effect to ensure that the effluent SS is ⁇ 50 mg/L;
  • the fifth step is to carry out AMAMMOX reaction and endogenous denitrification and phosphorus removal in the anoxic IFAS area.
  • a certain three groups of sewage treatment devices have a design water volume of 80m 3 /d.
  • the biochemical section of the device all adopts an AOA coupled high-efficiency autotrophic denitrification water treatment system.
  • the HRT is set to 1 hour.
  • the dosage of chemicals in each device is consistent.
  • the SS of the water effluent from each device is compared and verified. The experimental results are shown in Table 1.
  • the overall settlement effect of the high-efficiency sedimentation tank is poor, and the effluent SS is as high as 174mg/L.
  • the magnetic separation sedimentation tank can achieve better mud-water separation effect by adding magnetic powder.
  • the measured average SS value of the effluent is only 4mg/L. It can be seen that for the settlement of effluent sludge from anaerobic tanks, on the one hand, the sludge passing through the anaerobic section is easy to produce gas and float.
  • the traditional mud-water separation process requires a large tank volume and occupies too much space, so it is difficult to balance the treatment. The effect and space are compact, and the magnetic separation and precipitation process needs to be used.
  • a certain five groups of sewage treatment units numbered A-E, all use high-efficiency autotrophic denitrification water treatment systems based on AOA coupling in the biochemical section.
  • AOA autotrophic denitrification water treatment systems
  • magnetic separation and sedimentation processes are used, and the single factor variable is controlled to be magnetic.
  • the HRT of separated precipitation was set to 0.3, 0.4, 0.5, 0.6, and 0.7h respectively.
  • the dosage of chemicals in each device is consistent, and the water SS produced by each device is compared and verified.
  • Table 2 The experimental results are shown in Table 2.
  • a group of 3 CANON sewage treatment devices numbered 1-3, each device treats mainstream municipal sewage, followed by an AO activated sludge method deep denitrification unit.
  • the operating modes of No. 1-3 are pure membrane MBBR and mud membrane composite MBBR ( Self-sludge return), mud film composite MBBR (connected to deep denitrification unit sludge), the denitrification load rate of each device is shown in Table 3, and the relative abundance of functional bacteria in different biological phases is shown in Table 4. It can be seen that CANON The process adopts the form of pure membrane MBBR, but due to the relatively low enrichment efficiency of biofilm for AOB, the proportion of bacterial flora is unbalanced, which limits the increase in denitrification load.
  • the optimal dosage concentration was verified by adding hydroxylamine hydrochloride.
  • Table 5 The results are shown in Table 5.
  • the dosage concentration of hydroxylamine hydrochloride increases from 0 mg/L to 5.0 mg/L, the denitrification load of the CANON-MBBR system also reaches the highest. At this time, the system nitrous concentration is 4.1 mg/L. L, the dosage concentration of hydroxylamine hydrochloride and the system nitrous concentration at this time can be considered as the optimal concentration.
  • the nitrous when the CANON-MBBR system has a hydroxylamine hydrochloride dosage of 5 mg/L, the nitrous When the concentration is 4mg/L, the denitrification effect can reach the highest level, and when the nitrous concentration is 2-4mg/L, the system denitrification effect is positively correlated with the nitrous concentration, so the system nitrous concentration can be reduced to 2mg/L. Add hydroxylamine hydrochloride at L.
  • An autotrophic IFAS reactor removes mainstream municipal sewage and keeps the incoming water quality relatively stable.
  • the biofilm is controlled to reach different thicknesses, and the biofilm thickness is verified to have a positive effect on the denitrification of the system. The impact of load.
  • the test results are shown in Table 6.
  • the results show that when the biofilm thickness is 400-1000 ⁇ m, the system denitrification load can reach more than 85% of the maximum load. In addition, if the biofilm thickness is too low or too high, it is not conducive to the denitrification effect. In summary, the biofilm thickness has a significant impact on the treatment effect of the CANON-MBBR system. During daily control, the CANON-MBBR biofilm thickness should be maintained at 400-1000 ⁇ m as much as possible. At this time, the denitrification load of the CANON-MBBR system can be maintained at Relatively high level.
  • Parts not described in the present invention can be realized by adopting or drawing on existing technologies.

Abstract

本发明公开了一种AOA耦合高效自养脱氮水处理方法与系统,属于污水处理技术领域。该方法包括:待处理污水进入厌氧区,厌氧区出水进入碳提取区;在碳提取区中所得上清液进入自养IFAS区,所得污泥从碳提取区输送到缺氧IFAS区;自氧IFAS区出水进入自养菌回收区,自养IFAS区脱落生物膜回流至自养IFAS区,缺氧IFAS区出水进入二沉区。污泥超越管路保证了普通活性污泥不经过自养IFAS区,既有利于厌氧氨氧化菌富集,也从根本上避免了普通活性污泥中内碳源的损耗。自养菌回收区保证了自养IFAS区脱落生物膜的回收,实现了自养脱氮功能菌群的平衡。本发明方法具有脱氮效果优、硝化效果优及占地省等优点。

Description

一种AOA耦合高效自养脱氮水处理方法与系统 技术领域
本发明涉及污水处理技术领域,具体涉及一种AOA耦合高效自养脱氮水处理方法与系统。
背景技术
随着国内“3050”双碳目标的提出,污水处理对节能降耗的诉求不断升高。AOA工艺利用较低的好氧/缺氧池容比,通过较小的好氧停留时间,一方面降低了内碳源在好氧池的消耗;另一方面也保证了足够的反硝化池容,在应对进水C/N较低时,缺氧池利用厌氧阶段合成的PHA,通过内源反硝化效果可保证较高的脱氮效率,通过反硝化除磷可保证较高的生物除磷率,从而降低了污水脱氮对于外碳源的需求,实现了污水处理的节能降耗。厌氧氨氧化工艺通过富集自养型厌氧氨氧化菌实现污水的自养脱氮过程,针对氨氮型污水处理,该工艺常配合短程硝化工艺联用,与传统的硝化反硝化工艺相比,具有节省60%的曝气量,无需添加有机碳源,降低90%的污泥产量以及相对较少氮氧化物释放量等优点,此外,厌氧氨氧化工艺脱氮负荷高、运行费用低、占地空间小,已被公认为是目前最经济的生物脱氮工艺之一。作为两种高效低耗脱氮工艺,将AOA与厌氧氨氧化相耦合,则可进一步降低污水脱氮对原水碳源的依赖,实现污水处理的节能降耗。
现有技术中关于AOA工艺耦合厌氧氨氧化技术相关方面的研究报道主要有:
申请号201910358952.3公开了一种AOA工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置,该装置为AOA工艺流程,以活性污泥为内碳源合成及硝化主体,通过在缺氧区投加填料,利用好氧区产生的亚硝与原水中剩余的氨氮进行厌氧氨氧化反应,产生的硝氮可在缺氧区通过污泥内源反硝化进一步去除。申请号201910358964.6公开了一种全流程厌氧氨氧化强化脱氮的AOA工艺处理城市污水的方法与装置,该装置在AOA反应器中投加生物膜填料。污水处理过程中,在厌氧区污泥积累内碳源去除原水中的有机物。随后进入好氧区进行硝化反应,产生的硝态氮进入缺氧区进行内源反硝化,AOA反应器中的厌氧氨氧化填料利用硝化反硝化过程中产生的亚硝态氮与原水剩余氨氮进行厌氧氨氧化反应,强化脱氮。申请号201910762403.2公开了一种通过羟胺实现连续流AOA生物膜半短程耦合厌氧氨氧化装置与方法,其通过向反应器好氧池中投加羟胺试剂抑制NOB活性,从而使得连续流好氧池发生半短程硝化反应,继而含有氨氮与亚硝态氮的混合液进入连续流AOA生物膜反应器的缺氧池,生长在生物膜上的厌氧氨化菌利用氨氮与亚硝态氮发生厌氧氨氧化反应。申请号202110336253.6公开了一种AOA耦合厌氧氨氧化深度脱氮除磷工艺,该工艺包括进 行內碳源储存及磷酸盐释放的厌氧区、进行好氧过量吸磷及短程硝化-厌氧氨氧化的好氧区、进行內碳源短程反硝化-厌氧氨氧化的缺氧区,所述好氧区及缺氧区均投加活性生物填料富集主要功能菌。申请号202110532485.9公开了一种低氧曝气AOA-SBBR短程硝化厌氧氨氧化耦合反硝化除磷一体化城市污水处理方法,厌氧阶段污泥中的反硝化聚磷菌与反硝化聚糖菌将水中的易降解有机物储存为内碳源,随后在好氧曝气阶段通过氨氧化菌实现短程效果,并利用厌氧氨氧化菌在填料内部微缺氧环境条件下将生成的亚氮与氨氮转化为N 2进行脱氮,最后在缺氧阶段利用反硝化聚磷菌与反硝化聚糖菌通过内源反硝化作用将剩余的硝态氮与污水中的磷去除。
上述现有技术虽然实现了AOA工艺与厌氧氨氧化的耦合,但并未针对两种工艺的最优处理效果而进行任何优化。首先,系统内活性污泥会经历好氧区曝气过程,导致其储存的内碳源发生好氧分解,降低AOA工艺的原水碳源的利用率;其次,游走于整个系统内各功能区的活性污泥与厌氧氨氧化生物膜同存于厌氧氨氧化功能区,活性污泥中杂乱的菌群组成将影响厌氧氨氧化菌生物膜的物种组成,一方面无法实现厌氧氨氧化菌的高效富集,另一方面,易造成现有厌氧氨氧化菌群的退化。因此以该方式进行AOA与厌氧氨氧化工艺的耦合,并无法实现两种工艺耦合后处理效果相叠加甚至更高,需要进一步研究,优化耦合工艺流程。
申请号201610164752.0公布了一种高效脱氮除磷的污水处理方法,将厌氧池处理后的混合液进行固液分离,将上清液导入除磷池和硝化池,将污泥导入反硝化池进行内源反硝化,且除磷池和硝化池单独分开,使除磷和脱氮之间互不影响。该发明通过厌氧区后增加泥水分离的方式实现了硝化与反硝化分别通过不同生物相完成,从根本上避免了好氧区活性污泥的内碳源损失,但该发明设置系统总HRT最小也为18h以上,可见其并未真正意义上提高系统的处理效率。而在工艺组成上,也存在如下问题。首先,普通AOA工艺仍借助于传统硝化反硝化工艺技术,脱氮效果仍受原水C/N影响较大,在进水碳源极度缺乏的基础上,出水TN仍有超标风险;其次,当固液分离池沉降效果较差时,一方面,出水上清液SS高,会对后续的硝化池硝化效果造成影响,导致硝化池硝化效果恶化,而较高的污泥超越比,也增加了好氧池进水氨氮负荷,需要上调好氧池与缺氧池间的回流比满足硝化效果;再次,其硝化效果通过硝化池和好氧池共同保证,好氧池与硝化池若采用的工艺形式不同,其硝化效果必然有所差异,当固液分离池污泥超越比较大时,此时系统的硝化主体为采用活性污泥法的好氧池,过低的硝化负荷导致好氧池设计池容偏大;最后,该工艺除磷依靠化学除磷、反硝化除磷与生物除磷共同完成,当污泥超越比较高时,将导致系统大部分污水实际工艺流程为厌氧-缺氧-好氧(AAO),此时的系统原水碳源利用率会大大降低,进而影响氮磷去除效果。
在实际应用过程中,传统AOA工艺采用厌氧区后泥水分离,虽可以避免内碳源的好氧 分解,但对工艺流程的设计要求更高,需更加严谨,且无法摆脱其脱氮效果受进水碳源限制的弊端,在进水碳源极度缺乏的基础上,出水TN易超标;而AOA耦合厌氧氨氧化工艺,虽然理论上可进一步降低脱氮效果受原水C/N的影响,但运行上将普通活性污泥与厌氧氨氧化共存,难以实现厌氧氨氧化菌种的有效富集,处理效果无法充分发挥。综上,为体现AOA耦合厌氧氨氧化工艺优势,有必要对现有技术进行改进。
发明内容
本发明的目的之一在于提供一种AOA耦合高效自养脱氮水处理方法,其对现有AOA污水处理工艺进行重新设计,通过厌氧区实现内碳源的合成及聚磷的水解,通过碳提取区实现厌氧区混合液的泥水分离,上清液进入自养IFAS区,污泥由碳提取区转移至缺氧IFAS区,在自养IFAS区通过投加悬浮载体,在生物膜外层和内层分别富集好氧氨氧化菌(AOB)和厌氧氨氧化菌(AnAOB),自养菌回收区设置污泥自回流管路,使上清液进入缺氧IFAS区,污泥由自养菌回收区底部流向自养IFAS区进水端,实现对于自养IFAS区核心菌种的回收。该方法作为一个整体,具有脱氮效果优、硝化效果优及占地省等优点。
为了实现上述目的,本发明采用了以下技术方案:
一种AOA耦合高效自养脱氮水处理方法,依次包括以下步骤:
a、将待处理污水通入厌氧区,通过厌氧区主要进行活性污泥内碳源的合成及磷素释放,厌氧区HRT为1~2h;
b、厌氧区出水进入连接在其后的碳提取区;在碳提取区对厌氧区的泥水混合液进行强化固液分离,分离所得上清液进入连接在碳提取区之后的自养IFAS区,分离所得污泥从碳提取区底部的出口端排出,经过连接有污泥超越泵的管路将其输送到缺氧IFAS区,将COD以活性污泥形式转移至缺氧IFAS区;
所述的碳提取区的HRT为0.4~0.6h,表面水力负荷≥5m 3/m 2/h,固体通量≥20kg/m 2/h,出水SS≤50mg/L,COD损失率<30%;
c、自养IFAS区通过投加悬浮级载体,在生物膜外层和内层分别富集好氧氨氧化菌和厌氧氨氧化菌,自养IFAS区满足:氨氧化率为80~90%,同时出水亚氮≥2mg/L;
若不满足上述条件时,通过投加5mg/L盐酸羟胺予以实现,待系统亚氮浓度≥4mg/L时停止投加;同时将自养IFAS区悬浮载体生物膜厚度控制在400~1000μm;
所述的自养IFAS区按照设计硝化HRT的80~90%设计,通过拦截筛网设置分级≥2级,最后一级出水SS≤150mg/L;
d、自养IFAS区出水进入自养菌回收区,开启连接在自养菌回收区和自养IFAS区之间污泥内回流管路上的污泥内回流泵,回流比为10%~20%,污泥从自养菌回收区回流至自养 IFAS区,出水上清液进入缺氧IFAS区;
所述的自养菌回收区HRT为0.2~0.4h,通过向其中投加磁粉强化出水SS沉降效果,确保出水SS≤50mg/L;
e、缺氧IFAS区进行内源短程反硝化-厌氧氨氧化反应和内源反硝化除磷。
上述技术方案直接带来的有益技术效果为:
通过碳提取区可实现超快的泥水分离效果,上清液进入自养IFAS区,污泥超越进入缺氧IFAS区;脱氮由自养IFAS区和缺氧IFAS区共同承担,且主脱氮区采用泥膜复合工艺,可降低缺氧IFAS区脱氮压力,活性污泥通过超越进入缺氧IFAS区,避免了普通活性污泥中内碳源的损耗,可维持高效的脱氮效果。
作为本发明的一个优选方案,所述的自养IFAS区和缺氧IFAS区的悬浮载体有效比表面积≥620m 2/m 3,空隙率>90%,30%≤填充率<67%,自养IFAS区和缺氧IFAS区的悬浮载体密度均为0.97~1.03g/cm 3
作为本发明的另一个优选方案,在所述的自养IFAS区、缺氧IFAS区的出水端均设置有拦截筛网。
进一步优选,在所述的自养IFAS区的底部安装有曝气管路,在所述的厌氧区、缺氧IFAS区安装有潜水搅拌器。
本发明的另一目的在于提供一种AOA耦合高效自养脱氮水处理处理系统,所述的反应池依次划分为厌氧区、碳提取区、自养IFAS区、自养菌回收区、缺氧IFAS区及二沉区;
所述的碳提取区的底部的出口端连接有污泥超越管路,所述的污泥超越管路的另一端连接在所述的缺氧IFAS区,通过所述的污泥超越管路将碳提取区沉降所得污泥输送至缺氧IFAS区的底部;
所述的二沉区的出口端设置有污泥外回流管路,所述的污泥外回流管路的另一端连接在所述的厌氧区,通过所述的污泥外回流管路将二沉区所得部分污泥回流至厌氧区;
所述的自养IFAS区和自养菌回收区设置有污泥内回流管路,通过所述的污泥内回流管路将自养IFAS区脱落生物膜从自养菌回收区回流至自养IFAS区;
所述的厌氧区用于对活性污泥内碳源的合成及磷素进行释放,所述的厌氧区的HRT为1~2h;
所述的碳提取区的HRT为0.4~0.6h,表面水力负荷≥5m 3/m 2/h,固体通量≥20kg/m 2/h,出水SS≤50mg/L,COD损失率<30%;
所述的自养IFAS区按照设计硝化HRT的80~90%设计,通过拦截筛网设置分级≥2级,最后一级出水SS≤150mg/L;
所述的自养菌回收区HRT为0.2~0.4h;通过投加磁粉强化出水SS沉降效果,保证出水SS≤50mg/L;
所述的缺氧IFAS区按照设计硝化HRT的20~30%设计。
与现有技术相比,本发明带来了以下有益技术效果:
1)脱氮效果优,脱氮由自养IFAS区和缺氧IFAS区共同承担。首先,主脱氮区采用泥膜复合工艺,将短程硝化与厌氧氨氧化耦合于同一反应器中进行脱氮,起到削减氮素负荷的作用,降低了缺氧区脱氮压力;其次,通过对厌氧区后的碳提取区艺实现泥水分离,保证了普通活性污泥不经过自养IFAS区,既有利于厌氧氨氧化菌富集,也从根本上避免了普通活性污泥中内碳源的损耗,为缺氧IFAS区实现高效的内源反硝化脱氮除磷效果奠定了基础;最后,缺氧IFAS区采用泥膜复合工艺,通过短程反硝化与厌氧氨氧化进行脱氮,可以进一步降低脱氮对于碳源的限制。最低可在进水C/N≤2的基础上实现出水TN稳定低于10mg/L,优化运行后可进一步降至5mg/L。
2)脱氮效果稳定,针对自养IFAS区厌氧氨氧化难以长期稳定运行,通过大量试验研究,形成了基于污泥自回流平衡自养脱氮功能菌群,羟胺投加维持系统稳定高效,生物膜厚度控制实现高效传质传氧,有效的保证了其脱氮效果。
3)硝化效果优,针对活性污泥系统硝化效率低的问题,氨氮去除由自养IFAS区和缺氧IFAS区共同承担,自养IFAS区通过短程硝化与厌氧氨氧化实现主要的脱氨功能,而缺氧IFAS区针对自养IFAS区出水携带的少量氨氮及污泥超越导致的部分氨氮,同时耦合短程反硝化进行针对性脱氮,可实现系统氨氮去除率>95%,通过优化调整可实现出水氨氮<0.5mg/L。
4)占地省,主脱氨区和脱氮区均由自养IFAS区承担,其采用基于污泥自回流的IFAS工艺,负荷更高,而缺氧IFAS区采用泥膜复合工艺,其处理负荷也较传统活性污泥法更高,从而起到显著的节地效果,整个工艺流程合计HRT仅需传统污水处理工艺HRT的60%以下。
附图说明
下面结合附图对本发明做进一步说明:
图1为本发明处理工艺的流程图。
具体实施方式
本发明提出了一种AOA耦合高效自养脱氮水处理方法与系统,为了使本发明的优点、技术方案更加清楚、明确,下面结合具体实施例对本发明做详细说明。
除非另有其他明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”等等将被理解为包括所陈述的部件或组成部分,而并未排除其他部件或其他组成部分。
在本文中,为了描述的方便,可以使用空间相对术语,诸如“下面”、“下方”、“下”、“上 面”、“上方”、“上”等,来描述一个部件或特征与另一部件或特征在附图中的关系。应理解的是,空间相对术语旨在包含除了在图中所绘的方向之外物件在使用或操作中的不同方向。例如,如果在图中的物件被翻转,则被描述为在其他部件或特征“下方”或“下”的部件将取向在所述部件或特征的“上方”。因此,示范性术语“下方”可以包含下方和上方两个方向。部件也可以有其他取向(旋转90度或其他取向)且应对本文使用的空间相对术语作出相应的解释。
首先对本发明中所涉及的部分技术术语做详细解释。
设计硝化HRT:根据《室外排水设计标准》中关于活性污泥法设计规程而设计的硝化停留时间,h;
设计反硝化HRT:根据《室外排水设计标准》中关于活性污泥法设计规程而设计的反硝化停留时间,h;
表面水力负荷:碳提取区域水平截面单位面积每小时所能承受的进水水量,m 3/m 2/h;
固体通量:碳提取区域水平截面单位面积每小时所能承受的进水SS量,kg/m 2/h;
本发明中的“污泥超越泵”,具体是指污泥泵,是连接在碳提取区与缺氧IFAS区之间管道上的污泥泵,其作用是将碳提取区底部的污泥通入缺氧IFAS区。
其次,对本发明的主要创新点做如下说明:
AOA工艺,采用厌氧→好氧→缺氧的工艺流程,厌氧区利用活性污泥吸收进水所含有机物,合成PHA(内碳源)储存在细胞中,同时发生释磷现象;好氧区主要完成氨氮的硝化,缺氧区则利用活性污泥在厌氧段合成的内碳源进行反硝化脱氮和反硝化除磷,实现脱氮除磷一碳两用,提高原水碳源的利用率。所以,AOA工艺的核心一方面在于好氧区的设置,要么池容必须要小,以此降低内碳源的损耗,但好氧池容变小,会影响其硝化效果;要么则是创新工艺形式,让活性污泥不经过好氧区,以此从根本上避免碳损失。另一方面,现有AOA工艺仍借助传统硝化反硝化进行脱氮,无法较大程度摆脱脱氮受原水碳源的限制,而耦合厌氧氨氧化脱氮,又存在厌氧氨氧化运行不稳定,脱氮效果受影响等问题。
基于上述考虑,本发明对反应池进行了重新设计,主要考虑了以下三方面:
第一、针对AOA工艺好氧区碳损失问题,工艺形式上基于BFM工艺,采用纯膜MBBR耦合磁加载沉淀技术,实现好/缺氧区生物相的绝对分离,好氧区采用纯膜MBBR形式运行,缺氧区采用活性污泥形式运行;
第二、针对好氧区纯膜MBBR的实现,一方面要考虑进水SS对生物膜传质的影响,另一方面也要考虑生物膜脱落后(腐殖污泥)对系统处理负荷的影响,根据大量试验规律总结,在确定纯膜MBBR工艺SS影响边界条件的基础上,结合好氧区COD去处能力,进一步确定了进水SS边界条件;此外,针对厌氧区污泥含水率低、易产气等特点,采用磁混凝沉淀工艺, 通过较高的固体通量,结合超越污泥和系统内污泥的污泥浓度,设置合适的水力负荷,从而实现高效稳定的泥水分离效果;
第三、针对现有工艺脱氮效果受原水碳源影响大的问题,在现有AOA工艺的基础上与厌氧氨氧化相耦合。在好氧段采用短程硝化-厌氧氨氧化工艺(CANON工艺),针对短程硝化菌(AOB)易在污泥中富集的特性,采用设置污泥内回流的方式强化对于短程硝化菌的富集效率,实现了CANON菌群的稳定;针对厌氧氨氧化运行难,通过羟胺投加及生物膜厚度控制实现稳定高效的自养脱氮效果;此外,通过设置缺氧IFAS区,利用短程反硝化-厌氧氨氧化工艺(PDN/A工艺),通过低负荷的自养脱氮效果,一方面可降低自养IFAS区脱氮压力,另一方面也可针对性对超越污泥所携带的氨氮起到针对性去除。
以上三点紧密相连、密不可分,碳提取区通过良好的泥水分离效果,保证纯膜自养IFAS的运行状态,自养IFAS的运行状态既从根本上杜绝了普通活性污泥在好氧区的碳损失问题,也强化了悬浮载体对于厌氧氨氧化菌的富集效率,自养IFAS区设置污泥自回流、羟胺投加及生物膜厚度控制则维持了稳定高效的自养脱氮效果,缺氧IFAS区的设置进一步强化了自养脱氮占比,实现了TN的高标准排放。
如图1所示,本发明系统,包括反应池,作为本发明的主要改进点,通过将反应池进行重新划分,依次划分为厌氧区、碳提取区、自养IFAS区、自养菌回收区、缺氧IFAS区及二沉区;
其中,总进水管路与厌氧区连接,待处理水首先通过总进水管路进入厌氧区,在厌氧区中,进水有机物被活性污泥吸附,生成PHA储存在体内,同时发生厌氧释磷,厌氧区的HRT为1~2h。
厌氧区和碳提取区之间保持连通,如可通过设置于厌氧区出水端上部的过水孔洞保持连通,厌氧区处理后的水通过过水孔洞进入碳提取区,在碳提取区中,污泥沉积在下方,清水在上方。在碳提取区底部的出水端连接的污泥超越管路上设置有污泥超越泵,该污泥超越管路的另一端连接至选择缺氧IFAS区,将污泥输送到缺氧IFAS区的底部。
碳提取区底部设置污泥超越管,使上清液进入自养IFAS区,污泥由碳提取区流向缺氧IFAS区,将COD以活性污泥形式转移至缺氧IFAS区。
在自养IFAS区通过投加悬浮载体,在生物膜外层和内层分别富集好氧氨氧化菌(AOB)和厌氧氨氧化菌(AnAOB)。
缺氧IFAS区进行内源反硝化脱氮除磷及厌氧氨氧化脱氮,利用碳提取区污泥超越携带和转化的内碳源进行内源反硝化脱氮除磷,悬浮载体富集厌氧氨氧化菌进行厌氧氨氧化自养脱氮。
碳提取区主要采用磁加载沉淀工艺,磁加载沉淀工艺相比普通沉淀工艺,其泥水分离效果最好。如通过向碳提取区投加磁粉来分离泥水,为保证系统HRT在10h以下,对于碳提取区,需满足以下要求:
所述的碳提取区的HRT为0.4~0.6h,表面水力负荷≥5m 3/m 2/h,固体通量≥20kg/m 2/h,出水SS≤50mg/L,COD损失率<30%;
并且,自养IFAS区按照设计硝化HRT的80~90%设计,通过拦截筛网设置分级≥2级,最后一级出水SS≤150mg/L;
自养菌回收区HRT为0.2~0.4h;通过投加磁粉强化出水SS沉降效果,保证出水SS≤50mg/L;
缺氧IFAS区按照设计硝化HRT为20~30%设置。
自养IFAS区和缺氧IFAS区的悬浮载体有效比表面积≥620m 2/m 3,空隙率>90%,30%≤填充率<67%,自养IFAS区和缺氧IFAS区的悬浮载体密度为0.97-1.03g/cm 3
在自养IFAS区、缺氧IFAS区的出水端均设置有拦截筛网,主要作用在于拦截悬浮载体。为了防止悬浮载体冲出,上述的拦截筛网上的通孔的孔径小于悬浮载体的直径。为了确保自养IFAS区出水达到要求,可以将拦截筛网设置为两级,保证最后一级出水SS≤150mg/L。
在自养IFAS区的底部安装有曝气管路,在厌氧区、缺氧IFAS区安装有潜水搅拌器,曝气管路和潜水搅拌器的具体结构借鉴现有技术即可实现。
下面结合上述系统对本发明处理工艺做详细说明。
具体包括以下步骤:
第一步、将待处理污水通入厌氧区,通过厌氧区主要进行活性污泥内碳源的合成及磷素释放,厌氧区HRT为1~2h;
第二步、厌氧区出水进入连接在其后的碳提取区;在碳提取区对厌氧区的泥水混合液进行强化固液分离,分离所得上清液进入连接在碳提取区之后的自养IFAS区,分离所得污泥从碳提取区底部的出口端排出,经过连接有污泥超越泵的管路将其输送到缺氧IFAS区,将COD以活性污泥形式转移至缺氧IFAS区,所述的缺氧IFAS区与自养IFAS区设置有自养菌回收区;
所述的碳提取区的HRT为0.4~0.6h,表面水力负荷≥5m 3/m 2/h,固体通量≥20kg/m 2/h,出水SS≤50mg/L,COD损失率<30%;
第三步、自养IFAS区通过投加悬浮级载体,在生物膜外层和内层分别富集好氧氨氧化菌和厌氧氨氧化菌,自养IFAS区满足:氨氧化率为80~90%,同时出水亚氮≥2mg/L;
若不满足上述条件时,通过投加5mg/L盐酸羟胺予以实现,待系统亚氮浓度≥4mg/L时 停止投加;同时将自养IFAS区悬浮载体生物膜厚度控制在400~1000μm;
所述的自养IFAS区按照设计硝化HRT的80~90%设计,通过拦截筛网设置分级≥2级,最后一级出水SS≤150mg/L;
第四步、自养IFAS区出水进入自养菌回收区,开启连接在自养菌回收区和自养IFAS区之间污泥内回流管路上的污泥内回流泵,回流比为10%~20%,污泥从自养菌回收区回流至自养IFAS区,出水上清液进入缺氧IFAS区;
所述的自养菌回收区HRT为0.2~0.4h,通过向其中投加磁粉强化出水SS沉降效果,确保出水SS≤50mg/L;
第五步、缺氧IFAS区进行AMAMMOX反应和内源反硝化除磷。
下面结合具体实施例对本发明做详细说明。
实施例1:
某三组污水处理装置,编号1-3,设计水量均为80m 3/d,装置生化段均采用AOA耦合高效自养脱氮水处理系统,针对厌氧区污泥的泥水分离效果,分别采用传统重力沉淀池、磁分离沉淀池、高效沉淀池,HRT均设置为1h,各装置药剂投加量一致,对比验证各装置出水SS,实验结果如表1所示。
表1 不同泥水分离工艺出水SS(mg/L)
Figure PCTCN2022104140-appb-000001
结果表明,重力沉降池沉降效果最差,且后期出现了明显的污泥产气上浮现象,导致出水SS进一步升高,而高效沉淀池整体沉降效果较差,出水SS高达174mg/L。磁分离沉淀池通过磁粉的投加,可以实现更好的泥水分离效果,实测出水SS均值仅为4mg/L。可见针对厌氧池出水污泥的沉降,一方面,由于经过厌氧段的污泥易产气上浮,另一方面,传统泥水分离工艺所需池容较大,占地过高,为平衡处理效果与占地紧凑,需选用磁分离沉淀工艺。
实施例2:
某五组污水处理装置,编号A-E,生化段均采用基于AOA耦合高效自养脱氮水处理系统,针对厌氧区污泥的泥水分离效果,均采用磁分离沉淀工艺,控制单因素变量为磁分离沉淀的HRT,分别设置为0.3、0.4、0.5、0.6、0.7h。各装置药剂投加量一致,对比验证各装置出水SS,实验结果如表2所示。
表2 不同磁分离沉淀HRT下出水SS(mg/L)
Figure PCTCN2022104140-appb-000002
结果表明,当碳提取区磁加载沉淀HRT为0.3h时,出水SS略有超标,0.4-0.6h时,系统出水SS均可达到200mg/L以下,而当HRT进一步延长至0.7h后,此时出水SS已基本稳定,可见,磁分离沉淀无需设置过长的HRT,在0.4~0.6h完全可以实现较好的SS去除效果。
实施例3:
某3组CANON污水处理装置,编号1-3,各装置均处理主流市政污水,后接AO活性污泥法深度脱氮单元,1-3号运行模式分别为纯膜MBBR、泥膜复合MBBR(自身污泥回流)、泥膜复合MBBR(接深度脱氮单元污泥),各装置脱氮负荷率如表3所示,不同生物相中功能菌相对丰度如表4所示,可见,CANON工艺采用纯膜MBBR形式,会由于生物膜对AOB的富集效率相对较低,导致菌群比例失衡,限制了脱氮负荷提升。而采用外接其他工艺污泥组成泥膜复合MBBR系统,则会由于污泥相的干扰,影响系统功能菌富集效率,从而使脱氮负荷进一步降低。而采用污泥自回流的IFAS形式,则可以实现AOB与AnAOB的平衡,活性污泥中以富集AOB为主,生物膜中以富集AnAOB为主,从而达到更好的脱氮效果。
表3 CANON-MBRB系统不同运行模式下的处理负荷
Figure PCTCN2022104140-appb-000003
表4 CANON-MBRB系统不同运行模式下各生物相功能菌相对丰度
Figure PCTCN2022104140-appb-000004
实施例4:
某五组基于厌氧氨氧化的自养IFAS装置,编号a-e,均用于处理主流市政污水,为保证系统稳定的短程硝化效果,采用投加盐酸羟胺的方式验证了最佳投加浓度,实验结果如表5所示,随着盐酸羟胺投加浓度由0mg/L升至5.0mg/L时,CANON-MBBR系统的脱氮负荷也随之达到最高,此时系统亚氮浓度为4.1mg/L,此时的盐酸羟胺投加浓度及系统亚氮浓度可认为是最适浓度。当盐酸羟胺投加浓度进一步升高后,系统处理负荷率不升反降,则可能是过高的羟胺对厌氧氨氧化菌产生了毒性抑制。可见,良好的CANON-MBBR系统,并非亚氮越高越好,也并非羟胺投加量越大越好,综合运行效果来看,CANON-MBBR系统在盐酸羟胺投加量为5mg/L,亚氮浓度为4mg/L时,脱氮效果可达到最高水平,且在亚氮浓度为2-4mg/L时,系统脱氮效果与亚氮浓度呈正相关,因此可在系统亚氮浓度降至2mg/L时投加盐酸羟胺。
表5 不同羟胺投加浓度下系统脱氮负荷率(%)
Figure PCTCN2022104140-appb-000005
实施例5:
某自养IFAS反应器,除理主流市政污水,进水水质较为稳定的基础上,通过调整系统内曝气管路布置形式,控制生物膜达到不同的厚度,并验证生物膜厚度对系统脱氮负荷的影响效果。试验结果如表6所示。
表6 不同生物膜厚度下系统脱氮负荷率(%)
Figure PCTCN2022104140-appb-000006
结果表明,当生物膜厚度为400~1000μm时,系统脱氮负荷可达最高负荷的85%以上,此外,生物膜厚度过低或过高均不利于除理效果的发挥。综上,生物膜厚度对CANON-MBBR系统处理效果有明显影响,日常控制时,应尽可能保证CANON-MBBR生物膜厚度维持在400-1000μm,此时的CANON-MBBR系统脱氮负荷可维持在相对较高水平。
本发明中未述及的部分采用或借鉴已有技术即可实现。
需要进一步说明的是,本文中所描述的具体实施例仅仅是对本发明的精神所作的举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (5)

  1. 一种AOA耦合高效自养脱氮水处理方法,其特征在于,依次包括以下步骤:
    a、将待处理污水通入厌氧区,通过厌氧区主要进行活性污泥内碳源的合成及磷素释放,厌氧区HRT为1~2h;
    b、厌氧区出水进入连接在其后的碳提取区;在碳提取区对厌氧区的泥水混合液进行强化固液分离,分离所得上清液进入连接在碳提取区之后的自养IFAS区,分离所得污泥从碳提取区底部的出口端排出,经过连接有污泥超越泵的管路将其输送到缺氧IFAS区,将COD以活性污泥形式转移至缺氧IFAS区;
    所述的碳提取区的HRT为0.4~0.6h,表面水力负荷≥5m 3/m 2/h,固体通量≥20kg/m 2/h,出水SS≤50mg/L,COD损失率<30%;
    c、自养IFAS区通过投加悬浮级载体,在生物膜外层和内层分别富集好氧氨氧化菌和厌氧氨氧化菌,自养IFAS区满足:氨氧化率为80~90%,同时出水亚氮≥2mg/L;
    若不满足上述条件时,通过投加5mg/L盐酸羟胺予以实现,待系统亚氮浓度≥4mg/L时停止投加;同时将自养IFAS区悬浮载体生物膜厚度控制在400~1000μm;
    所述的自养IFAS区按照设计硝化HRT的80~90%设计,通过拦截筛网设置分级≥2级,最后一级出水SS≤150mg/L;
    d、自养IFAS区出水进入自养菌回收区,开启连接在自养菌回收区和自养IFAS区之间污泥内回流管路上的污泥内回流泵,回流比为10%~20%,污泥从自养菌回收区回流至自养IFAS区,出水上清液进入缺氧IFAS区;
    所述的自养菌回收区HRT为0.2~0.4h,通过向其中投加磁粉强化出水SS沉降效果,确保出水SS≤50mg/L;
    e、缺氧IFAS区进行内源短程反硝化-厌氧氨氧化反应和内源反硝化除磷。
  2. 根据权利要求1所述的一种AOA耦合高效自养脱氮水处理方法,其特征在于:
    所述的自养IFAS区和缺氧IFAS区的悬浮载体有效比表面积≥620m 2/m 3,空隙率>90%,30%≤填充率<67%,自养IFAS区和缺氧IFAS区的悬浮载体密度均为0.97~1.03g/cm 3
  3. 根据权利要求1所述的一种AOA耦合高效自养脱氮水处理方法,其特征在于:在所述的自养IFAS区、缺氧IFAS区的出水端均设置有拦截筛网。
  4. 根据权利要求1所述的一种AOA耦合高效自养脱氮水处理方法,其特征在于:在所述的自养IFAS区的底部安装有曝气管路,在所述的厌氧区、缺氧IFAS区安装有潜水搅拌器。
  5. 一种AOA耦合高效自养脱氮水处理处理系统,其包括反应池,其特征在于:所述的反应池依次划分为厌氧区、碳提取区、自养IFAS区、自养菌回收区、缺氧IFAS区及二沉区;
    所述的碳提取区的底部的出口端连接有污泥超越管路,所述的污泥超越管路的另一端连 接在所述的缺氧IFAS区,通过所述的污泥超越管路将碳提取区沉降所得污泥输送至缺氧IFAS区的底部;
    所述的二沉区的出口端设置有污泥外回流管路,所述的污泥外回流管路的另一端连接在所述的厌氧区,通过所述的污泥外回流管路将二沉区所得部分污泥回流至厌氧区;
    所述的自养IFAS区和自养菌回收区设置有污泥内回流管路,通过所述的污泥内回流管路将自养IFAS区脱落生物膜从自养菌回收区回流至自养IFAS区;
    所述的厌氧区用于对活性污泥内碳源的合成及磷素进行释放,所述的厌氧区的HRT为1~2h;
    所述的碳提取区的HRT为0.4~0.6h,表面水力负荷≥5m 3/m 2/h,固体通量≥20kg/m 2/h,出水SS≤50mg/L,COD损失率<30%;
    所述的自养IFAS区按照设计硝化HRT的80~90%设计,通过拦截筛网设置分级≥2级,最后一级出水SS≤150mg/L;
    所述的自养菌回收区HRT为0.2~0.4h;通过投加磁粉强化出水SS沉降效果,保证出水SS≤50mg/L;
    所述的缺氧IFAS区按照设计硝化HRT的20~30%设计。
PCT/CN2022/104140 2022-04-19 2022-07-06 一种aoa耦合高效自养脱氮水处理方法与系统 WO2023201901A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210409949.1A CN114702136B (zh) 2022-04-19 2022-04-19 一种aoa耦合高效自养脱氮水处理方法与系统
CN202210409949.1 2022-04-19

Publications (1)

Publication Number Publication Date
WO2023201901A1 true WO2023201901A1 (zh) 2023-10-26

Family

ID=82175838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104140 WO2023201901A1 (zh) 2022-04-19 2022-07-06 一种aoa耦合高效自养脱氮水处理方法与系统

Country Status (2)

Country Link
CN (1) CN114702136B (zh)
WO (1) WO2023201901A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114702136B (zh) * 2022-04-19 2023-08-22 青岛思普润水处理股份有限公司 一种aoa耦合高效自养脱氮水处理方法与系统
CN116177741A (zh) * 2023-03-10 2023-05-30 北控水务(中国)投资有限公司 一种两级aoa沉淀污水生化处理装置及工艺方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140238931A1 (en) * 2013-02-26 2014-08-28 Veolia Water Solutions & Technologies Support Process for Treating Municiple Wastewater Employing Two Sequencing Biofilm Batch Reactors
US20140367330A1 (en) * 2013-06-17 2014-12-18 Veolia Water Solutions & Technologies Support Wastewater treatment process that utilizes granular sludge to reduce cod concentration in wastewater
CN104250050A (zh) * 2013-06-26 2014-12-31 李相昆 A/mbbr/a应用于低碳氮比城市污水的脱氮除磷
CN109368792A (zh) * 2018-12-06 2019-02-22 北京工业大学 污泥双回流aoa短程硝化耦合厌氧氨氧化与内源反硝化处理城市污水的方法与装置
CN110015757A (zh) * 2019-04-30 2019-07-16 北京工业大学 Aoa工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置
US20210355012A1 (en) * 2018-10-12 2021-11-18 Veolia Water Solutions & Technologies Support Mainstream Deammonification Process Employing Bypass Primary Effluent and Step Feeding
CN114702136A (zh) * 2022-04-19 2022-07-05 青岛思普润水处理股份有限公司 一种aoa耦合高效自养脱氮水处理方法与系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2767434Y (zh) * 2005-02-05 2006-03-29 彭永臻 双污泥反硝化除磷实验装置
CN105174630B (zh) * 2015-09-25 2017-12-01 句容市深水水务有限公司 基于生物技术的低碳氮比污水脱氮除磷系统及方法
CN105923761B (zh) * 2016-06-17 2019-11-12 深圳市瑞清环保科技有限公司 一种反硝化除磷污泥中亚铁盐强化除磷的方法
CN110386732B (zh) * 2019-08-05 2023-11-24 青岛思普润水处理股份有限公司 一种基于mbbr的主流自养脱氮改造系统与改造方法
CN110510739B (zh) * 2019-08-19 2022-04-12 国投信开水环境投资有限公司 一种通过羟胺实现连续流aoa生物膜半短程耦合厌氧氨氧化装置与方法
CN110615531B (zh) * 2019-09-16 2021-11-26 北京工业大学 一种基于deamox污泥双回流aoao污水深度脱氮除磷的装置与方法
WO2021104541A1 (zh) * 2019-11-27 2021-06-03 苏州科技大学 一种一体化污水处理装置和方法
CN112239269A (zh) * 2020-09-27 2021-01-19 长安大学 一种抑制硝化菌强化脱氮除磷效率的污水处理方法
CN112479370A (zh) * 2020-11-10 2021-03-12 青岛大学 一种污水自养脱氮装置和方法
CN113173640A (zh) * 2021-03-29 2021-07-27 江苏裕隆环保有限公司 一种aoa耦合厌氧氨氧化深度脱氮除磷工艺
CN113173642A (zh) * 2021-04-14 2021-07-27 江苏裕隆环保有限公司 一种城市生活污水aoa泥膜混合深度脱氮除磷系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140238931A1 (en) * 2013-02-26 2014-08-28 Veolia Water Solutions & Technologies Support Process for Treating Municiple Wastewater Employing Two Sequencing Biofilm Batch Reactors
US20140367330A1 (en) * 2013-06-17 2014-12-18 Veolia Water Solutions & Technologies Support Wastewater treatment process that utilizes granular sludge to reduce cod concentration in wastewater
CN104250050A (zh) * 2013-06-26 2014-12-31 李相昆 A/mbbr/a应用于低碳氮比城市污水的脱氮除磷
US20210355012A1 (en) * 2018-10-12 2021-11-18 Veolia Water Solutions & Technologies Support Mainstream Deammonification Process Employing Bypass Primary Effluent and Step Feeding
CN109368792A (zh) * 2018-12-06 2019-02-22 北京工业大学 污泥双回流aoa短程硝化耦合厌氧氨氧化与内源反硝化处理城市污水的方法与装置
CN110015757A (zh) * 2019-04-30 2019-07-16 北京工业大学 Aoa工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置
CN114702136A (zh) * 2022-04-19 2022-07-05 青岛思普润水处理股份有限公司 一种aoa耦合高效自养脱氮水处理方法与系统

Also Published As

Publication number Publication date
CN114702136A (zh) 2022-07-05
CN114702136B (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
CN109502906B (zh) 一种城市污水主侧流厌氧氨氧化协同脱氮工艺装置及其应用方法
WO2023201901A1 (zh) 一种aoa耦合高效自养脱氮水处理方法与系统
WO2023201900A1 (zh) 基于bfm形式的高效aoa耦合厌氧氨氧化污水处理方法及系统
CN110255714B (zh) 一种低碳源城市污水处理系统及方法
CN113415910B (zh) 一种铁氨氧化强化aao工艺中短程反硝化耦合厌氧氨氧化生物脱氮除磷的装置与方法
CN108545830A (zh) 一种利用污泥发酵强化连续流城市污水部分短程硝化厌氧氨氧化的工艺
CN102775027A (zh) 颗粒污泥一体化自养脱氮的装置及其运行方法
CN106630414A (zh) 半短程硝化‑厌氧氨氧化多级a/o自养脱氮装置与方法
CN103951059B (zh) 多循环式复合型生物反应器及其工艺
CN105692902A (zh) 一种处理城市生活污水的双颗粒污泥一体化工艺
CN104529056B (zh) 一种絮体污泥与颗粒污泥共生实现城市污水自养脱氮的方法
CN103936229A (zh) 一种城市污水改良a2/o强化脱氮除磷处理装置及工艺
WO2023168871A1 (zh) 一种基于循环流动的mbbr强化aoa和aao双模式运行方法
CN110803766B (zh) 一种硝化功能型与反硝化功能型悬浮载体联用的同步硝化反硝化工艺
CN114772731B (zh) 一种基于bfm形式的aoa耦合自养脱氮水处理方法与系统
CN102259977B (zh) 一种对含有氨氮的废水进行脱氮的方法
CN114702137B (zh) 一种基于mbbr的自养脱氮强化aoa水处理方法与系统
CN114716006B (zh) 一种基于bfm形式的高效aoa污水处理系统与方法
CN218089276U (zh) 一种基于aao和aoa双模式运行的污水处理装置
WO2020113862A1 (zh) 一种基于mbbr的高效自养脱氮系统的快速启动方法
CN114604965A (zh) 基于mbbr的aoa与aao双模式污水生化系统及运行方法
CN108689491B (zh) 一种可调节氮磷去除能力的污水处理方法
CN114772730B (zh) 一种基于bfm形式的canon-mbbr强化aoa水处理方法及系统
CN108483657B (zh) 一种磷循环的脱氮除磷方法
CN216808314U (zh) 一种基于mbbr的单向进水多模式生化系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938126

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022938126

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022938126

Country of ref document: EP

Effective date: 20240327