CN114772730B - 一种基于bfm形式的canon-mbbr强化aoa水处理方法及系统 - Google Patents

一种基于bfm形式的canon-mbbr强化aoa水处理方法及系统 Download PDF

Info

Publication number
CN114772730B
CN114772730B CN202210411125.8A CN202210411125A CN114772730B CN 114772730 B CN114772730 B CN 114772730B CN 202210411125 A CN202210411125 A CN 202210411125A CN 114772730 B CN114772730 B CN 114772730B
Authority
CN
China
Prior art keywords
zone
mbbr
area
aerobic
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210411125.8A
Other languages
English (en)
Other versions
CN114772730A (zh
Inventor
韩文杰
吴迪
黄青
田海成
周家中
李军
高伟楠
纪庚好
徐康康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Spring Water Treatment Co ltd
Original Assignee
Qingdao Spring Water Treatment Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Spring Water Treatment Co ltd filed Critical Qingdao Spring Water Treatment Co ltd
Priority to CN202210411125.8A priority Critical patent/CN114772730B/zh
Publication of CN114772730A publication Critical patent/CN114772730A/zh
Application granted granted Critical
Publication of CN114772730B publication Critical patent/CN114772730B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

本发明公开了一种基于BFM形式的CANON‑MBBR强化AOA水处理方法及系统,属于污水处理技术领域。该方法包括:待处理污水进入厌氧区,厌氧区出水进入碳富集区;在碳富集区中所得上清液进入自养MBBR区,所得污泥从碳富集区底部的出口端排出,经过连接有污泥超越泵的管路将其输送到好氧IFAS区;好氧IFAS区出水进入缺氧区,缺氧区出水进入二沉区中。本发明自养MBBR区作为硝化与脱氮主体,保证氨氧化率为80~90%,好氧IFAS区针对自养MBBR区出水携带的少量氨氮及污泥超越导致的部分氨氮进行针对性去除,本发明方法具有脱氮效果优、硝化效果优、抗冲击性强及占地省等优点。

Description

一种基于BFM形式的CANON-MBBR强化AOA水处理方法及系统
技术领域
本发明涉及污水处理技术领域,具体涉及一种基于BFM形式的CANON-MBBR强化AOA水处理方法及系统。
背景技术
随着国内双碳目标的提出,污水处理对节能降耗的诉求不断升高。AOA工艺利用较低的好氧/缺氧池容比,通过较小的好氧停留时间,一方面降低了内碳源在好氧池的消耗;另一方面也保证了足够的反硝化池容,在应对进水C/N较低时,缺氧池利用厌氧阶段合成的PHA,通过内源反硝化效果可保证较高的脱氮效率,通过反硝化除磷可保证较高的生物除磷率,从而降低了污水脱氮对于外碳源的需求,实现了污水处理的节能降耗。厌氧氨氧化工艺通过富集自养型厌氧氨氧化菌实现污水的自养脱氮过程,针对氨氮型污水处理,该工艺常配合短程硝化工艺联用,与传统的硝化反硝化工艺相比,具有节省60%的曝气量,无需添加有机碳源,降低90%的污泥产量以及相对较少氮氧化物释放量等优点,此外,厌氧氨氧化工艺脱氮负荷高、运行费用低、占地空间小,已被公认为是目前最经济的生物脱氮工艺之一。作为两种高效低耗脱氮工艺,将AOA与厌氧氨氧化相耦合,则可进一步降低污水脱氮对原水碳源的依赖,实现污水处理的节能降耗。
现有技术中关于AOA工艺耦合厌氧氨氧化技术相关方面的研究报道主要有:
申请号201910358952.3公开了一种AOA工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置,该装置为AOA工艺流程,以活性污泥为内碳源合成及硝化主体,通过在缺氧区投加填料,利用好氧区产生的亚硝与原水中剩余的氨氮进行厌氧氨氧化反应,产生的硝氮可在缺氧区通过污泥内源反硝化进一步去除。申请号201910358964.6公开了一种全流程厌氧氨氧化强化脱氮的AOA工艺处理城市污水的方法与装置,该装置在AOA反应器中投加生物膜填料。污水处理过程中,在厌氧区污泥积累内碳源去除原水中的有机物。随后进入好氧区进行硝化反应,产生的硝态氮进入缺氧区进行内源反硝化,AOA反应器中的厌氧氨氧化填料利用硝化反硝化过程中产生的亚硝态氮与原水剩余氨氮进行厌氧氨氧化反应,强化脱氮。申请号201910762403.2公开了一种通过羟胺实现连续流AOA生物膜半短程耦合厌氧氨氧化装置与方法,其通过向反应器好氧池中投加羟胺试剂抑制NOB活性,从而使得连续流好氧池发生半短程硝化反应,继而含有氨氮与亚硝态氮的混合液进入连续流AOA生物膜反应器的缺氧池,生长在生物膜上的厌氧氨化菌利用氨氮与亚硝态氮发生厌氧氨氧化反应。申请号202110336253.6公开了一种AOA耦合厌氧氨氧化深度脱氮除磷工艺,该工艺包括进行內碳源储存及磷酸盐释放的厌氧区、进行好氧过量吸磷及短程硝化-厌氧氨氧化的好氧区、进行內碳源短程反硝化-厌氧氨氧化的缺氧区,所述好氧区及缺氧区均投加活性生物填料富集主要功能菌。申请号202110532485.9公开了一种低氧曝气AOA-SBBR短程硝化厌氧氨氧化耦合反硝化除磷一体化城市污水处理方法,厌氧阶段污泥中的反硝化聚磷菌与反硝化聚糖菌将水中的易降解有机物储存为内碳源,随后在好氧曝气阶段通过氨氧化菌实现短程效果,并利用厌氧氨氧化菌在填料内部微缺氧环境条件下将生成的亚氮与氨氮转化为N2进行脱氮,最后在缺氧阶段利用反硝化聚磷菌与反硝化聚糖菌通过内源反硝化作用将剩余的硝态氮与污水中的磷去除。
上述现有技术虽然实现了AOA工艺与厌氧氨氧化的耦合,但并未针对两种工艺的最优处理效果而进行任何优化。首先,系统内活性污泥会经历好氧区曝气过程,导致其储存的内碳源发生好氧分解,降低AOA工艺的原水碳源的利用率;其次,游走于整个系统内各功能区的活性污泥与厌氧氨氧化生物膜同存于厌氧氨氧化功能区,活性污泥中杂乱的菌群组成将影响厌氧氨氧化菌生物膜的物种组成,一方面无法实现厌氧氨氧化菌的高效富集,另一方面,易造成现有厌氧氨氧化菌群的退化。因此以该方式进行AOA与厌氧氨氧化工艺的耦合,并无法实现两种工艺耦合后处理效果相叠加甚至更高,需要进一步研究,优化耦合工艺流程。
申请号201610164752.0公布了一种高效脱氮除磷的污水处理方法,将厌氧池处理后的混合液进行固液分离,将上清液导入除磷池和硝化池,将污泥导入反硝化池进行内源反硝化,且除磷池和硝化池单独分开,使除磷和脱氮之间互不影响。该发明通过厌氧区后增加泥水分离的方式实现了硝化与反硝化分别通过不同生物相完成,从根本上避免了好氧区活性污泥的内碳源损失,但该专利设置系统总HRT最小也为18h以上,可见其并未真正意义上提高系统的处理效率。而在工艺组成上,也存在如下问题。首先,普通AOA工艺仍借助于传统硝化反硝化工艺技术,脱氮效果仍受原水C/N影响较大,在进水碳源极度缺乏的基础上,出水TN 仍有超标风险;其次,当固液分离池沉降效果较差时,一方面,出水上清液SS高,会对后续的硝化池硝化效果造成影响,导致硝化池硝化效果恶化,而较高的污泥超越比,也增加了好氧池进水氨氮负荷,需要上调好氧池与缺氧池间的回流比满足硝化效果;再次,其硝化效果通过硝化池和好氧池共同保证,好氧池与硝化池若采用的工艺形式不同,其硝化效果必然有所差异,当固液分离池污泥超越比较大时,此时系统的硝化主体为采用活性污泥法的好氧池,过低的硝化负荷导致好氧池设计池容偏大;最后,该工艺除磷依靠化学除磷、反硝化除磷与生物除磷共同完成,当污泥超越比较高时,将导致系统大部分污水实际工艺流程为厌氧-缺氧 -好氧(AAO),此时的系统原水碳源利用率会大大降低,进而影响氮磷去除效果。
在实际应用过程中,第一、传统AOA工艺采用活性污泥法,无法保证进水冲击下的硝化效果;第二,在好氧区投加填料,仍然无法避免内碳源的好氧分解,从而无法保证缺氧区的内源反硝化效果;第三,采用厌氧区后泥水分离,虽可以避免内碳源的好氧分解,但对工艺流程的设计要求更高,需更加严谨,运行更加谨慎;第四、传统AOA工艺仍借助于传统硝化反硝化实现氮素的去除,在进水碳源极度缺乏的基础上,仍然有出水TN超标的风险,而采用AOA耦合厌氧氨氧化工艺又存在泥膜共生导致厌氧氨氧化处理效果不明显的问题。综上,为充分发挥AOA工艺优势,有必要对现有工艺进行改进。
发明内容
本发明的目的之一在于提供一种基于BFM形式的CANON-MBBR强化AOA水处理方法,其对现有AOA污水处理工艺进行重新设计,通过厌氧区实现内碳源的合成及聚磷的水解,通过碳富集区实现厌氧区混合液的泥水分离,上清液进入自养MBBR区,污泥由碳富集区转移至好氧IFAS区,避免了内碳源的损耗;自养MBBR区作为硝化和脱氮主体,保证氨氧化率为80~90%,好氧IFAS区针对自养MBBR区出水携带的少量氨氮及污泥超越导致的部分氨氮进行针对性去除,该方法作为一个整体,具有脱氮效果优、硝化效果优、抗冲击性强及占地省等优点。
为了实现上述目的,本发明采用了以下技术方案:
一种基于BFM形式的CANON-MBBR强化AOA水处理方法,依次包括以下步骤:
a、将待处理污水通入厌氧区,通过厌氧区主要进行活性污泥内碳源的合成及磷素释放,在厌氧区HRT为1~2h;
b、厌氧区出水进入连接在其后的碳富集区;在碳富集区对厌氧区的泥水混合液进行强化固液分离,分离所得上清液进入连接在碳富集区之后的自养MBBR区,分离所得污泥从碳富集区底部的出口端排出,经过连接有污泥超越泵的管路将其输送到连接在自养MBBR区之后的好氧IFAS区,将COD以活性污泥形式转移至好氧IFAS区;
所述的碳富集区的HRT为0.4~0.6h,表面水力负荷≥5m3/m2/h,固体通量≥20kg/m2/h,出水SS≤50mg/L,COD损失率<30%;
c、自养MBBR区通过投加悬浮级载体富集微生物来去除氨氮污染物,自养MBBR区满足:氨氧化率为80~90%,同时出水亚氮≥2mg/L;
若不满足上述条件时,通过投加5mg/L盐酸羟胺予以实现,待系统亚氮浓度≥4mg/L时停止投加;同时将自养MBBR区悬浮载体生物膜厚度控制在400~1000μm;
所述的自养MBBR区按照设计硝化HRT的100%设计,通过拦截筛网设置分级≥2级,最后一级出水SS≤150mg/L;
d、自养MBBR区出水进入好氧IFAS区;好氧IFAS区出水进入缺氧区,在缺氧区进行内源反硝化及反硝化除磷;
所述的好氧IFAS区通过投加悬浮载体富集微生物来进一步去除氨氮污染物,所述的好氧 IFAS区按照设计硝化HRT的5%~10%设计,运行时控制DO为2~4mg/L;缺氧区按照设计硝化HRT的30~50%设计;
e、缺氧区出水进入二沉区,控制污泥回流比为50%~100%;
若系统出水氨氮超过设计出水氨氮70%以上,则按照f运行;
f、上调好氧IFAS区的DO至4-6mg/L运行;
若系统出水氨氮降至设计出水氨氮50%以下,则按照步骤c继续运行。
上述技术方案直接带来的有益技术效果为:
通过碳富集区可实现超快的泥水分离效果,上清液进入自养MBBR区,污泥超越进入好氧IFAS区;脱氮由自养MBBR区和好氧IFAS区共同承担,且以自养MBBR区为主,以好氧IFAS区为辅,活性污泥通过超越进入好氧IFAS区,避免进入以脱氮为主的自养MBBR区中,可维持高效的自养脱氮效果。
作为本发明的一个优选方案,步骤e、f中每次判别以5d均值为判断周期,每次调整至少间隔3d。
作为本发明的另一个优选方案,所述的自养MBBR区和好氧IFAS区的悬浮载体有效比表面积≥620m2/m3,空隙率>90%,30%≤填充率<67%,自养MBBR区悬浮载体密度为0.97-1.03g/cm3,好氧IFAS区悬浮载体密度0.94-0.97g/cm3
进一步优选,在所述的自养MBBR区、好氧IFAS区的出水端均设置有拦截筛网。
优选的,在所述的自养MBBR区、好氧IFAS区的底部安装有曝气管路,在所述的厌氧区、缺氧区安装有潜水搅拌器。
本发明的另一目的在于提供一种基于BFM形式的CANON-MBBR强化AOA水处理系统,其包括反应池,所述的反应池依次划分为厌氧区、碳富集区、自养MBBR区、好氧IFAS 区、缺氧区及二沉区;
所述的碳富集区的底部的出口端连接有污泥超越管路,所述的污泥超越管路的另一端连接在所述的好氧IFAS区,通过所述的污泥超越管路将碳富集区沉降所得污泥输送至好氧IFAS 区的底部;
所述的二沉区的出口端设置有污泥回流管路,所述的污泥回流管路的另一端连接在所述的厌氧区,通过所述的污泥回流管路将二沉区所得部分污泥回流至厌氧区;
所述的厌氧区用于对活性污泥内碳源的合成及磷素进行释放,所述的厌氧区的HRT为 1~2h;
所述的碳富集区的HRT为0.4~0.6h,表面水力负荷≥5m3/m2/h,固体通量≥20kg/m2/h,出水SS≤50mg/L,COD损失率<30%;
所述的自养MBBR区按照设计硝化HRT的100%设计,通过拦截筛网设置分级≥2级,最后一级出水SS≤150mg/L;
所述的好氧IFAS区按照设计硝化HRT的5%~10%设计,运行时控制DO为2~4mg/L;缺氧区按照设计硝化HRT的30~50%设计。
与现有技术相比,本发明带来了以下有益技术效果:
1)脱氮效果优,脱氮由自养MBBR区和缺氧区共同承担,主脱氮区采用CANON-MBBR工艺,将短程硝化与厌氧氨氧化耦合于同一反应器中进行脱氮,起到削减氮素负荷的作用,降低了缺氧区脱氮压力;另外,通过对厌氧区后的碳移动区艺实现泥水分离,保证了活性污泥不经过自养MBBR区,既有利于厌氧氨氧化菌富集,也从根本上避免了内碳源的损耗。为缺氧区实现高效的内源反硝化脱氮除磷效果奠定了基础。最低可在进水C/N≤2的基础上实现出水TN稳定低于10mg/L,优化运行后可进一步降至5mg/L。
2)硝化效果优,针对活性污泥系统硝化效率低的问题,硝化由自养MBBR区和好氧IFAS 区共同承担,自养MBBR区通过短程硝化与厌氧氨氧化实现主要的硝化功能,而好氧IFAS 区针对自养MBBR区出水携带的少量氨氮及污泥超越导致的部分氨氮进行针对性去除,可实现系统氨氮去除率可>95%,通过优化调整可实现出水氨氮<0.5mg/L
3)抗冲击性强,正常条件下系统硝化大部分依靠生物膜完成,当面临冲击时,通过提高好氧IFAS区运行DO可实现处理负荷的增加,保证出水稳定达标;
4)占地省,主硝化区和脱氮区均由自养MBBR区承担,负荷更高,设计时仅按照硝化HRT设计即可。整个工艺流程合计HRT仅需传统硝化HRT的135%以下,可较传统活性污泥法降低40%以上。
附图说明
下面结合附图对本发明做进一步说明:
图1为本发明处理工艺的流程图。
具体实施方式
本发明提出了一种基于BFM形式的CANON-MBBR强化AOA水处理方法及系统,为了使本发明的优点、技术方案更加清楚、明确,下面结合具体实施例对本发明做详细说明。
除非另有其他明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”等等将被理解为包括所陈述的部件或组成部分,而并未排除其他部件或其他组成部分。
在本文中,为了描述的方便,可以使用空间相对术语,诸如“下面”、“下方”、“下”、“上面”、“上方”、“上”等,来描述一个部件或特征与另一部件或特征在附图中的关系。应理解的是,空间相对术语旨在包含除了在图中所绘的方向之外物件在使用或操作中的不同方向。例如,如果在图中的物件被翻转,则被描述为在其他部件或特征“下方”或“下”的部件将取向在所述部件或特征的“上方”。因此,示范性术语“下方”可以包含下方和上方两个方向。部件也可以有其他取向(旋转90度或其他取向)且应对本文使用的空间相对术语作出相应的解释。
首先对本发明中所涉及的部分技术术语做详细解释。
设计硝化HRT:根据《室外排水设计标准》中关于活性污泥法设计规程而设计的硝化停留时间,h;
设计反硝化HRT:根据《室外排水设计标准》中关于活性污泥法设计规程而设计的反硝化停留时间,h;
表面水力负荷:碳富集区域水平截面单位面积每小时所能承受的进水水量,m3/m2/h;
固体通量:碳富集区域水平截面单位面积每小时所能承受的进水SS量,kg/m2/h;
本发明中的“污泥超越泵”,具体是指污泥泵,是连接在碳富集区与好氧IFAS区之间管道上的污泥泵,其作用是将碳富集区底部的污泥通入好氧IFAS区。
其次,对本发明的主要创新点做如下说明:
AOA工艺,采用厌氧→好氧→缺氧的工艺流程,厌氧区利用活性污泥吸收进水所含有机物,合成PHA(内碳源)储存在细胞中,同时发生释磷现象;好氧区主要完成氨氮的硝化,缺氧区则利用活性污泥在厌氧段合成的内碳源进行反硝化脱氮和反硝化除磷,实现脱氮除磷一碳两用,提高原水碳源的利用率。所以,AOA工艺的核心一方面在于好氧区的设置,要么池容必须要小,以此降低内碳源的损耗,但好氧池容变小,会影响其硝化效果;要么则是创新工艺形式,让活性污泥不经过好氧区,以此从根本上避免碳损失。另一方面,现有AOA工艺仍借助传统硝化反硝化进行脱氮,无法较大程度摆脱脱氮受原水碳源的限制。
因此,本发明所需克服的技术难题就在于,如何确保好氧区池容为最佳比例时的同时,其碳源损耗也得到降低,保证节约占地的情况下实现最优的处理效果;如何实现AOA基础上耦合厌氧氨氧化工艺,并保证稳定高效的厌氧氨氧化脱氮效果,实现两种工艺的有机结合,发挥更佳优势。
为此,本发明对反应池进行了重新设计,主要从以下三方面进行了考虑:
第一、针对AOA工艺好氧区碳损失问题,工艺形式上基于BFM工艺,采用纯膜MBBR耦合磁加载沉淀技术,实现好/缺氧区生物相的绝对分离,好氧区采用纯膜MBBR形式运行,缺氧区采用活性污泥形式运行;
第二、针对好氧区纯膜MBBR的实现,一方面要考虑进水SS对生物膜传质的影响,另一方面也要考虑生物膜脱落后(腐殖污泥)对系统处理负荷的影响,根据大量试验规律总结,在确定纯膜MBBR工艺SS影响边界条件的基础上,结合好氧区COD去处能力,进一步确定了进水SS边界条件;此外,针对厌氧区污泥含水率低、易产气等特点,采用磁混凝沉淀工艺,通过较高的固体通量,结合超越污泥和系统内污泥的污泥浓度,设置合适的水力负荷,从而实现高效稳定的泥水分离效果;
第三、针对现有工艺脱氮效果受原水碳源影响大的问题,将纯膜MBBR系统作为自养 MBBR区,通过悬浮载体富集厌氧氨氧化菌,摆脱了污泥对厌氧氨氧化富集效率的影响,实现较大程度的自养脱氮效果。且针对厌氧氨氧化运行难稳定,通过羟胺投加及生物膜厚度控制实现稳定高效的自养脱氮效果。
以上三点紧密相连、密不可分,首先,需要碳富集区通过良好的泥水分离效果,具体效果参数参见下述实施例,良好的泥水分离效果才能保证自养MBBR区的运行状态,自养MBBR的运行状态则从根本上杜绝了活性污泥在好氧区的碳损失问题,也强化了悬浮载体对于厌氧氨氧化菌的富集效率,羟胺投加及生物膜厚度控制则维持了稳定高效的自养脱氮效果,实现了TN的高标准排放。
如图1所示,本发明系统,包括反应池,作为本发明的主要改进点,通过将反应池进行重新划分,依次划分为厌氧区、碳富集区、自养MBBR区、好氧IFAS区、缺氧区及二沉区;
其中,总进水管路与厌氧区连接,待处理水首先通过总进水管路进入厌氧区,在厌氧区中,进水有机物被活性污泥吸附,生成PHA储存在体内,同时发生厌氧释磷,厌氧区的HRT 为1~2h。
厌氧区和碳富集区之间保持连通,如可通过设置于厌氧区出水端上部的过水孔洞保持连通,厌氧区处理后的水通过过水孔洞进入碳富集区,在碳富集区中,污泥沉积在下方,清水在上方。在碳富集区底部的出水端连接的污泥超越管路上设置有污泥超越泵,该污泥超越管路的另一端连接至选择区,将污泥输送到好氧IFAS区的底部。
碳富集区主要采用磁加载沉淀工艺,磁加载沉淀工艺相比普通沉淀工艺,其泥水分离效果最好。如通过向碳富集区投加磁粉来分离泥水,为保证系统HRT在10h以下,对于碳富集区,需满足以下要求:
所述的碳富集区的HRT为0.4~0.6h,表面水力负荷≥5m3/m2/h,固体通量≥20kg/m2/h,出水SS≤50mg/L,COD损失率<30%;
并且,自养MBBR区按照设计硝化HRT的100%设计,通过拦截筛网设置分级≥2级,最后一级出水SS≤200mg/L;
好氧IFAS区按照设计硝化HRT的5%~10%设计,运行时控制DO为2~4mg/L;缺氧区按照设计硝化HRT的30~50%设计。
自养MBBR区和好氧IFAS区的悬浮载体有效比表面积≥620m2/m3,空隙率>90%,30%≤填充率<67%,自养MBBR区悬浮载体密度为0.97-1.03g/cm3,好氧IFAS区悬浮载体密度 0.94-0.97g/cm3
在自养MBBR区、好氧IFAS区的出水端均设置有拦截筛网,主要作用在于拦截悬浮载体。为了防止悬浮载体冲出,上述的拦截筛网上的通孔的孔径小于悬浮载体的直径。为了确保自养MBBR区出水达到要求,可以将拦截筛网设置为两级,保证最后一级出水SS≤200mg/L。
在自养MBBR区、好氧IFAS区的底部安装有曝气管路,在厌氧区、缺氧区安装有潜水搅拌器,曝气管路和潜水搅拌器的具体结构借鉴现有技术即可实现
下面结合上述系统对本发明处理工艺做详细说明。
具体包括以下步骤:
第一步、待处理污水首先进入厌氧区,进水有机物被活性污泥吸附,生成PHA储存在体内,同时发生厌氧释磷;
第二步、厌氧区出水进入连接在其后的碳富集区;在碳富集区对厌氧区混合液的泥水进行强化分离,分离所得上清液进入连接在碳富集区之后的自养MBBR区,分离所得污泥从碳富集区底部的出口端排出,经过连接有污泥超越泵的管路将其输送到连接在自养MBBR区之后的好氧IFAS区,将COD以活性污泥形式转移至好氧IFAS区;
所述的碳富集区的HRT为0.4~0.6h,表面水力负荷≥5m3/m2/h,固体通量≥20kg/m2/h,出水SS≤50mg/L,COD损失率<30%;
第三步、自养MBBR区通过投加悬浮级载体富集微生物来去除氨氮污染物,自养MBBR 区满足:氨氧化率为80~90%,同时出水亚氮≥2mg/L;
若不满足上述条件时,通过投加5mg/L盐酸羟胺予以实现,待系统亚氮浓度≥4mg/L时停止投加;同时将自养MBBR区悬浮载体生物膜厚度控制在400~1000μm;
所述的自养MBBR区按照设计硝化HRT的100%设计,通过拦截筛网设置分级≥2级,最后一级出水SS≤200mg/L;
第四步、自养MBBR区出水进入好氧IFAS区;好氧IFAS区出水进入缺氧区,在缺氧区进行内源反硝化及反硝化除磷;
所述的好氧IFAS区通过投加悬浮载体富集微生物来进一步去除氨氮污染物,所述的好氧 IFAS区按照设计硝化HRT的5%~10%设计,运行时控制DO为2~4mg/L;缺氧区按照设计硝化HRT的30~50%设计;
第五步、缺氧区出水进入二沉区,控制污泥回流比为50%~100%;
若系统出水氨氮超过设计出水氨氮70%以上,则按照第六步运行;
第六步、上调好氧IFAS区的DO至4-6mg/L运行;
若系统出水氨氮降至设计出水氨氮50%以下,则按照步骤第三步继续运行。
上述的第五步、第六步中每次判别以5d均值为判断周期,每次调整至少间隔3d。
下面结合具体实施例对本发明做详细说明。
实施例1:
某三组污水处理装置,编号1-3,设计水量均为80m3/d,装置生化段均采用BFM形式的 CANON-MBBR强化AOA水处理系统,针对厌氧区污泥的泥水分离效果,分别采用传统重力沉淀池、磁分离沉淀池、高效沉淀池,HRT均设置为1h,各装置药剂投加量一致,对比验证各装置出水SS,实验结果如表1所示。
表1不同泥水分离工艺出水SS(mg/L)
Figure SMS_1
结果表明,重力沉降池沉降效果最差,且后期出现了明显的污泥产气上浮现象,导致出水SS进一步升高,而高效沉淀池整体沉降效果较差,出水SS高达174mg/L。磁分离沉淀工艺通过磁粉的投加,可以实现更好的泥水分离效果,实测出水SS均值仅为4mg/L。可见针对厌氧池出水污泥的沉降,一方面,由于经过厌氧区的污泥易产气上浮,另一方面,传统泥水分离工艺所需池容较大,占地过高,为平衡处理效果与占地紧凑,在碳富集区需选用磁分离沉淀工艺。
实施例2:
某五组污水处理装置,编号A-E,生化段均采用BFM形式的CANON-MBBR强化AOA 水处理系统,针对厌氧区污泥的泥水分离效果,均采用磁分离沉淀工艺,控制单因素变量为磁分离沉淀的HRT,分别设置为0.3、0.4、0.5、0.6、0.7h。各装置药剂投加量一致,对比验证各装置出水SS,实验结果如表2所示。
表2不同磁分离沉淀HRT下出水SS(mg/L)
Figure SMS_2
结果表明,当碳富集区磁加载沉淀HRT为0.3h时,出水SS略有超标,0.4-0.6h时,系统出水SS均可达到200mg/L以下,而当HRT进一步延长至0.7h后,此时出水SS已基本稳定,可见,磁分离沉淀无需设置过长的HRT,在0.4~0.6h完全可以实现较好的SS去除效果。
实施例3:
某五组基于厌氧氨氧化的自养MBBR装置,编号a-e,均用于处理主流市政污水,为保证系统稳定的短程硝化效果,采用投加盐酸羟胺的方式验证了最佳投加浓度,实验结果如表 3所示。
表3不同羟胺投加浓度下系统脱氮负荷率(%)
Figure SMS_3
结果表明,随着盐酸羟胺投加浓度由0mg/L升至5.0mg/L时,CANON-MBBR系统的脱氮负荷也随之达到最高,此时系统亚氮浓度为4.1mg/L,此时的盐酸羟胺投加浓度及系统亚氮浓度认为是最适浓度。当盐酸羟胺投加浓度进一步升高后,系统处理负荷率不升反降,则可能是过高的羟胺对厌氧氨氧化菌产生了毒性抑制。可见,良好的CANON-MBBR系统,并非亚氮越高越好,也并非羟胺投加量越大越好,综合运行效果来看,CANON-MBBR系统在盐酸羟胺投加量为5mg/L,亚氮浓度为4mg/L时,脱氮效果可达到最高水平,且在亚氮浓度为2~4mg/L时,系统脱氮效果与亚氮浓度呈正相关,因此可在系统亚氮浓度降至2mg/L时投加盐酸羟胺。
实施例4:
某自养MBBR反应器,处理主流市政污水,进水水质较为稳定的基础上,通过调整系统内曝气管路布置形式,控制生物膜达到不同的厚度,并验证生物膜厚度对系统脱氮负荷的影响效果。试验结果如表4所示。
表4不同生物膜厚度下系统脱氮负荷率(%)
Figure SMS_4
结果表明,当生物膜厚度为400-1000μm时,系统脱氮负荷可达最高负荷的85%以上,此外,生物膜厚度过低或过高均不利于除理效果的发挥。综上,生物膜厚度对CANON-MBBR 系统处理效果有明显影响,日常控制时,尽可能保证CANON-MBBR生物膜厚度维持在400~ 1000μm,此时的CANON-MBBR系统脱氮负荷可维持在相对较高水平。
实施例5:
某污水处理装置,生化段为IFAS系统,且按照填充率50%投加悬浮载体。设计日处理量75m3/d,系统出水执行一级A标准。系统运行DO分别按照1、2、4、6、8mg/L运行。实际进出水水质如表5所示。
表5不同运行DO下系统硝化负荷率(%)
Figure SMS_5
结果表明,当自养MBBR区DO为1mg/L时,系统硝化效果较差,将DO逐渐提升至 6mg/L后,系统出水氨氮逐渐降低,至DO为6mg/L时系统硝化负荷达到最高水平,当系统DO进一步升至8mg/L后,系统出水氨氮未出现进一步降低。可见,好氧IFAS系统硝化效果受DO影响较大,当DO<6mg/L时,随着运行DO对的提升,系统硝化效果也随之改善,但当运行DO超过6mg/L后,硝化负荷提高幅度已基本不再增大。因此若为提高硝化效果,自养MBBR区运行DO最高不超过6mg/L。
本发明中未述及的部分采用或借鉴已有技术即可实现。
需要进一步说明的是,本文中所描述的具体实施例仅仅是对本发明的精神所作的举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (6)

1.一种基于BFM形式的CANON-MBBR强化AOA水处理方法,其特征在于,依次包括以下步骤:
a、将待处理污水通入厌氧区,通过厌氧区主要进行活性污泥内碳源的合成及磷素释放,在厌氧区HRT为1~2h;
b、厌氧区出水进入连接在其后的碳富集区;在碳富集区对厌氧区的泥水混合液进行强化固液分离,分离所得上清液进入连接在碳富集区之后的自养MBBR区,分离所得污泥从碳富集区底部的出口端排出,经过连接有污泥超越泵的管路将其输送到连接在自养MBBR区之后的好氧IFAS区,将COD以活性污泥形式转移至好氧IFAS区;
所述的碳富集区的HRT为0.4~0.6h,表面水力负荷≥5m3/m2/h,固体通量≥20kg/m2/h,出水SS≤50mg/L,COD损失率<30%;
c、自养MBBR区通过投加悬浮级载体富集微生物来去除氨氮污染物,自养MBBR区满足:氨氧化率为80~90%,同时出水亚氮≥2mg/L;
若不满足上述条件时,通过投加5mg/L盐酸羟胺予以实现,待系统亚氮浓度≥4mg/L时停止投加;同时将自养MBBR区悬浮载体生物膜厚度控制在400~1000μm;
所述的自养MBBR区按照设计硝化HRT的100%设计,通过拦截筛网设置分级≥2级,最后一级出水SS≤150mg/L;
d、自养MBBR区出水进入好氧IFAS区;好氧IFAS区出水进入缺氧区,在缺氧区进行内源反硝化及反硝化除磷;
所述的好氧IFAS区通过投加悬浮载体富集微生物来进一步去除氨氮污染物,所述的好氧IFAS区按照设计硝化HRT的5%~10%设计,运行时控制DO为2~4mg/L;缺氧区按照设计硝化HRT的30~50%设计;
e、缺氧区出水进入二沉区,控制污泥回流比为50%~100%;
若系统出水氨氮超过设计出水氨氮70%以上,则按照f运行;
f、上调好氧IFAS区的DO至4-6mg/L运行;
若系统出水氨氮降至设计出水氨氮50%以下,则按照步骤c继续运行;
所述的碳富集区主要采用磁加载沉淀工艺,所述的磁加载沉淀工艺是通过向碳富集区投加磁粉来分离泥水。
2.根据权利要求1所述的一种基于BFM形式的CANON-MBBR强化AOA水处理方法,其特征在于:步骤e、f中每次判别以5d均值为判断周期,每次调整至少间隔3d。
3.根据权利要求1所述的一种基于BFM形式的CANON-MBBR强化AOA水处理方法,其特征在于:所述的自养MBBR区和好氧IFAS区的悬浮载体有效比表面积≥620m2/m3,空隙率>90%,30%≤填充率<67%,自养MBBR区悬浮载体密度为0.97-1.03g/cm3,好氧IFAS区悬浮载体密度0.94-0.97g/cm3
4.根据权利要求1所述的一种基于BFM形式的CANON-MBBR强化AOA水处理方法,其特征在于:在所述的自养MBBR区、好氧IFAS区的出水端均设置有拦截筛网。
5.根据权利要求1所述的一种基于BFM形式的CANON-MBBR强化AOA水处理方法,其特征在于:在所述的自养MBBR区、好氧IFAS区的底部安装有曝气管路,在所述的厌氧区、缺氧区安装有潜水搅拌器。
6.一种基于BFM形式的CANON-MBBR强化AOA水处理系统,其包括反应池,其特征在于:所述的反应池依次划分为厌氧区、碳富集区、自养MBBR区、好氧IFAS区、缺氧区及二沉区;
所述的碳富集区的底部的出口端连接有污泥超越管路,所述的污泥超越管路的另一端连接在所述的好氧IFAS区,通过所述的污泥超越管路将碳富集区沉降所得污泥输送至好氧IFAS区的底部;
所述的二沉区的出口端设置有污泥回流管路,所述的污泥回流管路的另一端连接在所述的厌氧区,通过所述的污泥回流管路将二沉区所得部分污泥回流至厌氧区;
所述的厌氧区用于对活性污泥内碳源的合成及磷素进行释放,所述的厌氧区的HRT为1~2h;
所述的碳富集区的HRT为0.4~0.6h,表面水力负荷≥5m3/m2/h,固体通量≥20kg/m2/h,出水SS≤50mg/L,COD损失率<30%;
所述的自养MBBR区按照设计硝化HRT的100%设计,通过拦截筛网设置分级≥2级,最后一级出水SS≤150mg/L;
所述的好氧IFAS区按照设计硝化HRT的5%~10%设计,运行时控制DO为2~4mg/L;缺氧区按照设计硝化HRT的30~50%设计;
所述的碳富集区主要采用磁加载沉淀工艺,所述的磁加载沉淀工艺是通过向碳富集区投加磁粉来分离泥水。
CN202210411125.8A 2022-04-19 2022-04-19 一种基于bfm形式的canon-mbbr强化aoa水处理方法及系统 Active CN114772730B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210411125.8A CN114772730B (zh) 2022-04-19 2022-04-19 一种基于bfm形式的canon-mbbr强化aoa水处理方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210411125.8A CN114772730B (zh) 2022-04-19 2022-04-19 一种基于bfm形式的canon-mbbr强化aoa水处理方法及系统

Publications (2)

Publication Number Publication Date
CN114772730A CN114772730A (zh) 2022-07-22
CN114772730B true CN114772730B (zh) 2023-06-23

Family

ID=82430311

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210411125.8A Active CN114772730B (zh) 2022-04-19 2022-04-19 一种基于bfm形式的canon-mbbr强化aoa水处理方法及系统

Country Status (1)

Country Link
CN (1) CN114772730B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108862582A (zh) * 2018-07-04 2018-11-23 北京工业大学 一种基于部分厌氧氨氧化生物膜a2/o-ifas-mbr双污泥系统脱氮除磷的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154496A (ja) * 1991-12-11 1993-06-22 Meidensha Corp 嫌気−好気活性汚泥処理装置の運転制御方法
CN105776544B (zh) * 2016-05-06 2018-06-12 云南大学 一种基于在线控制的ansaoao连续流双污泥反硝化深度脱氮除磷装置及工艺
CN108585384B (zh) * 2018-06-29 2023-08-29 青岛思普润水处理股份有限公司 一种mbbr高标准污水处理系统及处理工艺
CN109368792B (zh) * 2018-12-06 2021-08-13 北京工业大学 污泥双回流aoa短程硝化耦合厌氧氨氧化与内源反硝化处理城市污水的方法与装置
CN109485152B (zh) * 2018-12-19 2021-10-26 北京工业大学 一种连续流城市污水短程反硝化部分anammox深度脱氮除磷的装置与方法
CN112250179B (zh) * 2020-09-23 2022-04-19 北京工业大学 通过污泥发酵物在污水处理连续流工艺中实现短程硝化耦合厌氧氨氧化反硝化的装置与方法
CN112125396A (zh) * 2020-09-28 2020-12-25 北京恩菲环保股份有限公司 一种厌氧氨氧化强化市政污水脱氮除磷系统及方法
CN113173640A (zh) * 2021-03-29 2021-07-27 江苏裕隆环保有限公司 一种aoa耦合厌氧氨氧化深度脱氮除磷工艺

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108862582A (zh) * 2018-07-04 2018-11-23 北京工业大学 一种基于部分厌氧氨氧化生物膜a2/o-ifas-mbr双污泥系统脱氮除磷的方法

Also Published As

Publication number Publication date
CN114772730A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
CN100417608C (zh) 多阶段双循环周期的污水处理工艺
CN102557342A (zh) Aaoa+mbr脱氮除磷污水处理工艺及装置
CN101602541B (zh) 生物污水处理工艺及装置
CN114702136B (zh) 一种aoa耦合高效自养脱氮水处理方法与系统
CN109896628B (zh) Aoa(pd-anammox)生物膜技术深度脱氮的装置与方法
CN114804339B (zh) 基于bfm形式的高效aoa耦合厌氧氨氧化污水处理方法及系统
CN105753153A (zh) 基于deamox的改良a/o四点分段进水高效生物脱氮除磷装置及应用方法
CN100410189C (zh) 硝化反硝化一体式污水脱氮生物膜反应器
CN102358663A (zh) 一种低do后置反硝化污水处理装置及工艺
CN106430575B (zh) 一种氧化沟分段进水工艺实现短程硝化反硝化脱氮的方法
CN110615534A (zh) 一种硫铁自养反硝化装置及其应用
CN106045030B (zh) A2/o-uasb连续流城市生活污水深度脱氮除磷的装置与方法
CN114772731B (zh) 一种基于bfm形式的aoa耦合自养脱氮水处理方法与系统
CN202430091U (zh) Aaoa+mbr脱氮除磷污水处理工艺的装置
CN106045041A (zh) 双颗粒污泥改良a2/o反硝化除磷的装置及方法
CN106186321B (zh) 一种一体化节能脱氮装置及方法
CN114702137B (zh) 一种基于mbbr的自养脱氮强化aoa水处理方法与系统
CN103482829B (zh) 一种污水深度除磷脱氮的方法及装置
CN109354174B (zh) 基于canon_mbbr的强化脱氮系统的快速启动方法
CN114716006B (zh) 一种基于bfm形式的高效aoa污水处理系统与方法
CN114772730B (zh) 一种基于bfm形式的canon-mbbr强化aoa水处理方法及系统
CN109354167B (zh) 一种基于mbbr的高效自养脱氮系统的快速启动方法
CN103910471A (zh) 一种船用内外循环三相生物流化床一体化复合结构
Wang et al. Simultaneous nitrification and de-nitrification in MBR
CN111170456A (zh) 基于mbbr的无亚氮积累的canon系统及运行方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant