CN106430575B - 一种氧化沟分段进水工艺实现短程硝化反硝化脱氮的方法 - Google Patents

一种氧化沟分段进水工艺实现短程硝化反硝化脱氮的方法 Download PDF

Info

Publication number
CN106430575B
CN106430575B CN201610391462.XA CN201610391462A CN106430575B CN 106430575 B CN106430575 B CN 106430575B CN 201610391462 A CN201610391462 A CN 201610391462A CN 106430575 B CN106430575 B CN 106430575B
Authority
CN
China
Prior art keywords
sludge
oxidation ditch
treatment
reactor
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610391462.XA
Other languages
English (en)
Other versions
CN106430575A (zh
Inventor
彭永臻
钱雯婷
马斌
王锦程
李夕耀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201610391462.XA priority Critical patent/CN106430575B/zh
Publication of CN106430575A publication Critical patent/CN106430575A/zh
Application granted granted Critical
Publication of CN106430575B publication Critical patent/CN106430575B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia

Abstract

一种氧化沟分段进水工艺实现短程硝化反硝化生物脱氮的方法属于污水生物处理领域。城市污水分为四等份进入氧化沟反应器的缺氧区,反硝化菌利用污水中的有机物作为碳源,将上一好氧段产生的亚硝酸盐氮还原为氮气,而后进入好氧区,氨氧化菌将氨氮氧化为亚硝酸盐氮;再依次经过缺氧区和好氧区;二沉池部分沉淀污泥进入污泥处理区,采用游离氨处理污泥后回流至氧化沟缺氧区;通过游离氨对污泥中亚硝酸盐氧化菌进行选择性抑制,控制污泥中亚硝酸盐氧化菌的增长,维持氧化沟工艺中短程硝化;最终实现城市污水短程硝化反硝化脱氮,提高脱氮效果,降低处理能耗。

Description

一种氧化沟分段进水工艺实现短程硝化反硝化脱氮的方法
技术领域
本发明涉及一种氧化沟分段进水工艺实现短程硝化反硝化的方法,属于污水生物处理技术领域。
背景技术
城市污水中氮污染物的去除对于水体富营养化的控制具有重要作用。目前污水处理大都采用传统的硝化反硝化生物脱氮工艺,该工艺的原理为通过在好氧条件下氨氧化菌作用将氨氮转化为硝态氮,而后在缺氧区通过有机物将将硝态氮还原为氮气,从而达到将污水中的氮脱除的目的。
短程生物脱氮是一种新型的污水处理技术,其基本原理就是在好氧区将硝化过程氨氮氧化控制在亚硝化的阶段,然后通过有机物进行缺氧反硝化将亚硝态氮经由NO、N2O逐步还原为氮气,该方法不仅可以节省好氧区的充氧量,同时可减少反硝化过程的有机碳源需求量,最终可降低污水处理能耗。
实现短程生物脱氮的瓶颈在于城市污水处理系统中的亚硝酸盐氧化菌的稳定控制。最新研究表明在缺氧条件下,氨氮对氨氧化菌和亚硝酸盐氧化菌有选择性抑制效应,即对亚硝酸盐氧化菌的抑制效果要强于对氨氧化菌的灭活效果。若能基于氨氮的这种选择性抑制效应实现亚硝酸盐氧化菌的稳定控制,则有望推进短程硝化反硝化脱氮技术在城市污水处理厂的应用。
发明内容
本发明的目的就是针对现有城市污水处理难以控制亚硝酸盐氧化菌增长的问题,基于对亚硝酸氧化菌的选择性抑制作用,提出了一种氧化沟分段进水工艺实现短程硝化反硝化脱氮的方法,该方法首先是城市生活污水分为四等份进入氧化沟反应器的缺氧区,反硝化菌利用污水中原有的有机物作为碳源,将上一好氧段产生的亚硝酸盐氮还原为氮气,而后进入好氧区,氨氧化菌将氨氮氧化为亚硝酸盐氮;再依次经过缺氧区和好氧区;二沉池部分沉淀污泥进入污泥处理区,采用游离氨处理后回流至氧化沟缺氧区;通过游离氨对污泥中亚硝酸盐氧化菌进行选择性抑制,控制污泥中亚硝酸盐氧化菌的增长,维持氧化沟反应器中短程硝化;最终实现城市污水短程硝化反硝化脱氮,提高脱氮效果,降低处理能耗。
本发明的目的是通过以下解决方案来解决的:一种氧化沟分段进水工艺实现城市污水短程硝化反硝化脱氮的方法,其特征在于:设有城市污水原水箱(1)、氧化沟反应器(2)、二沉池(3);城市污水原水箱(1)设有溢流管(1.1)和放空管(1.2);城市污水原水箱(1)通过进水泵(1.3)与氧化沟反应器(2)的第一进水管(1.5)及第二进水管(1.7)相连接;氧化沟反应器(2)分为反应区和污泥处理区(2.11),反应区分为4个缺氧—好氧格交替运行,按照水流方向在氧化沟反应器(2)内循环流动;其中好氧区通过设有空压机(2.14)、气体流量计(2.15)、气量调节阀(2.16)及第一曝气管(2.2)、第二曝气管(2.5)、第三曝气管(2.7)和第四曝气管(2.8)的曝气系统进行充氧,其余为缺氧区;氧化沟反应器(2)设有液下推进器(2.1)和溢流堰(2.3),氧化沟反应器二沉池连接管(2.4)将氧化沟反应器(2)与二沉池(3)相连接;二沉池(3)通过污泥回流泵(2.13)和污泥回流管(2.17)与氧化沟反应器(2)相连接;污泥处理区(2.11)为长方形池体,设有污泥投加泵(3.2)和污泥区液下推进器(2.12);污泥处理区(2.11)通过污泥投加泵(3.2)与氧化沟反应器二沉池(3)相连接;消化污泥脱水液通过消化污泥脱水液进水泵(3.4)进入污泥处理区(2.11);污泥处理区(2.11)通过pH调节泵(3.5)调节处理过程中的pH值。
城市污水在此装置中的处理流程为:城市生活污水分为四等份进入氧化沟反应器的缺氧区,反硝化菌利用污水中原有的有机物作为碳源,将上一好氧段产生的亚硝酸盐氮还原为氮气,之后进入好氧区,氨氧化菌将氨氮氧化为亚硝酸盐氮;再依次经过缺氧区和好氧区;二沉池部分沉淀污泥进入污泥处理区,采用游离氨处理后回流至氧化沟缺氧区;通过游离氨对污泥中亚硝酸盐氧化菌进行选择性抑制,控制污泥中亚硝酸盐氧化菌的增长,以维持氧化沟反应器中的短程硝化;最终实现城市污水短程硝化反硝化脱氮,提高脱氮效果,降低处理能耗。基于氧化沟分段进水氧化沟工艺实现短程硝化反硝化脱氮的方法,其具体启动与调控步骤如下:
1)启动系统:接种传统城市污水厂具有硝化活性的絮体污泥投加至氧化沟反应器(2),使污泥浓度达到3000-5000mg/L;
2)运行时调节操作如下:
2.1)氧化沟反应器(2)中缺氧区与好氧区交替设置,在好氧区通过曝气装置充氧,好氧区溶解氧浓度通过调整曝气量控制溶解氧浓度在1.0-1.5mg/L,缺氧区通过液下推进器搅拌,好氧区与缺氧区的容积比为1:1;
2.2)氧化沟反应器(2)的污泥回流比控制为50-150%;该反应器(2)的水力停留时间HRT控制在12-20h;污泥龄控制在20-35天;
2.3)进入污泥处理区的沉淀污泥流量为氧化沟进水流量3-10%,污泥在该区内的停留时间为10-24h;
2.4)向污泥处理区引入消化污泥脱水液,使处理区的氨氮浓度为300-1000mg/L,并通过酸碱调节泵投加酸或碱以控制污泥处理区pH为8.0-8.5。
本发明基于氧化沟分段进水工艺实现短程硝化反硝化脱氮的方法,与现有传统生物脱氮工艺相比具有以下优势:
1)好氧区需氧量低,短程硝化较传统硝化可节约25%左右的需氧量,从而降低了系统处理能耗;
2)短程硝化在反硝化过程的对有机碳源需求量低,减少了外碳源量投加量,降低了运行费用;
3)短程硝化污泥产量低,使得系统污泥排放量低,降低了污泥处置费用。
附图说明
图1为本发明基于氧化沟分段进水工艺实现城市污水短程硝化反硝化脱氮装置的结构示意图。
图中(1)为城市污水原水箱、(2)为氧化沟反应器、(3)为二沉池;(1.1)为溢流管、(1.2)为放空管、(1.3)为进水泵、(1.5)为氧化沟反应器第一进水管、(1.7)为氧化沟反应器第二进水管;(1.4)和(1.6)为原水进水管调节阀;(2.1)为液下推进器、(2.2)为第一曝气管、(2.5)为第二曝气管、(2.7)为第三曝气管、(2.8)为第四曝气管、(2.15)为气体流量计、(2.14)为空压机、(2.16)为气量调节阀、(2.3)为氧化沟反应器溢流堰、(2.4)为氧化沟反应器二沉池连接管、(2.13)为污泥回流泵;(2.11)氧化沟反应器污泥处理区、(3.1)为二沉池排泥管、(3.2)为污泥投加泵、(3.3)为污泥调节阀;(2.12)为污泥处理区液下推进器、(3.4)为消化污泥脱水液进水泵、(3.5)为污泥处理区pH调节泵。
具体实施方式
下面结合附图和实施例对本发明做进一步说明:如图1所示,氧化沟分段进水工艺实现城市污水短程硝化反硝化的脱氮装置其特征设有城市污水原水箱(1)、氧化沟反应器(2)、二沉池(3);城市污水原水箱(1)设有溢流管(1.1)和放空管(1.2);城市污水原水箱(1)通过进水泵(1.3)与氧化沟反应器(2)的第一进水管(1.5)和第二进水管(1.7)相连接;氧化沟反应器(2)分为反应区和污泥处理区(2.11),反应区分为4个缺氧—好氧格交替运行,按照水流方向在氧化沟反应器(2)内循环流动;其中好氧区通过设有空压机(2.14)、气体流量计(2.15)、气量调节阀(2.16)及反应器第一曝气管(2.2)、第二曝气管(2.5)、第三曝气管(2.7)和第四曝气管(2.8)的曝气系统进行充氧,其余为缺氧区;氧化沟反应器(2)设有液下推进器(2.1)和溢流堰(2.3),氧化沟反应器二沉池连接管(2.4)将氧化沟反应器(2)与二沉池(3)相连接;二沉池(3)通过污泥回流泵(2.13)和污泥回流管(2.17)与氧化沟反应器(2)相连接;污泥处理区(2.11)为长方形池体,设有污泥投加泵(3.2)和污泥区液下推进器(2.12);污泥处理区(2.11)通过污泥投加泵(3.2)与氧化沟反应器二沉池(3)相连接;消化污泥脱水液通过消化污泥脱水液进水泵(3.4)进入污泥处理区(2.11);污泥处理区(2.11)通过pH调节泵(3.5)调节处理过程中的pH值。
试验采用某城市污水作为原水,具体水质如下:COD浓度为150-250mg/L;浓度为58-72mg/L,试验系统如图1所示,各反应器均采用有机玻璃制成,生物反应器有效体积为120L。
2.4)向污泥处理区引入消化污泥脱水液,使处理区的氨氮浓度为300-1000mg/L,并通过酸碱调节泵投加酸或碱以控制污泥处理区pH为8.0-8.5。
具体运行时操作如下:
1)启动系统:接种普通城市污水厂具有硝化活性的絮体污泥投加至氧化沟反应器(2),使污泥浓度达到3000-3500mg/L;
2)运行时调节操作如下:
2.1)氧化沟反应器(2)中缺氧区与好氧区交替设置,在好氧区通过曝气装置充氧,好氧区的溶解氧浓度通过调整曝气量控制溶解氧浓度在1.5mg/L,缺氧区通过液下推进器搅拌,好氧区与缺氧区的容积比为1:1;
2.2)氧化沟反应器(2)的污泥回流比控制为150%;该反应器(2)的水力停留时间HRT控制在18h;污泥龄控制在30天;
2.3)进入污泥处理区的沉淀污泥的流量为氧化沟进水流量的10%,污泥在该反应器内的停留时间为20h;
2.4)通过向污泥处理区(4)内引入消化污泥脱水液,使得该反应区的氨氮浓度为1000mg/L,并通过酸碱调节泵投加酸或碱以控制以污泥处理区的pH为8.5。
试验结果表明:运行稳定后,生物反应器出水COD浓度为35-50mg/L,浓度0-5mg/L,浓度为8.5-13.8mg/L,浓度0.5-3.2mg/L,TN低于15mg/L。

Claims (1)

1.一种氧化沟分段进水工艺实现城市污水短程硝化反硝化脱氮的方法,其特征在于,应用如下装置:设有城市污水原水箱(1)、氧化沟反应器(2)、二沉池(3);城市污水原水箱(1)设有溢流管(1.1)和放空管(1.2);城市污水原水箱(1)通过进水泵(1.3)与氧化沟反应器(2)的第一进水管(1.5)及第二进水管(1.7)相连接;氧化沟反应器(2)分为反应区和污泥处理区(2.11),反应区分为4个缺氧—好氧格交替运行,按照水流方向在氧化沟反应器(2)内循环流动;其中好氧区通过设有空压机(2.14)、气体流量计(2.15)、气量调节阀(2.16)及第一曝气管(2.2)、第二曝气管(2.5)、第三曝气管(2.7)和第四曝气管(2.8)的曝气系统进行充氧,其余为缺氧区;氧化沟反应器(2)设有液下推进器(2.1)和溢流堰(2.3),氧化沟反应器的二沉池连接管(2.4)将氧化沟反应器(2)与二沉池(3)相连接;二沉池(3)通过污泥回流泵(2.13)和污泥回流管(2.17)与氧化沟反应器(2)相连接;污泥处理区(2.11)为长方形池体,设有污泥投加泵(3.2)和处理区液下推进器(2.12);污泥处理区(2.11)通过污泥投加泵(3.2)与氧化沟反应器二沉池(3)相连接;消化污泥脱水液通过消化污泥脱水液进水泵(3.4)进入污泥处理区(2.11);污泥处理区(2.11)通过pH调节泵(3.5)调节处理过程中的pH值;
方法的步骤为:
1)启动系统:接种传统城市污水厂具有硝化活性的絮体污泥投加至氧化沟反应器(2),使污泥浓度达到3000-5000mg/L;
2)运行时调节操作如下:
2.1)氧化沟反应器(2)中缺氧区与好氧区交替设置,在好氧区通过曝气装置充氧,好氧区的溶解氧浓度通过调整曝气量控制溶解氧浓度在1.0-1.5mg/L,缺氧区通过液下推进器搅拌,好氧区与缺氧区的容积比为1:1;
2.2)氧化沟反应器(2)的污泥回流比控制为50-150%;该反应器(2)的水力停留时间HRT控制在12-20h;污泥龄控制在20-35天;
2.3)进入污泥处理区的沉淀污泥流量为氧化沟进水流量3-10%,污泥在该区内的停留时间为10-24h;
2.4)向污泥处理区引入消化污泥脱水液,使污泥处理区的氨氮浓度为300-1000mg/L,并通过酸碱调节泵投加酸或碱以控制污泥处理区pH为8.0-8.5。
CN201610391462.XA 2016-06-04 2016-06-04 一种氧化沟分段进水工艺实现短程硝化反硝化脱氮的方法 Active CN106430575B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610391462.XA CN106430575B (zh) 2016-06-04 2016-06-04 一种氧化沟分段进水工艺实现短程硝化反硝化脱氮的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610391462.XA CN106430575B (zh) 2016-06-04 2016-06-04 一种氧化沟分段进水工艺实现短程硝化反硝化脱氮的方法

Publications (2)

Publication Number Publication Date
CN106430575A CN106430575A (zh) 2017-02-22
CN106430575B true CN106430575B (zh) 2019-06-28

Family

ID=58183698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610391462.XA Active CN106430575B (zh) 2016-06-04 2016-06-04 一种氧化沟分段进水工艺实现短程硝化反硝化脱氮的方法

Country Status (1)

Country Link
CN (1) CN106430575B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109399805B (zh) * 2018-10-29 2021-07-13 安徽京望环保科技有限公司 一种循环式生物滤池污水处理工艺及装置
CN110697987B (zh) * 2019-10-25 2021-09-07 山东建筑大学 一种厌氧-氧化沟-sacr组合式高氨氮污水深度脱氮系统及工艺
CN110683646A (zh) * 2019-11-04 2020-01-14 黄河三角洲京博化工研究院有限公司 一种皮革废水快速实现短程硝化反硝化的工艺

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103102044A (zh) * 2013-01-02 2013-05-15 北京工业大学 强化城市污水氧化沟工艺自养脱氮作用的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103102044A (zh) * 2013-01-02 2013-05-15 北京工业大学 强化城市污水氧化沟工艺自养脱氮作用的方法

Also Published As

Publication number Publication date
CN106430575A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN104556376B (zh) 基于短程反硝化提供亚硝酸盐的城市污水生物除磷自养脱氮方法
CN104710087B (zh) 一种制革废水的缺氧-好氧综合处理方法
CN105384247B (zh) 一种通过a/o生物膜工艺实现部分反硝化耦合厌氧氨氧化脱氮的方法
CN102101746B (zh) 低碳城市污水生物除磷与自养生物脱氮装置与方法
CN101284697B (zh) 通过fa与fna联合控制实现污泥消化液短程硝化的装置与方法
CN100528777C (zh) 一种有机废水处理方法
CN103819049B (zh) 一种污水处理方法及系统
CN104528933B (zh) 基于fna处理污泥实现连续流城市污水自养脱氮的方法
CN103058461A (zh) 强化能量回收的城市污水短程硝化+厌氧氨氧化脱氮方法
CN104909520A (zh) Mabr和mbr联用式污水处理装置及处理方法
CN106277326B (zh) 一种好氧厌氧一体化颗粒污泥反应器及其处理废水的方法
CN110002594B (zh) 一种基于羟胺旁侧抑制实现短程硝化-厌氧氨氧化的装置和方法
CN104529056B (zh) 一种絮体污泥与颗粒污泥共生实现城市污水自养脱氮的方法
CN102583883B (zh) 分段并联厌氧氨氧化处理城市污水的工艺和方法
CN106430575B (zh) 一种氧化沟分段进水工艺实现短程硝化反硝化脱氮的方法
CN104944689A (zh) 一种处理高氨氮废水的装置及方法
CN105217786A (zh) 基于deamox强化改良分段进水a2/o工艺生物脱氮除磷的装置与方法
CN109305725B (zh) 一种生化污水处理工艺
CN109160670A (zh) 一种基于短程反硝化+厌氧氨氧化的城市污水反硝化滤池脱氮方法
CN104512964A (zh) 一种基于污泥旁侧处理实现城市污水短程脱氮的方法
CN201923926U (zh) 低碳城市污水生物除磷与自养生物脱氮装置
CN102786184A (zh) 两级a/o—mbr脱氮除磷装置
CN110240348A (zh) 一种结合mbr的厌氧氨氧化污水处理工艺
CN109368782B (zh) 一种基于侧流sbr强化连续流工艺污水短程硝化方法与系统
CN110092536A (zh) 一种餐厨厌氧消化沼液组合处理工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant