WO2023201900A1 - 基于bfm形式的高效aoa耦合厌氧氨氧化污水处理方法及系统 - Google Patents

基于bfm形式的高效aoa耦合厌氧氨氧化污水处理方法及系统 Download PDF

Info

Publication number
WO2023201900A1
WO2023201900A1 PCT/CN2022/104129 CN2022104129W WO2023201900A1 WO 2023201900 A1 WO2023201900 A1 WO 2023201900A1 CN 2022104129 W CN2022104129 W CN 2022104129W WO 2023201900 A1 WO2023201900 A1 WO 2023201900A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
area
sludge
aerobic
anaerobic
Prior art date
Application number
PCT/CN2022/104129
Other languages
English (en)
French (fr)
Inventor
周家中
吴迪
李军
高伟楠
韩文杰
杜强强
盛德洋
纪庚好
周浩然
Original Assignee
青岛思普润水处理股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛思普润水处理股份有限公司 filed Critical 青岛思普润水处理股份有限公司
Publication of WO2023201900A1 publication Critical patent/WO2023201900A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/15Treatment of sludge; Devices therefor by de-watering, drying or thickening by treatment with electric, magnetic or electromagnetic fields; by treatment with ultrasonic waves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to the technical field of sewage treatment, and specifically relates to a high-efficiency AOA coupled anaerobic ammonium oxidation sewage treatment method and system based on BFM form.
  • the AOA process utilizes a lower aerobic/anoxic pool volume ratio and a smaller aerobic residence time, which on the one hand reduces the consumption of internal carbon sources in the aerobic pool; on the other hand, it also ensures sufficient denitrification pool capacity.
  • the anoxic tank uses PHA synthesized in the anaerobic stage to ensure higher denitrification efficiency through endogenous denitrification effect, and higher biological removal efficiency through denitrification phosphorus removal. Phosphorus rate, thereby reducing the need for external carbon sources for sewage denitrification, achieving energy saving and consumption reduction in sewage treatment.
  • the anaerobic ammonium oxidation process achieves the autotrophic denitrification process of sewage by enriching autotrophic anaerobic ammonium oxidizing bacteria. For the treatment of ammonia nitrogen-type sewage, this process is often combined with a short-cut nitrification process. Compared with the traditional nitrification and denitrification process, , has the advantages of saving 60% of aeration volume, no need to add organic carbon sources, reducing sludge production by 90% and relatively less nitrogen oxide release. In addition, the anaerobic ammonium oxidation process has high denitrification load and low operating costs. , occupying a small space, and has been recognized as one of the most economical biological denitrification processes at present. As two high-efficiency and low-consumption denitrification processes, coupling AOA with anaerobic ammonium oxidation can further reduce the dependence of sewage denitrification on raw water carbon sources and achieve energy saving and consumption reduction in sewage treatment.
  • Application number 201910762403.2 discloses a device and method for realizing continuous flow AOA biofilm semi-short-range coupled anaerobic ammonium oxidation through hydroxylamine. It suppresses NOB activity by adding hydroxylamine reagent into the aerobic pool of the reactor, thereby making the continuous flow aerobic pool A semi-short-cut nitrification reaction occurs, and then the mixed liquid containing ammonia nitrogen and nitrite nitrogen enters the anoxic tank of the continuous flow AOA biofilm reactor.
  • the anaerobic ammonification bacteria growing on the biofilm use ammonia nitrogen and nitrite nitrogen to produce anaerobic reactions.
  • Application number 202110532485.9 discloses a low-oxygen aeration AOA-SBBR short-circuit nitrification anaerobic ammonium oxidation coupled denitrification and phosphorus removal integrated urban sewage treatment method, denitrifying phosphate-polymerizing bacteria and denitrifying polysaccharide bacteria in the anaerobic stage sludge
  • the easily degradable organic matter in the water is stored as an internal carbon source, and then ammonia oxidizing bacteria are used to achieve short-range effects during the aerobic aeration stage, and anaerobic ammonium oxidizing bacteria are used to combine the generated nitrous with the micro-anoxic environment inside the filler.
  • This invention realizes that nitrification and denitrification are completed through different biological phases by increasing the separation of mud and water after the anaerobic zone, which fundamentally avoids the loss of internal carbon sources in the activated sludge in the aerobic zone, but the total HRT of the system is minimized by this patent. It is also more than 18h, which shows that it does not really improve the processing efficiency of the system.
  • process composition there are also the following problems.
  • the ordinary AOA process still relies on traditional nitrification and denitrification process technology, and the denitrification effect is still greatly affected by the C/N of the raw water.
  • the effluent TN still risks exceeding the standard; secondly, when fixing When the sedimentation effect of the liquid separation tank is poor, on the one hand, the high SS of the effluent supernatant will affect the subsequent nitrification effect of the nitrification tank, causing the nitrification effect of the nitrification tank to worsen, and the higher sludge overtake ratio also increases the nitrification effect.
  • the ammonia nitrogen load in the oxygen pool inlet requires an increase in the return ratio between the aerobic pool and the anoxic pool to meet the nitrification effect; thirdly, the nitrification effect is guaranteed by the nitrification pool and the aerobic pool.
  • the nitrification effect is bound to be different.
  • the main body of the nitrification system at this time is the aerobic tank using the activated sludge method. Too low nitrification load leads to the design of the aerobic tank. The capacity is too large; finally, phosphorus removal in this process relies on chemical phosphorus removal, denitrification phosphorus removal and biological phosphorus removal.
  • a nitrification effect of 40% to 80% its higher treatment load not only has a land-saving effect, but also prevents the loss of internal carbon sources of activated sludge in the aerobic zone; select the zone as an aerobic/anoxic zone , which can further highlight the land-saving effect; the hypoxic IFAS zone bears 20 to 30% of the nitrification load and 50 to 60% of the denitrification load through filler enrichment, and at the same time, the sludge undergoes denitrification, denitrification, denitrification, and phosphorus removal; the sewage treatment method of the present invention
  • the minimum HRT can be guaranteed to be less than 10h.
  • An efficient AOA coupled anaerobic ammonium oxidation wastewater treatment method based on BFM form including the following steps:
  • the HRT of the carbon moving zone is 0.4 ⁇ 0.6h
  • the surface hydraulic load is ⁇ 5m 3 /m 2 /h
  • the solid flux is ⁇ 20kg/m 2 /h
  • the effluent SS is ⁇ 50mg/L
  • the COD transfer rate is ⁇ 70%.
  • the aerobic pure membrane MBBR zone is designed according to 15-20% of the designed nitrification HRT, with a volume load ⁇ 0.2kgN/m 3 /d, a classification ⁇ 2 levels through the interception screen, and the last level effluent SS ⁇ 200mg/L ;
  • the specific operation mode of the selected area can be set according to the effluent ammonia nitrogen and can be used as an aerobic/anoxic area.
  • the selected area is designed according to 20% to 30% of the designed nitrification HRT;
  • the anoxic IFAS zone carries out endogenous denitrification, denitrification and phosphorus removal and anaerobic ammonium oxidation denitrification, uses activated sludge to carry out denitrification, denitrification, denitrification and phosphorus removal, and uses suspended carriers to enrich anaerobic ammonium oxidizing bacteria for anaerobic ammonia oxidation.
  • Oxidative autotrophic denitrification; the anoxic IFAS zone is designed according to 50-60% of the designed nitrification HRT;
  • the effluent from the anoxic IFAS zone enters the secondary sedimentation zone connected to it.
  • the supernatant liquid obtained after sedimentation is discharged, and part of the sludge obtained flows back to the bottom of the anaerobic zone.
  • the sludge return ratio is controlled to be 50% to 100%, and the remaining Sludge is discharged;
  • step c If the system effluent ammonia nitrogen drops below 50% of the designed effluent ammonia nitrogen, continue operation according to step c;
  • step f If the system effluent ammonia nitrogen drops below 50% of the designed effluent ammonia nitrogen, proceed according to step f;
  • the ammonia oxidation rate in the aerobic pure membrane MBBR zone should reach 70 to 80%.
  • the ammonia oxidation rate in the aerobic pure membrane MBBR zone should reach 40 to 60%. %.
  • the ultra-fast mud-water separation effect can be achieved through the carbon moving zone.
  • the main body of the nitrification zone adopts the pure membrane MBBR process, which increases the processing load by 100% compared with the traditional activated sludge method, which can greatly save space.
  • the selected area is designed to function as both nitrification and denitrification at the same time, which can further reduce the area occupied by the anoxic zone by 30% to 40%, and through the control of sludge age, it can ensure that the anoxic zone can achieve TN water effluent on the basis of a small pool capacity. Stable and up to standard;
  • the aerobic pure membrane MBBR zone mainly utilizes the characteristics of biofilm mass transfer and oxygen transfer, which are affected by biofilm thickness.
  • the nitrification load is further significantly increased.
  • each judgment in steps e, f, and g uses the 5d average as the judgment period, and each adjustment is at least 3d apart.
  • the outlet ends of the aerobic MBBR zone and the anoxic IFAS zone are equipped with interception screens.
  • the outlet end of the bottom of the carbon moving area is connected to a sludge overrunning pipeline, and the other end of the sludge overrunning pipeline is connected to the selection area, and the carbon is moved through the sludge overrunning pipeline.
  • the sludge obtained by settling in the zone is transported to the bottom of the selection zone;
  • the anaerobic zone is used to synthesize carbon sources and release phosphorus in the activated sludge, and the HRT of the anaerobic zone is 1 to 2 hours;
  • the specific operation mode of the selected area can be set according to the effluent ammonia nitrogen and can be used as an aerobic/anoxic area.
  • the selected area is designed according to 20% to 30% of the designed nitrification HRT;
  • the anoxic IFAS zone is designed according to 50-60% of the designed nitrification HRT.
  • the nitrification effect is excellent.
  • the main body of nitrification adopts the aerobic pure membrane MBBR process, which utilizes the efficient enrichment effect of the suspended carrier biofilm on nitrifying bacteria to improve the nitrification efficiency and impact resistance of the system.
  • the nitrification effect can be increased by 100% compared with the ordinary activated sludge method, and the setting of anoxic IFAS zone can further reduce effluent ammonia nitrogen through anaerobic ammonium oxidation denitrification.
  • the system ammonia nitrogen removal rate can be >95%, which can be achieved through optimization and adjustment.
  • the effluent ammonia nitrogen is ⁇ 0.5mg/L.
  • the tank capacity of the aerobic pure membrane MBBR area can be more than doubled compared with the traditional activated sludge method;
  • the main body of the aerobic zone adopts the aerobic pure membrane MBBR process, which has a higher load.
  • the designed HRT is only half of the nitrification HRT required by the conventional activated sludge method.
  • the selected zone is designed as both aerobic and anoxic. area, thereby further saving space.
  • the anoxic zone adopts the IFAS process, which uses traditional activated sludge to perform internal carbon source denitrification, phosphorus removal and anaerobic ammonium oxidation denitrification. The treatment load is higher, thus saving land space again.
  • the system HRT can be reduced by more than 40% compared with the traditional activated sludge method, and the minimum HRT can be guaranteed to be less than 10 hours.
  • Figure 1 is a flow chart of the treatment process of the present invention
  • Figures 2 and 3 are effluent water quality diagrams under the magnetic separation and precipitation process in Example 2;
  • Figures 4 and 5 are water quality diagrams of the device effluent under different DOs in the aerobic pure membrane MBBR zone of Example 4.
  • the present invention proposes a high-efficiency AOA coupled anaerobic ammonium oxidation sewage treatment method and system based on BFM.
  • Solid flux the amount of incoming water SS that the horizontal section of the carbon moving area can withstand per hour per unit area, kg/m 2 /h;
  • the technical problem that the present invention needs to overcome is how to ensure that the aerobic zone pool volume is at an optimal ratio while reducing its carbon source loss, so as to achieve the optimal treatment effect while saving land space.
  • the present invention redesigns the reaction tank, mainly considering the following three aspects:
  • the process form is based on the BFM process and adopts pure membrane MBBR coupled magnetic loading precipitation technology to achieve absolute separation of biophases in the good/anoxic zone.
  • the aerobic zone adopts the form of pure membrane MBBR.
  • the anoxic zone operates in the form of activated sludge;
  • the impact of incoming water SS on biofilm mass transfer must be considered, and on the other hand, the impact of biofilm shedding (humic sludge) on the system treatment load must also be considered , based on the summary of a large number of test rules, on the basis of determining the SS influence boundary conditions of the pure membrane MBBR process, combined with the COD removal capacity of the aerobic zone, the inlet SS boundary conditions were further determined; in addition, in view of the low sludge moisture content in the anaerobic zone, Due to the characteristics of easy gas production, the magnetic coagulation sedimentation process is used to achieve efficient and stable mud-water separation through high solid flux, combined with the sludge concentration that exceeds the sludge and the sludge in the system, and sets the appropriate hydraulic load;
  • the present invention has considered three aspects.
  • the design does not follow the traditional activated sludge process design method.
  • the main body of the nitrification zone adopts the pure membrane MBBR process, and the treatment load is higher than that of traditional activated sludge process.
  • the sludge method can be increased by 100%, which can save part of the aerobic zone area;
  • the pure membrane MBBR zone can be used to transfer mass and oxygen using the biofilm on the basis of a filling rate higher than 30%.
  • the characteristics of the biofilm thickness are affected by the thickness of the biofilm.
  • the selection area is designed to serve as both nitrification and denitrification, which can further reduce the nitrification load by 30 ⁇ 40% of the system occupies an area, and through the control of sludge age, it can be ensured that the effluent TN in the hypoxic zone reaches the stable standard on the basis of a small pool capacity;
  • the system of the present invention includes a reaction tank.
  • the reaction tank is re-divided into an anaerobic zone, a carbon movement zone, an aerobic pure membrane MBBR zone, and a selection zone.
  • anoxic IFAS zone and secondary sedimentation zone among them, the main water inlet pipe is connected to the anaerobic zone.
  • the water to be treated first enters the anaerobic zone through the main water inlet pipe.
  • the incoming water organic matter is adsorbed by the activated sludge.
  • PHA is generated and stored in the body, and anaerobic phosphorus release occurs at the same time.
  • the anaerobic zone and the carbon moving zone are connected.
  • the connection can be maintained through the water hole provided at the upper part of the water outlet of the anaerobic zone.
  • the treated water in the anaerobic zone enters the carbon moving zone through the water hole.
  • the carbon moving zone In the carbon moving zone In the middle, the sludge is deposited at the bottom and the clean water is at the top.
  • a sludge overflow pump is provided on the sludge overflow pipeline connected to the water outlet end at the bottom of the carbon moving area. The other end of the sludge overflow pipeline is connected to the selection area to transport the sludge to the bottom of the selection area.
  • the carbon moving area mainly adopts the magnetic loading precipitation process.
  • the magnetic loading precipitation process has the best mud-water separation effect.
  • the carbon moving area must meet the following requirements:
  • the designed surface hydraulic load of the carbon moving area is ⁇ 5m 3 /m 2 /h, and the solid flux is ⁇ 20kg 3 /m 2 /h.
  • the effluent SS of the carbon moving area is ⁇ 50mg/L.
  • the supernatant liquid in the carbon moving area enters the aerobic pure membrane MBBR area, and the sludge flows to the selection area through the sludge overflow pipe set at the bottom of the carbon moving area, and COD is transferred to the selection area in the form of activated sludge.
  • the HRT of the carbon moving zone is 0.4 ⁇ 0.6h
  • the designed surface hydraulic load is ⁇ 5m 3 /m 2 /h
  • the solid flux is ⁇ 20kg/m 2 /h
  • the treatment effect is enhanced by adding magnetic powder
  • the effluent SS is ⁇ 50mg/L
  • COD The transfer rate reaches more than 70%;
  • the selection area sets the specific operation mode according to the effluent ammonia nitrogen, and the selection area is designed according to 20% to 30% of the designed nitrification HRT;
  • Aeration pipelines are installed at the bottom of the aerobic pure membrane MBBR area and the selection area, and submersible mixers are installed at the bottom of the anaerobic area, selection area, and anoxic IFAS area.
  • the specific structures of the aeration pipelines and submersible mixers are based on existing ones. Technology can make it happen.
  • the sewage to be treated first enters the anaerobic zone, and the organic matter in the incoming water is adsorbed by the activated sludge to generate PHA and store it in the body, while anaerobic phosphorus release occurs;
  • the third step the ammonia oxidation rate in the aerobic MBBR zone is 40-60%, and the effluent enters the selection zone;
  • Step 4 Close the aeration pipeline in the selection area, turn on the stirring device, and use the selection area as an anoxic area.
  • the selection area and the anoxic IFAS area jointly carry out denitrification, denitrification, phosphorus removal, and anammox denitrification;
  • Step 5 The effluent from the hypoxic IFAS zone enters the secondary sedimentation zone.
  • the supernatant in the secondary sedimentation zone is discharged as the final effluent.
  • the sludge overflow pump is turned on and the reflux ratio is controlled to 50% to 100%. Part of the sewage at the bottom of the secondary sedimentation zone The sludge will flow back to the bottom of the anaerobic zone, and the remaining sludge will be discharged as residual sludge;
  • Step 6 Close the aeration pipeline in the selected area, turn on the stirring device, and increase the DO of the aerobic pure membrane MBBR area to 6 ⁇ 8 mg/L for operation;
  • each judgment is based on the 5-day average value as the judgment period, and each adjustment is at least 3 days apart.
  • the sludge age of the control system is 40 to 50 days, and the sludge age of the control system is 30 to 40 days at other times.
  • the operation results show that when the aerobic pure membrane MBBR zone is designed according to 50% of the design HRT, the system nitrification effect is insufficient and the effluent ammonia nitrogen exceeds the standard.
  • the aerobic pure membrane MBBR zone is designed according to 15% to 20% of the design HRT, the system effluent All can meet the design standards.
  • the aerobic pure membrane MBBR zone is designed according to 20% of the design HRT, neither the nitrification nor the denitrification effect is significantly improved. At this time, the aerobic pure membrane MBBR zone will cause What a waste of pool space.
  • this example explores the advantages of the pure membrane MBBR process in saving space compared with the traditional activated sludge method.
  • the study shows that: the aerobic pure membrane MBBR zone HRT should According to the design of 15-20% of the designed HRT, this can not only ensure the nitrification effect, but also effectively reduce the area occupied by the aerobic pure membrane MBBR area.
  • a certain two sets of sewage treatment units both have a design water volume of 80m 3 /d.
  • the biochemical section of the two units adopts a high-efficiency AOA coupled anaerobic ammonium oxidation sewage treatment system in the form of BFM, anaerobic zone, and aerobic pure membrane MBBR zone.
  • the HRT in the selection zone, hypoxic IFAS zone, and secondary sedimentation zone are 1h, 2h, 2h, 2h, 4h, and 2h respectively.
  • the difference between the two devices lies in the carbon movement area.
  • Device 1 uses magnetic separation precipitation with an HRT of 0.52h
  • device 2 uses ordinary coagulation precipitation with an HRT of 1.5h.
  • the operation results of the two devices show that device 1 uses magnetic loading sedimentation after the anaerobic zone, achieving a water inlet SS of only 38.26 mg/L in the aerobic pure membrane MBBR zone.
  • the lower SS further improves the nitrification of the aerobic pure membrane MBBR zone. efficiency, and reduces the loss of internal carbon sources.
  • Device 2 uses ordinary coagulation sedimentation, which is not effective in dealing with the sedimentation of sludge contained in the effluent of the anaerobic zone.
  • the measured SS in the aerobic pure membrane MBBR zone is as high as 1156.87 mg/L.
  • the higher SS intensifies the aerobic pure membrane MBBR zone.
  • the COD of the incoming water is low, the SS generation due to decarburization is not considered.
  • the system treatment load changes little.
  • the system nitrification effect decreases significantly faster.
  • the higher SS has a greater impact on biofilm transmission. Quality has had a certain impact. Therefore, to maintain a high load on the system, the incoming water SS should be kept below 50 mg/L.
  • ammonia nitrogen concentrations of the incoming water during different stages of operation are 21.33, 33.24, 46.25, 57.38, and 69.35 mg/L respectively, and the DO of the aerobic zone is operated at 1, 2, 4, 6, and 8 mg/L respectively.
  • the actual inlet and outlet water quality is shown in Figures 4 and 5.
  • the treatment effect of the aerobic pure membrane MBBR zone is greatly affected by DO.
  • the system DO can be controlled at 4 ⁇ 6mg/L.
  • the DO can be further increased to 8mg/L. L to continue to increase the system nitrification load.
  • the operating DO is gradually increased from 2 mg/L to 4 mg/L, 6 mg/L, 8 mg/L, and 10 mg/L, which can respectively increase the nitrification load by approximately 106.79%, 187.87%, 258.64%, 264.11%.
  • the average sludge ages of the system's activated sludge are adjusted to 20d, 30d, 40d, and 50d during operation.
  • the system's inlet and outlet water quality is as follows As shown in Table 4.
  • Example 4 In the sewage treatment plant in Example 4, the selected zone is operated in an aerobic manner. On the basis that the inlet water substrate and water temperature do not change much during the low temperature season, the average sludge ages of the activated sludge in the system are adjusted to 30d, 40d, and 40d respectively during operation. At 50d and 60d, the system effluent quality is shown in Table 5.
  • the system sludge age is 30 days, the anoxic tank capacity is insufficient and the system effluent TN exceeds the standard.
  • the sludge age is 40 to 50 days, the overall treatment effect of the system is good.
  • the system treatment effect differs. It's not big, but the sludge can be seen floating up during the project and is difficult to settle. Therefore, based on the relationship between the denitrification effect of the system and the sludge age, when the AOA process selection zone is operated aerobically, the optimal sludge age of the system can easily be controlled at 40 to 50 days.
  • System 1 adopts a high-efficiency AOA coupled anaerobic ammonium oxidation sewage treatment system in the form of BFM, with anaerobic zone, carbon transfer zone, aerobic pure membrane MBBR zone, selection zone, and lack of
  • the HRT of the oxygen IFAS area and the secondary sedimentation area are 1h, 0.5h, 2h, 2.5h, 4h, and 1.5h respectively.
  • the total HRT is 10.5h.
  • the No. 2 system does not set a selection area.
  • the process flow is anaerobic area, carbon movement area,
  • the HRT of the aerobic pure membrane MBBR area, anoxic IFAS area, and secondary sedimentation area are 1h, 0.5h, 3h, 6h, and 1.5h respectively.
  • the total HRT is 12h.
  • the aerobic pure membrane MBBR area and anoxic IFAS area of each device are set
  • the filling rate of the suspended carrier is 40%, the effective specific surface area of the suspended carrier is 800m 2 /m 3 , and the same water quality is used to verify the operating effects of each system.
  • the treatment effects are shown in Table 6.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本发明公开了一种基于BFM形式的高效AOA耦合厌氧氨氧化污水处理方法及系统,属于污水处理技术领域。该方法包括:待处理污水进入厌氧区,再进入碳移动区;在碳移动区中所得上清液进入好氧纯膜MBBR区,所得污泥从碳移动区底部排出,经过连接有污泥超越泵的管路将其输送到选择区;好氧纯膜MBBR区出水依次进入选择区、缺氧IFAS区、二沉区。本发明方法通过碳移动区的设置实现好氧区纯膜MBBR运行状态,避免了活性污泥在好氧区的碳损失问题;此外,在缺氧IFAS区通过投加悬浮载体集厌氧氨氧化菌,可降低脱氮对于原水碳源的依赖,实现出水氮素满足高标准排放,系统HRT较传统活性污泥法降低40%以上,最小HRT低于10h。

Description

基于BFM形式的高效AOA耦合厌氧氨氧化污水处理方法及系统 技术领域
本发明涉及污水处理技术领域,具体涉及一种基于BFM形式的高效AOA耦合厌氧氨氧化污水处理方法及系统。
背景技术
随着国内“3050”双碳目标的提出,污水处理对节能降耗的诉求不断升高。AOA工艺利用较低的好氧/缺氧池容比,通过较小的好氧停留时间,一方面降低了内碳源在好氧池的消耗;另一方面也保证了足够的反硝化池容,在应对进水C/N较低时,缺氧池利用厌氧阶段合成的PHA,通过内源反硝化效果可保证较高的脱氮效率,通过反硝化除磷可保证较高的生物除磷率,从而降低了污水脱氮对于外碳源的需求,实现了污水处理的节能降耗。厌氧氨氧化工艺通过富集自养型厌氧氨氧化菌实现污水的自养脱氮过程,针对氨氮型污水处理,该工艺常配合短程硝化工艺联用,与传统的硝化反硝化工艺相比,具有节省60%的曝气量,无需添加有机碳源,降低90%的污泥产量以及相对较少氮氧化物释放量等优点,此外,厌氧氨氧化工艺脱氮负荷高、运行费用低、占地空间小,已被公认为是目前最经济的生物脱氮工艺之一。作为两种高效低耗脱氮工艺,将AOA与厌氧氨氧化相耦合,则可进一步降低污水脱氮对原水碳源的依赖,实现污水处理的节能降耗。
现有技术中关于AOA工艺耦合厌氧氨氧化技术相关方面的研究报道主要有:
申请号201910358952.3公开了一种AOA工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置,该装置为AOA工艺流程,以活性污泥为内碳源合成及硝化主体,通过在缺氧区投加填料,利用好氧区产生的亚硝与原水中剩余的氨氮进行厌氧氨氧化反应,产生的硝氮可在缺氧区通过污泥内源反硝化进一步去除。申请号201910358964.6公开了一种全流程厌氧氨氧化强化脱氮的AOA工艺处理城市污水的方法与装置,该装置在AOA反应器中投加生物膜填料。污水处理过程中,在厌氧区污泥积累内碳源去除原水中的有机物。随后进入好氧区进行硝化反应,产生的硝态氮进入缺氧区进行内源反硝化,AOA反应器中的厌氧氨氧化填料利用硝化反硝化过程中产生的亚硝态氮与原水剩余氨氮进行厌氧氨氧化反应,强化脱氮。申请号201910762403.2公开了一种通过羟胺实现连续流AOA生物膜半短程耦合厌氧氨氧化装置与方法,其通过向反应器好氧池中投加羟胺试剂抑制NOB活性,从而使得连续流好氧池发生半短程硝化反应,继而含有氨氮与亚硝态氮的混合液进入连续流AOA生物膜反应器的缺氧池,生长在生物膜上的厌氧氨化菌利用氨氮与亚硝态氮发生厌氧氨氧化反应。申请号202110336253.6公开了一种AOA耦合厌氧氨氧化深度脱氮除磷工艺,该工艺包括进 行內碳源储存及磷酸盐释放的厌氧区、进行好氧过量吸磷及短程硝化-厌氧氨氧化的好氧区、进行內碳源短程反硝化-厌氧氨氧化的缺氧区,所述好氧区及缺氧区均投加活性生物填料富集主要功能菌。申请号202110532485.9公开了一种低氧曝气AOA-SBBR短程硝化厌氧氨氧化耦合反硝化除磷一体化城市污水处理方法,厌氧阶段污泥中的反硝化聚磷菌与反硝化聚糖菌将水中的易降解有机物储存为内碳源,随后在好氧曝气阶段通过氨氧化菌实现短程效果效果,并利用厌氧氨氧化菌在填料内部微缺氧环境条件下将生成的亚氮与氨氮转化为N 2进行脱氮,最后在缺氧阶段利用反硝化聚磷菌与反硝化聚糖菌通过内源反硝化作用将剩余的硝态氮与污水中的磷去除。
上述现有技术虽然实现了AOA工艺与厌氧氨氧化的耦合,但并未针对两种工艺的最优处理效果而进行任何优化。首先,系统内活性污泥会经历好氧区曝气过程,导致其储存的内碳源发生好氧分解,降低AOA工艺的原水碳源的利用率;其次,游走于整个系统内各功能区的活性污泥与厌氧氨氧化生物膜同存于厌氧氨氧化功能区,活性污泥中杂乱的菌群组成将影响厌氧氨氧化菌生物膜的物种组成,一方面无法实现厌氧氨氧化菌的高效富集,另一方面,易造成现有厌氧氨氧化菌群的退化。因此以该方式进行AOA与厌氧氨氧化工艺的耦合,并无法实现两种工艺耦合后处理效果相叠加甚至更高,需要进一步研究,优化耦合工艺流程。
申请号201610164752.0公布了一种高效脱氮除磷的污水处理方法,将厌氧池处理后的混合液进行固液分离,将上清液导入除磷池和硝化池,将污泥导入反硝化池进行内源反硝化,且除磷池和硝化池单独分开,使除磷和脱氮之间互不影响。该发明通过厌氧区后增加泥水分离的方式实现了硝化与反硝化分别通过不同生物相完成,从根本上避免了好氧区活性污泥的内碳源损失,但该专利设置系统总HRT最小也为18h以上,可见其并未真正意义上提高系统的处理效率。而在工艺组成上,也存在如下问题。首先,普通AOA工艺仍借助于传统硝化反硝化工艺技术,脱氮效果仍受原水C/N影响较大,在进水碳源极度缺乏的基础上,出水TN仍有超标风险;其次,当固液分离池沉降效果较差时,一方面,出水上清液SS高,会对后续的硝化池硝化效果造成影响,导致硝化池硝化效果恶化,而较高的污泥超越比,也增加了好氧池进水氨氮负荷,需要上调好氧池与缺氧池间的回流比满足硝化效果;再次,其硝化效果通过硝化池和好氧池共同保证,好氧池与硝化池若采用的工艺形式不同,其硝化效果必然有所差异,当固液分离池污泥超越比较大时,此时系统的硝化主体为采用活性污泥法的好氧池,过低的硝化负荷导致好氧池设计池容偏大;最后,该工艺除磷依靠化学除磷、反硝化除磷与生物除磷共同完成,当污泥超越比较高时,将导致系统大部分污水实际工艺流程为厌氧-缺氧-好氧(AAO),此时的系统原水碳源利用率会大大降低,进而影响氮磷去除效果。
在实际应用过程中,第一、传统AOA工艺采用活性污泥法,无法保证进水冲击下的硝 化效果;第二、在好氧区投加填料,仍然无法避免内碳源的好氧分解,从而无法保证缺氧区的内源反硝化效果;第三、采用厌氧区后泥水分离,虽可以避免内碳源的好氧分解,但对工艺流程的设计要求更高,需更加严谨,且固定的好氧池容既无法从根本上抵抗进水冲击,也无法进一步缩减工艺占地;第四、传统AOA工艺仍借助于传统硝化反硝化实现氮素的去除,在进水碳源极度缺乏的基础上,仍然有出水TN超标的风险。综上,为充分发挥AOA工艺优势,有必要对现有工艺进行改进。
发明内容
本发明的目的之一在于提供一种基于BFM形式的高效AOA耦合厌氧氨氧化污水处理方法,其对现有AOA污水处理工艺进行重新设计,通过厌氧区实现内碳源的合成及聚磷的水解,通过碳移动区实现厌氧区混合液的泥水分离,上清液进入好氧纯膜MBBR区,污泥由碳移动区转移至选择区,好氧纯膜MBBR区作为硝化主体,承担40%~80%的硝化效果,其更高的处理负荷一方面起到节地效果,一方面也杜绝了活性污泥在好氧区的内碳源损失;选择区作为好氧/缺氧区,可进一步突显节地效果;缺氧IFAS区通过填料富集承担20~30%的硝化负荷与50~60%的反硝化负荷,同时污泥进行反硝化脱氮除磷;本发明污水处理方法的最小HRT可保证在10h以下。
为了实现上述目的,本发明采用了以下技术方案:
一种基于BFM形式的高效AOA耦合厌氧氨氧化污水处理方法,依次包括以下步骤:
a、将待处理污水通入厌氧区,通过厌氧区主要进行活性污泥内碳源的合成及磷素释放,在厌氧区HRT为1~2h;
b、厌氧区出水进入连接在其后的碳移动区;在碳移动区对厌氧区混合液的泥水进行强化分离,分离所得上清液进入连接在碳移动区之后的好氧纯膜MBBR区,分离所得污泥从碳移动区底部的出口端排出,经过连接有污泥超越泵的管路将其输送到连接在好氧纯膜MBBR区之后的选择区;
所述的碳移动区的HRT为0.4~0.6h,表面水力负荷≥5m 3/m 2/h,固体通量≥20kg/m 2/h,出水SS≤50mg/L,COD转移率≥70%;
c、好氧纯膜MBBR区通过投加悬浮级载体富集微生物来去除氨氮污染物,好氧纯膜MBBR区出水进入选择区;
所述的好氧纯膜MBBR区按照设计硝化HRT的15~20%设计,容积负荷≥0.2kgN/m 3/d,通过拦截筛网设置分级≥2级,最后一级出水SS≤200mg/L;
所述的选择区依据出水氨氮设置具体运行模式可作为好氧/缺氧区,所述的选择区按照设计硝化HRT的20%~30%设计;
d、选择区作为缺氧区,利用污泥超越携带和移动的内碳源进行内源反硝化除磷,选择区出水进入连接在其后的缺氧IFAS区;
所述的缺氧IFAS区进行内源反硝化脱氮除磷及厌氧氨氧化脱氮,利用活性污泥进行反硝化脱氮除磷,利用悬浮载体富集厌氧氨氧化菌进行厌氧氨氧化自养脱氮;所述的缺氧IFAS区按照设计硝化HRT的50~60%设计;
所述的好氧纯膜MBBR区和缺氧IFAS区中的悬浮载体有效比表面积≥620m 2/m 3,空隙率>90%,30%≤填充率<67%,所述的好氧纯膜MBBR区悬浮载体密度为0.94~0.97g/cm 3,所述的缺氧IFAS区中悬浮载体的比重为0.97~1.03g/cm 3
e、缺氧IFAS区出水进入连接在其后的二沉区,沉降后所得上清液外排,所得污泥部分回流至厌氧区底部,控制污泥回流比为50%~100%,剩余污泥进行外排;
若系统出水氨氮超过设计出水氨氮70%以上,则按照步骤f运行;
f、选择区的曝气管路关闭,搅拌装置开启,上调好氧纯膜MBBR区DO至6~8mg/L;
若系统出水氨氮降至设计出水氨氮50%以下,则按照步骤c继续运行;
若系统出水氨氮继续超过设计出水氨氮的70%以上,则按照步骤g运行;
g、开启选择区曝气管路、关闭搅拌装置,控制DO为2~4mg/L;
若系统出水氨氮降至设计出水氨氮50%以下,则按照步骤f运行;
当选择区以缺氧模式运行时,好氧纯膜MBBR区氨氧化率应达到70~80%,当选择区以好氧模式运行时,好氧纯膜MBBR区氨氧化率应达到40~60%。
上述技术方案直接带来的有益技术效果为:
首先,上述的工艺基于BFM工艺,采用纯膜MBBR耦合磁加载沉淀技术;
其次,通过碳移动区可实现超快的泥水分离效果,硝化区主体采用纯膜MBBR工艺,处理负荷较传统活性污泥法提高100%,可极大的节省占地。选择区在设计上同时作为硝化和反硝化,可进一步降低30%~40%的缺氧区占地,且通过污泥龄的控制可以保证缺氧区在池容较小的基础上实现出水TN稳定达标;
最后,好氧纯膜MBBR区主要利用生物膜传质传氧受生物膜厚度影响特性,当冲击来临时,通过提高溶解氧,增加传质传氧深度,进一步显著提高硝化负荷。
作为本发明的一个优选方案,步骤e、f、g中每次判别以5d均值为判断周期,每次调整至少间隔3d。
作为本发明的另一个优选方案,步骤g中,当选择区曝气管路开启,搅拌装置关闭时,控制系统污泥龄为40~50d,其余时间控制污泥龄为30~40d。
进一步优选,所述的好氧MBBR区和缺氧IFAS区出水端均设有拦截筛网。
优选的,在所述的好氧纯膜MBBR区、选择区的底部安装有曝气管路,在所述的厌氧区、选择区、缺氧IFAS区安装有潜水搅拌器。
优选的,步骤b中,通过向碳移动区投加磁粉的方式来实现对厌氧区混合液中的泥水强化分离。
本发明的另一目的在于提供一种基于BFM形式的高效AOA耦合厌氧氨氧化污水处理系统,其包括反应池,所述的反应池依次划分为厌氧区、碳移动区、好氧纯膜MBBR区、选择区、缺氧IFAS区及二沉区;
所述的碳移动区的底部的出口端连接有污泥超越管路,所述的污泥超越管路的另一端连接在所述的选择区,通过所述的污泥超越管路将碳移动区沉降所得污泥输送至选择区的底部;
所述的二沉区的出口端设置有污泥回流管路,所述的污泥回流管路的另一端连接在所述的厌氧区,通过所述的污泥回流管路将二沉区所得部分污泥回流至厌氧区;
所述的厌氧区用于对活性污泥内碳源的合成及磷素进行释放,所述的厌氧区的HRT为1~2h;
所述的碳移动区的HRT为0.4~0.6h,表面水力负荷≥5m 3/m 2/h,固体通量≥20kg/m 2/h,出水SS≤50mg/L,COD转移率≥70%;
所述的好氧纯膜MBBR区按照设计硝化HRT的15~20%设计,容积负荷≥0.2kgN/m 3/d,可通过拦截筛网设置分级≥2级,最后一级出水SS≤200mg/L;
所述的选择区依据出水氨氮设置具体运行模式可作为好氧/缺氧区,所述的选择区按照设计硝化HRT的20%~30%设计;
所述的缺氧IFAS区按照设计硝化HRT的50~60%设计。
与现有技术相比,本发明带来了以下有益技术效果:
1)硝化效果优,针对活性污泥系统硝化效率低的问题,硝化主体采用好氧纯膜MBBR工艺,利用悬浮载体生物膜对于硝化菌的高效富集作用,提高系统硝化效率及抗冲击性,硝化效果较普通活性污泥法可提高100%,而缺氧IFAS区的设置则可以通过厌氧氨氧化脱氮进一步降低出水氨氮,一方面系统氨氮去除率可>95%,通过优化调整可实现出水氨氮<0.5mg/L,另一方面,好氧纯膜MBBR区池容较传统活性污泥法可节省一倍以上;
2)脱氮效果稳定,通过厌氧区后的碳移动区艺实现泥水分离,保证了活性污泥不经过好氧区,从根本上避免了好氧纯膜MBBR区内碳源损失,保证了缺氧IFAS区氮磷的去除效果;而缺氧IFAS区通过投加悬浮载体富集厌氧氨氧化菌,可以在不依赖原水碳源的基础上实现高效脱氮,进一步降低了AOA工艺脱氮受原水碳源的限制,最低可在进水C/N≤2的基础上实现出水TN稳定达标。
3)抗冲击性强,正常条件下系统硝化大部分依靠生物膜完成,当面临冲击时,通过提高DO可实现处理负荷的增加,而当进水冲击过强时,可通过选择区的调整进一步扩大好氧池容,保证出水稳定达标;
4)占地省,好氧区主体采用好氧纯膜MBBR工艺,负荷更高,设计HRT仅为常规活性污泥法所需硝化HRT的一半,选择区在设计时同时作为好氧和缺氧区,从而进一步节省占地。缺氧区采用IFAS工艺,通过传统活性污泥进行内碳源反硝化除磷及厌氧氨氧化脱氮,处理负荷更高,从而使占地再一次达到节省。整体来看,系统HRT可较传统活性污泥法降低40%以上,最小HRT可保证在10h以下。
附图说明
下面结合附图对本发明做进一步说明:
图1为本发明处理工艺的流程图;
图2、图3为实施例2磁分离沉淀工艺下的出水水质图;
图4、图5为实施例4的好氧纯膜MBBR区不同DO下装置出水水质图。
具体实施方式
本发明提出了一种基于BFM形式的高效AOA耦合厌氧氨氧化污水处理方法及系统,为了使本发明的优点、技术方案更加清楚、明确,下面结合具体实施例对本发明做详细说明。
除非另有其他明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”等等将被理解为包括所陈述的部件或组成部分,而并未排除其他部件或其他组成部分。
在本文中,为了描述的方便,可以使用空间相对术语,诸如“下面”、“下方”、“下”、“上面”、“上方”、“上”等,来描述一个部件或特征与另一部件或特征在附图中的关系。应理解的是,空间相对术语旨在包含除了在图中所绘的方向之外物件在使用或操作中的不同方向。例如,如果在图中的物件被翻转,则被描述为在其他部件或特征“下方”或“下”的部件将取向在所述部件或特征的“上方”。因此,示范性术语“下方”可以包含下方和上方两个方向。部件也可以有其他取向(旋转90度或其他取向)且应对本文使用的空间相对术语作出相应的解释。
首先对本发明中所涉及的部分技术术语做详细解释。
设计硝化HRT:根据《室外排水设计标准》中关于活性污泥法设计规程而设计的硝化停留时间,h;
设计反硝化HRT:根据《室外排水设计标准》中关于活性污泥法设计规程而设计的反硝化停留时间,h;
表面水力负荷:碳移动区域水平截面单位面积每小时所能承受的进水水量,m 3/m 2/h;
固体通量:碳移动区域水平截面单位面积每小时所能承受的进水SS量,kg/m 2/h;
本发明中的“污泥超越泵”,具体是指污泥泵,是连接在碳移动区与选择区之间管道上的污泥泵,其作用是将碳移动区底部的污泥通入选择区。
其次,对本发明的主要创新点做如下说明:
AOA工艺,采用厌氧→好氧→缺氧的工艺流程,厌氧区利用活性污泥吸收进水所含有机物,合成PHA(内碳源)储存在细胞中,同时发生释磷现象;好氧区主要完成氨氮的硝化,缺氧区则利用活性污泥在厌氧段合成的内碳源进行反硝化脱氮和反硝化除磷,实现脱氮除磷一碳两用,提高原水碳源的利用率。所以,AOA工艺的核心就是好氧区的设置,要么池容必须要小,以此降低内碳源的损耗,但好氧池容变小,会影响其硝化效果;要么则是创新工艺形式,让活性污泥不经过好氧区,以此从根本上避免碳损失。此外,实际进水水质随时变化,如果设计时按照最大负荷设计,则占地过高,建设周期长、投资费用高,无法实现效果优异和运行经济性的平衡。
因此,本发明所需克服的技术难题就在于,如何确保好氧区池容为最佳比例时的同时,其碳源损耗也得到降低,保证节约占地的情况下实现最优的处理效果。
为此,本发明对反应池进行了重新设计,主要从以下三方面进行了考虑:
第一、针对AOA工艺好氧区碳损失问题,工艺形式上基于BFM工艺,采用纯膜MBBR耦合磁加载沉淀技术,实现好/缺氧区生物相的绝对分离,好氧区采用纯膜MBBR形式运行,缺氧区采用活性污泥形式运行;
第二、针对好氧区纯膜MBBR的实现,一方面要考虑进水SS对生物膜传质的影响,另一方面也要考虑生物膜脱落后(腐殖污泥)对系统处理负荷的影响,根据大量试验规律总结,在确定纯膜MBBR工艺SS影响边界条件的基础上,结合好氧区COD去除能力,进一步确定了进水SS边界条件;此外,针对厌氧区污泥含水率低、易产气等特点,采用磁混凝沉淀工艺,通过较高的固体通量,结合超越污泥和系统内污泥的污泥浓度,设置合适的水力负荷,从而实现高效稳定的泥水分离效果;
第三、针对现有工艺占地大的问题,本发明进行了三方面考虑,首先,在设计上不按照传统活性污泥法设计方式,硝化区主体采用纯膜MBBR工艺,处理负荷较传统活性污泥法提高100%,可节省一部分好氧区占地;其次,利用纯膜MBBR区在填充率高于30%的基础上,可利用生物膜传质传氧受生物膜厚度影响特性,当冲击来临时,通过提高溶解氧,增加传质传氧深度,可在池容不变的基础上进一步显著提高硝化负荷;最后,选择区在设计上同时作为硝化和反硝化,可进一步降低30~40%的系统占地,且通过污泥龄的控制可以保证缺氧区在池容较小的基础上实现出水TN稳定达标;
以上三点紧密相连、密不可分,首先,需要磁分离沉淀区通过良好的泥水分离效果,具 体效果参数参见下述实施例,良好的泥水分离效果才能保证好氧区纯膜MBBR的运行状态,纯膜MBBR的运行状态则从根本上杜绝了活性污泥在好氧区的碳损失问题,保证了TN去除效果。而选择池的设置、不同DO的控制则为进一步降低工艺占地提供了可能。
如图1所示,本发明系统,包括反应池,作为本发明的主要改进点,通过将反应池进行重新划分,依次划分为厌氧区、碳移动区、好氧纯膜MBBR区、选择区、缺氧IFAS区及二沉区;其中,总进水管路与厌氧区连接,待处理水首先通过总进水管路进入厌氧区,在厌氧区中,进水有机物被活性污泥吸附,生成PHA储存在体内,同时发生厌氧释磷。
厌氧区和碳移动区之间保持连通,如可通过设置于厌氧区出水端上部的过水孔洞保持连通,厌氧区处理后的水通过过水孔洞进入碳移动区,在碳移动区中,污泥沉积在下方,清水在上方。在碳移动区底部的出水端连接的污泥超越管路上设置有污泥超越泵,该污泥超越管路的另一端连接至选择区,将污泥输送到选择区的底部。
碳移动区主要采用磁加载沉淀工艺,磁加载沉淀工艺相比普通沉淀工艺,其泥水分离效果最好。如通过向碳移动区投加磁粉来分离泥水,为保证系统HRT在10h以下,对于碳移动区,需满足以下要求:
碳移动区设计表面水力负荷≥5m 3/m 2/h,固体通量≥20kg 3/m 2/h,通过投加磁粉强化处理效果,碳移动区出水SS≤50mg/L。
并且,厌氧区HRT为1~2h,碳移动区HRT为0.4~0.6h,好氧纯膜MBBR区通过投加悬浮载体富集微生物,实现氨氮等污染物的去除;好氧纯膜MBBR区按照设计硝化HRT的15~20%设计,容积负荷≥0.2kgN/m 3/d,可通过拦截筛网设置分级≥2级,最后一级出水SS≤200mg/L;
碳移动区上清液进入好氧纯膜MBBR区,污泥由碳移动区底部设置的污泥超越管流向选择区,将COD以活性污泥形式转移至选择区。碳移动区HRT为0.4~0.6h,设计表面水力负荷≥5m 3/m 2/h,固体通量≥20kg/m 2/h,通过投加磁粉强化处理效果,出水SS≤50mg/L,COD转移率达到70%以上;
选择区依据出水氨氮设置具体运行模式,选择区按照设计硝化HRT的20%~30%设计;
缺氧IFAS区进行内源反硝化脱氮除磷及厌氧氨氧化脱氮,污泥超越携带和转化的内碳源进行内源反硝化除磷,悬浮载体富集厌氧氨氧化菌进行厌氧氨氧化自养脱氮。缺氧IFAS区按照设计硝化HRT的50~60%设计;
在好氧纯膜MBBR区投加有悬浮载体,30%≤悬浮载体的填充率<67%,优选,悬浮载体比重0.94~0.97,空隙率>90%。缺氧IFAS区悬浮载体比重0.97~1.03g/cm3;
好氧纯膜MBBR区和缺氧IFAS区出水端均设有拦截筛网;
好氧纯膜MBBR区、选择区底部安装有曝气管路,在厌氧区、选择区、缺氧IFAS区底部安装有潜水搅拌器,曝气管路和潜水搅拌器的具体结构借鉴现有技术即可实现。
为了防止悬浮载体冲出,上述的拦截筛网上的通孔的孔径小于悬浮载体的直径。为了确保好氧纯膜MBBR区出水达到要求,可以将拦截筛网设置为两级,保证最后一级出水SS≤200mg/L。
下面结合上述系统对本发明处理工艺做详细说明。
具体包括以下步骤:
第一步、待处理污水首先进入厌氧区,进水有机物被活性污泥吸附,生成PHA储存在体内,同时发生厌氧释磷;
第二步、厌氧区出水进入碳移动区,污泥在碳移动区底部沉积,上清液进入好氧纯膜MBBR区;开启位于污泥超越管上的污泥超越泵,控制流量为进水流量的10%~20%,碳移动区底部污泥通过污泥超越管进入选择区进水端的底部;
第三步、好氧MBBR区氨氧化率40~60%,出水进入选择区;;
第四步、选择区关闭曝气管路,开启搅拌装置,将选择区作为缺氧区用,选择区和缺氧IFAS区共同进行反硝化脱氮除磷、anammox脱氮;
第五步、缺氧IFAS区出水进入二沉区,二沉区的上清液作为最终出水外排,开启污泥超越泵,控制回流比为50%~100%,二沉区底部的部分污泥则回流至厌氧区底部,其余污泥作为剩余污泥排放;
若系统出水氨氮超过设计出水氨氮70%以上,则按照第六步运行;
第六步、选择区曝气管路关闭,搅拌装置开启,上调好氧纯膜MBBR区DO至6~8mg/L运行;
若系统出水氨氮降至设计出水氨氮50%以下,则按照第三步继续运行;
若系统出水氨氮继续超过设计出水氨氮的70%以上,则按照第七步运行;
第七步、开启选择区曝气管路、关闭搅拌装置,控制DO为2~4mg/L;系统出水氨氮降至设计出水氨氮50%以下,则按照第六步运行。
上述的第五步、第六步、第七步中每次判别以5d均值为判断周期,每次调整至少间隔3d。当选择区曝气管路开启、搅拌装置关闭时,控制系统污泥龄为40~50d,其余时间控制污泥龄为30d~40d。
下面结合具体实施例对本发明做详细说明。
实施例1:
四套基于BFM形式的高效AOA耦合厌氧氨氧化处理小试系统,编号a-d,各系统厌氧 区、碳移动区、选择区、缺氧IFAS区、二沉区HRT分别为1h、0.5h、2h、4h、1.5h,各装置好氧纯膜MBBR区和缺氧IFAS区设置悬浮载体填充率40%,悬浮载体有效比表面积为800m 2/m 3,好氧纯膜MBBR区HRT分别按照设计硝化HRT的5%、15%、20%、25%进行设计(即1h、2h、3h、4h),采用相同水质运行,验证各系统运行效果,其处理效果如表1所示。
表1 不同好氧纯膜MBBR区HRT下运行效果
Figure PCTCN2022104129-appb-000001
运行效果显示,当好氧纯膜MBBR区按照设计HRT的50%设计时,系统硝化效果不足,出水氨氮超标,当好氧纯膜MBBR区按照设计HRT的15%~20%设计时,系统出水均可达到设计标准,而当好氧纯膜MBBR区按照设计HRT的20%设计时,不管是硝化或者反硝化效果均未再有明显提升,此时过高的好氧纯膜MBBR区会造成池容的浪费。
针对其他AOA工艺未对好氧区池容进行限定的情况,本实施例探究了纯膜MBBR工艺较传统活性污泥法在占地节省方面的优势,研究表明:好氧纯膜MBBR区HRT应按照设计HRT的15~20%设计,此时既能保证硝化效果,又可以有效的缩减好氧纯膜MBBR区占地。
实施例2:
某两组污水处理装置,编号1、2,设计水量均为80m 3/d,两装置生化段采用BFM形式的高效AOA耦合厌氧氨氧化污水处理系统,厌氧区、好氧纯膜MBBR区、选择区、缺氧IFAS区、二沉区HRT分别为1h、2h、2h、2h、4h、2h。两装置差异在于碳移动区,装置1采用磁分离沉淀,HRT为0.52h,装置2采用普通混凝沉淀,HRT为1.5h。在两装置好氧区均投加50%悬浮载体,控制DO为4mg/L,系统污泥浓度为3000mg/L,两装置污泥超越泵流量为16m 3/d。两装置污泥回流比均为100%。处理相同水质,两装置处理效果如图2和图3所示。
两装置运行效果显示,装置1在厌氧区后采用磁加载沉淀,实现了好氧纯膜MBBR区进水SS仅为38.26mg/L,较低的SS进一步提高了好氧纯膜MBBR区硝化效率,并且降低了内碳源损失。而装置2采用普通混凝沉淀,在应对厌氧区出水所含污泥沉降效果不佳,实测好氧纯膜MBBR区SS高达1156.87mg/L,较高的SS加剧了好氧纯膜MBBR区泥膜竞争关系,也增加了内碳源损耗,导致装置2出水氨氮和TN均明显高于装置1。可见,针对厌氧区污泥的沉降,应优先选用水力负荷更高的磁分离沉淀代替普通沉淀,以达到更高的泥水分离效果。从该实施例可以得出:针对厌氧区污泥的泥水分离,采用磁加载沉淀工艺更好。
实施例3:
某5组好氧污水处理装置,编号1-5,设计HRT均为2h,系统内均投加挂膜成熟的悬浮载体,设置填充率均为40%,采用污水厂二沉池出水上清液与初沉污泥混合配水,在保证进水氨氮均为40mg/L的基础上,设置不同的进水SS浓度分别为10、30、50、70、90mg/L,验证各组硝化效果,各系统进出水水质如表2所示。
表2 纯膜MBBR系统在不同SS条件下的进出水氨氮浓度
Figure PCTCN2022104129-appb-000002
由于进水COD较低,所以不考虑由于脱碳导致的SS生成量。在进水SS低于50mg/L时,系统处理负荷变化不大,而当进水SS进一步升至70mg/L以上后,系统硝化效果下降速度明显加快,此时较高的SS对生物膜传质造成了一定影响。因此,系统要维持较高的负荷,应保证进水SS在50mg/L以下。
实施例4:
某污水处理装置,生化段为采用BFM形式的高效AOA耦合厌氧氨氧化污水处理系统,设计日处理量75m 3/d,系统出水执行一级A标准。好氧纯膜MBBR区HRT为2.5h,其中,好氧纯膜MBBR区按照填充率50%投加悬浮载体。系统污泥浓度4000mg/L,污泥超越泵流量为10m 3/d。运行不同阶段内进水氨氮浓度分别为21.33、33.24、46.25、57.38、69.35mg/L,好氧区运行DO分别按照1、2、4、6、8mg/L运行。实际进出水水质如图4、5所示。
当好氧纯膜MBBR区DO为2mg/L时,系统硝化效果较差,造成了出水氨氮的超标,将DO逐渐提升至6mg/L后,系统出水氨氮逐渐降低,且均优于设计出水标准。由于进水C/N变化不大,且好氧纯膜MBBR区不存在碳损,所以系统出水TN主要受氨氮影响。当系统DO进一步升至8mg/L后,系统出水氨氮再次出现超标,进而造成了出水TN的超标。可见,好氧纯膜MBBR区处理效果受DO影响很大,正常条件下,为了节省曝气,系统DO控制在4~6mg/L即可,当冲击来临后,可通过进一步上调DO至8mg/L来继续提高系统硝化负荷。好氧纯膜MBBR区正常条件下,在进水基质充足的基础上,运行DO从2mg/L逐渐提升至4mg/L、6mg/L、8mg/L、10mg/L,可分别提高硝化负荷约106.79%、187.87%、258.64%、264.11%,可见,当DO超过8mg/L后,硝化负荷提高幅度已基本不再增大。因此若为提高硝化效果,好氧纯膜MBBR区运行DO最高不超过8mg/L。
实施例5:
某污水处理厂,生化段采用AOA系统,设计日处理量80000m 3/d,出水执行一级A标准。污水厂设计进出水水质如表3所示。生化池总池容为55000m 3,各功能区HRT分别为1.00h、0.62h、3.20h、1.00h、1.60h、6.00h、1.50h,其中,好氧纯膜MBBR区按照填充率40%投加悬浮载体。选择区以缺氧方式运行,在高温季节进水基质与水温变化不大的基础上,运行时调整系统活性污泥的污泥龄均值分别为20d、30d、40d、50d,系统进出水水质如表4所示。
表3 污水厂设计进出水水质
Figure PCTCN2022104129-appb-000003
表4 选择区缺氧运行时不同泥龄下污水厂生化段进出水水质
Figure PCTCN2022104129-appb-000004
当系统泥龄为20d时,系统排泥量较大,系统污泥浓度偏低,内碳源存储不足,造成出水TN偏高,当泥龄为30~40d时,出水氨氮和TN均较为稳定,且明显优于设计出水标准。而当泥龄进一步升至50d后,随着排泥量的减少,系统污泥浓度过高,可能存在水解现象,导致了系统的碳氮去除效果反而较泥龄为20~30d时更差。因此,综合系统脱氮效果与污泥龄的关系,AOA工艺,当选择区以缺氧方式运行时,系统的最佳污泥龄易控制在30~40d。
实施例6:
实施例4中的污水处理厂,选择区以好氧方式运行,在低温季节进水基质与水温变化不大的基础上,运行时调整系统活性污泥的污泥龄均值分别为30d、40d、50d、60d,系统出水水质如表5所示。
当系统泥龄为30d时,缺氧池容不足,系统出水TN超标,当污泥龄为40~50d时,系统整体处理效果良好,但随着污泥龄进一步升至60d,系统处理效果差异不大,但工程可见污泥上浮,难以沉降。因此,综合系统脱氮效果与污泥龄的关系,AOA工艺选择区以好氧运行时,系统的最佳污泥龄易控制在40~50d。
表5 选择区好氧运行时不同泥龄下污水厂生化段进出水水质
Figure PCTCN2022104129-appb-000005
Figure PCTCN2022104129-appb-000006
实施例7:
两套污水处理小试系统,编号1-2,1号系统采用BFM形式的高效AOA耦合厌氧氨氧化污水处理系统,厌氧区、碳移动区、好氧纯膜MBBR区、选择区、缺氧IFAS区、二沉区HRT分别为1h、0.5h、2h、2.5h、4h、1.5h,总计HRT为10.5h,2号系统不设置选择区,工艺流程为厌氧区、碳移动区、好氧纯膜MBBR区、缺氧IFAS区、二沉区,HRT分别为1h、0.5h、3h、6h、1.5h,总计HRT为12h,各装置好氧纯膜MBBR区和缺氧IFAS区设置悬浮载体填充率40%,悬浮载体有效比表面积为800m 2/m 3,采用相同水质运行,验证各系统运行效果,其处理效果如表6所示。
表6 选择区是否设置对进出水水质的影响
Figure PCTCN2022104129-appb-000007
当系统不设置选择区时,额外20~30%的硝化负荷将由好氧纯膜MBBR区承担,额外20~30%的反硝化负荷将由缺氧IFAS区承担,整体HRT延长14.29%,相当于池容增加14.29%。但两系统处理效果基本一致。可见,通过选择区的设置可以进一步降低系统池容及占地。
本发明中未述及的部分采用或借鉴已有技术即可实现。
需要进一步说明的是,本文中所描述的具体实施例仅仅是对本发明的精神所作的举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (7)

  1. 一种基于BFM形式的高效AOA耦合厌氧氨氧化污水处理方法,其特征在于,依次包括以下步骤:
    a、将待处理污水通入厌氧区,通过厌氧区主要进行活性污泥内碳源的合成及磷素释放,在厌氧区HRT为1~2h;
    b、厌氧区出水进入连接在其后的碳移动区;在碳移动区对厌氧区混合液的泥水进行强化分离,分离所得上清液进入连接在碳移动区之后的好氧纯膜MBBR区,分离所得污泥从碳移动区底部的出口端排出,经过连接有污泥超越泵的管路将其输送到连接在好氧纯膜MBBR区之后的选择区进水端的底部;
    所述的碳移动区的HRT为0.4~0.6h,表面水力负荷≥5m 3/m 2/h,固体通量≥20kg/m 2/h,出水SS≤50mg/L,COD转移率≥70%;
    c、好氧纯膜MBBR区通过投加悬浮级载体富集微生物来去除氨氮污染物,好氧纯膜MBBR区出水进入选择区;
    所述的好氧纯膜MBBR区按照设计硝化HRT的15~20%设计,容积负荷≥0.2kgN/m 3/d,通过拦截筛网设置分级≥2级,最后一级出水SS≤200mg/L;
    所述的选择区依据出水氨氮设置具体运行模式可作为好氧/缺氧区,所述的选择区按照设计硝化HRT的20%~30%设计;
    d、选择区作为缺氧区,利用污泥超越携带和移动的内碳源进行内源反硝化除磷,选择区出水进入连接在其后的缺氧IFAS区;
    所述的缺氧IFAS区进行内源反硝化脱氮除磷及厌氧氨氧化脱氮,利用活性污泥进行反硝化脱氮除磷及短程反硝化产亚硝酸盐,利用悬浮载体富集厌氧氨氧化菌进行厌氧氨氧化自养脱氮,实现氨氮和总氮的达标去除;所述的缺氧IFAS区按照设计硝化HRT的50~60%设计;
    所述的好氧纯膜MBBR区和缺氧IFAS区中的悬浮载体有效比表面积≥620m 2/m 3,空隙率>90%,30%≤填充率<67%,所述的好氧纯膜MBBR区悬浮载体密度为0.94~0.97g/cm 3,所述的缺氧IFAS区中悬浮载体的比重为0.97~1.03g/cm 3
    e、缺氧IFAS区出水进入连接在其后的二沉区,沉降后所得上清液外排,所得污泥部分回流至厌氧区底部,控制污泥回流比为50%~100%,剩余污泥进行外排;
    若系统出水氨氮超过设计出水氨氮70%以上,则按照步骤f运行;
    f、选择区的曝气管路关闭,搅拌装置开启,上调好氧纯膜MBBR区DO至6~8mg/L;
    若系统出水氨氮降至设计出水氨氮50%以下,则按照步骤c继续运行;
    若系统出水氨氮继续超过设计出水氨氮的70%以上,则按照步骤g运行;
    g、开启选择区曝气管路、关闭搅拌装置,控制DO为2~4mg/L;
    若系统出水氨氮降至设计出水氨氮50%以下,则按照步骤f运行;
    当选择区以缺氧模式运行时,好氧纯膜MBBR区氨氧化率应达到70~80%,当选择区以好氧模式运行时,好氧纯膜MBBR区氨氧化率应达到40~60%。
  2. 根据权利要求1所述的一种基于BFM形式的高效AOA耦合厌氧氨氧化污水处理方法,其特征在于:步骤e、f、g中每次判别以5d均值为判断周期,每次调整至少间隔3d。
  3. 根据权利要求1所述的一种基于BFM形式的高效AOA耦合厌氧氨氧化污水处理方法,其特征在于:步骤g中,当选择区曝气管路开启,搅拌装置关闭时,控制系统污泥龄为40~50d,其余时间控制污泥龄为30~40d。
  4. 根据权利要求1所述的一种基于BFM形式的高效AOA耦合厌氧氨氧化污水处理方法,其特征在于:所述的好氧MBBR区和缺氧IFAS区出水端均设有拦截筛网。
  5. 根据权利要求1所述的一种基于BFM形式的高效AOA耦合厌氧氨氧化污水处理方法,其特征在于:在所述的好氧纯膜MBBR区、选择区的底部安装有曝气管路,在所述的厌氧区、选择区、缺氧IFAS区安装有潜水搅拌器。
  6. 根据权利要求1所述的一种基于BFM形式的高效AOA耦合厌氧氨氧化污水处理方法,其特征在于:步骤b中,通过向碳移动区投加磁粉的方式来实现对厌氧区混合液中的泥水强化分离。
  7. 一种基于BFM形式的高效AOA耦合厌氧氨氧化污水处理系统,其包括反应池,其特征在于:所述的反应池依次划分为厌氧区、碳移动区、好氧纯膜MBBR区、选择区、缺氧IFAS区及二沉区;
    所述的碳移动区的底部的出口端连接有污泥超越管路,所述的污泥超越管路的另一端连接在所述的选择区,通过所述的污泥超越管路将碳移动区沉降所得污泥输送至选择区进水端的底部;
    所述的二沉区的出口端设置有污泥回流管路,所述的污泥回流管路的另一端连接在所述的厌氧区,通过所述的污泥回流管路将二沉区所得部分污泥回流至厌氧区;
    所述的厌氧区用于对活性污泥内碳源的合成及磷素进行释放,所述的厌氧区的HRT为1~2h;
    所述的碳移动区的HRT为0.4~0.6h,表面水力负荷≥5m 3/m 2/h,固体通量≥20kg/m 2/h,出水SS≤50mg/L,COD转移率≥70%;
    所述的好氧纯膜MBBR区按照设计硝化HRT的15~20%设计,容积负荷≥0.2kgN/m 3/d,可通过拦截筛网设置分级≥2级,最后一级出水SS≤200mg/L;
    所述的选择区依据出水氨氮设置具体运行模式可作为好氧/缺氧区,所述的选择区按照设 计硝化HRT的20%~30%设计;
    所述的缺氧IFAS区按照设计硝化HRT的50~60%设计。
PCT/CN2022/104129 2022-04-19 2022-07-06 基于bfm形式的高效aoa耦合厌氧氨氧化污水处理方法及系统 WO2023201900A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210411137.0A CN114804339B (zh) 2022-04-19 2022-04-19 基于bfm形式的高效aoa耦合厌氧氨氧化污水处理方法及系统
CN202210411137.0 2022-04-19

Publications (1)

Publication Number Publication Date
WO2023201900A1 true WO2023201900A1 (zh) 2023-10-26

Family

ID=82505394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104129 WO2023201900A1 (zh) 2022-04-19 2022-07-06 基于bfm形式的高效aoa耦合厌氧氨氧化污水处理方法及系统

Country Status (2)

Country Link
CN (1) CN114804339B (zh)
WO (1) WO2023201900A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117342689A (zh) * 2023-12-06 2024-01-05 安徽新宇环保科技股份有限公司 一种污水厂智能脱氮方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113943056B (zh) * 2021-10-13 2023-09-01 北京工业大学 一种连续流平衡聚糖菌与聚磷菌实现同步氮磷去除的方法
CN117023894B (zh) * 2023-09-04 2024-06-18 北京国环莱茵环保科技股份有限公司 一种mbbr组合高级氧化对白酒废水深度处理的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104250050A (zh) * 2013-06-26 2014-12-31 李相昆 A/mbbr/a应用于低碳氮比城市污水的脱氮除磷
CN108862582A (zh) * 2018-07-04 2018-11-23 北京工业大学 一种基于部分厌氧氨氧化生物膜a2/o-ifas-mbr双污泥系统脱氮除磷的方法
CN109896628A (zh) * 2019-03-13 2019-06-18 北京工业大学 Aoa(pd-anammox)生物膜技术深度脱氮的装置与方法
CN110386723A (zh) * 2019-07-19 2019-10-29 青岛思普润水处理股份有限公司 一种基于mbbr与磁分离的污水自养处理系统与方法
CN110386725A (zh) * 2019-07-19 2019-10-29 青岛思普润水处理股份有限公司 一种基于mbbr与磁分离的污水全效处理系统与方法
CN110606627A (zh) * 2019-10-15 2019-12-24 青岛思普润水处理股份有限公司 一种铁促进磁加载厌/缺氧活性污泥法与生物膜法耦合处理系统
CN112158952A (zh) * 2020-09-07 2021-01-01 北京工业大学 连续流aoa短程硝化与厌氧氨氧化耦合污泥发酵反硝化处理低碳氮比废水的装置与方法
US20210355012A1 (en) * 2018-10-12 2021-11-18 Veolia Water Solutions & Technologies Support Mainstream Deammonification Process Employing Bypass Primary Effluent and Step Feeding

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154496A (ja) * 1991-12-11 1993-06-22 Meidensha Corp 嫌気−好気活性汚泥処理装置の運転制御方法
CN105776544B (zh) * 2016-05-06 2018-06-12 云南大学 一种基于在线控制的ansaoao连续流双污泥反硝化深度脱氮除磷装置及工艺
CN107032489A (zh) * 2017-04-24 2017-08-11 北京工业大学 实现连续流aoa半短程厌氧氨氧化耦合内源反硝化的方法
CN110386742A (zh) * 2018-10-31 2019-10-29 青岛大学 一种连续流生物膜反应器及实现内源短程反硝化除磷耦合厌氧氨氧化的方法
CN109485152B (zh) * 2018-12-19 2021-10-26 北京工业大学 一种连续流城市污水短程反硝化部分anammox深度脱氮除磷的装置与方法
CN110015757B (zh) * 2019-04-30 2021-10-26 北京工业大学 Aoa工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置
CN110304791A (zh) * 2019-06-26 2019-10-08 中国科学院生态环境研究中心 污水仿自然净化系统及方法
CN110386724A (zh) * 2019-07-19 2019-10-29 青岛思普润水处理股份有限公司 一种基于mbbr与磁分离的污水全流程处理系统与方法
CN210457864U (zh) * 2019-08-13 2020-05-05 青岛思普润水处理股份有限公司 一种基于超效分离的污水处理系统
CN113998783B (zh) * 2021-11-02 2023-03-17 海南大学 一种基于部分回流污泥深度厌氧处理的城市污水低碳脱氮除磷装置和方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104250050A (zh) * 2013-06-26 2014-12-31 李相昆 A/mbbr/a应用于低碳氮比城市污水的脱氮除磷
CN108862582A (zh) * 2018-07-04 2018-11-23 北京工业大学 一种基于部分厌氧氨氧化生物膜a2/o-ifas-mbr双污泥系统脱氮除磷的方法
US20210355012A1 (en) * 2018-10-12 2021-11-18 Veolia Water Solutions & Technologies Support Mainstream Deammonification Process Employing Bypass Primary Effluent and Step Feeding
CN109896628A (zh) * 2019-03-13 2019-06-18 北京工业大学 Aoa(pd-anammox)生物膜技术深度脱氮的装置与方法
CN110386723A (zh) * 2019-07-19 2019-10-29 青岛思普润水处理股份有限公司 一种基于mbbr与磁分离的污水自养处理系统与方法
CN110386725A (zh) * 2019-07-19 2019-10-29 青岛思普润水处理股份有限公司 一种基于mbbr与磁分离的污水全效处理系统与方法
CN110606627A (zh) * 2019-10-15 2019-12-24 青岛思普润水处理股份有限公司 一种铁促进磁加载厌/缺氧活性污泥法与生物膜法耦合处理系统
CN112158952A (zh) * 2020-09-07 2021-01-01 北京工业大学 连续流aoa短程硝化与厌氧氨氧化耦合污泥发酵反硝化处理低碳氮比废水的装置与方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117342689A (zh) * 2023-12-06 2024-01-05 安徽新宇环保科技股份有限公司 一种污水厂智能脱氮方法及系统
CN117342689B (zh) * 2023-12-06 2024-02-02 安徽新宇环保科技股份有限公司 一种污水厂智能脱氮方法及系统

Also Published As

Publication number Publication date
CN114804339A (zh) 2022-07-29
CN114804339B (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
WO2023201900A1 (zh) 基于bfm形式的高效aoa耦合厌氧氨氧化污水处理方法及系统
CN109502906B (zh) 一种城市污水主侧流厌氧氨氧化协同脱氮工艺装置及其应用方法
CN102101720B (zh) 低cn高氨氮废水单级自养生物脱氮的装置与方法
WO2023201901A1 (zh) 一种aoa耦合高效自养脱氮水处理方法与系统
CN110255714B (zh) 一种低碳源城市污水处理系统及方法
CN108545830A (zh) 一种利用污泥发酵强化连续流城市污水部分短程硝化厌氧氨氧化的工艺
CN106630414A (zh) 半短程硝化‑厌氧氨氧化多级a/o自养脱氮装置与方法
CN104529056B (zh) 一种絮体污泥与颗粒污泥共生实现城市污水自养脱氮的方法
CN111661924A (zh) 一种硫自养短程反硝化耦合厌氧氨氧化脱氮的系统及方法
CN103951059B (zh) 多循环式复合型生物反应器及其工艺
CN105692902A (zh) 一种处理城市生活污水的双颗粒污泥一体化工艺
WO2023168871A1 (zh) 一种基于循环流动的mbbr强化aoa和aao双模式运行方法
CN106587544B (zh) 一种强化除磷与污泥减量型污水处理装置
CN106045030B (zh) A2/o-uasb连续流城市生活污水深度脱氮除磷的装置与方法
CN102259977B (zh) 一种对含有氨氮的废水进行脱氮的方法
CN212450840U (zh) 一种硫自养短程反硝化耦合厌氧氨氧化脱氮的系统
CN114772731B (zh) 一种基于bfm形式的aoa耦合自养脱氮水处理方法与系统
CN114716006B (zh) 一种基于bfm形式的高效aoa污水处理系统与方法
CN110386732B (zh) 一种基于mbbr的主流自养脱氮改造系统与改造方法
CN218089276U (zh) 一种基于aao和aoa双模式运行的污水处理装置
CN114604965B (zh) 基于mbbr的aoa与aao双模式污水生化系统及运行方法
CN114702137B (zh) 一种基于mbbr的自养脱氮强化aoa水处理方法与系统
CN111170456A (zh) 基于mbbr的无亚氮积累的canon系统及运行方法
WO2020113862A1 (zh) 一种基于mbbr的高效自养脱氮系统的快速启动方法
CN114604968B (zh) 好氧可调的节地型aoa与aao双模式污水生化系统及运行方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938125

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022938125

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022938125

Country of ref document: EP

Effective date: 20240327