WO2023201775A1 - 负极材料及其制备方法、锂离子电池 - Google Patents

负极材料及其制备方法、锂离子电池 Download PDF

Info

Publication number
WO2023201775A1
WO2023201775A1 PCT/CN2022/090258 CN2022090258W WO2023201775A1 WO 2023201775 A1 WO2023201775 A1 WO 2023201775A1 CN 2022090258 W CN2022090258 W CN 2022090258W WO 2023201775 A1 WO2023201775 A1 WO 2023201775A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
silicon
negative electrode
electrode material
anion
Prior art date
Application number
PCT/CN2022/090258
Other languages
English (en)
French (fr)
Inventor
刘奕
佐藤阳祐
Original Assignee
贝特瑞新材料集团股份有限公司
松下控股株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贝特瑞新材料集团股份有限公司, 松下控股株式会社 filed Critical 贝特瑞新材料集团股份有限公司
Priority to JP2022527187A priority Critical patent/JP2024517521A/ja
Publication of WO2023201775A1 publication Critical patent/WO2023201775A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of negative electrode materials, specifically, to negative electrode materials and preparation methods thereof, and lithium-ion batteries.
  • a negative electrode material includes aggregates, the aggregates include carbon materials and silicon materials, anions exist in the aggregates, and the mass content of the anions in the negative electrode material is 0.001 wt% ⁇ 0.5wt%.
  • the anion includes at least one of F - , Cl - , Br - , NO 3 - , SO 4 2- , NO 2- and PO 4 3- .
  • the silicon material includes at least one of silicon element, silicon alloy and silicon oxide. In one embodiment, the silicon material includes silicon element and a silicon oxide layer existing on the surface of the silicon element.
  • the silicon material includes silicon element and a silicon oxide layer existing on the surface of the silicon element.
  • the thickness of the silicon oxide layer is 1 nm to 50 nm.
  • the silicon material has a median particle size of 1 nm to 500 nm.
  • the mass proportion of the silicon material in the negative electrode material is 10% to 80%.
  • the carbon material includes artificial graphite, natural graphite, soft carbon, hard carbon, amorphous carbon, activated carbon, mesophase carbon beads, carbon nanotubes, carbon nanofibers, graphene and porous carbon. At least one.
  • the anion exists in the lattice gap of the silicon material, and the ionic radius of the anion is 118pm-940pm.
  • the negative electrode material further includes a carbon layer present on at least part of the surface of the aggregate.
  • the negative electrode material further includes a carbon layer covering at least part of the surface of the aggregate, and the thickness of the carbon layer is 1 nm to 3000 nm.
  • the mass proportion of the carbon material in the negative electrode material is 10% to 60%.
  • the negative electrode material has a median particle size of 0.5 ⁇ m to 30 ⁇ m.
  • the specific surface area of the negative electrode material is ⁇ 10 m 2 /g.
  • this application provides a preparation method of anode material, including the following steps:
  • the hydrolyzate is reduced to obtain silicon material
  • the preparation method of this embodiment uses anion-containing inorganic salts to perform anion doping on the silicon source precursor. Since the anion-containing salt and the silicon source precursor are both water-soluble, they can achieve molecular levels during the hydrolysis process. Evenly mixed and then dried, some anions will remain in the hydrolyzate. Finally, through reduction method, an anode material containing anions is obtained.
  • the anion includes at least one of F - , Cl - , Br - , NO 3 - , SO 4 2- , NO 2- and PO 4 3- .
  • the mixed solution further includes a hydrolysis accelerator.
  • the mixed solution further includes a hydrolysis accelerator
  • the hydrolysis accelerator includes at least one of ammonia, urea, hydrochloric acid, sulfuric acid, sodium bicarbonate, sodium hydroxide, ammonium acetate, and ammonium chloride.
  • the hydrolysis is performed under stirring, and the hydrolysis time is 3h to 10h.
  • the method before hydrolyzing the mixed solution including the silicon source precursor and the anion-containing inorganic salt, the method further includes: mixing the anion-containing inorganic salt, the first solvent and the hydrolysis accelerator to form a first Premix: mix the silicon source precursor and the first solvent to form a second premix, and then mix the first premix and the second premix to obtain a mixed liquid.
  • the mass content of the anion in the first premix is 5wt% to 55wt%.
  • the mass content of the silicon source precursor in the second premix is 10 wt% to 70 wt%.
  • the method further includes: removing the first solvent in the hydrolyzate.
  • the step of reducing the hydrolyzate includes thoroughly mixing the hydrolyzate and reducing metal and then sintering.
  • the mass ratio of the hydrolyzate to the reducing metal is 100: (13-130).
  • the reducing metal includes at least one of aluminum, zinc, magnesium, sodium, lithium, calcium and potassium.
  • the protective gas includes at least one of nitrogen, helium, neon, argon and krypton.
  • the method further includes pickling and drying the sintered product.
  • the acid solution used in the pickling includes hydrochloric acid, sulfuric acid, At least one of nitric acid;
  • the thorough mixing treatment method includes at least one of mechanical stirring, ultrasonic dispersion, and grinding dispersion.
  • the silicon material has a median particle size of 1 nm to 500 nm.
  • the step of preparing an aggregate containing a carbon material and the silicon material includes: subjecting a first precursor containing a first carbon source and the silicon material to a heat treatment such that the first The carbon source is carbonized or the first carbon source and the silicon material are aggregated.
  • the silicon material includes silicon element and a silicon oxide layer existing on the surface of the silicon element.
  • the thickness of the silicon oxide layer is 1 nm to 50 nm.
  • the first carbon source includes sucrose, glucose, polyethylene, polyvinyl alcohol, polyethylene glycol, polyaniline, epoxy resin, phenolic resin, furfural resin, acrylic resin, polyethylene oxide , at least one of polyvinylidene fluoride, polyacrylonitrile, polyvinyl chloride and asphalt.
  • the first carbon source includes artificial graphite, natural graphite, soft carbon, hard carbon, amorphous carbon, activated carbon, mesophase carbon beads, carbon nanotubes, carbon nanofibers, graphene and porous carbon at least one of them.
  • the method before performing a heat treatment on the first precursor containing the first carbon source and the silicon material, the method further includes: fully dispersing the first carbon source, the first solvent and the silicon material. A second solution is formed.
  • the first solvent includes at least one of methanol, ethanol, ethylene glycol, propanol, isopropanol, glycerol, n-butanol, isobutanol and pentanol.
  • the sufficient dispersion treatment method includes at least one of mechanical stirring, ultrasonic dispersion, and grinding dispersion.
  • the specific method of removing the second solvent includes: drying the second solution.
  • the temperature of the drying process is 40°C to 400°C, and the time is 1h to 15h.
  • the first carbon source includes artificial graphite, natural graphite, soft carbon, hard carbon, amorphous carbon, activated carbon, mesophase carbon beads, carbon nanotubes, carbon nanofibers, graphene and porous carbon At least one of them, the temperature of the primary heat treatment is 400°C-1000°C, and the time is 1h-5h.
  • the primary heat treatment is performed in a protective atmosphere
  • the gas in the protective atmosphere includes at least one of nitrogen, helium, neon, argon and krypton.
  • the method further includes carbon coating the aggregate.
  • the method further includes carbon coating the aggregate, and the steps of carbon coating include: mixing the aggregate with a second carbon source, and performing a secondary heat treatment.
  • the second carbon source includes sucrose, glucose, polyethylene, polyvinyl alcohol, polyethylene glycol, polyaniline, epoxy resin, phenolic resin, furfural resin, acrylic resin, polyethylene oxide, polyvinylidene fluoride, and polypropylene At least one of nitrile, polyvinyl chloride and asphalt.
  • the method further includes carbon coating the aggregate, and the steps of carbon coating include: mixing the aggregate with a second carbon source, and performing a secondary heat treatment.
  • the mass ratio of aggregates to the second carbon source is (20-100): (10-80).
  • the present application provides a lithium-ion battery, which includes the negative electrode material described in the first aspect or the negative electrode material prepared according to the preparation method described in the second aspect.
  • the preparation method of the negative electrode material provided in this application uses anion-containing inorganic salt to do anion doping of the silicon source precursor. Since the anion-containing salt and the silicon source precursor are both water-soluble, the two elements are mixed during the hydrolysis process. It can achieve uniform mixing at the molecular level, and then dry it. Some anions will remain in the hydrolyzate. Finally, through the reduction method, an anode material containing anions is obtained.
  • the preparation method provided by this application can be suitable for expanded production, and the prepared negative electrode material can improve the first Coulombic efficiency of the silicon negative electrode material and reduce production costs.
  • Figure 3 is an XRD pattern of the negative electrode material prepared in Example 1 of the present application.
  • Figure 4 is the first charge and discharge curve of the negative electrode material prepared in Example 1 of the present application.
  • Figure 5 is the cycle performance curve of the negative electrode material prepared in Example 1 of the present application.
  • the negative electrode material includes aggregates, the aggregates include carbon materials and silicon materials, there are anions in the aggregates, and the mass content of the anions in the negative electrode material is 0.001wt% ⁇ 0.5wt%.
  • the mass content of the anion in the negative electrode material is 0.001wt% ⁇ 0.5wt%, specifically, it can be 0.001wt%, 0.005wt%, 0.008wt%, 0.009wt%, 0.01wt%, 0.02wt%, 0.03wt %, 0.05wt%, 0.08wt%, 0.1wt%, 0.2wt%, 0.3wt% or 0.5wt%, etc. Of course, it can also be other values within the above range, which are not limited here. If the anion content is too high, some anions will react with lithium ions and "bind" some Li + , thereby deteriorating the first Coulombic efficiency and cycle life characteristics of the material. If the anion content is too low, the diffusion efficiency of lithium ions and electrons will not be significantly improved, making it difficult to improve the electrochemical performance of the material.
  • the anion includes at least one of F ⁇ , Cl ⁇ , Br ⁇ , NO 3 ⁇ , SO 4 2- , NO 2- , and PO 4 3- . After extensive experiments, it was found that the anion is preferably Cl - or SO 4 2- .
  • the silicon material includes at least one of silicon element, silicon alloy and silicon oxide.
  • the silicon alloy includes at least one of a nickel-silicon alloy, an iron-silicon alloy, a magnesium-silicon alloy, a copper-silicon alloy, a silicon-manganese alloy, and an aluminum-silicon alloy.
  • the median particle diameter of the silicon material is 1 nm to 500 nm; specifically, it may be 1 nm, 5 nm, 10 nm, 15 nm, 20 nm, 30 nm, 40 nm, 50 nm, 100 nm, 200 nm, 300 nm, 400 nm or 500 nm, etc., of course It can also be other values within the above range, which is not limited here.
  • nanoscale silicon materials have high surface energy and are prone to agglomeration during the charge and discharge process. The particles have strong structure and can inhibit the volume expansion of silicon. However, because nanoscale silicon materials have large surface energy, they are prone to agglomeration during the charge and discharge process. The particle size of silicon material is too small, and the production process cost is high.
  • the median particle size of the silicon material is 1 nm to 200 nm, more preferably 1 nm to 100 nm.
  • the silicon material includes silicon element and a silicon oxide layer existing on the surface of the silicon element.
  • the presence of the silicon oxide layer is beneficial to protecting the contact between the silicon and the electrolyte. In addition, it can also buffer the silicon. Partially expanded to improve cycle stability.
  • the thickness of the silicon oxide layer is 1nm to 50nm; specifically, it can be 1nm, 5nm, 10nm, 15nm, 20nm, 25nm, 30nm, 38nm, 40nm, 48nm or 50nm, etc., and of course it can also be other values within the above range. , no limitation is made here.
  • the carbon material includes at least one of artificial graphite, natural graphite, soft carbon, hard carbon, amorphous carbon, activated carbon, mesocarbon microbeads, carbon nanotubes, carbon nanofibers, graphene, and porous carbon. kind.
  • the ionic radius of the anion is 118pm-940pm.
  • Anions with an ionic radius within this range can partially enter the lattice gap of the silicon material to form lattice defects. , these lattice defects can provide additional channels for lithium ion transmission, promote the diffusion of lithium ions in the material, improve the transmission efficiency of lithium ions in the material, and improve the first Coulombic efficiency of the anode material.
  • the ionic radius of the anion Specifically, it can be 118pm, 158pm, 220pm, 460pm, 570pm, 780pm or 940pm, etc., and is not limited here.
  • anions in the lattice gap of the silicon material there are anions in the lattice gap of the silicon material.
  • the anions include at least one of F-, Cl-, and Br-.
  • the ionic radius of these anions is between 118pm and 940pm, and some of them will enter the silicon material. in the lattice gap.
  • the mass proportion of the silicon material in the negative electrode material is 10% to 80%, specifically 10%, 20%, 29%, 45%, 57%, 62%, 70% , 80% and so on. Of course, it can also be other values within the above range, which is not limited here.
  • the carbon layer is distributed on the surface of the aggregate.
  • the carbon material of the carbon layer includes amorphous carbon.
  • the thickness of the carbon layer ranges from 1 nm to 3000 nm. It can be understood that the carbon layer covering the surface of the aggregate can reduce the contact between the active material and the electrolyte, reduce the formation of passivation film, increase the reversible capacity of the battery, and can also inhibit the volume expansion caused by the silicon material.
  • the thickness of the carbon layer can be 1nm, 50nm, 180nm, 200nm, 350nm, 400nm, 550nm, 850nm, 950nm, 1050nm, 1500nm, 2000nm, 2500nm or 3000nm, etc., and of course it can also be other values within the above range, No limitation is made here.
  • the carbon layer is too thick and the proportion of carbon is too high, which is not conducive to obtaining composite materials with high specific capacity; the carbon layer is too thin, which is not conducive to increasing the conductivity of the negative electrode material and has weak volume expansion inhibition performance of the material, resulting in long cycle performance price differences.
  • the thickness of the carbon layer is 50 nm to 800 nm; more preferably, the thickness of the carbon layer is 100 nm to 500 nm.
  • the mass proportion of the carbon material in the negative electrode material is 10% to 60%, specifically 10%, 20%, 25%, 29%, 34%, 45%, 57% , 60% and so on. Of course, it can also be other values within the above range, which is not limited here. It should be noted that the mass proportion of carbon materials here includes carbon materials in aggregates and carbon materials in carbon layers.
  • the negative electrode material has a median particle size of 0.5 ⁇ m to 30 ⁇ m. Specifically, it can be 0.5 ⁇ m, 1 ⁇ m, 5 ⁇ m, 8 ⁇ m, 10 ⁇ m, 13 ⁇ m, 15 ⁇ m, 18 ⁇ m, 20 ⁇ m, 25 ⁇ m or 30 ⁇ m, etc. Of course, it can also be other values within the above range, which is not limited here. It can be understood that controlling the median particle size of the negative electrode material within the above range is beneficial to improving the cycle performance of the negative electrode material.
  • the specific surface area of the negative electrode material is ⁇ 10 m 2 /g. Specifically, it can be 10m 2 /g, 8m 2 /g, 7m 2 /g, 5m 2 /g, 3m 2 /g, 2m 2 /g, 1m 2 /g or 0.5m 2 /g, etc., of course it can also be Other values within the above range are not limited here. It can be understood that controlling the specific surface area of the negative electrode material within the above range is beneficial to suppressing volume expansion and improving the cycle performance of the negative electrode material.
  • the negative electrode materials of the above embodiments can be combined arbitrarily as long as they are not inconsistent with each other.
  • the destruction strength and porosity of the negative electrode material particles can be combined to limit the combination.
  • Step S20 reduce the hydrolyzate to obtain silicon material
  • Step S30 prepare an aggregate including carbon material and the silicon material.
  • the preparation method of the negative electrode material provided by this application uses anion-containing inorganic salt to do anion doping of the silicon source precursor. Since the anion-containing salt and the silicon source precursor are both water-soluble, they can be After achieving uniform mixing at the molecular level and then drying, some anions will remain in the hydrolyzate. Finally, through the reduction method, an anode material containing anions is obtained.
  • Step S10 Hydrolyze a mixed solution containing a silicon source precursor and an anion-containing inorganic salt to obtain a hydrolyzate.
  • the general chemical formula of the inorganic salt is MR
  • the M metal can be selected from at least one of Zn, K, Na, Al, Mg, Ca, and Li
  • the anion R includes F - , Cl - , Br - , NO 3 - , SO 4 2- , NO 2- and PO 4 3- at least one.
  • the mass content of the anion R in the first premix is 5wt% to 55wt%, specifically 5wt%, 10wt%, 15wt%, 20wt%, 25wt%, 30wt%, 35wt%, 45wt % or 55wt%, etc., of course, it can also be other values within the above range, and is not limited here.
  • the mass content of the silicon source precursor in the second premix is 10-70wt%, specifically 10wt%, 15wt%, 20wt%, 25wt%, 30wt%, 35wt% , 45wt%, 55wt%, 60wt% or 70wt%, etc.
  • it can also be other values within the above range, which is not limited here.
  • the silicon source precursor includes ethyl orthosilicate, methyl orthosilicate, sodium silicate, polysiloxane, trimethylethoxysilane, methyltrimethoxysilane, At least one of methyltriethoxysilane and silsesquioxane.
  • the first solvent includes at least one of methanol, ethanol, ethylene glycol, propanol, isopropanol, glycerin, n-butanol, isobutanol, and pentanol.
  • the hydrolysis accelerator includes at least one of ammonia, urea, hydrochloric acid, sulfuric acid, sodium bicarbonate, sodium hydroxide, ammonium acetate, ammonium chloride, and the like.
  • the hydrolysis is performed under stirring, and the hydrolysis time is 3 h to 10 h.
  • the silicon source precursor By controlling the mass proportion of the above-mentioned raw materials and the time and temperature of hydrolysis, the silicon source precursor can be fully hydrolyzed to obtain anion-containing silicon oxide material.
  • the method further includes: removing the first solvent in the hydrolyzate.
  • the hydrolyzed hydrolyzate can be filtered and dried.
  • filtration can be vacuum filtration, filter paper filtration, etc.
  • the temperature of the drying process is 40°C to 600°C, specifically 40°C, 50°C, 80°C, 100°C, 120°C, 250°C, 380°C, 400°C, 500°C, 580°C or 600°C, etc.
  • the drying treatment time is 1h to 15h, specifically it can be 1h, 3h, 5h, 7h, 9h, 10h, 12h or 15h, etc.
  • the drying treatment method can be, for example, oven drying, freeze drying, stirring Evaporation to dryness, spray drying, etc., the drying process in this embodiment can remove the solvent in the hydrolyzate as much as possible.
  • Step S20 reduce the hydrolyzate to obtain silicon material.
  • the step of reducing the hydrolyzate includes thoroughly mixing the hydrolyzate and reducing metal and then sintering.
  • the mass ratio of the hydrolyzate to the reducing metal is 100: (13-130), specifically 100:13, 100:18, 100:28, 100:45, 100:68, 100:88, 100:94, 100:100 or 100:130, etc.
  • the hydrolyzate can also be reduced to silicon and silicon alloy; when the amount of reducing metal added is too small, the hydrolyzate can also be reduced to silicon and silicon oxide.
  • the reducing metal includes at least one of aluminum, zinc, magnesium, sodium, lithium, calcium, and potassium.
  • the temperature of the sintering treatment is 600°C to 1200°C.
  • the temperature of the sintering treatment may specifically be 600°C, 650°C, 700°C, 800°C, 820°C, 950°C, 980°C, 1000°C, 1100°C, 1150°C or 1200°C, etc.
  • the sintering treatment time is 1h to 10h, specifically it can be 1h, 3h, 5h, 6h, 7h, 8h, 9h or 10h, etc.
  • a protective gas is passed through the sintering process.
  • the protective gas includes at least one of nitrogen, helium, neon, argon, and krypton.
  • the method further includes pickling and drying the sintered product.
  • the acid solution used in the pickling includes at least one of hydrochloric acid, sulfuric acid, and nitric acid.
  • the acid solution used in the pickling includes at least one of hydrochloric acid, sulfuric acid, and nitric acid.
  • the temperature of the drying process is 40°C to 400°C, specifically 40°C, 50°C, 80°C, 100°C, 200°C, 300°C, 400°C, etc.
  • the time of the drying treatment is 1h to 15h, specifically, it can be 1h, 3h, 5h, 7h, 9h, 10h, 12h or 15h, etc.
  • the drying treatment method can be, for example, oven drying.
  • the dried first precursor can also be dispersed.
  • the dispersion can be grinding and dispersing.
  • the dispersion time can be 0.5h-9h, specifically it can be 0.5h, 1.5h, 2.5h, 3.5h, 4.5h, 5.5h, 7.5h or 9h and so on, the grinding and dispersion in this embodiment controls the particle size of the dispersed anion-containing nanosilica.
  • step S30 specifically includes: performing a heat treatment on the first precursor containing the first carbon source and the silicon material, so that the first carbon source is carbonized or the first carbon source is combined with the silicon material. Material gathering.
  • the mass ratio of the silicon material to the first carbon source is (5-50): (15-80); specifically, it can be 5:15, 15:15, 25:15, 30:15, 50:15, 25:40, 25:50, 30:65, 50:75 or 50:80, etc. Of course, it can also be other values within the above range, which is not limited here.
  • the first carbon source includes sucrose, glucose, polyethylene, polyvinyl alcohol, polyethylene glycol, polyaniline, epoxy resin, phenolic resin, furfural resin, acrylic resin, polyethylene oxide , at least one of polyvinylidene fluoride, polyacrylonitrile, polyvinyl chloride and asphalt.
  • the first solvent includes at least one of methanol, ethanol, ethylene glycol, propanol, isopropanol, glycerin, n-butanol, isobutanol, and pentanol.
  • the sufficient dispersion treatment method includes at least one of mechanical stirring, ultrasonic dispersion, and grinding dispersion.
  • the specific method of removing the second solvent includes: drying the second solution.
  • the temperature of the drying process is 40°C to 400°C, specifically 40°C, 50°C, 80°C, 100°C, 200°C, 300°C, 400°C, etc.
  • the time of the drying treatment is 1h to 15h, specifically, it can be 1h, 3h, 5h, 7h, 9h, 10h, 12h or 15h, etc.
  • the drying treatment method can be, for example, oven drying.
  • the first carbon source includes artificial graphite, natural graphite, soft carbon, hard carbon, amorphous carbon, activated carbon, mesocarbon microbeads, carbon nanotubes, carbon nanofibers, graphene, and porous carbon
  • the temperature of the primary heat treatment is 400°C-1000°C, specifically it can be 400°C, 450°C, 510°C, 620°C, 730°C, 840°C, 850°C, 870°C, 890°C, 900°C °C, 950 °C, 1000 °C, etc., of course, it can also be other values within the above range, and is not limited here.
  • the time of a heat treatment is 1h to 5h, specifically it can be 1h, 1.5h, 2h, 2.5h, 3h, 3.5h, 4h or 5h, etc.
  • the first carbon source includes sucrose, glucose, polyethylene, polyvinyl alcohol, polyethylene glycol, polyaniline, epoxy resin, phenolic resin, furfural resin, acrylic resin, polyethylene oxide, At least one of polyvinylidene fluoride, polyacrylonitrile, polyvinyl chloride and asphalt, the temperature of the primary heat treatment is 500°C-1000°C, specifically it can be 500°C, 510°C, 620°C, 730°C, 840°C , 850°C, 870°C, 890°C, 900°C, 950°C, 1000°C, etc. Of course, it can also be other values within the above range, which are not limited here.
  • the time of a heat treatment is 1h to 5h, specifically it can be 1h, 1.5h, 2h, 2.5h, 3h, 3.5h, 4h or 5h, etc.
  • the primary heat treatment is performed in a protective atmosphere.
  • the primary heat treatment is performed in a protective atmosphere
  • the gas in the protective atmosphere includes at least one of nitrogen, helium, neon, argon, and krypton.
  • step S40 the aggregate is carbon-coated to obtain a negative electrode material.
  • step S50 can be omitted.
  • the specific steps of the carbon coating treatment may be: mixing the aggregates with the second carbon source and performing a secondary heat treatment.
  • the second carbon source includes sucrose, glucose, polyethylene, polyvinyl alcohol, polyethylene glycol, polyaniline, epoxy resin, phenolic resin, furfural resin, acrylic resin, polyethylene oxide, poly At least one of vinylidene fluoride, polyacrylonitrile, polyvinyl chloride and asphalt.
  • the mass ratio of aggregates to the second carbon source is (20-100): (10-80).
  • the mass ratio of aggregates to the second carbon source can be 20:10, 30:15, 50:60, 80:30, 90:20, 100:10, etc., and of course it can also be other values within the above range. This is not limited.
  • the secondary heat treatment may be, for example, vacuum sintering, hot press sintering or normal pressure sintering.
  • the temperature of the secondary heat treatment is 800°C ⁇ 900°C. Specifically, it can be 800°C, 810°C, 820°C, 830°C, 840°C, 850°C, 860°C, 870°C, 880°C, 890°C, 900°C, etc. Of course, it can also be other values within the above range. This is not limited.
  • the time of the secondary heat treatment is 1h to 5h; specifically, it can be 1h, 2h, 3h, 4h, 5h, etc., and of course it can also be other values within the above range, which is not limited here.
  • the secondary heat treatment is performed in a protective atmosphere;
  • the gas of the protective atmosphere includes at least one of nitrogen, helium, neon, argon and krypton.
  • At least one of crushing, screening, and demagnetization is also performed; preferably, after the secondary heat treatment, crushing, screening, and demagnetization are also performed in sequence.
  • the crushing method is any one of a mechanical pulverizer, a jet pulverizer, and a low-temperature pulverizer.
  • the screening method is any one of a fixed screen, a drum screen, a resonance screen, a roller screen, a vibrating screen, and a chain screen, and the mesh size of the screening is ⁇ 500 mesh.
  • the mesh size of the screening is ⁇ 500 mesh.
  • the mesh number can be 500 mesh, 600 mesh, 700 mesh, 800 mesh, etc.
  • the particle size of the negative electrode material is controlled within the above range, which is beneficial to improving the cycle performance of the negative electrode material.
  • the demagnetization equipment is any one of a permanent magnet drum magnetic separator, an electromagnetic iron remover, and a pulsating high gradient magnetic separator.
  • the purpose of demagnetization is to ultimately control the magnetic substance content of the negative pole material and avoid magnetism. The discharge effect of substances on lithium-ion batteries and the safety of batteries during use.
  • the overall negative electrode material maintains a charge balance.
  • the types of cations in the inorganic salt raw materials used in the preparation process are different, and the radii are also different.
  • the cations with a radius smaller than the lattice gap of the silicon material partially occupy the positions of silicon atoms in the silicon material, and the cations with a radius larger than the lattice gap of the silicon material partially enter the lattice gap of the silicon material, and some also enter the carbon material.
  • the present application provides a lithium-ion battery, which includes the negative electrode material described in the first aspect or the negative electrode material prepared by the preparation method described in the second aspect.
  • the median particle size mentioned in this application refers to the average particle size, and its physical meaning is the particle size corresponding to when the cumulative particle size distribution percentage of the particles reaches 50%, as measured by a Malvern particle size analyzer.
  • the Malvern particle size analyzer uses the phenomenon of light scattering by particles and comprehensively calculates the particle size distribution of the measured particles based on the distribution of scattered light energy.
  • the negative electrode material prepared in this embodiment includes aggregates and a carbon layer covering the surface of the aggregates.
  • the aggregates include carbon materials and silicon materials.
  • the silicon materials are nano-silicon elemental substances and nano-silicon elements existing on the surface of the silicon elemental substances.
  • Silicon oxide layer the thickness of the silicon oxide layer is 10nm; the median particle size of the negative electrode material is 14um, the specific surface area is 2.2m 2 /g, the average thickness of the carbon layer is 460nm; the crystal structure of the aggregate and silicon material
  • Figure 2 is a scanning electron microscope (SEM) picture of the negative electrode material prepared in this embodiment.
  • Figure 3 is an XRD pattern of the negative electrode material prepared in this embodiment. It can be seen from Figure 3 that the negative electrode material has obvious silicon characteristic peaks.
  • the negative electrode material prepared in this embodiment includes aggregates and a carbon layer coating the surface of the aggregates.
  • the aggregates include carbon materials and silicon materials.
  • the silicon materials include silicon elements and silicon existing on the surface of the silicon elements. Oxide layer, the thickness of the silicon oxide layer is 20nm; the median particle size of the negative electrode material is 12um, the specific surface area is 3.2m 2 /g, and the average thickness of the carbon layer is 560nm; SO 4 2- exists in the aggregate Ions, the mass content of SO 4 2- ions in the negative electrode material is 980ppm.
  • the negative electrode material prepared in this embodiment includes aggregates and a carbon layer coating the surface of the aggregates.
  • the aggregates include carbon materials and silicon materials.
  • the silicon materials include silicon elements and silicon existing on the surface of the silicon elements. Oxide layer, the thickness of the silicon oxide layer is 10nm; the median particle size of the negative electrode material is 11um, the specific surface area is 1.2m 2 /g, the average thickness of the carbon layer is 760nm; the crystal lattice of the aggregate and silicon material There are F - ions in the gap, and the mass content of F - ions in the negative electrode material is 280ppm.
  • the negative electrode material prepared in this embodiment includes aggregates and a carbon layer coating the surface of the aggregates.
  • the aggregates include carbon materials and silicon materials.
  • the silicon materials include silicon elements and silicon existing on the surface of the silicon elements. Oxide layer, the thickness of the silicon oxide layer is 15nm; the median particle size of the negative electrode material is 12.7um, the specific surface area is 1.9m2 /g, the average thickness of the carbon layer is 460nm; Cl - ions are present in the aggregate With NO 3 2- ions, Cl - exists in the lattice gap of the silicon material. The total mass content of Cl - ions and NO 3 2- ions in the negative electrode material is 2180 ppm.
  • the negative electrode material prepared in this embodiment includes aggregates and a carbon layer coating the surface of the aggregates.
  • the aggregates include carbon materials and silicon materials.
  • the silicon materials include silicon elements and silicon existing on the surface of the silicon elements. Oxide layer, the thickness of the silicon oxide layer is 20nm; the median particle size of the negative electrode material is 9.5um, the specific surface area is 2.9m2 /g, the average thickness of the carbon layer is 960nm; Br- ions exist in the aggregate Along with SO 4 2- ions, Br - ions exist in the lattice gap of the silicon material. The total mass content of Br - ions and SO 4 2- ions in the negative electrode material is 1080 ppm.
  • the negative electrode material prepared in this embodiment includes aggregates and a carbon layer coating the surface of the aggregates.
  • the aggregates include carbon materials and silicon materials.
  • the silicon materials include silicon elements and magnesium-silicon alloys; the median value of the negative electrode material The particle size is 12um, the specific surface area is 2.3m 2 /g, and the average thickness of the carbon layer is 500nm; Cl - ions exist in the lattice gap between the aggregate and the silicon material, and the mass content of Cl - ions in the negative electrode material is 550 ppm.
  • the negative electrode material prepared in this embodiment includes aggregates, the aggregates include carbon materials and silicon materials, and the silicon materials include silicon elements and aluminum-silicon alloys; the median particle size of the negative electrode material is 12um, and the specific surface area is 3.0m 2 /g, the average thickness of the carbon layer is 559nm; Cl - ions exist in the lattice gap between the aggregate and the silicon material, and the mass content of Cl - ions in the negative electrode material is 2500 ppm.
  • Example 8 is substantially the same as Example 1, except that the sintering temperature in step (2) is 500°C.
  • the negative electrode material prepared in this embodiment includes aggregates.
  • the aggregates include carbon materials and silicon materials.
  • the silicon material is silicon elemental substance and a silicon oxide layer existing on the surface of the silicon elemental substance.
  • the thickness of the silicon oxide layer is 10nm
  • the median particle size of the anode material is 13um
  • the specific surface area is 2.1m 2 /g
  • the average thickness of the carbon layer is 490nm
  • Cl - ions exist in the lattice gap between the aggregate and the silicon material, and Cl - ions are present in the anode
  • the mass content in the material is 620ppm.
  • Embodiment 9 is substantially the same as Embodiment 1, except that step (2) does not carry out pickling treatment.
  • the negative electrode material prepared in this embodiment includes aggregates.
  • the aggregates include carbon materials and silicon materials.
  • the silicon material is silicon element.
  • the median particle size of the negative electrode material is 17um, the specific surface area is 3.2m 2 /g, and the carbon layer
  • the average thickness is 560nm; Cl - ions exist in the lattice gap of the aggregate and silicon material, and the mass content of Cl - ions in the negative electrode material is 290 ppm.
  • the negative electrode material prepared in this embodiment includes aggregates.
  • the aggregates include carbon materials and silicon materials.
  • the silicon materials are silicon elements and a silicon oxide layer existing on the surface of the silicon elements.
  • the silicon oxide layer The thickness of the anode material is 10nm; the median particle size of the anode material is 19um, the specific surface area is 3.0m 2 /g, and the average thickness of the carbon layer is 620nm; Cl - ions, Cl - ions exist in the lattice gap of the aggregate and silicon material
  • the mass content in the negative electrode material is 5970ppm.
  • the negative electrode material was prepared according to basically the same method as in Example 1, except that ZnCl 2 : ethanol: water: ammonia water was configured according to a mass ratio of 0.5:48:17:4 to obtain the first solution.
  • the negative electrode material prepared in this embodiment includes aggregates.
  • the aggregates include carbon materials and silicon materials.
  • the silicon materials are silicon elements and a silicon oxide layer existing on the surface of the silicon elements.
  • the silicon oxide layer The thickness of the anode material is 10nm; the median particle size of the anode material is 20um, the specific surface area is 3.8m 2 /g, and the average thickness of the carbon layer is 580nm; Cl - ions, Cl - ions exist in the lattice gap between the aggregate and the silicon material
  • the mass content in the negative electrode material is 9ppm.
  • the negative electrode material prepared in this embodiment includes aggregates and a carbon layer coating the surface of the aggregates.
  • the aggregates include silicon material and carbon material.
  • the silicon material is silicon elemental substance and silicon oxide existing on the surface of the silicon elemental substance. layer, the thickness of the silicon oxide layer is 14 nm; the median particle size of the negative electrode material is 10 ⁇ m, the specific surface area is 2.9 m 2 /g, and the average thickness of the carbon layer is 440 nm. Cl - ions are not present in the aggregates.
  • the median particle size that is, the average particle size of the negative electrode material was tested by a Malvern laser particle size analyzer.
  • the specific surface area of the negative electrode material was tested using the Mike Tristar3020 specific surface area and pore size analyzer. A certain mass of powder was weighed and completely degassed under vacuum heating. After removing the surface adsorbed matter, the nitrogen adsorption method was used to determine the amount of nitrogen adsorbed. Calculate the specific surface area of the particles.
  • the material was sectioned using focused ion beam microscopy (FIB-SEM) equipment, and the average thickness of the carbon layer was measured in the scanning electron microscope image.
  • FIB-SEM focused ion beam microscopy
  • Ion chromatography is used to test the type and content of anions present in the negative electrode material.
  • Nano-SIMS Nano-SIMS
  • capacity retention rate remaining capacity/initial capacity*100%.
  • Figure 5 is a cycle performance curve of the anode material prepared in Example 1 of the present application. As shown in Figure 5, the anode material has excellent cycle performance, with a capacity retention rate of 93.7% after 100 cycles.
  • the negative electrode materials prepared in Examples 1 to 7 include aggregates, where the aggregates include active materials and carbon materials.
  • the anions in the aggregate are beneficial to the further transmission of carriers, can promote the diffusion of lithium ions and electrons in the material, and improve the transmission efficiency of carriers in the material, thus improving the cycle performance and first Coulomb efficiency of the anode material.
  • the negative electrode material of Example 7 was not carbon coated during the preparation process, which would cause the active material material to be in direct contact with the electrolyte, causing the SEI film formed to be unstable and the cycle performance to be deteriorated.
  • the sintering temperature was 500°C. If the temperature is too low, it will lead to incomplete carbonization, poor coating effect, and reduced first-time efficiency.
  • step (2) During the preparation process of the negative electrode material of Example 9, if pickling is not performed in step (2), metal oxide impurities will be present, the capacity of the material will be reduced, and the initial efficiency will also be reduced.

Abstract

本申请涉及负极材料领域,提供负极材料及其制备方法、锂离子电池,其中,所述负极材料包括聚集体,所述聚集体包括碳材料和硅材料,所述聚集体中存在阴离子,所述阴离子在所述负极材料中的质量含量为0.001wt%~0.5wt%。本申请提供负极材料及其制备方法、锂离子电池,能够提高硅负极材料的首次库伦效率,降低生产成本。

Description

负极材料及其制备方法、锂离子电池
本申请要求于2022年4月22日提交中国专利局,申请号为202210431171.4、发明名称为“负极材料及其制备方法、锂离子电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及负极材料技术领域,具体地讲,涉及负极材料及其制备方法、锂离子电池。
背景技术
现有的锂离子电池由于具备能量密度大、输出功率高、循环寿命长和环境污染小等优点而被广泛应用于电动汽车以及消费类电子产品中。硅负极理论比容量高达4200mAh/g,是石墨材料得10倍,具备高容量、来源丰富、相对安全等优势,被普遍认为是下一代的电池负极材料。但是硅负极材料的首次库伦效率仍不够高,目前一般在80%-85%,不利于硅负极材料与具有高首次库伦效率的钴酸锂正极材料匹配使用,因此硅负极材料的首次库伦效率较低限制了硅负极的进一步应用。
因此,如何提高硅负极材料的首次库伦效率是目前急需解决的问题。
申请内容
鉴于此,本申请提供负极材料及其制备方法、锂离子电池,能够提高硅负极材料的首次库伦效率,降低生产成本。
第一方面,一种负极材料,所述负极材料包括聚集体,所述聚集体包括碳材料和硅材料,所述聚集体中存在阴离子,所述阴离子在所述负极材料中的质量含量为0.001wt%~0.5wt%。
在上述方案中,负极材料包括聚集体,聚集体包括硅材料和碳材料,所述聚集体中存在阴离子,所述阴离子在所述负极材料中的质量含量为0.001wt%~0.5wt%,阴离子通常存在于晶格、线面体等缺陷以及表面等位置,在一定范围内,阴离子的存在提高了这些位置的反应活性,有利于载流子的进一步传输,能够促进锂离子和电子在材料中的扩散,提高载流子在材料中的传输效率,从而提升负极材料的倍率性能、循环性能以及首次库伦效率。
在一实施方式中,所述阴离子包括F -、Cl -、Br -、NO 3 -、SO 4 2-、NO 2-和PO 4 3-中的至少一种。
在一实施方式中,所述硅材料包括硅单质、硅合金和硅氧化物中的至少一种。在一实施方式中,所述硅材料包括硅单质及存在于所述硅单质表面的硅氧化物层。
在一实施方式中,所述硅材料包括硅单质及存在于所述硅单质表面的硅氧化物层,所述硅氧化物层的厚度为1nm至50nm。
在一实施方式中,所述硅材料的中值粒径为1nm至500nm。
在一实施方式中,所述硅材料在所述负极材料中的质量占比为10%~80%。
在一实施方式中,所述碳材料包括人造石墨、天然石墨、软碳、硬碳、无定形碳、活性炭、中间相碳微珠、碳纳米管、碳纳米纤维、石墨烯和多孔碳中的至少一种。
在一实施方式中,所述硅材料的晶格间隙中存在所述阴离子,所述阴离子的离子半径为118pm-940pm。
在一实施方式中,所述硅材料的晶格间隙中存在所述阴离子,所述阴离子包括F -、Cl -和Br -中的至少一种。
在一实施方式中,所述负极材料还包括存在于所述聚集体的至少部分表面的碳层。
在一实施方式中,所述负极材料还包括存在于所述聚集体的至少部分表面的碳层,所述碳层包括无定形碳。
在一实施方式中,所述负极材料还包括包覆于所述聚集体的至少部分表面的碳层,所述碳层的厚度为1nm至3000nm。
在一实施方式中,所述碳材料在所述负极材料中的质量占比为10%~60%。
在一实施方式中,所述负极材料的中值粒径为0.5μm~30μm。
在一实施方式中,所述负极材料的比表面积≤10m 2/g。
第二方向,本申请提供一种负极材料的制备方法,包括以下步骤:
将包含硅源前驱体、含阴离子的无机盐的混合液进行水解,得到水解产物;
将所述水解产物进行还原,得到硅材料;
制备包含碳材料和所述硅材料的聚集体。
该实施方式的制备方法,使用含阴离子的无机盐中对硅源前驱体进行阴离子掺杂,由于含阴离子的盐和硅源前驱体都是水溶性的,在水解过程中二者可以实现分子层面的均匀混合,然后干燥,会有部分阴离子残留在水解产物中,最后通过还原法,获得含有阴离子的负极材料。
在一实施方式中,所述硅源前驱体包括正硅酸乙酯、正硅酸甲酯、硅酸钠、多聚硅氧烷、三甲基乙氧基硅烷、甲基三甲氧基硅烷、甲基三乙氧基硅烷和倍半硅氧烷中的至少一种。
在一实施方式中,所述阴离子包括F -、Cl -、Br -、NO 3 -、SO 4 2-、NO 2-和PO 4 3-中的至少一种。
在一实施方式中,所述混合液还包括第一溶剂,所述第一溶剂包括甲醇、乙醇、乙二醇、丙醇、异丙醇、丙三醇、正丁醇、异丁醇及戊醇中的至少一种。
在一实施方式中,所述混合液还包括水解促进剂。
在一实施方式中,所述混合液还包括水解促进剂,所述水解促进剂包括氨水、尿素、盐酸、硫酸、碳酸氢钠、氢氧化钠、醋酸铵、氯化铵中的至少一种。
在一实施方式中,所述水解在搅拌下进行,所述水解的时间为3h~10h。
在一实施方式中,在将包含硅源前驱体及含阴离子的无机盐的混合液进行水解之前,所述方法还包括:将含阴离子的无机盐、第一溶剂与水解促进剂混合形成第一预混物,将硅源前驱体与第一溶剂混合形成第二预混物,再将所述第一预混物与所述第二预混物混合得到混合液。
在一实施方式中,所述阴离子在所述第一预混物中的质量含量为5wt%~55wt%。
在一实施方式中,所述硅源前驱体在所述第二预混物中的质量含量为10wt%~70wt%。
在一实施方式中,在将包含硅源前驱体及含阴离子的无机盐的混合液进行水解之后,所述方法还包括:去除所述水解产物中的第一溶剂。
在一实施方式中,所述将所述水解产物进行还原的步骤,包括:将所述水解产物与还原金属充分混合后进行烧结处理。
在一实施方式中,所述水解产物与所述还原金属的质量比为100:(13~130)。
在一实施方式中,所述还原金属包括铝、锌、镁、钠、锂、钙和钾中的至少一种。
在一实施方式中,所述烧结处理的温度为600℃~1200℃,所述烧结处理的时间为1h~10h。
在一实施方式中,所述烧结处理过程通有保护性气体。
在一实施方式中,所述保护性气体包括氮气、氦气、氖气、氩气及氪气中的至少一种。
在一实施方式中,在将所述水解产物与还原金属混合后进行烧结处理之后,所述方法还包括对烧结产物进行酸洗、干燥处理,所述酸洗采用的酸溶液包括盐酸、硫酸、硝酸中的至少一种;
在一实施方式中,所述充分混合的处理方式包括机械搅拌、超声分散、研磨分散中的至少一种。
在一实施方式中,所述硅材料的中值粒径为1nm至500nm。
在一实施方式中,所述制备包含碳材料和所述硅材料的聚集体的步骤,包括:将包含第一碳源和所述硅材料的第一前驱体进行一次热处理,使得所述第一碳源碳化或所述第一碳源与所述硅材料聚集。
在一实施方式中,所述硅材料与第一碳源的质量比为(5~50):(15~80)。
在一实施方式中,所述硅材料包括硅单质、硅合金和硅氧化物中的至少一种。
在一实施方式中,所述硅材料包括硅单质及存在于所述硅单质表面的硅氧化物层,所述硅氧化物层的厚度为1nm至50nm。
在一实施方式中,所述第一碳源包括蔗糖、葡萄糖、聚乙烯、聚乙烯醇、聚乙二醇、聚苯胺、环氧树脂、酚醛树脂、糠醛树脂、丙烯酸树脂、聚环氧乙烷、聚偏氟乙烯、聚丙烯腈、聚氯乙烯及沥青中的至少一种。
在一实施方式中,所述第一碳源包括人造石墨、天然石墨、软碳、硬碳、无定形碳、活性炭、中间相碳微珠、碳纳米管、碳纳米纤维、石墨烯和多孔碳中的至少一种。
在一实施方式中,在将包含第一碳源和所述硅材料的第一前驱体进行一次热处理之前,所述方法还包括:将第一碳源、第一溶剂与所述硅材料充分分散形成第二溶液。
在一实施方式中,所述第一溶剂包括甲醇、乙醇、乙二醇、丙醇、异丙醇、丙三醇、正丁醇、异丁醇及戊醇中的至少一种。
在一实施方式中,所述充分分散的处理方式包括机械搅拌、超声分散、研磨分散中的至少一种。
在一实施方式中,所述除去所述第二溶剂的具体方式包括:将第二溶液进行干燥处理。
在一实施方式中,所述干燥处理的温度为40℃~400℃,时间为1h~15h。
在一实施方式中,所述第一碳源包括人造石墨、天然石墨、软碳、硬碳、无定形碳、活性炭、中间相碳微珠、碳纳米管、碳纳米纤维、石墨烯和多孔碳中的至少一种,所述一次热处理的温度为400℃-1000℃,时间为1h~5h。
在一实施方式中,所述第一碳源包括蔗糖、葡萄糖、聚乙烯、聚乙烯醇、聚乙二醇、聚苯胺、环氧树脂、酚醛树脂、糠醛树脂、丙烯酸树脂、聚环氧乙烷、聚偏氟乙烯、聚丙烯腈、聚氯乙烯及沥青中的至少一种,所述一次热处理的温度为500℃~1000℃,时间为1h~5h。
在一实施方式中,所述一次热处理在保护性气氛中进行,所述保护性气氛的气体包括氮气、氦气、氖气、氩气及氪气中的至少一种。
在一实施方式中,所述方法还包括对所述聚集体进行碳包覆处理。
在一实施方式中,所述方法还包括对所述聚集体进行碳包覆处理,所述碳包覆处理的步骤包括:将所述聚集体与第二碳源混合、二次热处理。
在一实施方式中,所述方法还包括对所述聚集体进行碳包覆处理,所述碳包覆处理的步骤包括:将所述聚集体与第二碳源混合、二次热处理,所述第二碳源包括蔗糖、葡萄糖、聚乙烯、聚乙烯醇、聚乙二醇、聚苯胺、环氧树脂、酚醛树脂、糠醛树脂、丙烯酸树脂、聚环氧乙烷、聚偏氟乙烯、聚丙烯腈、聚氯乙烯及沥青中的至少一种。
在一实施方式中,所述方法还包括对所述聚集体进行碳包覆处理,所述碳包覆处理的步骤包括:将所述聚集体与第二碳源混合、二次热处理,所述聚集体与所述第二碳源的质量比为(20-100):(10-80)。
在一实施方式中,所述二次热处理的温度为800℃~900℃,所述二次热处理的时间为1h~5h。
第三方面,本申请提供一种锂离子电池,所述锂离子电池包括第一方面所述的负极材料或根据第二方面所述的制备方法制得的负极材料。
本申请的技术方案至少具有以下有益的效果:
本申请提供的负极材料包括聚集体,聚集体包括硅材料和碳材料,聚集体中存在阴离子,所述阴离子在所述负极材料中的质量含量为0.001wt%~0.5wt%,阴离子通常存在于晶格、线面体等缺陷以及表面等位置,在一定范围内,阴离子的存在提高了这些位置的反应活性,有利于载流子的进一步传输,能够促进锂离子和电子在材料中的扩散,提高载流子在材料中的传输效率,从而提升负极材料的倍率性能、循环性能以及首次库伦效率。
其次,本申请提供的负极材料的制备方法,使用含阴离子的无机盐中对硅源前驱体进行阴离子掺杂,由于含阴离子的盐和硅源前驱体都是水溶性的,在水解过程中二者可以实现分子层面的均匀混合,然后干燥,会有部分阴离子残留在水解产物中,最后通过还原法,获得含有阴离子的负极材料。
本申请提供的制备方法,能够适用于扩大化生产,制备得到负极材料能够提高硅 负极材料的首次库伦效率,降低生产成本。
附图说明
图1为本申请实施例提供的负极材料的制备方法的流程示意图;
图2为本申请实施例1制备的负极材料的扫描电子显微镜(SEM)图片;
图3为本申请实施例1制备的负极材料的XRD图;
图4为本申请实施例1制备的负极材料的首次充放电曲线;
图5为本申请实施例1制备的负极材料的循环性能曲线。
具体实施方式
以下所述是本申请实施例的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请实施例的保护范围。
一实施方式的负极材料,所述负极材料包括聚集体,所述聚集体包括碳材料和硅材料,所述聚集体中存在阴离子,所述阴离子在所述负极材料中的质量含量为0.001wt%~0.5wt%。
本实施方式的负极材料包括聚集体,聚集体包括硅材料和碳材料,聚集体含有阴离子,阴离子在负极材料中的质量含量为0.001wt%~0.5wt%,阴离子通常存在于晶格、线面体等缺陷以及表面等位置,在一定范围内,阴离子的存在提高了这些位置的反应活性,有利于载流子的进一步传输,能够促进锂离子和电子在材料中的扩散,提高载流子在材料中的传输效率,从而提升负极材料的倍率性能、循环性能以及首次库伦效率。
所述阴离子在所述负极材料中的质量含量为0.001wt%~0.5wt%,具体可以是0.001wt%、0.005wt%、0.008wt%、0.009wt%、0.01wt%、0.02wt%、0.03wt%、0.05wt%、0.08wt%、0.1wt%、0.2wt%、0.3wt%或0.5wt%等等,当然也可以是上述范围内的其它值,在此不做限定。阴离子含量过高,部分阴离子会与锂离子发生结合反应,会“束缚”住部分Li +,从而使材料的首次库伦效率、循环寿命特性劣化。阴离子含量过低,对锂离子和电子的扩散效率改善不明显,难以提升材料的电化学性能。
在一些实施方式中,阴离子包括F -、Cl -、Br -、NO 3 -、SO 4 2-、NO 2-和PO 4 3-中的至少一种。经过大量试验发现,阴离子优选为Cl -或SO 4 2-
在一些实施方式中,所述硅材料包括硅单质、硅合金和硅氧化物中的至少一种。
在一些实施方式中,硅合金包括镍硅合金、铁硅合金、镁硅合金、铜硅合金、硅锰合金及铝硅合金中的至少一种。
在一些实施方式中,硅材料的中值粒径为1nm至500nm;具体可以是1nm、5nm、10nm、15nm、20nm、30nm、40nm、50nm、100nm、200nm、300nm、400nm或500nm等等,当然也可以是上述范围内的其他值,在此不做限定。通过多次试验发现,纳米级的硅材料,其表面能高,在充放电过程中容易发生团聚,颗粒的结构性强,可以抑制硅体积膨胀。但由于纳米级硅材料有较大的表面能,在充放电过程中容易发生团聚。硅材料的粒径过小,生产工艺成本高。优选地,硅材料的中值粒径为1nm~200nm, 更优选为1nm-100nm。
在一些实施方式中,所述硅材料包括硅单质及存在于所述硅单质表面的硅氧化物层,硅氧化物层的存在有利于保护硅之间与电解液接触,此外还可以缓冲硅的部分膨胀,提升循环稳定性。
其中,硅氧化物层的厚度为1nm至50nm;具体可以是1nm、5nm、10nm、15nm、20nm、25nm、30nm、38nm、40nm、48nm或50nm等等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,碳材料包括人造石墨、天然石墨、软碳、硬碳、无定形碳、活性炭、中间相碳微珠、碳纳米管、碳纳米纤维、石墨烯和多孔碳中的至少一种。
在一些实施方式中,硅材料的晶格间隙中存在阴离子,阴离子的离子半径为118pm-940pm,离子半径在这个范围内的阴离子,可以部分进入到硅材料的晶格间隙中,形成晶格缺陷,这些晶格缺陷能够给给锂离子传输提供额外的通道,能够促进锂离子在材料中的扩散,提高锂离子在材料中的传输效率,提升负极材料的首次库伦效率,所述阴离子的离子半径具体可以是118pm、158pm、220pm、460pm、570pm、780pm或940pm等,在此不做限定。
在一些实施方式中,硅材料的晶格间隙中存在阴离子,阴离子包括F-、Cl-和Br-中的至少一种,这些阴离子的离子半径在118pm-940pm之间,部分会进入到硅材料的晶格间隙中。
在一些实施方式中,所述硅材料在所述负极材料中的质量占比为10%~80%,具体可以为10%、20%、29%、45%、57%、62%、70%、80%等等。当然也可以是上述范围内的其他值,在此不做限定。
进一步地,负极材料还包括包覆于聚集体的至少部分表面的碳层。
在一些实施方式中,碳层分布于聚集体的表面。
在一些实施方式中,碳层的碳材料包括无定形碳。
在一些实施方式中,碳层的厚度为1nm至3000nm。可以理解地,包覆所述聚集体表面的碳层能够减少活性物质与电解液接触,减少钝化膜生成,提升电池可逆电容量,也可以抑制硅材料带来的体积膨胀。
具体地,碳层的厚度可以是1nm、50nm、180nm、200nm、350nm、400nm、550nm、850nm、950nm、1050nm、1500nm、2000nm、2500nm或3000nm等等,当然也可以是上述范围内的其他值,在此不做限定。碳层过厚,碳占比过高,不利于获得高比容量的复合材料;碳层过薄,不利于增加负极材料的导电性且对材料的体积膨胀抑制性能较弱,导致长循环性能价差。优选地,碳层的厚度为50nm~800nm;更优选地,碳层的厚度为100nm~500nm。
在一些实施方式中,所述碳材料在所述负极材料中的质量占比为10%~60%,具体可以为10%、20%、25%、29%、34%、45%、57%、60%等等。当然也可以是上述范围内的其他值,在此不做限定。需要说明的是,这里的碳材料质量占比包括聚集体中的碳材料及碳层中的碳材料。
在一些实施方式中,负极材料的中值粒径为0.5μm~30μm。具体可以是0.5μm、1μm、5μm、8μm、10μm、13μm、15μm、18μm、20μm、25μm或30μm等等,当然 也可以是上述范围内的其他值,在此不做限定。可以理解地,负极材料的中值粒径控制在上述范围内,有利于负极材料循环性能的提升。
在一些实施方式中,负极材料的比表面积为≤10m 2/g。具体可以是10m 2/g、8m 2/g、7m 2/g、5m 2/g、3m 2/g、2m 2/g、1m 2/g或0.5m 2/g等等,当然也可以是上述范围内的其他值,在此不做限定。可以理解地,负极材料的比表面积控制在上述范围内,有利于抑制体积膨胀,有利于负极材料循环性能的提升。
需要说明的是,上述各个实施方式的负极材料在不相互矛盾的情况下,可以任意进行组合,比如负极材料颗粒的破坏强度、孔隙率进行组合限定等。
另一方面,本申请提供一种负极材料的制备方法,如图1所示,方法包括以下步骤:
步骤S10,将包含硅源前驱体、含阴离子的无机盐的混合液进行水解,得到水解产物;
步骤S20,将所述水解产物进行还原,得到硅材料;
步骤S30,制备包含碳材料和所述硅材料的聚集体。
本申请提供的负极材料的制备方法,使用含阴离子的无机盐中对硅源前驱体进行阴离子掺杂,由于含阴离子的盐和硅源前驱体都是水溶性的,在水解过程中二者可以实现分子层面的均匀混合,然后干燥,会有部分阴离子残留在水解产物中,最后通过还原法,获得含有阴离子的负极材料。
以下结合实施例具体介绍本申请的制备方法:
步骤S10,将包含硅源前驱体、含阴离子的无机盐的混合液进行水解,得到水解产物。
在一些实施方式中,混合液还包括第一溶剂及水解促进剂。具体地,将硅源前驱体、含阴离子的无机盐、水解促进剂和第一溶剂混合可以采用分级混合的方式。具体的,将含阴离子的无机盐、第一溶剂与水解促进剂混合形成第一预混物,将硅源前驱体与第一溶剂混合形成第二预混物,再将第一预混物与第二预混物混合,以实现分级混合。可以理解,本领域技术人员可以根据活性物质、第一碳源和溶剂的具体成分按照分级混合原则选取合适的分级混合操作使得硅源前驱体充分混合。
在一些实施方式中,无机盐的化学通式为MR,M金属可以选自Zn、K、Na、Al、Mg、Ca、Li中的至少一种,阴离子R包括F -、Cl -、Br -、NO 3 -、SO 4 2-、NO 2-和PO 4 3-中的至少一种。
在一些实施方式中,阴离子R在第一预混物中的质量含量为5wt%~55wt%,具体可以是5wt%、10wt%、15wt%、20wt%、25wt%、30wt%、35wt%、45wt%或55wt%等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,所述硅源前驱体在所述第二预混物中的质量含量为10~70wt%,具体可以是10wt%、15wt%、20wt%、25wt%、30wt%、35wt%、45wt%、55wt%、60wt%或70wt%等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,所述硅源前驱体包括正硅酸乙酯、正硅酸甲酯、硅酸钠、多 聚硅氧烷、三甲基乙氧基硅烷、甲基三甲氧基硅烷、甲基三乙氧基硅烷和倍半硅氧烷中的至少一种。
在一些实施方式中,所述第一溶剂包括甲醇、乙醇、乙二醇、丙醇、异丙醇、丙三醇、正丁醇、异丁醇及戊醇中的至少一种。
在一些实施方式中,所述水解促进剂包括氨水、尿素、盐酸、硫酸、碳酸氢钠、氢氧化钠、醋酸铵、氯化铵等中的至少一种。
在一些实施方式中,所述水解在搅拌下进行,所述水解的时间为3h~10h。
通过控制上述原材料的质量占比以及水解的时间及温度,可以使得硅源前驱体充分水解得到含阴离子的氧化硅材料。
在一些实施方式中,在将包含硅源前驱体及含阴离子的无机盐的混合液进行水解之后,所述方法还包括:去除所述水解产物中的第一溶剂。
具体地,可以将水解后的水解产物进行过滤、干燥处理。
在一些实施方式中,过滤可以是真空抽滤、滤纸过滤等。
在一些实施方式中,干燥处理的温度为40℃~600℃,具体可以是40℃、50℃、80℃、100℃、120℃、250℃、380℃、400℃、500℃、580℃或600℃等等,干燥处理的时间为1h~15h,具体可以是1h、3h、5h、7h、9h、10h、12h或15h等等,干燥处理方式例如可以是炉内烘干、冷冻干燥、搅拌蒸干、喷雾干燥等,本实施例中的干燥处理可以尽可能地将水解产物中的溶剂去除。
步骤S20,将所述水解产物进行还原,得到硅材料。
在一些实施方式中,所述将所述水解产物进行还原的步骤,包括:将所述水解产物与还原金属充分混合后进行烧结处理。
在一些实施方式中,所述水解产物与所述还原金属的质量比为100:(13~130),具体可以是100:13、100:18、100:28、100:45、100:68、100:88、100:94、100:100或100:130等,当然也可以是上述范围内的其他值,在此不做限定。还原金属添加量偏多时,水解产物还可以被还原成硅和硅合金,还原金属添加量偏少时,水解产物还可以被还原成硅和硅氧化物。
在一些实施方式中,所述充分混合的处理方式包括机械搅拌、超声分散、研磨分散中的至少一种。优选地,采用研磨分散,从而使得含阴离子的氧化硅材料能够分散开,避免含阴离子的氧化硅材料团聚在一起,并且可以使得氧化硅材料分散为较小的纳米颗粒。优选地,通过采用湿法球磨,湿法球磨分散时间可以控制在0.5h~10h,通过充分研磨可以使得组分混合更加均匀,使得含阴离子的氧化硅材料的中值粒径达到1nm~500nm。
在一些实施方式中,所述还原金属包括铝、锌、镁、钠、锂、钙、钾中的至少一种。
在一些实施方式中,所述烧结处理的温度为600℃~1200℃,烧结处理的温度具体可以是600℃、650℃、700℃、800℃、820℃、950℃、980℃、1000℃、1100℃、1150℃或1200℃等等,烧结处理的时间为1h~10h,具体可以是1h、3h、5h、6h、7h、 8h、9h或10h等等。
在一些实施方式中,所述烧结处理过程通有保护性气体。
在一些实施方式中,所述保护性气体包括氮气、氦气、氖气、氩气及氪气中的至少一种。
在一些实施方式中,在将所述水解产物与还原金属混合后进行烧结处理之后,所述方法还包括对烧结产物进行酸洗、干燥处理。
具体地,所述酸洗采用的酸溶液包括盐酸、硫酸、硝酸中的至少一种。通过酸洗处理,可以去除金属杂质,且在表面形成一层硅氧化物。
在一些实施方式中,所述干燥处理的温度为40℃~400℃,具体可以是40℃、50℃、80℃、100℃、200℃、300℃、400℃等等,干燥处理的时间为1h~15h,具体可以是1h、3h、5h、7h、9h、10h、12h或15h等等,干燥处理方式例如可以是炉内烘干。
干燥后的第一前驱体还可以进行分散,分散可以为研磨分散,分散时间为0.5h-9h,具体可以是0.5h、1.5h、2.5h、3.5h、4.5h、5.5h、7.5h或9h等等,本实施例中的研磨分散,控制分散后的含阴离子的纳米硅的粒度大小。
步骤S30,制备包含碳材料和所述硅材料的聚集体。
在一些实施方式中,步骤S30具体包括:将包含第一碳源和所述硅材料的第一前驱体进行一次热处理,使得所述第一碳源碳化或所述第一碳源与所述硅材料聚集。
在一些实施方式中,所述硅材料与第一碳源的质量比为(5~50):(15~80);具体可以是5:15、15:15、25:15、30:15、50:15、25:40、25:50、30:65、50:75或50:80等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,所述第一碳源包括蔗糖、葡萄糖、聚乙烯、聚乙烯醇、聚乙二醇、聚苯胺、环氧树脂、酚醛树脂、糠醛树脂、丙烯酸树脂、聚环氧乙烷、聚偏氟乙烯、聚丙烯腈、聚氯乙烯及沥青中的至少一种。
在一些实施方式中,所述第一碳源包括人造石墨、天然石墨、软碳、硬碳、无定形碳、活性炭、中间相碳微珠、碳纳米管、碳纳米纤维、石墨烯和多孔碳中的至少一种。
在一些实施方式中,在将包含第一碳源和所述硅材料的第一前驱体进行一次热处理之前,所述方法还包括:将第一碳源、第一溶剂与所述硅材料充分分散形成第二溶液。
在一些实施方式中,所述第一溶剂包括甲醇、乙醇、乙二醇、丙醇、异丙醇、丙三醇、正丁醇、异丁醇及戊醇中的至少一种。
在一些实施方式中,所述充分分散的处理方式包括机械搅拌、超声分散、研磨分散中的至少一种。
在一些实施方式中,所述去除所述第二溶剂的具体方式包括:将第二溶液进行干燥处理。
在一些实施方式中,所述干燥处理的温度为40℃~400℃,具体可以是40℃、50℃、80℃、100℃、200℃、300℃、400℃等等,干燥处理的时间为1h~15h,具体可以是1h、3h、5h、7h、9h、10h、12h或15h等等,干燥处理方式例如可以是炉内烘干。
在一些实施方式中,所述第一碳源包括人造石墨、天然石墨、软碳、硬碳、无定形碳、活性炭、中间相碳微珠、碳纳米管、碳纳米纤维、石墨烯和多孔碳中的至少一种,所述一次热处理的温度为400℃-1000℃,具体可以是400℃、450℃、510℃、620℃、730℃、840℃、850℃、870℃、890℃、900℃、950℃、1000℃等等,当然也可以是上述范围内的其他值,在此不做限定。一次热处理的时间为1h~5h,具体可以是1h、1.5h、2h、2.5h、3h、3.5h、4h或5h等等。
在一些实施方式中所述第一碳源包括蔗糖、葡萄糖、聚乙烯、聚乙烯醇、聚乙二醇、聚苯胺、环氧树脂、酚醛树脂、糠醛树脂、丙烯酸树脂、聚环氧乙烷、聚偏氟乙烯、聚丙烯腈、聚氯乙烯及沥青中的至少一种,所述一次热处理的温度为500℃-1000℃,具体可以是500℃、510℃、620℃、730℃、840℃、850℃、870℃、890℃、900℃、950℃、1000℃等等,当然也可以是上述范围内的其他值,在此不做限定。一次热处理的时间为1h~5h,具体可以是1h、1.5h、2h、2.5h、3h、3.5h、4h或5h等等。
在一些实施方式中,所述一次热处理在保护性气氛中进行。
在一些实施方式中,所述一次热处理在保护性气氛中进行,所述保护性气氛的气体包括氮气、氦气、氖气、氩气及氪气中的至少一种。
步骤S40,将聚集体进行碳包覆处理,得到负极材料。
需要说明的是,本实施方式的负极材料可以不进行碳包覆,此时,步骤S50可以省略。
在一些实施方式中,碳包覆处理的具体步骤可以为:将聚集体与第二碳源进行混合、二次热处理。
在一些实施方式中,第二碳源包括蔗糖、葡萄糖、聚乙烯、聚乙烯醇、聚乙二醇、聚苯胺、环氧树脂、酚醛树脂、糠醛树脂、丙烯酸树脂、聚环氧乙烷、聚偏氟乙烯、聚丙烯腈、聚氯乙烯及沥青中的至少一种。
在一些实施方式中,聚集体与第二碳源的质量比为(20-100):(10-80)。聚集体与第二碳源的质量比可以为20:10、30:15、50:60、80:30、90:20、100:10等等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,二次热处理的方式例如可以是真空烧结、热压烧结或者常压烧结。二次热处理的温度为800℃~900℃。具体可以是800℃、810℃、820℃、830℃、840℃、850℃、860℃、870℃、880℃、890℃、900℃等等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,二次热处理的时间为1h~5h;具体可以是1h、2h、3h、4h、5h等等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,二次热处理在保护性气氛中进行;保护性气氛的气体包括氮气、氦气、氖气、氩气及氪气中的至少一种。
在一些实施方式中,二次热处理后,还进行粉碎、筛分和除磁中的至少一种;优选地,二次热处理后,还依次进行粉碎、筛分和除磁。
在一些实施方式中,粉碎方式为机械式粉碎机、气流粉碎机、低温粉碎机中任意一种。
在一些实施方式中,筛分的方式为固定筛、滚筒筛、共振筛、滚轴筛、振动筛、链条筛中任意一种,筛分的目数为≥500目,具体地,筛分的目数可以是500目、600目、700目、800目等等,负极材料的粒径控制在上述范围内,有利于负极材料循环性能的提升。
在一些实施方式中,除磁的设备为永磁筒式磁选机、电磁除铁机、脉动高梯度磁选机中任意一种,除磁是为了最终控制负极材料的磁性物质含量,避免磁性物质对锂离子电池的放电效果以及电池在使用过程中的安全性。
需要说明的是,本申请所述聚集体中存在阴离子的同时,聚集体中还存在阳离子,因此负极材料整体是保持电荷平衡的。具体为,制备过程中使用的无机盐原料中的阳离子种类不同,半径大小也不同。半径小于硅材料晶格间隙的阳离子部分占据硅材料中硅原子的位置,半径大于硅材料晶格间隙的阳离子部分进入到硅材料的晶格间隙,也有部分进入到碳材料中。
第三方面,本申请提供一种锂离子电池,所述锂离子电池包含第一方面所述的负极材料或第二方面所述的制备方法制得的负极材料。
本申请中所述中值粒径指的是平均粒径,其物理意义是颗粒的累计粒度分布百分数达到50%时所对应的粒径,通过马尔文粒度仪测试。马尔文粒度仪利用颗粒对光的散射现象,根据散射光能的分布综合换算出被测颗粒的粒径分布。
下面分多个实施例对本申请实施例进行进一步的说明。其中,本申请实施例不限定于以下的具体实施例。在不变主权利的范围内,可以适当的进行变更实施。
实施例1
本实施例的负极材料的制备方法,包括以下步骤:
(1)将ZnCl 2:乙醇:水:氨水按照质量比5:48:17:4配置得到第一预混物;然后将正硅酸乙酯:乙醇质量比3.1:30比例配置第二预混物,将第一预混物缓慢加入到第二预混物中,搅拌4h得到第一溶液,然后离心获得含Cl -离子的氧化硅;
(2)将干燥后的氧化硅与金属镁粉按照质量比100:84进行混合,然后置于热处理炉中900℃烧结4h,利用盐酸对烧结产物进行酸洗、干燥获得含Cl -离子的硅材料,含Cl -离子的硅材料的中值粒径为120nm;
(3)将含Cl -离子的硅材料和蔗糖按照质量比70:35.9加入到正丁醇溶液中,超声50min,之后在高速分散机2小时得到第二溶液,然后将第二溶液在100℃搅拌蒸干,获得第一前驱体;
(4)将第一前驱体与果糖按照质量比100:35的比例进行混合,随后将混合物放置到高温箱式炉中,通入氮气,在800℃条件下热处理3h后,进行粉碎、通过500目筛过筛,获得负极材料。
本实施例制得的负极材料包括聚集体及包覆于聚集体表面的碳层,所述聚集体包括碳材料和硅材料,所述硅材料为纳米硅单质及存在于所述硅单质表面的硅氧化物层,所述硅氧化物层的厚度为10nm;负极材料的中值粒径为14um,比表面积为2.2m 2/g,碳层的平均厚度为460nm;聚集体和硅材料的晶格间隙中存在Cl -离子,Cl -离子在负极材料中的质量含量为590ppm。
图2为本实施例制备的负极材料的扫描电子显微镜(SEM)图片,图3为本实施例制备的负极材料的XRD图,由图3可知,负极材料具有明显的硅特征峰。
实施例2
本实施例的负极材料的制备方法,包括以下步骤:
(1)将Na 2SO 4:乙醇:水:氨水按照质量比6:48:16:4配置得到第一预混物;然后将正硅酸乙酯:乙醇质量比5.1:30比例配置第二预混物,将第一预混物缓慢加入到第二预混物中,搅拌4h得到第一溶液,然后离心获得含SO 4 2-离子的氧化硅;
(2)将干燥后的氧化硅与金属锌粉按照质量比100:75进行混合,然后置于热处理炉中800℃烧结4h,利用硫酸对烧结产物进行酸洗、干燥获得含SO 4 2-离子的硅材料,含SO 4 2-离子的硅材料的中值粒径为200nm;
(3)将含SO 4 2-离子的硅材料和蔗糖按照质量比60:35.9加入到正丁醇溶液中,超声60min,之后在高速分散机5小时得到第二溶液,然后将第二溶液在100℃搅拌蒸干,获得第一前驱体;
(4)将第一前驱体与果糖按照质量比70:35的比例进行混合,随后将混合物放置到高温箱式炉中,通入氮气,在900℃条件下热处理3h后,进行粉碎、通过500目筛过筛,获得负极材料。
本实施例制得的负极材料包括聚集体及包覆于聚集体表面的碳层,所述聚集体包括碳材料和硅材料,所述硅材料包括硅单质及存在于所述硅单质表面的硅氧化物层,所述硅氧化物层的厚度为20nm;负极材料的中值粒径为12um,比表面积为3.2m 2/g,碳层的平均厚度为560nm;聚集体中存在SO 4 2-离子,SO 4 2-离子在负极材料中的质量含量为980ppm。
实施例3
本实施例的负极材料的制备方法,包括以下步骤:
(1)将KF:乙醇:水:氨水按照质量比3:55:16:5配置得到第一预混物;然后将正硅酸乙酯:乙醇质量比5.0:35比例配置第二预混物,将第一预混物缓慢加入到第二预混物中,搅拌4h得到第一溶液,然后离心获得含F -离子的氧化硅;
(2)将干燥后的氧化硅与金属钠粉按照质量比100:75进行混合,然后置于热处理炉中500℃烧结4h,利用盐酸对烧结产物进行酸洗、干燥获得含F -离子的硅材料,含F -离子的硅材料的中值粒径为80nm;
(3)将含F -离子的硅材料和蔗糖按照质量比90:30.9加入到正丁醇溶液中,超声60min,之后在高速分散机4小时得到第二溶液,然后将第二溶液在100℃搅拌蒸干,获得第一前驱体;
(4)将第一前驱体与果糖按照质量比80:45的比例进行混合,随后将混合物放置到高温箱式炉中,通入氮气,在890℃条件下热处理3h后,进行粉碎、通过500目筛过筛,获得负极材料。
本实施例制得的负极材料包括聚集体及包覆于聚集体表面的碳层,所述聚集体包括碳材料和硅材料,所述硅材料包括硅单质及存在于所述硅单质表面的硅氧化物层,所述硅氧化物层的厚度为10nm;负极材料的中值粒径为11um,比表面积为1.2m 2/g,碳层的平均厚度为760nm;聚集体和硅材料的晶格间隙中存在F -离子,F -离子在负极材料中的质量含量为280ppm。
实施例4
本实施例的负极材料的制备方法,包括以下步骤:
(1)将KCl:Mg(NO 3):乙醇:水:氨水按照质量比3:7:55:16:5配置得到第一预混物;然后将正硅酸甲酯:乙醇质量比5.5:39比例配置第二预混物,将第一预混物缓慢加入到第二预混物中,搅拌5h得到第一溶液,然后离心获得含Cl -离子与NO 3 2-离子的氧化硅;
(2)将干燥后的氧化硅与金属镁粉按照质量比100:70进行混合,然后置于热处理炉中800℃烧结4h,利用盐酸对烧结产物进行酸洗、干燥获得含Cl -离子与NO 3 2-离子的硅材料,含Cl -离子和NO 3 2-离子的硅材料的中值粒径为50nm;
(3)将含Cl -离子与NO 3 2-离子的硅材料和果糖按照质量比90:30.9加入到丙醇溶液中,超声60min,之后在高速分散机2小时得到第二溶液,然后将第二溶液在100℃搅拌蒸干,获得第一前驱体;
(4)将第一前驱体与聚氯乙烯按照质量比90:55的比例进行混合,随后将混合物放置到高温箱式炉中,通入氮气,在990℃条件下热处理8h后,进行粉碎、通过500目筛过筛,获得负极材料。
本实施例制得的负极材料包括聚集体及包覆于聚集体表面的碳层,所述聚集体包括碳材料和硅材料,所述硅材料包括硅单质及存在于所述硅单质表面的硅氧化物层,所述硅氧化物层的厚度为15nm;负极材料的中值粒径为12.7um,比表面积为1.9m 2/g,碳层的平均厚度为460nm;聚集体中存在Cl -离子与NO 3 2-离子,硅材料的晶格间隙中存在Cl -,Cl -离子与NO 3 2-离子在负极材料中的总质量含量为2180ppm。
实施例5
本实施例的负极材料的制备方法,包括以下步骤:
(1)将NaBr:Li 2SO 4:乙醇:水:氨水按照质量比2:2:51:14:5配置得到第一预混物;然后将正硅酸乙酯:乙醇质量比3.5:39比例配置第二预混物,将第一预混物缓慢加入到第二预混物中,搅拌2h得到第一溶液,然后离心获得含Br -离子与SO 4 2-离子的氧化硅;
(2)将干燥后的氧化硅与金属镁粉按照质量比100:70进行混合,然后置于热处理炉中800℃烧结4h,利用硫酸对烧结产物进行酸洗、干燥获得含Br -离子与SO 4 2-离子的硅材料,含Br -离子与SO 4 2-离子的硅材料的中值粒径为300nm;
(3)将含Br -离子与SO 4 2-离子的硅材料和蔗糖按照质量比70:50.9加入到正戊醇 溶液中,超声60min,之后在行星式球磨机球磨4h得到第二溶液,然后将第二溶液在100℃搅拌蒸干,获得第一前驱体;
(4)将第一前驱体与酚醛树脂按照质量比92:45的比例进行混合,随后将混合物放置到高温箱式炉中,通入氮气,在1000℃条件下热处理2h后,进行粉碎、通过500目筛过筛,获得负极材料。
本实施例制得的负极材料包括聚集体及包覆于聚集体表面的碳层,所述聚集体包括碳材料和硅材料,所述硅材料包括硅单质及存在于所述硅单质表面的硅氧化物层,所述硅氧化物层的厚度为20nm;负极材料的中值粒径为9.5um,比表面积为2.9m 2/g,碳层的平均厚度为960nm;聚集体中存在Br -离子与SO 4 2-离子,硅材料的晶格间隙中存在Br -离子,Br -离子与SO 4 2-离子在负极材料中的总质量含量为1080ppm。
实施例6
(1)将ZnCl 2:乙醇:水:氨水:正硅酸乙酯按照质量比5:78:17:4:3.1配置得到第一溶液,并搅拌4h,然后离心获得含Cl -离子的氧化硅;
(2)将干燥后的氧化硅与金属镁粉按照质量比100:131进行混合,然后置于热处理炉中900℃烧结4h,利用盐酸对烧结产物进行酸洗、干燥获得含Cl -离子的硅材料,含Cl -离子的硅材料的中值粒径为120nm;
(3)将含Cl -离子的硅材料和蔗糖按照质量比70:35.9加入到正丁醇溶液中,超声50min,之后在高速分散机2小时得到第二溶液,然后将第二溶液在100℃搅拌蒸干,获得第一前驱体;
(4)将第一前驱体与果糖按照质量比100:35的比例进行混合,随后将混合物放置到高温箱式炉中,通入氮气,在800℃条件下热处理3h后,进行粉碎、通过500目筛过筛,获得负极材料。
本实施例制得的负极材料包括聚集体及包覆于聚集体表面的碳层,所述聚集体包括碳材料和硅材料,所述硅材料包括硅单质及镁硅合金;负极材料的中值粒径为12um,比表面积为2.3m 2/g,碳层的平均厚度为500nm;聚集体和硅材料的晶格间隙中存在Cl -离子,Cl -离子在负极材料中的质量含量为550ppm。
实施例7
本实施例的负极材料的制备方法,包括以下步骤:
(1)将ZnCl 2:乙醇:水:氨水按照质量比5:48:17:4配置得到第一预混物;然后将正硅酸乙酯:乙醇质量比3.1:30比例配置第二预混物,将第一预混物缓慢加入到第二预混物中,搅拌4h得到第一溶液,然后离心获得含Cl -离子的氧化硅;
(2)将干燥后的氧化硅与金属铝粉按照质量比100:140进行混合,然后置于热处理炉中900℃烧结4h,利用盐酸对烧结产物进行酸洗、干燥获得含Cl -离子的硅材料,含Cl -离子的硅材料的中值粒径为450nm;
(3)将含Cl -离子的硅材料和蔗糖按照质量比70:35.9加入到正丁醇溶液中,超 声50min,之后在高速分散机2小时得到第二溶液,然后将第二溶液在100℃搅拌蒸干,获得第一前驱体;
(4)将第一前驱体放置到高温箱式炉中,通入氮气,在800℃条件下热处理3h后,进行粉碎、通过500目筛过筛,得到聚集体。
本实施例制得的负极材料包括聚集体,所述聚集体包括碳材料和硅材料,所述硅材料包括硅单质及铝硅合金;负极材料的中值粒径为12um,比表面积为3.0m 2/g,碳层的平均厚度为559nm;聚集体和硅材料的晶格间隙中存在Cl -离子,Cl -离子在负极材料中的质量含量为2500ppm。
实施例8
实施例8与实施例1大致相同,其不同的是:步骤(2)中烧结温度为500℃。
本实施例制得的负极材料包括聚集体,所述聚集体包括碳材料和硅材料,硅材料为硅单质及存在于所述硅单质表面的硅氧化物层,所述硅氧化物层的厚度为10nm,负极材料的中值粒径为13um,比表面积为2.1m 2/g,碳层的平均厚度为490nm;聚集体和硅材料的晶格间隙中存在Cl -离子,Cl -离子在负极材料中的质量含量为620ppm。
实施例9
实施例9与实施例1大致相同,其不同的是:步骤(2)不进行酸洗处理。
本实施例制得的负极材料包括聚集体,所述聚集体包括碳材料和硅材料,硅材料为硅单质,负极材料的中值粒径为17um,比表面积为3.2m 2/g,碳层的平均厚度为560nm;聚集体和硅材料的晶格间隙中存在Cl -离子,Cl -离子在负极材料中的质量含量为290ppm。
对比例1
按照与实施例1基本相同的方法制备负极材料,区别在于:将ZnCl 2:乙醇:水:氨水按照质量比10:48:17:4配置得到第一溶液。
本实施例制得的负极材料包括聚集体,所述聚集体包括碳材料和硅材料,所述硅材料为硅单质及存在于所述硅单质表面的硅氧化物层,所述硅氧化物层的厚度为10nm;负极材料的中值粒径为19um,比表面积为3.0m 2/g,碳层的平均厚度为620nm;聚集体和硅材料的晶格间隙中存在Cl -离子,Cl -离子在负极材料中的质量含量为5970ppm。
对比例2
按照与实施例1基本相同的方法制备负极材料,区别在于:将ZnCl 2:乙醇:水: 氨水按照质量比0.5:48:17:4配置得到第一溶液。
本实施例制得的负极材料包括聚集体,所述聚集体包括碳材料和硅材料,所述硅材料为硅单质及存在于所述硅单质表面的硅氧化物层,所述硅氧化物层的厚度为10nm;负极材料的中值粒径为20um,比表面积为3.8m 2/g,碳层的平均厚度为580nm;聚集体和硅材料的晶格间隙中存在Cl -离子,Cl -离子在负极材料中的质量含量为9ppm。
对比例3
按照与实施例1基本相同的方法制备负极材料,区别在于:未添加氯化物。
本实施例制得的负极材料包括聚集体及包覆于聚集体表面的碳层,聚集体包括硅材料及碳材料,所述硅材料为硅单质及存在于所述硅单质表面的硅氧化物层,所述硅氧化物层的厚度为14nm;负极材料的中值粒径为10μm,比表面积为2.9m 2/g,碳层的平均厚度为440nm。聚集体中不存在Cl -离子。
测试方法
(1)负极材料的中值粒径的测试方法:
通过马尔文激光粒度仪测试负极材料的中值粒径,也就是平均粒径。
(2)负极材料的比表面积的测试方法:
采用麦克Tristar3020型比表面积与孔径分析仪对负极材料进行比表面积测试,称取一定质量粉末,在真空加热状态下进行完全脱气,去除表面吸附质后,使用氮气吸附法,通过吸附氮气量,计算出颗粒的比表面积。
(3)负极材料的碳层厚度的测试方法:
通过聚焦离子束显微镜(FIB-SEM)设备对材料进行切面处理,在扫描电镜图像中测量得到碳层的平均厚度。
(4)负极材料中的阴离子类型及含量的测试方法:
采用离子色谱法测试负极材料中存在的阴离子类型及含量。
(5)硅材料的晶格间隙中阴离子的测试方法
采用纳米离子探针(Nano-SIMS)对负极材料进行测试,如果入射轰击离子束能量高于140ev,说明硅材料的晶格间隙中存在阴离子。
(6)电化学测试
采用以下方法测试电化学循环性能:将制得的硅碳复合负极材料、导电剂和粘结剂按质量百分比94:1:5将他们溶解在溶剂中混合,控制固含量在50%,涂覆于铜箔集流体上,真空烘干、制得负极极片;然后将传统成熟工艺制备的三元正极极片、1mol/L的LiPF 6/碳酸乙烯酯+碳酸二甲酯+甲基乙基碳酸酯(v/v=1:1:1)电解 液、Celgard2400隔膜、外壳采用常规生产工艺装配得到锂离子扣式电池。利用千分尺测量锂离子电池的极片初始厚度为H0,锂离子电池的充放电测试在武汉金诺电子有限公司LAND电池测试系统上,在常温条件,0.2C恒流充放电,充放电电压限制在2.75~4.2V,得到首次可逆容量、首圈充电容量和首圈放电容量。首次库伦效率=首圈放电容量/首圈充电容量。
重复100周循环,记录放电容量,作为锂离子电池的剩余容量;容量保持率=剩余容量/初始容量*100%。
上述性能测试的结果如下:
表1.性能比对结果表
Figure PCTCN2022090258-appb-000001
图4为本申请实施例1制备的负极材料的首次充放电曲线,如图4所示,实施例1制得的负极材料首次充放电容量较高,首次库伦效率也较高。
图5为本申请实施例1制备的负极材料的循环性能曲线,如图5所示,该负极材料具有优异的循环性能,循环100周容量保持率为93.7%。
如表1所示,实施例1至7制得的负极材料,包括聚集体,其中,聚集体包括活性物质和碳材料。聚集体中的阴离子有利于载流子的进一步传输,能够促进锂离子和电子在材料中的扩散,提高载流子在材料中的传输效率,从而提升负极材料的循环 性能和首次库伦效率。
其中,实施例7的负极材料在制备过程中,未进行碳包覆处理,会导致活性物质材料直接与电解液接触,形成的SEI膜不稳定,循环性能劣化。
实施例8的负极材料在制备过程中,烧结温度为500℃,温度过低,会导致碳化不完全,包覆效果变差,首次效率降低。
实施例9的负极材料在制备过程中,步骤(2)不进行酸洗处理,会导致存在金属氧化物杂质,材料的容量降低,首次效率也降低。
对比例1的负极材料在制备过程中,步骤(1)中的原材料中无机盐含量过高,聚集体中的阴离子含量过高,部分离子会与锂离子发生结合反应,会“束缚”住部分Li +,从而使材料的首次库伦效率、循环寿命特性劣化。
对比例2的负极材料在制备过程中,步骤(1)中的原材料中无机盐含量过低,聚集体中的阴离子含量过低,难以提升材料的电化学性能,使材料的首次库伦效率、循环寿命特性劣化。
对比例3的负极材料在制备过程中,步骤(1)中的原材料未添加无机盐,因此难以提升材料的电化学性能。
本申请虽然以较佳实施例公开如上,但并不是用来限定权利要求,任何本领域技术人员在不脱离本申请构思的前提下,都可以做出若干可能的变动和修改,因此本申请的保护范围应当以本申请权利要求所界定的范围为准。

Claims (10)

  1. 一种负极材料,其特征在于,所述负极材料包括聚集体,所述聚集体包括碳材料和硅材料,所述聚集体中存在阴离子,所述阴离子在所述负极材料中的质量含量为0.001wt%~0.5wt%。
  2. 根据权利要求1所述的负极材料,其特征在于,包含以下特征(1)至(9)中的至少一种:
    (1)所述阴离子包括F -、Cl -、Br -、NO 3 -、SO 4 2-、NO 2-和PO 4 3-中的至少一种;
    (2)所述硅材料包括硅单质、硅合金和硅氧化物中的至少一种;
    (3)所述硅材料包括硅单质及存在于所述硅单质表面的硅氧化物层;
    (4)所述硅材料包括硅单质及存在于所述硅单质表面的硅氧化物层,所述硅氧化物层的厚度为1nm至50nm;
    (5)所述硅材料的中值粒径为1nm至500nm;
    (6)所述硅材料在所述负极材料中的质量占比为10%~80%;
    (7)所述碳材料包括人造石墨、天然石墨、软碳、硬碳、无定形碳、活性炭、中间相碳微珠、碳纳米管、碳纳米纤维、石墨烯和多孔碳中的至少一种;
    (8)所述硅材料的晶格间隙中存在所述阴离子,所述阴离子的离子半径为118pm-940pm;
    (9)所述硅材料的晶格间隙中存在所述阴离子,所述阴离子包括F -、Cl -和Br -中的至少一种。
  3. 根据权利要求1~2任一项所述的负极材料,其特征在于,包含以下特征(1)至(6)中的至少一种:
    (1)所述负极材料还包括存在于所述聚集体的至少部分表面的碳层;
    (2)所述负极材料还包括存在于所述聚集体的至少部分表面的碳层,所述碳层包括无定形碳;
    (3)所述负极材料还包括包覆于所述聚集体的至少部分表面的碳层,所述碳层的厚度为1nm至3000nm;
    (4)所述碳材料在所述负极材料中的质量占比为10%~60%;
    (5)所述负极材料的中值粒径为0.5μm~30μm;
    (6)所述负极材料的比表面积≤10m 2/g。
  4. 一种负极材料的制备方法,其特征在于,包括以下步骤:
    将包含硅源前驱体、含阴离子的无机盐的混合液进行水解,得到水解产物;
    将所述水解产物进行还原,得到硅材料;
    制备包含碳材料和所述硅材料的聚集体。
  5. 根据权利要求4所述的制备方法,其特征在于,包括以下特征(1)至(10)中的至少一种:
    (1)所述硅源前驱体包括正硅酸乙酯、正硅酸甲酯、硅酸钠、多聚硅氧烷、三甲基乙氧基硅烷、甲基三甲氧基硅烷、甲基三乙氧基硅烷和倍半硅氧烷中的至少一种;
    (2)所述阴离子包括F -、Cl -、Br -、NO 3 -、SO 4 2-、NO 2-和PO 4 3-中的至少一种;
    (3)所述混合液还包括第一溶剂,所述第一溶剂包括甲醇、乙醇、乙二醇、丙醇、异丙醇、丙三醇、正丁醇、异丁醇及戊醇中的至少一种;
    (4)所述混合液还包括水解促进剂;
    (5)所述混合液还包括水解促进剂,所述水解促进剂包括氨水、尿素、盐酸、硫酸、碳酸氢钠、氢氧化钠、醋酸铵、氯化铵中的至少一种;
    (6)所述水解在搅拌下进行,所述水解的时间为3h~10h;
    (7)在将包含硅源前驱体、含阴离子的无机盐的混合液进行水解之前,所述方法还包括:将含阴离子的无机盐、第一溶剂与水解促进剂混合形成第一预混物,将硅源前驱体与第一溶剂混合形成第二预混物,再将所述第一预混物与所述第二预混物混合得到混合液;
    (8)所述阴离子在所述第一预混物中的质量含量为5wt%~55wt%;
    (9)所述硅源前驱体在所述第二预混物中的质量含量为10wt%~70wt%;
    (10)在将包含硅源前驱体、含阴离子的无机盐的混合液进行水解之后,所述方法还包括:去除所述水解产物中的第一溶剂。
  6. 根据权利要求4或5所述的制备方法,其特征在于,包括以下特征(1)至(9)中的至少一种:
    (1)所述将所述水解产物进行还原的步骤,包括:将所述水解产物与还原金属充分混合后进行烧结处理;
    (2)所述水解产物与所述还原金属的质量比为100:(13~130);
    (3)所述还原金属包括铝、锌、镁、钠、锂、钙和钾中的至少一种;
    (4)所述烧结处理的温度为600℃~1200℃,所述烧结处理的时间为1h~10h;
    (5)所述烧结处理过程通有保护性气体;
    (6)所述保护性气体包括氮气、氦气、氖气、氩气及氪气中的至少一种;
    (7)在将所述水解产物与还原金属混合后进行烧结处理之后,所述方法还包括对烧结产物进行酸洗、干燥处理,所述酸洗采用的酸溶液包括盐酸、硫酸、硝酸中的至少一种;
    (8)所述充分混合的处理方式包括机械搅拌、超声分散、研磨分散中的至少一种;
    (9)所述硅材料的中值粒径为1nm至500nm。
  7. 根据权利要求4~6任一项所述的制备方法,其特征在于,所述制备包含碳材料和所述硅材料的聚集体的步骤,包括:将包含第一碳源和所述硅材料的第一前驱体进行一次热处理,使得所述第一碳源碳化或所述第一碳源与所述硅材料聚集。
  8. 根据权利要求7所述的制备方法,其特征在于,包括以下特征(1)至(13)中的至少一种:
    (1)所述硅材料与第一碳源的质量比为(5~50):(15~80);
    (2)所述硅材料包括硅单质、硅合金和硅氧化物中的至少一种;
    (3)所述硅材料包括硅单质及存在于所述硅单质表面的硅氧化物层,所述硅氧化物层的厚度为1nm至50nm;
    (4)所述第一碳源包括蔗糖、葡萄糖、聚乙烯、聚乙烯醇、聚乙二醇、聚苯胺、 环氧树脂、酚醛树脂、糠醛树脂、丙烯酸树脂、聚环氧乙烷、聚偏氟乙烯、聚丙烯腈、聚氯乙烯及沥青中的至少一种;
    (5)所述第一碳源包括人造石墨、天然石墨、软碳、硬碳、无定形碳、活性炭、中间相碳微珠、碳纳米管、碳纳米纤维、石墨烯和多孔碳中的至少一种;
    (6)在将包含第一碳源和所述硅材料的第一前驱体进行一次热处理之前,所述方法还包括:将第一碳源、第一溶剂与所述硅材料充分分散形成第二溶液;
    (7)所述第一溶剂包括甲醇、乙醇、乙二醇、丙醇、异丙醇、丙三醇、正丁醇、异丁醇及戊醇中的至少一种;
    (8)所述充分分散的处理方式包括机械搅拌、超声分散、研磨分散中的至少一种;
    (9)除去所述第一溶剂的具体方式包括:将第二溶液进行干燥处理;
    (10)所述干燥处理的温度为40℃~400℃,时间为1h~15h;
    (11)所述第一碳源包括人造石墨、天然石墨、软碳、硬碳、无定形碳、活性炭、中间相碳微珠、碳纳米管、碳纳米纤维、石墨烯和多孔碳中的至少一种,所述一次热处理的温度为400℃-1000℃,时间为1h~5h;
    (12)所述第一碳源包括蔗糖、葡萄糖、聚乙烯、聚乙烯醇、聚乙二醇、聚苯胺、环氧树脂、酚醛树脂、糠醛树脂、丙烯酸树脂、聚环氧乙烷、聚偏氟乙烯、聚丙烯腈、聚氯乙烯及沥青中的至少一种,所述一次热处理的温度为500℃~1000℃,时间为1h~5h;
    (13)所述一次热处理在保护性气氛中进行,所述保护性气氛的气体包括氮气、氦气、氖气、氩气及氪气中的至少一种。
  9. 根据权利要求4~8任一项所述的制备方法,其特征在于,包括以下特征(1)至(8)中的至少一种:
    (1)所述方法还包括对所述聚集体进行碳包覆处理;
    (2)所述方法还包括对所述聚集体进行碳包覆处理,所述碳包覆处理的步骤包括:将所述聚集体与第二碳源混合、二次热处理;
    (3)所述方法还包括对所述聚集体进行碳包覆处理,所述碳包覆处理的步骤包括:将所述聚集体与第二碳源混合、二次热处理,所述第二碳源包括蔗糖、葡萄糖、聚乙烯、聚乙烯醇、聚乙二醇、聚苯胺、环氧树脂、酚醛树脂、糠醛树脂、丙烯酸树脂、聚环氧乙烷、聚偏氟乙烯、聚丙烯腈、聚氯乙烯及沥青中的至少一种;
    (4)所述方法还包括对所述聚集体进行碳包覆处理,所述碳包覆处理的步骤包括:将所述聚集体与第二碳源混合、二次热处理,所述聚集体与所述第二碳源的质量比为(20-100):(10-80);
    (5)所述方法还包括对所述聚集体进行碳包覆处理,所述碳包覆处理的步骤包括:将所述聚集体与第二碳源混合、二次热处理,所述二次热处理的温度为800℃~900℃,所述二次热处理的时间为1h~5h。
  10. 一种锂离子电池,其特征在于,所述锂离子电池包括根据权利要求1至3任一项所述的负极材料或根据权利要求4至9任一项所述的制备方法制得的负极材料。
PCT/CN2022/090258 2022-04-22 2022-04-29 负极材料及其制备方法、锂离子电池 WO2023201775A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022527187A JP2024517521A (ja) 2022-04-22 2022-04-29 負極材料及びその製造方法、並びにリチウムイオン電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210431171.4 2022-04-22
CN202210431171 2022-04-22

Publications (1)

Publication Number Publication Date
WO2023201775A1 true WO2023201775A1 (zh) 2023-10-26

Family

ID=88418962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090258 WO2023201775A1 (zh) 2022-04-22 2022-04-29 负极材料及其制备方法、锂离子电池

Country Status (3)

Country Link
JP (1) JP2024517521A (zh)
CN (1) CN116979034A (zh)
WO (1) WO2023201775A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208634A (zh) * 2011-05-06 2011-10-05 北京科技大学 一种多孔硅/碳复合材料及其制备方法
CN108701825A (zh) * 2016-02-24 2018-10-23 信越化学工业株式会社 非水电解质二次电池用负极活性物质、非水电解质二次电池、及非水电解质二次电池用负极材料的制造方法
US20180358612A1 (en) * 2015-11-06 2018-12-13 Hitachi, Ltd. Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
CN112216831A (zh) * 2020-10-15 2021-01-12 江苏师范大学 一种合成锂离子动力电池高容量负极材料的方法
US20210376315A1 (en) * 2018-10-02 2021-12-02 Wacker Chemie Ag Silicon particles having a specific chlorine content, as active anode material for lithium ion batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208634A (zh) * 2011-05-06 2011-10-05 北京科技大学 一种多孔硅/碳复合材料及其制备方法
US20180358612A1 (en) * 2015-11-06 2018-12-13 Hitachi, Ltd. Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
CN108701825A (zh) * 2016-02-24 2018-10-23 信越化学工业株式会社 非水电解质二次电池用负极活性物质、非水电解质二次电池、及非水电解质二次电池用负极材料的制造方法
US20210376315A1 (en) * 2018-10-02 2021-12-02 Wacker Chemie Ag Silicon particles having a specific chlorine content, as active anode material for lithium ion batteries
CN112216831A (zh) * 2020-10-15 2021-01-12 江苏师范大学 一种合成锂离子动力电池高容量负极材料的方法

Also Published As

Publication number Publication date
CN116979034A (zh) 2023-10-31
JP2024517521A (ja) 2024-04-23

Similar Documents

Publication Publication Date Title
WO2018161821A1 (zh) 一种复合物、其制备方法及在锂离子二次电池中的用途
WO2021057929A1 (zh) 硅复合物负极材料及其制备方法和锂离子电池
CN109004265B (zh) 固态电解质正极及包含其的固态电池
WO2016008455A2 (zh) 一种多元复合负极材料、其制备方法及包含其的锂离子电池
WO2019063006A1 (zh) 一种碳基复合材料、其制备方法及包含其的锂离子电池
WO2021239063A1 (zh) 负极材料及其制备方法和锂离子电池
CN107565117B (zh) 一种硅/石墨复合负极材料及其制备方法
Lee et al. Modified graphite and graphene electrodes for high-performance lithium ion hybrid capacitors
JP2018520494A (ja) ケイ素‐炭素複合粒子材料
WO2017008494A1 (zh) 一种石墨硅基复合负极材料的制备方法
WO2023273726A1 (zh) 负极材料及其制备方法、锂离子电池
CN108365208B (zh) 一种锂离子电池用纳米硅复合负极材料的制备方法
CN111048764A (zh) 一种硅碳复合材料及其制备方法和应用
CN112652742B (zh) 硅碳复合材料及其制备方法和应用
CN111540889B (zh) 一种双层包覆层包覆的硅负极材料及其制备方法和用途
US20130230769A1 (en) Silicon and lithium silicate composite anodes for lithium rechargeable batteries
WO2023124025A1 (zh) 一种石墨复合负极材料及其制备方法和应用
CN112038601A (zh) 负极活性材料、其制备方法和用途
WO2017008624A1 (zh) 一种钛酸锂硅基复合负极材料的制备方法
WO2022174598A1 (zh) 硅碳复合负极材料及其制备方法、锂离子电池
Qian et al. A separator modified by spray-dried hollow spherical cerium oxide and its application in lithium sulfur batteries
Fang et al. Nano-Li4Ti5O12 pore microspheres: a high power electrode material for lithium ion batteries
WO2023016047A1 (zh) 负极材料及其制备方法、锂离子电池
TWI565125B (zh) 鋰離子電池電極複合材料及其製備方法以及電池
WO2023201775A1 (zh) 负极材料及其制备方法、锂离子电池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022527187

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938010

Country of ref document: EP

Kind code of ref document: A1