WO2023201600A1 - 一种FeCoNiCuZn高熵合金的制备方法及FeCoNiCuZn高熵合金 - Google Patents

一种FeCoNiCuZn高熵合金的制备方法及FeCoNiCuZn高熵合金 Download PDF

Info

Publication number
WO2023201600A1
WO2023201600A1 PCT/CN2022/088045 CN2022088045W WO2023201600A1 WO 2023201600 A1 WO2023201600 A1 WO 2023201600A1 CN 2022088045 W CN2022088045 W CN 2022088045W WO 2023201600 A1 WO2023201600 A1 WO 2023201600A1
Authority
WO
WIPO (PCT)
Prior art keywords
feconicuzn
solution
entropy alloy
salt
preparation
Prior art date
Application number
PCT/CN2022/088045
Other languages
English (en)
French (fr)
Inventor
杨良滔
周杰
张翊
吴景龙
梁栋
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2022/088045 priority Critical patent/WO2023201600A1/zh
Publication of WO2023201600A1 publication Critical patent/WO2023201600A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces

Definitions

  • the present application relates to the technical field of alloy material preparation, and in particular to a preparation method of FeCoNiCuZn high-entropy alloy and FeCoNiCuZn high-entropy alloy.
  • High-entropy alloys are composed of five or more metal elements in equiatomic or non-equiatomic ratios. Due to their structural differences from traditional alloys, high-entropy alloys have many attractive properties, such as high hardness and strength. , high corrosion resistance, unique electromagnetic properties, excellent wear resistance, etc., it will also show similar properties when attached to the surface of a substrate to form a thin film, and has great potential to be used in electrode preparation.
  • This application provides a method for preparing FeCoNiCuZn high-entropy alloy, including the following steps:
  • the electroplating solution includes soluble iron salts, cobalt salts, nickel salts, copper salts and zinc salts;
  • the electroplating solution is electroplated by an electrodeposition method to obtain FeCoNiCuZn high-entropy alloy.
  • the step of preparing the electroplating solution specifically includes the following steps:
  • the pH value is adjusted to 0.1-6.8 to obtain the electroplating solution.
  • the specific steps are: dissolving the buffer in deionized water, heating and Maintain the temperature at 30°C-200°C, then add the complexing agent and additional salt, stir and dissolve, and obtain solution A.
  • the solution B is obtained after heating the mixed solution of solution A, the soluble iron salt, the cobalt salt, the nickel salt, the copper salt and the zinc salt.
  • the steps are as follows:
  • Solution A Heat the solution A and maintain the temperature to 30°C-200°C, then add the cobalt salt, the nickel salt, the copper salt, the zinc salt, the soluble iron salt and the reducing agent in sequence, stir and dissolve Solution B is obtained.
  • the pH value is adjusted to 0.1-6.8 to obtain the electroplating solution, specifically: heating the solution B and maintaining the temperature. to 30°C-200°C, and after aging for 0.2-8h, adjust the pH value of solution B to 0.1-6.8 to obtain an electroplating solution.
  • the complexing agent includes, but is not limited to, citric acid, sodium citrate, and potassium pyrophosphate
  • the buffering agent includes, but is not limited to, boric acid, disodium hydrogen phosphate, phosphoric acid, and acetic acid.
  • Additional salts include, but are not limited to, potassium chloride, sodium chloride, and sodium sulfate.
  • the soluble iron salts include but are not limited to ferrous sulfate, ferrous chloride, and ferric nitrate
  • the cobalt salts include but are not limited to cobalt sulfate, cobalt chloride, and cobalt nitrate
  • the nickel salts Including but not limited to nickel sulfate, nickel chloride, and nickel nitrate
  • the copper salt includes but is not limited to copper sulfate, copper chloride, and copper nitrate
  • the zinc salt includes but is not limited to zinc sulfate, zinc chloride, and zinc nitrate
  • the reducing agent includes but is not limited to sodium hypophosphite and ascorbic acid.
  • the component content of the citric acid is 10.0-200.0g/L
  • the component content of the sodium citrate is 1.0-50.0g/L
  • the component content of the boric acid is 2.0-200.0g/L. 80.0g/L
  • the component content of potassium chloride is.
  • the component content of the ferrous sulfate is 5.0-200.0g/L
  • the component content of the cobalt sulfate is 5.0-180.0g/L
  • the component content of the nickel sulfate is 5.0 -150g/L
  • the component content of the potassium chloride is 5.0-100.0g/L
  • the component content of the copper sulfate is 0.1-50.0g/L
  • the component content of the zinc sulfate is 0.2-60.0 g/L
  • the component content of the sodium hypophosphite is 0.1-20g/L.
  • the step of electroplating the electroplating solution to obtain FeCoNiCuZn high-entropy alloy specifically includes the following steps:
  • the electroplating solution is electroplated using a constant potential electrodeposition method to obtain FeCoNiCuZn high entropy alloy.
  • the potential range during electrodeposition is 0.5-3.0V, and the deposition time is 0.1-100.0 min.
  • the conductive substrate is first polished with sandpaper, then ultrasonic treated for 5-20 minutes, then soaked in a sulfuric acid solution with a concentration of 0.5-2 mol/L for 0.5-8 hours, and then treated with pure water and ethanol in sequence. Rinse and dry.
  • the conductive substrate includes but is not limited to titanium, copper sheet, and silver.
  • the proportion of each metal element in the FeCoNiCuZn high-entropy alloy is between 1% and 50%.
  • this application also provides a FeCoNiCuZn high-entropy alloy prepared by the preparation method of FeCoNiCuZn high-entropy alloy.
  • the preparation method of FeCoNiCuZn high-entropy alloy and the FeCoNiCuZn high-entropy alloy provided by this application use electrodeposition method to perform electroplating treatment on the electroplating solution to obtain FeCoNiCuZn high-entropy alloy.
  • the electrodeposition method is compared with traditional Laser cladding, etc., which can be performed at lower processing temperatures and low energy consumption, has lower costs, is simple to operate, does not require complex equipment and expensive raw materials, and can prepare HEA on substrates with complex geometries, It provides great convenience for engineering applications.
  • Figure 1 is a step flow chart of the preparation method of FeCoNiCuZn high-entropy alloy provided by this application.
  • Figure 2 is a flow chart of steps for preparing the electroplating solution provided by this application.
  • Figure 3 is an SEM image of the FeCoNiCuZn high-entropy alloy prepared in Example 2 of the present application.
  • Figure 4 is an EDS image of the FeCoNiCuZn high-entropy alloy prepared in Example 2 of the present application.
  • Figure 5 is an energy spectrum image of the FeCoNiCuZn high-entropy alloy prepared in Example 2 of the present application.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plurality means two or more than two, unless otherwise explicitly and specifically limited.
  • Figure 1 is a step flow chart of a method for preparing a FeCoNiCuZn high-entropy alloy provided in this embodiment, including steps S10-20. The specific implementation of each step is described in detail below.
  • Step S10 Prepare an electroplating solution, which includes soluble iron salts, cobalt salts, nickel salts, copper salts and zinc salts.
  • FIG. 2 is a flow chart of steps for configuring the electroplating solution in this embodiment, which specifically includes the following steps:
  • Step S11 Heat the mixed solution of the complexing agent, additional salt, buffer and deionized water to obtain solution A.
  • the mixed solution of complexing agent, additional salt, buffer and deionized water is heated to obtain solution A, specifically: dissolve the buffer in deionized water, heat and maintain the temperature to 30°C -200°C to accelerate the dissolution of the solvent and speed up the ion migration rate, then add the complexing agent and additional salt, stir and dissolve, and obtain solution A.
  • the complexing agent includes but is not limited to citric acid, sodium citrate, and potassium pyrophosphate.
  • the buffering agents include, but are not limited to, boric acid, disodium hydrogen phosphate, phosphoric acid, acetic acid, etc.
  • the additional salts include, but are not limited to, potassium chloride, sodium chloride, sodium sulfate, etc.
  • the component content of the citric acid is 10.0-200.0g/L
  • the component content of the sodium citrate is 1.0-50.0g/L
  • the component content of the boric acid is 2.0-80.0g/L
  • the component content of the potassium chloride is 5-50g/L.
  • the above-mentioned complexing agent component can better bring the deposition potential of multiple metal ions in the plating solution closer, and the buffering agent component can better suppress the pH change of the solution during electroplating and keep the solution stable, so The additional salt component can greatly improve the conductivity of the solution.
  • Step S12 Heat the mixed solution of the solution A, the soluble iron salt, the cobalt salt, the nickel salt, the copper salt, the zinc salt and the reducing agent to obtain solution B.
  • the mixed solution of solution A, the soluble iron salt, the cobalt salt, the nickel salt, the copper salt, the zinc salt and the reducing agent is heated to obtain a solution
  • the specific steps are: heating the solution A and maintaining the temperature to 30°C-200°C to accelerate the dissolution of the solvent and speed up the ion migration rate, and then add the cobalt salt, the nickel salt, and the copper salt in sequence.
  • the zinc salt, the soluble iron salt and the reducing agent stir and dissolve to obtain solution B.
  • the soluble iron salt includes but is not limited to ferrous sulfate, ferrous chloride, ferric nitrate, etc.
  • the cobalt salts include, but are not limited to, cobalt sulfate, cobalt chloride, cobalt nitrate, etc.
  • the nickel salt includes but is not limited to nickel sulfate, nickel chloride, nickel nitrate, etc.
  • the copper salts include, but are not limited to, copper sulfate, copper chloride, copper nitrate, etc.
  • the zinc salts include but are not limited to zinc sulfate, zinc chloride, zinc nitrate, etc.
  • the reducing agent includes but is not limited to sodium hypophosphite, ascorbic acid, etc.
  • the component content of the ferrous sulfate is 5.0-200.0g/L
  • the component content of the cobalt sulfate is 5.0-180.0g/L
  • the component content of the nickel sulfate is 5.0-150g/L
  • the component content of the copper sulfate is 0.1-50.0g/L
  • the component content of the zinc sulfate is 0.2-60.0g/L
  • the component content of the sodium hypophosphite is 0.1-20g/L.
  • the soluble iron salt, the cobalt salt, the nickel salt, the copper salt, and the zinc salt components can provide main salts for the electroplating solution, making the distribution of high-entropy alloy elements more uniform, so The reducing agent component can better inhibit the oxidation of Fe 2+ to Fe 3+ .
  • Step S13 After heating and aging the solution B, adjust the pH value to 0.1-6.8 to obtain the electroplating solution.
  • the pH value is adjusted to 0.1-6.8 to obtain the electroplating solution, specifically: heating the solution B and maintaining the temperature to After aging for 0.2-8 hours at 30°C-200°C, the pH value of solution B is adjusted to 0.1-6.8 to obtain an electroplating solution.
  • Step S20 Perform electroplating treatment on the electroplating solution through an electrodeposition method to obtain FeCoNiCuZn high-entropy alloy.
  • the step of electroplating the electroplating solution to obtain the FeCoNiCuZn high-entropy alloy specifically includes the following steps:
  • the electroplating solution is electroplated using a constant potential electrodeposition method to obtain FeCoNiCuZn high entropy alloy.
  • the potential range during electrodeposition is 0.5-3.0V, and the deposition time is 0.1-100.0 min.
  • this potential range and deposition time can make the electroplating process more stable, the composition of the coating layer more uniform, and the co-deposition of multiple metals can be achieved to form a high-entropy alloy.
  • the conductive substrate is first polished with sandpaper, then ultrasonic treated for 5-20 minutes, then soaked in a sulfuric acid solution with a concentration of 0.5-2 mol/L for 0.5-8 hours, and then rinsed and dried with pure water and ethanol in sequence.
  • the conductive substrate includes but is not limited to titanium, copper sheet, silver, etc.
  • the proportion of each metal element in the FeCoNiCuZn high-entropy alloy prepared through the above embodiment is between 1% and 50%, which reduces the impact of unevenness on performance uniformity.
  • the preparation method of FeCoNiCuZn high-entropy alloy and the FeCoNiCuZn high-entropy alloy provided by this application use electrodeposition method to perform electroplating treatment on the electroplating solution to obtain FeCoNiCuZn high-entropy alloy.
  • the electrodeposition method is compared with traditional Laser cladding, etc., which can be performed at lower processing temperatures and low energy consumption, has lower costs, is simple to operate, does not require complex equipment and expensive raw materials, and can prepare HEA on substrates with complex geometries, It provides great convenience for engineering applications.
  • the electroplating solution is electroplated using a constant potential electrodeposition method to obtain FeCoNiCuZn high entropy alloy.
  • the potential range during electrodeposition is 0.5V and the deposition time is 100.0 min.
  • FeCoNiCuZn high entropy alloy is obtained. Entropy alloy.
  • the electroplating solution is electroplated using a constant potential electrodeposition method to obtain FeCoNiCuZn high entropy alloy.
  • the potential range during electrodeposition is 1V and the deposition time is 10.0 min to obtain FeCoNiCuZn high entropy alloy. alloy.
  • Figure 3 is an SEM image of the FeCoNiCuZn high-entropy alloy prepared in this embodiment. It can be seen from the SEM image that a metal film is formed and distributed evenly.
  • Figure 4 is an EDS image of the FeCoNiCuZn high-entropy alloy prepared in this embodiment. It can be seen from the EDS image that the five metal elements were successfully deposited in the same area and distributed evenly.
  • Figure 5 is an energy spectrum image of the FeCoNiCuZn high-entropy alloy prepared in this embodiment.
  • the co-deposition of five metal elements can be seen through EDS energy spectrum, and the successful preparation of FeCoNiCuZn high-entropy alloy can be demonstrated through the combination of SEM, EDS and other images.
  • the electroplating solution is electroplated using a constant potential electrodeposition method to obtain FeCoNiCuZn high entropy alloy.
  • the potential range during electrodeposition is 3V and the deposition time is 100.0 min to obtain FeCoNiCuZn high entropy alloy. alloy.
  • the preparation method of FeCoNiCuZn high-entropy alloy and the FeCoNiCuZn high-entropy alloy provided in the above embodiments of the present application use an electrodeposition method to perform electroplating treatment on the electroplating solution to obtain a FeCoNiCuZn high-entropy alloy.
  • the electrodeposition method is Compared with other synthesis methods, it can be carried out at lower processing temperatures and low energy consumption, has lower cost, is simple to operate, does not require complex equipment and expensive raw materials, and can be used on substrates with complex geometric shapes.
  • the preparation of HEA provides great convenience for engineering applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

本申请提供了一种FeCoNiCuZn高熵合金的制备方法及FeCoNiCuZn高熵合金,采用电沉积方法对电镀液进行电镀处理,得到FeCoNiCuZn高熵合金,相比于其它合成方法,电沉积方法,相比于传统的激光熔覆等,其可以在较低的加工温度和低的能耗下进行,成本较低,操作简单,不需要复杂的设备和昂贵的原料,且可以在复杂几何形状的基底上制备高熵合金,为工程应用提供了极大的便利。

Description

一种FeCoNiCuZn高熵合金的制备方法及FeCoNiCuZn高熵合金 技术领域
本申请涉及合金材料制备技术领域,特别涉及一种FeCoNiCuZn高熵合金的制备方法及FeCoNiCuZn高熵合金。
背景技术
高熵合金是由五个及以上的等原子或非等原子比的金属元素组成,高熵合金因其结构与传统合金的差异性,使其获得了许多吸引人的性能,如高硬度和强度、高耐腐蚀性、独特的电磁学性能、优异的耐磨性等,将其附着在基体表面形成薄膜时也会表现出相似的性能,有将其应用于电极制备的巨大潜力。
目前高熵合金制备方法主要包括电弧感应熔炼、热喷涂、激光熔覆、机械压铸等,电弧熔炼、激光等都需要一个高的加工温度,且难以保证产品充分的均匀性。机械压铸等方法能耗大,易氧化,在制备块状产品时,还需要经过压制和烧结过程。且上述制备方法通常需要真空、高温等环境,或者需要惰性气体对其进行保护,制备成本高、加工路线长。
发明内容
鉴于此,有必要针对现有技术中存在缺陷提供一种能实现低成本和低能耗的FeCoNiCuZn高熵合金的制备方法及FeCoNiCuZn高熵合金。
为解决上述问题,本申请采用下述技术方案:
本申请提供的一种FeCoNiCuZn高熵合金的制备方法,包括下述步骤:
配置电镀液,所述电镀液中包括可溶性铁盐、钴盐、镍盐、铜盐及锌盐;
通过电沉积方法对所述电镀液进行电镀处理,得到FeCoNiCuZn高熵合金。
在其中一些实施例中,在配置电镀液的步骤中,具体包括下述步骤:
将络合剂、附加盐、缓冲剂及去离子水的混合溶液进行加热处理,得到溶液A;
将所述溶液A、所述可溶性铁盐、所述钴盐、所述镍盐、所述铜盐及所述锌盐的混合溶液进行加热处理,得到溶液B;
将所述溶液B进行加热处理并陈化后,调节PH值至0.1-6.8,得到所述电镀液。
在其中一些实施例中,在将络合剂、附加盐、缓冲剂及去离子水的混合溶液进行加热处理,得到溶液A的步骤中,具体为:将缓冲剂溶于去离子水中,加热并维持温度至30℃-200℃,再加入络合剂及附加盐搅拌溶解后得到溶液A。
在其中一些实施例中,在将所述溶液A、所述可溶性铁盐、所述钴盐、所述镍盐、所述铜盐及所述锌盐的混合溶液进行加热处理,得到溶液B的步骤中,具体为:
加热所述溶液A并维持温度至30℃-200℃,再依次加入所述钴盐、所述镍盐、所述铜盐、所述锌盐、所述可溶性铁盐及还原剂,搅拌溶解后得到溶液B。
在其中一些实施例中,在将所述溶液B进行加热处理并陈化后,调节PH值至0.1-6.8,得到所述电镀液的步骤中,具体为:将所述溶液B加热并维持温度至30℃-200℃,陈化0.2-8h后,再调节所述溶液B的PH值至0.1-6.8, 得到电镀液。
在其中一些实施例中,所述络合剂包括但不限于为柠檬酸、柠檬酸钠、焦磷酸钾,所述缓冲剂包括但不限于为硼酸、磷酸氢二钠、磷酸、醋酸,所述附加盐包括但不限于为氯化钾、氯化钠、硫酸钠。
在其中一些实施例中,所述可溶性铁盐包括但不限于硫酸亚铁、氯化亚铁、硝酸铁,所述钴盐包括但不限于硫酸钴、氯化钴、硝酸钴,所述镍盐包括但不限于硫酸镍、氯化镍、硝酸镍,所述铜盐包括但不限于硫酸铜、氯化铜、硝酸铜,所述锌盐包括但不限于硫酸锌、氯化锌、硝酸锌,所述还原剂包括但不限于次亚磷酸钠、抗坏血酸。
在其中一些实施例中,所述柠檬酸的组分含量为10.0-200.0g/L,所述柠檬酸钠的组分含量为1.0-50.0g/L,所述硼酸的组分含量为2.0-80.0g/L,所述氯化钾的组分含量为。
在其中一些实施例中,所述硫酸亚铁的组分含量为5.0-200.0g/L、所述硫酸钴的组分含量为5.0-180.0g/L、所述硫酸镍的组分含量为5.0-150g/L、所述氯化钾的组分含量为5.0-100.0g/L、所述硫酸铜的组分含量为0.1-50.0g/L、所述硫酸锌的组分含量为0.2-60.0g/L、所述次亚磷酸钠的组分含量为0.1-20g/L。
在其中一些实施例中,在通过电沉积方法对所述电镀液进行电镀处理,得到FeCoNiCuZn高熵合金的步骤中,具体包括下述步骤:
采用电极棒为阳极,导电基底作为阴极,使用恒电位电沉积方法对所述电镀液进行电镀处理,即得到FeCoNiCuZn高熵合金,电沉积时电位范围为0.5-3.0V,沉积时间为0.1-100.0min。
在其中一些实施例中,所述导电基底先采用砂纸进行抛光处理,再进行超声处理5-20min,然后使用浓度为0.5-2mol/L硫酸溶液浸泡处理0.5-8h,再依次用纯水、乙醇冲洗及烘干,所述导电基底包括但不限于钛、铜片、银。
在其中一些实施例中,所述的FeCoNiCuZn高熵合金各金属元素的比例在1%~50%之间。
另外,本申请还提供了一种FeCoNiCuZn高熵合金,由所述的FeCoNiCuZn高熵合金的制备方法制备得到。
本申请采用上述技术方案,其有益效果如下:
本申请提供的FeCoNiCuZn高熵合金的制备方法及FeCoNiCuZn高熵合金,采用电沉积方法对电镀液进行电镀处理,得到FeCoNiCuZn高熵合金,相比于其它合成方法,电沉积方法,相比于传统的激光熔覆等,其可以在较低的加工温度和低的能耗下进行,成本较低,操作简单,不需要复杂的设备和昂贵的原料,且可以在复杂几何形状的基底上制备HEA,为工程应用提供了极大的便利。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的FeCoNiCuZn高熵合金的制备方法的步骤流程图。
图2为本申请提供的配置电镀液的步骤流程图。
图3为本申请实施例2制备得到的FeCoNiCuZn高熵合金SEM图像。
图4为本申请实施例2制备得到的FeCoNiCuZn高熵合金EDS图像。
图5为本申请实施例2制备得到的FeCoNiCuZn高熵合金能谱图像。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“上”、“下”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。
请参阅图1,为本实施例提供的一种FeCoNiCuZn高熵合金的制备方法的步骤流程图,包括步骤S10-20,以下详细说明各个步骤的具体实现方案。
步骤S10:配置电镀液,所述电镀液中包括可溶性铁盐、钴盐、镍盐、铜盐及锌盐。
请参阅图2,为本实施例提供的配置电镀液的步骤流程图,具体包括下述步骤:
步骤S11:将络合剂、附加盐、缓冲剂及去离子水的混合溶液进行加热处理,得到溶液A。
在本实施例中,将络合剂、附加盐、缓冲剂及去离子水的混合溶液进行加热处理,得到溶液A,具体为:将缓冲剂溶于去离子水中,加热并维持温度至30℃-200℃,使溶剂加速溶解,加快离子迁移速率,再加入络合剂及附加盐搅拌溶解后得到溶液A。
具体地,所述络合剂包括但不限于为柠檬酸、柠檬酸钠、焦磷酸钾。所述缓冲剂包括但不限于为硼酸、磷酸氢二钠、磷酸、醋酸等。所述附加盐包括但不限于为氯化钾、氯化钠、硫酸钠等。
进一步地,所述柠檬酸的组分含量为10.0-200.0g/L,所述柠檬酸钠的组分含量为1.0-50.0g/L,所述硼酸的组分含量为2.0-80.0g/L,所述氯化钾的组分含量为5-50g/L。
可以理解,上述所述络合剂组分能更好拉近电镀液中多个金属离子的沉积电位,所述缓冲剂组分能更好的抑制电镀中溶液的PH变化,保持溶液稳定,所述附加盐组分能大程度提高溶液的导电性。
步骤S12:将所述溶液A、所述可溶性铁盐、所述钴盐、所述镍盐、所述铜盐、所述锌盐及还原剂的混合溶液进行加热处理,得到溶液B。
在本实施例中,在将所述溶液A、所述可溶性铁盐、所述钴盐、所述镍盐、所述铜盐、所述锌盐及还原剂的混合溶液进行加热处理,得到溶液B的步骤中,具体为:加热所述溶液A并维持温度至30℃-200℃,使溶剂加速溶解,加快离子迁移速率,再依次加入所述钴盐、所述镍盐、所述铜盐、所述锌盐、所述可溶性铁盐及还原剂,搅拌溶解后得到溶液B。
在本实施例中,所述可溶性铁盐包括但不限于硫酸亚铁、氯化亚铁、硝酸铁等。所述钴盐包括但不限于硫酸钴、氯化钴、硝酸钴等。所述镍盐包括但不限于硫酸镍、氯化镍、硝酸镍等。所述铜盐包括但不限于硫酸铜、氯化铜、硝酸铜等。所述锌盐包括但不限于硫酸锌、氯化锌、硝酸锌等。所述还原剂包括但不限于次亚磷酸钠、抗坏血酸等。
具体地,所述硫酸亚铁的组分含量为5.0-200.0g/L、所述硫酸钴的组分含量为5.0-180.0g/L、所述硫酸镍的组分含量为5.0-150g/L、所述硫酸铜的组分含量为0.1-50.0g/L、所述硫酸锌的组分含量为0.2-60.0g/L、所述次亚磷酸钠的组分含量为0.1-20g/L。
可以理解,由于所述可溶性铁盐、所述钴盐、所述镍盐、所述铜盐、所述锌盐组分能为电镀液提供主盐,使高熵合金元素分布更为均匀,所述还原剂组分能较好抑制Fe 2+氧化为Fe 3+
步骤S13:将所述溶液B进行加热处理并陈化后,调节PH值至0.1-6.8,得到所述电镀液。
在本实施例中,在将所述溶液B进行加热处理并陈化后,调节PH值至0.1-6.8,得到所述电镀液的步骤中,具体为:将所述溶液B加热并维持温度至30℃-200℃,陈化0.2-8h后,再调节所述溶液B的PH值至0.1-6.8,得到电镀液。
步骤S20:通过电沉积方法对所述电镀液进行电镀处理,得到FeCoNiCuZn高熵合金。
在本实施例中,在通过电沉积方法对所述电镀液进行电镀处理,得到FeCoNiCuZn高熵合金的步骤中,具体包括下述步骤:
采用电极棒为阳极,导电基底作为阴极,使用恒电位电沉积方法对所述电镀液进行电镀处理,即得到FeCoNiCuZn高熵合金,电沉积时电位范围为0.5-3.0V,沉积时间为0.1-100.0min。
可以理解,该电位范围及沉积时间能使电镀过程更为稳定,镀层组分更加均匀,能实现多种金属的共沉积,形成高熵合金。
具体地,所述导电基底先采用砂纸进行抛光处理,再进行超声处理5-20min,然后使用浓度为0.5-2mol/L硫酸溶液浸泡处理0.5-8h,再依次用纯 水、乙醇冲洗及烘干,所述导电基底包括但不限于钛、铜片、银等。
进一步地,通过上述实施例制备得到的所述的FeCoNiCuZn高熵合金各金属元素的比例在1%~50%之间,减少不均匀性对性能均一性的影响。
本申请提供的FeCoNiCuZn高熵合金的制备方法及FeCoNiCuZn高熵合金,采用电沉积方法对电镀液进行电镀处理,得到FeCoNiCuZn高熵合金,相比于其它合成方法,电沉积方法,相比于传统的激光熔覆等,其可以在较低的加工温度和低的能耗下进行,成本较低,操作简单,不需要复杂的设备和昂贵的原料,且可以在复杂几何形状的基底上制备HEA,为工程应用提供了极大的便利。
以下结合具体实施例对本申请上述技术方案进行详细说明。
实施例1
将2.0g/L硼酸溶于去离子水中,加热并维持温度至30℃,再加入10.0g/L柠檬酸及氯化钾搅拌溶解后得到溶液A;加热所述溶液A并维持温度至30℃,再依次加入5.0g/L硫酸钴、5.0g/L硫酸镍、0.1g/L硫酸铜、0.2g/L硫酸锌、5.0g/L硫酸亚铁及0.1g/L次亚磷酸钠,搅拌溶解后得到溶液B;将所述溶液B加热并维持温度至30℃,陈化0.2h后,再调节所述溶液B的PH值至0.1,得到电镀液。
采用电极棒为阳极,钛作为阴极,使用恒电位电沉积方法对所述电镀液进行电镀处理,即得到FeCoNiCuZn高熵合金,电沉积时电位范围为0.5V,沉积时间为100.0min,得到FeCoNiCuZn高熵合金。
实施例2
将30.0g/L硼酸溶于去离子水中,加热并维持温度至60℃,再加入100.0g/L柠檬酸及氯化钾搅拌溶解后得到溶液A;加热所述溶液A并维持温度至100℃,再依次加入90.0g/L硫酸钴、90.0g/L硫酸镍、20g/L硫酸铜、30g/L 硫酸锌、100g/L硫酸亚铁及10g/L次亚磷酸钠,搅拌溶解后得到溶液B;将所述溶液B加热并维持温度至100℃,陈化4h后,再调节所述溶液B的PH值至4,得到电镀液。
采用电极棒为阳极,钛作为阴极,使用恒电位电沉积方法对所述电镀液进行电镀处理,即得到FeCoNiCuZn高熵合金,电沉积时电位范围为1V,沉积时间为10.0min,得到FeCoNiCuZn高熵合金。
请参阅图3,为本实施例制备得到的FeCoNiCuZn高熵合金SEM图像。通过SEM图像可看出形成了金属薄膜,且分布均匀。
请参阅图4,为本实施例制备得到的FeCoNiCuZn高熵合金EDS图像。通过EDS图像可看出五种金属元素都成功沉积在了同一区域,且分布均匀。
请参阅图5,为本实施例制备得到的FeCoNiCuZn高熵合金能谱图像。通过EDS能谱可看出五种金属元素的共沉积,通过SEM、EDS等图像结合可说明FeCoNiCuZn高熵合金的成功制备。
实施例3
将80.0g/L硼酸溶于去离子水中,加热并维持温度至200℃,再加入50.0g/L柠檬酸钠及氯化钾搅拌溶解后得到溶液A;加热所述溶液A并维持温度至200℃,再依次加入180.0g/L硫酸钴、150.0g/L硫酸镍、50g/L硫酸铜、60g/L硫酸锌、200g/L硫酸亚铁及20g/L次亚磷酸钠,搅拌溶解后得到溶液B;将所述溶液B加热并维持温度至200℃,陈化8h后,再调节所述溶液B的PH值至6.8,得到电镀液。
采用电极棒为阳极,钛作为阴极,使用恒电位电沉积方法对所述电镀液进行电镀处理,即得到FeCoNiCuZn高熵合金,电沉积时电位范围为3V,沉积时间为100.0min,得到FeCoNiCuZn高熵合金。
本申请上述实施例提供的FeCoNiCuZn高熵合金的制备方法及 FeCoNiCuZn高熵合金,采用电沉积方法对电镀液进行电镀处理,得到FeCoNiCuZn高熵合金,相比于其它合成方法,电沉积方法,相比于传统的激光熔覆等,其可以在较低的加工温度和低的能耗下进行,成本较低,操作简单,不需要复杂的设备和昂贵的原料,且可以在复杂几何形状的基底上制备HEA,为工程应用提供了极大的便利。
以上仅为本申请的较佳实施例而已,仅具体描述了本申请的技术原理,这些描述只是为了解释本申请的原理,不能以任何方式解释为对本申请保护范围的限制。基于此处解释,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进,及本领域的技术人员不需要付出创造性的劳动即可联想到本申请的其他具体实施方式,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种FeCoNiCuZn高熵合金的制备方法,其特征在于,包括下述步骤:
    配置电镀液,所述电镀液中包括可溶性铁盐、钴盐、镍盐、铜盐及锌盐;
    通过电沉积方法对所述电镀液进行电镀处理,得到FeCoNiCuZn高熵合金。
  2. 如权利要求1所述的FeCoNiCuZn高熵合金的制备方法,其特征在于,在配置电镀液的步骤中,具体包括下述步骤:
    将络合剂、附加盐、缓冲剂及去离子水的混合溶液进行加热处理,得到溶液A;
    将所述溶液A、所述可溶性铁盐、所述钴盐、所述镍盐、所述铜盐、所述锌盐及还原剂的混合溶液进行加热处理,得到溶液B;
    将所述溶液B进行加热处理并陈化后,调节PH值至0.1-6.8,得到所述电镀液。
  3. 如权利要求2所述的FeCoNiCuZn高熵合金的制备方法,其特征在于,在将络合剂、附加盐、缓冲剂及去离子水的混合溶液进行加热处理,得到溶液A的步骤中,具体为:将缓冲剂溶于去离子水中,加热并维持温度至30℃-200℃,再加入络合剂及附加盐搅拌溶解后得到溶液A。
  4. 如权利要求2所述的FeCoNiCuZn高熵合金的制备方法,其特征在于,在将所述溶液A、所述可溶性铁盐、所述钴盐、所述镍盐、所述铜盐、所述锌盐及还原剂的混合溶液进行加热处理,得到溶液B的步骤中,具体为:
    加热所述溶液A并维持温度至30℃-200℃,再依次加入所述钴盐、所述镍盐、所述铜盐、所述锌盐、所述可溶性铁盐及还原剂,搅拌溶解后得到溶液B。
  5. 如权利要求2所述的FeCoNiCuZn高熵合金的制备方法,其特征在于,在 将所述溶液B进行加热处理并陈化后,调节PH值至0.1-6.8,得到所述电镀液的步骤中,具体为:将所述溶液B加热并维持温度至30℃-200℃,陈化0.2-8h后,再调节所述溶液B的PH值至0.1-6.8,得到电镀液。
  6. 如权利要求3所述的FeCoNiCuZn高熵合金的制备方法,其特征在于,所述络合剂包括但不限于为柠檬酸、柠檬酸钠、焦磷酸钾,所述缓冲剂包括但不限于为硼酸、磷酸氢二钠、磷酸、醋酸,所述附加盐包括但不限于为氯化钾、氯化钠、硫酸钠。
  7. 如权利要求4所述的FeCoNiCuZn高熵合金的制备方法,其特征在于,所述可溶性铁盐包括但不限于硫酸亚铁、氯化亚铁、硝酸铁,所述钴盐包括但不限于硫酸钴、氯化钴、硝酸钴,所述镍盐包括但不限于硫酸镍、氯化镍、硝酸镍,所述铜盐包括但不限于硫酸铜、氯化铜、硝酸铜,所述锌盐包括但不限于硫酸锌、氯化锌、硝酸锌,所述还原剂包括但不限于次亚磷酸钠、抗坏血酸。
  8. 如权利要求6所述的FeCoNiCuZn高熵合金的制备方法,其特征在于,所述柠檬酸的组分含量为10.0-200.0g/L,所述柠檬酸钠的组分含量为1.0-50.0g/L,所述硼酸的组分含量为2.0-80.0g/L,所述氯化钾的组分含量为5-50g/L。
  9. 如权利要求7所述的FeCoNiCuZn高熵合金的制备方法,其特征在于,所述硫酸亚铁的组分含量为5.0-200.0g/L、所述硫酸钴的组分含量为5.0-180.0g/L、所述硫酸镍的组分含量为5.0-150g/L、所述氯化钾的组分含量为5.0-100.0g/L、所述硫酸铜的组分含量为0.1-50.0g/L、所述硫酸锌的组分含量为0.2-60.0g/L、所述次亚磷酸钠的组分含量为0.1-20g/L。
  10. 如权利要求1所述的FeCoNiCuZn高熵合金的制备方法,其特征在于,在通过电沉积方法对所述电镀液进行电镀处理,得到FeCoNiCuZn高熵合金的步骤中,具体包括下述步骤:
    采用电极棒为阳极,导电基底作为阴极,使用恒电位电沉积方法对所述电镀液进行电镀处理,即得到FeCoNiCuZn高熵合金,电沉积时电位范围为 0.5-3.0V,沉积时间为0.1-100.0min。
  11. 如权利要求10所述的FeCoNiCuZn高熵合金的制备方法,其特征在于,所述导电基底先采用砂纸进行抛光处理,再进行超声处理5-20min,然后使用浓度为0.5-2mol/L硫酸溶液浸泡处理0.5-8h,再依次用纯水、乙醇冲洗及烘干,所述导电基底包括但不限于钛、铜片、银。
  12. 如权利要求1所述的FeCoNiCuZn高熵合金的制备方法,其特征在于,所述的FeCoNiCuZn高熵合金各金属元素的比例在1%~50%之间。
  13. 一种FeCoNiCuZn高熵合金,其特征在于,由权利要求1至12任一项所述的FeCoNiCuZn高熵合金的制备方法制备得到。
PCT/CN2022/088045 2022-04-21 2022-04-21 一种FeCoNiCuZn高熵合金的制备方法及FeCoNiCuZn高熵合金 WO2023201600A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/088045 WO2023201600A1 (zh) 2022-04-21 2022-04-21 一种FeCoNiCuZn高熵合金的制备方法及FeCoNiCuZn高熵合金

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/088045 WO2023201600A1 (zh) 2022-04-21 2022-04-21 一种FeCoNiCuZn高熵合金的制备方法及FeCoNiCuZn高熵合金

Publications (1)

Publication Number Publication Date
WO2023201600A1 true WO2023201600A1 (zh) 2023-10-26

Family

ID=88418730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088045 WO2023201600A1 (zh) 2022-04-21 2022-04-21 一种FeCoNiCuZn高熵合金的制备方法及FeCoNiCuZn高熵合金

Country Status (1)

Country Link
WO (1) WO2023201600A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117542948A (zh) * 2024-01-10 2024-02-09 华北电力大学 一种水系锌离子电池负极材料、制备方法及锌离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108728876A (zh) * 2018-06-06 2018-11-02 西南石油大学 一种FeCoNiCuMo高熵合金薄膜的制备方法
CN112191273A (zh) * 2020-10-12 2021-01-08 中国科学技术大学 一种用于电解水制氧的高熵配位聚合物催化剂及其制备方法和应用
CN112609213A (zh) * 2020-12-11 2021-04-06 东北大学 高熵合金多孔电极及其制备方法
CN113649022A (zh) * 2021-10-20 2021-11-16 天津环科环境咨询有限公司 一种用于有机挥发性废气催化燃烧的催化剂及其制备方法
US20220081794A1 (en) * 2020-09-11 2022-03-17 University Of Cincinnati Electrochemical deposition of functionalized high entropy alloys

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108728876A (zh) * 2018-06-06 2018-11-02 西南石油大学 一种FeCoNiCuMo高熵合金薄膜的制备方法
US20220081794A1 (en) * 2020-09-11 2022-03-17 University Of Cincinnati Electrochemical deposition of functionalized high entropy alloys
CN112191273A (zh) * 2020-10-12 2021-01-08 中国科学技术大学 一种用于电解水制氧的高熵配位聚合物催化剂及其制备方法和应用
CN112609213A (zh) * 2020-12-11 2021-04-06 东北大学 高熵合金多孔电极及其制备方法
CN113649022A (zh) * 2021-10-20 2021-11-16 天津环科环境咨询有限公司 一种用于有机挥发性废气催化燃烧的催化剂及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117542948A (zh) * 2024-01-10 2024-02-09 华北电力大学 一种水系锌离子电池负极材料、制备方法及锌离子电池
CN117542948B (zh) * 2024-01-10 2024-03-29 华北电力大学 一种水系锌离子电池负极材料、制备方法及锌离子电池

Similar Documents

Publication Publication Date Title
US2369620A (en) Method of coating cupreous metal with tin
TW200303938A (en) Electroplating solution containing organic acid complexing agent
CN102758230B (zh) 一种电镀金溶液及电镀金方法
CN108060442B (zh) 一种铜铝复合排表面制备锌铜复合镀层的方法
WO2023201600A1 (zh) 一种FeCoNiCuZn高熵合金的制备方法及FeCoNiCuZn高熵合金
JP5937086B2 (ja) 高アルカリ性めっき浴を用いた無電解金属析出法
KR20140033908A (ko) 니켈 도금액, 및 이를 이용한 니켈 도금층 형성 방법
RU2398049C2 (ru) Усовершенствованные стабилизация и рабочие характеристики автокаталитических способов нанесения покрытия методом химического восстановления
US6699379B1 (en) Method for reducing stress in nickel-based alloy plating
JP5583896B2 (ja) パラジウムおよびパラジウム合金の高速めっき方法
Mahapatra et al. Co-electrodeposition of tin with 0.2–20% indium: Implications on tin whisker growth
JPH0250993B2 (zh)
WO2024098288A1 (zh) Fe-Co-Ni-Cu-Zn高熵合金及其制备方法
RU2537346C1 (ru) Способ электролитно-плазменной обработки поверхности металлов
CN116970996A (zh) 一种FeCoNiCuZn高熵合金的制备方法及FeCoNiCuZn高熵合金
JP2732972B2 (ja) リフロー錫またはリフロー錫合金めっき浴
JPS61194196A (ja) 電気錫−鉛合金メツキ法
JP6621169B2 (ja) めっき品の製造方法
KR20210023564A (ko) 루테늄을 포함하는 합금 도금액 조성물 및 이를 이용한 루테늄 도금 방법
KR100485808B1 (ko) 동-니켈 합금의 박막 도금액 및 상기 용액을 이용한 박막제조 방법
US3772170A (en) Electrodeposition of chromium
TWI781771B (zh) 滾筒電鍍用錫電鍍液
JP3026527B2 (ja) 無電解めっきの前処理方法および前処理液
CN112941577B (zh) 一种含光亮剂的离子液体镀铝液及光亮铝镀层的制备方法
CN114606552B (zh) 一种表面具有导电性阳极氧化膜的镁合金制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937837

Country of ref document: EP

Kind code of ref document: A1