WO2023201513A1 - 用于角度传感器的校正方法和校正装置 - Google Patents

用于角度传感器的校正方法和校正装置 Download PDF

Info

Publication number
WO2023201513A1
WO2023201513A1 PCT/CN2022/087579 CN2022087579W WO2023201513A1 WO 2023201513 A1 WO2023201513 A1 WO 2023201513A1 CN 2022087579 W CN2022087579 W CN 2022087579W WO 2023201513 A1 WO2023201513 A1 WO 2023201513A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction
angle
predetermined vector
measurement value
mechanical angle
Prior art date
Application number
PCT/CN2022/087579
Other languages
English (en)
French (fr)
Inventor
吕正涛
陶冬生
Original Assignee
舍弗勒技术股份两合公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司 filed Critical 舍弗勒技术股份两合公司
Priority to PCT/CN2022/087579 priority Critical patent/WO2023201513A1/zh
Publication of WO2023201513A1 publication Critical patent/WO2023201513A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed

Definitions

  • the present invention relates to the field of motor technology. Specifically, the present invention relates to a correction method and a correction device for an angle sensor of a motor rotor.
  • PMSM Permanent Magnet Synchronous Motor
  • the stator of a permanent magnet synchronous motor includes coil windings, and the rotor includes permanent magnets.
  • the coil windings can generate a rotating magnetic field when a three-phase alternating voltage or current is applied, thereby driving the rotor to rotate relative to the stator.
  • the geometric angle at which the rotor rotates in physical space is called the mechanical angle, and the corresponding position of the rotor within a magnetic field change cycle is called the electrical angle.
  • the angle sensor in the permanent magnet synchronous motor can directly detect the mechanical angle of the rotor and convert the mechanical angle into an electrical angle through a certain corresponding relationship.
  • the correspondence between the mechanical angle and the electrical angle may change.
  • the rotor angle sensor used in the permanent magnet synchronous motor operates for a long time. There will be errors that cannot be ignored. As shown in Figure 1, the vertical axis represents the sensor angle and the horizontal axis represents the true angle. In this case, the curve of the actual correspondence between the sensor angle and the true angle will deviate from the ideal curve. If there is an error in the electrical angle data provided by the angle sensor, the motor torque will fluctuate, which may even cause the motor to fail to work.
  • the angle zero point self-learning that is, applying a continuous phase voltage to the U phase to obtain the zero point position of the electrical angle.
  • this method can only correct the zero point angle and cannot solve the offset problem of the entire curve.
  • the second method is to set up standardized equipment to correct the sensor data, but this method requires additional equipment and is therefore more expensive.
  • the third method is to replace or reinstall the rotor angle sensor, but this method is also time-consuming and labor-intensive because the motor needs to be removed from the vehicle or other installation environment, and the new sensor also increases the cost.
  • the technical problem to be solved by the present invention is to provide an improved correction method and correction device.
  • the above technical problems are solved by a correction method for an angle sensor according to the present invention.
  • the angle sensor is used to detect the mechanical angle of the permanent magnet synchronous motor and convert the mechanical angle into an electrical angle.
  • the permanent magnet synchronous motor includes a stator and a rotor that can rotate relative to the stator.
  • the correction method includes: a correction control step, controlling the target electrical parameters of the rotor to reach multiple predetermined vector values in sequence, and obtaining the mechanical angle measurement value of the angle sensor under the corresponding predetermined vector value, wherein each predetermined vector value has The corresponding actual electrical angle; the mapping correction step, establishing a correction mapping relationship table between the actual electrical angle corresponding to each predetermined vector value and the corresponding mechanical angle measurement value; and the measurement value correction step, based on the correction mapping relationship table, the current The mechanical angle measurement value is corrected.
  • the electrical angle corresponding to the current mechanical angle measurement value is calculated through linear interpolation.
  • the electrical angle measurements of the corrected angle sensor are accurate at least at the mechanical angles (correction nodes) corresponding to these predetermined vector values.
  • the electrical angle measurements between these positions (correction nodes) can be calculated by linear interpolation, allowing the electrical angle measurements over the entire cycle to be easily and accurately corrected.
  • the correction method may also include a mapping self-learning step after the measurement value correction step, in which a new mapping relationship calculated by linear interpolation is added to the correction mapping relationship table.
  • a mapping self-learning step After the mapping self-learning step, the mapping relationship data in the correction mapping relationship table is gradually enriched. When a corrected mechanical angle appears in subsequent measurements, the corresponding electrical angle can be directly obtained through the correction mapping relationship table.
  • the rotor of the motor can be conveniently and accurately controlled to stop at these angular positions, so that the electrical angle measurement value at the node can be accurately corrected.
  • the angle between any two adjacent predetermined vector values may be the same. That is, these predetermined vector values of the target electrical parameters are evenly spaced within a period of 360°*n. This ensures that the angle sensor has a high degree of accuracy throughout the entire rotation cycle of the rotor.
  • the target electrical parameter may be the voltage applied to the stator.
  • the rotor By controlling the voltage vector, the rotor can be stabilized at a predetermined electrical angle position.
  • the current applied to the rotor can also be selected as the target electrical parameter.
  • the modulus values of the plurality of predetermined vector values may be equal to each other.
  • the modulus of the predetermined vector value needs to ensure that the rotor can be driven to rotate and stop at a predetermined angular position.
  • These predetermined vector values have the same modulus value making it easier to control the electrical parameters during the switching process.
  • each step of the correction method can be repeatedly executed periodically, and/or each step of the correction method can be re-executed when a trigger condition is met.
  • a trigger condition may include detection of data corruption or loss of the correction mapping relationship table stored on the storage device. For example, stored data can usually be tested each time the key is powered on.
  • the above technical problems are also solved by a correction device for an angle sensor according to the present invention.
  • the angle sensor is used to detect the mechanical angle of the permanent magnet synchronous motor and convert the mechanical angle into an electrical angle.
  • the permanent magnet synchronous motor includes a stator and a rotor that can rotate relative to the stator.
  • the correction device includes: a correction control module configured to control the target electrical parameters of the rotor to reach a plurality of predetermined vector values in sequence, and obtain the mechanical angle measurement value of the angle sensor under the corresponding predetermined vector value, wherein each predetermined vector The values have corresponding actual electrical angles respectively; the mapping correction module is configured to establish a correction mapping relationship table between the actual electrical angle corresponding to each predetermined vector value and the corresponding mechanical angle; and the measured value correction module is configured as The current mechanical angle measurement value is corrected according to the correction mapping relationship table. When the current mechanical angle measurement value does not exist in the correction mapping relationship table, the electrical angle corresponding to the current mechanical angle is calculated through linear interpolation.
  • the electrical angle measurements of the corrected angle sensor are accurate at least at the mechanical angles (correction nodes) corresponding to these predetermined vector values.
  • the electrical angle measurements between these locations (correction nodes) can be calculated by linear interpolation, allowing for easy and accurate correction of the electrical angle measurements over the entire cycle.
  • the correction device may further include a mapping self-learning module configured to add the new mapping relationship calculated by the measurement value correction module through linear interpolation to the correction mapping relationship table.
  • the rotor of the motor can be conveniently and accurately controlled to stop at these angular positions, so that the electrical angle measurement value at the node can be accurately corrected.
  • control module may be further configured to determine the plurality of predetermined vector values in such a manner that the angles between any two adjacent predetermined vector values are the same. That is, these predetermined vector values of the target electrical parameters are evenly spaced within a period of 360°*n. This ensures that the angle sensor has a high degree of accuracy throughout the entire rotation cycle of the rotor.
  • control module may be configured to use the voltage applied to the stator as the target electrical parameter.
  • the rotor By controlling the voltage vector, the rotor can be stabilized at a predetermined electrical angle position.
  • the current applied to the rotor can also be selected as the target electrical parameter.
  • control module may be configured to make the modulus values of the plurality of predetermined vector values equal to each other.
  • the modulus of the predetermined vector value needs to ensure that the rotor can be driven to rotate and stop at a predetermined angular position.
  • These predetermined vector values have the same modulus value making it easier to control the electrical parameters during the switching process.
  • the correction device may further include a correction reset module configured to cause the correction device to repeatedly perform correction on the angle sensor periodically, and/or to reset the angle sensor when the trigger condition is met. Perform calibration.
  • Figure 1 shows the corresponding relationship curve between the electrical angle and the mechanical angle
  • Figure 2 shows a flow chart of a correction method according to an exemplary embodiment of the present invention
  • FIG. 3 shows a schematic diagram of a vector circle of a correction method according to an exemplary embodiment of the present invention.
  • FIG. 4 shows a schematic diagram of a mapping relationship of a correction method according to an exemplary embodiment of the present invention.
  • the permanent magnet synchronous motor includes a stator and a rotor, wherein the rotor can rotate relative to the stator about a rotation axis.
  • the stator is equipped with coil windings arranged around the rotor.
  • the coil windings can generate a rotating magnetic field when a three-phase alternating voltage or current is applied.
  • One or more pole pairs consisting of permanent magnets are installed in the rotor.
  • the rotating magnetic field of the stator can generate electromagnetic force on the permanent magnet of the rotor, thereby driving the rotor to rotate around the rotation axis relative to the stator.
  • the permanent magnet synchronous motor may include a motor controller, which may control electrical parameters such as voltage and/or current in the coil windings of the stator, thereby controlling the operation of the motor.
  • the permanent magnet synchronous motor also includes an angle sensor for detecting the operating angle of the permanent magnet synchronous motor, especially the rotor.
  • the geometric angle at which the rotor rotates in physical space is called the mechanical angle, and the corresponding position of the rotor within a magnetic field change cycle is called the electrical angle.
  • Angle sensors are components that can directly detect the mechanical angle of the rotor, such as encoders.
  • the mechanical angle directly measured by the angle sensor can be converted into an electrical angle through a certain corresponding relationship, and the motor controller can refer to the electrical angle to control the operation of the motor.
  • the correction method according to the present invention can correct the correspondence between the mechanical angle and the electrical angle, thereby obtaining a more accurate electrical angle.
  • FIG. 2 shows a flowchart of a correction method according to an exemplary embodiment of the present invention.
  • the correction method mainly includes steps S1-S3, and may optionally include an additional step S4. These steps can be performed by the motor controller.
  • the implementation process of each step of the correction method will be introduced in detail with reference to Figures 2 to 4 below.
  • the target electrical parameters of the rotor are controlled to reach a plurality of predetermined vector values in sequence to obtain the mechanical angle measurement value of the angle sensor at the corresponding predetermined vector value.
  • Each of these predetermined vector values has a corresponding actual electrical angle, and when selecting these predetermined vector values, these actual electrical angles are known.
  • the target electrical parameter here is the physical quantity in the circuit that affects the magnetic field generated by the stator (especially the coil winding), especially the voltage or current applied to the stator. In order to facilitate control, voltage may preferably be selected as the target electrical parameter.
  • U 4 , U 6 , U 2 , U 3 , U 1 , and U 5 are six voltage vectors with different directions respectively. According to the order shown in the figure, The angle between any two adjacent voltage vectors is 60°.
  • U 4 is the voltage vector at which the electrical angle is defined as 0°.
  • U 0 and U 7 are voltage vectors with a value of zero. If voltage U 4 is continuously applied to the motor under the control of the motor controller, the rotor will eventually come to rest at 0° (actual electrical angle). At this time, the mechanical angle detected by the angle sensor is the mechanical angle corresponding to 0° electrical angle. This process is also called zero angle point self-learning.
  • the rotor can be made to stay in different positions, and the corresponding mechanical angle can be detected by the angle sensor.
  • the switches in the coil windings of the motor are all in a stable closed or open state, through the combination of the opening and closing states of different switches, the voltage vector every 60° starting from 0° can be stably obtained.
  • U 4 , U 6 , U 2 , U 3 , U 1 , and U 5 (1 and 0 in brackets in the figure represent the corresponding switch states).
  • any vector between the above voltage vectors can be synthesized theoretically.
  • the voltage vectors U 4 , U 6 , U 2 , U 3 , U 1 , and U 5 that can be stably obtained are preferably used as the predetermined vector values.
  • the selected plurality of predetermined vector values may preferably include at least the vector value corresponding to the actual electrical angle of 60°*i.
  • the angle between any two adjacent predetermined vector values can preferably be selected to be the same. In other words, the vector directions of the selected predetermined vector values are evenly distributed in the circumferential direction. Therefore, after all vector values with an electrical angle of 60°*i have been selected, the additional vector values added can be the angular bisection vectors between these vector values.
  • Step S1 has been described above using voltage as the target electrical parameter as an example. It should be understood that current can also be used as the target electrical parameter.
  • the modulus (ie, magnitude) of each predetermined vector value may be equal to each other, so that it is convenient to control the target electrical parameter when switching between the predetermined vector values.
  • mapping correction step S2 a relationship between the actual electrical angle corresponding to each predetermined vector value and the corresponding mechanical angle measurement value (ie, the mechanical angle measurement value obtained by the angle sensor at each predetermined vector value) can be established. correction mapping relationship table.
  • step S1 according to the order of the electrical angles corresponding to the predetermined vector values (in this embodiment, 0°, 60°,..., 360°), the corresponding mechanical angles obtained after measurement can be recorded as angle 1, angle 2.
  • a one-to-one mapping is established between each electrical angle and the corresponding measured mechanical angle, that is, each electrical angle is correlated with the corresponding measured mechanical angle. This mapping relationship is recorded in the correction mapping relationship table.
  • step S1 and step S2 can be performed either sequentially or alternately. If done sequentially, you can first measure the mechanical angles under all predetermined vector values, and then establish the mapping. If done alternately, the corresponding mechanical angle can be measured for a predetermined vector value, and a mapping between the mechanical angle and the corresponding electrical angle can be established, and then the above process can be repeated for the next predetermined vector value.
  • the current mechanical angle measurement value can be corrected according to the correction mapping relationship table.
  • the angle sensor detects that the rotor is located at a certain mechanical angle for which the mapping relationship has been established in step S2
  • the mechanical angle can be converted into its corresponding electrical angle through the lookup table method. For example, if the angle sensor detects that the mechanical angle of the rotor is angle 3, the corresponding electrical angle can be obtained as 120° based on the mapping relationship. The electrical angles corresponding to all predetermined vector values are thereby corrected.
  • the electrical angle corresponding to the current mechanical angle measurement value can be calculated through linear interpolation.
  • the mechanical angle corresponding to any actual electrical angle can also be obtained.
  • the electrical angle corresponding to the mechanical angle between the two mechanical angles measured by the angle sensor at two adjacent predetermined vector values can be calculated by linear interpolation. Specifically, if a certain mechanical angle detected by the angle sensor is not the mechanical angle measured in step S1, but falls between the two mechanical angles measured in step S1, then this can be Two mechanical angles serve as two nodes. Based on these two nodes, the electrical angle corresponding to any mechanical angle between the two nodes can be calculated by linear interpolation. The calculation method of linear interpolation is well known and will not be described in detail here.
  • the correction method may also include an additional mapping self-learning step S4.
  • the mapping self-learning step S4 is performed after the measurement value correction step S3. Specifically, after the measurement value correction step S3, a new mapping relationship calculated by linear interpolation may be added to the correction mapping relationship table. Through the mapping self-learning step S4, the mapping relationship data recorded in the correction mapping relationship table is gradually expanded, which helps to obtain the corrected electrical angle more quickly during subsequent operations.
  • each step of the correction method may be repeatedly executed periodically, and alternatively or additionally, each step of the correction method may also be re-executed when a specific trigger condition is met.
  • the repetition period can be preset according to the evolution speed of the sensor measurement deviation, for example, it can be one day, one week or one month.
  • Examples of triggering conditions may include detection of data corruption or loss of the correction mapping relationship table stored on the storage device. This issue may occur from time to time due to storage device reliability issues. For example, this test could be initiated each time the key is powered on to determine if data corruption or loss has occurred. If it is determined that this situation has occurred, the correction method can be re-executed to establish a new mapping relationship table.
  • a correction device for performing the above correction method.
  • the correction device may include corresponding modules for performing various steps in the correction method.
  • the correction device may include a control module, a mapping module and a calculation module.
  • the correction control module is used to perform step S1. Specifically, the correction control module may be configured to control the target electrical parameter of the rotor to reach a plurality of predetermined vector values in sequence to obtain the mechanical angle measurement value of the angle sensor under the corresponding predetermined vector value, wherein each predetermined vector value has a corresponding actual electrical angle.
  • the correction control module may further preferably determine these predetermined vector values in such a manner that the angle between any two adjacent predetermined vector values is the same.
  • the correction control module may use the voltage or current applied to the stator as the target electrical parameter.
  • the correction control module can make the modulus values of these predetermined vector values equal to each other.
  • the mapping correction module is used to perform step S2. Specifically, the mapping correction module may be configured to establish a correction mapping relationship table between the actual electrical angle corresponding to each predetermined vector value and the corresponding mechanical angle.
  • the measurement value correction module is used to perform step S3. Specifically, the measurement value correction module can be configured to correct the current mechanical angle measurement value according to the correction mapping relationship table. When the correction mapping relationship table does not contain the current mechanical angle measurement value, calculate the electrical angle corresponding to the current mechanical angle through linear interpolation. .
  • the correction device may additionally include a mapping self-learning module for performing step S4.
  • the mapping self-learning module is configured to add the new mapping relationship calculated by the measurement value correction module through linear interpolation to the correction mapping relationship table.
  • the correction device may additionally include a correction reset module for restarting various steps of the correction method.
  • the correction reset module is configured to cause the correction device to periodically repeatedly perform correction on the angle sensor.
  • the correction reset module is configured to cause the correction device to re-perform correction on the angle sensor when the trigger condition is met.
  • the correction device can be integrated in the motor controller of the permanent magnet synchronous motor.
  • the individual modules of the correction device can be virtual function modules in the motor controller.
  • the correction method and the correction device according to the present invention use the FOC characteristics to obtain the true rotor electrical angle in order to correct the angle data of the sensor.
  • the application process of this calibration method and calibration device is convenient and quick, and does not require additional equipment. Since this method can be used to correct whether there is an offset in the rotor, sensor or other components, this correction method and correction device have high robustness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明涉及一种用于角度传感器的校正方法和校正装置。该角度传感器用于检测永磁同步电机的机械角度并且将机械角度转换为电角度,永磁同步电机包括定子以及能够相对于定子转动的转子。其中,该校正方法包括:校正控制步骤,控制转子的目标电参数依次达到多个预定矢量值,获取角度传感器在相应的预定矢量值下的机械角度测量值,每个预定矢量值分别具有对应的实际电角度;映射校正步骤,建立每个预定矢量值所对应的实际电角度与对应的机械角度测量值之间的校正映射关系表;和测量值校正步骤,当校正映射关系表不存在当前机械角度测量值时,通过线性插值计算当前机械角度测量值所对应的电角度。本发明的校正方法和装置能够简便地校正角度传感器。

Description

用于角度传感器的校正方法和校正装置 技术领域
本发明涉及电机技术领域。具体地,本发明涉及一种用于电机转子的角度传感器的校正方法和校正装置。
背景技术
永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)是用于将电能转换为动能或将动能转换为电能的装置。永磁同步电机的定子包括线圈绕组,转子包括永磁体,线圈绕组能够在施加三相交变电压或电流时产生旋转的磁场,从而驱动转子相对于定子转动。转子在物理空间中转动的几何角度称为机械角度,而转子在一个磁场变化周期内的对应位置称为电角度。永磁同步电机中的角度传感器能够直接检测转子的机械角度,并且通过一定的对应关系将机械角度转换成电角度。
但是,由于老化、传感器与转子(磁体)之间的相对位置改变等各种原因,机械角度与电角度之间的对应关系可能发生变化,永磁同步电机中使用的转子角度传感器在长时间运行后会出现不可忽略的误差。如图1所示,其中纵轴表示传感器角度,横轴表示真实角度,在这种情况下,传感器角度与真实角度之间的实际对应关系的曲线会偏离理想曲线。如果角度传感器提供的电角度的数据存在误差,则电机扭矩将会发生波动,甚至可能导致电机无法工作。
当前用于解决上述问题的方法有以下几种。第一种是角度零点自学习,即给U相施加一个持续的相电压来获得电角度的零点位置,但是这种方法仅能校正零点角度,而不能解决整个曲线的偏移问题。第二种方法是设置标准化设备来校正传感器数据,但这种方法需要额外的设备,因此成本较高。第三种方法是更换或重新安装转子角度传感器,但由于需要将电机从车辆或其他安装环境拆卸下来,这种方法也耗时费力,并且新的传感器也 增加了成本。
发明内容
因此,本发明需要解决的技术问题是,提供一种改进的校正方法和校正装置。
上述技术问题通过根据本发明的一种用于角度传感器的校正方法而得到解决。该角度传感器用于检测永磁同步电机的机械角度并且将机械角度转换为电角度,永磁同步电机包括定子以及能够相对于定子转动的转子。其中,该校正方法包括:校正控制步骤,控制转子的目标电参数依次达到多个预定矢量值,获取角度传感器在相应的预定矢量值下的机械角度测量值,其中,每个预定矢量值分别具有对应的实际电角度;映射校正步骤,建立每个预定矢量值所对应的实际电角度与对应的机械角度测量值之间的校正映射关系表;和测量值校正步骤,根据校正映射关系表对当前机械角度测量值进行校正,当校正映射关系表不存在当前机械角度测量值时,通过线性插值计算当前机械角度测量值所对应的电角度。由于转子在预定矢量值下的实际电角度是已知的,因此校正之后的角度传感器的电角度测量值至少在对应于这些预定矢量值的机械角度(校正节点)处是准确的。在这些位置(校正节点)之间的电角度测量值可以通过线性插值来计算,从而可以方便且准确地校正整个周期内的电角度测量值。
根据本发明的一个优选实施例,该校正方法还可以包括在测量值校正步骤之后的映射自学习步骤,其中,将通过线性插值计算得到的新映射关系添加到校正映射关系表中。通过映射自学习步骤,校正映射关系表中的映射关系数据逐渐丰富,在后续测量中出现已经校正过的机械角度时,可以通过校正映射关系表直接得出对应的电角度。
根据本发明的另一优选实施例,转子可以包括n个极对,该多个预定矢量值可以至少包括对应于60°*i的实际电角度的所有矢量值,其中,i=0,1,……,6n。根据FOC(磁场定向控制)控制方法,可以方便并且精确地控制电机的转子停止在这些角度位置,从而可以准确地校正节点处的电角度测量值。
根据本发明的另一优选实施例,任意两个相邻的预定矢量值之间的夹角可以相同。也就是说,目标电参数的这些预定矢量值在360°*n的周期内均匀地间隔分布。由此可以使角度传感器在转子的整个转动周期中都具有较高的精确度。
根据本发明的另一优选实施例,目标电参数可以为施加给定子的电压。通过控制电压矢量,可以使转子稳定在预定的电角度位置。替代地,也可以选择施加给转子的电流来作为目标电参数。
根据本发明的另一优选实施例,该多个预定矢量值的模值可以彼此相等。预定矢量值的模值需要确保能够驱动转子转动并且停在预定的角度位置。这些预定矢量值具有相同的模值使得电参数在切换过程中更容易控制。
根据本发明的另一优选实施例,可以周期性地重复执行该校正方法的各个步骤,和/或,可以在满足触发条件时重新执行校正方法的各个步骤。由于传感器的测量偏差会随着时间缓慢发展变化,因此周期性地或者根据需要重新执行校正方法可以确保校正结果的准确性。优选地,触发条件可以包括检测到在存储设备上存储的校正映射关系表的数据损坏或丢失。例如,通常可以在每次钥匙上电时对存储的数据进行检测。
上述技术问题还通过根据本发明的一种用于角度传感器的校正装置而得到解决。该角度传感器用于检测永磁同步电机的机械角度并且将机械角度转换为电角度,永磁同步电机包括定子以及能够相对于定子转动的转子。其中,该校正装置包括:校正控制模块,其配置为控制转子的目标电参数依次达到多个预定矢量值,获取角度传感器在相应的预定矢量值下的机械角度测量值,其中,每个预定矢量值分别具有对应的实际电角度;映射校正模块,其配置为建立每个预定矢量值所对应的实际电角度与对应的机械角度之间的校正映射关系表;和测量值校正模块,其配置为根据校正映射关系表对当前机械角度测量值进行校正,当校正映射关系表不存在当前机械角度测量值时,通过线性插值计算当前机械角度所对应的电角度。由于转子在预定矢量值下的实际电角度是已知的,因此校正之后的角度传感器的电角度测量值至少在对应于这些预定矢量值的机械角度(校正节点)处是准确的。在这些位置(校正节点)之间的电角度测量值可以通过线性插 值来计算,从而可以方便且准确地校正整个周期内的电角度测量值。
根据本发明的一个优选实施例,该校正装置还可以包括映射自学习模块,映射自学习模块配置为将测量值校正模块通过线性插值计算得到的新映射关系添加到校正映射关系表中。
根据本发明的另一优选实施例,转子可以包括n个极对,控制模块可以配置为以使得该多个预定矢量值至少包括对应于60°*i的实际电角度的矢量值的方式来确定多个预定矢量值,其中,i=0,1,……,6n。根据FOC控制方法,可以方便并且精确地控制电机的转子停止在这些角度位置,从而可以准确地校正节点处的电角度测量值。
根据本发明的另一优选实施例,控制模块还可以配置为以使任意两个相邻的预定矢量值之间的夹角相同的方式来确定该多个预定矢量值。也就是说,目标电参数的这些预定矢量值在360°*n的周期内均匀地间隔分布。由此可以使角度传感器在转子的整个转动周期中都具有较高的精确度。
根据本发明的另一优选实施例,控制模块可以配置为使用施加给定子的电压作为目标电参数。通过控制电压矢量,可以使转子稳定在预定的电角度位置。替代地,也可以选择施加给转子的电流来作为目标电参数。
根据本发明的另一优选实施例,控制模块可以配置为使多个预定矢量值的模值彼此相等。预定矢量值的模值需要确保能够驱动转子转动并且停在预定的角度位置。这些预定矢量值具有相同的模值使得电参数在切换过程中更容易控制。
根据本发明的另一优选实施例,该校正装置还可以包括校正重置模块,校正重置模块配置为使校正装置对角度传感器周期性地重复执行校正,和/或,在满足触发条件时重新执行校正。
附图说明
以下结合附图进一步描述本发明。图中以相同的附图标记来代表功能相同的元件。其中:
图1示出电角度与机械角度之间的对应关系曲线;
图2示出根据本发明的示例性实施例的校正方法的流程图;
图3示出根据本发明的示例性实施例的校正方法的矢量圆的示意图;和
图4示出根据本发明的示例性实施例的校正方法的映射关系的示意图。
具体实施方式
以下将结合附图描述根据本发明的校正方法和校正装置的具体实施方式。下面的详细描述和附图用于示例性地说明本发明的原理,本发明不限于所描述的优选实施例,本发明的保护范围由权利要求书限定。
根据本发明的实施例,提供了一种用于永磁同步电机的角度传感器的校正方法。永磁同步电机包括定子和转子,其中,转子能够围绕转动轴线相对于定子转动。定子中安装有围绕转子布置的线圈绕组,线圈绕组在施加三相交变电压或电流时能够产生旋转的磁场。转子中安装有一个或多个由永磁体构成的极对。定子的旋转磁场能够对转子的永磁体产生电磁力,从而驱动转子围绕转动轴线相对于定子转动。永磁同步电机可以包括电机控制器,电机控制器可以控制定子的线圈绕组中电压和/或电流等电参数,从而控制电机的运行。
永磁同步电机还包括用于检测永磁同步电机、特别是转子的运行角度的角度传感器。转子在物理空间中转动的几何角度称为机械角度,而转子在一个磁场变化周期内的对应位置称为电角度。角度传感器是能够直接检测转子的机械角度的部件,例如编码器等。角度传感器直接测量的机械角度可以通过一定的对应关系转换为电角度,电机控制器可以参考电角度来控制电机的运行。根据本发明的校正方法可以校正机械角度与电角度之间的这种对应关系,从而获得较为准确的电角度。
图2示出了根据本发明的示例性实施例的校正方法的流程图。如图2所示,该校正方法主要包括步骤S1-S3,另外还可以可选地包括附加步骤S4。这些步骤可以由电机控制器来执行。下面参考图2至图4来详细介绍该校正方法的各个步骤的实施过程。
在校正控制步骤S1中,控制转子的目标电参数依次达到多个预定矢量值,以获取角度传感器在相应的预定矢量值下的机械角度测量值。这些预 定矢量值中的每一个都具有对应的实际电角度,并且在选择这些预定矢量值时,这些实际电角度都是已知的。这里的目标电参数是电路中影响定子(特别是线圈绕组)产生的磁场的物理量,特别是施加给定子的电压或电流。为了便于控制,优选地可以选择电压作为目标电参数。
如图3所示,在FOC(Field Oriented Control,磁场定向控制)控制方法中,存在称为矢量圆的概念。如果在永磁同步电机中施加不同的恒定电压,将会产生不同的电机扭矩,使得转子转动并且最终稳定地停止在不同的位置(角度)。此时,角度传感器可以检测到转子的相应机械角度。
如本领域中公知的,在图3的矢量圆中,U 4、U 6、U 2、U 3、U 1、U 5分别为方向不同的六个电压矢量,按照图中所示的顺序,任意两个相邻的电压矢量之间的夹角均为60°。其中,U 4是电角度定义为0°的电压矢量。U 0和U 7是数值为零的电压矢量。如果在电机控制器的控制下持续地向电机施加电压U 4,则转子将最终将静止在0°处(实际电角度)。此时,角度传感器检测到的机械角度即与0°电角度相对应的机械角度。该过程也称为零角度点自学习。相应地,施加具有不同电角度的电压矢量,就可以使转子停留在不同的位置,并且可以通过角度传感器检测到相应的机械角度。
如本领域中公知的,如果电机的线圈绕组中的开关都处于稳定的闭合或断开状态,通过不同开关的开闭状态组合,可以稳定地获得从0°开始的每隔60°的电压矢量,依次为上述的U 4、U 6、U 2、U 3、U 1、U 5(图中括号内的1和0代表相应的开关状态)。同时,如果控制多个开关在一定的时间段内在闭合与断开状态之间切换,则理论上可以合成上述电压矢量之间的任意矢量。根据上述原理,对于电角度的每一个360°的周期,优选U 4、U 6、U 2、U 3、U 1、U 5这种可以稳定获得的电压矢量作为预定矢量值。
如本领域中公知的,电角度的周期与机械角度的周期之间存在基于极对数量的倍数关系。如果电机的转子中包括n个极对,则转子每次转过360°的机械角度需要电角度相应地变化360°*n。因此,在转子的机械角度的整个周期内,总共存在6n+1个从0°开始的间隔60°的电压矢量,其对应的电角度依次为60°*i,其中,i=0,1,……,6n。当60°*i大于360°时,意味着进入电角度的下一个周期,在输出电角度的度数时可以根据常识将 大于360°的电角度转换为360°周期内的角度。例如,当i=8时,60°*i为480°,即第二个周期内的120°。由此可知,当电机的转子中包括n个极对时,选定的多个预定矢量值可以优选地至少包括对应于60°*i的实际电角度的矢量值。
如果需要较高的精度,则可以增加额外的测量角度。理论上可以获得任意方向的电压矢量。例如,持续地施加电压U=(U 4+U 6)/2,则电机的转子最终将会停在实际电角度为30°的位置处。以此类推,也可以使转子停止在30°、90°……330°等角度处。为了确保在整个周期上校正的结果的精确性,优选地可以将任意两个相邻的预定矢量值之间的夹角选择为相同的。换句话说,所选的预定矢量值的矢量方向在周向上均匀地分布。因此,在已经选择了电角度为60°*i的所有矢量值之后,增加的额外矢量值可以是这些矢量值之间的角度等分矢量。
以上以电压作为目标电参数为示例描述了步骤S1,应当理解,也可以采用电流作为目标电参数。在优选的实施例中,各个预定矢量值的模值(即大小)可以彼此相等,使得在预定矢量值之间切换时便于控制目标电参数。
接下来,在映射校正步骤S2中,可以建立每个预定矢量值所对应的实际电角度与对应的机械角度测量值(即角度传感器在每个预定矢量值下获得的机械角度测量值)之间的校正映射关系表。在步骤S1中,按照预定矢量值所对应的电角度的顺序(本实施例中为0°,60°,……,360°),经过测量得到的相应机械角度可以依次记为角度1、角度2……。如图4所示,在每个电角度与测量得到的相应机械角度之间建立一对一映射,也就是说,将每个电角度与测量得到的相应机械角度相互关联起来。这种映射关系被记录在校正映射关系表中。
在这里,由于在多个预定矢量值下进行测量并且建立映射,因此,步骤S1和步骤S2既可以先后进行也可以交替进行。如果先后进行,则可以首先测量得到所有的预定矢量值下的机械角度,然后再建立映射。如果交替进行,则可以针对一个预定矢量值测量得到相应的机械角度,并且在该机械角度与相应的电角度之间建立映射,然后再针对下一个预定矢量值重 复上述过程。
在测量值校正步骤S3中,可以根据校正映射关系表对当前机械角度测量值进行校正。当角度传感器检测到转子位于步骤S2中已经建立映射关系的某个机械角度时,就可以通过查表法将该机械角度转换为与其对应的电角度。例如,如果角度传感器检测到转子的机械角度为角度3,则可以根据映射关系得到相应的电角度为120°。由此校正了对应于所有预定矢量值的电角度。
当校正映射关系表不存在当前机械角度测量值时,可以通过线性插值计算当前机械角度测量值所对应的电角度。理论上,由于可以得到任何角度的预定矢量值,因此也可以得到任何实际电角度对应的机械角度。但是,在实际的校正过程中不可能测量全部的角度。因此,可以通过线性插值来计算角度传感器在两个相邻的预定矢量值下测量的两个机械角度之间的机械角度所对应的电角度。具体而言,角度传感器检测到的某一机械角度,如果该机械角度不是在步骤S1中测量得到的机械角度,而是落入步骤S1中测量得到的两个机械角度之间,则可以将这两个机械角度作为两个节点,基于这两个节点可以通过线性插值的方法来计算两个节点之间的任意机械角度所对应的电角度。线性插值的计算方法是公知的,在此不再赘述。
优选地,该校正方法还可以包括附加的映射自学习步骤S4。映射自学习步骤S4在测量值校正步骤S3之后执行。具体而言,在测量值校正步骤S3之后,可以将通过线性插值计算得到的新映射关系添加到校正映射关系表中。通过映射自学习步骤S4,校正映射关系表中记录的映射关系数据逐渐得到扩充,有助于在之后的运行过程中更迅速地获得校正后的电角度。
此外,优选地,该校正方法的上述步骤可以按照时间周期或者根据特定条件来重新执行。具体而言,可以周期性地重复执行校正方法的各个步骤,替代地或者附加地,也可以在满足特定的触发条件时重新执行校正方法的各个步骤。重复周期可以根据传感器测量偏差的演变速度来预先设定,例如可以是一天、一周或一个月等。触发条件的示例可以包括检测到在存储设备上存储的校正映射关系表的数据损坏或丢失。由于存储装置的可靠性问题,这种问题可能会不时发生。例如,可以在每次钥匙上电时启动这 种检测,以确定是否发生了数据损坏或丢失。如果确定发生了这种情况,就可以重新执行该校正方法,以建立新的映射关系表。
根据本发明的另一实施例,还提供了一种用于执行上述校正方法的校正装置。该校正装置可以包括用于执行校正方法中的各个步骤的相应模块。具体而言,该校正装置可以包括控制模块、映射模块和计算模块。
校正控制模块用于执行步骤S1。具体地,校正控制模块可以配置为控制转子的目标电参数依次达到多个预定矢量值,以获取角度传感器在相应的预定矢量值下的机械角度测量值,其中,每个预定矢量值分别具有对应的实际电角度。
如上所述,如果转子包括n个极对,则校正控制模块可以优选地以使得这些预定矢量值至少包括对应于60°*i的实际电角度的矢量值的方式来确定所述多个预定矢量值,其中,i=0,1,……,6n。校正控制模块还可以进一步优选地以使任意两个相邻的预定矢量值之间的夹角相同的方式来确定这些预定矢量值。优选地,校正控制模块可以使用施加给定子的电压或电流作为目标电参数。优选地,校正控制模块可以使这些预定矢量值的模值彼此相等。
映射校正模块用于执行步骤S2。具体地,映射校正模块可以配置为建立每个预定矢量值所对应的实际电角度与对应的机械角度之间的校正映射关系表。
测量值校正模块用于执行步骤S3。具体地,测量值校正模块可以配置为根据校正映射关系表对当前机械角度测量值进行校正,当校正映射关系表不存在当前机械角度测量值时,通过线性插值计算当前机械角度所对应的电角度。
优选地,该校正装置还可以附加地包括用于执行步骤S4的映射自学习模块。具体而言,映射自学习模块配置为将测量值校正模块通过线性插值计算得到的新映射关系添加到校正映射关系表中。
优选地,该校正装置还可以附加地包括用于重启校正方法的各个步骤的校正重置模块。具体而言,校正重置模块配置为使校正装置对角度传感器周期性地重复执行校正,替代地或附加地,校正重置模块配置为使校正 装置在满足触发条件时对角度传感器重新执行校正。
校正装置可以集成在永磁同步电机的电机控制器中。特别是,校正装置的各个模块可以是电机控制器中的虚拟功能模块。
根据本发明的校正方法和校正装置使用FOC特性来得到真实的转子电角度,以便校正传感器的角度数据。这种校正方法和校正装置的应用过程方便、快捷,并且不需要额外的设备。由于不论是转子、传感器还是其他部件存在偏移,都可以使用这种方法来进行校正,因此这种校正方法和校正装置具有较高的鲁棒性。
虽然在上述说明中示例性地描述了可能的实施例,但是应当理解到,仍然通过所有已知的和此外技术人员容易想到的技术特征和实施方式的组合存在大量实施例的变化。此外还应该理解到,示例性的实施方式仅仅作为一个例子,这种实施例绝不以任何形式限制本发明的保护范围、应用和构造。通过前述说明更多地是向技术人员提供一种用于转化至少一个示例性实施方式的技术指导,其中,只要不脱离权利要求书的保护范围,便可以进行各种改变,尤其是关于所述部件的功能和结构方面的改变。

Claims (16)

  1. 一种用于角度传感器的校正方法,所述角度传感器用于检测永磁同步电机的机械角度并且将机械角度转换为电角度,所述永磁同步电机包括定子以及能够相对于所述定子转动的转子,
    其特征在于,所述校正方法包括:
    校正控制步骤,其中,控制所述转子的目标电参数依次达到多个预定矢量值,获取所述角度传感器在相应的预定矢量值下的机械角度测量值,其中,每个预定矢量值分别具有对应的实际电角度;
    映射校正步骤,其中,建立每个预定矢量值所对应的实际电角度与对应的机械角度测量值之间的校正映射关系表;和
    测量值校正步骤,其中,根据所述校正映射关系表对当前机械角度测量值进行校正,当所述校正映射关系表不存在所述当前机械角度测量值时,通过线性插值计算所述当前机械角度测量值所对应的电角度。
  2. 根据权利要求1所述的校正方法,其特征在于,所述校正方法还包括在所述测量值校正步骤之后的映射自学习步骤,其中,将通过线性插值计算得到的新映射关系添加到所述校正映射关系表中。
  3. 根据权利要求1所述的校正方法,其特征在于,所述转子包括n个极对,所述多个预定矢量值至少包括对应于60°*i的实际电角度的矢量值,其中,i=0,1,……,6n。
  4. 根据权利要求3所述的校正方法,其特征在于,任意两个相邻的预定矢量值之间的夹角相同。
  5. 根据权利要求1所述的校正方法,其特征在于,所述目标电参数为施加给所述定子的电压。
  6. 根据权利要求1所述的校正方法,其特征在于,所述多个预定矢量值的模值彼此相等。
  7. 根据权利要求1至6中任一项所述的校正方法,其特征在于,周期性地重复执行所述校正方法的各个步骤,和/或,在满足触发条件时重新执行所述校正方法的各个步骤。
  8. 根据权利要求7所述的校正方法,其特征在于,所述触发条件包括检测到在存储设备上存储的所述校正映射关系表的数据损坏或丢失。
  9. 一种用于角度传感器的校正装置,所述角度传感器用于检测永磁同步电机的机械角度并且将机械角度转换为电角度,所述永磁同步电机包括定子以及能够相对于所述定子转动的转子,
    其特征在于,所述校正装置包括:
    校正控制模块,其配置为控制所述转子的目标电参数依次达到多个预定矢量值,获取所述角度传感器在相应的预定矢量值下的机械角度测量值,其中,每个预定矢量值分别具有对应的实际电角度;
    映射校正模块,其配置为建立每个预定矢量值所对应的实际电角度与对应的机械角度之间的校正映射关系表;和
    测量值校正模块,其配置为根据所述校正映射关系表对当前机械角度测量值进行校正,当所述校正映射关系表不存在所述当前机械角度测量值时,通过线性插值计算所述当前机械角度所对应的电角度。
  10. 根据权利要求9所述的校正装置,其特征在于,所述校正装置还包括映射自学习模块,所述映射自学习模块配置为将所述测量值校正模块通过线性插值计算得到的新映射关系添加到所述校正映射关系表中。
  11. 根据权利要求9所述的校正装置,其特征在于,所述转子包括n个极对,所述校正控制模块配置为以使得所述多个预定矢量值至少包括对应于60°*i的实际电角度的矢量值的方式来确定所述多个预定矢量值,其中,i=0,1,……,6n。
  12. 根据权利要求11所述的校正装置,其特征在于,所述校正控制模块还配置为以使任意两个相邻的预定矢量值之间的夹角相同的方式来确定所述多个预定矢量值。
  13. 根据权利要求9所述的校正装置,其特征在于,所述校正控制模块配置为使用施加给所述定子的电压作为所述目标电参数。
  14. 根据权利要求9所述的校正装置,其特征在于,所述校正控制模块配置为使所述多个预定矢量值的模值彼此相等。
  15. 根据权利要求9至14中任一项所述的校正装置,其特征在于,所 述校正装置还包括校正重置模块,所述校正重置模块配置为使所述校正装置对所述角度传感器周期性地重复执行校正,和/或,在满足触发条件时重新执行校正。
  16. 根据权利要求15所述的校正装置,其特征在于,所述校正重置模块配置为在检测到在存储设备上存储的所述校正映射关系表的数据损坏或丢失时重新执行校正。
PCT/CN2022/087579 2022-04-19 2022-04-19 用于角度传感器的校正方法和校正装置 WO2023201513A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/087579 WO2023201513A1 (zh) 2022-04-19 2022-04-19 用于角度传感器的校正方法和校正装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/087579 WO2023201513A1 (zh) 2022-04-19 2022-04-19 用于角度传感器的校正方法和校正装置

Publications (1)

Publication Number Publication Date
WO2023201513A1 true WO2023201513A1 (zh) 2023-10-26

Family

ID=88418955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087579 WO2023201513A1 (zh) 2022-04-19 2022-04-19 用于角度传感器的校正方法和校正装置

Country Status (1)

Country Link
WO (1) WO2023201513A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924510A (zh) * 2010-07-06 2010-12-22 奇瑞汽车股份有限公司 一种永磁电机转子位置角度的补偿方法
WO2013092398A2 (de) * 2011-12-22 2013-06-27 Continental Automotive Gmbh Verfahren und vorrichtung zum korrigieren eines messwertes eines drehwinkels eines rotors einer elektrischen maschine
CN106679710A (zh) * 2017-02-08 2017-05-17 亿航智能设备(广州)有限公司 一种磁编码器校准方法及系统
CN110323987A (zh) * 2019-07-12 2019-10-11 深圳市海浦蒙特科技有限公司 一种用于永磁同步电机的参数校验方法和系统
CN113029222A (zh) * 2021-03-08 2021-06-25 深圳市昂霸科技有限公司 一种用于磁编码器的校准方法,装置和磁编码器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924510A (zh) * 2010-07-06 2010-12-22 奇瑞汽车股份有限公司 一种永磁电机转子位置角度的补偿方法
WO2013092398A2 (de) * 2011-12-22 2013-06-27 Continental Automotive Gmbh Verfahren und vorrichtung zum korrigieren eines messwertes eines drehwinkels eines rotors einer elektrischen maschine
CN106679710A (zh) * 2017-02-08 2017-05-17 亿航智能设备(广州)有限公司 一种磁编码器校准方法及系统
CN110323987A (zh) * 2019-07-12 2019-10-11 深圳市海浦蒙特科技有限公司 一种用于永磁同步电机的参数校验方法和系统
CN113029222A (zh) * 2021-03-08 2021-06-25 深圳市昂霸科技有限公司 一种用于磁编码器的校准方法,装置和磁编码器

Similar Documents

Publication Publication Date Title
US8115428B2 (en) Electric motor control
US8791715B2 (en) Method for monitoring a controller of a three-phase electric motor and/or the electric motor
JP5124483B2 (ja) 同期機を駆動するための方法および装置
US7288956B2 (en) Device and method for detecting rotor speed of a multiple phase motor with bipolar drive
KR101655548B1 (ko) 모터 위치 검출용 홀 센서의 위치 오차 보정 방법
CN108322103A (zh) 一种永磁同步电机相序校正方法及其装置
KR100713776B1 (ko) 검출 전류의 비교를 통한 에스알엠의 여자 위치 검출 방법및 장치
US9641108B2 (en) Method and system for calibrating and detecting offset of rotary encoder relative to rotor of motor
JP6124112B2 (ja) 交流電動機の制御装置及び制御方法
CN110140291A (zh) 开关磁阻电机驱动器的准无传感器自适应控制的方法和装置
US9628005B2 (en) Device for determining a position of a rotor of an electric motor
JP2011239563A (ja) 電動機制御装置及び制御方法
JP4319377B2 (ja) 永久磁石電動機の駆動装置及び密閉形圧縮機及び冷凍サイクル装置及び永久磁石発電機の駆動装置
US20120074887A1 (en) Back EMF Measuring Method for Multi-Phase BLDC Motor
KR101448677B1 (ko) Bldc 모터의 회전자 위치 추정 장치 및 방법
JP2000312493A (ja) 永久磁石式同期電動機のセンサレス制御システム
WO2023201513A1 (zh) 用于角度传感器的校正方法和校正装置
JP4737858B2 (ja) 永久磁石電動機の制御装置
JP4766530B2 (ja) 磁束角補正機能付きモータ制御装置
JP4735439B2 (ja) 永久磁石式同期電動機の初期磁極位置推定装置
JP4051833B2 (ja) 永久磁石式同期電動機のベクトル制御装置
CN108736784A (zh) 测量永磁同步电机的定子绕组的温度的方法和装置
US20140184119A1 (en) Brushless direct contact motor driving device and method of controlling the same
JP5423343B2 (ja) 同期電動機の磁極位置推定装置
JP2001327186A (ja) 3相同期電動機の電流検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937751

Country of ref document: EP

Kind code of ref document: A1