WO2023199972A1 - 分散体、構造体及び構造体の製造方法 - Google Patents

分散体、構造体及び構造体の製造方法 Download PDF

Info

Publication number
WO2023199972A1
WO2023199972A1 PCT/JP2023/014983 JP2023014983W WO2023199972A1 WO 2023199972 A1 WO2023199972 A1 WO 2023199972A1 JP 2023014983 W JP2023014983 W JP 2023014983W WO 2023199972 A1 WO2023199972 A1 WO 2023199972A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
group
dispersion
crosslinking agent
reactive functional
Prior art date
Application number
PCT/JP2023/014983
Other languages
English (en)
French (fr)
Inventor
春彦 松浦
健太 山本
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2023199972A1 publication Critical patent/WO2023199972A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/29Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for multicolour effects

Definitions

  • the present invention relates to a dispersion of microparticles that develop a structural color, a structure in which the microparticles are arranged to develop a structural color, and a method for producing the structure.
  • Structural coloring refers to a coloring phenomenon caused by fine structures at or below the wavelength of light.
  • Examples of familiar structural colors include compact discs, soap bubbles, morpho butterflies, and beetles. Although these examples do not themselves have any color, they appear colored because light interferes with their fine structure.
  • colloidal crystal is known as a product in which such fine particles are regularly arranged, and such a colloidal crystal is known to undergo Bragg reflection and exhibit a structural color. Research and development efforts are also underway to apply this to coloring materials and infrared reflective films. On the other hand, colloidal crystals have extremely low physical strength due to their characteristic structure; for example, simply brushing them with your hand can easily cause their structure to collapse and discolor. Colloidal crystals also tend to peel off from substrates. Due to this problem, mass production technology for colloidal crystals has not yet been established.
  • Patent Document 1 discloses that by drying or heating a coating film obtained by applying a dispersion of core-shell particles having a shell made of a non-crosslinked polymer, the shell portion is By causing fusion or fluidization, a coating film (matrix) formed by the shell part is generated, and the core part is regularly arranged in this coating film, which is a method to obtain colloidal crystals with high physical strength. Proposed.
  • the preferable glass transition point (Tg) of the shell portion is 10 to 50°C.
  • Patent Document 2 proposes core-shell particles in which a reactive surfactant is used as a monomer constituting the particles, and the glass transition temperature (Tg) and core-shell ratio of the core and shell are adjusted. This suppresses excessive fusion between shells during drying or heat treatment, and maintains air spaces between particles, resulting in colloidal crystals that are not only physically durable but also have excellent color development.
  • the Tg of the shell portion is set at -60 to 40°C.
  • a method has been proposed in which a reactive group capable of forming a crosslink is introduced into the shell to allow the reaction to proceed during fusion of the shell parts, thereby further improving the physical strength of the colloidal crystal film.
  • a specific reaction is ⁇ ketone-hydrazide crosslinking''.
  • An object of the present invention is to solve the above problems. That is, an object of the present invention is to provide an optimal dispersion for obtaining a structure that is capable of expressing structural color, has excellent heat resistance, and also has excellent physical durability.
  • the present inventor has developed microparticles that have a predetermined particle size distribution or exhibit a structural color when arranged, have a glass transition point higher than a predetermined value, and further contain a reactive functional group, and a crosslinking agent. It has been found that the above-mentioned problems can be solved by using a dispersion of the present invention.
  • the present invention has the following features.
  • a dispersion containing fine particles, a crosslinking agent, and a dispersion medium The number average particle diameter of the fine particles is 50 to 800 nm, and the CV value of the particle diameter based on the number of particles is 15% or less, The glass transition point (Tg) of the fine particles is 81° C. or higher, Furthermore, a dispersion characterized in that the fine particles have a reactive functional group.
  • the glass transition point (Tg) of the fine particles is 81° C. or higher, Furthermore, a dispersion characterized in that the fine particles have a reactive functional group.
  • the reactive functional group is selected from a hydroxyl group, a carboxyl group, a glycidyl group, an oxetanyl group, a keto group, an aldo group, a silyl group, an allyl group, a vinyl ether group, an amino group, and a phosphoric acid group.
  • the dispersion according to any one of [1] to [4].
  • [6] Raise the temperature from -40 °C to 200 °C at a temperature increase rate of 5 °C/min, then lower the temperature to -40 °C at a temperature decrease rate of 10 °C/min, then lower the temperature at a temperature increase rate of 5 °C/min.
  • [1] to [5] characterized in that only one glass transition point (Tg) is confirmed in differential scanning calorimetry (DSC) in which a temperature program including a step of increasing the temperature to 200°C is performed.
  • DSC differential scanning calorimetry
  • the dispersion according to [1], [3], [4], [5] or [6] is composed of a colloidal aggregate-containing substance consisting of the fine particles and the crosslinking agent, and A structure that has structural coloring properties and is made up of chemical bonds between fine particles.
  • [8] It is composed of a colloidal aggregate-containing material consisting of the fine particles and the crosslinking agent contained in the dispersion according to [2], and has a structural coloring property in which the fine particles are chemically bonded. Structure.
  • a method for producing a structure comprising: reacting the microparticles with the crosslinking agent to bond the fine particles together.
  • the number average particle diameter is 50 to 800 nm, and the CV value of the particle diameter based on the number is 15% or less,
  • the glass transition point (Tg) is 81°C or higher, Furthermore, it is characterized by having at least one reactive functional group selected from the group consisting of a hydroxyl group, a glycidyl group, an oxetanyl group, a keto group, an aldo group, a silyl group, an allyl group, a vinyl ether group, an amino group, and a phosphoric acid group. and fine particles.
  • a structure comprising a colloidal aggregate-containing substance consisting of the fine particles according to [10] and having structural coloring properties.
  • a structure containing fine particles and a crosslinking agent The number average particle diameter of the fine particles is 50 to 800 nm, and the CV value of the particle diameter based on the number of particles is 15% or less, Furthermore, the glass transition point (Tg) of the fine particles is 81°C or higher, A structure characterized in that the fine particles are chemically bonded to each other via the crosslinking agent.
  • an optimal dispersion is provided for obtaining a structure that is capable of expressing structural color, has excellent heat resistance, and also has excellent physical durability.
  • the dispersion of the present invention contains fine particles, a crosslinking agent, and a dispersion medium, which will be described later.
  • the dispersion means that fine particles are dispersed in a dispersion medium.
  • any medium can be used as the dispersion medium.
  • the dispersion medium include water, aqueous media such as water-based media, and organic solvents.
  • a medium mainly composed of water means that the proportion of water is 50% by mass or more, furthermore 60% by mass or more.
  • Any organic solvent soluble in water can be selected as the component other than water.
  • organic solvents examples include alcohols such as methanol, ethanol, isopropyl alcohol, and 1-methoxy-2-propanol alcohol, ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, aromatic solvents such as toluene and xylene, Ester solvents such as ethyl acetate and butyl acetate, alkanes such as hexane, cyclohexane, heptane, decane, and hexadecane, halogen solvents such as methyl chloride, methylene chloride, chloroform, and carbon tetrachloride, tetrahydroxyfuran, dioxane, and ethylene glycol.
  • ether solvents such as coal diethyl ether and ethylene glycol monobutyl ether. These can be used alone or in combination of two or more.
  • an aqueous medium such as water or a medium mainly composed of water is preferable because it is easy to obtain a structure with high structural coloring property.
  • the content of fine particles in the dispersion of the present invention is preferably 1% by mass to 70% by mass based on the total mass of the dispersion.
  • the content of the fine particles is more preferably 10% by mass or more, still more preferably 15% by mass or more, and particularly preferably 20% by mass or more, based on the total mass of the dispersion. On the other hand, it is more preferably 45% by mass or less, even more preferably 40% by mass or less, and particularly preferably 35% by mass or less. If the content of the fine particles is within the above range, the resulting structure will have good structural coloring properties.
  • the content of the crosslinking agent in the dispersion of the present invention is preferably 0.01 to 50 parts by weight based on 100 parts by weight of the fine particles.
  • the content of the crosslinking agent is more preferably 0.05 parts by mass or more, still more preferably 0.1 parts by mass or more, and particularly preferably 0.5 parts by mass or more, based on 100 parts by mass of the fine particles.
  • it is more preferably 40 parts by mass or less, even more preferably 20 parts by mass or less, and particularly preferably 10 parts by mass or less.
  • the content of the crosslinking agent in the dispersion of the present invention is preferably such that the reaction equivalent of the crosslinking agent to the reactive functional group of the fine particles is 0.1 equivalent or more.
  • the reaction equivalent is 0.1 equivalent or more, a structure exhibiting sufficient physical durability can be obtained.
  • the upper limit of the reaction equivalent of the crosslinking agent but it is usually 10 equivalents or less. If the content of the crosslinking agent is within the above range, the resulting structure will have good structural coloring properties.
  • the solid content concentration of the dispersion of the present invention is preferably 10% by mass or more.
  • the solid content concentration of the dispersion is more preferably 20% by mass or more, and even more preferably 25% by mass or more.
  • the upper limit of the solid content concentration of the dispersion is preferably 60% by mass or less, more preferably 50% by mass or less. If the solid content concentration of the dispersion is within the above range, film forming properties will be good, and the resulting structure will have good structural coloring properties.
  • the solid content of the dispersion refers to components other than the dispersion medium in the dispersion, and is usually the total of fine particles, crosslinking agent, and other components that may be included as necessary. .
  • the solid content concentration of the dispersion can be measured in the same manner as the solid content concentration of the emulsion described in the Examples section below, but the solid content concentration and component amount of each component used in the production of the dispersion can be measured. It can be calculated from
  • the fine particles contained in the dispersion of the present invention have a number average particle diameter of 50 to 800 nm, and a CV value of the particle diameter based on the number of particles. 15% or less, a glass transition point (Tg) of 81° C. or higher, and a reactive functional group.
  • the fine particles of the present invention are characterized by exhibiting a structural color when arranged, having a glass transition temperature (Tg) of 81° C. or higher, and having a reactive functional group.
  • the fine particles of the present invention have a number average particle diameter of 50 to 800 nm, a number-based CV value of particle diameter of 15% or less, and a glass transition point (Tg) of 81° C. or higher. and further has at least one reactive functional group selected from the group consisting of a hydroxyl group, a glycidyl group, an oxetanyl group, a keto group, an aldo group, a silyl group, an allyl group, a vinyl ether group, an amino group, and a phosphoric acid group. It is characterized by
  • the fine particles of the present invention are not particularly limited as long as they satisfy the above conditions, and may be organic fine particles or inorganic fine particles.
  • organic fine particles and inorganic fine particles organic fine particles are preferable because it is easy to precisely control reaction conditions such as composition control, and it is easy to obtain fine particles with uniform size and shape.
  • the fine particles of the present invention which are organic fine particles may be referred to as "organic fine particles of the present invention”
  • the fine particles of the present invention which are inorganic fine particles may be referred to as "inorganic fine particles of the present invention”.
  • the dispersion of the present invention may contain only one type of fine particles, or may contain two or more types of fine particles with different physical properties, constituent materials, types of reactive functional groups, etc.
  • the number average particle diameter of the fine particles according to one embodiment of the present invention is 50 to 800 nm.
  • the number average particle diameter of the fine particles of the present invention is preferably 100 nm or more, more preferably 150 nm or more, even more preferably 180 nm or more, while preferably 700 nm or less, more preferably 600 nm or less, and even more preferably 500 nm or less. It is preferable that the number average particle diameter is within the above range because structural coloring properties will be good.
  • the method for measuring the number average particle diameter of fine particles is as described in the Examples section below.
  • the number average particle diameter not from the state of the fine particle emulsion as described in Examples but from the state of the fine particle structure described below it can be measured, for example, by the following method.
  • An image of the fine particle structure is observed using an electron microscope with a magnification of 20,000 times or more.
  • the diameters of at least 400 fine particles in the image are measured, and the diameters are arithmetic averaged to determine the number average particle diameter.
  • the fine particles placed on the substrate may be observed with an electron microscope or a digital microscope and the number average particle size may be measured.
  • the CV value of the particle diameter based on the number of fine particles is 15% or less.
  • the CV value of the particle diameter based on the number of fine particles of the present invention is preferably 10% or less, more preferably 5% or less.
  • CV value is also referred to as "coefficient of variation” or "relative standard deviation", and in the present invention, it means the relationship between the standard deviation and number average particle diameter in the distribution of particle diameters based on number, (Standard deviation/number average particle diameter) x 100 It is calculated by It is preferable that the CV value of the particle size based on the number of particles is within the above range, since the structural coloring property will be good.
  • the method for measuring the CV value of particle diameter based on the number of fine particles is as described in the Examples section below.
  • the fine particles of the present invention have a glass transition point (Tg) of 81° C. or higher.
  • Tg glass transition point
  • a rigid structure such as an aromatic ring may be introduced into the fine particles.
  • the temperature The lowest glass transition point (Tg) is defined as the "glass transition point (Tg) of fine particles.”
  • the glass transition point (Tg) of the fine particles of the present invention was measured by the method described in the Examples section below, that is, the temperature was raised from -40°C to 200°C at a heating rate of 5°C/min.
  • DSC Differential Scanning Calorimetry
  • the Tg of the fine particles is preferably 85°C or higher, more preferably 90°C or higher, even more preferably 95°C or higher, particularly preferably 100°C or higher, particularly preferably 105°C or higher. It is preferable that the fine particles have a Tg of 81° C. or higher because they have excellent heat resistance and maintain their structure even in a high-temperature usage environment. There is no particular restriction on the upper limit of Tg of the fine particles of the present invention, but it is usually 300°C or less. The method for measuring the Tg of fine particles is as described in the Examples section below.
  • the fine particles of the present invention have reactive functional groups.
  • the reactive functional group include a hydroxyl group, a carboxyl group, a glycidyl group, an oxetanyl group, a keto group, an aldo group, a silyl group, an allyl group, a vinyl ether group, an amino group, and a phosphoric acid group. These may be used alone or in combination of two or more.
  • hydroxyl group, glycidyl group, oxetanyl group, keto group, aldo group, silyl group, allyl group, vinyl ether group, amino group and phosphoric acid group are preferable, and hydroxyl group, glycidyl group, oxetanyl group, A keto group and an aldo group are more preferred, and a glycidyl group, a keto group, and an aldo group are even more preferred.
  • the fine particles of the present invention have two types of reactive functional groups, it is preferable that at least one type is a keto group, and a combination of a keto group and a carboxyl group is more preferable.
  • the content ratio of the keto groups is 0.01. It is preferably at least 0.1, more preferably at least 0.1, while it is preferably at most 100, more preferably at most 10.
  • the content ratio of the keto group is preferably 0.01 or more, more preferably 1.0 or more, while preferably 10 or less, and 5.0 or more. The following are more preferred.
  • the method for introducing reactive functional groups into fine particles is not particularly limited, but for example, in the case of organic fine particles, reactive functional groups may be introduced into monomers having radically polymerizable double bonds (for example, styrene). Examples include a method of copolymerizing a polymerizable monomer having. In the case of inorganic fine particles, a method of treating the surface of the fine particles with a known silane coupling agent can be mentioned.
  • Specific polymerizable monomers having a hydroxyl group as a reactive functional group include the following, but are not limited to the exemplified monomers below.
  • Hydroxyl group-containing (meth)acrylic monomers such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate;
  • (Poly)alkylene glycol (meth)acrylic monomers such as ethylene glycol mono(meth)acrylate and (poly)propylene glycol mono(meth)acrylate;
  • Hydroxyalkyl vinyl ether monomers such as hydroxyethyl vinyl ether and hydroxybutyl vinyl ether Allyl alcohol, hydroxyl group-containing allyl monomers such as 2-hydroxyethyl allyl ether, etc. These monomers can be used alone or in combination of two or more.
  • Specific polymerizable monomers having a carboxyl group as a reactive functional group include the following, but are not limited to the exemplified monomers below.
  • Unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, itaconic acid, maleic acid and fumaric acid; monoalkyl itaconate (1 to 8 carbon atoms) esters such as monobutyl itaconate; monobutyl maleate, etc. monoalkyl maleate (having 1 to 8 carbon atoms); vinyl group-containing aromatic carboxylic acids such as vinylbenzoic acid; and various carboxyl group-containing monomers and salts thereof.
  • These monomers can be used alone or in combination of two or more. Further, counter ions such as Na may be added by neutralization.
  • Specific polymerizable monomers having a glycidyl group or oxetanyl group as a reactive functional group include the following, but are not limited to the exemplified monomers below.
  • These monomers can be used alone or in combination of two or more.
  • Specific polymerizable monomers having a keto group or an aldo group as a reactive functional group include the following, but are not limited to the exemplified monomers below. Diacetone acrylamide, diacetone methacrylamide, acrolein, N-vinylformamide, vinyl methyl ketone, vinyl ethyl ketone, acetoacetoxyethyl acrylate, acetoacetoxypropyl acrylate, acetoacetoxybutyl acrylate, acetoacetoxyethyl methacrylate, acetoacetoxypropyl methacrylate, acetate Acetoxybutyl methacrylate etc. These monomers can be used alone or in combination of two or more.
  • Specific polymerizable monomers having a silyl group as a reactive functional group include the following, but are not limited to the exemplified monomers below.
  • These monomers can be used alone or in combination of two or more.
  • Specific polymerizable monomers having an allyl group, a vinyl ether group, an amino group, and a phosphoric acid group as reactive functional groups include the following, but are not limited to the exemplified monomers below. Allyl (meth)acrylate, 2-(2-vinyloxyethoxy)ethyl (meth)acrylate, 2-(meth)acryloyloxyethyl acid phosphate, bis[2-(meth)acryloyloxyethyl] phosphate, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, 2-aminoethyl (meth)acrylate, etc. These monomers can be used alone or in combination of two or more.
  • Organic fine particles of the present invention represent fine particles made of general polymers.
  • Common polymers include, for example, polyamides, polyimides, low density polyethylene, high density polyethylene, poly(meth)acrylates, polystyrenes such as polystyrene and its derivatives, polyvinyl chloride, phenolic resins, Examples include polycarbonate.
  • poly(meth)acrylic acid esters and polystyrenes are preferred because raw materials are easily available and fine particles with uniform particle sizes can be easily produced, and polymers with high refractive index can be obtained. polystyrenes are more preferred.
  • a polymer with a high refractive index is preferable because it increases the difference in refractive index between the inside and outside of the particle and improves structural color development.
  • the organic fine particles may be non-crosslinked polymers or crosslinked polymers.
  • organic fine particles of the present invention In order for the organic fine particles of the present invention to develop structural color when arranged, it is important that the particles satisfy the above-mentioned number average particle diameter and the CV value of the particle diameter based on the number standard, and that the particle diameters are uniform.
  • a polymer of an appropriate size is obtained by bulk polymerization, suspension polymerization, emulsion polymerization, solution polymerization, etc., and this is pulverized into a fine powder, which is then sieved, etc.
  • Poly(meth)acrylic acid esters are polymers containing (meth)acrylic ester units as a main component.
  • main component means that the content of (meth)acrylic acid ester units is 50% by mass or more, more preferably 60% by mass or more, based on the entire polymer.
  • Examples of (meth)acrylic esters that are raw materials for (meth)acrylic ester units include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, and butyl (meth)acrylate. Can be mentioned.
  • Poly(meth)acrylic esters may be random copolymers or block copolymers, but are generally random copolymers.
  • the poly(meth)acrylic esters may be copolymerized with any monomer in addition to the above-mentioned (meth)acrylic esters.
  • Examples of arbitrary monomers include styrenes such as styrene and methylstyrene; metal salts such as sodium styrene sulfonic acid; acidic monomers such as acrylic acid and methacrylic acid; acrylamide, N-propylacrylamide, etc. Examples include acrylamides. Among these, metal salts such as the sodium salt of styrene sulfonic acid are preferred since the particle size can be well controlled.
  • a known polyfunctional monomer may be copolymerized.
  • Polystyrene Polystyrenes are polymers whose main component is styrene units.
  • main component means that the content of styrene units is 50% by mass or more, more preferably 60% by mass or more, based on the entire polymer.
  • Polystyrenes may be random copolymers or block copolymers, but are generally random copolymers. Polystyrenes may be copolymerized with any monomer in addition to styrene.
  • Examples of arbitrary monomers include styrenes other than styrene such as methylstyrene and chlorostyrene; metal salts such as sodium styrene sulfonic acid; acidic monomers such as acrylic acid and methacrylic acid; (meth)acrylic acid; Examples include (meth)acrylic esters such as methyl acid and ethyl (meth)acrylate; acrylamides such as acrylamide and N-propylacrylamide.
  • metal salts such as the sodium salt of styrene sulfonic acid are preferred since the particle size can be well controlled.
  • a known polyfunctional monomer may be copolymerized.
  • the polystyrenes preferably contain 80.0 to 99.75% by mass of styrene units. It is preferable that the content of styrene units is within the above range because the refractive index of the particles increases and the structural coloring property improves.
  • the content of styrene units in the polystyrenes is more preferably 90.0% by mass or more. Further, it is more preferably 99.4% by mass or less.
  • the polystyrenes preferably contain 0.25 to 20.0% by mass of acidic monomer units such as acrylic acid units and methacrylic acid units. It is preferable that the content of acidic monomer units is within the above range because cullet during polymerization is reduced.
  • the content of acidic monomer units in the polystyrenes is more preferably 0.6% by mass or more. Further, it is more preferably 10.0% by mass or less.
  • the content is preferably 3% by mass or less, more preferably 2% by mass or less. If the content is 3% by mass or less, the particle diameter can be well controlled.
  • the organic fine particles of the present invention are preferably obtained by soap-free emulsion polymerization.
  • Soap-free emulsion polymerization is a known polymerization method, for example as follows. Ion-exchanged water is charged into a reaction vessel, and a polymerization aid is added while heating and stirring as necessary to fully disperse the polymerization aid in the ion-exchanged water. Next, a polymerization initiator is added while continuing to stir. Thereafter, monomers are sequentially added dropwise while stirring to initiate a polymerization reaction. Particles are formed as the polymerization progresses.
  • organic fine particles by soap-free emulsion polymerization it is preferable not to use a surfactant even if the concentration is less than the critical micelle concentration. By not using a surfactant, organic fine particles with higher monodispersity can be obtained.
  • the solid content concentration during polymerization that is, the concentration of organic fine particles relative to the entire system during polymerization, is preferably 20 to 40% by mass. If the solid content concentration during polymerization is equal to or higher than the lower limit, the productivity of organic fine particles will be improved. Moreover, if it is below the above-mentioned upper limit, no deposits will be generated on the cullet or the inner wall of the polymerization apparatus during polymerization.
  • the polymerization temperature is generally set at 60 to 90°C. After the reaction is completed, the organic fine particles are taken out as an emulsion.
  • the pH of the emulsion is preferably 3.0 to 11.0. If the emulsion pH falls outside the above range, productivity will be poor from the viewpoint of metal corrosion. Further, when a keto group is selected as the reactive functional group and a hydrazide compound is selected as the crosslinking agent, the pH is preferably 3.0 to 11.0, more preferably 3.0 to 8.0, It is more preferably .0 to 8.0. If the pH is less than 3.0, productivity will be poor from the viewpoint of metal corrosion. When the pH exceeds 11.0, the reactivity of the keto group and the hydrazide compound decreases, making it impossible to obtain a structure exhibiting sufficient physical durability.
  • the pH of the emulsion is outside the above-mentioned preferred range, it is preferable to adjust the pH by adding an alkali or acid as appropriate.
  • the pH of the emulsion obtained in the production of the organic fine particles described above is about 2.0 to 7.0, so the pH is generally adjusted by adding an alkali.
  • aqueous ammonia or the like is preferable because it can be easily removed from the structure by heating or the like.
  • Polymerization initiators used in soap-free emulsion polymerization include, for example, water-soluble polymerization initiators such as sodium persulfate, potassium persulfate, and ammonium persulfate; oil-soluble polymerization initiators such as benzoyl peroxide and lauryl peroxide; Examples include redox polymerization initiators in combination with reducing agents. These may be used alone or in combination of two or more. Among these, water-soluble polymerization initiators are preferred because they are easy to handle.
  • inorganic fine particles of the present invention include metal particles and metal oxide particles.
  • silica fine particles are preferred because they are easily available and have excellent permeability.
  • Structural coloring refers to the appearance of structural color when fine particles with uniform particle diameters are regularly arranged. Structural coloring is a phenomenon in which optical physical phenomena such as interference and scattering occur depending on the wavelength of light due to the crystal structure in which fine particles are regularly arranged, resulting in a colored appearance.
  • Structural coloring depends on the nature of light, and therefore occurs not only in the visible light region but also in the ultraviolet and infrared regions. In order to develop a structural color in the ultraviolet region, it is sufficient to use fine particles with a small number average particle diameter, for example, fine particles with a number average particle diameter of 80 to 150 nm. Large fine particles, for example, fine particles having a number average particle diameter of 360 to 800 nm may be used. In the present invention, since structural coloring is utilized to improve the design of articles, it is preferable to develop structural colors in the visible light region.
  • the visible light region represents a wavelength of 360 to 830 nm
  • the ultraviolet region represents a wavelength of 200 to 359 nm
  • the infrared region represents a wavelength of 831 to 2500 nm.
  • the dispersion of the present invention can chemically bond the fine particles by causing the reactive functional groups of the fine particles to react with the crosslinking agent to perform crosslinking.
  • the structure produced using the dispersion of the present invention has excellent heat resistance and physical durability.
  • any compound that has reactivity with the reactive functional group introduced into the fine particles can be used.
  • examples include polyfunctional epoxy compounds, isocyanate compounds, hydrazide compounds, oxazoline compounds, amine compounds, carboxylic acid compounds, radically polymerizable monomers, aziridine compounds, silane compounds, and carbodiimide compounds. These can be used alone or in combination of two or more.
  • polyfunctional epoxy compounds include, but are not limited to, the exemplified compounds below. Ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, resorcinol glycidyl ether, propylene glycol diglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, sorbitol polyglycidyl ether, glycidyl ether type, glycidyl ester type, glycidyl amine type, Multifunctional epoxy resins such as various epoxy prepolymers such as aliphatic type, alicyclic type, novolac type, aminophenol type, hydatoin type, isocyanurate type, biphenol type, and naphthalene type. These can be used alone or in combination of two or more.
  • polyfunctional isocyanate compounds include the following, but are not limited to the exemplified compounds below. Note that the isocyanate compound also includes a blocked isocyanate compound.
  • Aliphatic diisocyanates such as hexamethylene diisocyanate, tetramethylene diisocyanate, 2-methyl-pentane-1,5-diisocyanate, 3-methyl-pentane-1,5-diisocyanate, decamethylene diisocyanate, lysine diisocyanate, trioxyethylene diisocyanate; xylylene Aroaliphatic diisocyanates such as -1,4-diisocyanate, xylylene-1,3-diisocyanate, and tetramethylxylylene diisocyanate; isophorone diisocyanate, norbornane diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylylene diisocyanate, methylene dicyclo
  • polyfunctional hydrazide compound examples include the following, but are not limited to the exemplified compounds below.
  • aliphatic dihydrazides such as oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, glutaric acid dihydrazide, adipic acid dihydrazide, and sebacic acid dihydrazide
  • carbonic acid polyhydrazide aliphatic, alicyclic, aromatic bissemicarbazide, and aromatic dicarbonate
  • polyfunctional oxazoline compound examples include oxazoline group-containing polymer "Epocross (Nippon Shokubai Co., Ltd.)".
  • One type of polyfunctional oxazoline compound can be used alone or two or more types can be used in combination.
  • polyfunctional amine compound examples include the following, but are not limited to the exemplified compounds below.
  • Ethylenediamine and its adducts diethylenetriamine, dipropylenetriamine, triethylenetetramine, tetraethylenepentamine, dimethylaminopropylamine, diethylaminopropylamine, dibutylaminopropylamine, hexamethylenediamine and its modified products, N-aminoethylpiperazine, bis - Aliphatic amines such as aminopropylpiperazine, trimethylhexamethylene diamine, bis-hexamethylene triamine, dicyandiamide, diacetoacrylamide, various modified aliphatic polyamines, polyoxypropylene diamine; 3,3'-dimethyl-4,4'- Diaminodicyclohexylmethane, 3-amino-1-cyclohexylaminopropane, 4,4'-diaminodicyclohexyl
  • Alicyclic amines and modified products thereof 4,4'-diaminodiphenylmethane (methylene dianiline), 4,4'-diaminodiphenyl ether, diaminodiphenylsulfone, m-phenylenediamine, 2,4'-tolylenediamine, m - Aromatic amines and modified products thereof such as toluylene diamine, o-toluylene diamine, metaxylylene diamine, xylylene diamine; Other special amine modified products; polyamide amines such as amido amine and aminopolyamide resin; dimethylaminomethylphenol, Tertiary amines such as 2,4,6-tri(dimethylaminomethyl)phenol and tri-2-ethylhexane salt of tri(dimethylaminomethyl)phenol; etc. These can be used alone or in combination of two or more.
  • polyfunctional carboxylic acid compound examples include, but are not limited to, the exemplified compounds below.
  • carboxylic acid compound also includes its acid anhydride. Malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid, fumaric acid, maleic acid, terephthalic acid, isophthalic acid, etc. These can be used alone or in combination of two or more.
  • polyfunctional radically polymerizable monomer examples include the following, but are not limited to the exemplified compounds below.
  • polyfunctional aziridine compound examples include aziridine group-containing polymer "Chemitite (Nippon Shokubai Co., Ltd.)". One type of polyfunctional aziridine compound can be used alone or two or more types can be used in combination.
  • Examples of the polyfunctional silane compound include the following, but are not limited to the exemplified compounds below. Methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, dimethoxydiphenylsilane, tetraethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane , hexyltrimethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltriethoxysilane, 1,6-bis(trimethoxysilyl)hexane, 3,3,3-trifluoropropyltrimethoxysilane, hexamethyldisilazane etc. These can be used alone or in combination of
  • polyfunctional carbodiimide compound examples include carbodiimide group-containing polymer "Carbodilite (Nisshinbo Chemical Co., Ltd.)".
  • One type of polyfunctional carbodiimide compound can be used alone or two or more types can be used in combination.
  • the crosslinking agent used in combination is preferably a hydrazide compound.
  • the crosslinking agent to be combined is preferably an amine compound, a carboxylic acid compound, or a hydrazide compound.
  • the crosslinking agent to be combined is preferably an isocyanate compound.
  • the crosslinking agent to be combined is preferably an epoxy compound, an oxazoline compound, an aziridine compound, or a carbodiimide compound.
  • the crosslinking agent to be combined is preferably a silane compound.
  • the crosslinking agent used in combination is preferably a radically polymerizable monomer.
  • the dispersion of the present invention may contain water-soluble polymers, plasticizers, film-forming aids, pH adjusters, etc., as necessary, in addition to the fine particles, crosslinking agent, and dispersion medium, as long as the object of the present invention is not impaired. It may also contain other ingredients.
  • the dispersion medium contained in the dispersion of the present invention is an aqueous medium, it may contain one or more water-soluble polymers such as polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide, polyester, and acrylic resin. , is preferable because it can improve film-forming properties when the dispersion is applied onto a substrate.
  • the content (mass ratio) of the water-soluble polymer in the dispersion of the present invention is 0.01 to 10, In particular, it is preferably from 0.05 to 1 from the viewpoint of achieving both film formability and structural color development.
  • the dispersion medium contained in the dispersion of the present invention is an aqueous medium
  • the dispersion can be improved by containing one or more surfactants such as sodium linear alkylbenzene sulfonate as a film-forming aid. It is preferable because it can improve film formability when applied onto a base material.
  • the content (mass ratio) of the film-forming aid in the dispersion of the present invention is 0.01 to 10, relative to the content of the fine particles. In particular, it is preferably from 0.05 to 1 from the viewpoint of achieving both film formability and structural color development.
  • the content of these other components in the dispersion of the present invention is preferably 5% by mass or less based on 100% by mass of the solid content of the dispersion of the present invention, from the viewpoint of structural color development of the structure.
  • the dispersion of the present invention can be prepared by mixing a dispersion medium with other components such as the fine particles of the present invention, a crosslinking agent, and a water-soluble polymer used as necessary.
  • a dispersion medium for example, an emulsion containing the fine particles of the present invention produced by the method described above, a crosslinking agent, other components such as a water-soluble polymer used as necessary, and a dispersion medium for adjusting the solid content concentration may be used. It can be prepared by mixing.
  • the structure of the present invention refers to a product in which the fine particles are arranged regularly and exhibits a structural color, specifically, a product containing colloid aggregates that exhibits a structural color.
  • the colloidal aggregate refers to a colloidal crystal or a colloidal amorphous aggregate, and by arranging the fine particles, the fine particles form a colloidal crystal or a colloidal amorphous aggregate, that is, a colloidal aggregate.
  • objects that exhibit structural color are objects that exhibit angle-dependent colors that appear to change depending on the viewing angle due to light diffraction and interference caused by regularly arranging fine particles with uniform particle diameters. means.
  • Examples of the structure include a structure in which fine particles are arranged on a base material, and a structure in which colloidal crystals are peeled off from a structure in which fine particles are arranged on a base material without impairing the regular arrangement of the fine particles.
  • the structure of the present invention includes fine particles and a crosslinking agent, the fine particles have a number average particle size of 50 to 800 nm, and a CV value of the particle size based on the number of particles is 15% or less, and The fine particles have a glass transition point (Tg) of 81° C. or higher, and the fine particles are chemically bonded to each other via the crosslinking agent.
  • the structure of the present invention includes fine particles having a number average particle size of 50 to 800 nm and a CV value of particle size based on the number of particles of 15% or less, and has structural coloring in a wavelength range of 200 to 2500 nm. It is characterized by having an original reflectance of 5% or more.
  • the fine particles included in the structure of the present invention preferably have the same characteristics as the fine particles of the present invention described above, and the more preferable range can be considered in the same way.
  • the base material is not particularly limited, and as described later, common materials such as metal, resin, wood, and paper can be used.
  • an overcoat layer may be provided on the surface of the structure as necessary.
  • a film-like material is used as the base material, the resulting structure will be film-like. If necessary, an overcoat layer may be provided on the surface of the film-like structure for the purpose of surface protection.
  • the structure of the present invention preferably has a reflectance derived from structural coloring of 5% or more in the wavelength range of 200 to 2500 nm.
  • the fine particles of the present invention may be used.
  • the reflectance is more preferably 10% or more, and even more preferably 20% or more. It is preferable that the reflectance is 5% or more because structural coloring properties are excellent.
  • the upper limit of the reflectance derived from structural coloring of the structure of the present invention is not particularly limited, but is usually 90% or less.
  • the method for measuring reflectance derived from structural coloring is as follows.
  • the dispersion was applied onto a plasma-treated polyester film (Lumirror (black), 100 ⁇ m thick, manufactured by Toray Industries, Inc.) at 15 mm/sec using a wire bar (OSP-25, manufactured by OSG), and incubated at 25°C.
  • a structure is formed on the film by drying for 10 minutes.
  • the reflection spectrum of the obtained structure was measured using an ultraviolet-visible-near-infrared spectrophotometer (V-770 manufactured by JASCO Corporation) and an absolute reflection measurement unit (ARSN-917 manufactured by JASCO Corporation) at a wavelength of 200 to 2500 nm. Measure in range. At this time, both the incident angle and the reflection angle are 10°.
  • the maximum value of the reflectance in the obtained reflection spectrum is defined as the reflectance derived from structural coloring.
  • a mirror in an absolute reflection measurement unit (ARSN-917 manufactured by JASCO Corporation) is used as a reference in the measurement.
  • the base material is not particularly limited, and common materials such as metal, resin, wood, and paper can be used.
  • thermoplastic resin base materials such as polyvinyl chloride sheets, polyester films such as polyethylene terephthalate (PET), polypropylene films, polyethylene films, nylon films, polystyrene films, and polyvinyl alcohol films
  • metal base materials such as aluminum foil, Glass substrates, coated paper substrates, etc. can also be used.
  • the surface of the base material may be smooth or uneven, and may be transparent, translucent, or opaque.
  • a base material that is previously colored black or the like.
  • two or more of the above base materials may be laminated together.
  • the base material may be subjected to corona treatment or plasma treatment in advance for the purpose of improving the coatability of the dispersion of the present invention.
  • a primer layer may be provided on these base materials.
  • the overcoat layer is a layer for protecting the surface of the structure, and is not particularly limited as long as it is a material that forms a film on the surface of the structure. In addition to covering the surfaces of the fine particles, the overcoat layer is preferably filled between the fine particles.
  • the resin constituting the overcoat layer include acrylic resin, acrylic urethane resin, silicone resin, and epoxy resin.
  • the form of the resin is generally a resin solution diluted with any solvent or an emulsion dispersed in water.
  • the thickness of the overcoat layer is not particularly limited, and may be at least as thick as covering the fine particles of the structure.
  • the overcoat layer can be formed on the surface of the structure by applying a thin film of the resin solution or emulsion onto the structure and subjecting it to heat treatment, etc., if necessary.
  • the method for manufacturing the structure of the present invention is, for example, as follows.
  • the dispersion of the present invention containing microparticles and a crosslinking agent is applied onto a smooth substrate. It is then dried at a suitable temperature. This arranges the fine particles. After or simultaneously with the formation of the array, the reactive functional group is reacted with a crosslinking agent to chemically bond the fine particles. Thereby, the structure of the present invention is obtained.
  • Methods for applying the dispersion of the present invention to the substrate include printing methods that do not use a plate such as inkjet, spray, dipping and spin coating, offset gravure coater, gravure coater, doctor coater, bar coater, blade coater, and flexo coater. Any type of printing method such as a roll coater or the like can be used.
  • the coating thickness of the dispersion of the present invention depends on the solid content concentration of the dispersion, but is preferably 1 to 100 ⁇ m, more preferably 5 to 50 ⁇ m, and even more preferably 10 to 30 ⁇ m.
  • the coating film thickness is 1 ⁇ m or more, the structural color development of the resulting structure is improved.
  • the coating film thickness is 100 ⁇ m or less, the ordered arrangement of the resulting structure is improved, and the structural color development is improved.
  • the drying temperature is preferably in the range of 10 to 120°C, particularly 90 to 110°C.
  • the drying time varies depending on the drying temperature, but from the viewpoint of fine particle arrangement and formation of chemical bonds, it is preferably 0.5 to 30 minutes, more preferably 1 to 10 minutes.
  • the dispersion of the present invention has excellent wettability to the substrate to be coated, and since the dispersion medium contains a small amount of high viscosity components, the dispersion does not inhibit the arrangement of fine particles and has excellent film forming properties. Since the structure of the present invention has a uniform film surface, it has good structural coloring properties. Further, a binder component or the like can be easily filled between the fine particles.
  • the dispersion of the present invention can be used alone or as a secondary processing material, for example, in coating compositions such as architectural coatings, automobile coatings, and plastic coatings; inkjet recording inks, gravure printing inks, and stationery.
  • Cosmetics such as foundation, lipstick, lip balm, blush, eyebrow cosmetics, manicure cosmetics, etc.
  • Decorative films such as color sheets and decorative films; Reflective displays, color change sensors, anti-counterfeiting agents, Suitable for use in optical materials such as electrodeposited color plates, color filters, and polarizing films.
  • the structure of the present invention can be used alone or as a secondary processed material, for example, in paint compositions such as architectural paints, automotive paints, and plastic paints; inkjet recording inks, gravure printing inks, stationery inks, etc. Ink compositions; Cosmetics such as foundations, lipsticks, lip balms, blushers, eyebrow cosmetics, and nail polish cosmetics; Decorative films such as color sheets and decorative films; Reflective displays, color change sensors, anti-counterfeiting agents, electrodeposited colors Suitable for use in optical materials such as plates, color filters, and polarizing films.
  • paint compositions such as architectural paints, automotive paints, and plastic paints
  • inkjet recording inks gravure printing inks, stationery inks, etc.
  • Cosmetics such as foundations, lipsticks, lip balms, blushers, eyebrow cosmetics, and nail polish cosmetics
  • Decorative films such as color sheets and decorative films
  • the dispersion of the invention may be used as a direct raw material.
  • a structure in which fine particles are arranged may be used as a raw material, and the fine particles may be dispersed in a material serving as a matrix while maintaining the state in which the fine particles are arranged.
  • Solid content concentration of the emulsion was determined by heating 10 g of the emulsion at 190°C for 60 minutes to evaporate water using a heat-drying moisture meter MX-50 manufactured by A&D Co., Ltd. It was found by letting
  • the raw materials used for producing the dispersion are as follows. Styrene (manufactured by Denka) Acrylic acid (manufactured by Mitsubishi Chemical Corporation) Sodium styrene sulfonate (manufactured by Tosoh Finechem) Diacetone acrylamide (manufactured by Fuji Film Wako) Methyl methacrylate (manufactured by Fuji Film Wako) Butyl acrylate (manufactured by Fuji Film Wako) Sodium hydrogen carbonate (manufactured by Fuji Film Wako) Ammonium persulfate (manufactured by Kanto Kagaku Co., Ltd.)
  • Preparation of emulsion containing fine particles ⁇ Preparation of emulsion [1]> 630 parts of styrene and 9 parts of acrylic acid were mixed to prepare a monomer mixture [A]. Further, 101 parts of styrene, 2 parts of acrylic acid, and 43 parts of diacetone acrylamide were mixed to prepare a monomer mixture [B]. On the other hand, an auxiliary agent solution was prepared by dissolving 1.2 parts of sodium p-styrene sulfonate and 1.5 parts of sodium hydrogen carbonate in 1,615 parts of ion-exchanged water.
  • the auxiliary agent solution was charged into a reaction vessel equipped with a stirring device, a heating and cooling device, a nitrogen introduction device, a Liebig cooler, and a raw material/auxiliary agent charging device, and the internal temperature was raised to 77°C.
  • a polymerization initiator solution in which 4.3 parts of ammonium persulfate was dissolved in 455 parts of ion-exchanged water was added to the reaction vessel, and after 5 minutes, the monomer mixture [A] was added sequentially over 2.5 hours. dripped. After the monomer mixture [A] was added dropwise, the monomer mixture [B] was sequentially added dropwise over 0.5 hours.
  • emulsion [1] was obtained by appropriately adding ion-exchanged water and adjusting the solid content concentration to 29.0%.
  • the obtained fine particles had a number average particle diameter of 250 nm, a CV value of 4.7%, and a Tg of 106°C.
  • emulsion [2] ⁇ Preparation of emulsion [2]> The pH was adjusted to 11.0 by adding 10% ammonia water to the emulsion A. Further, emulsion [2] was obtained by appropriately adding ion-exchanged water and adjusting the solid content concentration to 29.0%. The obtained fine particles had a number average particle diameter of 250 nm, a CV value of 4.7%, and a Tg of 106°C.
  • emulsion [3] ⁇ Preparation of emulsion [3]> The pH was adjusted to 3.0 by adding 10% aqueous ammonia to the emulsion A. Further, emulsion [3] was obtained by appropriately adding ion-exchanged water and adjusting the solid content concentration to 29.0%. The obtained fine particles had a number average particle diameter of 250 nm, a CV value of 4.7%, and a Tg of 106°C.
  • Emulsion A was prepared in the same manner as emulsion A, except that the monomer mixture [B] used in the preparation of emulsion [1] was a mixture of 80 parts of styrene, 2 parts of acrylic acid, and 65 parts of diacetone acrylamide.
  • Emulsion B of fine particles having a keto group and a carboxyl group as functional groups was obtained.
  • the pH of emulsion B was adjusted to 7.0 by adding 10% aqueous ammonia.
  • emulsion [4] was obtained by appropriately adding ion-exchanged water to adjust the solid content concentration to 29.0%.
  • the obtained fine particles had a number average particle diameter of 270 nm, a CV value of 6.7%, and a Tg of 105°C.
  • Emulsion A was prepared in the same manner as emulsion A, except that the monomer mixture [B] used in the preparation of emulsion [1] was a mixture of 58 parts of styrene, 2 parts of acrylic acid, and 86 parts of diacetone acrylamide.
  • An emulsion C of fine particles having a keto group and a carboxyl group as functional groups was obtained.
  • the pH of emulsion C was adjusted to 7.0 by adding 10% aqueous ammonia.
  • emulsion [5] was obtained by appropriately adding ion-exchanged water and adjusting the solid content concentration to 29.0%.
  • the obtained fine particles had a number average particle diameter of 273 nm, a CV value of 7.5%, and a Tg of 106°C.
  • ⁇ Preparation of emulsion [6]> A mixture of 731 parts of styrene, 11 parts of acrylic acid, and 43 parts of diacetone acrylamide was prepared and used as a monomer mixture [A].
  • an auxiliary agent solution was prepared by dissolving 1.2 parts of sodium p-styrene sulfonate and 1.5 parts of sodium hydrogen carbonate in 1,615 parts of ion-exchanged water.
  • the auxiliary agent solution was charged into a reaction vessel equipped with a stirring device, a heating and cooling device, a nitrogen introduction device, a Liebig cooler, and a raw material/auxiliary agent charging device, and the internal temperature was raised to 77°C.
  • a polymerization initiator solution prepared by dissolving 4.3 parts of ammonium persulfate in 455 parts of ion-exchanged water was added to the reaction vessel, and 5 minutes later, the monomer mixture [A] was sequentially added dropwise over 3 hours. . After the monomer mixture [A] was added dropwise, stirring was continued at 77°C for 1.5 hours, and then the internal temperature was raised to 90°C. Thereafter, the Liebig condenser was removed from the apparatus, and stirring was maintained at 90° C. for 3 hours while introducing nitrogen from the nitrogen introduction device at a rate of 1 L/min.
  • emulsion D After cooling the internal temperature to 20° C., the polymerization reaction product was filtered through nonwoven gauze (Treat) to obtain emulsion D of fine particles having a keto group and a carboxyl group as reactive functional groups.
  • the pH of emulsion D was adjusted to 7.0 by adding 10% aqueous ammonia.
  • emulsion [6] was obtained by appropriately adding ion-exchanged water and adjusting the solid content concentration to 29.0%.
  • the obtained fine particles had a number average particle diameter of 268 nm, a CV value of 5.0%, and a Tg of 106°C.
  • ⁇ Preparation of emulsion [7]> A mixture of 774 parts of styrene and 11 parts of acrylic acid was prepared and designated as a monomer mixture [A].
  • an auxiliary agent solution was prepared by dissolving 1.2 parts of sodium p-styrene sulfonate and 1.5 parts of sodium hydrogen carbonate in 1,615 parts of ion-exchanged water.
  • the auxiliary agent solution was charged into a reaction vessel equipped with a stirring device, a heating and cooling device, a nitrogen introduction device, a Liebig cooler, and a raw material/auxiliary agent charging device, and the internal temperature was raised to 77°C.
  • a polymerization initiator solution prepared by dissolving 4.3 parts of ammonium persulfate in 455 parts of ion-exchanged water was added to the reaction vessel, and 5 minutes later, the monomer mixture [A] was sequentially added dropwise over 3 hours. . After the monomer mixture [A] was added dropwise, stirring was continued at 77°C for 1.5 hours, and then the internal temperature was raised to 90°C. Thereafter, the Liebig condenser was removed from the apparatus, and stirring was maintained at 90° C. for 3 hours while introducing nitrogen from the nitrogen introduction device at a rate of 1 L/min.
  • emulsion E of fine particles having a carboxyl group as a reactive functional group.
  • the pH of emulsion E was adjusted to 7.0 by adding 10% aqueous ammonia.
  • emulsion [7] was obtained by appropriately adding ion-exchanged water and adjusting the solid content concentration to 29.0%.
  • the obtained fine particles had a number average particle diameter of 225 nm, a CV value of 4.0%, and a Tg of 106°C.
  • auxiliary agent solution was prepared by dissolving 1.2 parts of sodium p-styrene sulfonate and 1.5 parts of sodium hydrogen carbonate in 1,615 parts of ion-exchanged water.
  • the auxiliary agent solution was charged into a reaction vessel equipped with a stirring device, a heating and cooling device, a nitrogen introduction device, a Liebig cooler, and a raw material/auxiliary agent charging device, and the internal temperature was raised to 77°C.
  • a polymerization initiator solution prepared by dissolving 4.3 parts of ammonium persulfate in 455 parts of ion-exchanged water was charged into the reaction vessel, and 5 minutes later, 785 parts of styrene was sequentially added dropwise over 3 hours. After the dropwise addition of styrene was completed, stirring was continued at 77°C for 1.5 hours, and then the internal temperature was raised to 90°C. Thereafter, the Liebig condenser was removed from the apparatus, and stirring was maintained at 90° C. for 3 hours while introducing nitrogen from the nitrogen introduction device at a rate of 1 L/min.
  • emulsion F After cooling the internal temperature to 20°C, the polymerization reaction product was filtered through nonwoven gauze (Treat) to obtain emulsion F of fine particles having no reactive functional groups.
  • the pH of emulsion F was adjusted to 7.0 by adding 10% aqueous ammonia.
  • emulsion [8] was obtained by appropriately adding ion-exchanged water and adjusting the solid content concentration to 29.0%.
  • the obtained fine particles had a number average particle diameter of 230 nm, a CV value of 7.7%, and a Tg of 106°C.
  • ⁇ Preparation of emulsion [9]> A mixture of 774 parts of styrene and 11 parts of acrylic acid was prepared and designated as a monomer mixture [A].
  • an auxiliary agent solution [1] was prepared by dissolving 1.2 parts of sodium p-styrene sulfonate and 1.5 parts of sodium hydrogen carbonate in 1,615 parts of ion-exchanged water.
  • the auxiliary agent solution [1] was charged into a reaction vessel equipped with a stirring device, a heating and cooling device, a nitrogen introduction device, a Liebig cooler, and a raw material/auxiliary agent charging device, and the internal temperature was raised to 77°C.
  • a polymerization initiator solution [1] in which 4.3 parts of ammonium persulfate was dissolved in 455 parts of ion-exchanged water was added to the reaction vessel, and after 5 minutes, the monomer mixture [A] was added over a period of 3 hours. It was added dropwise. After the monomer mixture [A] was added dropwise, stirring was continued at 77°C for 1.5 hours, and then the internal temperature was raised to 90°C. Thereafter, the Liebig condenser was removed from the apparatus, and stirring was maintained at 90° C. for 3 hours while introducing nitrogen from the nitrogen introduction device at a rate of 1 L/min.
  • the polymerization reaction product was filtered through nonwoven gauze (Treat) to obtain an emulsion of fine particles having a carboxyl group as a reactive functional group.
  • the obtained fine particles had a number average particle diameter of 225 nm, a CV value of 4.0%, and a Tg of 106°C.
  • 470 parts of ion-exchanged water is mixed with the obtained emulsion to obtain an auxiliary agent solution [2], and the auxiliary agent solution [2] is transferred to a stirring device, a heating cooling device, a nitrogen introduction device, a Liebig condenser, and an auxiliary agent solution [2].
  • a monomer mixture [B] containing 166 parts of methyl methacrylate, 166 parts of butyl acrylate, and 7 parts of acrylic acid was added to the reaction vessel, and the internal temperature was raised to 77°C.
  • a polymerization initiator solution [2] made by dissolving 3.4 parts of ammonium persulfate in 100 parts of ion-exchanged water was added to the reaction vessel, and after continuing stirring at 77°C for 4.5 hours, the internal temperature was lowered to 90°C. The temperature was raised to °C. Thereafter, the Liebig condenser was removed from the apparatus, and stirring was maintained at 90° C.
  • the polymerization reaction product was filtered through nonwoven gauze (Treat) to obtain an emulsion G of fine particles having a carboxyl group as a reactive functional group.
  • the pH of emulsion G was adjusted to 7.0 by adding 10% aqueous ammonia.
  • emulsion [9] was obtained by appropriately adding ion-exchanged water and adjusting the solid content concentration to 29.0%.
  • the obtained fine particles had a number average particle diameter of 249 nm and a CV value of 5.5%.
  • Tg glass transition point
  • ⁇ Preparation of emulsion [10]> By performing the same operation as in preparing the emulsion [9], except that a mixture of 214 parts of methyl methacrylate, 119 parts of butyl acrylate, and 7 parts of acrylic acid was used as the monomer mixture [B].
  • An emulsion H of fine particles having a carboxyl group as a reactive functional group was obtained.
  • the pH of emulsion H was adjusted to 7.0 by adding 10% aqueous ammonia.
  • emulsion [10] was obtained by appropriately adding ion-exchanged water and adjusting the solid content concentration to 29.0%.
  • the obtained fine particles had a number average particle diameter of 249 nm and a CV value of 5.8%.
  • Tg glass transition point
  • Example 1 Mix 18 parts of emulsion [1], 1.4 parts of 10% adipic acid dihydrazide aqueous solution, 0.1 part of 4% polyvinyl alcohol (Gosenex CKS-50, Mitsubishi Chemical Corporation) aqueous solution, and 0.5 part of ion exchange water. A dispersion with a solid content concentration of 26.8% was prepared. Coat it on a plasma-treated polyester film (Lumirror (black), 100 ⁇ m thick, manufactured by Toray Industries, Inc.) using a wire bar (OSP-25, manufactured by OSG) at 15 mm/sec, and dry at 25°C for 10 minutes. I got a structure by doing this.
  • a plasma-treated polyester film Limirror (black), 100 ⁇ m thick, manufactured by Toray Industries, Inc.
  • OSP-25 wire bar
  • Examples 2 to 6, Comparative Example 1 A structure was obtained by performing the same operation as in Example 1, except that emulsions [2] to [6] and [8] were used instead of emulsion [1].
  • Emulsion [7] 18 parts, oxazoline group-containing polymer aqueous solution (Nippon Shokubai Co., Ltd., Epocross WS-700, active ingredient 25%) 0.9 parts, 4% polyvinyl alcohol (Gosenex CKS-50, Mitsubishi Chemical Corporation) aqueous solution 0
  • a dispersion having a solid content concentration of 26.8% was prepared by mixing 1 part of ion-exchanged water and 1.44 parts of ion-exchanged water.
  • a structure was obtained by performing the same operations as in Example 1 except for using this dispersion.
  • Emulsion [7] 17 parts, carbodiimide group-containing polymer aqueous solution (Nisshinbo Chemical Co., Ltd., Carbodilite SV-02, active ingredient 40%) 1.1 parts, linear sodium alkylbenzene sulfonate aqueous solution (Nippon Nyukazai Co., Ltd., Nucor 220- Solid by mixing 0.12 parts of L(20)D, active ingredient 20%), 0.1 part of 4% polyvinyl alcohol (Gosenex CKS-50, Mitsubishi Chemical Corporation) aqueous solution, and 1.7 parts of ion-exchanged water. A dispersion with a concentration of 27.0% was prepared. A structure was obtained by performing the same operations as in Example 1 except for using this dispersion.
  • Emulsion [7] 16.5 parts, carbodiimide group-containing polymer aqueous solution (Nisshinbo Chemical Co., Ltd., Carbodilite V-02, active ingredient 40%) 1.4 parts, linear alkylbenzenesulfonate aqueous solution (Nippon Nyukazai Co., Ltd., Newcor) 220-L(20)D, 0.12 parts of active ingredient 20%), 0.1 part of 4% polyvinyl alcohol (Gosenex CKS-50, Mitsubishi Chemical Corporation) aqueous solution, and 1.8 parts of ion-exchanged water. A dispersion with a solid content concentration of 27.0% was prepared. A structure was obtained by performing the same operations as in Example 1 except for using this dispersion.
  • Emulsion [7] 17.1 parts, carbodiimide group-containing polymer aqueous solution (Nisshinbo Chemical Co., Ltd., Carbodilite V-10, active ingredient 40%) 1.0 part, linear alkylbenzenesulfonate aqueous solution (Nippon Nyukazai Co., Ltd., Newcor) 220-L(20)D, 0.12 parts of active ingredient 20%), 0.1 part of 4% polyvinyl alcohol (Gosenex CKS-50, Mitsubishi Chemical Corporation) aqueous solution, and 1.7 parts of ion-exchanged water. A dispersion with a solid content concentration of 26.9% was prepared. A structure was obtained by performing the same operations as in Example 1 except for using this dispersion.
  • Example 2 A dispersion was prepared in the same manner as in Example 1, except that 1.4 parts of 10% adipic acid dihydrazide aqueous solution was not added. The solid content concentration of this dispersion was 28.1%. A structure was obtained by performing the same operations as in Example 1 except for using this dispersion.
  • Color development was evaluated as follows. The reflected light of the structural color when the surface of the structure after film formation was irradiated with white light was visually judged based on the following evaluation criteria. (Evaluation criteria) ⁇ : When color development is confirmed, and both metallic luster and angle dependence are confirmed in the color development ⁇ : Color development is confirmed, but when neither metallic luster nor angle dependence is confirmed in the color development ⁇ : When color development itself is not confirmed (when it does not reflect light of a specific wavelength and appears white)
  • Heat resistance was evaluated as follows. The structure after film formation was heated at 120° C. for 10 minutes, and the appearance and color tone of the structure after heating was visually observed and evaluated based on the following evaluation criteria. (Evaluation criteria) ⁇ : When no change was observed in appearance and color tone ⁇ : When change was observed in appearance and color tone
  • Example 7 an emulsion of fine particles having a Tg of 81°C or more and a carboxyl group as a reactive functional group was used, and the particles were chemically bonded by adding an oxazoline group-containing polymer as a crosslinking agent. ing. As a result, a structure with excellent heat resistance and physical durability was obtained, with no change in appearance or color tone due to heating.
  • Example 8 to 10 an emulsion of fine particles having a Tg of 81°C or higher and having a carboxyl group as a reactive functional group was used, and a polymer containing a carbodiimide group was added as a crosslinking agent to chemically connect the particles. are combined. As a result, a structure with excellent heat resistance and physical durability was obtained, with no change in appearance or color tone due to heating.
  • Comparative Example 1 uses an emulsion of fine particles that has a Tg of 81° C. or higher but does not have a reactive functional group. As a result, a structure was obtained that showed no change in appearance or color tone due to heating and had excellent heat resistance, but poor physical durability.
  • Comparative Example 2 an emulsion of fine particles having a Tg of 81° C. or higher and having a keto group and a carboxyl group as reactive functional groups was used, but no crosslinking agent was added. As a result, a structure was obtained that showed no change in appearance or color tone due to heating and had excellent heat resistance, but poor physical durability.
  • Comparative Example 3 uses an emulsion of fine particles with a Tg of less than 81°C.
  • the Tg of the fine particles used in Comparative Example 3 is 39°C, and as described in JP-A-2021-028380 (Patent Document 2), the Tg of the shell part of the fine particles is -60 to 40°C, and the Tg of the shell is This method simulates a method in which heating at the above temperature causes the shell portion to fuse or fluidize, thereby obtaining a colloidal crystal with high physical strength. Although this structure had excellent physical durability, it had inferior heat resistance compared to the structures obtained in Examples 1 to 10.
  • Comparative Example 4 uses an emulsion of fine particles with a Tg of less than 81°C.
  • the Tg of the fine particles used in Comparative Example 4 is 45°C, and as described in JP-A-2009-249527 (Patent Document 1), the Tg of the shell portion of the fine particles is 10 to 50°C, and the Tg of the shell is higher than
  • This method simulates a method in which colloidal crystals with high physical strength are obtained by heating at a temperature of 100 to cause the shell parts to fuse or fluidize. Although this structure had excellent physical durability, it had inferior heat resistance compared to the structures obtained in Examples 1 to 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Paints Or Removers (AREA)

Abstract

微粒子、架橋剤及び分散媒を含有する分散体であって、該微粒子の個数平均粒子径が50~800nm、かつ、個数基準による粒子径のCV値が15%以下であり、該微粒子のガラス転移点(Tg)が81℃以上であり、さらに該微粒子が反応性官能基を有することを特徴とする、分散体。配列した際に構造発色する微粒子、架橋剤及び分散媒を含有する分散体であって、該微粒子のガラス転移点(Tg)が81℃以上であり、さらに該微粒子が反応性官能基を有することを特徴とする、分散体。

Description

分散体、構造体及び構造体の製造方法
 本発明は、構造発色する微粒子の分散体、その微粒子が配列して構造発色する構造体及び構造体の製造方法に関する。
 構造発色とは光の波長またはそれ以下の微細構造による発色現象を指す。身近な構造色の例としては、コンパクトディスク、シャボン玉、モルフォ蝶、玉虫等が挙げられる。これらの例では、それ自身には色がついていないが、その微細な構造によって光が干渉するため、色づいて見える。
 近年、構造色を発現するような規則正しい構造を人工的に作成する開発が進められている。例えば、粒子径が単分散の微粒子が媒体中に分散した分散体を用い、これを流し込み、噴射、塗布、流動等で微粒子を配列・整合・乾燥・固定させて、基材上に微粒子が平面方向に規則的に配列した構造体を製造する方法が種々提案されている。
 このような微粒子を規則配列したものとしてコロイド結晶が知られており、このようなコロイド結晶はBragg反射をし、構造色を発現することが知られている。また、これを色材や赤外線反射膜に応用する研究開発がされてきている。
 一方で、コロイド結晶はその特徴的な構造から物理的強度が極めて低く、例えば手で払うだけで簡単にその構造が崩壊し、退色する。コロイド結晶はまた、基材からも剥がれやすい。この課題から、コロイド結晶は大量生産技術が確立されるまでには至っていない。
 コロイド結晶の物理的強度を高める方法として、特許文献1では、非架橋ポリマーからなるシェルを有するコアシェル粒子の分散液を塗布することで得られる塗膜を乾燥、もしくは加熱することで、シェル部の融着または流動化を起こすことでシェル部によって形成された塗膜(マトリックス)が生成し、この塗膜中にコア部が規則的に配列することで物理的強度の高いコロイド結晶を得る方法が提案されている。ここで、シェル部の好ましいガラス転移点(Tg)は10~50℃とされている。また、シェル部にカルボキシル基とグリシジル基を導入することで、シェル部による塗膜の形成時に両者の反応を進行させ、コロイド結晶膜の物理的強度をさらに向上させる方法も提案されている。
 特許文献2では、粒子を構成する単量体として反応性界面活性剤を使用し、コアとシェルのガラス転移点(Tg)とコアシェル比を調整したコアシェル粒子が提案されている。これにより、乾燥、もしくは加熱処理時のシェル同士の過剰な融着が抑制され、粒子間に空域が維持されることで、物理的耐久性だけでなく発色性にも優れるコロイド結晶が得られている。ここで、シェル部のTgは-60~40℃とされている。また、シェルに架橋を形成し得る反応性基を導入することで、シェル部の融着時に反応を進行させ、コロイド結晶膜の物理的強度をさらに向上させる方法も提案されている。具体的な反応として、「ケトン-ヒドラジド架橋」が挙げられている。
特開2009-249527号公報 特開2021-028380号公報
 特許文献1で提案された方法は、コアに使用する材料とシェルに使用する材料の性質上、粒子として機能するコアとマトリックスとして機能するシェルの屈折率差が小さくなってしまうため、発色性が極めて低い課題があった。また、シェル部のTgが10~50℃と低いため、得られるコロイド結晶の耐熱性に課題があった。
 特許文献2で提案された方法では、粒子間の空域を維持することで、粒子とマトリックスの屈折率差を保つことができるため、発色性に改善は見られる。しかし、この方法では、シェル部のTgが-60~40℃と低いため、得られるコロイド結晶の耐熱性に課題があった。また、実施例で示される構成はいずれもスチレン系コア、アクリル系シェルからなる粒子であり、アクリル系シェルが粒子全体としての屈折率を下げることに繋がり、発色性に更なる改善の余地があるものであった。
 本発明の目的は、上記の課題を解決することにある。
 即ち、本発明の目的は、構造色を発現することが可能であり、耐熱性に優れ、さらに物理的耐久性にも優れた構造体を得るために最適な分散体を提供することにある。
 本発明者は、所定の粒度分布を有する或いは配列した際に構造発色する微粒子であって、所定値以上のガラス転移点を有し、さらに反応性官能基を有する微粒子と、架橋剤とを含有する分散体を用いることにより前記課題を解決できることを見出した。
 本発明は以下の特徴を有する。
[1] 微粒子、架橋剤及び分散媒を含有する分散体であって、
 該微粒子の個数平均粒子径が50~800nm、かつ、個数基準による粒子径のCV値が15%以下であり、
 該微粒子のガラス転移点(Tg)が81℃以上であり、
 さらに該微粒子が反応性官能基を有することを特徴とする、分散体。
[2] 配列した際に構造発色する微粒子、架橋剤及び分散媒を含有する分散体であって、
 該微粒子のガラス転移点(Tg)が81℃以上であり、
 さらに該微粒子が反応性官能基を有することを特徴とする、分散体。
[3] 前記微粒子が、ポリ(メタ)アクリル酸エステル類又はポリスチレン類からなることを特徴とする、[1]又は[2]に記載の分散体。
[4] 前記微粒子が、ポリスチレン類からなることを特徴とする、[3]に記載の分散体。
[5] 前記反応性官能基が、水酸基、カルボキシル基、グリシジル基、オキセタニル基、ケト基、アルド基、シリル基、アリル基、ビニルエーテル基、アミノ基及びリン酸基から選択されることを特徴とする、[1]~[4]のいずれかに記載の分散体。
[6] 5℃/minの昇温速度で-40℃から200℃まで昇温し、次いで10℃/minの降温速度で-40℃まで降温し、続いて5℃/minの昇温速度で200℃まで昇温するステップを含む温度プログラムを実施する示差走査熱量測定(DSC)において、ガラス転移点(Tg)が1点のみ確認されることを特徴とする、[1]~[5]のいずれかに記載の分散体。
[7] [1]、[3]、[4]、[5]又は[6]に記載の分散体に含まれる前記微粒子及び前記架橋剤からなるコロイド集合体含有物から構成され、かつ、前記微粒子間が化学的に結合してなる、構造発色性を有する構造体。
[8] [2]に記載の分散体に含まれる前記微粒子及び前記架橋剤からなるコロイド集合体含有物から構成され、かつ、前記微粒子間が化学的に結合してなる、構造発色性を有する構造体。
[9] [1]~[8]のいずれかに記載の分散体を基材上で乾燥させて前記微粒子を配列させる工程と、前記配列の形成後又は配列の形成と同時に前記反応性官能基と前記架橋剤とを反応させて前記微粒子間を結合させる工程とを含むことを特徴とする、構造体の製造方法。
[10] 個数平均粒子径が50~800nm、かつ、個数基準による粒子径のCV値が15%以下であって、
 ガラス転移点(Tg)が81℃以上であり、
 さらに、水酸基、グリシジル基、オキセタニル基、ケト基、アルド基、シリル基、アリル基、ビニルエーテル基、アミノ基及びリン酸基からなる群より選ばれる少なくとも1種の反応性官能基を有することを特徴とする、微粒子。
[11] [10]に記載の微粒子からなるコロイド集合体含有物から構成され、構造発色性を有する構造体。
[12] 微粒子及び架橋剤を含む構造体であって、
 該微粒子の個数平均粒子径が50~800nm、かつ、個数基準による粒子径のCV値が15%以下であり、
 さらに該微粒子のガラス転移点(Tg)が81℃以上であり、
 該微粒子同士が前記架橋剤を介して化学的に結合していることを特徴とする、構造体。
[13] さらに、表面にオーバーコート層を有する、[7]、[8]、[11]又は[12]に記載の構造体。
[14] [1]~[6]のいずれかに記載の分散体を用いた塗料組成物。
[15] [1]~[6]のいずれかに記載の分散体を用いたインク組成物。
[16] [1]~[6]のいずれかに記載の分散体を用いた化粧料。
[17] [1]~[6]のいずれかに分散体を用いた装飾用フィルム。
[18] [1]~[6]のいずれかに記載の分散体を用いた光学材料。
[19] [7]、[8]、[11]、[12]又は[13]に記載の構造体を用いた塗料組成物。
[20] [7]、[8]、[11]、[12]又は[13]に記載の構造体を用いたインク組成物。
[21] [7]、[8]、[11、[12]又は[13]に記載の構造体を用いた化粧料。
[22] [7]、[8]、[11]、[12]又は[13]に記載の構造体を用いた装飾用フィルム。
[23] [7]、[8]、[11]、[12]又は[13]に記載の構造体を用いた光学材料。
 本発明によれば、構造色を発現することが可能であり、耐熱性に優れ、さらに物理的耐久性にも優れた構造体を得るために最適な分散体が提供される。
 以下に本発明の実施の形態を詳細に説明する。以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、以下の内容に限定されない。
 本明細書において「~」という表現を用いる場合、その前後に記載される数値あるいは物理値を含む意味で用いることとする。また、上限、下限として記載した数値あるいは物理値は、その値を含む意味で用いることとする。
〔分散体〕
 本発明の分散体は、後述する微粒子、架橋剤及び分散媒を含有する。ここで、分散体とは、微粒子が分散媒に分散していることを意味する。
 分散媒としては、任意の媒体を用いることができる。分散媒としては、例えば、水、水を主体とする媒体といった水系媒体、有機溶媒が挙げられる。
 水を主体とする媒体とは、水の比率が50質量%以上、更には60質量%以上であることを表す。水以外の成分としては、水に可溶な任意の有機溶媒を選択することができる。
 有機溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、1-メトキシ-2-プロパノールアルコール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、トルエン、キシレン等の芳香族系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、ヘキサン、シクロヘキサン、ヘプタン、デカン、ヘキサデカン等のアルカン類、塩化メチル、塩化メチレン、クロロホルム、四塩化炭素等のハロゲン系溶剤、テトラヒドロキシフラン、ジオキサン、エチレングルコールジエチルエーテル、エチレングリコールモノブチルエーテル等のエーテル系溶剤が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて用いることができる。
 以上の中でも、分散媒としては、構造発色性の高い構造体が得やすいことから、水、水を主体とする媒体といった水系媒体が好ましい。
 本発明の分散体における微粒子の含有量は、分散体全質量に対して1質量%~70質量%であることが好ましい。
 微粒子の含有量は、分散体全質量に対して、10質量%以上がより好ましく、15質量%以上が更に好ましく、20質量%以上が特に好ましい。一方、45質量%以下がより好ましく、40質量%以下が更に好ましく、35質量%以下が特に好ましい。
 微粒子の含有量が上記範囲内であれば、得られる構造体の構造発色性が良好となる。
 本発明の分散体における架橋剤の含有量は、微粒子100質量部に対して0.01~50質量部であることが好ましい。
 架橋剤の含有量は、微粒子100質量部に対して、0.05質量部以上がより好ましく、0.1質量部以上が更に好ましく、0.5質量部以上が特に好ましい。一方、40質量部以下がより好ましく、20質量部以下が更に好ましく、10質量部以下が特に好ましい。
 本発明の分散体における架橋剤の含有量は、微粒子の反応性官能基に対する架橋剤の反応当量が0.1当量以上となる量であることが好ましい。反応当量が0.1当量以上となると、十分な物理的耐久性を示す構造体を得ることができる。架橋剤の反応当量の上限については特に制限はないが、通常10当量以下である。
 架橋剤の含有量が上記範囲内であれば、得られる構造体の構造発色性が良好となる。
 本発明の分散体の固形分の濃度は10質量%以上であることが好ましい。
 分散体の固形分の濃度は20質量%以上がより好ましく、25質量%以上が更に好ましい。また、分散体の固形分濃度の上限値は60質量%以下が好ましく、50質量%以下がより好ましい。
 分散体の固形分濃度が上記範囲内であれば製膜性が良好となり、得られる構造体の構造発色性が良好となる。
 ここで、分散体の固形分とは、分散体中の分散媒以外の成分をさし、通常は、微粒子と架橋剤と、必要に応じて含まれていてもよいその他の成分の合計である。
 分散体の固形分濃度の測定は、後掲の実施例の項に記載のエマルションの固形分濃度と同様に行うことができるが、分散体の製造に用いた各成分の固形分濃度と成分量から計算により算出することができる。
[微粒子]
 一実施形態において、本発明の分散体に含まれる微粒子(以下、「本発明の微粒子」と称す場合がある。)は、個数平均粒子径が50~800nm、個数基準による粒子径のCV値が15%以下で、ガラス転移点(Tg)が81℃以上で、反応性官能基を有することを特徴とする。
 また、他の実施形態において、本発明の微粒子は、配列した際に構造発色し、ガラス転移温度(Tg)が81℃以上で、反応性官能基を有することを特徴とする。
 さらに他の実施形態において、本発明の微粒子は、個数平均粒子径が50~800nm、かつ、個数基準による粒子径のCV値が15%以下であって、ガラス転移点(Tg)が81℃以上であり、さらに、水酸基、グリシジル基、オキセタニル基、ケト基、アルド基、シリル基、アリル基、ビニルエーテル基、アミノ基及びリン酸基からなる群より選ばれる少なくとも1種の反応性官能基を有することを特徴とする。
 本発明の微粒子は、上記の条件を満たすものであれば、特に制限されるものではなく、有機微粒子であっても、無機微粒子であってもよい。
 有機微粒子と無機微粒子の中では、組成制御等、反応条件を精密に制御しやすく、大きさや形状の揃った微粒子を得やすいため、有機微粒子が好ましい。
 以下、有機微粒子である本発明の微粒子を「本発明の有機微粒子」と称し、無機微粒子である本発明の微粒子を「本発明の無機微粒子」と称す場合がある。
 本発明の分散体は、微粒子の1種のみを含有するものであってもよく、物性や構成材料や反応性官能基の種類などの異なるものの2種以上を含有するものであってもよい。
<個数平均粒子径>
 本発明の一実施形態に係る微粒子の個数平均粒子径は50~800nmである。
 本発明の微粒子の個数平均粒子径は好ましくは100nm以上、より好ましくは150nm以上、更に好ましくは180nm以上であり、一方、好ましくは700nm以下、より好ましくは600nm以下、更に好ましくは500nm以下である。
 個数平均粒子径が上記範囲内であれば、構造発色性が良好となることから好ましい。
 微粒子の個数平均粒子径の測定方法は、後掲の実施例の項に記載の通りである。
 なお、実施例に記載のように微粒子のエマルションの状態からではなく、後述の微粒子構造体の状態から個数平均粒子径を測定する場合は、例えば次のような方法で測定することができる。
 微粒子構造体について、倍率2万倍以上の電子顕微鏡を用いて、微粒子の画像を観察する。画像中、少なくとも400個の微粒子の直径を測定し、これを算術平均して個数平均粒子径を求める。
 また、エマルションではなく微粒子単体の状態から個数平均粒子径を測定する場合は、例えば、基板上に置いた微粒子を電子顕微鏡やデジタルマイクロスコープで観察し、個数平均粒子径を測定してもよい。
<個数基準による粒子径のCV値>
 本発明の一実施形態に係る微粒子の個数基準による粒子径のCV値は15%以下である。
 本発明の微粒子の個数基準による粒子径のCV値は、好ましくは10%以下、より好ましくは5%以下である。個数基準による粒子径のCV値の下限については特に制限はないが、通常1%以上である。
 CV値は、「変動係数」又は「相対標準偏差」とも称され、本発明では、個数基準による粒子径の分布における標準偏差と個数平均粒子径の関係を意味し、
 (標準偏差/個数平均粒子径)×100
で算出している。
 個数基準による粒子径のCV値が上記範囲内であれば、構造発色性が良好となることから好ましい。
 微粒子の個数基準による粒子径のCV値の測定方法は、後掲の実施例の項に記載の通りである。
<ガラス転移点(Tg)>
 本発明の微粒子は、ガラス転移点(Tg)が81℃以上である。微粒子のTgを81℃以上とするには、例えば芳香族環などの剛直な構造を微粒子内に導入すればよい。
 なお、本発明においては、微粒子について後掲の実施例の項に記載の方法でガラス転移点(Tg)測定を行った際、複数のガラス転移点(Tg)が確認された場合は、温度の最も低いガラス転移点(Tg)を「微粒子のガラス転移点(Tg)」とする。
 本発明の微粒子は、後掲の実施例の項に記載の方法でガラス転移点(Tg)測定を行った際、すなわち、5℃/minの昇温速度で-40℃から200℃まで昇温し、次いで10℃/minの降温速度で-40℃まで降温し、続いて5℃/minの昇温速度で200℃まで昇温するステップを含む温度プログラムを実施する示差走査熱量測定(DSC)において、ガラス転移点(Tg)が1点のみ確認されることが好ましい。
 微粒子のTgは85℃以上が好ましく、90℃以上がより好ましく、95℃以上がさらに好ましく、100℃以上が特に好ましく、105℃以上がとりわけ好ましい。
 微粒子のTgが81℃以上であれば、耐熱性に優れ、高温の使用環境下でも構造が維持されることから好ましい。
 本発明の微粒子のTgの上限には特に制限はないが、通常300℃以下である。
 微粒子のTgの測定方法は、後掲の実施例の項に記載の通りである。
<反応性官能基>
 本発明の微粒子は、反応性官能基を有する。反応性官能基としては、例えば、水酸基、カルボキシル基、グリシジル基、オキセタニル基、ケト基、アルド基、シリル基、アリル基、ビニルエーテル基、アミノ基及びリン酸基が挙げられる。これらは、1種単独で有してもよく、2種以上を有してもよい。
 これらの中でも、発色性の観点から、水酸基、グリシジル基、オキセタニル基、ケト基、アルド基、シリル基、アリル基、ビニルエーテル基、アミノ基及びリン酸基が好ましく、水酸基、グリシジル基、オキセタニル基、ケト基、アルド基がより好ましく、グリシジル基、ケト基、アルド基がさらに好ましい。
 本発明の微粒子が反応性官能基を2種有する場合、少なくとも1種はケト基であることが好ましく、ケト基とカルボキシル基の組み合わせがより好ましい。
 本発明の微粒子が反応性官能基を2種有し、少なくとも1種はケト基である場合、ケト基の含有比率(ケト基/もう1種の反応性官能基のモル比)は0.01以上が好ましく、0.1以上がより好ましく、一方、100以下が好ましく、10以下がより好ましい。特に、もう1種の反応性官能基がカルボキシル基である場合、前記ケト基の含有比率は、0.01以上が好ましく、1.0以上がより好ましく、一方、10以下が好ましく、5.0以下がより好ましい。
 微粒子への反応性官能基を導入方法は特に限定されないが、例えば、有機微粒子であれば、ラジカル重合性の二重結合を有する単量体(例えば、スチレン)に対して、反応性官能基を有する重合性単量体を共重合する方法が挙げられる。無機微粒子であれば、微粒子表面を公知のシランカップリング剤で処理する方法が挙げられる。
 反応性官能基として水酸基を有する具体的な重合性単量体としては以下が挙げられるが、以下の例示単量体に限定されるものではない。
 2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の水酸基含有(メタ)アクリル系単量体;(ポリ)エチレングリコールモノ(メタ)アクリレート、(ポリ)プロピレングリコールモノ(メタ)アクリレート等の(ポリ)アルキレングリコール(メタ)アクリル系単量体;ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル等のヒドロキシアルキルビニルエーテル系単量体;アリルアルコール、2-ヒドロキシエチルアリルエーテル等の水酸基含有アリル単量体:など。
 これらの単量体は、1種を単独で、又は2種以上を組み合わせて用いることができる。
 反応性官能基としてカルボキシル基を有する具体的な重合性単量体としては以下が挙げられるが、以下の例示単量体に限定されるものではない。
 アクリル酸、メタクリル酸、クロトン酸、ケイ皮酸、イタコン酸、マレイン酸及びフマル酸等の不飽和カルボン酸;イタコン酸モノブチル等のイタコン酸モノアルキル(炭素数1~8)エステル;マレイン酸モノブチル等のマレイン酸モノアルキル(炭素数1~8)エステル;ビニル安息香酸等のビニル基含有芳香族カルボン酸;等の各種カルボキシル基含有単量体及びこれらの塩:など。
 これらの単量体は、1種単独で、又は2種以上組み合わせて用いることができる。また、中和によりNa等の対イオンを有していても構わない。
 反応性官能基としてグリシジル基、オキセタニル基を有する具体的な重合性単量体としては以下が挙げられるが、以下の例示単量体に限定されるものではない。
 グリシジル(メタ)アクリレート、β-メチルグリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、p-グリシジルスチレン、(3-エチルオキセタン-3-イル)メチル(メタ)アクリレート等。
 これらの単量体は、1種を単独で、又は2種以上を組み合わせて用いることができる。
 反応性官能基としてケト基、アルド基を有する具体的な重合性単量体としては以下が挙げられるが、以下の例示単量体に限定されるものではない。
 ダイアセトンアクリルアミド、ダイアセトンメタクリルアミド、アクロレイン、N-ビニルホルムアミド、ビニルメチルケトン、ビニルエチルケトン、アセトアセトキシエチルアクリレート、アセトアセトキシプロピルアクリレート、アセトアセトキシブチルアクリレート、アセトアセトキシエチルメタクリレート、アセトアセトキシプロピルメタクリレート、アセトアセトキシブチルメタクリレート等。
 これらの単量体は、1種を単独で、又は2種以上を組み合わせて用いることができる。
 反応性官能基としてシリル基を有する具体的な重合性単量体としては以下が挙げられるが、以下の例示単量体に限定されるものではない。
 ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、p-スチリルメトキシシラン、3-メタクリロキシプロピルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン等。
 これらの単量体は、1種を単独で、又は2種以上を組み合わせて用いることができる。
 反応性官能基としてアリル基、ビニルエーテル基、アミノ基及びリン酸基を有する具体的な重合性単量体としては以下が挙げられるが、以下の例示単量体に限定されるものではない。
 アリル(メタ)アクリレート、(メタ)アクリル酸2-(2-ビニロキシエトキシ)エチル、2-(メタ)アクリロイルオキシエチルアシッドホスフェート、リン酸ビス[2-(メタ)アクリロイルオキシエチル]、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、(メタ)アクリル酸2-アミノエチル等。
 これらの単量体は、1種を単独で、又は2種以上を組み合わせて用いることができる。
<有機微粒子>
 本発明の有機微粒子は、一般的な高分子からなる微粒子を表す。
 一般的な高分子としては、例えば、ポリアミド類、ポリイミド類、低密度ポリエチレン、高密度ポリエチレン、ポリ(メタ)アクリル酸エステル類、ポリスチレン及びその誘導体等のポリスチレン類、ポリ塩化ビニル、フェノール樹脂類、ポリカーボネートが挙げられる。
 これらの中でも、原材料の入手が容易であり、粒子径の揃った微粒子を生産することが容易なことから、ポリ(メタ)アクリル酸エステル類、ポリスチレン類が好ましく、高屈折率の重合体が得られることから、ポリスチレン類がより好ましい。
 高屈折率の重合体は、粒子内外の屈折率差が大きくなり、構造発色性が向上することから好ましい。
 有機微粒子は、非架橋高分子であっても、架橋高分子であってもよい。
 本発明の有機微粒子は、配列した際に構造発色するために、前述の個数平均粒子径及び個数基準による粒子径のCV値を満たし、粒子径が揃っていることが重要である。
 粒子径の揃った有機微粒子を得るには、例えば、塊状重合、懸濁重合、乳化重合、溶液重合等で適当な大きさの重合体を得て、これを粉砕して微粉とし、篩分等の操作により粒子径を揃える方法がある。また、ソープフリー乳化重合によって、粒子径の揃った有機微粒子を直接得る方法がある。
 これらの中では、生産性に優れることから、ソープフリー乳化重合による方法が好ましい。
(ポリ(メタ)アクリル酸エステル類)
 ポリ(メタ)アクリル酸エステル類とは、(メタ)アクリル酸エステル単位を主成分とする重合体である。ここで主成分とは、重合体全体に対して(メタ)アクリル酸エステル単位の含有率が50質量%以上、更には60質量%以上であることを表す。
 (メタ)アクリル酸エステル単位の原料となる(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチルが挙げられる。
 ポリ(メタ)アクリル酸エステル類は、ランダム共重合体でもブロック共重合体でもよいが、一般的にはランダム共重合体である。
 ポリ(メタ)アクリル酸エステル類は、上述の(メタ)アクリル酸エステルの他に、任意の単量体を共重合してもよい。
 任意の単量体としては、例えば、スチレン、メチルスチレン等のスチレン類;スチレンスルホン酸のナトリウム塩等の金属塩;アクリル酸、メタクリル酸等の酸性単量体;アクリルアミド、N-プロピルアクリルアミド等のアクリルアミド類が挙げられる。
 これらの中で、粒子径の制御が良好となることから、スチレンスルホン酸のナトリウム塩等の金属塩が好ましい。
 ポリ(メタ)アクリル酸エステル類に架橋構造を導入する場合には、公知の多官能単量体を共重合すればよい。
(ポリスチレン類)
 ポリスチレン類とは、スチレン単位を主成分とする重合体である。ここで主成分とは、重合体全体に対してスチレン単位の含有率が50質量%以上、更には60質量%以上であることを表す。
 ポリスチレン類は、ランダム共重合体でもブロック共重合体でもよいが、一般的にはランダム共重合体である。
 ポリスチレン類は、スチレンの他に、任意の単量体を共重合してもよい。
 任意の単量体としては、例えば、メチルスチレン、クロロスチレン等のスチレン以外のスチレン類;スチレンスルホン酸のナトリウム塩等の金属塩;アクリル酸、メタクリル酸等の酸性単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等の(メタ)アクリル酸エステル類;アクリルアミド、N-プロピルアクリルアミド等のアクリルアミド類が挙げられる。
 これらの中で、粒子径の制御が良好となることから、スチレンスルホン酸のナトリウム塩等の金属塩が好ましい。
 ポリスチレン類に架橋構造を導入する場合には、公知の多官能単量体を共重合すればよい。
(ポリスチレン類の組成)
 ポリスチレン類は、スチレン単位を80.0~99.75質量%含有することが好ましい。スチレン単位の含有率が上記範囲内であれば、粒子の屈折率が高くなり、構造発色性が向上することから好ましい。
 ポリスチレン類中のスチレン単位の含有率は90.0質量%以上がより好ましい。また、99.4質量%以下がより好ましい。
 ポリスチレン類は、アクリル酸単位、メタクリル酸単位等の酸性単量体単位を0.25~20.0質量%含有することが好ましい。酸性単量体単位の含有率が上記範囲内であれば、重合時のカレットが低減することから好ましい。
 ポリスチレン類中の酸性単量体単位の含有率は0.6質量%以上がより好ましい。また、10.0質量%以下がより好ましい。
 ポリスチレン類が、前記酸性単量体単位以外の任意の単量体単位及び/又は多官能単量体単位を含有する場合、その含有率は3質量%以下が好ましく、2質量%以下がより好ましい。
 前記含有率が3質量%以下であれば、粒子径の制御が良好となる。
(有機微粒子の製造方法)
 本発明の有機微粒子はソープフリー乳化重合によって得ることが好ましい。ソープフリー乳化重合は公知の重合方法であり、例えば下記の通りである。
 反応容器にイオン交換水を仕込み、必要に応じて加熱、攪拌しながら、重合助剤を加え、重合助剤をイオン交換水に十分に分散させる。次に攪拌を続けながら重合開始剤を添加する。その後、攪拌を続けながら単量体を逐次滴下し、重合反応を開始させる。重合の進行に従って粒子が形成される。
 なお、ソープフリー乳化重合によって有機微粒子を得る場合、臨界ミセル濃度未満であっても界面活性剤を使用しないことが好ましい。界面活性剤を使用しないことで、より単分散性の高い有機微粒子を得ることができる。
 重合時の固形分濃度、即ち、重合時の系全体に対する有機微粒子の濃度は20~40質量%が好ましい。
 重合時の固形分濃度が前記下限以上であれば、有機微粒子の生産性が向上する。また、前記上限以下であれば、重合時のカレット及び重合装置内壁等への付着物の発生がない。
 重合温度は重合開始剤を使用した場合には、一般に60~90℃に設定される。反応終了後、有機微粒子をエマルションとして取り出す。
 前記エマルションのpHは3.0~11.0であることが好ましい。エマルションpHが上記範囲外となった場合、金属腐食の観点から生産性に乏しくなる。また、反応性官能基としてケト基、架橋剤としてヒドラジド化合物を選択した場合、pHは3.0~11.0であることが好ましく、3.0~8.0であることがより好ましく、6.0~8.0であることが更に好ましい。pHが3.0未満の場合、金属腐食の観点から生産性に乏しくなる。pHが11.0を超える場合、ケト基とヒドラジド化合物の反応性が低下し、十分な物理的耐久性を示す構造体が得られなくなる。
 このため、エマルションのpHが上記好適範囲を外れる場合は、適宜、アルカリ又は酸を添加してpH調整することが好ましい。
 通常、上記の有機微粒子の製造で得られるエマルションのpHは2.0~7.0程度であることから、一般的にはアルカリを添加してpH調整が行われる。pH調整に用いるアルカリとしては、加熱等で構造体からの除去が容易なことから、アンモニア水などが好ましい。
 ソープフリー乳化重合で用いる重合開始剤としては、例えば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の水溶性重合開始剤;過酸化ベンゾイル、ラウリルパーオキサイド等の油溶性重合開始剤;酸化剤と還元剤との組み合わせによるレドックス系重合開始剤が挙げられる。
 これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの中では、取扱いが容易な点から水溶性重合開始剤が好ましい。
<無機微粒子>
 本発明の無機微粒子としては、金属粒子や金属酸化物粒子が挙げられる。
 これらの中では、入手が容易でかつ、透過性に優れるという理由で、シリカ微粒子が好ましい。
<構造発色>
 本発明の微粒子は、構造発色性を有する。構造発色とは、粒子径の揃った微粒子が規則的に配列したときに構造色を発現することを意味する。
 構造発色とは、微粒子が規則正しく配列した結晶構造を有しているため、光の波長によって干渉や散乱等の光学物理的現象が起こり発色して見える現象のことである。
 構造発色は光の性質によるものであるから、可視光領域のみではなく、紫外線領域、赤外線領域でも同様に発現する。
 紫外線領域で構造色を発現させるには、個数平均粒子径が小さい微粒子、例えば個数平均粒子径80~150nmの微粒子を用いればよく、赤外線領域で構造色を発現させるには、個数平均粒子径が大きい微粒子、例えば個数平均粒子径360~800nmの微粒子を用いればよい。
 本発明では、物品の意匠性の向上のために構造発色を利用することから、可視光領域での構造色を発現することが好ましい。
 ここで可視光領域とは波長360~830nmを表し、紫外線領域とは波長200~359nmを表し、赤外線領域とは波長831~2500nmを表す。
[架橋剤]
 本発明の分散体は、架橋剤を含有することで、微粒子が有する反応性官能基と架橋剤とを反応させて架橋を行うことにより微粒子間を化学的に結合させることができる。これにより、本発明の分散体を用いて作製した構造体は、耐熱性及び物理的耐久性に優れたものとなる。
 架橋剤としては、微粒子に導入した反応性官能基との反応性を有する任意の化合物を使用することができる。例えば、多官能のエポキシ化合物、イソシアネート化合物、ヒドラジド化合物、オキサゾリン化合物、アミン化合物、カルボン酸化合物、ラジカル重合性単量体、アジリジン化合物、シラン化合物、カルボジイミド化合物が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて用いることができる。
 多官能のエポキシ化合物としては以下が挙げられるが、以下の例示化合物に限定されるものではない。
 エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、レゾルシノールグリシジルエーテル、プロピレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、グリシジルエーテル型、グリシジルエステル型、グリシジルアミン型、脂肪族型、脂環式型、ノボラック型、アミノフェノール型、ヒダトイン型、イソシアヌレート型、ビフェノール型、ナフタレン型等の各種エポキシプレポリマー等の多官能エポキシ樹脂等。
 これらは1種を単独で、又は2種以上を組み合わせて用いることができる。
 多官能のイソシアネート化合物としては以下が挙げられるが、以下の例示化合物に限定されるものではない。なお、イソシアネート化合物としてはブロックイソシアネート化合物も含むこととする。
 ヘキサメチレンジイソシアネート、テトラメチレンジイソシアネート、2-メチル-ペンタン-1,5-ジイソシアネート、3-メチル-ペンタン-1,5-ジイソシアネート、デカメチレンジイソシアネート、リジンジイソシアネート、トリオキシエチレンジイソシアネート等の脂肪族ジイソシアネート;キシリレン-1,4-ジイソシアネート、キシリレン-1,3-ジイソシアネート、テトラメチルキシリレンジイソシアネート等の芳香脂肪族ジイソシアネート;イソホロンジイソシアネート、ノルボルナンジイソシアネート、水素添加トリレンジイソシアネート、水素添加キシレンジイソシアネート、メチレンジシクロヘキシルジイソシアネート(異名称:水素添加ジフェニルメタンジイソシアネート)、水素添加テトラメチルキシレンジイソシアネート等の脂環式ジイソシアネート、および前記イソシアネートのトリマー体、アロファネート体、ビウレット体、ダイマー体、ダイマー・トリマー体、カルボジイミド体、ウレトンイミン体、2官能以上のポリオール等と前記イソシアネートとの反応で得られるアダクト体等。
 これらは1種を単独で、又は2種以上を組み合わせて用いることができる。
 多官能のヒドラジド化合物としては以下が挙げられるが、以下の例示化合物に限定されるものではない。
 シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジドなどの脂肪族ジヒドラジドの他、炭酸ポリヒドラジド、脂肪族、脂環族、芳香族ビスセミカルバジド、芳香族ジカルボン酸ジヒドラジド、ポリアクリル酸のポリヒドラジド、芳香族炭化水素のジヒドラジド、ヒドラジン-ピリジン誘導体及びマレイン酸ジヒドラジドなどの不飽和ジカルボン酸のジヒドラジド等。
 これらは1種を単独で、又は2種以上を組み合わせて用いることができる。
 多官能のオキサゾリン化合物としては、例えば、オキサゾリン基含有ポリマー「エポクロス(日本触媒株式会社)」が挙げられる。多官能のオキサゾリン化合物は、1種を単独で、又は2種以上を組み合わせて用いることができる。
 多官能のアミン化合物としては、以下が挙げられるが、以下の例示化合物に限定されるものではない。
 エチレンジアミン及びその付加物、ジエチレントリアミン、ジプロピレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ジブチルアミノプロピルアミン、ヘキサメチレンジアミン及びその変性品、N-アミノエチルピペラジン、ビス-アミノプロピルピペラジン、トリメチルヘキサメチレンジアミン、ビス-ヘキサメチレントリアミン、ジシアンジアミド、ジアセトアクリルアミド、各種変性脂肪族ポリアミン、ポリオキシプロピレンジアミン等の脂肪族アミン;3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、3-アミノ-1-シクロヘキシルアミノプロパン、4,4’-ジアミノジシクロヘキシルメタン、イソホロンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、N-ジメチルシクロヘキシルアミン、ビス(アミノメチル)ノルボルナン等の脂環族アミン及びその変性物;4,4’-ジアミノジフェニルメタン(メチレンジアニリン)、4,4’-ジアミノジフェニルエーテル、ジアミノジフェニルスルホン、m-フェニレンジアミン、2,4’-トルイレンジアミン、m-トルイレンジアミン、o-トルイレンジアミン、メタキシリレンジアミン、キシリレンジアミン等の芳香族アミン及びその変性物;その他特殊アミン変性物;アミドアミン、アミノポリアミド樹脂等のポリアミドアミン;ジメチルアミノメチルフェノール、2,4,6-トリ(ジメチルアミノメチル)フェノール、トリ(ジメチルアミノメチル)フェノールのトリ-2-エチルヘキサン塩等の3級アミン類;等。
 これらは1種を単独で、又は2種以上を組み合わせて用いることができる。
 多官能のカルボン酸化合物としては、以下が挙げられるが、以下の例示化合物に限定されるものではない。なお、カルボン酸化合物としてはその酸無水物も含むこととする。
 マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、フマル酸、マレイン酸、テレフタル酸、イソフタル酸等。
 これらは1種を単独で、又は2種以上を組み合わせて用いることができる。
 多官能のラジカル重合性単量体としては、以下が挙げられるが、以下の例示化合物に限定されるものではない。
 N-[トリス(3-(メタ)アクリルアミドプロポキシメチル)メチル]アクリルアミド、N,N-ビス(2-(メタ)アクリルアミドエチル)(メタ)アクリルアミド、N,N’-[オキシビス(2,1-エタンジイルオキシ-3,1-プロパンジイル)]ビス(メタ)アクリルアミド、N,N’-1,2-エタンジイルビス{N-[2-((メタ)アクリロイルアミノ)エチル](メタ)アクリルアミド}ビスアクリルアミド、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、1,2,4-シクロヘキサンテトラ(メタ)アクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールトリアクリレート、トリペンタエリスリトールヘキサアクリレート等。
 これらは1種を単独で、又は2種以上を組み合わせて用いることができる。
 多官能のアジリジン化合物としては、例えば、アジリジン基含有ポリマー「ケミタイト(日本触媒株式会社)」が挙げられる。多官能のアジリジン化合物は、1種を単独で、又は2種以上を組み合わせて用いることができる。
 多官能のシラン化合物としては、以下が挙げられるが、以下の例示化合物に限定されるものではない。
 メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジメトキシジフェニルシラン、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n‐プロピルトリメトキシシラン、n‐プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、1,6-ビス(トリメトキシシリル)ヘキサン、3,3,3-トリフルオロプロピルトリメトキシシラン、ヘキサメチルジシラザン等。
 これらは1種を単独で、又は2種以上を組み合わせて用いることができる。
 多官能のカルボジイミド化合物としては、例えば、カルボジイミド基含有ポリマー「カルボジライト(日清紡ケミカル株式会社)」が挙げられる。多官能のカルボジイミド化合物は、1種を単独で、又は2種以上を組み合わせて用いることができる。
[反応性官能基と架橋剤の組み合わせ]
 本発明の分散体において、微粒子が有する反応性官能基と架橋剤との組み合わせとしては、下記が好ましい。
 反応性官能基がケト基、アルド基の場合、組み合わせる架橋剤はヒドラジド化合物が好ましい。
 反応性官能基がグリシジル基、オキセタニル基の場合、組み合わせる架橋剤はアミン化合物、カルボン酸化合物、ヒドラジド化合物が好ましい。
 反応性官能基が水酸基の場合、組み合わせる架橋剤はイソシアネート化合物が好ましい。
 反応性官能基がカルボキシル基の場合、組み合わせる架橋剤はエポキシ化合物、オキサゾリン化合物、アジリジン化合物、カルボジイミド化合物が好ましい。
 反応性官能基がシリル基の場合、組み合わせる架橋剤はシラン化合物が好ましい。
 反応性官能基がアリル基、ビニルエーテル基の場合、組み合わせる架橋剤はラジカル重合性単量体が好ましい。
[その他の成分]
 本発明の分散体は、本発明の目的を損なわない範囲で、上記微粒子、架橋剤及分散媒以外に必要に応じて、水溶性高分子、可塑剤、成膜助剤、pH調整剤等のその他の成分を含んでいてもよい。
 本発明の分散体が含有する分散媒が水系媒体の場合には、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイド、ポリエステル、アクリル系樹脂等の水溶性高分子の1種又は2種以上を含有することで、分散体を基材上に塗布した際の成膜性を向上することができ好ましい。
 本発明の分散体がこれらの水溶性高分子を含有する場合、本発明の分散体中の水溶性高分子の含有量(質量比)は、微粒子の含有量に対して0.01~10、特に0.05~1であることが、成膜性と構造発色性を両立させる観点から好ましい。
 本発明の分散体が含有する分散媒が水系媒体の場合には、直鎖アルキルベンゼンスルホン酸ナトリウム等の界面活性剤を成膜助剤として1種又は2種以上を含有することで、分散体を基材上に塗布した際の成膜性を向上させることができ好ましい。
 本発明の分散体がこれらの成膜助剤を含有する場合、本発明の分散体中の成膜助剤の含有量(質量比)は、微粒子の含有量に対して0.01~10、特に0.05~1であることが、成膜性と構造発色性を両立させる観点から好ましい。
 本発明の分散体中のこれらのその他の成分の含有量は、本発明の分散体の固形分100質量%中に5質量%以下であることが、構造体の構造発色性の観点から好ましい。
[分散体の調製方法]
 本発明の分散体は、分散媒と、本発明の微粒子、架橋剤及び必要に応じて用いられる水溶性高分子等のその他の成分を混合することで調製することができる。
 例えば、前述の方法で製造された、本発明の微粒子を含むエマルションと、架橋剤と、必要に応じて用いられる水溶性高分子等のその他の成分と、固形分濃度調整用の分散媒とを混合することにより調製することができる。
〔構造体〕
 本発明の構造体は、前記微粒子を規則的に配列した、構造色を発現する物、具体的には、構造色を発現するコロイド集合体含有物をいう。
 ここで、コロイド集合体とは、コロイド結晶やコロイドアモルファス集合体をいい、微粒子を配列させることにより、微粒子がコロイド結晶やコロイドアモルファス集合体、すなわち、コロイド集合体を形成する。
 さらに、構造色を発現する物とは、粒子径の揃った微粒子が規則的に配列して光の回折・干渉が起こり、見る角度によって色が変化して見える角度依存性のある色を呈する物をいう。
 前記構造体としては、例えば、基材上に微粒子が配列した物、基材上に微粒子が配列した物から微粒子の規則的な配列を損なうことなくコロイド結晶を剥離した物が挙げられる。
 一実施形態において、本発明の構造体は、微粒子及び架橋剤を含み、該微粒子の個数平均粒子径が50~800nm、かつ、個数基準による粒子径のCV値が15%以下であり、さらに該微粒子のガラス転移点(Tg)が81℃以上であり、該微粒子同士が前記架橋剤を介して化学的に結合していることを特徴とする。
 他の実施形態において、本発明の構造体は、個数平均粒子径が50~800nm、かつ、個数基準による粒子径のCV値が15%以下の微粒子を含み、200~2500nmの波長範囲における構造発色由来の反射率が5%以上であることを特徴とする。
 本発明の構造体に含まれる微粒子は、前述の本発明の微粒子と同様の特性を有することが好ましく、より好ましい範囲も同様に考えることができる。
 基材としては、特に制限されるものではなく、後述の通り、金属、樹脂、木材、紙等の一般的な材料を用いることが可能である。
 表面保護の目的で、必要に応じて構造体の表面にオーバーコート層を設けてもよい。
 基材としてフィルム状の材料を用いた場合、得られる構造体はフィルム状となる。フィルム状の構造体にも、表面保護の目的で、必要に応じて表面にオーバーコート層を設けてもよい。
[反射率]
 前述の通り、一実施形態において、本発明の構造体は、200~2500nmの波長範囲における構造発色由来の反射率が5%以上であることが好ましい。構造体の前記反射率を5%以上とするには、例えば本発明の微粒子を使用すればよい。
 前記反射率は10%以上であることがより好ましく、20%以上がさらに好ましい。
 前記反射率が5%以上であれば、構造発色性に優れることから好ましい。
 本発明の構造体の構造発色由来の反射率の上限には特に制限はないが、通常90%以下である。
 構造発色由来の反射率の測定方法は、以下の通りである。
 分散体を、プラズマ処理を施したポリエステルフィルム(ルミラー(黒色)100μm厚、東レ株式会社製)の上にワイヤーバー(OSP-25、OSG製)を用いて15mm/秒で塗布し、25℃で10分乾燥することで前記フィルム上に構造体を形成させる。得られた構造体の反射スペクトルを、紫外可視近赤外分光光度計(日本分光社製V-770)および絶対反射測定ユニット(日本分光社製ARSN-917)を用いて、波長200~2500nmの範囲で測定する。この時、入射角と反射角はともに10°とする。得られた反射スペクトル中の反射率の最大値を構造発色由来の反射率とする。測定におけるリファレンスは絶対反射測定ユニット(日本分光社製ARSN-917)中のミラーを用いる。
[基材]
 基材としては、特に制限されるものではなく、金属、樹脂、木材、紙等の一般的な材料を用いることが可能である。
 例えば、ポリ塩化ビニルシート、ポリエチレンテレフタレート(PET)等のポリエステルフィルム、ポリプロピレンフィルム、ポリエチレンフィルム、ナイロンフィルム、ポリスチレンフィルム、ポリビニルアルコールフィルムの様な熱可塑性樹脂基材や、アルミニウム箔などの金属基材、ガラス基材、コート紙基材などを用いることもできる。
 基材は表面が平滑であっても、凹凸を有したものであってもよいし、透明、半透明、不透明のいずれであってもよい。微粒子の発色をより明瞭にするため、黒色等に予め着色された基材を用いることも可能である。また、上記これらの基材の2種以上を互いに張り合わせたものでもよい。
 基材は本発明の分散体の塗工性を改善する目的で、予めコロナ処理やプラズマ処理を行っても構わない。
 これらの基材上にプライマー層が付与されていても構わない。
[オーバーコート層]
 オーバーコート層は構造体の表面を保護するための層であり、構造体の表面に膜を形成する材料であれば、特に限定されるものではない。
 オーバーコート層は、微粒子の表面を覆うことに加えて、微粒子の間に充填されることが好ましい。
 オーバーコート層を構成する樹脂としては、例えば、アクリル樹脂、アクリルウレタン樹脂、シリコーン樹脂、エポキシ樹脂が挙げられる。
 樹脂の形態としては、任意の溶剤で希釈した樹脂溶液、または水に分散させたエマルションが一般的である。
 オーバーコート層の厚さとしては、特に限定されるものではなく、構造体の微粒子を覆う厚さ以上であればよい。
 オーバーコート層は、構造体上に前記樹脂溶液又はエマルションを薄膜塗布し、必要に応じて熱処理等を加えて、構造体の表面に形成することができる。
[構造体の製造方法]
 本発明の構造体の製造方法は、例えば下記の通りである。
 微粒子と架橋剤とを含有する本発明の分散体を平滑な基材の上に塗布する。次いで、適切な温度で乾燥させる。これにより、前記微粒子が配列される。
 前記配列の形成後又は配列の形成と同時に前記反応性官能基を架橋剤と反応させることで、前記微粒子間を化学的に結合させる。これにより、本発明の構造体が得られる。
 基材への本発明の分散体の塗布方式としては、インクジェットやスプレー、ディッピングやスピンコート等の版を使用しない印刷方式、オフセットグラビアコーター、グラビアコーター、ドクターコーター、バーコーター、ブレードコーター、フレキソコーター、ロールコーターなどの有版の印刷方式のいずれをも用いることができる。
 本発明の分散体の塗布膜厚は、分散体の固形分濃度にもよるが、1~100μmが好ましく、5~50μmがより好ましく、10~30μmが更に好ましい。塗布膜厚が1μm以上であると、得られる構造体の構造発色性が向上する。また、塗布膜厚が100μm以下であると、得られる構造体の規則配列性が向上し、構造発色性が向上する。
 本発明の分散体を基材上に塗布した後の乾燥方法に特に制限はなく、例えば加熱乾燥法、熱風乾燥法、赤外線乾燥法、マイクロ波乾燥法、ドラム乾燥法など、従来既知の方法を用いることができる。上記の乾燥法は単独で用いても、複数を併用してもよい。
 乾燥温度が高すぎると、分散媒が急速に揮発してしまい微粒子の配列が乱れて発色に悪影響を及ぼすことがある。一方で、乾燥温度が低過ぎると微粒子の反応性官能基同士又は反応性官能基と架橋剤との反応が円滑に進行せず、微粒子間を化学的に結合することが困難な場合がある。微粒子の配列と化学結合の形成との観点から、乾燥温度は10~120℃、特に90~110℃の範囲が好ましい。
 乾燥時間は乾燥温度によっても異なるが、微粒子の配列と化学結合の形成との観点から、好ましくは0.5~30分、より好ましくは1~10分である。
〔用途〕
 本発明の分散体は、被塗布基材への濡れ性に優れ、分散媒に含まれる高粘度成分が少ないため、微粒子の配列を阻害することがなく、製膜性に優れる。
 本発明の構造体は、膜表面が均一であるため、構造発色性が良好となる。また、微粒子間に容易にバインダー成分等を充填することができる。
 これらの特徴から、本発明の分散体は、単独または二次加工材として、例えば、建築用塗料、自動車用塗料、プラスチック用塗料等の塗料組成物;インクジェット記録用インク、グラビア印刷用インク、文具用インク等のインク組成物;ファンデーション、口紅、リップクリーム、頬紅、眉毛化粧品、マニキュア化粧品等の化粧料;カラーシート、加飾フィルム等の装飾用フィルム;反射型ディスプレイ、変色センサー、偽造防止剤、電着カラー板、カラーフィルター、偏光フィルム等の光学材料に好適に用いられる。
 また、本発明の構造体は、単独または二次加工材として、例えば、建築用塗料、自動車用塗料、プラスチック用塗料等の塗料組成物;インクジェット記録用インク、グラビア印刷用インク、文具用インク等のインク組成物;ファンデーション、口紅、リップクリーム、頬紅、眉毛化粧品、マニキュア化粧品等の化粧料;カラーシート、加飾フィルム等の装飾用フィルム;反射型ディスプレイ、変色センサー、偽造防止剤、電着カラー板、カラーフィルター、偏光フィルム等の光学材料に好適に用いられる。
 上記の各種用途では、本発明の分散体を直接の原材料として用いてもよい。
 また、微粒子が配列した構造体を原材料とし、微粒子が配列した状態を維持したまま、マトリクスとなる材料に分散させて用いてもよい。
 以下に実施例を示し、本発明を更に詳細に説明する。本発明は、その要旨を超えない限り、以下の実施例により限定されるものではない。
 以下の記載において、「部」及び「%」は、それぞれ「質量部」及び「質量%」を示す。
[評価方法]
 以下の実施例及び比較例において、微粒子及びエマルションは、下記の方法により各種物性を測定した。
(1)微粒子の個数平均粒子径
 微粒子のエマルションを基材に塗布し、乾燥させた後、倍率2万倍以上の電子顕微鏡で、微粒子の画像を観察した。画像中、少なくとも400個の微粒子の直径を測定し、これを算術平均して個数平均粒子径を求めた。
(2)微粒子の個数基準による粒子径のCV値
 上記の少なくとも400個の微粒子の直径の測定値を用い、(標準偏差/平均粒子径)×100 の計算をし、個数基準による粒子径のCV値を求めた。
(3)エマルションの固形分濃度
 エマルションの固形分濃度は、エー・アンド・デイ株式会社製、加熱乾燥式水分計MX-50を用い、10gのエマルションを190℃で60分加熱して水分を蒸発させることにより求めた。
(4)微粒子のガラス転移点(Tg)
 得られたエマルションをワイヤーバー(OSG製、OSP-25)で、プラズマ処理を施したポリエステルフィルム(東レ株式会社、ルミラー(黒色) 100μm厚)の上に、15mm/秒で塗布し、塗布物を40℃で12時間静置することで乾燥させた。乾燥後、ポリエステルフィルム上の微粒子を回収した。
 得られた微粒子のガラス転移点(Tg)をSIIナノテクノロジー株式会社製示差走査熱量計「DSC7020」を用いて測定した。
 微粒子5mgをアルミニウムパン上に秤量し、該アルミニウムパンを装置にセットし、-40℃から200℃まで5℃/minで昇温した後、10℃/minで-40℃まで冷却した。再度200℃まで5℃/minで昇温することで得られたチャートから吸熱ピークを読みとり、ガラス転移点(Tg)を得た。なお、ガラス転移点(Tg)の読み取りはJIS K 7121「プラスチックの転移温度測定法」に記載されているうちの「中点ガラス転移温度:Tmg」に基づいて行った。また、複数のガラス転移点(Tg)が確認された場合は、温度の最も低いガラス転移点(Tg)を微粒子のガラス転移点(Tg)とした。
[原材料等]
 以下の実施例及び比較例において、分散体の製造に用いた原材料等は以下の通りである。
 スチレン(デンカ社製)
 アクリル酸(三菱ケミカル社製)
 スチレンスルホン酸ナトリウム(東ソーファインケム社製)
 ダイアセトンアクリルアミド(富士フィルム和光社製)
 メタクリル酸メチル(富士フィルム和光社製)
 アクリル酸ブチル(富士フィルム和光社製)
 炭酸水素ナトリウム(富士フィルム和光社製)
 過硫酸アンモニウム(関東化学社製)
[微粒子含有エマルションの調製]
<エマルション[1]の調製>
 スチレン630部、アクリル酸9部を混合し、単量体混合液[A]を調製した。
 また、スチレン101部、アクリル酸2部、ダイアセトンアクリルアミド43部を混合し、単量体混合液[B]を調製した。
 一方、p-スチレンスルホン酸ナトリウム1.2部、炭酸水素ナトリウム1.5部をイオン交換水1615部に溶解させた助剤溶液を調製した。
 攪拌装置、加熱冷却装置、窒素導入装置、リービッヒ冷却器、及び、原料・助剤仕込み装置を備えた反応容器に、助剤溶液を仕込み、内温を77℃に昇温させた。
 次に、反応容器に過硫酸アンモニウム4.3部をイオン交換水455部に溶解させた重合開始剤溶液を投入し、その5分後に単量体混合液[A]を2.5時間かけて逐次滴下した。
 単量体混合液[A]の滴下終了後、単量体混合液[B]を0.5時間かけて逐次滴下した。
 単量体混合液[B]の滴下終了後、1.5時間77℃での攪拌を継続した後、内温を90℃に昇温させた。その後、リービッヒ冷却器を装置から取り外すと共に、窒素導入装置から1L/minの速度で窒素を導入しながら90℃での攪拌を3時間維持した。
 内温を20℃まで冷却した後、重合反応物を不織布ガーゼ(トリート)で濾過して、反応性官能基としてケト基およびカルボキシル基を有する微粒子のエマルションAを得た。エマルションAに対し、10%アンモニア水を添加することでpHを7.0に調製した。また、適宜イオン交換水を加え、固形分濃度を29.0%に調整することでエマルション[1]を得た。
 得られた微粒子は、個数平均粒子径250nm、CV値4.7%、Tg106℃であった。
<エマルション[2]の調製>
 前記エマルションAに10%アンモニア水を添加することでpHを11.0に調製した。また、適宜イオン交換水を加え、固形分濃度を29.0%に調整することでエマルション[2]を得た。
 得られた微粒子は、個数平均粒子径250nm、CV値4.7%、Tg106℃であった。
<エマルション[3]の調製>
 前記エマルションAに10%アンモニア水を添加することでpHを3.0に調製した。また、適宜イオン交換水を加え、固形分濃度を29.0%に調整することでエマルション[3]を得た。
 得られた微粒子は、個数平均粒子径250nm、CV値4.7%、Tg106℃であった。
<エマルション[4]の調製>
 エマルション[1]の調製に用いた単量体混合液[B]を、スチレン80部、アクリル酸2部、ダイアセトンアクリルアミド65部の混合物としたこと以外は、エマルションAと同様にして、反応性官能基としてケト基およびカルボキシル基を有する微粒子のエマルションBを得た。エマルションBに対し、10%アンモニア水を添加することでpHを7.0に調製した。また、適宜イオン交換水を加え、固形分濃度を29.0%に調整することでエマルション[4]を得た。
 得られた微粒子は、個数平均粒子径270nm、CV値6.7%、Tg105℃であった。
<エマルション[5]の調製>
 エマルション[1]の調製に用いた単量体混合液[B]を、スチレン58部、アクリル酸2部、ダイアセトンアクリルアミド86部の混合物としたこと以外は、エマルションAと同様にして、反応性官能基としてケト基およびカルボキシル基を有する微粒子のエマルションCを得た。エマルションCに対し、10%アンモニア水を添加することでpHを7.0に調製した。また、適宜イオン交換水を加え、固形分濃度を29.0%に調整することでエマルション[5]を得た。
 得られた微粒子は、個数平均粒子径273nm、CV値7.5%、Tg106℃であった。
<エマルション[6]の調製>
 スチレン731部、アクリル酸11部、ダイアセトンアクリルアミド43部の混合物を調製し、単量体混合液[A]とした。
 一方、p-スチレンスルホン酸ナトリウム1.2部、炭酸水素ナトリウム1.5部をイオン交換水1615部に溶解させた助剤溶液を調製した。
 攪拌装置、加熱冷却装置、窒素導入装置、リービッヒ冷却器、及び、原料・助剤仕込み装置を備えた反応容器に、助剤溶液を仕込み、内温を77℃に昇温させた。
 次に、反応容器に過硫酸アンモニウム4.3部をイオン交換水455部に溶解させた重合開始剤溶液を投入し、その5分後に単量体混合液[A]を3時間かけて逐次滴下した。単量体混合液[A]の滴下終了後、1.5時間77℃での攪拌を継続した後、内温を90℃に昇温させた。その後、リービッヒ冷却器を装置から取り外すと共に、窒素導入装置から1L/minの速度で窒素を導入しながら90℃での攪拌を3時間維持した。
 内温を20℃まで冷却した後、重合反応物を不織布ガーゼ(トリート)で濾過して、反応性官能基としてケト基およびカルボキシル基を有する微粒子のエマルションDを得た。エマルションDに対し、10%アンモニア水を添加することでpHを7.0に調製した。また、適宜イオン交換水を加え、固形分濃度を29.0%に調整することでエマルション[6]を得た。
 得られた微粒子は、個数平均粒子径268nm、CV値5.0%、Tg106℃であった。
<エマルション[7]の調製>
 スチレン774部、アクリル酸11部の混合物を調製し、単量体混合液[A]とした。
 一方、p-スチレンスルホン酸ナトリウム1.2部、炭酸水素ナトリウム1.5部をイオン交換水1615部に溶解させた助剤溶液を調製した。
 攪拌装置、加熱冷却装置、窒素導入装置、リービッヒ冷却器、及び、原料・助剤仕込み装置を備えた反応容器に、助剤溶液を仕込み、内温を77℃に昇温させた。
 次に、反応容器に過硫酸アンモニウム4.3部をイオン交換水455部に溶解させた重合開始剤溶液を投入し、その5分後に単量体混合液[A]を3時間かけて逐次滴下した。単量体混合液[A]の滴下終了後、1.5時間77℃での攪拌を継続した後、内温を90℃に昇温させた。その後、リービッヒ冷却器を装置から取り外すと共に、窒素導入装置から1L/minの速度で窒素を導入しながら90℃での攪拌を3時間維持した。
 内温を20℃まで冷却した後、重合反応物を不織布ガーゼ(トリート)で濾過して、反応性官能基としてカルボキシル基を有する微粒子のエマルションEを得た。エマルションEに対し、10%アンモニア水を添加することでpHを7.0に調製した。また、適宜イオン交換水を加え、固形分濃度を29.0%に調整することでエマルション[7]を得た。
 得られた微粒子は、個数平均粒子径225nm、CV値4.0%、Tg106℃であった。
<エマルション[8]の調製>
 p-スチレンスルホン酸ナトリウム1.2部、炭酸水素ナトリウム1.5部をイオン交換水1615部に溶解させた助剤溶液を調製した。
 攪拌装置、加熱冷却装置、窒素導入装置、リービッヒ冷却器、及び、原料・助剤仕込み装置を備えた反応容器に、助剤溶液を仕込み、内温を77℃に昇温させた。
 次に、反応容器に過硫酸アンモニウム4.3部をイオン交換水455部に溶解させた重合開始剤溶液を投入し、その5分後にスチレン785部を3時間かけて逐次滴下した。スチレンの滴下終了後、1.5時間77℃での攪拌を継続した後、内温を90℃に昇温させた。その後、リービッヒ冷却器を装置から取り外すと共に、窒素導入装置から1L/minの速度で窒素を導入しながら90℃での攪拌を3時間維持した。
 内温を20℃まで冷却した後、重合反応物を不織布ガーゼ(トリート)で濾過して、反応性官能基を有さない微粒子のエマルションFを得た。エマルションFに対し、10%アンモニア水を添加することでpHを7.0に調製した。また、適宜イオン交換水を加え、固形分濃度を29.0%に調整することでエマルション[8]を得た。
 得られた微粒子は、個数平均粒子径230nm、CV値7.7%、Tg106℃であった。
<エマルション[9]の調製>
 スチレン774部、アクリル酸11部の混合物を調製し、単量体混合液[A]とした。
 一方、p-スチレンスルホン酸ナトリウム1.2部、炭酸水素ナトリウム1.5部をイオン交換水1615部に溶解させた助剤溶液[1]を調製した。
 攪拌装置、加熱冷却装置、窒素導入装置、リービッヒ冷却器、及び、原料・助剤仕込み装置を備えた反応容器に、助剤溶液[1]を仕込み、内温を77℃に昇温させた。
 次に、反応容器に過硫酸アンモニウム4.3部をイオン交換水455部に溶解させた重合開始剤溶液[1]を投入し、その5分後に単量体混合液[A]を3時間かけて逐次滴下した。
 単量体混合液[A]の滴下終了後、1.5時間77℃での攪拌を継続した後、内温を90℃に昇温させた。その後、リービッヒ冷却器を装置から取り外すと共に、窒素導入装置から1L/minの速度で窒素を導入しながら90℃での攪拌を3時間維持した。
 内温を20℃まで冷却した後、重合反応物を不織布ガーゼ(トリート)で濾過して、反応性官能基としてカルボキシル基を有する微粒子のエマルションを得た。得られた微粒子は、個数平均粒子径225nm、CV値4.0%、Tg106℃であった。
 さらに、得られたエマルションに対してイオン交換水470部を混合することで助剤溶液[2]とし、助剤溶液[2]を攪拌装置、加熱冷却装置、窒素導入装置、リービッヒ冷却器、及び、原料・助剤仕込み装置を備えた反応容器に投入した。
 次に、メタクリル酸メチル166部、アクリル酸ブチル166部、アクリル酸7部を混合した単量体混合液[B]を反応容器に加え、内温を77℃に昇温させた。
 その後、反応容器に過硫酸アンモニウム3.4部をイオン交換水100部に溶解させた重合開始剤溶液[2]を投入し、4.5時間77℃での攪拌を継続した後、内温を90℃に昇温させた。その後、リービッヒ冷却器を装置から取り外すと共に、窒素導入装置から1L/minの速度で窒素を導入しながら90℃での攪拌を3時間維持した。
 内温を20℃まで冷却した後、重合反応物を不織布ガーゼ(トリート)で濾過して、反応性官能基としてカルボキシル基を有する微粒子のエマルションGを得た。エマルションGに対し、10%アンモニア水を添加することでpHを7.0に調製した。また、適宜イオン交換水を加え、固形分濃度を29.0%に調整することでエマルション[9]を得た。
 得られた微粒子は、個数平均粒子径249nm、CV値5.5%であった。ガラス転移点(Tg)測定の結果、Tgは39℃と106℃の2か所に見られたため、本微粒子のTgは39℃とした。
<エマルション[10]の調製>
 単量体混合液[B]としてメタクリル酸メチル214部、アクリル酸ブチル119部、アクリル酸7部の混合液を使用したこと以外は、エマルション[9]の調整と同様の操作を行うことで、反応性官能基としてカルボキシル基を有する微粒子のエマルションHを得た。
 エマルションHに対し、10%アンモニア水を添加することでpHを7.0に調製した。また、適宜イオン交換水を加え、固形分濃度を29.0%に調整することでエマルション[10]を得た。
 得られた微粒子は、個数平均粒子径249nm、CV値5.8%であった。ガラス転移点(Tg)測定の結果、Tgは45℃と106℃の2か所に見られたため、本微粒子のTgは45℃とした。
 エマルション[1]~[10]の原料配合、得られた微粒子の物性等を下記表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
[実施例1]
 エマルション[1]18部、10%アジピン酸ジヒドラジド水溶液1.4部、4%ポリビニルアルコール(ゴーセネックスCKS-50、三菱ケミカル株式会社)水溶液0.1部、イオン交換水0.5部を混合することで固形分濃度26.8%の分散体を調製した。
 プラズマ処理を施したポリエステルフィルム(ルミラー(黒色)100μm厚、東レ株式会社製)の上にワイヤーバー(OSP-25、OSG製)を用いて15mm/秒で塗布し、25℃で10分乾燥することで構造体を得た。
[実施例2~6,比較例1]
 エマルション[1]の代わりに、エマルション[2]~[6],[8]を使用したこと以外は、実施例1と同様の操作を行うことで構造体を得た。
[実施例7]
 エマルション[7]18部、オキサゾリン基含有ポリマー水溶液(日本触媒株式会社、エポクロスWS-700、有効成分25%)0.9部、4%ポリビニルアルコール(ゴーセネックスCKS-50、三菱ケミカル株式会社)水溶液0.1部、イオン交換水1.44部を混合することで固形分濃度26.8%の分散体を調製した。この分散体を使用した以外は、実施例1と同様の操作を行うことで構造体を得た。
[実施例8]
 エマルション[7]17部、カルボジイミド基含有ポリマー水溶液(日清紡ケミカル株式会社、カルボジライトSV-02、有効成分40%)1.1部、直鎖アルキルベンゼンスルホン酸ナトリウム水溶液(日本乳化剤株式会社、ニューコール220-L(20)D、有効成分20%)0.12部、4%ポリビニルアルコール(ゴーセネックスCKS-50、三菱ケミカル株式会社)水溶液0.1部、イオン交換水1.7部を混合することで固形分濃度27.0%の分散体を調製した。この分散体を使用した以外は、実施例1と同様の操作を行うことで構造体を得た。
[実施例9]
 エマルション[7]16.5部、カルボジイミド基含有ポリマー水溶液(日清紡ケミカル株式会社、カルボジライトV-02、有効成分40%)1.4部、直鎖アルキルベンゼンスルホン酸ナトリウム水溶液(日本乳化剤株式会社、ニューコール220-L(20)D、有効成分20%)0.12部、4%ポリビニルアルコール(ゴーセネックスCKS-50、三菱ケミカル株式会社)水溶液0.1部、イオン交換水1.8部を混合することで固形分濃度27.0%の分散体を調製した。この分散体を使用した以外は、実施例1と同様の操作を行うことで構造体を得た。
[実施例10]
 エマルション[7]17.1部、カルボジイミド基含有ポリマー水溶液(日清紡ケミカル株式会社、カルボジライトV-10、有効成分40%)1.0部、直鎖アルキルベンゼンスルホン酸ナトリウム水溶液(日本乳化剤株式会社、ニューコール220-L(20)D、有効成分20%)0.12部、4%ポリビニルアルコール(ゴーセネックスCKS-50、三菱ケミカル株式会社)水溶液0.1部、イオン交換水1.7部を混合することで固形分濃度26.9%の分散体を調製した。この分散体を使用した以外は、実施例1と同様の操作を行うことで構造体を得た。
[比較例2]
 10%アジピン酸ジヒドラジド水溶液1.4部を加えなかったこと以外は、実施例1と同様にして分散体を調製した。この分散体の固形分濃度は28.1%であった。この分散体を使用した以外は、実施例1と同様の操作を行うことで構造体を得た。
[比較例3]
 エマルション[1]の代わりに、エマルション[9]を使用したこと以外は、比較例2と同様にして分散体を調製した。この分散体の固形分濃度は28.1%であった。この分散体を使用した以外は、実施例1と同様の操作を行い、得られたサンプルを90℃にて30分加熱することで構造体を得た。
[比較例4]
 エマルション[1]の代わりに、エマルション[10]を使用したこと以外は、比較例2と同様にして分散体を調製した。この分散体の固形分濃度は28.1%であった。この分散体を使用した以外は、実施例1と同様の操作を行い、得られたサンプルを90℃にて30分加熱することで構造体を得た。
[構造体の評価方法]
 実施例及び比較例で得られた構造体を以下の方法で評価し、結果を表2に示した。
<発色性の評価>
 発色性は、以下のようにして評価した。
 製膜後の構造体の表面に白色光を照射した際の構造色の反射光について、下記の評価基準に基づいて目視で判断した。
(評価基準)
  ○:発色が確認され、その発色に金属光沢性と角度依存性の両方が確認された場合
  △:発色は確認されるが、その発色に金属光沢性と角度依存性の両方とも確認されない場合
  ×:発色自体が確認されない場合(特定の波長の光を反射せず、白く見える場合)
<耐熱性の評価>
 耐熱性は、以下のようにして評価した。
 製膜後の構造体を120℃で10分加熱し、加熱終了後の構造体の外観及び色調を目視で観察し、下記の評価基準に基づいて評価した。
(評価基準)
  ○:外観及び色調に変化が見られなかった場合
  ×:外観及び色調に変化が見られた場合
<物理的耐久性の評価>
 物理的耐久性は、以下のようにして評価した。
 製膜後の構造体を固定し、200g分銅をのせたJKワイパーを構造体上でスライドさせた。その後、構造体の外観を目視で観察し、下記の評価基準に基づいて評価した。
(評価基準)
  ○:外観に明確な傷が見られなかった場合
  △:外観に多少の傷が見られたが、基材であるポリエステルフィルムが露出するほどではなかった場合
  ×:基材であるポリエステルフィルムから微粒子が剥がれ落ち、ポリエステルフィルムが露出した場合
Figure JPOXMLDOC01-appb-T000002
[考察]
 実施例1~6は、Tgが81℃以上であり、かつ反応性官能基としてケト基及びカルボキシル基を有する微粒子のエマルションを使用し、架橋剤としてアジピン酸ジヒドラジドを添加することで粒子間を化学的に結合させている。これにより、加熱による外観・色調に変化は見られず耐熱性に優れ、また、物理的耐久性にも優れた構造体が得られた。
 実施例7は、Tgが81℃以上であり、かつ反応性官能基としてカルボキシル基を有する微粒子のエマルションを使用し、架橋剤としてオキサゾリン基含有ポリマーを添加することで粒子間を化学的に結合させている。これにより、加熱による外観・色調に変化は見られず耐熱性に優れ、また、物理的耐久性にも優れた構造体が得られた。
実施例8~10は、Tgが81℃以上であり、かつ反応性官能基としてカルボキシル基を有する微粒子のエマルションを使用し、架橋剤としてカルボジイミド基含有ポリマーを添加することで粒子間を化学的に結合させている。これにより、加熱による外観・色調に変化は見られず耐熱性に優れ、また、物理的耐久性にも優れた構造体が得られた。
 比較例1は、Tgは81℃以上であるものの、反応性官能基を有さない微粒子のエマルションを使用している。これにより、加熱による外観・色調に変化は見られず耐熱性には優れるものの、物理的耐久性に劣った構造体が得られた。
 比較例2は、Tgが81℃以上であり、かつ反応性官能基としてケト基及びカルボキシル基を有する微粒子のエマルションを使用しているものの、架橋剤の添加を行っていない。これにより、加熱による外観・色調に変化は見られず耐熱性には優れるものの、物理的耐久性に劣った構造体が得られた。
 比較例3は、Tgが81℃未満の微粒子のエマルションを使用している。本比較例3で用いた微粒子のTgは39℃であり、特開2021-028380号公報(特許文献2)記載の通り、微粒子のシェル部のTgを-60~40℃とし、かつシェルのTg以上の温度で加熱を行うことで、シェル部の融着または流動化を起こし、物理的強度の高いコロイド結晶を得る方法を模したものである。この構造体は、物理的耐久性には優れるものの、実施例1~10で得られた構造体と比較して、耐熱性に劣った構造体であった。
 比較例4は、Tgが81℃未満の微粒子のエマルションを使用している。本比較例4で用いた微粒子のTgは45℃であり、特開2009-249527号公報(特許文献1)記載の通り、微粒子のシェル部のTgを10~50℃とし、かつシェルのTg以上の温度で加熱を行うことで、シェル部の融着または流動化を起こし、物理的強度の高いコロイド結晶を得る方法を模したものである。この構造体は、物理的耐久性には優れるものの、実施例1~10で得られた構造体と比較して、耐熱性に劣った構造体であった。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2022年4月14日付で出願された日本特許出願2022-067038に基づいており、その全体が引用により援用される。

 

Claims (23)

  1.  微粒子、架橋剤及び分散媒を含有する分散体であって、
     該微粒子の個数平均粒子径が50~800nm、かつ、個数基準による粒子径のCV値が15%以下であり、
     該微粒子のガラス転移点(Tg)が81℃以上であり、
     さらに該微粒子が反応性官能基を有することを特徴とする、分散体。
  2.  配列した際に構造発色する微粒子、架橋剤及び分散媒を含有する分散体であって、
     該微粒子のガラス転移点(Tg)が81℃以上であり、
     さらに該微粒子が反応性官能基を有することを特徴とする、分散体。
  3.  前記微粒子が、ポリ(メタ)アクリル酸エステル類又はポリスチレン類からなることを特徴とする、請求項1又は2に記載の分散体。
  4.  前記微粒子が、ポリスチレン類からなることを特徴とする、請求項3に記載の分散体。
  5.  前記反応性官能基が、水酸基、カルボキシル基、グリシジル基、オキセタニル基、ケト基、アルド基、シリル基、アリル基、ビニルエーテル基、アミノ基及びリン酸基から選択されることを特徴とする、請求項1又は2に記載の分散体。
  6.  5℃/minの昇温速度で-40℃から200℃まで昇温し、次いで10℃/minの降温速度で-40℃まで降温し、続いて5℃/minの昇温速度で200℃まで昇温するステップを含む温度プログラムを実施する示差走査熱量測定(DSC)において、ガラス転移点(Tg)が1点のみ確認されることを特徴とする、請求項1又は2に記載の分散体。
  7.  請求項1に記載の分散体に含まれる前記微粒子及び前記架橋剤からなるコロイド集合体含有物から構成され、かつ、前記微粒子間が化学的に結合してなる、構造発色性を有する構造体。
  8.  請求項2に記載の分散体に含まれる前記微粒子及び前記架橋剤からなるコロイド集合体含有物から構成され、かつ、前記微粒子間が化学的に結合してなる、構造発色性を有する構造体。
  9.  請求項1又は2に記載の分散体を基材上で乾燥させて前記微粒子を配列させる工程と、前記配列の形成後又は配列の形成と同時に前記反応性官能基と前記架橋剤とを反応させて前記微粒子間を結合させる工程とを含むことを特徴とする、構造体の製造方法。
  10.  個数平均粒子径が50~800nm、かつ、個数基準による粒子径のCV値が15%以下であって、
     ガラス転移点(Tg)が81℃以上であり、
     さらに、水酸基、グリシジル基、オキセタニル基、ケト基、アルド基、シリル基、アリル基、ビニルエーテル基、アミノ基及びリン酸基からなる群より選ばれる少なくとも1種の反応性官能基を有することを特徴とする、微粒子。
  11.  請求項10に記載の微粒子からなるコロイド集合体含有物から構成され、構造発色性を有する構造体。
  12.  微粒子及び架橋剤を含む構造体であって、
     該微粒子の個数平均粒子径が50~800nm、かつ、個数基準による粒子径のCV値が15%以下であり、
     さらに該微粒子のガラス転移点(Tg)が81℃以上であり、
     該微粒子同士が前記架橋剤を介して化学的に結合していることを特徴とする、構造体。
  13.  さらに、表面にオーバーコート層を有する、請求項7、8、11又は12に記載の構造体。
  14.  請求項1又は2に記載の分散体を用いた塗料組成物。
  15.  請求項1又は2に記載の分散体を用いたインク組成物。
  16.  請求項1又は2に記載の分散体を用いた化粧料。
  17.  請求項1又は2に記載の分散体を用いた装飾用フィルム。
  18.  請求項1又は2に記載の分散体を用いた光学材料。
  19.  請求項7、8、11又は12に記載の構造体を用いた塗料組成物。
  20.  請求項7、8、11又は12に記載の構造体を用いたインク組成物。
  21.  請求項7、8、11又は12に記載の構造体を用いた化粧料。
  22.  請求項7、8、11又は12に記載の構造体を用いた装飾用フィルム。
  23.  請求項7、8、11又は12に記載の構造体を用いた光学材料。

     
PCT/JP2023/014983 2022-04-14 2023-04-13 分散体、構造体及び構造体の製造方法 WO2023199972A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022067038 2022-04-14
JP2022-067038 2022-04-14

Publications (1)

Publication Number Publication Date
WO2023199972A1 true WO2023199972A1 (ja) 2023-10-19

Family

ID=88329910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014983 WO2023199972A1 (ja) 2022-04-14 2023-04-13 分散体、構造体及び構造体の製造方法

Country Status (1)

Country Link
WO (1) WO2023199972A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183520A1 (ja) * 2012-06-07 2013-12-12 Dic株式会社 構造色材料及びそれを用いた化粧品
JP2014047231A (ja) * 2012-08-29 2014-03-17 Asahi Kasei Chemicals Corp 構造色発現用組成物及び構造色発現膜
JP2017160371A (ja) * 2016-03-11 2017-09-14 東洋インキScホールディングス株式会社 有彩色微粒子カプセル
US20180264514A1 (en) * 2017-03-17 2018-09-20 The Procter & Gamble Company Article with Aesthetic Substrate
JP2021028379A (ja) * 2019-08-09 2021-02-25 東洋インキScホールディングス株式会社 オーバーコート用樹脂組成物
JP6923064B1 (ja) * 2020-12-15 2021-08-18 東洋インキScホールディングス株式会社 積層体、及び波長カットフィルター

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183520A1 (ja) * 2012-06-07 2013-12-12 Dic株式会社 構造色材料及びそれを用いた化粧品
JP2014047231A (ja) * 2012-08-29 2014-03-17 Asahi Kasei Chemicals Corp 構造色発現用組成物及び構造色発現膜
JP2017160371A (ja) * 2016-03-11 2017-09-14 東洋インキScホールディングス株式会社 有彩色微粒子カプセル
US20180264514A1 (en) * 2017-03-17 2018-09-20 The Procter & Gamble Company Article with Aesthetic Substrate
JP2021028379A (ja) * 2019-08-09 2021-02-25 東洋インキScホールディングス株式会社 オーバーコート用樹脂組成物
JP6923064B1 (ja) * 2020-12-15 2021-08-18 東洋インキScホールディングス株式会社 積層体、及び波長カットフィルター

Similar Documents

Publication Publication Date Title
CN1222585C (zh) 水性涂料组合物
JP3652057B2 (ja) 塗工用組成物、記録媒体及びこれを用いた画像形成方法
TWI232776B (en) Method for forming coated film and intermediate coating material
TWI617347B (zh) 中空粒子之製造方法及微膠囊粒子之製造方法
US20050176880A1 (en) Metallic base coating composition and process for producing a composite film
TW201124480A (en) Polymer encapsulated aluminum particulates
HU227579B1 (en) Water-based thermosetting paint and coating film-forming methods
WO1988003545A1 (en) Colored fine spherical particles, process for their preparation, and their uses
JP5551337B2 (ja) 水性多彩模様塗料
TW201546197A (zh) 透明被膜形成用的塗布液及其製造方法、有機樹脂分散溶膠,以及附透明被膜的基材及其製造方法
JP2009249527A (ja) 構造色塗膜形成塗料組成物および複層塗膜の形成方法
JP4937827B2 (ja) 発色構造体の製造方法
JP2513726B2 (ja) 水性着色アクリルヒドロゾルコ―ティング組成物
CN114369389A (zh) 一种哑光uv油墨及其制备方法
JPH08208976A (ja) 蛍光顔料及び/又は蛍光染料を含むマイクロビーズ
JPH07258581A (ja) フォトクロミック性光輝顔料及びそれを含むコーティング組成物
KR20030035933A (ko) 수압 전사 방법
WO2023199972A1 (ja) 分散体、構造体及び構造体の製造方法
EP2260076B1 (en) Resin compositions for wrinkle pattern paints
WO2021201104A1 (ja) 印刷フィルム用コーティング剤、積層体、および印刷物の製造方法
WO2020162395A1 (ja) 粘着フィルム、及び、粘着フィルムの製造方法
JP6038738B2 (ja) 光輝性塗料組成物、光輝性塗膜及び積層塗膜
JP2016113514A (ja) 光輝性塗料組成物、光輝性塗膜、積層塗膜及び光輝性塗料組成物の製造方法
WO2022107642A1 (ja) 積層体、感熱記録体、及び画像形成方法
KR100563239B1 (ko) 난반사효과 및 내스크래치성이 우수한 투명시트 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23788390

Country of ref document: EP

Kind code of ref document: A1