WO2023199181A1 - 積層体の作製方法、及び半導体装置の作製方法 - Google Patents

積層体の作製方法、及び半導体装置の作製方法 Download PDF

Info

Publication number
WO2023199181A1
WO2023199181A1 PCT/IB2023/053509 IB2023053509W WO2023199181A1 WO 2023199181 A1 WO2023199181 A1 WO 2023199181A1 IB 2023053509 W IB2023053509 W IB 2023053509W WO 2023199181 A1 WO2023199181 A1 WO 2023199181A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulator
oxide
conductor
film
transistor
Prior art date
Application number
PCT/IB2023/053509
Other languages
English (en)
French (fr)
Inventor
方堂涼太
遠藤俊弥
中野賢
山崎舜平
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2023199181A1 publication Critical patent/WO2023199181A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/70Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass

Definitions

  • One embodiment of the present invention relates to a method for processing a stack including an oxide semiconductor layer and a conductor layer. Further, one embodiment of the present invention relates to a semiconductor device, a memory device, and an electronic device using the above-described stacked body. Further, one embodiment of the present invention relates to a method for manufacturing a semiconductor device using the above stacked body.
  • one embodiment of the present invention is not limited to the above technical field.
  • the technical fields of one embodiment of the present invention include semiconductor devices, display devices, light-emitting devices, power storage devices, storage devices, electronic devices, lighting devices, input devices (for example, touch sensors), input/output devices (for example, touch panels), An example of such a driving method or a manufacturing method thereof can be mentioned.
  • a semiconductor device refers to any device that can function by utilizing semiconductor characteristics.
  • Semiconductor elements such as transistors, semiconductor circuits, arithmetic devices, and storage devices are examples of semiconductor devices.
  • Display devices liquid crystal display devices, light emitting display devices, etc.
  • projection devices lighting devices, electro-optical devices, power storage devices, storage devices, semiconductor circuits, imaging devices, electronic equipment, and the like may be said to include semiconductor devices.
  • a CPU is an assembly of semiconductor elements, including a semiconductor integrated circuit (at least a transistor and a memory) formed into a chip by processing a semiconductor wafer, and on which electrodes serving as connection terminals are formed.
  • IC chips Semiconductor circuits (IC chips) such as LSIs, CPUs, and memories are mounted on circuit boards, such as printed wiring boards, and are used as one of the components of various electronic devices.
  • a technology that constructs a transistor using a semiconductor thin film formed on a substrate having an insulating surface is attracting attention.
  • the transistor is widely applied to electronic devices such as integrated circuits (ICs) and image display devices (also simply referred to as display devices).
  • ICs integrated circuits
  • image display devices also simply referred to as display devices.
  • silicon-based semiconductor materials are widely known as semiconductor thin films applicable to transistors, oxide semiconductors are attracting attention as other materials.
  • Patent Document 1 discloses a CPU with low power consumption that takes advantage of the low leakage current of a transistor using an oxide semiconductor.
  • Patent Document 2 discloses a memory device that can retain stored content for a long period of time by applying the characteristic of a transistor using an oxide semiconductor that the leakage current is small.
  • Patent Document 3 discloses a transistor with a fine structure in which a source electrode layer and a drain electrode layer are provided in contact with the upper surface of an oxide semiconductor layer.
  • An object of one embodiment of the present invention is to provide a method for processing a stack that has a fine structure and includes an oxide semiconductor layer and a conductor layer.
  • an object of one embodiment of the present invention is to provide a method for manufacturing a semiconductor device including the above stacked body.
  • an object of one embodiment of the present invention is to provide a semiconductor device that can be miniaturized or highly integrated.
  • an object of one embodiment of the present invention is to provide a semiconductor device that operates at high speed.
  • an object of one embodiment of the present invention is to provide a semiconductor device having good electrical characteristics.
  • an object of one embodiment of the present invention is to provide a semiconductor device in which the electrical characteristics of transistors have little variation.
  • an object of one embodiment of the present invention is to provide a highly reliable semiconductor device.
  • an object of one embodiment of the present invention is to provide a semiconductor device with a large on-state current.
  • an object of one embodiment of the present invention is to provide a semiconductor device with low power consumption.
  • an object of one embodiment of the present invention is to provide a novel semiconductor device.
  • an object of one embodiment of the present invention is to provide a method for manufacturing a semiconductor device with high productivity.
  • Another object of one embodiment of the present invention is to provide a novel method for manufacturing a semiconductor device.
  • an object of one embodiment of the present invention is to provide a storage device with a large storage capacity.
  • an object of one embodiment of the present invention is to provide a storage device that operates at high speed.
  • an object of one embodiment of the present invention is to provide a storage device with low power consumption.
  • an object of one aspect of the present invention is to provide a novel storage device.
  • an oxide semiconductor, a first conductor, a first insulator including a nitride, a second insulator including an oxide, an inorganic film, a first coating film, and a second coating film are formed in this order, a resist mask is formed on the second coating film, and the second coating film is processed using a dry etching method using the resist mask as a mask. , an island-shaped second coating film is formed, and the first coating film is processed using a dry etching method using the island-shaped second coating film as a mask to form an island-shaped first coating film.
  • the resist mask is removed, and the inorganic film, the second insulator, the first insulator, and the first conductive film are etched using a dry etching method using the island-shaped first coating film as a mask.
  • the body is processed in this order to form an island-shaped inorganic film, an island-shaped second insulator, an island-shaped first insulator, and an island-shaped first conductor, and
  • the second coating film is removed, and the oxide semiconductor is processed using a dry etching method using the island-shaped inorganic film as a mask to form an island-shaped oxide semiconductor, and the island-shaped first coating film is removed.
  • This is a method for producing a laminate, in which the coating film is removed, and the island-shaped inorganic film is removed using a dry etching method.
  • the oxide semiconductor preferably contains indium, gallium, and zinc.
  • the first conductor includes tantalum nitride.
  • the first conductor may have a laminated structure of a layer containing tantalum nitride and a layer containing tungsten on the layer containing tantalum nitride.
  • the first insulator includes silicon nitride.
  • the second insulator includes silicon oxide.
  • the inorganic film contains tungsten.
  • the first coating film contains carbon.
  • the second coating film preferably contains silicon and oxygen.
  • the third insulator and the fourth insulator are formed in this order between the substrate and the oxide semiconductor to form the island-shaped oxide semiconductor, and then the island-shaped oxide semiconductor is formed. It is preferable that the fourth insulator is processed using a dry etching method using the inorganic film as a mask to form an island-shaped fourth insulator.
  • the third insulator includes hafnium oxide and the fourth insulator includes silicon oxide.
  • the first conductor is divided into a second conductor and a third conductor. and forming a fifth insulator and a fourth conductor on the fifth insulator so as to overlap a region between the second conductor and the third conductor. This is the manufacturing method.
  • a method for processing a stack including an oxide semiconductor layer and a conductor layer that has a fine structure can be provided.
  • one embodiment of the present invention can provide a method for manufacturing a semiconductor device including the above stacked body.
  • a semiconductor device that can be miniaturized or highly integrated can be provided.
  • a semiconductor device that operates at high speed can be provided.
  • a semiconductor device having good electrical characteristics can be provided.
  • a semiconductor device with less variation in the electrical characteristics of transistors can be provided.
  • a highly reliable semiconductor device can be provided.
  • a semiconductor device with a large on-state current can be provided.
  • a semiconductor device with low power consumption can be provided.
  • a novel semiconductor device can be provided.
  • a method for manufacturing a semiconductor device with high productivity can be provided.
  • a novel method for manufacturing a semiconductor device can be provided.
  • a storage device with a large storage capacity can be provided.
  • a storage device with high operating speed can be provided.
  • a storage device with low power consumption can be provided.
  • a novel storage device can be provided.
  • FIGS. 1A to 1F are cross-sectional views showing an example of a method for manufacturing a laminate.
  • FIG. 2A is a plan view showing an example of a semiconductor device.
  • 2B to 2D are cross-sectional views showing an example of a semiconductor device.
  • 3A and 3B are cross-sectional views showing an example of a semiconductor device.
  • 4A and 4B are cross-sectional views showing an example of a semiconductor device.
  • FIG. 5A is a plan view showing an example of a method for manufacturing a semiconductor device.
  • 5B to 5D are cross-sectional views showing an example of a method for manufacturing a semiconductor device.
  • FIG. 6A is a plan view showing an example of a method for manufacturing a semiconductor device.
  • FIG. 6B to 6D are cross-sectional views showing an example of a method for manufacturing a semiconductor device.
  • FIG. 7A is a plan view showing an example of a method for manufacturing a semiconductor device.
  • 7B to 7D are cross-sectional views showing an example of a method for manufacturing a semiconductor device.
  • FIG. 8A is a plan view showing an example of a method for manufacturing a semiconductor device.
  • 8B to 8D are cross-sectional views showing an example of a method for manufacturing a semiconductor device.
  • FIG. 9A is a plan view showing an example of a method for manufacturing a semiconductor device.
  • 9B to 9D are cross-sectional views showing an example of a method for manufacturing a semiconductor device.
  • FIG. 10A is a plan view showing an example of a method for manufacturing a semiconductor device.
  • FIG. 10B to 10D are cross-sectional views showing an example of a method for manufacturing a semiconductor device.
  • FIG. 11A is a plan view showing an example of a method for manufacturing a semiconductor device.
  • 11B to 11D are cross-sectional views showing an example of a method for manufacturing a semiconductor device.
  • FIG. 12 is a block diagram showing an example of a storage device.
  • 13A and 13B are a schematic diagram and a circuit diagram showing an example of a storage device.
  • 14A and 14B are schematic diagrams showing an example of a storage device.
  • FIG. 15 is a circuit diagram showing an example of a storage device.
  • FIG. 16 is a cross-sectional view showing an example of a storage device.
  • FIG. 17 is a cross-sectional view showing an example of a storage device.
  • 18A to 18C are circuit diagrams showing an example of a storage device.
  • 19A and 19B are diagrams showing an example of a semiconductor device.
  • 20A and 20B are diagrams showing an example of an electronic component.
  • 21A to 21J are diagrams illustrating an example of an electronic device.
  • 22A to 22E are diagrams illustrating an example of an electronic device.
  • 23A to 23C are diagrams illustrating an example of an electronic device.
  • FIG. 24 is a diagram showing an example of space equipment.
  • 25A and 25B are graphs according to this example.
  • 26A and 26B are cross-sectional SEM images according to this example.
  • 27A and 27B are cross-sectional SEM images according to this example.
  • 28A and 28B are graphs according to this example.
  • 29A and 29B are cross-sectional SEM images according to this example.
  • 30A and 30B are cross-sectional SEM images according to this example.
  • ordinal numbers such as “first” and “second” are used for convenience, and do not limit the number of components or the order of the components (for example, the order of steps or the order of lamination). It's not something you do. Further, the ordinal number attached to a constituent element in a certain part of this specification may not match the ordinal number attached to the constituent element in another part of this specification or in the claims.
  • film and “layer” can be interchanged depending on the situation or circumstances.
  • conductive layer can be changed to the term “conductive film.”
  • insulating film can be changed to the term “insulating layer.”
  • conductor can be interchanged with the term “conductive layer” or the term “conductive film” depending on the case or the situation.
  • insulator can be interchanged with the term “insulating layer” or the term “insulating film” depending on the case or the situation.
  • the opening includes, for example, a groove, a slit, etc. Further, a region in which an opening is formed may be referred to as an opening.
  • the sidewall of the opening of the insulator is shown to be approximately perpendicular to the substrate surface or the surface to be formed, but the sidewall may have a tapered shape.
  • a tapered shape refers to a shape in which at least a part of the side surface of the structure is inclined with respect to the substrate surface or the surface to be formed.
  • a taper angle a region where the angle between the inclined side surface and the substrate surface or the surface to be formed (hereinafter sometimes referred to as a taper angle) is less than 90°.
  • the side surfaces of the structure and the substrate surface do not necessarily have to be completely flat, and may be substantially planar with minute curvatures or substantially planar with minute irregularities.
  • Example of processing method for laminate An example of a method for processing a stacked body including an oxide semiconductor layer and a conductor layer according to one embodiment of the present invention will be described with reference to FIGS. 1A to 1F.
  • the oxide 230 is provided as an oxide semiconductor layer that constitutes the stack, and the conductor 242 is provided as a conductor layer.
  • the laminate shown in FIG. 1F The laminate shown in FIG.
  • 1F has an island-shaped insulator 224, an island-shaped oxide 230 (oxide 230a and oxide 230b), and an island-shaped insulator 224, an island-shaped oxide 230 (oxide 230a and oxide 230b), and an island-shaped It has a shaped conductor 242 and an island shaped insulator 271 (insulator 271_1, insulator 271_2).
  • the oxide 230 is a metal oxide that functions as an oxide semiconductor, and can be used, for example, as an active layer of a transistor.
  • the conductor 242 provided in contact with the upper surface of the oxide 230 can function as a source electrode or a drain electrode of the transistor.
  • FIGS. 1A to 1F A specific example of processing a laminate including an insulator 224, an oxide 230, a conductor 242, and an insulator 271 will be described below with reference to FIGS. 1A to 1F.
  • an insulator 216, an insulator 222, an insulating film 224f, an oxide film 230af, an oxide film 230bf, a conductive film 242f, an insulating film 271_1f, and an insulating film 271_2f are formed in this order on a substrate (not shown).
  • the insulating film 224f is an insulating film that will become the insulator 224 in a later step.
  • the oxide film 230af is a metal oxide film that becomes the oxide 230a in a later step.
  • the oxide film 230bf is a metal oxide film that becomes the oxide 230b in a later step.
  • the conductive film 242f is a conductive film that becomes a conductor 242 in a later step.
  • the insulating film 271_1f is an insulating film that becomes an insulator 271_1 in a later step.
  • the insulating film 271_2f is an insulating film that will become an insulator 271_2 in a later step.
  • the insulating film 271_1f and the insulating film 271_2f are films that function as an etching stop film in a later step and protect the conductor 242. Further, since the insulating film 271_1f is in contact with the conductive film 242f, it is preferably an inorganic insulating film that does not easily oxidize the conductive film 242f.
  • the insulating film 271_1f is preferably made of a nitride insulator, for example, silicon nitride. Further, the insulating film 271_2f is preferably made of an oxide insulator, for example, silicon oxide. Note that the insulating film 271_1f and the insulating film 271_2f may be formed in succession without being exposed to the atmosphere.
  • silicon oxide may be used for the insulator 216 and the insulating film 224f.
  • the insulator 222 may be made of hafnium oxide.
  • oxides containing In, Ga, and Zn may be used for the oxide film 230af and the oxide film 230bf.
  • tantalum nitride may be used for the conductive film 242f.
  • the conductive film 242f may have a laminated structure, or may have a laminated structure of a layer containing tantalum nitride and a layer containing tungsten on the layer containing tantalum nitride.
  • the insulator 216, the insulator 222, the insulator 224f (insulator 224), the oxide film 230af (oxide 230a), the oxide film 230bf (oxide 230b), the conductive film 242f (conductor 242), and the insulator 271_1f The detailed configurations of the insulator 271_1) and the insulating film 271_2f (insulator 271_2) will be described in ⁇ Example of configuration of semiconductor device>.
  • an inorganic film 276f is formed on the insulating film 271_2f (FIG. 1A).
  • the inorganic film 276f can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the inorganic film 276f is a film that functions as a hard mask for forming the oxide 230a, the oxide 230b, and the insulator 224 in a later step.
  • a metal material, an inorganic insulating material, or the like may be used.
  • tungsten formed by sputtering may be used as the inorganic film 276f.
  • the inorganic film 276f may be continuously formed without being exposed to the atmosphere.
  • a coating film 277f is formed on the inorganic film 276f, and further a coating film 278f is formed (FIG. 1A).
  • the coating film 277f and the coating film 278f may have a function of improving the adhesion between the resist mask and the inorganic film 276, which will be described later.
  • the coating film 277f and the coating film 278f may be formed using, for example, a spin coating method.
  • a non-photosensitive organic resin may be used as the coating film 277f and the coating film 278f.
  • the coating film 278f functions as a mask in the etching process for processing the coating film 277f. Therefore, under the etching conditions for the coating film 277f, it is preferable that the etching rate of the coating film 278f is smaller than the etching rate of the coating film 277f.
  • the coating film 277f may be a film containing carbon
  • the coating film 278f may be a film containing silicon and carbon.
  • a SOC (Spin On Carbon) film is formed as the coating film 277f
  • an SOG (Spin On Glass) film is formed as the coating film 278f.
  • the coating films 277f and 278f contain organic solvents such as alcohol during coating, the organic substances contained therein may be reduced or removed during subsequent steps or when the semiconductor device is completed.
  • the coating film may be provided as necessary, and the coating film may be configured as a single layer, or if only a resist mask, which will be described later, is sufficient, a configuration may be adopted in which no coating film is provided.
  • a resist mask 279 is formed on the coating film 278f using a lithography method (FIG. 1A).
  • a photosensitive organic resin also called photoresist may be used.
  • a positive photoresist or a negative photoresist can be used.
  • the photoresist serving as the resist mask 279 can be formed to have a uniform thickness by, for example, using a spin coating method.
  • a resist mask is formed by removing or leaving the exposed area using a developer.
  • a conductor, semiconductor, insulator, or the like can be processed into a desired shape.
  • a resist mask can be formed by exposing a resist to light using KrF excimer laser light, ArF excimer laser light, EUV (Extreme Ultraviolet) light, or the like.
  • a liquid immersion technique may be used in which a liquid (for example, water) is filled between the substrate and the projection lens for exposure.
  • an electron beam or an ion beam may be used instead of the light described above. Note that when using an electron beam or an ion beam, it may not be necessary to use a mask.
  • the stacked film shown in FIG. 1A is etched using a dry etching method.
  • the dry etching method is suitable for forming a fine-structured laminate including the insulator 224, oxide 230, conductor 242, and insulator 271 with a high aspect ratio because anisotropic etching is possible. It is.
  • an etching gas containing halogen can be used as the etching gas for the dry etching process.
  • an etching gas containing one or more of fluorine, chlorine, and bromine can be used.
  • the etching gas C 4 F 6 gas, C 5 F 6 gas, C 4 F 8 gas, CF 4 gas, SF 6 gas, CHF 3 gas, CH 2 F 2 gas, Cl 2 gas, BCl 3 gas, SiCl 4 gas, BBr 3 gas, or the like can be used alone or in combination of two or more gases.
  • oxygen gas, carbon dioxide gas, nitrogen gas, helium gas, argon gas, hydrogen gas, hydrocarbon gas, or the like can be added as appropriate to the above etching gas.
  • a gas that does not contain halogen gas but contains hydrocarbon gas or hydrogen gas may be used as the etching gas.
  • Hydrocarbons used for etching gas include methane (CH 4 ), ethane (C 2 H 6 ), propane (C 3 H 8 ), butane (C 4 H 10 ), ethylene (C 2 H 4 ), propylene (C 3 H 6 ), acetylene (C 2 H 2 ), and propyne (C 3 H 4 ).
  • Etching conditions can be set as appropriate depending on the object to be etched.
  • a capacitively coupled plasma (CCP) etching device having parallel plate electrodes can be used as the dry etching device.
  • a capacitively coupled plasma etching apparatus having parallel plate electrodes may have a configuration in which a high frequency voltage is applied to one electrode of the parallel plate electrodes.
  • a configuration may be adopted in which a plurality of different high frequency voltages are applied to one electrode of a parallel plate type electrode.
  • a configuration may be adopted in which a high frequency voltage of the same frequency is applied to each of the parallel plate type electrodes.
  • a configuration may be adopted in which high frequency voltages having different frequencies are applied to each of the parallel plate type electrodes.
  • a dry etching apparatus having a high-density plasma source can be used.
  • the dry etching device having a high-density plasma source for example, an inductively coupled plasma (ICP) etching device or the like can be used.
  • ICP inductively coupled plasma
  • the etching device can be appropriately set according to the object to be etched.
  • the steps shown in FIGS. 1B to 1F are preferably performed continuously without being exposed to the outside air.
  • a multi-chamber type etching apparatus may be used to perform the process without exposing it to the outside air.
  • a configuration can be adopted in which a high-frequency high-frequency voltage is applied to the upper electrode, and a low-frequency high-frequency voltage is applied to the lower electrode on which the substrate is placed.
  • the coating film 278f is processed using the resist mask 279 to form the island-shaped coating film 278.
  • the coating film 278f is processed using the resist mask 279 to form the island-shaped coating film 278.
  • CHF 3 and O 2 can be used as the etching gas.
  • the coating film 277f is processed to form an island-shaped coating film 277 (FIG. 1B).
  • H 2 and N 2 can be used as the etching gas.
  • the SOG film is used as the coating film 278, it is possible to prevent the coating film 278 from disappearing during the etching process of the coating film 277f.
  • the resist mask 279 it is preferable to remove the resist mask 279 at the same time while processing the coating film 277f. Since the SOC film is used as the coating film 277f, the resist mask 279 can be easily removed. Note that if the resist mask 279 remains after forming the coating film 277, it is preferable to remove the resist mask 279.
  • the inorganic film 276f, the insulating film 271_2f, the insulating film 271_1f, and the conductive film 242f are processed in this order, and the island-shaped inorganic film 276 and the island-shaped insulator 271_1 are processed. , an island-shaped insulator 271_2, and an island-shaped conductor 242 are formed (FIG. 1C).
  • CF 4 and Cl 2 can be used as the etching gas.
  • etching gas when silicon nitride is used for the insulating film 271_1f and silicon oxide is used for the insulating film 271_2f, CHF 3 and O 2 can be used as the etching gas in etching the insulating film 271_1f and the insulating film 271_2f.
  • a tantalum nitride film is used as the conductive film 242f
  • CHF 3 , Cl 2 , and Ar can be used as the etching gas.
  • HF 3 , Cl 2 , and Ar when a laminated film of a tantalum nitride layer and a tungsten layer is used for the conductive film 242f, HF 3 , Cl 2 , and Ar can be similarly used as the etching gas.
  • the same metal material for example, tungsten, etc.
  • the coating film 277 functioning as a mask disappears during etching of the conductive film 242f, the inorganic film 276 is exposed to the etching.
  • the conductive film 242f and the like may be excessively etched, and the width of the conductor 242 may become narrower than designed.
  • the etching rate of the conductive film 242f is higher than the etching rate of the coating film 277.
  • the power of the lower electrode on which the substrate is placed may be lower than the power of the lower electrode when etching the above-described inorganic film 276f, preferably less than 25 W, more preferably 10 W or less.
  • the coating film 278 it is preferable to remove the coating film 278 at the same time while processing the insulating film 271_1f and the insulating film 271_2f. Since silicon-based insulating films are used for the insulating film 271_1f and the insulating film 271_2f, the coating film 278 can be easily removed.
  • the oxide film 230bf and the oxide film 230af are processed to form an island-shaped oxide 230b and an island-shaped oxide 230a (FIG. 1D).
  • the oxide film 230bf and the oxide film 230af are processed to form an island-shaped oxide 230b and an island-shaped oxide 230a (FIG. 1D).
  • CH 4 and Ar can be used as the etching gas.
  • Oxides containing In, Ga, and Zn tend to react with CH 3 radicals to form highly volatile metal complexes. Therefore, even if the substrate temperature is relatively low, by using a gas containing CH 4 , it is possible to easily process oxides containing In, Ga, and Zn, which are difficult to etch materials.
  • the oxide film 230bf and the oxide film 230af can be formed into island shapes while keeping the insulating film 224f flat.
  • the coating film 277 it is preferable to remove the coating film 277 at the same time while processing the oxide film 230bf and the oxide film 230af. Note that if the coating film 277 remains after the step shown in FIG. 1D, dry etching treatment such as ashing, wet etching treatment, wet etching treatment after dry etching treatment, or dry etching treatment after wet etching treatment is performed. It can be removed by processing.
  • the coating film 277 may be removed after the formation of the conductor 242 is completed and before the oxide film 230bf and oxide film 230af are processed.
  • the insulating film 224f is processed using the inorganic film 276 to form the island-shaped insulator 224 (FIG. 1E).
  • the insulating film 224f CHF 3 and Ar can be used as the etching gas.
  • the insulator 222 is not over-etched during processing of the insulating film 224f. Therefore, it is preferable to perform etching under conditions where the etching selectivity to the insulator 222 is high.
  • the insulating film 224f contains silicon oxide and is etched with a gas containing fluorine
  • the insulator 222 preferably contains hafnium oxide.
  • the inorganic film 276 is removed.
  • the insulator 271_1 and the insulator 271_2 function as an etching stop film and protect the conductor 242.
  • a silicon-based oxide insulating film is used as the insulator 271_2, it is possible to prevent the insulator 271_1 and the insulator 271_2 from disappearing during the etching process of the inorganic film 276.
  • CF 4 , Cl 2 , and O 2 can be used as etching gases. Note that if the material of the inorganic film 276 does not affect the subsequent process or can be used in the subsequent process, it is not necessarily necessary to remove the inorganic film 276.
  • the insulator 271_1 and the insulator 271_2 function as a mask to protect the conductor 242, so the conductor 242 does not have a curved surface between the side surface and the top surface.
  • the conductor 242 has an angular end where the side surface and the top surface intersect. Since the end where the side surface and the top surface of the conductor 242 intersect is angular, the cross-sectional area of the conductor 242 becomes larger than when the end has a curved surface.
  • a nitride insulator that does not easily oxidize metal as the insulator 271_1, it is possible to prevent the conductor 242 from being excessively oxidized.
  • the resistance of the conductor 242 that becomes the source electrode and the drain electrode is reduced, so that the on-state current of the transistor can be increased.
  • the side surface of the conductor 242 does not recede excessively with respect to the side surface of the oxide 230.
  • the side edge of the conductor 242 and the oxide It is possible to form an island-like stacked body in which the side edges 230 are generally coincident.
  • the insulator 224, oxide 230a, oxide 230b, conductor 242, insulator 271_1, and insulator 271_2 can be processed into an island shape all at once. Thereby, the number of steps can be reduced compared to when the insulator 224, oxide 230a, oxide 230b, conductor 242, insulator 271_1, and insulator 271_2 are individually processed into island shapes. Therefore, productivity of semiconductor devices can be improved.
  • FIGS. 2A to 2D are a plan view and a cross-sectional view of a semiconductor device (transistor 200).
  • FIG. 2A is a plan view of the semiconductor device.
  • FIGS. 2B to 2D are cross-sectional views of the semiconductor device.
  • FIG. 2B is a cross-sectional view of a portion indicated by a dashed line A1-A2 in FIG. 2A, and is also a cross-sectional view of the transistor 200 in the channel length direction.
  • FIG. 2B is a cross-sectional view of a portion indicated by a dashed line A1-A2 in FIG. 2A, and is also a cross-sectional view of the transistor 200 in the channel length direction.
  • FIG. 2C is a cross-sectional view of a portion indicated by a dashed line A3-A4 in FIG. 2A, and is also a cross-sectional view of the transistor 200 in the channel width direction.
  • FIG. 2D is a cross-sectional view of a portion indicated by a dashed line A5-A6 in FIG. 2A, and is also a cross-sectional view of the transistor 200 in the channel width direction. Note that in the plan view of FIG. 2A, some elements are omitted for clarity.
  • FIGS. 3A and 3B show enlarged cross-sectional views of the transistor 200 in the channel length direction
  • FIGS. 4A and 4B show enlarged cross-sectional views of the transistor 200 in the channel width direction.
  • the transistor 200 includes an insulator 216 over an insulator 215, a conductor 205 (a conductor 205a and a conductor 205b) embedded in the insulator 216, and an insulator over the insulator 216 and the conductor 205. 222, an insulator 224 on the insulator 222, an oxide 230 (oxide 230a and an oxide 230b) on the insulator 224, a conductor 242a and a conductor 242b on the oxide 230, and a conductor 242a.
  • the upper insulator 271a (insulator 271a1 and insulator 271a2), the insulator 271b (insulator 271b1 and insulator 271b2) on the conductor 242b, the insulator 250 on the oxide 230, and the insulator 250 on the insulator 250 A conductor 260 (a conductor 260a and a conductor 260b).
  • An insulator 275 is provided on the insulators 271a and 271b, and an insulator 280 is provided on the insulator 275. Insulator 250 and conductor 260 are embedded in openings provided in insulator 280 and insulator 275. An insulator 282 is provided on the insulator 280 and on the conductor 260. Further, an insulator 283 is provided on the insulator 282.
  • the oxide 230 has a region that functions as a channel formation region of the transistor 200.
  • the conductor 260 has a region that functions as a first gate electrode (upper gate electrode) of the transistor 200.
  • Insulator 250 has a region that functions as a first gate insulator of transistor 200.
  • the conductor 205 has a region that functions as a second gate electrode (lower gate electrode) of the transistor 200.
  • Insulator 224 and insulator 222 each have a region that functions as a second gate insulator of transistor 200.
  • the conductor 242a has a region that functions as either a source electrode or a drain electrode of the transistor 200.
  • the conductor 242b has a region that functions as the other of the source electrode and the drain electrode of the transistor 200.
  • one of the side edges of the conductor 242a roughly coincides with one of the side edges of the oxide 230, and the side edge of the conductor 242b
  • one side generally coincides with the other side edge of the oxide 230.
  • the side edges of the insulator 224 substantially coincide with the side edges of the oxide 230.
  • the insulator 224, the oxide 230, and the conductor 242 that becomes the conductor 242a and the conductor 242b can be processed into an island shape all at once. Accordingly, a semiconductor device according to one embodiment of the present invention can be manufactured with good productivity.
  • the insulator 224, the oxide 230, the conductor 242a, and the conductor 242b have shapes in which the side end portions of the insulator 224, the oxide 230, the conductor 242a, and the conductor 242b approximately match each other as described above.
  • the insulator 271a and the insulator 271b function as an etching stopper to protect the conductor 242a and the conductor 242b in the island-shaped processing. Therefore, as shown in FIGS. 2B and 2D, in a cross-sectional view of the transistor 200, the side edge of the insulator 271a approximately coincides with the side edge of the conductor 242a, and the side edge of the insulator 271b is a conductor. Preferably, it generally coincides with the side edge of the body 242b.
  • the stacked layers will be different from each other in the top view. It can be said that at least part of the outlines overlap. For example, this includes a case where the lower part of the side edge of the upper layer contacts the upper part of the side edge of the lower layer.
  • the upper layer and the lower layer include a case where the upper layer and the lower layer are processed using the same mask pattern or partially the same mask pattern.
  • the contours do not overlap, and the upper layer may be located inside the lower layer, or the upper layer may be located outside the lower layer, and in this case, the side edges roughly match, or The top surface shapes are said to be roughly the same.
  • the oxide 230 preferably includes an oxide 230a on the insulator 224 and an oxide 230b on the oxide 230a. By having the oxide 230a below the oxide 230b, diffusion of impurities from a structure formed below the oxide 230a to the oxide 230b can be suppressed.
  • the oxide 230 has a two-layer structure of the oxide 230a and the oxide 230b
  • the structure is not limited thereto.
  • the oxide 230 may have a single layer structure of the oxide 230b, or may have a stacked structure of three or more layers.
  • the oxide 230b includes a region 230bc in the transistor 200, and a region 230ba and a region 230bb provided to sandwich the region 230bc.
  • the region 230bc functions as a channel forming region.
  • the region 230ba functions as one of the source region and the drain region, and the region 230bb functions as the other of the source region and the drain region.
  • At least a portion of region 230bc overlaps with conductor 260.
  • Region 230ba overlaps with conductor 242a, and region 230bb overlaps with conductor 242b.
  • the region 230bc has fewer oxygen vacancies or has a lower impurity concentration than the regions 230ba and 230bb, so it is a high resistance region with a lower carrier concentration. Therefore, the region 230bc can be said to be i-type (intrinsic) or substantially i-type.
  • the regions 230ba and 230bb are low resistance regions with high carrier concentrations because they have many oxygen vacancies or high concentrations of impurities such as hydrogen, nitrogen, and metal elements. That is, the region 230ba and the region 230bb are n-type regions (low resistance regions) having a higher carrier concentration than the region 230bc.
  • the carrier concentration of the region 230bc is 1 ⁇ 10 18 cm ⁇ 3 or less, less than 1 ⁇ 10 17 cm ⁇ 3 , less than 1 ⁇ 10 16 cm ⁇ 3 , less than 1 ⁇ 10 15 cm ⁇ 3 , or 1 ⁇ 10 14 cm -3, less than 1 ⁇ 10 13 cm ⁇ 3 , less than 1 ⁇ 10 12 cm ⁇ 3 , less than 1 ⁇ 10 11 cm ⁇ 3 , or preferably less than 1 ⁇ 10 10 cm ⁇ 3 .
  • the lower limit value of the carrier concentration in the region 230bc is not particularly limited, but may be set to, for example, 1 ⁇ 10 ⁇ 9 cm ⁇ 3 .
  • the impurity concentration in the oxide 230b is lowered to lower the defect level density.
  • the term "high purity intrinsic” or “substantially high purity intrinsic” means that the impurity concentration is low and the defect level density is low.
  • an oxide semiconductor (or metal oxide) with a low carrier concentration is sometimes referred to as a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor (or metal oxide).
  • the impurity concentration in the oxide 230b In order to stabilize the electrical characteristics of the transistor 200, it is effective to reduce the impurity concentration in the oxide 230b. Further, in order to reduce the impurity concentration of the oxide 230b, it is preferable to also reduce the impurity concentration in the adjacent film.
  • impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, and silicon. Note that the impurities in the oxide 230b refer to, for example, substances other than the main components that constitute the oxide 230b. For example, an element having a concentration of less than 0.1 atomic % can be considered an impurity.
  • region 230bc, the region 230ba, and the region 230bb may each include not only the oxide 230b but also the oxide 230a.
  • the concentration of metal elements and impurity elements such as hydrogen and nitrogen detected in each region is not limited to a stepwise change from region to region, and may be continuously changed within each region. In other words, the closer the region is to the region 230bc, the lower the concentration of metal elements and impurity elements such as hydrogen and nitrogen may be.
  • oxide 230 oxide 230a and oxide 230b.
  • the band gap of the metal oxide that functions as a semiconductor is preferably 2 eV or more, more preferably 2.5 eV or more.
  • the off-state current of the transistor can be reduced.
  • a transistor having a metal oxide in a channel formation region in this way is called an OS transistor. Since the OS transistor has a small off-state current, the power consumption of the semiconductor device can be sufficiently reduced. Further, since the frequency characteristics of the OS transistor are high, the semiconductor device can be operated at high speed.
  • the oxide 230 preferably includes a metal oxide (oxide semiconductor).
  • metal oxides that can be used for the oxide 230 include indium oxide, gallium oxide, and zinc oxide.
  • the metal oxide contains at least indium (In) or zinc (Zn).
  • the metal oxide has two or three selected from indium, element M, and zinc.
  • the element M is a metal element or a metalloid element that has a high bonding energy with oxygen, for example, a metal element or a metalloid element that has a higher bonding energy with oxygen than indium.
  • the element M includes aluminum, gallium, tin, yttrium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, zirconium, molybdenum, hafnium, tantalum, tungsten, lanthanum, cerium, neodymium, magnesium, and calcium. , strontium, barium, boron, silicon, germanium, and antimony.
  • the element M included in the metal oxide is preferably one or more of the above elements, more preferably one or more selected from aluminum, gallium, tin, and yttrium, and further gallium. preferable. Note that in this specification and the like, metal elements and metalloid elements may be collectively referred to as "metal elements," and the "metal elements" described in this specification and the like may include semimetal elements.
  • the oxide 230 is, for example, indium zinc oxide (In-Zn oxide), indium tin oxide (In-Sn oxide), indium titanium oxide (In-Ti oxide), indium gallium oxide (In- Ga oxide), indium gallium aluminum oxide (In-Ga-Al oxide), indium gallium tin oxide (In-Ga-Sn oxide), gallium zinc oxide (Ga-Zn oxide, also written as GZO) , aluminum zinc oxide (aluminum zinc oxide), indium aluminum zinc oxide (In-Al-Zn oxide, also written as IAZO), indium tin zinc oxide (In-Sn-Zn oxide), indium titanium zinc oxide (In-Ti-Zn oxide), indium gallium zinc oxide (In-Ga-Zn oxide, also written as IGZO), indium gallium tin zinc oxide (In-Ga-Sn-Zn oxide, also written as IGZTO) ), indium gallium aluminum zinc oxide (In-Ga-Al-Zn oxide, also referred
  • the field effect mobility of the transistor can be increased.
  • the metal oxide may contain one or more metal elements with a large number of periods instead of or in addition to indium.
  • metal elements having a large number of periods include metal elements belonging to the fifth period and metal elements belonging to the sixth period.
  • Specific examples of the metal element include yttrium, zirconium, silver, cadmium, tin, antimony, barium, lead, bismuth, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, and europium. Note that lanthanum, cerium, praseodymium, neodymium, promethium, samarium, and europium are called light rare earth elements.
  • the metal oxide may contain one or more types of nonmetallic elements.
  • the metal oxide contains a nonmetal element, the field effect mobility of the transistor can be increased in some cases.
  • nonmetallic elements include carbon, nitrogen, phosphorus, sulfur, selenium, fluorine, chlorine, bromine, and hydrogen.
  • the metal oxide becomes highly crystalline, and the diffusion of impurities in the metal oxide can be suppressed. . Therefore, fluctuations in the electrical characteristics of the transistor are suppressed, and reliability can be improved.
  • the electrical characteristics and reliability of the transistor vary depending on the composition of the metal oxide applied to the oxide 230. Therefore, by varying the composition of the metal oxide depending on the electrical characteristics and reliability required of the transistor, a semiconductor device that has both excellent electrical characteristics and high reliability can be obtained.
  • the oxide 230 has a stacked structure of a plurality of oxide layers having different chemical compositions.
  • the atomic ratio of the element M to the metal element that is the main component is the same as the atomic ratio of the element M to the metal element that is the main component in the metal oxide used for the oxide 230b. It is preferable that it be larger.
  • the atomic ratio of the element M to In is preferably larger than the atomic ratio of the element M to In in the metal oxide used for the oxide 230b.
  • the atomic ratio of In to the element M is preferably larger than the atomic ratio of In to the element M in the metal oxide used for the oxide 230a.
  • the oxide 230a and the oxide 230b have a common element other than oxygen as a main component, the density of defect levels at the interface between the oxide 230a and the oxide 230b can be reduced. Therefore, the influence of interface scattering on carrier conduction is reduced, and the transistor 200 can obtain a large on-current and high frequency characteristics.
  • the nearby composition includes a range of ⁇ 30% of the desired atomic ratio.
  • the element M it is preferable to use gallium.
  • a metal oxide that can be used for the oxide 230a may be used as the oxide 230b.
  • the compositions of the metal oxides that can be used for the oxide 230a and the oxide 230b are not limited to the above.
  • a metal oxide composition that can be used for oxide 230a may be applied to oxide 230b.
  • the composition of metal oxides that can be used for oxide 230b may also be applied to oxide 230a.
  • the above atomic ratio is not limited to the atomic ratio of the formed metal oxide, but also the atomic ratio of the sputtering target used for forming the metal oxide film. It may be.
  • the oxide 230b has crystallinity.
  • CAAC-OS c-axis aligned crystalline oxide semiconductor
  • CAAC-OS is a metal oxide that has a highly crystalline and dense structure and has few impurities and defects (for example, oxygen vacancies).
  • heat treatment at a temperature that does not polycrystallize the metal oxide (e.g., 400°C or higher and 600°C or lower) allows CAAC-OS to have a more highly crystalline and dense structure. It can be done. In this way, by further increasing the density of the CAAC-OS, it is possible to further reduce diffusion of impurities or oxygen in the CAAC-OS.
  • CAAC-OS it is difficult to confirm clear grain boundaries, so it can be said that reduction in electron mobility due to grain boundaries is less likely to occur. Therefore, the metal oxide with CAAC-OS has stable physical properties. Therefore, metal oxides with CAAC-OS are resistant to heat and have high reliability.
  • the oxide 230b Furthermore, by using a crystalline oxide such as CAAC-OS as the oxide 230b, it is possible to suppress the extraction of oxygen from the oxide 230b by the source electrode or the drain electrode. As a result, even if heat treatment is performed, extraction of oxygen from the oxide 230b can be reduced, so that the transistor 200 is stable against high temperatures (so-called thermal budget) during the manufacturing process.
  • a crystalline oxide such as CAAC-OS
  • the transistor using an oxide semiconductor if impurities and oxygen vacancies are present in a region of the oxide semiconductor where a channel is formed, electrical characteristics are likely to fluctuate and reliability may deteriorate. Furthermore, hydrogen near the oxygen vacancy may form a defect in which hydrogen is present in the oxygen vacancy (hereinafter sometimes referred to as V OH ), and generate electrons that serve as carriers. Therefore, if oxygen vacancies are included in the region 230bc where a channel is formed in the oxide semiconductor, the transistor exhibits normally-on characteristics (a channel exists even when no voltage is applied to the gate electrode, and current flows through the transistor). flow characteristics). Therefore, in the region 230bc in the oxide semiconductor, impurities, oxygen vacancies, and V OH are preferably reduced as much as possible. In other words, the region 230bc in the oxide semiconductor preferably has a reduced carrier concentration and is i-type (intrinsic) or substantially i-type.
  • the insulator can be converted to an oxide semiconductor.
  • Oxygen can be supplied, and oxygen vacancies and V OH can be reduced.
  • an excessive amount of oxygen is supplied to the region 230ba or the region 230bb, there is a possibility that the on-state current of the transistor 200 or the field effect mobility will decrease.
  • the amount of oxygen supplied to the region 230ba or the region 230bb varies within the substrate plane, resulting in variations in the characteristics of a semiconductor device including a transistor.
  • the region 230bc has a reduced carrier concentration and is preferably i-type or substantially i-type, whereas the region 230ba and the region 230bb have a high carrier concentration and are n-type. is preferred.
  • an excessive amount of oxygen is not supplied to the region 230ba and the region 230bb, and that the amount of V OH in the region 230ba and the region 230bb is not excessively reduced.
  • the oxide semiconductor can form V OH , so in order to reduce the amount of V OH , it is necessary to reduce the hydrogen concentration.
  • the semiconductor device is manufactured by reducing the hydrogen concentration in the region 230bc, suppressing oxidation of the conductor 242a, the conductor 242b, and the conductor 260, and reducing the hydrogen concentration in the region 230ba and the region 230bb.
  • the structure is configured to suppress a decrease in hydrogen concentration.
  • the insulator 250 in contact with the region 230bc of the oxide 230b has the function of capturing and fixing hydrogen. Thereby, the hydrogen concentration in the region 230bc of the oxide 230b can be reduced. Therefore, V O H in the region 230bc can be reduced to make the region 230bc i-type or substantially i-type.
  • the insulator 250 has a laminated structure of an insulator 250a in contact with the oxide 230, an insulator 250b on the insulator 250a, and an insulator 250c on the insulator 250b. It is preferable to do so. In this case, it is preferable that the insulator 250a has the function of capturing and fixing hydrogen.
  • Examples of insulators that have the function of capturing and fixing hydrogen include metal oxides with an amorphous structure.
  • the insulator 250a it is preferable to use, for example, a metal oxide such as magnesium oxide or an oxide containing one or both of aluminum and hafnium.
  • metal oxides having such an amorphous structure oxygen atoms have dangling bonds, and the dangling bonds may capture or fix hydrogen.
  • metal oxides having an amorphous structure have a high ability to capture or fix hydrogen.
  • a high dielectric constant (high-k) material for the insulator 250a.
  • a high-k material is an oxide containing one or both of aluminum and hafnium.
  • an oxide containing one or both of aluminum and hafnium as the insulator 250a, and it is more preferable to use an oxide having an amorphous structure and containing one or both of aluminum and hafnium. It is further preferable to use aluminum oxide having a structure.
  • aluminum oxide is used as the insulator 250a.
  • the insulator 250a is an insulator containing at least oxygen and aluminum.
  • the aluminum oxide has an amorphous structure.
  • the insulator 250a has an amorphous structure.
  • an insulator having a stable structure against heat such as silicon oxide or silicon oxynitride.
  • oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • nitrided oxide refers to a material whose composition contains more nitrogen than oxygen.
  • silicon oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • silicon nitride oxide refers to a material whose composition contains more nitrogen than oxygen. shows.
  • an insulator 250d is provided on an insulator 250b.
  • an insulator that can be used for the insulator 250a can be provided as the insulator 250d.
  • hafnium oxide can be used as the insulator 250d.
  • the insulators are, for example, an insulator 250a, an insulator 250c, an insulator 250d, and an insulator 275.
  • barrier insulator refers to an insulator that has barrier properties.
  • barrier property is defined as a function of suppressing the diffusion of a corresponding substance (also referred to as low permeability).
  • the function is to capture and fix (also referred to as gettering) the corresponding substance.
  • barrier insulators against oxygen include oxides containing one or both of aluminum and hafnium, magnesium oxide, gallium oxide, indium gallium zinc oxide, silicon nitride, and silicon nitride oxide.
  • oxides containing one or both of aluminum and hafnium include aluminum oxide, hafnium oxide, oxides containing aluminum and hafnium (hafnium aluminate), and oxides containing hafnium and silicon (hafnium silicate).
  • the insulator 250a, the insulator 250c, and the insulator 275 each have a single layer structure or a laminated structure of the above oxygen barrier insulator.
  • the insulator 250a preferably has barrier properties against oxygen. It is preferable that the insulator 250a is at least less permeable to oxygen than the insulator 280.
  • the insulator 250a has a region in contact with the side surface of the conductor 242a and the side surface of the conductor 242b. Since the insulator 250a has barrier properties against oxygen, the side surfaces of the conductor 242a and the conductor 242b can be prevented from being oxidized and formation of an oxide film on the side surfaces. Thereby, it is possible to suppress a decrease in the on-state current of the transistor 200 or a decrease in field effect mobility.
  • the insulator 250a is provided in contact with the top and side surfaces of the oxide 230b, the side surfaces of the oxide 230a, the side surfaces of the insulator 224, and the top surface of the insulator 222. Since the insulator 250a has barrier properties against oxygen, desorption of oxygen from the region 230bc of the oxide 230b can be suppressed when heat treatment or the like is performed. Therefore, formation of oxygen vacancies in the oxide 230a and the oxide 230b can be reduced.
  • the insulator 250a even if the insulator 280 contains an excessive amount of oxygen, the oxygen is prevented from being excessively supplied to the oxides 230a and 230b, and an appropriate amount of oxygen is can be supplied to the oxide 230a and the oxide 230b. Therefore, it is possible to suppress excessive oxidation of the region 230ba and the region 230bb, which would cause a decrease in the on-current of the transistor 200 or a decrease in field-effect mobility.
  • an oxide containing one or both of aluminum and hafnium has barrier properties against oxygen, it can be suitably used as the insulator 250a.
  • the insulator 250c preferably has barrier properties against oxygen.
  • the insulator 250c is provided between the region 230bc of the oxide 230 and the conductor 260, and between the insulator 280 and the conductor 260. With this configuration, oxygen contained in the region 230bc of the oxide 230 can be prevented from diffusing into the conductor 260, and oxygen vacancies can be suppressed from being formed in the region 230bc of the oxide 230. Furthermore, oxygen contained in the oxide 230 and oxygen contained in the insulator 280 can be prevented from diffusing into the conductor 260 and oxidizing the conductor 260. It is preferable that the insulator 250c is at least less permeable to oxygen than the insulator 280. For example, it is preferable to use silicon nitride as the insulator 250c. In this case, the insulator 250c is an insulator containing at least nitrogen and silicon.
  • the insulator 250c has barrier properties against hydrogen. This can prevent impurities such as hydrogen contained in the conductor 260 from diffusing into the oxide 230b.
  • the insulator 275 preferably has barrier properties against oxygen.
  • the insulator 275 is provided between the insulator 280 and the conductor 242a and between the insulator 280 and the conductor 242b. With this configuration, it is possible to suppress oxygen contained in the insulator 280 from diffusing into the conductor 242a and the conductor 242b. Therefore, it is possible to suppress the conductor 242a and the conductor 242b from being oxidized by the oxygen contained in the insulator 280, increasing the resistivity, and reducing the on-current.
  • the insulator 275 is preferably at least less permeable to oxygen than the insulator 280. For example, it is preferable to use silicon nitride as the insulator 275. In this case, the insulator 275 is an insulator containing at least nitrogen and silicon.
  • the barrier insulator against hydrogen is, for example, the insulator 275.
  • barrier insulators against hydrogen examples include oxides such as aluminum oxide, hafnium oxide, and tantalum oxide, and nitrides such as silicon nitride.
  • oxides such as aluminum oxide, hafnium oxide, and tantalum oxide
  • nitrides such as silicon nitride.
  • the insulator 275 has a single layer structure or a multilayer structure of the hydrogen barrier insulator.
  • the insulator 275 has barrier properties against hydrogen. Since the insulator 275 has barrier properties against hydrogen, it is possible to suppress the insulator 250 from capturing and fixing hydrogen in the regions 230ba and 230bb. Therefore, the region 230ba and the region 230bb can be n-type.
  • the region 230bc can be made to be i-type or substantially i-type, and the regions 230ba and 230bb can be made to be n-type, and a semiconductor device with good electrical characteristics can be provided.
  • the semiconductor device is miniaturized or highly integrated, it can have good electrical characteristics.
  • miniaturizing the transistor 200 high frequency characteristics can be improved. Specifically, the cutoff frequency can be improved.
  • the insulators 250a to 250d function as part of the first gate insulator.
  • the insulators 250a to 250d are provided in openings formed in an insulator 280 or the like together with the conductor 260.
  • each of the insulators 250a to 250d be thin.
  • the thickness of each of the insulators 250a to 250d is preferably 0.1 nm or more and 10 nm or less, more preferably 0.1 nm or more and 5.0 nm or less, more preferably 0.5 nm or more and 5.0 nm or less, and 1.0 nm or more.
  • each of the insulators 250a to 250d only needs to have a region with the thickness described above in at least a portion thereof.
  • the films In order to reduce the film thickness of the insulators 250a to 250d as described above, it is preferable to form the films using an atomic layer deposition (ALD) method.
  • ALD atomic layer deposition
  • the ALD method include a thermal ALD method in which a reaction between a precursor and a reactant is performed using only thermal energy, and a PEALD method in which a plasma-excited reactant is used.
  • PEALD method by using plasma, it is possible to form a film at a lower temperature, which may be preferable.
  • the ALD method can deposit atoms one layer at a time, it is possible to form extremely thin films, to form structures with high aspect ratios, to form films with few defects such as pinholes, and to improve coverage. It has the advantage of being able to form excellent films and being able to form films at low temperatures. Therefore, the insulator 250 can be formed with good coverage on the side surfaces of the opening formed in the insulator 280 and the side edges of the conductors 242a, 242b, etc., with a thin film thickness as described above. .
  • a film formed by the ALD method may contain more impurities such as carbon than a film formed by other film forming methods.
  • the impurities can be quantified using secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), or Auger electron spectroscopy (AES). Auger Electron Spectroscopy) It can be done using
  • the present invention is not limited to this. isn't it.
  • the insulator 250 can be configured to include at least one of insulators 250a to 250d. By forming the insulator 250 with one layer, two layers, or three layers among the insulators 250a to 250d, the manufacturing process of the semiconductor device can be simplified and productivity can be improved.
  • the semiconductor device preferably has a configuration that suppresses hydrogen from entering the transistor 200 and the like.
  • the semiconductor device described in this embodiment the insulators are, for example, the insulator 282 and the insulator 283.
  • the insulator 215 provided under the transistor 200 may have the same structure as one or both of the insulator 282 and the insulator 283.
  • the insulator 215 may have a laminated structure of the insulator 282 and the insulator 283, the insulator 282 may be on the bottom and the insulator 283 on the top, or the insulator 282 may be on the top. , the insulator 283 may be placed at the bottom.
  • One or more of the insulator 282 and the insulator 283 serves as a barrier insulator that suppresses impurities such as water and hydrogen from diffusing into the transistor 200 etc. from the substrate side or from above the transistor 200 etc.
  • one or more of the insulator 282 and the insulator 283 are hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules ( N2O , NO, NO2 , etc.), copper atoms.
  • the insulator 282 and the insulator 283 each have an insulator having a function of suppressing the diffusion of impurities such as water and hydrogen, and oxygen, such as aluminum oxide, magnesium oxide, hafnium oxide, and gallium oxide.
  • oxygen such as aluminum oxide, magnesium oxide, hafnium oxide, and gallium oxide.
  • indium gallium zinc oxide, silicon nitride, silicon nitride oxide, or the like can be used.
  • the insulator 283 it is preferable to use silicon nitride, which has a higher hydrogen barrier property.
  • the insulator 282 preferably includes aluminum oxide, magnesium oxide, or the like, which has a high ability to capture and fix hydrogen.
  • impurities such as water and hydrogen can be suppressed from diffusing into the transistor 200 and the like from an interlayer insulating film and the like disposed outside the insulator 283. Further, oxygen contained in the insulator 280 and the like can be suppressed from diffusing upward from the transistor 200 and the like via the insulator 282 and the like. Furthermore, by using the same structure as the insulator 215 as one or both of the insulator 282 and the insulator 283, impurities such as water and hydrogen can be diffused from the substrate side to the transistor 200 and the like via the insulator 215. can be suppressed. Furthermore, oxygen contained in the insulator 224 and the like can be suppressed from diffusing toward the substrate side. In this way, it is preferable to have a structure in which the upper and lower sides of the transistor 200 and the like are surrounded by an insulator that has a function of suppressing the diffusion of impurities such as water and hydrogen, and oxygen.
  • the conductor 205 is arranged to overlap the oxide 230 and the conductor 260.
  • the conductor 205 is preferably embedded in an opening formed in the insulator 216.
  • the conductor 205 is preferably provided extending in the channel width direction, as shown in FIGS. 2A and 2C. With this structure, the conductor 205 functions as a wiring when a plurality of transistors are provided.
  • the conductor 205 may have a single layer structure or a laminated structure.
  • the conductor 205 includes a conductor 205a and a conductor 205b.
  • the conductor 205a is provided in contact with the bottom and side walls of the opening.
  • the conductor 205b is provided so as to fill the recess of the conductor 205a formed along the opening.
  • the height of the top surface of the conductor 205 approximately matches the height of the top surface of the insulator 216.
  • the conductor 205a has a function of suppressing the diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules ( N2O , NO, NO2 , etc.), and copper atoms.
  • the conductive material has a conductive material having the following properties.
  • the conductor 205a By using a conductive material that has a function of reducing hydrogen diffusion for the conductor 205a, it is possible to prevent impurities such as hydrogen contained in the conductor 205b from diffusing into the oxide 230 via the insulator 216 or the like. It can be prevented. Further, by using a conductive material that has a function of suppressing oxygen diffusion for the conductor 205a, it is possible to suppress the decrease in conductivity due to oxidation of the conductor 205b. Examples of the conductive material having the function of suppressing oxygen diffusion include titanium, titanium nitride, tantalum, tantalum nitride, ruthenium, and ruthenium oxide.
  • the conductor 205a can have a single layer structure or a laminated structure of the above-mentioned conductive materials.
  • the conductor 205a preferably includes titanium nitride.
  • the conductor 205b preferably includes tungsten.
  • the conductor 205 can function as a second gate electrode.
  • the threshold voltage (Vth) of the transistor 200 can be controlled by changing the potential applied to the conductor 205 independently of the potential applied to the conductor 260 without interlocking with the potential applied to the conductor 260.
  • Vth threshold voltage
  • the electrical resistivity of the conductor 205 is designed in consideration of the potential applied to the conductor 205, and the film thickness of the conductor 205 is set according to the electrical resistivity. Furthermore, the thickness of the insulator 216 is approximately the same as that of the conductor 205. Here, it is preferable that the film thicknesses of the conductor 205 and the insulator 216 be made as thin as the design of the conductor 205 allows. By reducing the thickness of the insulator 216, the absolute amount of impurities such as hydrogen contained in the insulator 216 can be reduced, so that diffusion of the impurities into the oxide 230 can be reduced. .
  • the insulator 222 and the insulator 224 function as a second gate insulator.
  • the insulator 222 has a function of suppressing diffusion of hydrogen (for example, at least one of a hydrogen atom and a hydrogen molecule). Further, the insulator 222 preferably has a function of suppressing diffusion of oxygen (for example, at least one of oxygen atoms and oxygen molecules). For example, the insulator 222 preferably has a function of suppressing diffusion of one or both of hydrogen and oxygen more than the insulator 224.
  • the insulator 222 preferably includes an oxide of one or both of aluminum and hafnium, which are insulating materials.
  • the insulator it is preferable to use aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like.
  • an oxide containing hafnium and zirconium, such as hafnium zirconium oxide is preferable to use.
  • the insulator 222 prevents the release of oxygen from the oxide 230 to the substrate side and the release of impurities such as hydrogen from the periphery of the transistor 200 to the oxide 230. Functions as a layer that suppresses diffusion.
  • the insulator 222 impurities such as hydrogen can be suppressed from diffusing inside the transistor 200, and generation of oxygen vacancies in the oxide 230 can be suppressed. Further, it is possible to suppress the conductor 205 from reacting with the oxygen contained in the insulator 224 and the oxide 230.
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to the above insulator.
  • these insulators may be nitrided.
  • the insulator 222 may be used by stacking silicon oxide, silicon oxynitride, or silicon nitride on the above insulator.
  • the insulator 222 may have a single layer structure or a multilayer structure of an insulator containing a so-called high-k material such as aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, and hafnium zirconium oxide.
  • a so-called high-k material such as aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, and hafnium zirconium oxide.
  • a material with a high dielectric constant such as lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ), (Ba,Sr)TiO 3 (BST) may be used in some cases.
  • the insulator 224 in contact with the oxide 230 preferably includes, for example, silicon oxide or silicon oxynitride. Thereby, oxygen can be supplied from the insulator 224 to the oxide 230, and oxygen vacancies can be reduced.
  • the insulator 224 is preferably processed into an island shape.
  • insulators 224 of approximately the same size are provided for one transistor 200.
  • the amount of oxygen supplied from the insulator 224 to the oxide 230 becomes approximately the same. Therefore, variations in the electrical characteristics of the transistor 200 within the plane of the substrate can be suppressed.
  • the invention is not limited to this, and similarly to the insulator 222, the insulator 224 may be configured without patterning.
  • the insulator 222 and the insulator 224 may each have a laminated structure of two or more layers.
  • the structure is not limited to a laminated structure made of the same material, but may be a laminated structure made of different materials.
  • the conductor 242a, the conductor 242b, and the conductor 260 it is preferable to use a conductive material that is difficult to oxidize or a conductive material that has a function of suppressing oxygen diffusion, respectively.
  • the conductive material include a conductive material containing nitrogen and a conductive material containing oxygen. Thereby, it is possible to suppress a decrease in the conductivity of the conductor 242a, the conductor 242b, and the conductor 260.
  • a conductive material containing metal and nitrogen is used as the conductor 242a, the conductor 242b, and the conductor 260, the conductor 242a, the conductor 242b, and the conductor 260 are conductive materials containing at least metal and nitrogen. Becomes a body.
  • the conductors 242a and 242b may have a single layer structure or a laminated structure. Further, the conductor 260 may have a single layer structure or a laminated structure.
  • metal nitrides such as nitrides containing tantalum, nitrides containing titanium, nitrides containing molybdenum, nitrides containing tungsten, and nitrides containing tantalum and aluminum. It is preferable to use a nitride containing titanium, aluminum, or the like. In one aspect of the invention, nitrides containing tantalum are particularly preferred. Further, for example, ruthenium oxide, ruthenium nitride, an oxide containing strontium and ruthenium, an oxide containing lanthanum and nickel, etc. may be used. These materials are preferable because they are conductive materials that are difficult to oxidize, or materials that maintain conductivity even after absorbing oxygen.
  • hydrogen contained in the oxide 230b or the like may diffuse into the conductor 242a or the conductor 242b.
  • hydrogen contained in the oxide 230b etc. is easily diffused into the conductor 242a or the conductor 242b, and the diffused hydrogen is It may combine with nitrogen contained in the conductor 242a or the conductor 242b.
  • hydrogen contained in the oxide 230b or the like may be absorbed by the conductor 242a or the conductor 242b.
  • the conductors 242a and 242b may have a two-layer structure.
  • the conductor 242a is a laminated film of a conductor 242a1 and a conductor 242a2 on the conductor 242a
  • the conductor 242b is a laminated film of a conductor 242b1 and a conductor 242b2 on the conductor 242b1.
  • the conductor 242a2 and the conductor 242b2 have higher conductivity than the conductor 242a1 and the conductor 242b1.
  • the thickness of the conductor 242a2 and the conductor 242b2 be larger than the thickness of the conductor 242a1 and the conductor 242b1.
  • any conductor that can be used for the conductor 205b may be used. With the above structure, the resistance of the conductors 242a2 and 242b2 can be reduced. Thereby, the operating speed of the transistor 200 can be improved.
  • tantalum nitride or titanium nitride can be used as the conductor 242a1 and the conductor 242b1, and tungsten can be used as the conductor 242a2 and the conductor 242b2.
  • a crystalline oxide such as CAAC-OS as the oxide 230b.
  • a metal oxide containing indium, zinc, and one or more selected from gallium, aluminum, and tin By using CAAC-OS, extraction of oxygen from the oxide 230b by the conductor 242a or the conductor 242b can be suppressed. Further, it is possible to suppress a decrease in the conductivity of the conductor 242a and the conductor 242b.
  • the insulator 271a and the insulator 271b are inorganic insulators that function as an etching stopper when removing the inorganic film 276 as described above and protect the conductor 242a and the conductor 242b.
  • the insulator 271a and the insulator 271b are in contact with the conductor 242a and the conductor 242b, it is preferable that the insulator 271a and the insulator 271b are inorganic insulators that do not easily oxidize the conductors 242a and 242b.
  • the insulator 271a can have a laminated structure of an insulator 271a1 and an insulator 271a2 on the insulator 271a
  • the insulator 271b can have a laminated structure of an insulator 271b1 and an insulator 271b2 on the insulator 271b1.
  • the insulators 271a1 and 271b1 it is preferable to use a nitride insulator that can be used for the insulator 250c so that the conductors 242a and 242b are difficult to oxidize.
  • an oxide insulator that can be used for the insulator 250b as the insulators 271a2 and 271b2 so that it functions as an etching stopper when removing the inorganic film 276 as described above.
  • the insulator 271a1 is in contact with the top surface of the conductor 242a and a part of the insulator 275
  • the insulator 271b1 is in contact with the top surface of the conductor 242b and a part of the insulator 275
  • the insulator 271a2 is in contact with the upper surface of the insulator 271a1 and the lower surface of the insulator 275
  • the insulator 271b2 is in contact with the upper surface of the insulator 271b1 and the lower surface of the insulator 275.
  • silicon nitride can be used as the insulator 271a1 and the insulator 271b1
  • silicon oxide can be used as the insulator 271a2 and the insulator 271b2.
  • the insulator 271 which is the source of the insulator 271a and the insulator 271b, functions as a mask for the conductor 242, so the conductor 242 does not have a curved surface between the side surface and the top surface.
  • the ends of the conductor 242a and the conductor 242b, where the side surface and the top surface intersect have an angular shape. Since the end where the side surface and the top surface of the conductor 242 intersect is angular, the cross-sectional area of the conductor 242 becomes larger than when the end has a curved surface.
  • the conductor 242 is reduced, so that the on-state current of the transistor can be increased.
  • the conductor 260 is placed in the opening formed in the insulator 280 and the insulator 275, as shown in FIGS. 3A and 4A.
  • the conductor 260 is provided in the opening so as to cover the side surface of the insulator 224, the side surface of the oxide 230a, the side surface of the oxide 230b, and the top surface of the oxide 230b via the insulator 250.
  • the conductor 260 is arranged such that its upper surface is approximately at the same height as the top of the insulator 250 and the upper surface of the insulator 280.
  • the side wall of the opening may be approximately perpendicular to the upper surface of the insulator 222, or may be tapered. It may be a shape. By tapering the sidewall, the coverage of the insulator 250 and the like provided in the opening of the insulator 280 is improved, and defects such as holes can be reduced.
  • the conductor 260 functions as a first gate electrode of the transistor 200.
  • the conductor 260 is preferably provided extending in the channel width direction, as shown in FIGS. 2B, 4A, and 4B. With this structure, the conductor 260 functions as a wiring when a plurality of transistors are provided.
  • a curved surface is formed between the side surface of the oxide 230b and the top surface of the oxide 230b in a cross-sectional view of the transistor 200 in the channel width direction. May have. That is, the end of the side surface and the end of the top surface may be curved (hereinafter also referred to as round shape).
  • the radius of curvature of the curved surface is preferably larger than 0 nm and smaller than the film thickness of the oxide 230b in the region overlapping with the conductor 242, or smaller than half the length of the region not having the curved surface.
  • the radius of curvature of the curved surface is greater than 0 nm and less than 20 nm, preferably greater than or equal to 1 nm and less than or equal to 15 nm, and more preferably greater than or equal to 2 nm and less than or equal to 10 nm.
  • a structure of a transistor in which a channel formation region is electrically surrounded by at least the electric field of the first gate electrode is referred to as a surrounded channel (S-channel) structure.
  • the S-channel structure disclosed in this specification and the like has a structure different from the Fin type structure and the planar type structure.
  • the S-channel structure disclosed in this specification and the like can also be regarded as a type of Fin type structure.
  • a Fin type structure refers to a structure in which a gate electrode is arranged so as to surround at least two or more surfaces (specifically, two, three, or four sides) of a channel.
  • the channel formation region can be electrically surrounded.
  • the S-channel structure is a structure that electrically surrounds the channel formation region, it is substantially equivalent to a GAA (Gate All Around) structure or an LGAA (Lateral Gate All Around) structure. You can say that.
  • the channel formation region formed at or near the interface between the oxide 230 and the gate insulator can be formed in the entire bulk of the oxide 230. Can be done. Therefore, it is possible to improve the current density flowing through the transistor, and thus it is expected that the on-state current of the transistor or the field effect mobility of the transistor will be increased.
  • the insulator 224 is arranged in an island shape. Therefore, as shown in FIGS. 4A and 4B, at least a portion of the lower surface of the conductor 260 can be provided below the lower surface of the oxide 230b. Accordingly, the conductor 260 can be provided opposite the top surface and side surfaces of the oxide 230b, so that the electric field of the conductor 260 can be applied to the top surface and side surfaces of the oxide 230b.
  • the transistor 200 can have an S-channel structure.
  • the transistor 200 illustrated in FIGS. 4A and 4B has an S-channel structure
  • the semiconductor device of one embodiment of the present invention is not limited thereto.
  • the transistor structure that can be used in one embodiment of the present invention may be one or more selected from a planar structure, a fin structure, and a GAA structure.
  • the conductor 260 is shown as having a two-layer structure.
  • the conductor 260 preferably includes a conductor 260a and a conductor 260b disposed on the conductor 260a.
  • the conductor 260a is arranged so as to cover the bottom and side surfaces of the conductor 260b.
  • the conductor 260a it is preferable to use a conductive material that has a function of suppressing the diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules, and copper atoms.
  • impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules, and copper atoms.
  • a conductive material that has a function of suppressing the diffusion of oxygen for example, at least one of oxygen atoms and oxygen molecules).
  • the conductor 260a has the function of suppressing oxygen diffusion, it is possible to suppress the conductor 260b from being oxidized by oxygen contained in the insulator 280 and the like, and thereby reducing its conductivity.
  • the conductive material having the function of suppressing oxygen diffusion it is preferable to use, for example, titanium, titanium nitride, tantalum, tantalum nitride, ruthenium, ruthenium oxide, or the like.
  • the conductor 260b can be made of a conductive material containing tungsten, copper, or aluminum as a main component.
  • the conductor 260b may have a laminated structure, for example, a laminated structure of titanium or titanium nitride and the above conductive material.
  • the conductor 260 is formed in a self-aligned manner so as to fill an opening formed in the insulator 280 or the like.
  • the conductor 260 can be reliably placed in the region between the conductor 242a and the conductor 242b without alignment.
  • the insulator 216 and the insulator 280 each have a lower dielectric constant than the insulator 214.
  • parasitic capacitance generated between wirings can be reduced.
  • the insulator 216 and the insulator 280 each include silicon oxide, silicon oxynitride, fluorine-doped silicon oxide, carbon-doped silicon oxide, carbon- and nitrogen-doped silicon oxide, and holes. It is preferable to include one or more of silicon oxides.
  • silicon oxide and silicon oxynitride are preferable because they are thermally stable.
  • materials such as silicon oxide, silicon oxynitride, and silicon oxide having vacancies are preferable because they can easily form a region containing oxygen that is desorbed by heating.
  • the upper surfaces of the insulator 216 and the insulator 280 may each be flattened.
  • the concentration of impurities such as water and hydrogen in the insulator 280 is reduced.
  • the insulator 280 preferably includes an oxide containing silicon, such as silicon oxide or silicon oxynitride.
  • each layer constituting the semiconductor device may have a single layer structure or a laminated structure.
  • a substrate for forming a transistor for example, an insulating substrate, a semiconductor substrate, or a conductive substrate can be used.
  • the insulating substrate include a glass substrate, a quartz substrate, a sapphire substrate, a stabilized zirconia substrate (such as an yttria-stabilized zirconia substrate), and a resin substrate.
  • the semiconductor substrate include semiconductor substrates made of silicon or germanium, and compound semiconductor substrates made of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, or gallium oxide.
  • a semiconductor substrate having an insulator region inside the semiconductor substrate described above for example, an SOI (Silicon On Insulator) substrate, etc.
  • the conductive substrate include a graphite substrate, a metal substrate, an alloy substrate, and a conductive resin substrate.
  • the substrate for example, a substrate having a metal nitride, a substrate having a metal oxide, a substrate having a conductor or a semiconductor provided on an insulator substrate, a substrate having a conductor or an insulator provided on a semiconductor substrate, etc.
  • Examples include a substrate and a substrate in which a conductive substrate is provided with a semiconductor or an insulator.
  • these substrates may be provided with one or more types of elements. Examples of the elements provided on the substrate include a capacitive element, a resistive element, a switch element, a light emitting element, and a memory element.
  • insulator examples include oxides, nitrides, oxynitrides, nitride oxides, metal oxides, metal oxynitrides, and metal nitride oxides having insulating properties.
  • Examples of insulators with a high dielectric constant include gallium oxide, hafnium oxide, zirconium oxide, oxides containing aluminum and hafnium, oxynitrides containing aluminum and hafnium, oxides containing silicon and hafnium, and silicon and hafnium. Oxynitrides containing silicon and nitrides containing silicon and hafnium are mentioned.
  • Insulators with low dielectric constants include, for example, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide added with fluorine, silicon oxide added with carbon, silicon oxide added with carbon and nitrogen, and air. Examples include silicon oxide with pores and resin.
  • insulators that have the function of suppressing the permeation of impurities such as hydrogen and oxygen include boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, and zirconium.
  • lanthanum, neodymium, hafnium, and tantalum can be used in a single layer or in a stack.
  • examples of insulators that have the function of suppressing the permeation of impurities such as hydrogen and oxygen include aluminum oxide, magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, and Examples include metal oxides such as hafnium and tantalum oxide, and metal nitrides such as aluminum nitride, silicon nitride oxide, and silicon nitride.
  • the insulator that functions as the gate insulator is preferably an insulator that has a region containing oxygen that is desorbed by heating.
  • the oxide 230 by forming a structure in which silicon oxide or silicon oxynitride having a region containing oxygen that is released by heating is in contact with the oxide 230, oxygen vacancies in the oxide 230 can be compensated for.
  • Conductors include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, and lanthanum. It is preferable to use a metal element selected from the following, an alloy containing the above-mentioned metal elements as a component, an alloy containing a combination of the above-mentioned metal elements, or the like.
  • Examples of conductors include tantalum nitride, titanium nitride, tungsten, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, and lanthanum and nickel. Examples include oxides containing.
  • tantalum nitride, titanium nitride, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, and oxide containing lanthanum and nickel are respectively , a conductive material that is difficult to oxidize, or a material that maintains conductivity even if it absorbs oxygen, so it is preferable.
  • a semiconductor with high electrical conductivity typified by polycrystalline silicon containing an impurity element such as phosphorus, or a silicide such as nickel silicide may be used.
  • a conductor with a laminated structure for example, a laminated structure in which a material containing the above-mentioned metal element and a conductive material containing oxygen are combined, a material containing the above-mentioned metal element and a conductive material containing nitrogen, etc. , or a stacked structure that combines a material containing the metal element described above, a conductive material containing oxygen, and a conductive material containing nitrogen may be applied.
  • the conductor that functions as the gate electrode should have a stacked structure that is a combination of a material containing the aforementioned metal element and a conductive material containing oxygen. is preferred. In this case, it is preferable to provide a conductive material containing oxygen on the channel forming region side. By providing a conductive material containing oxygen on the side of the channel formation region, oxygen released from the conductive material is easily supplied to the channel formation region.
  • a conductive material containing oxygen and a metal element contained in the metal oxide in which the channel is formed as the conductor functioning as the gate electrode.
  • a conductive material containing the aforementioned metal element and nitrogen may be used.
  • a conductive material containing nitrogen such as titanium nitride or tantalum nitride may be used.
  • one or more of the added indium tin oxides may be used.
  • indium gallium zinc oxide containing nitrogen may be used.
  • the metal oxide contains at least indium or zinc.
  • aluminum, gallium, yttrium, tin, antimony, etc. are contained.
  • one or more selected from boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, cobalt, etc. may be included.
  • the metal oxide is an In-M-Zn oxide containing indium, element M, and zinc.
  • the element M is aluminum, gallium, yttrium, tin, or antimony.
  • Other elements applicable to element M include boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, and cobalt.
  • the element M there are cases where a plurality of the above-mentioned elements may be combined.
  • the element M is preferably one or more selected from gallium, aluminum, yttrium, and tin.
  • metal oxides containing nitrogen may also be collectively referred to as metal oxides.
  • a metal oxide containing nitrogen may be referred to as a metal oxynitride.
  • In-Ga-Zn oxide will be explained as an example of a metal oxide.
  • the crystal structures of oxide semiconductors include amorphous (including completely amorphous), CAAC (c-axis-aligned crystalline), nc (nanocrystalline), and CAC (cloud-aligned composite). ite), single crystal, and polycrystal (polycrystal), etc.
  • oxide semiconductors may be classified into a different classification from the above.
  • oxide semiconductors are classified into single-crystal oxide semiconductors and other non-single-crystal oxide semiconductors.
  • non-single crystal oxide semiconductors include the above-mentioned CAAC-OS and nc-OS.
  • non-single crystal oxide semiconductors include polycrystalline oxide semiconductors, pseudo-amorphous oxide semiconductors (a-like OS), amorphous oxide semiconductors, and the like.
  • CAAC-OS is an oxide semiconductor that has a plurality of crystal regions, and the c-axes of the plurality of crystal regions are oriented in a specific direction.
  • the specific direction is the thickness direction of the CAAC-OS film, the normal direction to the surface on which the CAAC-OS film is formed, or the normal direction to the surface of the CAAC-OS film.
  • a crystal region is a region having periodicity in atomic arrangement. Note that if the atomic arrangement is regarded as a lattice arrangement, a crystal region is also a region with a uniform lattice arrangement.
  • the CAAC-OS has a region where a plurality of crystal regions are connected in the a-b plane direction, and this region may have distortion.
  • CAAC-OS is an oxide semiconductor that has c-axis orientation and no obvious orientation in the a-b plane direction.
  • each of the plurality of crystal regions is composed of one or more minute crystals (crystals with a maximum diameter of less than 10 nm).
  • the maximum diameter of the crystal region is less than 10 nm.
  • the maximum diameter of the crystal region may be about several tens of nanometers.
  • CAAC-OS is an oxide semiconductor with high crystallinity and no clear grain boundaries. Therefore, it can be said that in CAAC-OS, reduction in electron mobility due to grain boundaries is less likely to occur. Further, since the crystallinity of an oxide semiconductor may be degraded due to the incorporation of impurities, generation of defects, etc., CAAC-OS can also be said to be an oxide semiconductor with few impurities and defects (such as oxygen vacancies). Therefore, the oxide semiconductor having CAAC-OS has stable physical properties. Therefore, an oxide semiconductor including a CAAC-OS is resistant to heat and has high reliability. Furthermore, CAAC-OS is stable even at high temperatures (so-called thermal budget) during the manufacturing process. Therefore, if CAAC-OS is used for the OS transistor, the degree of freedom in the manufacturing process can be expanded.
  • nc-OS has periodicity in the atomic arrangement in a minute region (for example, a region of 1 nm or more and 10 nm or less, particularly a region of 1 nm or more and 3 nm or less).
  • the nc-OS has minute crystals.
  • the size of the microcrystal is, for example, 1 nm or more and 10 nm or less, particularly 1 nm or more and 3 nm or less, the microcrystal is also referred to as a nanocrystal.
  • no regularity is observed in crystal orientation between different nanocrystals. Therefore, no orientation is observed throughout the film. Therefore, depending on the analysis method, nc-OS may be indistinguishable from a-like OS or an amorphous oxide semiconductor.
  • the a-like OS is an oxide semiconductor having a structure between that of an nc-OS and an amorphous oxide semiconductor.
  • A-like OS has holes or low density areas. That is, a-like OS has lower crystallinity than nc-OS and CAAC-OS. Further, the a-like OS has a higher hydrogen concentration in the film than the nc-OS and the CAAC-OS.
  • CAC-OS relates to material composition.
  • CAC-OS is, for example, a structure of a material in which elements constituting a metal oxide are unevenly distributed in a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or in the vicinity thereof.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size in the vicinity thereof.
  • the mixed state is also called a mosaic or a patch.
  • CAC-OS has a structure in which the material is separated into a first region and a second region, resulting in a mosaic shape, and the first region is distributed throughout the film (hereinafter also referred to as cloud shape). ). That is, CAC-OS is a composite metal oxide having a configuration in which the first region and the second region are mixed.
  • CAC-OS in In-Ga-Zn oxide refers to a material composition containing In, Ga, Zn, and O, in which a region (first region) whose main component is In and a region This refers to a structure in which regions (second regions) whose main component is Ga are mosaic-like, and these regions exist randomly. Therefore, it is presumed that CAC-OS has a structure in which metal elements are unevenly distributed.
  • the CAC-OS can be formed by sputtering, for example, without heating the substrate. Furthermore, when forming the CAC-OS by sputtering, one or more of an inert gas (typically argon), oxygen gas, and nitrogen gas may be used as the film-forming gas. I can do it. Furthermore, the lower the flow rate ratio of oxygen gas to the total flow rate of film-forming gas during film formation, the more preferable it is. For example, the flow rate ratio of oxygen gas to the total flow rate of film forming gas during film formation is set to 0% or more and less than 30%, preferably 0% or more and 10% or less.
  • an inert gas typically argon
  • oxygen gas oxygen gas
  • nitrogen gas nitrogen gas
  • the first region is a region with higher conductivity than the second region.
  • carriers flow through the first region, thereby exhibiting conductivity as a metal oxide. Therefore, by distributing the first region in a cloud shape in the metal oxide, high field effect mobility ( ⁇ ) can be achieved.
  • the second region is a region with higher insulation than the first region. That is, by distributing the second region in the metal oxide, leakage current can be suppressed.
  • CAC-OS when CAC-OS is used in a transistor, the conductivity caused by the first region and the insulation caused by the second region act complementary to each other, thereby providing a switching function (on/off). functions) can be added to CAC-OS.
  • a part of the material has a conductive function
  • a part of the material has an insulating function
  • the entire material has a semiconductor function.
  • CAC-OS is optimal for various semiconductor devices including display devices.
  • Oxide semiconductors have a variety of structures, each with different properties.
  • the oxide semiconductor of one embodiment of the present invention includes two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, a CAC-OS, an nc-OS, and a CAAC-OS. It's okay.
  • a semiconductor material having a band gap (a semiconductor material other than a zero-gap semiconductor) may be used for the semiconductor layer of the transistor.
  • a semiconductor material having a band gap a semiconductor material other than a zero-gap semiconductor
  • a single element semiconductor such as silicon or a compound semiconductor such as gallium arsenide may be used.
  • transition metal chalcogenide that functions as a semiconductor for the semiconductor layer of the transistor.
  • transition metal chalcogenides applicable to the semiconductor layer of a transistor include molybdenum sulfide (typically MoS 2 ), molybdenum selenide (typically MoSe 2 ), and molybdenum tellurium (typically MoTe 2 ) .
  • tungsten sulfide typically WS 2
  • tungsten selenide typically WSe 2
  • tungsten tellurium typically WTe 2
  • hafnium sulfide typically HfS 2
  • hafnium selenide typically HfSe 2
  • zirconium sulfide typically ZrS 2
  • zirconium selenide typically ZrSe 2
  • the like By applying the above-described transition metal chalcogenide to a semiconductor layer of a transistor, a semiconductor device with a large on-current can be provided.
  • Example of method for manufacturing semiconductor device An example of a method for manufacturing a semiconductor device according to one embodiment of the present invention will be described with reference to FIGS. 5A to 11D. Here, the case of manufacturing the semiconductor device shown in FIGS. 2A to 2D will be described as an example.
  • a in each figure indicates a plan view.
  • B in each figure is a cross-sectional view corresponding to the portion indicated by the dashed line A1-A2 in A in each figure, and is also a cross-sectional view in the channel length direction of the transistor 200.
  • C in each figure is a cross-sectional view corresponding to the portion indicated by the dashed line A3-A4 in A in each figure, and is also a cross-sectional view in the channel width direction of the transistor 200.
  • D in each figure is a cross-sectional view of a portion indicated by a dashed line A5-A6 in A in each figure, and is also a cross-sectional view in the channel width direction of the transistor 200.
  • some elements are omitted for clarity of the figure.
  • an insulating material for forming an insulator, a conductive material for forming a conductor, or a semiconductor material for forming a semiconductor is used by sputtering method, chemical vapor deposition (CVD).
  • the film can be formed by appropriately using a method such as a molecular beam epitaxy (MBE) method, a pulsed laser deposition (PLD) method, or an ALD method.
  • MBE molecular beam epitaxy
  • PLD pulsed laser deposition
  • sputtering methods include an RF sputtering method that uses a high frequency power source as a sputtering power source, a DC sputtering method that uses a DC power source, and a pulsed DC sputtering method that changes the voltage applied to the electrode in a pulsed manner.
  • the RF sputtering method is mainly used when forming an insulating film
  • the DC sputtering method is mainly used when forming a metal conductive film.
  • the pulsed DC sputtering method is mainly used when forming a film of a compound such as an oxide, nitride, or carbide by a reactive sputtering method.
  • the CVD method can be classified into a plasma CVD (PECVD) method that uses plasma, a thermal CVD (TCVD) method that uses heat, a photo CVD (Photo CVD) method that uses light, etc. Furthermore, depending on the raw material gas used, it can be divided into a metal CVD (MCVD) method and a metal organic CVD (MOCVD) method.
  • PECVD plasma CVD
  • TCVD thermal CVD
  • Photo CVD Photo CVD
  • MCVD metal CVD
  • MOCVD metal organic CVD
  • the plasma CVD method can obtain high-quality films at relatively low temperatures. Further, since the thermal CVD method does not use plasma, it is a film forming method that can reduce plasma damage to the object to be processed. For example, wiring, electrodes, elements (transistors, capacitors, etc.) included in a semiconductor device may be charged up by receiving charges from plasma. At this time, the accumulated charges may destroy wiring, electrodes, elements, etc. included in the semiconductor device. On the other hand, in the case of a thermal CVD method that does not use plasma, such plasma damage does not occur, so that the yield of semiconductor devices can be increased. Further, in the thermal CVD method, since plasma damage does not occur during film formation, a film with fewer defects can be obtained.
  • the ALD method a thermal ALD method in which a reaction between a precursor and a reactant is performed using only thermal energy, a PEALD method in which a plasma-excited reactant is used, etc. can be used.
  • the CVD method and ALD method are different from the sputtering method in which particles emitted from a target or the like are deposited. Therefore, this is a film forming method that is not easily affected by the shape of the object to be processed and has good step coverage.
  • the ALD method has excellent step coverage and excellent thickness uniformity, and is therefore suitable for coating the surface of an opening with a high aspect ratio.
  • the ALD method since the ALD method has a relatively slow film formation rate, it may be preferable to use it in combination with other film formation methods such as the CVD method, which has a fast film formation rate.
  • a film of any composition can be formed by changing the flow rate ratio of source gases.
  • the flow rate ratio of source gases by changing the flow rate ratio of source gases during film formation, it is possible to form a film whose composition changes continuously.
  • the time required for film formation is reduced because it does not require time for transport or pressure adjustment. can do. Therefore, it may be possible to improve the productivity of semiconductor devices.
  • a film of any composition can be formed by simultaneously introducing a plurality of different types of precursors.
  • a film of any composition can be formed by controlling the number of cycles for each precursor.
  • the insulator 215 can be the same insulator as any one of the insulators 224, the insulators 282, and the insulators 283, or a laminated film of a plurality of them.
  • a method for forming the insulator 215 for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method can be used. It is preferable to use a sputtering method that does not require the use of molecules containing hydrogen in the film-forming gas because the hydrogen concentration in the insulator 215 can be reduced.
  • an insulator 216 is formed on the insulator 215.
  • the insulator 216 is preferably formed using a sputtering method.
  • a sputtering method that does not require the use of molecules containing hydrogen in the film formation gas, the hydrogen concentration in the insulator 216 can be reduced.
  • the method for forming the insulator 216 is not limited to the sputtering method, and may be appropriately performed using a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • silicon oxide is formed as the insulator 216 by pulsed DC sputtering using a silicon target in an atmosphere containing oxygen gas.
  • pulsed DC sputtering method the film thickness distribution can be made more uniform, and the sputtering rate and film quality can be improved.
  • the insulator 215 and the insulator 216 be formed continuously without being exposed to the atmosphere.
  • a multi-chamber type film forming apparatus may be used. Thereby, the insulator 215 and the insulator 216 can be formed while reducing hydrogen in the film, and furthermore, it is possible to reduce the amount of hydrogen mixed into the film between each film forming process.
  • an opening is formed in the insulator 216 to reach the insulator 215.
  • wet etching may be used to form the openings, it is preferable to use dry etching for fine processing.
  • an insulator for the insulator 215 that functions as an etching stopper film when etching the insulator 216 to form a groove.
  • silicon oxide or silicon oxynitride is used for the insulator 216 that forms the groove
  • silicon nitride, aluminum oxide, or hafnium oxide is preferably used for the insulator 215.
  • the conductive film serving as the conductor 205a desirably includes a conductor having a function of suppressing permeation of oxygen.
  • a conductor having a function of suppressing permeation of oxygen for example, tantalum nitride, tungsten nitride, titanium nitride, etc. can be used. Alternatively, it may be a laminated film of a conductor having a function of suppressing oxygen permeation and tantalum, tungsten, titanium, molybdenum, aluminum, copper, or a molybdenum-tungsten alloy.
  • the conductive film that becomes the conductor 205a can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • titanium nitride is formed as a conductive film that becomes the conductor 205a.
  • a metal nitride as the lower layer of the conductor 205b, it is possible to prevent the conductor 205b from being oxidized by the insulator 216 or the like.
  • a metal that easily diffuses such as copper, it is possible to prevent the metal from diffusing out from the conductor 205a.
  • a conductive film that will become the conductor 205b is formed.
  • the conductive film serving as the conductor 205b tantalum, tungsten, titanium, molybdenum, aluminum, copper, molybdenum-tungsten alloy, or the like can be used.
  • the conductive film can be formed using a plating method, a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • tungsten is formed as a conductive film that becomes the conductor 205b.
  • an insulator 222 is formed on the insulator 216 and the conductor 205 (see FIGS. 6A to 6D).
  • an insulator containing an oxide of one or both of aluminum and hafnium it is preferable to form an insulator containing an oxide of one or both of aluminum and hafnium.
  • the insulator containing an oxide of one or both of aluminum and hafnium it is preferable to use, for example, aluminum oxide, hafnium oxide, or an oxide containing aluminum and hafnium (hafnium aluminate).
  • hafnium zirconium oxide it is preferable to use hafnium zirconium oxide.
  • An insulator containing oxides of one or both of aluminum and hafnium has barrier properties against oxygen, hydrogen, and water.
  • the insulator 222 has barrier properties against hydrogen and water, hydrogen and water contained in the structure provided around the transistor are suppressed from diffusing into the inside of the transistor through the insulator 222, thereby preventing oxidation. The generation of oxygen vacancies in the substance 230 can be suppressed.
  • the insulator 222 can be a laminated film of an insulator containing an oxide of one or both of aluminum and hafnium, and silicon oxide, silicon oxynitride, silicon nitride, or silicon nitride oxide.
  • the insulator 222 can be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • hafnium oxide is formed as the insulator 222 using an ALD method.
  • a stack of silicon nitride formed using the PEALD method and hafnium oxide formed using the ALD method may be used.
  • an insulating film 224f is formed on the insulator 222 (see FIGS. 6A to 6D).
  • an insulator corresponding to the insulator 224 described above may be used.
  • the insulating film 224f can be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • silicon oxide is formed as the insulating film 224f using a sputtering method.
  • a sputtering method that does not require the use of molecules containing hydrogen in the film formation gas, the hydrogen concentration in the insulating film 224f can be reduced. Since the insulating film 224f comes into contact with the oxide 230a in a later step, it is preferable that the hydrogen concentration is reduced in this way.
  • heat treatment may be performed before forming the insulating film 224f.
  • the heat treatment may be performed under reduced pressure to continuously form the insulating film 224f without exposure to the atmosphere. By performing such treatment, moisture and hydrogen adsorbed on the surface of the insulator 222 can be removed, and the moisture concentration and hydrogen concentration in the insulator 222 can be further reduced.
  • the temperature of the heat treatment is preferably 100°C or more and 400°C or less. In this embodiment, the temperature of the heat treatment is 250°C.
  • an oxide film 230af is formed on the insulating film 224f, and an oxide film 230bf is formed on the oxide film 230af (see FIGS. 6A to 6D).
  • a metal oxide corresponding to the oxide 230a may be used
  • the oxide film 230bf a metal oxide corresponding to the oxide 230b may be used. Note that the oxide film 230af and the oxide film 230bf are preferably formed continuously without being exposed to the atmospheric environment.
  • the film By forming the film without exposing it to the atmosphere, it is possible to prevent impurities or moisture from the atmospheric environment from adhering to the oxide film 230af and the oxide film 230bf, and to prevent the vicinity of the interface between the oxide film 230af and the oxide film 230bf from adhering to the oxide film 230af and the oxide film 230bf. Can be kept clean.
  • the oxide film 230af and the oxide film 230bf can be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method, respectively.
  • a sputtering method is used to form the oxide film 230af and the oxide film 230bf.
  • oxygen or a mixed gas of oxygen and a noble gas is used as the sputtering gas.
  • a noble gas By increasing the proportion of oxygen contained in the sputtering gas, excess oxygen in the oxide film to be formed can be increased.
  • an In-M-Zn oxide target or the like can be used.
  • the proportion of oxygen contained in the sputtering gas is preferably 70% or more, more preferably 80% or more, and even more preferably 100%.
  • the oxide film 230bf when forming the oxide film 230bf by sputtering, if the proportion of oxygen contained in the sputtering gas is more than 30% and less than 100%, preferably more than 70% and less than 100%, oxygen-excess oxidation occurs. A physical semiconductor is formed. A transistor using an oxygen-rich oxide semiconductor in a channel formation region has relatively high reliability. However, one embodiment of the present invention is not limited thereto.
  • an oxygen-deficient oxide semiconductor is formed when the proportion of oxygen contained in the sputtering gas is set to 1% or more and 30% or less, preferably 5% or more and 20% or less. Ru.
  • a transistor using an oxygen-deficient oxide semiconductor in a channel formation region can achieve relatively high field-effect mobility. Furthermore, by performing film formation while heating the substrate, the crystallinity of the oxide film can be improved.
  • a film is formed using an oxide target with a numerical ratio].
  • an oxide target with In:Ga:Zn 4:2:4.1 [atomic ratio]
  • the insulating film 224f, the oxide film 230af, and the oxide film 230bf by a sputtering method without exposing them to the atmosphere.
  • the heat treatment may be performed within a temperature range in which the oxide films 230af and 230bf do not become polycrystalline.
  • the temperature of the heat treatment is preferably 100°C or higher, 250°C or higher, or 350°C or higher, and 650°C or lower, 600°C or lower, or 550°C or lower.
  • the heat treatment is performed in an atmosphere of nitrogen gas or inert gas, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of oxidizing gas.
  • the oxygen gas content be about 20%.
  • the heat treatment may be performed under reduced pressure.
  • heat treatment may be performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas to compensate for the desorbed oxygen.
  • the gas used in the heat treatment is preferably highly purified.
  • the amount of water contained in the gas used in the heat treatment is preferably 1 ppb or less, more preferably 0.1 ppb or less, and even more preferably 0.05 ppb or less.
  • the heat treatment is performed at a temperature of 450° C. for 1 hour with a flow rate ratio of nitrogen gas and oxygen gas of 4:1.
  • Such heat treatment containing oxygen gas can reduce impurities such as carbon, water, and hydrogen in the oxide film 230af and the oxide film 230bf.
  • the crystallinity of the oxide film 230bf can be improved and a denser and more precise structure can be obtained.
  • the crystal regions in the oxide films 230af and 230bf can be increased, and in-plane variations in the crystal regions in the oxide films 230af and 230bf can be reduced. Therefore, in-plane variations in the electrical characteristics of the transistor can be reduced.
  • hydrogen in the insulator 216, the insulating film 224f, the oxide film 230af, and the oxide film 230bf moves to the insulator 222 and is absorbed into the insulator 222.
  • hydrogen in the insulator 216, the insulating film 224f, the oxide film 230af, and the oxide film 230bf diffuses into the insulator 222. Therefore, the hydrogen concentration in the insulator 222 increases, but the hydrogen concentrations in the insulator 216, the insulating film 224f, the oxide film 230af, and the oxide film 230bf decrease.
  • the insulating film 224f (later the insulator 224) functions as the second gate insulator of the transistor 200
  • the oxide film 230af and the oxide film 230bf (later the oxide 230a and the oxide 230b) function as the second gate insulator of the transistor 200. Functions as a channel forming region.
  • the transistor 200 formed using the insulating film 224f, the oxide film 230af, and the oxide film 230bf with reduced hydrogen concentration is preferable because it has good reliability.
  • a conductive film 242f is formed on the oxide film 230bf (see FIGS. 6A to 6D).
  • a conductor corresponding to the conductor 242 described above may be used.
  • the oxide film 230bf by forming the conductive film 242f in contact with the oxide film 230bf without performing an etching process, the upper surface of the oxide film 230bf can be protected by the conductive film 242f. As a result, diffusion of impurities into the oxide 230 that constitutes the transistor can be reduced, so that the electrical characteristics and reliability of the semiconductor device can be improved.
  • the conductive film 242f can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, a plating method, or an ALD method.
  • tantalum nitride is formed as the conductive film 242f using a sputtering method.
  • heat treatment may be performed before forming the conductive film 242f.
  • the heat treatment may be performed under reduced pressure to continuously form the conductive film 242f without exposure to the atmosphere. By performing such treatment, it is possible to remove moisture and hydrogen adsorbed on the surface of the oxide 230b, and further reduce the moisture concentration and hydrogen concentration in the oxide 230a and the oxide 230b.
  • the temperature of the heat treatment is preferably 100°C or more and 400°C or less. In this embodiment, the temperature of the heat treatment is 250°C.
  • the conductive film 242f may be a laminated film.
  • tantalum nitride is formed as the conductive film 242f by sputtering, and then sputtering
  • a tungsten film may be formed using a method.
  • an insulating film 271_1f is formed on the conductive film 242f, and an insulating film 271_2f is further formed on it (see FIGS. 6A to 6D).
  • an insulator corresponding to the above insulator 271_1 may be used
  • an insulator corresponding to the above insulator 271_2 may be used.
  • an insulating film having a function of suppressing permeation of oxygen as described above as the insulating film 271_1f by using an insulating film having a function of suppressing permeation of oxygen as described above as the insulating film 271_1f, oxidation of the conductive film 242f in the subsequent steps can be suppressed.
  • the insulating film 271_1f and the insulating film 271_2f can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a silicon nitride film may be formed as the insulating film 271_1f by a sputtering method
  • a silicon oxide film may be formed as the insulating film 271_2f by a sputtering method.
  • the insulating film 271_1f and the insulating film 271_2f are preferably formed continuously without being exposed to the atmospheric environment.
  • the film By forming the film without exposing it to the atmosphere, it is possible to prevent impurities or moisture from the atmospheric environment from adhering to the insulating film 271_1f and the insulating film 271_2f, and to clean the vicinity of the interface between the insulating film 271_1f and the insulating film 271_2f. can be kept.
  • heat treatment may be performed before forming the insulating film 271_1f and the insulating film 271_2f.
  • the heat treatment may be performed under reduced pressure to continuously form the insulating film 271_1f and the insulating film 271_2f without exposure to the atmosphere. By performing such treatment, it is possible to remove moisture and hydrogen adsorbed on the surface of the conductive film 242f, and further reduce the moisture concentration and hydrogen concentration in the conductive film 242f.
  • the temperature of the heat treatment is preferably 100°C or more and 400°C or less. In this embodiment, the temperature of the heat treatment is 250°C.
  • the insulating film 224f, oxide film 230af, oxide film 230bf, conductive film 242f, insulating film 271_1f, and insulating film 271_2f are processed into island shapes, and the insulating film 224, the oxide film 230a, and the oxide film 230a are processed into island shapes.
  • An object 230b, a conductor 242, an insulator 271_1, and an insulator 271_2 are formed (see FIGS. 7A to 7D).
  • the insulating film 224f, oxide film 230af, oxide film 230bf, conductive film 242f, insulating film 271_1f, and insulating film 271_2f may be processed by the method described in FIGS. 1B to 1F above.
  • the side surfaces of the conductor 242 are not excessively receded relative to the side surfaces of the oxide 230, in other words, the side edges of the conductor 242 are It is possible to form an island-shaped stacked body in which the side edges of the oxide 230 and the side edges of the oxide 230 roughly coincide with each other.
  • the semiconductor device can be miniaturized and highly integrated.
  • the insulator 224, oxide 230a, oxide 230b, conductor 242, insulator 271_1, and insulator 271_2 into an island shape all at once.
  • the side edges of the conductor 242 approximately coincide with the side edges of the oxide 230a and the oxide 230b.
  • the side edges of the insulator 224 substantially coincide with the side edges of the oxide 230.
  • the side edges of the insulator 271 substantially coincide with the side edges of the conductor 242.
  • the insulator 224, oxide 230a, oxide 230b, conductor 242, and insulator 271_1 are formed so that at least a portion thereof overlaps with the conductor 205. Furthermore, the insulator 222 is exposed in a region that does not overlap with the insulator 224, the oxide 230a, the oxide 230b, the conductor 242, the insulator 271_1, and the insulator 271_2.
  • the insulator 271 functions as a mask for the conductor 242, so the conductor 242 does not have a curved surface between the side surface and the top surface.
  • the conductor 242a and the conductor 242b which will be formed later, have an angular end where the side surface and the top surface intersect. Since the end where the side surface and the top surface of the conductor 242 intersect is angular, the cross-sectional area of the conductor 242 becomes larger than when the end has a curved surface.
  • the conductor 242 is reduced, so that the on-state current of the transistor can be increased.
  • the insulator 275 can be provided in contact with the side surface of the insulator 224 and the top surface of the insulator 222 in a step described later. That is, the insulator 224 can be separated from the insulator 280 by the insulator 275. With this structure, it is possible to prevent an excessive amount of impurities such as oxygen and hydrogen from entering the oxide 230 from the insulator 280 through the insulator 224.
  • the insulator 224 of approximately the same size is provided for one transistor 200.
  • the amount of oxygen supplied from the insulator 224 to the oxide 230 becomes approximately the same. Therefore, variations in the electrical characteristics of the transistor 200 within the plane of the substrate can be suppressed.
  • the invention is not limited to this, and similarly to the insulator 222, the insulator 224 may be configured without patterning.
  • the side surfaces of the insulator 224, oxide 230a, oxide 230b, conductor 242, insulator 271_1, and insulator 271_2 may have a tapered shape.
  • the taper angle of the side surface of the insulator 224, oxide 230a, oxide 230b, conductor 242, insulator 271_1, and insulator 271_2 may be, for example, 60° or more and less than 90°.
  • the configuration is not limited to the above, and the side surfaces of the insulator 224, the oxide 230a, the oxide 230b, the conductor 242, the insulator 271_1, and the insulator 271_2 may be approximately perpendicular to the upper surface of the insulator 222. good. With such a configuration, it is possible to reduce the area and increase the density when providing a plurality of transistors.
  • an insulator 275 is formed to cover the insulator 224, oxide 230a, oxide 230b, conductor 242, insulator 271_1, and insulator 271_2, and an insulator 280 is further formed on the insulator 275. To form a film.
  • the insulator 275 and the insulator 280 the above-mentioned insulators may be used.
  • the insulator 275 is preferably in contact with the upper surface of the insulator 222.
  • the insulator 280 it is preferable to form an insulating film that will become the insulator 280 and perform a CMP process on the insulating film to form an insulator with a flat top surface.
  • silicon nitride may be formed on the insulator 280 by, for example, a sputtering method, and the silicon nitride may be subjected to CMP treatment until it reaches the insulator 280.
  • the insulator 275 and the insulator 280 can each be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • the insulator 275 it is preferable to use an insulator for the insulator 275 that has a function of suppressing oxygen permeation.
  • the insulator 275 it is preferable to form a film of silicon nitride using the PEALD method.
  • the insulator 275 it is preferable to form a film of aluminum oxide using a sputtering method, and to form a film of silicon nitride thereon using a PEALD method.
  • the oxide 230a, the oxide 230b, and the conductor 242 can be covered with the insulator 275 that has the function of suppressing oxygen diffusion. This can reduce direct diffusion of oxygen from the insulator 280 and the like into the insulator 224, oxide 230a, oxide 230b, and conductor 242 in a later process.
  • the insulator 280 it is preferable to form a film of silicon oxide using a sputtering method.
  • the insulator 280 containing excess oxygen can be formed by forming an insulating film that will become the insulator 280 by a sputtering method in an atmosphere containing oxygen. Furthermore, by using a sputtering method that does not require the use of hydrogen-containing molecules in the film-forming gas, the hydrogen concentration in the insulator 280 can be reduced.
  • heat treatment may be performed before forming the insulating film. The heat treatment may be performed under reduced pressure to continuously form the insulating film without exposing it to the atmosphere.
  • the conductor 242, the insulator 271_1, the insulator 271_2, the insulator 275, and the insulator 280 are processed to form an opening that reaches the oxide 230b (see FIGS. 8A to 8D). ).
  • the opening reaching the oxide 230b is provided in a region where the oxide 230b and the conductor 205 overlap.
  • the above processing can use a dry etching method or a wet etching method. Processing by dry etching is suitable for microfabrication. Further, the conductor 242, the insulator 271_1, the insulator 271_2, the insulator 275, and the insulator 280 may be processed under different conditions. In particular, when dry etching is used to process the conductor 242, it is preferable to use an ICP etching apparatus. In this case, it is preferable to perform the etching process by applying bias power to improve the etching rate of the conductor 242.
  • the conductor 242 is divided into island-shaped conductors 242a and 242b, respectively.
  • the insulator 271_1 is divided into island-shaped insulators 271a1 and 271b1.
  • the insulator 271_2 is divided into island-shaped insulators 271a2 and 271b2.
  • the width of the opening is preferably fine because it is reflected in the channel length of the transistor 200.
  • the width of the opening is preferably 60 nm or less, 50 nm or less, 40 nm or less, 30 nm or less, 20 nm or less, or 10 nm or less, and preferably 1 nm or more, or 5 nm or more.
  • impurities are removed from the side surfaces of the oxide 230a, the top and side surfaces of the oxide 230b, the side surfaces of the conductors 242a and 242b, the side surfaces of the insulators 271a and 271b, the side surfaces of the insulator 275, the side surfaces of the insulator 280, etc. adhesion or diffusion of the impurity into these parts may occur.
  • a step of removing such impurities may be performed.
  • a damaged region may be formed on the surface of the oxide 230b by the dry etching. Such damaged areas may be removed.
  • Examples of the impurities include components included in the insulator 280, the insulator 275, the insulators 271a and 271b, and the conductors 242a and 242b, components included in the members of the device used to form the opening, and Examples include those caused by components contained in the gas or liquid used for etching.
  • Examples of such impurities include hafnium, aluminum, silicon, tantalum, fluorine, and chlorine.
  • impurities such as aluminum and silicon may reduce the crystallinity of the oxide 230b. Therefore, it is preferable that impurities such as aluminum and silicon be removed from the surface of the oxide 230b and its vicinity. Moreover, it is preferable that the concentration of the impurity is reduced.
  • the concentration of aluminum atoms on the surface of the oxide 230b and in its vicinity is preferably 5.0 atom % or less, more preferably 2.0 atom % or less, more preferably 1.5 atom % or less, and 1.0 atom % or less. % or less, more preferably less than 0.3 atomic %.
  • the region of the oxide 230b with low crystallinity is preferably reduced or removed.
  • the oxide 230b has a layered CAAC structure.
  • the conductor 242a or the conductor 242b preferably functions as a drain. That is, it is preferable that the oxide 230b near the lower end of the conductor 242a or the conductor 242b has a CAAC structure. In this way, the region with low crystallinity of the oxide 230b is removed even at the drain end, which significantly affects the drain breakdown voltage, and by having the CAAC structure, fluctuations in the electrical characteristics of the transistor can be further suppressed. . Further, reliability of the transistor can be improved.
  • a cleaning process is performed to remove impurities and the like that adhered to the surface of the oxide 230b in the above etching process.
  • the cleaning method include wet cleaning using a cleaning liquid (also referred to as wet etching treatment), plasma treatment using plasma, cleaning by heat treatment, etc., and the above cleaning may be performed in an appropriate combination. Note that the groove portion may become deeper due to the cleaning treatment.
  • Wet cleaning may be performed using an aqueous solution prepared by diluting one or more of ammonia water, oxalic acid, phosphoric acid, and hydrofluoric acid with carbonated water or pure water, pure water, carbonated water, or the like.
  • ultrasonic cleaning may be performed using an aqueous solution of these, pure water, or carbonated water.
  • these cleanings may be performed in combination as appropriate.
  • an aqueous solution of hydrofluoric acid diluted with pure water may be referred to as diluted hydrofluoric acid
  • an aqueous solution of ammonia water diluted with pure water may be referred to as diluted ammonia water.
  • concentration, temperature, etc. of the aqueous solution are adjusted as appropriate depending on the impurities to be removed, the configuration of the semiconductor device to be cleaned, etc.
  • the ammonia concentration of the diluted ammonia water is preferably 0.01% or more and 5% or less, more preferably 0.1% or more and 0.5% or less.
  • the hydrogen fluoride concentration of the diluted hydrofluoric acid is preferably 0.01 ppm or more and 100 ppm or less, more preferably 0.1 ppm or more and 10 ppm or less.
  • a frequency of 200 kHz or more and more preferably a frequency of 900 kHz or more for ultrasonic cleaning.
  • a frequency of 200 kHz or more and more preferably a frequency of 900 kHz or more for ultrasonic cleaning.
  • the above-mentioned cleaning process may be performed multiple times, and the cleaning liquid may be changed for each cleaning process.
  • the first cleaning process may be performed using diluted hydrofluoric acid or diluted aqueous ammonia
  • the second cleaning process may be performed using pure water or carbonated water.
  • wet cleaning is performed using diluted ammonia water.
  • impurities attached to the surface of the oxide 230a, the oxide 230b, or the like or diffused inside can be removed. Furthermore, the crystallinity of the oxide 230b can be improved.
  • Heat treatment may be performed after the etching or cleaning.
  • the temperature of the heat treatment is preferably 100°C or higher, 250°C or higher, or 350°C or higher, and 650°C or lower, 600°C or lower, 550°C or lower, or 400°C or lower.
  • the heat treatment is performed in an atmosphere of nitrogen gas or inert gas, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of oxidizing gas.
  • the crystallinity of the oxide 230b can be improved. Further, the hydrogen remaining in the oxide 230a and the oxide 230b reacts with the supplied oxygen, so that the hydrogen can be removed as H 2 O (dehydrated). This can suppress hydrogen remaining in the oxides 230a and 230b from recombining with oxygen vacancies and forming V O H. Further, the heat treatment may be performed under reduced pressure. Alternatively, after heat treatment in an oxygen atmosphere, heat treatment may be performed continuously in a nitrogen atmosphere without exposure to the atmosphere.
  • the sheet resistance of the region of the oxide 230b that overlaps with the conductor 242a and the region that overlaps with the conductor 242b decreases.
  • the carrier concentration may increase. Therefore, the resistance of the region of the oxide 230b that overlaps with the conductor 242a and the region that overlaps with the conductor 242b can be reduced in a self-aligned manner.
  • the above heat treatment may not be performed.
  • the conductors 242a and 242b have a laminated structure and the conductors 242a2 and 242b2 are made of a tungsten film or the like that is relatively easily oxidized
  • the above heat treatment may not be performed. . This can prevent the conductors 242a2 and 242b2 from being excessively oxidized during the heat treatment.
  • an insulating film 250A that will become the insulator 250 is formed so as to fill the opening (see FIGS. 9A to 9D).
  • the insulating film 250A can be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • the insulating film 250A is preferably formed using an ALD method.
  • the insulator 250 is preferably formed to have a small thickness, and it is necessary to minimize variations in the thickness.
  • the ALD method is a film forming method in which a precursor and a reactant (such as an oxidizing agent) are introduced alternately, and the film thickness can be adjusted by the number of times this cycle is repeated. Film thickness can be adjusted.
  • the insulator 250 needs to be formed on the bottom and side surfaces of the opening with good coverage.
  • a layer of atoms can be deposited one layer at a time on the bottom and side surfaces of the opening, so the insulator 250 can be formed with good coverage over the opening.
  • ozone (O 3 ), oxygen (O 2 ), water (H 2 O), or the like can be used as an oxidizing agent.
  • oxygen (O 2 ), or the like that does not contain hydrogen as an oxidizing agent, hydrogen that diffuses into the oxide 230b can be reduced.
  • the insulator 250 can have a layered structure, as shown in FIGS. 3A and 4A, and 3B and 4B.
  • aluminum oxide is formed as an insulating film to become the insulator 250a by a thermal ALD method
  • silicon oxide is formed as an insulating film to become an insulator 250b by a PEALD method
  • silicon nitride can be formed by a PEALD method.
  • hafnium oxide can be formed into a film by thermal ALD as an insulating film serving as the insulator 250d.
  • microwave processing refers to processing using, for example, a device having a power source that generates high-density plasma using microwaves.
  • microwave refers to electromagnetic waves having a frequency of 300 MHz or more and 300 GHz or less.
  • the microwave treatment is not necessarily performed after all the insulating films 250A are formed. For example, in the case of the structures shown in FIGS. 3A and 4A, after forming an insulating film to become the insulator 250a and an insulating film to become the insulator 250b, microwave treatment is performed, and then an insulating film to become the insulator 250c is formed.
  • microwave treatment may be performed, and then the insulator 250d
  • microwave treatment may be performed, and then an insulating film to become the insulator 250c may be formed.
  • the microwave treatment in an atmosphere containing oxygen may be performed multiple times (at least twice or more).
  • the microwave processing device that has a power source that generates high-density plasma using microwaves, for example.
  • the frequency of the microwave processing device is preferably 300 MHz or more and 300 GHz or less, more preferably 2.4 GHz or more and 2.5 GHz or less, and can be set to 2.45 GHz, for example.
  • the power of the power source for applying microwaves of the microwave processing device is preferably 1000 W or more and 10000 W or less, and preferably 2000 W or more and 5000 W or less.
  • the microwave processing apparatus may have a power source for applying RF to the substrate side. Furthermore, by applying RF to the substrate side, oxygen ions generated by high-density plasma can be efficiently guided into the oxide 230b.
  • the microwave treatment is preferably performed under reduced pressure, and the pressure is preferably 10 Pa or more and 1000 Pa or less, and more preferably 300 Pa or more and 700 Pa or less.
  • the processing temperature is preferably 750°C or lower, more preferably 500°C or lower, and can be, for example, about 250°C.
  • heat treatment may be performed continuously without exposing to outside air.
  • the temperature of the heat treatment is, for example, preferably 100°C or more and 750°C or less, more preferably 300°C or more and 500°C or less.
  • the microwave treatment can be performed using oxygen gas and argon gas.
  • the oxygen flow rate ratio (O 2 /(O 2 +Ar)) is greater than 0% and less than or equal to 100%.
  • the oxygen flow rate ratio (O 2 /(O 2 +Ar)) is greater than 0% and less than or equal to 50%.
  • the oxygen flow rate ratio (O 2 /(O 2 +Ar)) is 10% or more and 40% or less.
  • the oxygen flow rate ratio (O 2 /(O 2 +Ar)) is 10% or more and 30% or less.
  • oxygen gas is turned into plasma using microwaves or high frequency waves such as RF, and the oxygen plasma is transferred between the conductor 242a and the conductor 242b of the oxide 230b. It can be applied to the area.
  • V OH in the region can be separated into oxygen vacancies and hydrogen, and hydrogen can be removed from the region.
  • an insulating film for example, aluminum oxide
  • V OH contained in the channel forming region can be reduced.
  • oxygen vacancies and V OH in the channel formation region can be reduced, and the carrier concentration can be lowered.
  • oxygen radicals generated by the oxygen plasma to the oxygen vacancies formed in the channel formation region, it is possible to further reduce the oxygen vacancies in the channel formation region and lower the carrier concentration.
  • the oxygen implanted into the channel forming region has various forms such as oxygen atoms, oxygen molecules, oxygen ions, and oxygen radicals (also referred to as O radicals; atoms, molecules, or ions with unpaired electrons).
  • oxygen injected into the channel forming region may be in one or more of the above-mentioned forms, and oxygen radicals are particularly preferred.
  • the film quality of the insulator 250 can be improved, reliability of the transistor is improved.
  • the oxide 230b has a region that overlaps with either the conductor 242a or 242b.
  • the region can function as a source region or a drain region.
  • the conductors 242a and 242b preferably function as shielding films against the effects of microwaves, high frequencies such as RF, oxygen plasma, and the like when performing microwave processing in an atmosphere containing oxygen. Therefore, the conductors 242a and 242b preferably have a function of shielding electromagnetic waves of 300 MHz or more and 300 GHz or less, for example, 2.4 GHz or more and 2.5 GHz or less.
  • the conductors 242a and 242b shield the effects of microwaves, high frequencies such as RF, oxygen plasma, and the like, these effects do not extend to the region of the oxide 230b that overlaps with any of the conductors 242a and 242b. Thereby, a reduction in V OH and an excessive amount of oxygen supply do not occur in the source region and the drain region due to the microwave treatment, so that a decrease in carrier concentration can be prevented.
  • an insulator 250 having barrier properties against oxygen is provided in contact with the side surfaces of the conductors 242a and 242b. Thereby, formation of an oxide film on the side surfaces of the conductors 242a and 242b due to microwave treatment can be suppressed.
  • the film quality of the insulator 250 can be improved, the reliability of the transistor is improved.
  • oxygen vacancies and V OH are selectively removed in the channel formation region of the oxide semiconductor, thereby making the channel formation region i-type or substantially i-type. Furthermore, it is possible to suppress supply of excessive oxygen to a region functioning as a source region or a drain region, and maintain the conductivity (state of being a low resistance region) before performing microwave treatment. Thereby, it is possible to suppress variations in the electrical characteristics of the transistor, and to suppress variations in the electrical characteristics of the transistor within the plane of the substrate.
  • thermal energy may be directly transmitted to the oxide 230b due to electromagnetic interaction between the microwave and molecules in the oxide 230b. This thermal energy may heat the oxide 230b.
  • Such heat treatment is sometimes called microwave annealing.
  • microwave annealing By performing microwave treatment in an atmosphere containing oxygen, effects equivalent to oxygen annealing may be obtained.
  • the oxide 230b contains hydrogen, it is possible that this thermal energy is transferred to the hydrogen in the oxide 230b, and thereby activated hydrogen is released from the oxide 230b.
  • microwave treatment may not be performed after forming the insulating film 250A, but may be performed before forming the insulating film.
  • heat treatment may be performed while maintaining the reduced pressure state after the microwave treatment after forming the insulating film 250A.
  • hydrogen in the insulating film, the oxide 230b, and the oxide 230a can be efficiently removed. Further, some of the hydrogen may be gettered to the conductors 242a and 242b.
  • the step of performing the heat treatment may be repeated multiple times while maintaining the reduced pressure state after the microwave treatment. By repeatedly performing the heat treatment, hydrogen in the insulating film, the oxide 230b, and the oxide 230a can be removed more efficiently.
  • the heat treatment temperature is preferably 300°C or more and 500°C or less.
  • the microwave treatment that is, microwave annealing, may also serve as the heat treatment. If the oxide 230b and the like are sufficiently heated by microwave annealing, the heat treatment may not be performed.
  • a conductive film 260A that will become the conductor 260a and a conductive film 260B that will become the conductor 260b are sequentially formed (see FIGS. 10A to 10D).
  • the conductive film 260A and the conductive film 260B can be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, a plating method, or an ALD method.
  • titanium nitride is formed as a conductive film 260A using an ALD method
  • tungsten is formed as a conductive film 260B using a CVD method.
  • the insulating film 250A, the conductive film 260A, and the conductive film 260B are polished by CMP processing until the insulator 280 is exposed. That is, the portions of the insulating film 250A, the conductive film 260A, and the conductive film 260B exposed from the openings are removed. As a result, an insulator 250 and a conductor 260 (a conductor 260a and a conductor 260b) are formed in the opening overlapping the conductor 205 (see FIGS. 11A to 11D).
  • the insulator 250 is provided in contact with the inner wall and side surface of the opening that overlaps the oxide 230b. Further, the conductor 260 is arranged so as to fill the opening with the insulator 250 interposed therebetween. In this way, transistor 200 is formed.
  • an insulator 282 is formed on the insulator 250, the conductor 260, and the insulator 280.
  • the insulator 282 can be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • the insulator 282 is preferably formed using a sputtering method.
  • the hydrogen concentration in the insulator 282 can be reduced by using a sputtering method that does not require the use of molecules containing hydrogen in the film formation gas.
  • aluminum oxide is formed as the insulator 282 by a pulsed DC sputtering method using an aluminum target in an atmosphere containing oxygen gas.
  • the pulsed DC sputtering method By using the pulsed DC sputtering method, the film thickness distribution can be made more uniform, and the sputtering rate and film quality can be improved.
  • the RF power applied to the substrate is 1.86 W/cm 2 or less. Preferably, it is 0 W/cm 2 or more and 0.62 W/cm 2 or less. Note that RF power of 0 W/cm 2 is synonymous with not applying RF power to the substrate.
  • the amount of oxygen injected into layers below the insulator 282 can be controlled by the magnitude of the RF power applied to the substrate.
  • the insulator 282 may be formed in a two-layer stacked structure.
  • the lower layer of the insulator 282 is formed with the RF power applied to the substrate being 0 W/cm 2
  • the upper layer of the insulator 282 is formed with the RF power applied to the substrate being 0.62 W/cm 2 .
  • the RF frequency is preferably 10 MHz or higher. Typically, it is 13.56 MHz. The higher the RF frequency, the smaller the damage to the substrate can be.
  • oxygen can be added to the insulator 280 while forming the film. This allows the insulator 280 to contain excess oxygen. At this time, it is preferable to form the insulator 282 while heating the substrate.
  • heat treatment may be performed before forming the insulator 282.
  • the heat treatment may be performed under reduced pressure to continuously form the insulator 282 without exposure to the atmosphere. By performing such treatment, moisture and hydrogen adsorbed on the surface of the insulator 280 can be removed, and the moisture concentration and hydrogen concentration in the insulator 280 can be further reduced.
  • the temperature of the heat treatment is preferably 100°C or more and 400°C or less. In this embodiment, the temperature of the heat treatment is 250°C.
  • an insulator 283 is formed on the insulator 282.
  • the insulator 283 can be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • the insulator 283 is preferably formed using a sputtering method. By using a sputtering method that does not require the use of molecules containing hydrogen in the film formation gas, the hydrogen concentration in the insulator 283 can be reduced.
  • silicon nitride is formed as the insulator 283 by using a sputtering method.
  • the insulator 282 and the insulator 283 be formed continuously without being exposed to the atmospheric environment.
  • the film By forming the film without exposing it to the atmosphere, it is possible to prevent impurities or moisture from the atmospheric environment from adhering to the insulator 282 and the insulator 283, and to clean the vicinity of the interface between the insulator 282 and the insulator 283. can be kept.
  • the semiconductor device shown in FIG. 2 can be manufactured.
  • an island-shaped stacked body in which the side edges of the conductor and the side edges of the oxide semiconductor approximately coincide with each other can be manufactured.
  • an OS transistor using a stacked body having such a fine structure it is possible to miniaturize and highly integrate a semiconductor device.
  • the semiconductor device includes an OS transistor. Since an OS transistor has a small off-state current, it is possible to realize a semiconductor device or a memory device with low power consumption. Further, since the OS transistor has high frequency characteristics, it is possible to realize a semiconductor device or a memory device with high operating speed. Further, by using an OS transistor, a semiconductor device with good electrical characteristics, a semiconductor device with less variation in the electrical characteristics of transistors, a semiconductor device with a large on-state current, and a highly reliable semiconductor device or memory device can be realized.
  • This embodiment mode describes a configuration example of a memory device in which a layer having a functional circuit having a function of amplifying and outputting a data potential held in a memory cell is provided between layers having stacked memory cells. explain.
  • FIG. 12 shows a block diagram of a storage device according to one embodiment of the present invention.
  • the storage device 300 shown in FIG. 12 includes a drive circuit 21 and a memory array 20.
  • the memory array 20 includes a plurality of memory cells 10 and a functional layer 50 having a plurality of functional circuits 51.
  • FIG. 12 shows an example in which the memory array 20 includes a plurality of memory cells 10 arranged in a matrix of m rows and n columns (m and n are integers of 2 or more). Further, FIG. 12 shows an example in which the functional circuit 51 is provided for each wiring BL functioning as a bit line, and the functional layer 50 has a plurality of functional circuits 51 provided corresponding to n wirings BL. An example is shown below.
  • the memory cell 10 in the first row and first column is shown as a memory cell 10[1,1] and the memory cell 10 in the mth row and nth column is shown as a memory cell 10[m,n].
  • the memory cell 10 in the mth row and nth column is shown as a memory cell 10[m,n].
  • i line when indicating an arbitrary line, it may be written as i line.
  • column j when indicating an arbitrary column, it may be written as column j. Therefore, i is an integer of 1 or more and m or less, and j is an integer of 1 or more and n or less.
  • the memory cell 10 in the i-th row and j-th column is referred to as a memory cell 10[i,j].
  • the memory array 20 includes m wires WL extending in the row direction, m wires PL extending in the row direction, and n wires BL extending in the column direction.
  • the wiring WL provided in the first (first row) is referred to as wiring WL[1]
  • the wiring WL provided in m-th (m-th row) is referred to as wiring WL[m].
  • the first wiring PL (first row) is designated as wiring PL[1]
  • the mth wiring PL (mth row) is designated as wiring PL[m].
  • the wiring BL provided in the first (first column) is referred to as wiring BL[1]
  • the wiring BL provided in the nth (nth column) is referred to as wiring BL[n].
  • the plurality of memory cells 10 provided in the i-th row are electrically connected to the i-th wiring WL (wiring WL[i]) and the i-th wiring PL (wiring PL[i]).
  • the plurality of memory cells 10 provided in the j-th column are electrically connected to the j-th column wiring BL (wiring BL[j]).
  • DOSRAM (registered trademark) (Dynamic Oxide Semiconductor Random Access Memory) can be applied to the memory array 20.
  • DOSRAM is a RAM having 1T (transistor) 1C (capacitance) type memory cells, and refers to a memory whose access transistor is an OS transistor. The current flowing between the source and drain of the OS transistor in the off state, that is, the leakage current is extremely small.
  • DOSRAM can hold charge corresponding to data held in a capacitive element (capacitor) for a long time by turning off the access transistor (making it non-conductive). Therefore, DOSRAM can reduce the frequency of refresh operations compared to DRAM configured with a transistor (Si transistor) having silicon in a channel formation region. As a result, it is possible to reduce power consumption. Further, since the frequency characteristics of the OS transistor are high, reading and writing of the memory device can be performed at high speed. This makes it possible to provide a storage device with high operating speed.
  • a plurality of memory arrays 20[1] to 20[m] can be stacked and provided.
  • the memory arrays 20[1] to 20[m] included in the memory array 20 in a direction perpendicular to the surface of the substrate on which the drive circuit 21 is provided, it is possible to improve the memory density of the memory cell 10.
  • the wiring BL functions as a bit line for writing and reading data.
  • the wiring WL functions as a word line for controlling on or off (conductive state or non-conductive state) of an access transistor functioning as a switch.
  • the wiring PL has a function as a constant potential line connected to the capacitive element.
  • a wiring CL (not shown) can be separately provided as a wiring having a function of transmitting a backgate potential to the backgate of the OS transistor, which is an access transistor. Further, the wiring PL may also have a function of transmitting the back gate potential.
  • the memory cells 10 each of the memory arrays 20[1] to 20[m] have are connected to the functional circuit 51 via the wiring BL.
  • the wiring BL can be arranged in a direction perpendicular to the surface of the substrate on which the drive circuit 21 is provided.
  • the length of the wiring between the memory array 20 and the functional circuit 51 can be reduced. It can be made shorter. Therefore, the signal propagation distance between two circuits connected to the bit line can be shortened, and the resistance and parasitic capacitance of the bit line can be significantly reduced, so that power consumption and signal delay can be reduced. Furthermore, it is possible to operate the memory cell 10 even if the capacitance of the capacitive element is reduced.
  • the functional circuit 51 has a function of amplifying the data potential held in the memory cell 10 and outputting it to the sense amplifier 46 included in the drive circuit 21 via a wiring GBL (not shown) to be described later. With this configuration, a slight potential difference in the wiring BL can be amplified when reading data.
  • the wiring GBL can be arranged in a direction perpendicular to the surface of the substrate on which the drive circuit 21 is provided. By providing the wiring BL and wiring GBL extending from the memory cells 10 of the memory arrays 20 [1] to 20 [m] in the vertical direction of the substrate surface, the wiring between the functional circuit 51 and the sense amplifier 46 can be reduced. The length can be shortened. Therefore, the signal propagation distance between the two circuits connected to the wiring GBL can be shortened, and the resistance and parasitic capacitance of the wiring GBL can be significantly reduced, so that power consumption and signal delay can be reduced.
  • the wiring BL is provided in contact with the semiconductor layer of the transistor included in the memory cell 10.
  • the wiring BL is provided in contact with a region functioning as a source or drain of a semiconductor layer of a transistor included in the memory cell 10.
  • the wiring BL is provided in contact with a conductor provided in contact with a region functioning as a source or drain of a semiconductor layer of a transistor included in the memory cell 10.
  • the wiring BL can be said to be a wiring for electrically connecting each of the sources and drains of the transistors included in the memory cells 10 in each layer of the memory array 20 and the functional circuit 51 in the vertical direction.
  • the memory array 20 can be provided over the drive circuit 21. By overlapping the drive circuit 21 and the memory array 20, the signal propagation distance between the drive circuit 21 and the memory array 20 can be shortened. Therefore, the resistance and parasitic capacitance between the drive circuit 21 and the memory array 20 are reduced, and power consumption and signal delay can be reduced. Furthermore, the storage device 300 can be made smaller.
  • the functional circuit 51 is constructed of OS transistors like the transistors included in the memory cell 10 of the DOSRAM, and can be freely mounted on a circuit using Si transistors in the same way as the memory arrays 20[1] to 20[m]. Since it can be arranged, integration can be easily performed. By configuring the functional circuit 51 to amplify the signal, it is possible to reduce the size of circuits such as the sense amplifier 46, which is a subsequent circuit, so that the storage device 300 can be made smaller.
  • the drive circuit 21 includes a PSW 22 (power switch), a PSW 23, and a peripheral circuit 31.
  • the peripheral circuit 31 includes a peripheral circuit 41, a control circuit 32, and a voltage generation circuit 33.
  • each circuit, each signal, and each voltage can be removed or discarded as necessary. Alternatively, other circuits or other signals may be added.
  • Signal BW, signal CE, signal GW, signal CLK, signal WAKE, signal ADDR, signal WDA, signal PON1, and signal PON2 are input signals from the outside, and signal RDA is an output signal to the outside.
  • Signal CLK is a clock signal.
  • the signal BW, the signal CE, and the signal GW are control signals.
  • Signal CE is a chip enable signal
  • signal GW is a global write enable signal
  • signal BW is a byte write enable signal.
  • Signal ADDR is an address signal.
  • Signal WDA is write data
  • signal RDA is read data.
  • Signal PON1 and signal PON2 are power gating control signals. Note that the signal PON1 and the signal PON2 may be generated by the control circuit 32.
  • the control circuit 32 is a logic circuit that has a function of controlling the overall operation of the storage device 300. For example, the control circuit performs a logical operation on the signal CE, the signal GW, and the signal BW to determine the operation mode (eg, write operation, read operation) of the storage device 300. Alternatively, the control circuit 32 generates a control signal for the peripheral circuit 41 so that this operation mode is executed.
  • the control circuit performs a logical operation on the signal CE, the signal GW, and the signal BW to determine the operation mode (eg, write operation, read operation) of the storage device 300.
  • the control circuit 32 generates a control signal for the peripheral circuit 41 so that this operation mode is executed.
  • the voltage generation circuit 33 has a function of generating a negative voltage.
  • the signal WAKE has a function of controlling input of the signal CLK to the voltage generation circuit 33. For example, when an H level signal is applied to the signal WAKE, the signal CLK is input to the voltage generation circuit 33, and the voltage generation circuit 33 generates a negative voltage.
  • the peripheral circuit 41 is a circuit for writing and reading data to and from the memory cell 10. Further, the peripheral circuit 41 is a circuit that outputs various signals for controlling the functional circuit 51.
  • the peripheral circuit 41 includes a row decoder 42, a column decoder 44, a row driver 43, a column driver 45, an input circuit 47, and an output circuit 48 ( It has an Output Cir.) and a sense amplifier 46 (Sense Amplifier).
  • the row decoder 42 and column decoder 44 have a function of decoding the signal ADDR.
  • the row decoder 42 is a circuit for specifying a row to be accessed
  • the column decoder 44 is a circuit for specifying a column to be accessed.
  • the row driver 43 has a function of selecting the wiring WL specified by the row decoder 42.
  • the column driver 45 has a function of writing data into the memory cell 10, a function of reading data from the memory cell 10, a function of holding the read data, and the like.
  • the input circuit 47 has a function of holding the signal WDA.
  • the data held by the input circuit 47 is output to the column driver 45.
  • the output data of the input circuit 47 is the data (Din) to be written into the memory cell 10.
  • the data (Dout) read from the memory cell 10 by the column driver 45 is output to the output circuit 48.
  • the output circuit 48 has a function of holding Dout. Further, the output circuit 48 has a function of outputting Dout to the outside of the storage device 300.
  • the data output from the output circuit 48 is the signal RDA.
  • the PSW 22 has a function of controlling the supply of VDD to the peripheral circuit 31.
  • the PSW 23 has a function of controlling the supply of VHM to the row driver 43.
  • the high power supply voltage of the storage device 300 is VDD
  • the low power supply voltage is GND (ground potential).
  • VHM is a high power supply voltage used to bring the word line to a high level, and is higher than VDD.
  • the signal PON1 controls the on/off of the PSW22
  • the signal PON2 controls the on/off of the PSW23.
  • the number of power domains to which VDD is supplied is one, but the number may be plural. In this case, a power switch may be provided for each power domain.
  • the memory array 20 having the memory arrays 20[1] to 20[m] (m is an integer of 2 or more) and the functional layer 50 can be provided by overlapping multiple layers of the memory array 20 on the drive circuit 21. By overlapping multiple layers of memory arrays 20, the memory density of the memory cells 10 can be increased.
  • the memory array 20 provided in the first layer is indicated as memory array 20[1]
  • the memory array 20 provided in the second layer is indicated as memory array 20[2]
  • the memory array 20 provided in the fifth layer is indicated as memory array 20[2].
  • the memory array 20 that has been constructed is shown as a memory array 20[5].
  • wiring WL, wiring CL, and wiring PL provided extending in the X direction, and wiring BL provided extending in the Z direction (direction perpendicular to the substrate surface on which the drive circuit is provided) are illustrated. ing. Note that in order to make the drawing easier to read, some of the wiring WL and wiring PL included in each of the memory arrays 20 are omitted.
  • FIG. 13B is a schematic diagram illustrating a configuration example of the functional circuit 51 connected to the wiring BL illustrated in FIG. 13A and the memory cells 10 included in the memory arrays 20[1] to 20[5] connected to the wiring BL. shows. Further, FIG. 13B illustrates a wiring GBL provided between the functional circuit 51 and the drive circuit 21. Note that a configuration in which a plurality of memory cells (memory cells 10) are electrically connected to one wiring BL is also referred to as a "memory string.” Note that in the drawings, the wiring GBL may be illustrated with thick lines to improve visibility.
  • FIG. 13B illustrates an example of the circuit configuration of the memory cell 10 connected to the wiring BL.
  • the memory cell 10 includes a transistor 11 and a capacitor 12.
  • the transistor 11 the capacitive element 12, and each wiring (such as the wiring BL and the wiring WL), for example, the wiring BL[1] and the wiring WL[1] may be referred to as the wiring BL and the wiring WL.
  • transistor 11 corresponds to transistor 200 described in Embodiment 1.
  • one of the source and drain of the transistor 11 is connected to the wiring BL.
  • the other of the source and drain of the transistor 11 is connected to one electrode of the capacitive element 12.
  • the other electrode of the capacitive element 12 is connected to the wiring PL.
  • the gate of the transistor 11 is connected to the wiring WL.
  • the back gate of the transistor 11 is connected to the wiring CL.
  • the wiring PL is a wiring that provides a constant potential to maintain the potential of the capacitive element 12.
  • the wiring CL is a constant potential for controlling the threshold voltage of the transistor 11.
  • the wiring PL and the wiring CL may be at the same potential. In this case, by connecting two wires, the number of wires connected to the memory cell 10 can be reduced.
  • FIG. 14A shows a schematic diagram of a storage device 300 in which a repeating unit 70 is a functional circuit 51 and memory arrays 20[1] to 20[m]. Note that although one wiring GBL is shown in FIG. 14A, the wiring GBL may be provided as appropriate depending on the number of functional circuits 51 provided in the functional layer 50.
  • the wiring GBL is provided in contact with the semiconductor layer of the transistor included in the functional circuit 51.
  • the wiring GBL is provided in contact with a region functioning as a source or drain of a semiconductor layer of a transistor included in the functional circuit 51.
  • the wiring GBL is provided in contact with a conductor provided in contact with a region functioning as a source or drain of a semiconductor layer of a transistor included in the functional circuit 51.
  • the wiring GBL can be said to be a wiring for electrically connecting one of the source or drain of the transistor included in the functional circuit 51 in the functional layer 50 and the drive circuit 21 in the vertical direction.
  • the repeating unit 70 having the functional circuit 51 and the memory arrays 20[1] to 20[m] may be further stacked.
  • the storage device 300A according to one embodiment of the present invention can have repeating units 70[1] to 70[p] (p is an integer of 2 or more) as illustrated in FIG. 14B.
  • the wiring GBL is connected to the functional layer 50 that the repeating unit 70 has.
  • the wiring GBL may be provided as appropriate depending on the number of functional circuits 51.
  • OS transistors are provided in a stacked manner, and wiring functioning as a bit line is arranged in a direction perpendicular to the surface of the substrate on which the drive circuit 21 is provided.
  • the wiring extending from the memory array 20 and functioning as a bit line in a direction perpendicular to the substrate surface the length of the wiring between the memory array 20 and the drive circuit 21 can be shortened. Therefore, the parasitic capacitance of the bit line can be significantly reduced.
  • the layer in which the memory array 20 is provided includes a functional layer 50 having a functional circuit 51 having a function of amplifying and outputting the data potential held in the memory cell 10.
  • the present invention is not limited to this.
  • a 3T1C type memory cell may be used in the storage device.
  • the memory cell shown in FIG. 18A includes transistors 11a, 11b, and 11c and a capacitive element 12a.
  • the transistors 11a, 11b, and 11c can have the same configuration as the transistor 11, and the capacitive element 12a can have the same configuration as the capacitive element 12.
  • a RAM having such a configuration may be called a NOSRAM (registered trademark) (Nonvolatile Oxide Semiconductor RAM).
  • one of the source or drain of the transistor 11a is electrically connected to one of the electrodes of the capacitive element 12a and the first gate of the transistor 11b. Further, one of the source and drain of the transistor 11b is electrically connected to one of the source and drain of the transistor 11c.
  • the second gate, and the other electrode of the capacitive element 12a may be provided with appropriate wiring.
  • the structure of the storage device can be modified as appropriate to match these wirings.
  • a 2T1C type memory cell may be used, which does not include the transistor 11c and has only the transistors 11a and 11b and the capacitive element 12a.
  • a configuration may be adopted in which the capacitive element 12a is not provided, as shown in FIG. 18C.
  • a memory cell is constituted by only the transistor 11a and the transistor 11b.
  • FIG. 15 A configuration example of the functional circuit 51 described in FIGS. 12 to 14 and a configuration example of the sense amplifier 46 included in the memory array 20 and the drive circuit 21 will be described using FIG. 15.
  • the functional circuits 51 (functional circuits 51_A, 51_B) connected to the memory cells 10 (memory cells 10_A, memory cells 10_B) connected to different wirings BL (wirings BL_A, wirings BL_B)
  • a drive circuit 21 connected to wiring GBL (wiring GBL_A, wiring GBL_B) is illustrated.
  • a precharge circuit 71_A, a precharge circuit 71_B, a switch circuit 72_A, a switch circuit 72_B, and a write/read circuit 73 are illustrated.
  • Transistors 52_a, 52_b, 53_a, 53_b, 54_a, 54_b, 55_a, and 55_b are illustrated as the functional circuits 51_A and 51_B.
  • the transistors 52_a, 52_b, 53_a, 53_b, 54_a, 54_b, 55_a, and 55_b illustrated in FIG. 15 are OS transistors like the transistor 11 included in the memory cell 10.
  • the functional layer 50 having the functional circuit 51 can be provided in a stacked manner similar to the memory arrays 20[1] to 20[m].
  • the wiring BL_A is connected to the gate of the transistor 52_a, and the wiring BL_B is connected to the gate of the transistor 52_b.
  • the wiring GBL_A is connected to one of the sources and drains of the transistors 53_a and 54_a.
  • the wiring GBL_B is connected to one of the sources and drains of the transistors 53_b and 54_b.
  • Wirings GBL_A and GBL_B are provided in the vertical direction similarly to wirings BL_A and BL_B, and are connected to transistors included in the drive circuit 21. As shown in FIG. 15, the selection signal MUX, the control signal WE, or the control signal RE is applied to the gates of the transistors 53_a, 53_b, 54_a, 54_b, 55_a, and 55_b, respectively.
  • Transistors 81_1 to 81_6 and 82_1 to 82_4 that constitute the sense amplifier 46, precharge circuit 71_A, and precharge circuit 71_B shown in FIG. 15 are composed of Si transistors.
  • the switches 83_A to 83_D making up the switch circuit 72_A and the switch circuit 72_B can also be made of Si transistors.
  • One of the sources or drains of the transistors 53_a, 53_b, 54_a, and 54_b is connected to a transistor or a switch forming the precharge circuit 71_A, the precharge circuit 71_B, the sense amplifier 46, and the switch circuit 72_A.
  • the precharge circuit 71_A includes n-channel transistors 81_1 to 81_3.
  • the precharge circuit 71_A sets the wiring BL_A and the wiring BL_B to an intermediate potential between a high power supply potential (VDD) and a low power supply potential (VSS) corresponding to a potential VDD/2 according to a precharge signal applied to a precharge line PCL1. This is a circuit for precharging to potential VPC.
  • the precharge circuit 71_B has n-channel transistors 81_4 to 81_6.
  • the precharge circuit 71_B is a circuit for precharging the wiring GBL_A and the wiring GBL_B to an intermediate potential VPC corresponding to the potential VDD/2 between VDD and VSS in accordance with a precharge signal applied to the precharge line PCL2. be.
  • the sense amplifier 46 includes p-channel transistors 82_1 and 82_2 and n-channel transistors 82_3 and 82_4, which are connected to the wiring VHH or the wiring VLL.
  • the wiring VHH or the wiring VLL is a wiring that has a function of providing VDD or VSS.
  • the transistors 82_1 to 82_4 are transistors forming an inverter loop.
  • the potentials of the wiring GBL_A and the wiring GBL_B can be output to the outside via the switch 83_C, the switch 83_D, and the write/read circuit 73.
  • the wiring BL_A and the wiring BL_B, and the wiring GBL_A and the wiring GBL_B correspond to a bit line pair.
  • writing of a data signal is controlled according to the signal EN_data.
  • the switch circuit 72_A is a circuit for controlling the conduction state between the sense amplifier 46 and the wiring GBL_A and the wiring GBL_B.
  • the switch circuit 72_A is turned on or off under the control of the switching signal CSEL1.
  • the switches 83_A and 83_B are n-channel transistors, they are turned on when the switching signal CSEL1 is at a high level, and turned off when the switching signal CSEL1 is at a low level.
  • the switch circuit 72_B is a circuit for controlling the conduction state between the write/read circuit 73 and the bit line pair connected to the sense amplifier 46.
  • the switch circuit 72_B is turned on or off under the control of the switching signal CSEL2.
  • the switches 83_C and 83_D may be configured in the same manner as the switches 83_A and 83_B.
  • the memory device 300 has a configuration in which the memory cell 10, the functional circuit 51, and the sense amplifier 46 are connected via a wiring BL and a wiring GBL provided in the vertical direction, which are the shortest distances. I can do it.
  • the number of functional layers 50 having transistors forming the functional circuit 51 increases, the load on the wiring BL is reduced, so that writing time can be shortened and data can be read easily.
  • each transistor included in the functional circuits 51_A and 51_B is controlled according to the control signals WE, RE and the selection signal MUX.
  • Each transistor can output the potential of the wiring BL to the drive circuit 21 via the wiring GBL in accordance with the control signal and the selection signal.
  • the functional circuits 51_A and 51_B can function as sense amplifiers made up of OS transistors. With this configuration, it is possible to amplify a slight potential difference in the wiring BL during reading and drive the sense amplifier 46 using a Si transistor.
  • the X direction is parallel to the channel width direction of the illustrated transistor
  • the Y direction is perpendicular to the X direction
  • the Z direction is perpendicular to the X and Y directions.
  • the memory cell 10 includes a transistor 11 and a capacitor 12.
  • An insulator 285 is provided on the transistor 11, and an insulator 284 is provided on the insulator 285.
  • an insulator that can be used for the insulator 216 may be used.
  • the transistor 11 has the same configuration as the transistor 200 shown in the previous embodiment, and the same components are denoted by the same symbols. For details of the transistor 200, the previous embodiments can be referred to.
  • a conductor 240 is provided in contact with one of the source and drain (conductor 242a) of the transistor 11.
  • the conductor 240 is provided extending in the Z direction, and functions as the wiring BL.
  • the capacitive element 12 includes a conductor 153 on a conductor 242b, an insulator 154 on the conductor 153, and a conductor 160 (a conductor 160a and a conductor 160b) on the insulator 154.
  • the conductor 153, the insulator 154, and the conductor 160 each have at least a portion formed in an opening provided in the insulator 271b, the insulator 275, the insulator 280, the insulator 282, the insulator 283, and the insulator 285. is located inside.
  • the ends of each of the conductor 153, the insulator 154, and the conductor 160 are located at least on the insulator 282, and preferably on the insulator 285.
  • the insulator 154 is provided to cover the end of the conductor 153. Thereby, the conductor 153 and the conductor 160 can be electrically insulated.
  • the capacitance of the capacitive element 12 can be increased.
  • the semiconductor device can be miniaturized or highly integrated.
  • the conductor 153 has a region that functions as one electrode (lower electrode) of the capacitive element 12.
  • the insulator 154 has a region that functions as a dielectric of the capacitive element 12.
  • the conductor 160 has a region that functions as the other electrode (upper electrode) of the capacitive element 12.
  • the capacitive element 12 constitutes an MIM (Metal-Insulator-Metal) capacitor.
  • the conductor 242b provided in an overlapping manner on the oxide 230 functions as a wiring electrically connected to the conductor 153 of the capacitive element 12.
  • the conductor 153 and the conductor 160 of the capacitive element 12 can be formed using various conductors that can be used for the conductor 205, the conductor 242, or the conductor 260, respectively. It is preferable that the conductor 153 and the conductor 160 are each formed using a film formation method with good coverage, such as an ALD method or a CVD method. For example, titanium nitride or tantalum nitride formed using an ALD method or a CVD method can be used as the conductor 153.
  • the lower surface of the conductor 153 is in contact with the upper surface of the conductor 242b.
  • the contact resistance between the conductor 153 and the conductor 242b can be reduced.
  • titanium nitride formed using an ALD method or CVD method can be used as the conductor 160a
  • tungsten formed using a CVD method can be used as the conductor 160b. Note that if the adhesion of tungsten to the insulator 154 is sufficiently high, a single layer structure of tungsten formed using a CVD method may be used as the conductor 160.
  • a high dielectric constant (high-k) material (a material with a high relative dielectric constant) for the insulator 154 included in the capacitive element 12.
  • the insulator 154 is preferably formed using a film forming method with good coverage, such as an ALD method or a CVD method.
  • Examples of insulators made of high dielectric constant (high-k) materials include oxides, oxynitrides, nitride oxides, and nitrides containing one or more metal elements selected from aluminum, hafnium, zirconium, and gallium. Things can be mentioned. Further, the oxide, oxynitride, nitride oxide, or nitride may contain silicon. Furthermore, insulators made of the above-mentioned materials can be stacked and used.
  • insulators of high dielectric constant (high-k) materials e.g. aluminum oxide, hafnium oxide, zirconium oxide, oxides containing aluminum and hafnium, oxynitrides containing aluminum and hafnium, oxides containing silicon and hafnium, etc. Oxynitrides containing silicon and hafnium, oxides containing silicon and zirconium, oxynitrides containing silicon and zirconium, oxides containing hafnium and zirconium, and oxynitrides containing hafnium and zirconium.
  • the insulator 154 can be made thick enough to suppress leakage current, and the capacitance of the capacitive element 12 can be sufficiently secured.
  • insulators made of the above-mentioned materials in a laminated manner, and a laminated structure of a high dielectric constant (high-k) material and a material having a higher dielectric strength than the high dielectric constant (high-k) material is used.
  • high-k high dielectric constant
  • high-k high dielectric constant
  • the insulator 154 an insulator in which zirconium oxide, aluminum oxide, and zirconium oxide are laminated in this order can be used.
  • an insulator in which zirconium oxide, aluminum oxide, zirconium oxide, and aluminum oxide are laminated in this order can be used.
  • an insulating film in which hafnium zirconium oxide, aluminum oxide, hafnium zirconium oxide, and aluminum oxide are laminated in this order can be used.
  • an insulator having a relatively high dielectric strength, such as aluminum oxide the dielectric strength can be improved and electrostatic breakdown of the capacitive element 12 can be suppressed.
  • the capacitance of the capacitive element 12 can be increased.
  • the insulator 271b, the insulator 275, the insulator 282, and the insulator 283 function as barrier insulators, it is preferable to set their film thicknesses depending on the barrier properties required of the semiconductor device.
  • the thickness of the conductor 260 that functions as a gate electrode is determined according to the thickness of the insulator 280, the thickness of the insulator 280 is adjusted according to the thickness of the conductor 260 required for the semiconductor device. It is preferable to set the
  • the thickness of the insulator 285 may be set in a range from 50 nm to 250 nm, and the depth of the opening may be set to about 150 nm to 350 nm.
  • the capacitive element 12 can have sufficient capacitance, and in a semiconductor device in which multiple layers of memory cells are stacked, the height of one layer is not excessively high. You can keep it from getting too expensive.
  • a structure may be adopted in which the capacitances of the capacitive elements provided in each memory cell are made different in each of the layers of the plurality of memory cells. In the case of this configuration, for example, the thickness of the insulator 285 provided in each memory cell layer may be made different.
  • the side wall of the opening may be approximately perpendicular to the upper surface of the insulator 222, and may have a tapered shape. Good too. By tapering the sidewall, the coverage of the conductor 153 and the like provided in the opening of the insulator 285 and the like can be improved, and defects such as cavities can be reduced.
  • the conductor 242a provided overlappingly on the oxide 230 functions as a wiring electrically connected to the conductor 240.
  • the upper surface and side end portions of the conductor 242a are electrically connected to the conductor 240 extending in the Z direction.
  • the conductor 240 By directly contacting the conductor 240 with at least one of the top surface and side end portion of the conductor 242a, there is no need to provide a separate connection electrode, and the area occupied by the memory array can be reduced. Furthermore, the degree of integration of memory cells is improved, and the storage capacity of the memory device can be increased. Note that it is preferable that the conductor 240 be in contact with a part of the upper surface and the side end portion of the conductor 242a. Contact resistance between the conductor 240 and the conductor 242a can be reduced by the conductor 240 being in contact with multiple surfaces of the conductor 242a.
  • the conductor 240 is provided in openings formed in the insulator 216, insulator 222, insulator 275, insulator 280, insulator 282, insulator 283, insulator 285, and insulator 284.
  • the conductor 240 preferably has a laminated structure of a conductor 240a and a conductor 240b.
  • the conductor 240 can have a structure in which a conductor 240a is provided in contact with the inner wall of the opening, and a conductor 240b is further provided inside.
  • the conductor 240a is closer to the insulators 216, 222, 275, 280, 282, 283, 285, and 284 than the conductor 240b. Placed.
  • the conductor 240a is in contact with the upper surface and side end portions of the conductor 242a.
  • the conductor 240a it is preferable to use a conductive material that has a function of suppressing the permeation of impurities such as water and hydrogen.
  • the conductor 240a can have a single layer structure or a multilayer structure using one or more of tantalum, tantalum nitride, titanium, titanium nitride, ruthenium, and ruthenium oxide, for example. This can prevent impurities such as water and hydrogen from entering the oxide 230 through the conductor 240.
  • the conductor 240 also functions as wiring, it is preferable to use a conductor with high conductivity.
  • a conductor with high conductivity For example, a conductive material containing tungsten, copper, or aluminum as a main component can be used for the conductor 240b.
  • the conductor 240a is a conductor containing titanium and nitrogen
  • the conductor 240b is a conductor containing tungsten.
  • the conductor 240 may have a single layer structure or a laminated structure of three or more layers.
  • an insulator 241 be provided in contact with the side surface of the conductor 240.
  • the insulator 241 is provided in contact with the inner wall of the opening of the insulator 216, insulator 222, insulator 275, insulator 280, insulator 282, insulator 283, insulator 285, and insulator 284.
  • an insulator 241 is also formed on the side surfaces of the insulator 224, oxide 230, and conductor 242a that are formed to protrude into the opening.
  • at least a portion of the conductor 242a is exposed from the insulator 241 and is in contact with the conductor 240. That is, the conductor 240 is provided so as to fill the inside of the opening with the insulator 241 interposed therebetween.
  • the top of the insulator 241 formed below the conductor 242a is preferably located below the upper surface of the conductor 242a.
  • the conductor 240 can be in contact with at least a portion of the side end portion of the conductor 242a.
  • the insulator 241 formed below the conductor 242a preferably has a region in contact with the side surface of the oxide 230. With this configuration, impurities such as water and hydrogen contained in the insulator 280 and the like can be suppressed from entering the oxide 230 through the conductor 240.
  • the insulator 241 a barrier insulating film that can be used for the insulator 275 or the like may be used.
  • the insulator 241 may be an insulator such as silicon nitride, aluminum oxide, silicon nitride oxide, or the like.
  • impurities such as water and hydrogen contained in the insulator 280 and the like can be suppressed from entering the oxide 230 through the conductor 240.
  • silicon nitride is suitable because it has a high blocking property against hydrogen. Furthermore, absorption of oxygen contained in the insulator 280 into the conductor 240 can be suppressed.
  • FIG. 16 shows a configuration in which the insulator 241 is a single layer, the present invention is not limited to this.
  • the insulator 241 may have a laminated structure of two or more layers.
  • a barrier insulating film against oxygen is used for the first layer in contact with the inner wall of the opening of the insulator 280, etc.
  • a barrier insulating film against hydrogen is used for the second layer inside the first layer.
  • aluminum oxide formed by ALD may be used as the first layer
  • silicon nitride formed by PEALD may be used as the second layer.
  • the side wall of the opening may be approximately perpendicular to the upper surface of the insulator 222 or may have a tapered shape. By tapering the side wall, coverage of the insulator 241 and the like provided in the opening is improved.
  • the storage device 300 includes a drive circuit 21, which is a layer including a transistor 310, a functional layer 50, which is a layer including transistors 52, 53, 54, 55, etc., on the drive circuit 21, and a functional layer 50, which is a layer including transistors 52, 53, 54, 55, etc.
  • Memory arrays 20[1] to 20[m] are shown in FIG. 17). Note that the transistor 52 corresponds to the transistors 52_a and 52_b, the transistor 53 corresponds to the transistors 53_a and 53_b, the transistor 54 corresponds to the transistors 54_a and 54_b, and the transistor 55 corresponds to the transistors 55_a and 55_b. corresponds to
  • FIG. 17 illustrates a transistor 310 included in the drive circuit 21.
  • the transistor 310 is provided over a substrate 311 and includes a conductor 316 that functions as a gate, an insulator 315 that functions as a gate insulator, a semiconductor region 313 that includes a part of the substrate 311, and a low voltage layer that functions as a source region or a drain region. It has a resistance region 314a and a low resistance region 314b.
  • the transistor 310 may be either a p-channel transistor or an n-channel transistor.
  • the substrate 311 for example, a single crystal silicon substrate can be used.
  • a semiconductor region 313 (a part of the substrate 311) in which a channel is formed has a convex shape.
  • a conductor 316 is provided to cover the side and top surfaces of the semiconductor region 313 with an insulator 315 interposed therebetween.
  • the conductor 316 may be made of a material that adjusts the work function.
  • Such a transistor 310 is also called a FIN type transistor because it utilizes a convex portion of a semiconductor substrate.
  • an insulator may be provided in contact with the upper portion of the convex portion to function as a mask for forming the convex portion.
  • a semiconductor film having a convex shape may be formed by processing an SOI (Silicon on Insulator) substrate.
  • transistor 310 shown in FIG. 17 is an example, and the structure is not limited, and an appropriate transistor can be used depending on the circuit configuration or driving method.
  • a wiring layer including an interlayer film, wiring, plugs, etc. may be provided between each structure. Further, a plurality of wiring layers can be provided depending on the design. Further, in this specification and the like, the wiring and the plug electrically connected to the wiring may be integrated. That is, a part of the conductor may function as a wiring, and a part of the conductor may function as a plug.
  • an insulator 320, an insulator 322, an insulator 324, and an insulator 326 are sequentially stacked and provided as interlayer films. Further, a conductor 328 and the like are embedded in the insulator 320 and the insulator 322. Furthermore, a conductor 330 and the like are embedded in the insulator 324 and the insulator 326. Note that the conductor 328 and the conductor 330 function as a contact plug or a wiring.
  • the insulator that functions as an interlayer film may function as a flattening film that covers the uneven shape underneath.
  • the upper surface of the insulator 322 may be planarized by a planarization process using a chemical mechanical polishing (CMP) method or the like in order to improve flatness.
  • CMP chemical mechanical polishing
  • FIG. 17 illustrates transistors 52, 53, and 55 included in the functional layer 50.
  • the transistors 52, 53, and 55 have the same configuration as the transistor 11 included in the memory cell 10.
  • the sources and drains of the transistors 52, 53, and 55 are connected in series.
  • An insulator 208 is provided over the transistors 52, 53, and 55, and a conductor 207 is provided in an opening formed in the insulator 208. Further, an insulator 210 is provided on the insulator 208, and a conductor 209 is provided in the opening formed in the insulator 210. Further, an insulator 212 is provided on the insulator 210, and an insulator 214 is provided on the insulator 212. A portion of the conductor 240 provided in the memory array 20[1] is embedded in the openings formed in the insulator 212 and the insulator 214.
  • an insulator that can be used for the insulator 216 can be used.
  • an insulator that can be used for the insulator 283 can be used.
  • an insulator that can be used for the insulator 282 can be used.
  • the lower surface of the conductor 207 is provided in contact with the upper surface of the conductor 260 of the transistor 52. Further, the upper surface of the conductor 207 is provided in contact with the lower surface of the conductor 209. Further, the upper surface of the conductor 209 is provided in contact with the lower surface of the conductor 240 provided in the memory array 20[1]. With such a configuration, the conductor 240 corresponding to the wiring BL and the gate of the transistor 52 can be electrically connected.
  • Each of the memory arrays 20[1] to 20[m] includes a plurality of memory cells 10.
  • the conductor 240 of each memory cell 10 is electrically connected to the conductor 240 in the upper layer and the conductor 240 in the lower layer.
  • adjacent memory cells 10 share a conductor 240. Further, in the adjacent memory cells 10, the configuration on the right side and the configuration on the left side are arranged symmetrically with the conductor 240 as a boundary.
  • a conductor 261 functioning as a second gate electrode can be formed in the same layer.
  • the conductor 160 of the capacitive element 12 in the lower layer and the conductor 261 of the transistor 11 in the upper layer can be formed to be embedded in an opening formed in the same insulator 216.
  • the above structure is obtained by forming the conductor 160 of the capacitive element 12 in the lower layer and the conductor 261 of the transistor 11 in the upper layer by processing one conductive film. At this time, the conductor 160 of the capacitive element 12 in the lower layer has the same material as the conductor 261 of the transistor 11 in the upper layer.
  • the manufacturing process of the memory device according to this embodiment can be reduced.
  • the productivity of the storage device can be improved.
  • a plurality of memory arrays 20[1] to 20[m] can be stacked and provided.
  • the memory arrays 20[1] to 20[m] included in the memory array 20 in a direction perpendicular to the surface of the substrate on which the drive circuit 21 is provided, it is possible to improve the memory density of the memory cell 10.
  • the memory array 20 can be fabricated using the same manufacturing process repeatedly in the vertical direction.
  • the storage device 300 can reduce the manufacturing cost of the memory array 20.
  • a plurality of circuits (systems) are mounted on the chip 1200 shown in FIGS. 19A and 19B.
  • SoC system on chip
  • the chip 1200 includes a CPU 1211, a GPU 1212, one or more analog calculation units 1213, one or more memory controllers 1214, one or more interfaces 1215, one or more network circuits 1216, and the like.
  • the chip 1200 is provided with bumps (not shown) and is connected to the first surface of the package substrate 1201, as shown in FIG. 19B. Furthermore, a plurality of bumps 1202 are provided on the back surface of the first surface of the package substrate 1201 and are connected to a motherboard 1203.
  • the motherboard 1203 may be provided with storage devices such as a DRAM 1221 and a flash memory 1222.
  • storage devices such as a DRAM 1221 and a flash memory 1222.
  • the DOSRAM described in the previous embodiment can be used as the DRAM 1221. This allows the DRAM 1221 to have lower power consumption, higher speed, and larger capacity.
  • the CPU 1211 has multiple CPU cores. Further, it is preferable that the GPU 1212 has a plurality of GPU cores. Further, the CPU 1211 and the GPU 1212 may each have a memory that temporarily stores data. Alternatively, a memory common to the CPU 1211 and the GPU 1212 may be provided in the chip 1200. The above-mentioned DOSRAM can be used as the memory. Further, the GPU 1212 is suitable for parallel calculation of a large amount of data, and can be used for image processing or product-sum calculation. By providing the image processing circuit using the OS transistor described in the previous embodiment or the product-sum operation circuit in the GPU 1212, it becomes possible to perform image processing or product-sum operation with low power consumption. .
  • the CPU 1211 and the GPU 1212 are provided on the same chip, the wiring between the CPU 1211 and the GPU 1212 can be shortened, and data transfer from the CPU 1211 to the GPU 1212 and between the memory of the CPU 1211 and the GPU 1212 is possible. , and after the calculation by the GPU 1212, the calculation result can be transferred from the GPU 1212 to the CPU 1211 at high speed.
  • the analog calculation unit 1213 has one or both of an A/D (analog/digital) conversion circuit and a D/A (digital/analog) conversion circuit. Further, the analog calculation section 1213 may be provided with the above product-sum calculation circuit.
  • the memory controller 1214 has a circuit that functions as a controller for the DRAM 1221 and a circuit that functions as an interface for the flash memory 1222.
  • the interface 1215 has an interface circuit with external connection devices such as a display device, speaker, microphone, camera, and controller. Controllers include mice, keyboards, game controllers, and the like. As such an interface, USB (Universal Serial Bus), HDMI (registered trademark) (High-Definition Multimedia Interface), etc. can be used.
  • USB Universal Serial Bus
  • HDMI registered trademark
  • High-Definition Multimedia Interface High-Definition Multimedia Interface
  • the network circuit 1216 includes a network circuit such as a LAN (Local Area Network). It may also include a circuit for network security.
  • LAN Local Area Network
  • the above circuit (system) can be formed on the chip 1200 using the same manufacturing process. Therefore, even if the number of circuits required for the chip 1200 increases, there is no need to increase the manufacturing process, and the chip 1200 can be manufactured at low cost.
  • a package substrate 1201 provided with a chip 1200 having a GPU 1212, a motherboard 1203 provided with a DRAM 1221, and a flash memory 1222 can be called a GPU module 1204.
  • the GPU module 1204 has a chip 1200 using SoC technology, its size can be reduced. Furthermore, since it is excellent in image processing, it is suitable for use in portable electronic devices such as smartphones, tablet terminals, laptop PCs, and portable (portable) game machines.
  • a product-sum calculation circuit using the GPU 1212 can be used to create deep neural networks (DNNs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), autoencoders, deep Boltzmann machines (DBMs), and deep belief networks ( DBN), the chip 1200 can be used as an AI chip, or the GPU module 1204 can be used as an AI system module.
  • DNNs deep neural networks
  • CNNs convolutional neural networks
  • RNNs recurrent neural networks
  • DBMs deep Boltzmann machines
  • DBN deep belief networks
  • FIG. 20A shows a perspective view of the electronic component 700 and a board (mounted board 704) on which the electronic component 700 is mounted.
  • An electronic component 700 shown in FIG. 20A includes a storage device 300, which is a storage device of one embodiment of the present invention, in a mold 711. In FIG. 20A, some descriptions are omitted to show the inside of the electronic component 700.
  • the electronic component 700 has a land 712 on the outside of the mold 711.
  • the land 712 is electrically connected to an electrode pad 713, and the electrode pad 713 is electrically connected to the memory device 300 via a wire 714.
  • the electronic component 700 is mounted on a printed circuit board 702, for example.
  • a mounting board 704 is completed by combining a plurality of such electronic components and electrically connecting them on the printed circuit board 702.
  • the storage device 300 includes the drive circuit 21 and the memory array 20.
  • FIG. 20B shows a perspective view of the electronic component 730.
  • the electronic component 730 is an example of a SiP (System in package) or an MCM (Multi Chip Module).
  • an interposer 731 is provided on a package substrate 732 (printed circuit board), and a semiconductor device 735 and a plurality of storage devices 300 are provided on the interposer 731.
  • the semiconductor device 735 can be an integrated circuit (semiconductor device) such as a CPU, GPU, or FPGA.
  • an integrated circuit semiconductor device
  • the OS transistors described in the previous embodiments in these integrated circuits such as CPUs, GPUs, and FPGAs, power consumption can be reduced.
  • a ceramic substrate, a plastic substrate, or a glass epoxy substrate can be used, for example.
  • the interposer 731 for example, a silicon interposer or a resin interposer can be used.
  • the interposer 731 has a plurality of wirings and has a function of electrically connecting a plurality of integrated circuits with different terminal pitches.
  • the plurality of wirings are provided in a single layer or in multiple layers.
  • the interposer 731 has a function of electrically connecting the integrated circuit provided on the interposer 731 to the electrodes provided on the package substrate 732.
  • interposers are sometimes called "rewiring boards” or “intermediate boards.”
  • a through electrode is provided in the interposer 731, and the integrated circuit and the package substrate 732 are electrically connected using the through electrode.
  • TSV Thinough Silicon Via
  • interposer 731 It is preferable to use a silicon interposer as the interposer 731. Since silicon interposers do not require active elements, they can be manufactured at lower cost than integrated circuits. On the other hand, since wiring formation in a silicon interposer can be performed using a semiconductor process, it is easy to form fine wiring, which is difficult to do with a resin interposer.
  • the interposer on which the storage device 300 is mounted is required to form fine and high-density wiring. Therefore, it is preferable to use a silicon interposer as the interposer for mounting the storage device 300.
  • a silicon interposer in SiP, MCM, etc. using a silicon interposer, reliability is less likely to deteriorate due to the difference in expansion coefficient between the integrated circuit and the interposer. Furthermore, since the silicon interposer has a highly flat surface, poor connection between the integrated circuit provided on the silicon interposer and the silicon interposer is less likely to occur. In particular, it is preferable to use a silicon interposer in a 2.5D package (2.5-dimensional packaging) in which a plurality of integrated circuits are arranged side by side on an interposer.
  • 2.5D package 2.5-dimensional packaging
  • a heat sink may be provided overlapping the electronic component 730.
  • a heat sink it is preferable that the heights of the integrated circuits provided on the interposer 731 are the same.
  • the storage device 300 and the semiconductor device 735 have the same height.
  • an electrode 733 may be provided on the bottom of the package board 732.
  • FIG. 20B shows an example in which the electrode 733 is formed with a solder ball. By providing solder balls in a matrix on the bottom of the package substrate 732, BGA (Ball Grid Array) mounting can be realized.
  • the electrode 733 may be formed of a conductive pin. By providing conductive pins in a matrix on the bottom of the package substrate 732, PGA (Pin Grid Array) mounting can be realized.
  • the electronic component 730 can be mounted on other boards using various mounting methods, not limited to BGA and PGA. Examples of implementation methods include SPGA (Staggered Pin Grid Array), LGA (Land Grid Array), QFP (Quad Flat Package), and QFJ (Quad Flat J-lead). d package) and QFN (Quad Flat Non-leaded package) can be mentioned.
  • a storage device of one embodiment of the present invention can be used as a storage device of various electronic devices (for example, information terminals, computers, smartphones, electronic book terminals, digital still cameras, video cameras, recording/playback devices, navigation systems, and game consoles). Applicable. Moreover, it can also be used for image sensors, IoT (Internet of Things), healthcare-related equipment, and the like. This allows the electronic device to save power. Further, by using the OS transistor described in the previous embodiment in an integrated circuit such as a CPU or GPU of the electronic device, power consumption can be further reduced.
  • the term "computer” as used herein includes not only tablet computers, notebook computers, and desktop computers, but also large-sized computers such as server systems.
  • FIGS. 21A to 21J and FIGS. 22A to 22E show how the electronic component 700 or the electronic component 730 having the storage device described in the previous embodiment is included in each electronic device. Illustrated.
  • Information terminal 5500 shown in FIG. 21A is a mobile phone (smartphone) that is a type of information terminal.
  • the information terminal 5500 includes a housing 5510 and a display section 5511.
  • the display section 5511 is equipped with a touch panel
  • the housing 5510 is equipped with buttons.
  • the information terminal 5500 can hold temporary files generated when an application is executed (for example, a cache when a web browser is used).
  • FIG. 21B shows an information terminal 5900 that is an example of a wearable terminal.
  • the information terminal 5900 includes a housing 5901, a display portion 5902, an operation switch 5903, an operation switch 5904, a band 5905, and the like.
  • the wearable terminal can hold temporary files generated when an application is executed by applying the storage device of one embodiment of the present invention.
  • FIG. 21C shows a desktop information terminal 5300.
  • the desktop information terminal 5300 includes an information terminal main body 5301, a display section 5302, and a keyboard 5303.
  • the desktop information terminal 5300 can hold temporary files generated when an application is executed by applying the storage device of one embodiment of the present invention.
  • smartphones, wearable terminals, and desktop information terminals have been described as electronic devices, but other information terminals include, for example, PDAs (Personal Digital Assistant), notebook information terminals, and Examples include workstations.
  • PDAs Personal Digital Assistant
  • notebook information terminals and Examples include workstations.
  • FIG. 21D shows an electric refrigerator-freezer 5800 as an example of an electrical appliance.
  • the electric refrigerator-freezer 5800 includes a housing 5801, a refrigerator door 5802, a freezer door 5803, and the like.
  • the electric refrigerator-freezer 5800 is an electric refrigerator-freezer that is compatible with IoT (Internet of Things).
  • the storage device of one embodiment of the present invention can be applied to an electric refrigerator-freezer 5800.
  • the electric refrigerator-freezer 5800 can send and receive information such as the foods stored in the electric refrigerator-freezer 5800 and the expiry date of the foods to an information terminal or the like through the Internet or the like.
  • the electric refrigerator-freezer 5800 can hold a temporary file generated when transmitting the information in a storage device according to one embodiment of the present invention.
  • an electric refrigerator-freezer is explained as an electric appliance, but other electric appliances include air conditioners including vacuum cleaners, microwave ovens, electric ovens, rice cookers, water heaters, IH cookers, water servers, and air conditioners. appliances, washing machines, dryers, and audiovisual equipment.
  • air conditioners including vacuum cleaners, microwave ovens, electric ovens, rice cookers, water heaters, IH cookers, water servers, and air conditioners. appliances, washing machines, dryers, and audiovisual equipment.
  • FIG. 21E shows a portable game machine 5200, which is an example of a game machine.
  • the portable game machine 5200 includes a housing 5201, a display portion 5202, buttons 5203, and the like.
  • FIG. 21F shows a stationary game machine 7500, which is an example of a game machine.
  • the stationary game machine 7500 can be particularly referred to as a stationary game machine for home use.
  • Stationary game machine 7500 includes a main body 7520 and a controller 7522.
  • a controller 7522 can be connected to the main body 7520 wirelessly or by wire.
  • the controller 7522 can include a touch panel, a stick, a rotary knob, a sliding knob, or the like that serves as an input interface other than a display unit that displays game images, buttons, or the like.
  • the shape of the controller 7522 is not limited to the shape shown in FIG.
  • the shape of the controller 7522 may be changed in various ways depending on the genre of the game.
  • a trigger can be a button and a controller shaped like a gun can be used.
  • a controller shaped like a musical instrument, music device, etc. can be used.
  • the stationary game machine may not use a controller, but may instead include one or more of a camera, a depth sensor, and a microphone, and be operated by the game player's gestures or voice.
  • the video of the game machine described above can be output by a display device such as a television device, a personal computer display, a game display, or a head-mounted display.
  • a display device such as a television device, a personal computer display, a game display, or a head-mounted display.
  • the storage device of one embodiment of the present invention By applying the storage device of one embodiment of the present invention to the portable game machine 5200 or the stationary game machine 7500, power consumption can be reduced. Further, by reducing power consumption, heat generation from the circuit can be reduced, and the influence of heat generation on the circuit itself, peripheral circuits, and modules can be reduced.
  • FIGS. 21E and 21F a portable game machine and a home-use stationary game machine have been described as examples of game machines, but other game machines can be installed in entertainment facilities (game centers, amusement parks, etc.). These include arcade game machines, which are used in sports facilities, and pitching machines for batting practice, which are installed in sports facilities.
  • a storage device can be applied to an automobile, which is a moving object, and around the driver's seat of the automobile.
  • FIG. 21G shows an automobile 5700 that is an example of a moving object.
  • the 5700 car is equipped with an instrument panel near the driver's seat that provides a variety of information by displaying speedometer, tachometer, mileage, fuel gauge, gear status, air conditioner settings, etc. Further, a storage device showing such information may be provided around the driver's seat.
  • the storage device of one embodiment of the present invention can temporarily hold information
  • the storage device can be used, for example, as a necessary temporary device in a system that performs automatic driving of the automobile 5700, road guidance, danger prediction, etc. It can be used to hold specific information.
  • the display device may be configured to display temporary information such as road guidance and danger prediction. Alternatively, a configuration may be adopted in which images from a driving recorder installed in the automobile 5700 are held.
  • moving body is not limited to a car.
  • moving objects include trains, monorails, ships, and flying objects (helicopters, unmanned aerial vehicles (drones), airplanes, and rockets).
  • a storage device can be applied to a camera.
  • FIG. 21H shows a digital camera 6240, which is an example of an imaging device.
  • the digital camera 6240 includes a housing 6241, a display section 6242, an operation switch 6243, a shutter button 6244, and the like, and a detachable lens 6246 is attached to the digital camera 6240.
  • the digital camera 6240 is configured here so that the lens 6246 can be removed from the housing 6241 and replaced, the lens 6246 and the housing 6241 may be integrated. Further, the digital camera 6240 may have a configuration in which a strobe device, a viewfinder, etc. can be separately attached.
  • power consumption can be reduced. Further, by reducing power consumption, heat generation from the circuit can be reduced, and the influence of heat generation on the circuit itself, peripheral circuits, and modules can be reduced.
  • a storage device can be applied to a video camera.
  • FIG. 21I shows a video camera 6300, which is an example of an imaging device.
  • the video camera 6300 includes a first housing 6301, a second housing 6302, a display portion 6303, an operation switch 6304, a lens 6305, a connecting portion 6306, and the like.
  • the operation switch 6304 and the lens 6305 are provided in the first casing 6301, and the display portion 6303 is provided in the second casing 6302.
  • the first casing 6301 and the second casing 6302 are connected by a connecting part 6306, and the angle between the first casing 6301 and the second casing 6302 can be changed by the connecting part 6306. be.
  • the image on the display section 6303 may be switched according to the angle between the first casing 6301 and the second casing 6302 at the connection section 6306.
  • the video camera 6300 can hold temporary files generated during encoding.
  • a storage device can be applied to an implantable cardioverter defibrillator (ICD).
  • ICD implantable cardioverter defibrillator
  • FIG. 21J is a schematic cross-sectional view showing an example of an ICD.
  • the ICD main body 5400 includes at least a battery 5401, an electronic component 700, a regulator, a control circuit, an antenna 5404, a wire 5402 to the right atrium, and a wire 5403 to the right ventricle.
  • the ICD main body 5400 is surgically installed in the body, and the two wires are passed through the subclavian vein 5405 and the superior vena cava 5406, and one wire tip is placed in the right ventricle and the other wire tip is placed in the right atrium. to be done.
  • the ICD main body 5400 has a function as a pacemaker, and paces the heart when the heart rate is out of a specified range. In addition, if the heart rate does not improve with pacing (such as rapid ventricular tachycardia or ventricular fibrillation), electric shock treatment is performed.
  • pacing such as rapid ventricular tachycardia or ventricular fibrillation
  • the ICD main body 5400 needs to constantly monitor heart rate in order to appropriately perform pacing and electric shock. Therefore, ICD main body 5400 has a sensor for detecting heart rate. Further, the ICD main body 5400 can store heart rate data acquired by the sensor, the number of times pacing treatment has been performed, time, etc. in the electronic component 700.
  • the ICD main body 5400 can have higher safety by having a plurality of batteries. Specifically, even if some of the batteries in the ICD main body 5400 become unusable, the remaining batteries can function, so it also functions as an auxiliary power source.
  • antenna 5404 may have an antenna that can transmit physiological signals.
  • a system may be configured to monitor cardiac activity.
  • a storage device can be applied to a computer such as a PC (Personal Computer), or an expansion device for an information terminal.
  • a computer such as a PC (Personal Computer), or an expansion device for an information terminal.
  • FIG. 22A shows, as an example of the expansion device, an expansion device 6100 that is portable and equipped with a chip that can store information and is externally attached to a PC.
  • the expansion device 6100 can store information using the chip by connecting it to a PC via, for example, a USB (Universal Serial Bus).
  • FIG. 22A illustrates a portable expansion device 6100
  • the expansion device of one embodiment of the present invention is not limited to this, and for example, a relatively large expansion device equipped with a cooling fan or the like. It may also be an expansion device of the form.
  • the expansion device 6100 includes a housing 6101, a cap 6102, a USB connector 6103, and a board 6104.
  • a board 6104 is housed in a housing 6101.
  • the substrate 6104 is provided with a circuit that drives a storage device or the like of one embodiment of the present invention.
  • an electronic component 700 and a controller chip 6106 are attached to the board 6104.
  • the USB connector 6103 functions as an interface for connecting to an external device.
  • SD card A storage device according to one embodiment of the present invention can be applied to an SD card that can be attached to an electronic device such as an information terminal or a digital camera.
  • FIG. 22B is a schematic diagram of the external appearance of the SD card
  • FIG. 22C is a schematic diagram of the internal structure of the SD card.
  • the SD card 5110 has a housing 5111, a connector 5112, and a board 5113.
  • a connector 5112 functions as an interface for connecting to an external device.
  • the board 5113 is housed in a housing 5111.
  • the substrate 5113 is provided with a memory device and a circuit that drives the memory device.
  • an electronic component 700 and a controller chip 5115 are attached to the board 5113.
  • the circuit configurations of the electronic component 700 and the controller chip 5115 are not limited to those described above, and the circuit configurations may be changed as appropriate depending on the situation. For example, a write circuit, a row driver, a read circuit, etc. included in the electronic component may be incorporated into the controller chip 5115 instead of the electronic component 700.
  • the capacity of the SD card 5110 can be increased.
  • a wireless chip having a wireless communication function may be provided on the substrate 5113. Thereby, wireless communication can be performed between the external device and the SD card 5110, and data can be read from and written to the electronic component 700.
  • a storage device can be applied to a solid state drive (SSD) that can be attached to an electronic device such as an information terminal.
  • SSD solid state drive
  • FIG. 22D is a schematic diagram of the external appearance of the SSD
  • FIG. 22E is a schematic diagram of the internal structure of the SSD.
  • the SSD 5150 includes a housing 5151, a connector 5152, and a board 5153.
  • a connector 5152 functions as an interface for connecting to an external device.
  • the board 5153 is housed in a housing 5151.
  • the substrate 5153 is provided with a memory device and a circuit that drives the memory device.
  • an electronic component 700, a memory chip 5155, and a controller chip 5156 are attached to the substrate 5153.
  • the capacity of the SSD 5150 can be increased.
  • a work memory is incorporated in the memory chip 5155.
  • a DRAM chip can be used as the memory chip 5155.
  • the controller chip 5156 incorporates a processor, an ECC (Error Check and Correct) circuit, and the like. Note that the circuit configurations of the electronic component 700, the memory chip 5155, and the controller chip 5115 are not limited to those described above, and the circuit configurations may be changed as appropriate depending on the situation.
  • the controller chip 5156 may also be provided with a memory that functions as a work memory.
  • Computer 5600 shown in FIG. 23A is an example of a large-sized computer.
  • a plurality of rack-mounted computers 5620 are stored in a rack 5610.
  • the computer 5620 can have the configuration shown in the perspective view shown in FIG. 23B.
  • a computer 5620 has a motherboard 5630, and the motherboard 5630 has a plurality of slots 5631 and a plurality of connection terminals.
  • a PC card 5621 is inserted into the slot 5631.
  • the PC card 5621 has a connection terminal 5623, a connection terminal 5624, and a connection terminal 5625, each of which is connected to the motherboard 5630.
  • a PC card 5621 shown in FIG. 23C is an example of a processing board that includes a CPU, a GPU, a storage device, and the like.
  • PC card 5621 has a board 5622.
  • the board 5622 includes a connection terminal 5623, a connection terminal 5624, a connection terminal 5625, a semiconductor device 5626, a semiconductor device 5627, a semiconductor device 5628, and a connection terminal 5629.
  • FIG. 23C illustrates semiconductor devices other than the semiconductor device 5626, semiconductor device 5627, and semiconductor device 5628, these semiconductor devices are described below. The description of the semiconductor device 5628 can be referred to.
  • connection terminal 5629 has a shape that can be inserted into the slot 5631 of the motherboard 5630, and the connection terminal 5629 functions as an interface for connecting the PC card 5621 and the motherboard 5630.
  • Examples of the standard of the connection terminal 5629 include PCIe.
  • connection terminal 5623, the connection terminal 5624, and the connection terminal 5625 can be used as an interface for supplying power, inputting signals, etc. to the PC card 5621, for example. Further, for example, it can be used as an interface for outputting a signal calculated by the PC card 5621.
  • the respective standards of the connection terminal 5623, connection terminal 5624, and connection terminal 5625 include, for example, USB (Universal Serial Bus), SATA (Serial ATA), and SCSI (Small Computer System Interface). e).
  • USB Universal Serial Bus
  • SATA Serial ATA
  • SCSI Serial Computer System Interface
  • the respective standards include HDMI (registered trademark).
  • the semiconductor device 5626 has a terminal (not shown) for inputting and outputting signals, and by inserting the terminal into a socket (not shown) provided on the board 5622, the semiconductor device 5626 and the board 5622 are electrically connected. can be connected to.
  • the semiconductor device 5627 has a plurality of terminals, and the semiconductor device 5627 and the board 5622 are electrically connected by, for example, reflow soldering the terminals to wiring provided on the board 5622. be able to.
  • Examples of the semiconductor device 5627 include an FPGA (Field Programmable Gate Array), a GPU, and a CPU.
  • an electronic component 730 can be used as the semiconductor device 5627.
  • the semiconductor device 5628 has a plurality of terminals, and the semiconductor device 5628 and the board 5622 are electrically connected by, for example, reflow soldering the terminals to wiring provided on the board 5622. be able to.
  • Examples of the semiconductor device 5628 include a storage device.
  • the electronic component 700 can be used as the semiconductor device 5628.
  • the computer 5600 can also function as a parallel computer. By using the computer 5600 as a parallel computer, for example, large-scale calculations required for artificial intelligence learning and inference can be performed.
  • the electronic devices can be made smaller and have lower power consumption. Furthermore, since the storage device of one embodiment of the present invention consumes less power, heat generation from the circuit can be reduced. Therefore, the adverse effect of the heat generation on the circuit itself, peripheral circuits, and module can be reduced. Furthermore, by using the storage device of one embodiment of the present invention, an electronic device that operates stably even in a high-temperature environment can be achieved. Therefore, the reliability of electronic equipment can be improved.
  • a semiconductor device of one embodiment of the present invention includes an OS transistor.
  • OS transistors have small variations in electrical characteristics due to radiation irradiation. In other words, since it has high resistance to radiation, it can be suitably used in environments where radiation may be incident.
  • OS transistors can be suitably used when used in outer space.
  • the OS transistor can be used as a transistor configuring a semiconductor device provided in a space shuttle, an artificial satellite, or a space probe.
  • the radiation include X-rays and neutron beams.
  • outer space refers to, for example, an altitude of 100 km or more, but outer space described in this specification may include one or more of the thermosphere, mesosphere, and stratosphere.
  • FIG. 24 shows an artificial satellite 6800 as an example of space equipment.
  • the artificial satellite 6800 includes a body 6801, a solar panel 6802, an antenna 6803, a secondary battery 6805, and a control device 6807. Note that in FIG. 24, a planet 6804 is illustrated in outer space.
  • outer space is an environment with more than 100 times higher radiation levels than on the ground.
  • radiation include electromagnetic waves (electromagnetic radiation) represented by X-rays and gamma rays, and particle radiation represented by alpha rays, beta rays, neutron rays, proton rays, heavy ion rays, meson rays, etc. It will be done.
  • the electric power necessary for the operation of the artificial satellite 6800 is generated.
  • the power necessary for satellite 6800 to operate may not be generated.
  • the solar panel is sometimes called a solar cell module.
  • the satellite 6800 can generate signals.
  • the signal is transmitted via antenna 6803 and can be received by a ground-based receiver or other satellite, for example.
  • a ground-based receiver or other satellite for example.
  • the position of the receiver that received the signal can be measured.
  • the artificial satellite 6800 can constitute a satellite positioning system.
  • control device 6807 has a function of controlling the artificial satellite 6800.
  • the control device 6807 is configured using one or more selected from, for example, a CPU, a GPU, and a storage device.
  • a semiconductor device including an OS transistor which is one embodiment of the present invention, is preferably used for the control device 6807.
  • OS transistors Compared to Si transistors, OS transistors have smaller fluctuations in electrical characteristics due to radiation irradiation. In other words, it is highly reliable and can be suitably used even in environments where radiation may be incident.
  • the artificial satellite 6800 can be configured to include a sensor.
  • the artificial satellite 6800 can have a function of detecting sunlight reflected by hitting an object provided on the ground.
  • the artificial satellite 6800 can have a function of detecting thermal infrared rays emitted from the earth's surface.
  • the artificial satellite 6800 can have the function of, for example, an earth observation satellite.
  • an artificial satellite is illustrated as an example of space equipment, but the present invention is not limited to this.
  • the semiconductor device of one embodiment of the present invention can be suitably used for space equipment such as a spacecraft, a space capsule, and a space probe.
  • an OS transistor can be used as a transistor constituting a semiconductor device installed in a working robot at a nuclear power plant or a radioactive waste treatment or disposal site.
  • it can be suitably used for transistors constituting semiconductor devices installed in remote-controlled robots that are remotely operated for dismantling nuclear reactor facilities, removing nuclear fuel or fuel debris, and conducting field surveys of spaces with a large amount of radioactive materials.
  • FIGS. 1A to 1F a structure including an oxide 230 shown in FIGS. 1A to 1F was manufactured, and the results of cross-sectional SEM observation will be described.
  • the structure corresponds to the laminate shown in Embodiment 1.
  • a base silicon oxide film, a hafnium oxide film (hereinafter referred to as HfOx film), a silicon oxide film (hereinafter referred to as SiOx film), and an In-Ga-Zn oxide film (hereinafter referred to as SiOx film) are formed on a silicon substrate.
  • IGZO film laminated film of tantalum nitride and tungsten
  • SiNx ⁇ SiOx film laminated film of silicon nitride and silicon oxide
  • W film tungsten film
  • SOC film SOC film
  • SOG film SOG film
  • the base silicon oxide film corresponds to the insulator 216 shown in FIGS. 1A to 1F.
  • the HfOx film corresponds to the insulator 222.
  • the SiOx film corresponds to the insulating film 224f and the insulator 224.
  • the IGZO film corresponds to a laminated film of an oxide film 230af and an oxide film 230bf, and a laminated film of an oxide 230a and an oxide 230b.
  • the TaNx ⁇ W film corresponds to the conductive film 242f and the conductor 242.
  • the SiNx ⁇ SiOx film corresponds to a laminated film of an insulating film 271_1f and an insulating film 271_2f, and a laminated film of an insulator 271_1 and an insulator 271_2.
  • the W film corresponds to the inorganic film 276f and the inorganic film 276.
  • the SOC film corresponds to the coating film 277f and the coating film 277.
  • the SOG film corresponds to the coating film 278f and the coating film 278.
  • the etching conditions necessary for the steps shown in FIGS. 1A to 1F were selected. Similar to FIG. 1C, when etching the TaNx ⁇ W film, the SOC film needs to function as a mask. If the SOC film is removed during etching of the TaNx ⁇ W film, the W film provided under the SOC film will also be removed.
  • the etching selectivity ratio of the TaNx film to the SOC film (hereinafter referred to as the TaNx/SOC selectivity ratio) and the etching selectivity ratio of the W film to the SOC film (hereinafter referred to as the W/SOC selectivity ratio) were calculated.
  • the above dry etching process was performed using a CCP etching apparatus.
  • the etching conditions were as follows: CHF 3 gas 35 sccm, Cl 2 gas 15 sccm, and Ar gas 10 sccm were used as etching gases, the pressure was 0.6 Pa, the distance between the electrodes was 80 mm, the upper electrode power was 1000 W, and the substrate temperature was 60 mm. °C.
  • the etching rate was measured under each condition with lower electrode power of 10 W, 25 W, 50 W, and 100 W.
  • FIG. 25A The measurement results of the etching rate are shown in FIG. 25A, and the etching selectivity is shown in FIG. 25B.
  • the horizontal axis represents the lower electrode power (Btm Power [W])
  • the vertical axis represents the etching rate [nm/min].
  • the horizontal axis represents the lower electrode power (Btm Power [W])
  • the vertical axis represents the etching selectivity.
  • the etching rates of the TaNx film and the W film were comparable to or smaller than the etching rate of the SOC film.
  • the TaNx/SOC selection ratio and the W/SOC selection ratio became 1.0 or less.
  • the etching rate of the TaNx film and the W film was higher than the etching rate of the SOC film.
  • the TaNx/SOC selection ratio was 1.38 and the W/SOC selection ratio was 1.42.
  • the lower electrode power may be at least less than 25W, preferably 10W or less.
  • a silicon substrate was prepared, and a base silicon oxide film was formed on the silicon substrate using the CVD method.
  • an HfOx film with a thickness of 20 nm was formed on the base silicon oxide film using the ALD method.
  • a SiOx film was formed on the HfOx film, and an IGZO film was further formed on the SiOx film.
  • the SiOx film and the IGZO film were formed continuously without exposure to the outside air.
  • the SiOx film was formed to a thickness of 20 nm by a sputtering method using a Si target.
  • the IGZO film has a stacked structure of a 10 nm thick IGZO (132) film and a 15 nm thick IGZO (111) film on the IGZO (132) film.
  • the IGZO (132) film corresponds to the oxide film 230af and oxide 230a shown in FIGS. 1A to 1F.
  • the IGZO (111) film corresponds to the oxide film 230bf and the oxide 230b shown in FIGS. 1A to 1F.
  • the film was formed by a sputtering method using a target with an atomic ratio of 1:1.2.
  • the TaNx ⁇ W film is a laminated film of a 5 nm thick TaNx film and a 15 nm thick W film on the TaNx film.
  • the TaNx film was formed using a tantalum target in an atmosphere containing nitrogen gas.
  • the W film was formed using a tungsten target.
  • the SiNx ⁇ SiOx film was a laminated film of a 5 nm thick SiNx film and a 10 nm thick SiOx film on the SiNx film.
  • the SiNx film was formed using a silicon target in an atmosphere containing nitrogen gas.
  • the SiOx film was formed using a silicon target in an atmosphere containing oxygen gas.
  • a W film with a thickness of 15 nm was formed on the SiNx ⁇ SiOx film using a sputtering method.
  • an SOC film was formed on the W film using a spin coating method.
  • an SOG film was formed on the SOC film using a spin coating method.
  • a negative resist film was formed on the laminated film produced as described above in the same manner as in FIG. 1A.
  • the resist film was irradiated with an electron beam to form an island-shaped resist mask. Note that in each of Sample 1A and Sample 1B, a region where the island-shaped resist mask had a width of 30 nm and a region where the island-shaped resist mask had a width of 60 nm were formed.
  • Table 1 shows the conditions for the dry etching process. Table 1 shows the interelectrode distance (Gap (mm)), top electrode power (Top Power (W)), bottom electrode power (Btm Power (W)), and pressure (Press (Pa )), gas flow rate (Gas (sccm)), and substrate temperature (Tsub (° C.)).
  • the SOG film was etched under the conditions shown in Table 1, and then the SOC film was etched.
  • the W film is etched (denoted as W_1 in Table 1), the SiNx ⁇ SiOx film is etched, and the TaNx ⁇ W film is etched. I did the etching.
  • the lower electrode power was set to 10 W, and in the etching of the TaNx ⁇ W film of Sample 1B, the lower electrode power was set to 25 W.
  • the IGZO film was etched under the conditions shown in Table 1.
  • the SiOx film was etched under the conditions shown in Table 1.
  • Cross-sectional SEM images were taken of Sample 1A and Sample 1B produced as described above.
  • the cross-sectional SEM images were taken using Hitachi High-Tech's "SU8030" at an accelerating voltage of 5 kV.
  • FIGS. 26A to 27B Cross-sectional SEM images of Sample 1A and Sample 1B are shown in FIGS. 26A to 27B.
  • FIG. 26A is a cross-sectional SEM image of a region in which the width of the structure of sample 1A is 30 nm
  • FIG. 26B is a cross-sectional SEM image of a region in which the width of the structure of sample 1B is 30 nm
  • FIG. 27A is a cross-sectional SEM image of a region in which the width of the structure of sample 1A is 60 nm
  • FIG. 27B is a cross-sectional SEM image of a region in which the width of the structure of sample 1B is 60 nm.
  • the TaNx ⁇ W film was significantly retracted and the width of the structure was narrower than in sample 1A where the lower electrode power was set to 10 W. It had become.
  • FIGS. 25A and 25B it is presumed that by lowering the lower electrode power, the SOC film remained even during etching of the TaNx ⁇ W film, and the W film was not etched. Therefore, in one embodiment of the present invention, the TaNx ⁇ W film and the IGZO film can be processed at the same time by the method shown in FIGS. 1A to 1F, so that productivity of semiconductor devices can be improved.
  • the regression of the TaNx ⁇ W film was larger in the region where the width of the structure of sample 1B was 30 nm, but the regression of the TaNx ⁇ W film was suppressed in the region where the width of the structure of sample 1A was 30 nm. Ta. Therefore, as shown in the previous embodiment, even a semiconductor device having a fine structure can be processed as designed by processing it under the conditions shown in this example.
  • sample 2A results of manufacturing the structure shown in FIGS. 8A to 8D (hereinafter referred to as sample 2A) will be described.
  • a silicon nitride film hereinafter referred to as a barrier SiNx film
  • a silicon oxide film hereinafter referred to as an interlayer SiOx film
  • the barrier SiNx film corresponds to the insulator 275
  • the interlayer SiOx film corresponds to the insulator 280. Note that, hereinafter, each component corresponding to sample 1A will be referred to in the same manner as in Example 1.
  • the etching conditions required in the steps shown in FIGS. 8A to 8D were selected. As shown in FIGS. 8A to 8D, when etching the TaNx ⁇ W film, it is necessary to prevent the surface of the IGZO film from being etched. Therefore, it is necessary to perform etching so that the etching selectivity between the TaNx ⁇ W film and the IGZO film becomes large.
  • the etching selectivity ratio of the TaNx film to the IGZO film (hereinafter referred to as the TaNx/IGZO selectivity ratio) and the etching selectivity ratio of the W film to the IGZO film (hereinafter referred to as the W/IGZO selectivity ratio) were calculated.
  • the above dry etching process was performed using an ICP etching apparatus. Etching conditions were as follows: 40 sccm of CF 4 gas and 60 sccm of Cl 2 gas were used as etching gases, the pressure was 0.67 Pa, the ICP power was 1000 W, and the substrate temperature was -10°C. The etching rate was measured under each condition with bias power of 10 W, 50 W, and 100 W.
  • FIG. 28A The measurement results of the etching rate are shown in FIG. 28A, and the etching selectivity is shown in FIG. 28B.
  • the horizontal axis represents bias power (Bias [W])
  • the vertical axis represents etching rate [nm/min].
  • the horizontal axis represents bias power (Bias [W])
  • the vertical axis represents etching selection ratio.
  • the bias power was set to 100 W when etching the TaNx ⁇ W film.
  • a structure similar to Sample 1A was prepared, and a barrier SiNx film was formed to cover the structure consisting of a stacked film of an SiOx film, an IGZO film, a TaNx ⁇ W film, and a SiNx ⁇ SiOx film.
  • the barrier SiNx film was formed to a thickness of 5 nm using the PEALD method. Note that, like sample 1A, sample 2A has a region where the width of the structure is 30 nm and a region where the width of the structure is 60 nm.
  • an interlayer SiOx film was formed on the barrier SiNx film using a sputtering method.
  • the interlayer SiOx film was formed using a silicon target in an atmosphere containing oxygen gas.
  • a CMP process was performed to flatten the upper surface.
  • the thickness of the interlayer SiOx film on the SiNx ⁇ SiOx film was 45 nm.
  • a dry etching process was performed to process the interlayer SiOx film, barrier SiNx film, and SiNx ⁇ SiOx film to form an opening reaching the TaNx ⁇ W film.
  • a dry etching process was performed to divide the TaNx ⁇ W film to form conductors 242a and 242b, that is, a source electrode and a drain electrode, as shown in FIG. 8B.
  • the dry etching process was performed using an ICP etching apparatus. Etching conditions were as follows: 40 sccm of CF 4 gas and 60 sccm of Cl 2 gas were used as etching gases, the pressure was 0.67 Pa, the ICP power was 1000 W, the bias power was 100 W, and the substrate temperature was -10°C.
  • the width of the opening was set to 30 nm in a region where the width of the structure was 30 nm, and the width of the opening was set to 60 nm in a region where the width of the structure was 60 nm.
  • the width of the opening was set to 30 nm in a region where the width of the structure was 30 nm.
  • a cross-sectional SEM image was taken of sample 2A produced as described above.
  • the cross-sectional SEM images were taken using Hitachi High-Tech's "SU8030" at an accelerating voltage of 5 kV.
  • FIGS. 29A to 30B Cross-sectional SEM images of sample 2A are shown in FIGS. 29A to 30B.
  • FIG. 29A is a cross-sectional SEM image in the channel length direction of a region where the structure has a width of 30 nm
  • FIG. 29B is a cross-sectional SEM image in the channel width direction of a region where the structure has a width of 30 nm
  • FIG. 30A is a cross-sectional SEM image in the channel length direction of a region where the structure has a width of 60 nm
  • FIG. 30B is a cross-sectional SEM image in the channel width direction of a region where the structure has a width of 60 nm.
  • the source electrode and drain electrode can be formed as designed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Memories (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

微細化または高集積化が可能な半導体装置を提供する。基板上に、酸化物半導体、第1の導電体、第1の絶縁体、第2の絶縁体、無機膜、第1の塗布膜、及び第2の塗布膜、レジストマスクを、この順で形成し、ドライエッチング法を用いて、第2の塗布膜を加工して、島状の第2の塗布膜を形成し、島状の第2の塗布膜をマスクとして、ドライエッチング法を用いて、第1の塗布膜を加工して、島状の第1の塗布膜を形成し、且つレジストマスクを除去し、島状の第1の塗布膜をマスクとして、ドライエッチング法を用いて、無機膜、第2の絶縁体、第1の絶縁体、及び第1の導電体を、この順で加工して、島状の無機膜、島状の第2の絶縁体、島状の第1の絶縁体、及び島状の第1の導電体を形成し、且つ島状の第2の塗布膜を除去し、島状の無機膜をマスクとして、ドライエッチング法を用いて、酸化物半導体を加工して、島状の酸化物半導体を形成し、且つ島状の第1の塗布膜を除去し、ドライエッチング法を用いて、島状の無機膜を除去し、第1の絶縁体は、窒化物であり、第2の絶縁体は、酸化物である。

Description

積層体の作製方法、及び半導体装置の作製方法
 本発明の一態様は、酸化物半導体層と導電体層を含む積層体の加工方法に関する。また、本発明の一態様は、上記積層体を用いた半導体装置、記憶装置、及び電子機器に関する。また、本発明の一態様は、上記積層体を用いた半導体装置の作製方法に関する。
 なお、本発明の一態様は、上記の技術分野に限定されない。本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置(例えば、タッチセンサ)、入出力装置(例えば、タッチパネル)、それらの駆動方法、またはそれらの製造方法を一例として挙げることができる。
 なお、本明細書等において半導体装置とは、半導体特性を利用することで機能し得る装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路、演算装置、記憶装置は、半導体装置の一態様である。表示装置(液晶表示装置、発光表示装置など)、投影装置、照明装置、電気光学装置、蓄電装置、記憶装置、半導体回路、撮像装置、電子機器などは、半導体装置を有するといえる場合がある。
 近年、半導体装置の開発が進められ、LSI、CPU、メモリなどが主に半導体装置に用いられている。CPUは、半導体ウエハを加工し、チップ化された半導体集積回路(少なくともトランジスタ及びメモリ)を有し、接続端子である電極が形成された半導体素子の集合体である。
 LSI、CPU、メモリなどの半導体回路(ICチップ)は、回路基板、例えばプリント配線基板に実装され、様々な電子機器の部品の一つとして用いられる。
 また、絶縁表面を有する基板上に形成された半導体薄膜を用いてトランジスタを構成する技術が注目されている。該トランジスタは集積回路(IC)、画像表示装置(単に表示装置とも表記する)のような電子デバイスに広く応用されている。トランジスタに適用可能な半導体薄膜としてシリコン系半導体材料が広く知られているが、その他の材料として酸化物半導体が注目されている。
 また、酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいことが知られている。例えば、特許文献1には、酸化物半導体を用いたトランジスタのリーク電流が小さいという特性を応用した低消費電力のCPUなどが開示されている。また、例えば、特許文献2には、酸化物半導体を用いたトランジスタのリーク電流が小さいという特性を応用して、長期にわたり記憶内容を保持できる記憶装置などが、開示されている。
 また、酸化物半導体層の上面に接して、ソース電極層とドレイン電極層が設けられた、微細構造のトランジスタが、特許文献3に開示されている。
特開2012−257187号公報 特開2011−151383号公報 国際公開第2016−125052号
 本発明の一態様は、微細な構造を有する、酸化物半導体層と導電体層を含む積層体の加工方法を提供することを課題の一とする。または、本発明の一態様は、上記積層体を含む半導体装置の作製方法を提供することを課題の一とする。または、本発明の一態様は、微細化または高集積化が可能な半導体装置を提供することを課題の一とする。または、本発明の一態様は、動作速度が速い半導体装置を提供することを課題の一とする。または、本発明の一態様は、良好な電気特性を有する半導体装置を提供することを課題の一とする。または、本発明の一態様は、トランジスタの電気特性のばらつきが少ない半導体装置を提供することを課題の一とする。または、本発明の一態様は、信頼性が高い半導体装置を提供することを課題の一とする。または、本発明の一態様は、オン電流が大きい半導体装置を提供することを課題の一とする。または、本発明の一態様は、消費電力が少ない半導体装置を提供することを課題の一とする。または、本発明の一態様は、新規の半導体装置を提供することを課題の一とする。または、本発明の一態様は、生産性の高い半導体装置の作製方法を提供することを課題の一とする。また、本発明の一態様は、新規の半導体装置の作製方法を提供することを課題の一とする。
 または、本発明の一態様は、記憶容量が大きい記憶装置を提供することを課題の一とする。または、本発明の一態様は、動作速度が速い記憶装置を提供することを課題の一とする。または、本発明の一態様は、消費電力が少ない記憶装置を提供することを課題の一とする。または、本発明の一態様は、新規な記憶装置を提供することを課題の一とする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はないものとする。明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
 本発明の一態様は、基板上に、酸化物半導体、第1の導電体、窒化物を有する第1の絶縁体、酸化物を有する第2の絶縁体、無機膜、第1の塗布膜、及び第2の塗布膜を、この順で成膜し、第2の塗布膜上にレジストマスクを形成し、レジストマスクをマスクとして、ドライエッチング法を用いて、第2の塗布膜を加工して、島状の第2の塗布膜を形成し、島状の第2の塗布膜をマスクとして、ドライエッチング法を用いて、第1の塗布膜を加工して、島状の第1の塗布膜を形成し、且つレジストマスクを除去し、島状の第1の塗布膜をマスクとして、ドライエッチング法を用いて、無機膜、第2の絶縁体、第1の絶縁体、及び第1の導電体を、この順で加工して、島状の無機膜、島状の第2の絶縁体、島状の第1の絶縁体、及び島状の第1の導電体を形成し、且つ島状の第2の塗布膜を除去し、島状の無機膜をマスクとして、ドライエッチング法を用いて、酸化物半導体を加工して、島状の酸化物半導体を形成し、且つ島状の第1の塗布膜を除去し、ドライエッチング法を用いて、島状の無機膜を除去する、積層体の作製方法である。
 上記において、酸化物半導体は、インジウム、ガリウム、及び亜鉛を有する、ことが好ましい。
 また、上記において、第1の導電体は、窒化タンタルを有する、ことが好ましい。
 また、上記において、第1の導電体は、窒化タンタルを含む層と、窒化タンタルを含む層上のタングステンを含む層の積層構造を有する、構成にしてもよい。
 また、上記において、第1の絶縁体は、窒化シリコンを有する、ことが好ましい。
 また、上記において、第2の絶縁体は、酸化シリコンを有する、ことが好ましい。
 また、上記において、無機膜は、タングステンを有する、ことが好ましい。
 また、上記において、第1の塗布膜は、炭素を有する、ことが好ましい。
 また、上記において、第2の塗布膜は、シリコン及び酸素を有する、ことが好ましい。
 また、上記において、基板と酸化物半導体の間に、第3の絶縁体、及び第4の絶縁体を、この順で成膜し、島状の酸化物半導体を形成した後で、島状の無機膜をマスクとして、ドライエッチング法を用いて、第4の絶縁体を加工して、島状の第4の絶縁体を形成する、ことが好ましい。
 また、上記において、第3の絶縁体は、酸化ハフニウムを有し、第4の絶縁体は、酸化シリコンを有する、ことが好ましい。
 また、本発明の他の一態様は、上記の積層体の作製方法を用いて、積層体を加工した後で、第1の導電体を、第2の導電体と第3の導電体に分断し、第2の導電体と第3の導電体の間の領域に重なるように、第5の絶縁体と、第5の絶縁体上の第4の導電体と、を形成する、半導体装置の作製方法である。
 本発明の一態様により、微細な構造を有する、酸化物半導体層と導電体層を含む積層体の加工方法を提供できる。または、本発明の一態様により、上記積層体を含む半導体装置の作製方法を提供できる。または、本発明の一態様により、微細化または高集積化が可能な半導体装置を提供できる。または、本発明の一態様により、動作速度が速い半導体装置を提供できる。または、本発明の一態様により、良好な電気特性を有する半導体装置を提供できる。または、本発明の一態様により、トランジスタの電気特性のばらつきが少ない半導体装置を提供できる。または、本発明の一態様により、信頼性が高い半導体装置を提供できる。または、本発明の一態様により、オン電流が大きい半導体装置を提供できる。または、本発明の一態様により、消費電力が少ない半導体装置を提供できる。または、本発明の一態様により、新規の半導体装置を提供できる。または、本発明の一態様により、生産性の高い半導体装置の作製方法を提供できる。または、本発明の一態様により、新規の半導体装置の作製方法を提供できる。
 本発明の一態様により、記憶容量が大きい記憶装置を提供できる。または、本発明の一態様により、動作速度が速い記憶装置を提供できる。または、本発明の一態様により、消費電力が少ない記憶装置を提供できる。または、本発明の一態様により、新規な記憶装置を提供できる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。明細書、図面、請求項の記載から、これら以外の効果を抽出することが可能である。
図1A乃至図1Fは、積層体の作製方法の一例を示す断面図である。
図2Aは、半導体装置の一例を示す平面図である。図2B乃至図2Dは、半導体装置の一例を示す断面図である。
図3A及び図3Bは、半導体装置の一例を示す断面図である。
図4A及び図4Bは、半導体装置の一例を示す断面図である。
図5Aは、半導体装置の作製方法の一例を示す平面図である。図5B乃至図5Dは、半導体装置の作製方法の一例を示す断面図である。
図6Aは、半導体装置の作製方法の一例を示す平面図である。図6B乃至図6Dは、半導体装置の作製方法の一例を示す断面図である。
図7Aは、半導体装置の作製方法の一例を示す平面図である。図7B乃至図7Dは、半導体装置の作製方法の一例を示す断面図である。
図8Aは、半導体装置の作製方法の一例を示す平面図である。図8B乃至図8Dは、半導体装置の作製方法の一例を示す断面図である。
図9Aは、半導体装置の作製方法の一例を示す平面図である。図9B乃至図9Dは、半導体装置の作製方法の一例を示す断面図である。
図10Aは、半導体装置の作製方法の一例を示す平面図である。図10B乃至図10Dは、半導体装置の作製方法の一例を示す断面図である。
図11Aは、半導体装置の作製方法の一例を示す平面図である。図11B乃至図11Dは、半導体装置の作製方法の一例を示す断面図である。
図12は、記憶装置の一例を示すブロック図である。
図13A及び図13Bは、記憶装置の一例を示す模式図及び回路図である。
図14A及び図14Bは、記憶装置の一例を示す模式図である。
図15は、記憶装置の一例を示す回路図である。
図16は、記憶装置の一例を示す断面図である。
図17は、記憶装置の一例を示す断面図である。
図18A乃至図18Cは、記憶装置の一例を示す回路図である。
図19A及び図19Bは半導体装置の一例を示す図である。
図20A及び図20Bは電子部品の一例を示す図である。
図21A乃至図21Jは、電子機器の一例を示す図である。
図22A乃至図22Eは、電子機器の一例を示す図である。
図23A乃至図23Cは、電子機器の一例を示す図である。
図24は、宇宙用機器の一例を示す図である。
図25A及び図25Bは、本実施例に係るグラフである。
図26A及び図26Bは、本実施例に係る断面SEM像である。
図27A及び図27Bは、本実施例に係る断面SEM像である。
図28A及び図28Bは、本実施例に係るグラフである。
図29A及び図29Bは、本実施例に係る断面SEM像である。
図30A及び図30Bは、本実施例に係る断面SEM像である。
 実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
 なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチングパターンを同じくし、特に符号を付さない場合がある。
 また、図面において示す各構成の、位置、大きさ、及び、範囲などは、理解の簡単のため、実際の位置、大きさ、及び、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面に開示された位置、大きさ、及び、範囲などに限定されない。
 なお、本明細書等において、「第1」、「第2」という序数詞は、便宜上用いるものであり、構成要素の数、または、構成要素の順序(例えば、工程順、または積層順)を限定するものではない。また、本明細書のある箇所において構成要素に付す序数詞と、本明細書の他の箇所、または特許請求の範囲において、当該構成要素に付す序数詞と、が一致しない場合がある。
 なお、「膜」という言葉と、「層」という言葉とは、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能である。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能である。また、「導電体」という用語は、場合によっては、または、状況に応じて、「導電層」という用語、または「導電膜」という用語に、互いに入れ替えることが可能である。また、「絶縁体」という用語は、場合によっては、または、状況に応じて、「絶縁層」という用語、または「絶縁膜」という用語に、互いに入れ替えることが可能である。
 開口とは、例えば、溝、スリットなども含まれる。また、開口が形成された領域を開口部と記す場合がある。
 また、本実施の形態で用いる図面において、絶縁体の開口部における側壁が、基板面または被形成面に対して概略垂直である場合を示すが、テーパー形状であってもよい。
 なお、本明細書等において、テーパー形状とは、構造の側面の少なくとも一部が、基板面または被形成面に対して傾斜して設けられている形状のことを指す。例えば、傾斜した側面と基板面または被形成面とがなす角(以下、テーパー角と呼ぶ場合がある)が90°未満である領域を有すると好ましい。なお、構造の側面及び基板面は、必ずしも完全に平坦である必要はなく、微細な曲率を有する略平面状、または微細な凹凸を有する略平面状であってもよい。
(実施の形態1)
 本実施の形態では、本発明の一態様に係る、酸化物半導体層と導電体層を含む積層体の加工方法について、説明する。また、当該積層体を含む半導体装置について説明する。
<積層体の加工方法例>
 図1A乃至図1Fを用いて、本発明の一態様に係る、酸化物半導体層と導電体層を含む積層体の加工方法の例について説明する。
 本項目では、図1Fに示す、酸化物230(酸化物230a、及び酸化物230b)と、酸化物230上の導電体242を有する積層体を形成する方法について説明する。つまり、積層体を構成する酸化物半導体層として酸化物230を設け、導電体層として導電体242を設ける。図1Fに示す積層体は、下地絶縁膜として機能する、絶縁体216及び絶縁体222上に、島状の絶縁体224、島状の酸化物230(酸化物230a、及び酸化物230b)、島状の導電体242、及び島状の絶縁体271(絶縁体271_1、絶縁体271_2)を有する。
 酸化物230は、酸化物半導体として機能する金属酸化物であり、例えば、トランジスタの活性層として用いることができる。この場合、酸化物230の上面に接して設けられる、導電体242は、当該トランジスタのソース電極またはドレイン電極として機能させることができる。
 以下に、図1A乃至図1Fを用いて、絶縁体224、酸化物230、導電体242、及び絶縁体271を有する積層体の加工の具体例について説明する。
 まず、基板(図示しない)上に、絶縁体216、絶縁体222、絶縁膜224f、酸化膜230af、酸化膜230bf、導電膜242f、絶縁膜271_1f、及び絶縁膜271_2fを、この順で成膜する(図1A)。ここで、絶縁膜224fは後の工程で絶縁体224となる絶縁膜である。また、酸化膜230afは後の工程で酸化物230aとなる金属酸化物膜である。また、酸化膜230bfは後の工程で酸化物230bとなる金属酸化物膜である。また、導電膜242fは後の工程で導電体242となる導電膜である。また、絶縁膜271_1fは後の工程で絶縁体271_1となる絶縁膜である。また、絶縁膜271_2fは後の工程で絶縁体271_2なる絶縁膜である。
 ここで、絶縁膜271_1f、及び絶縁膜271_2fは、後の工程でエッチングストップ膜として機能し、導電体242を保護する膜である。また、絶縁膜271_1fは、導電膜242fに接するため、導電膜242fを酸化させにくい、無機絶縁膜であることが好ましい。絶縁膜271_1fは、窒化物絶縁体を用いることが好ましく、例えば、窒化シリコンを用いることが好ましい。また、絶縁膜271_2fは、酸化物絶縁体を用いることが好ましく、例えば、酸化シリコンを用いることが好ましい。なお、絶縁膜271_1f、及び絶縁膜271_2fは、大気に暴露することなく、連続して成膜する構成にしてもよい。
 例えば、絶縁体216、及び絶縁膜224fは、酸化シリコンを用いればよい。また、例えば、絶縁体222は、酸化ハフニウムを用いればよい。また、例えば、酸化膜230af、及び酸化膜230bfは、In、Ga、Znを含む酸化物を用いればよい。また、例えば、導電膜242fは、窒化タンタルを用いればよい。また、例えば、導電膜242fを積層構造にしてもよく、窒化タンタルを含む層と、当該窒化タンタルを含む層上のタングステンを含む層の積層構造にしてもよい。
 なお、絶縁体216、絶縁体222、絶縁膜224f(絶縁体224)、酸化膜230af(酸化物230a)、酸化膜230bf(酸化物230b)、導電膜242f(導電体242)、絶縁膜271_1f(絶縁体271_1)、及び絶縁膜271_2f(絶縁体271_2)の詳細な構成については、<半導体装置の構成例>で説明する。
 次に、絶縁膜271_2f上に無機膜276fを成膜する(図1A)。無機膜276fの成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。無機膜276fは、後の工程で酸化物230a、酸化物230b、及び絶縁体224を形成するためのハードマスクとして機能する膜である。無機膜276fとしては、金属材料、または無機絶縁材料などを用いればよい。例えば、無機膜276fとして、スパッタリング法で成膜した、タングステンを用いればよい。また、絶縁膜271_1f、及び絶縁膜271_2f成膜後に、大気に暴露することなく、無機膜276fを連続して成膜する構成にしてもよい。
 次に、無機膜276f上に塗布膜277fを成膜し、さらに塗布膜278fを成膜する(図1A)。塗布膜277f及び塗布膜278fは、後述するレジストマスクと無機膜276の密着性を向上させる機能を有していてもよい。塗布膜277f及び塗布膜278fの成膜は、例えば、スピンコート法などを用いて行えばよい。塗布膜277f及び塗布膜278fとしては、非感光性の有機樹脂を用いればよい。
 ここで、塗布膜278fは、塗布膜277fを加工するエッチング処理において、マスクとして機能する。よって、塗布膜277fのエッチング条件において、塗布膜278fのエッチングレートは、塗布膜277fのエッチングレートより小さいことが好ましい。例えば、塗布膜277fを、炭素を有する膜とし、塗布膜278fを、シリコン及び炭素を有する膜にすればよい。本実施の形態では、塗布膜277fとしてSOC(Spin On Carbon)膜を成膜し、塗布膜278fとしてSOG(Spin On Glass)膜を成膜する。
 なお、塗布膜277f、及び塗布膜278fは、塗布時にはアルコールなどの有機溶媒を含むが、以降の工程中または半導体装置の完成時には、含まれる有機物が低減または除去される場合がある。なお、塗布膜は必要に応じて設ければよく、塗布膜を単層にする構成にしてもよいし、後述するレジストマスクのみで十分な場合は、塗布膜を設けない構成にしてもよい。
 次に、リソグラフィ法を用いて、塗布膜278f上にレジストマスク279を形成する(図1A)。レジストマスク279としては、フォトレジストとも呼ばれる感光性の有機樹脂を用いればよい。例えば、ポジ型のフォトレジストまたはネガ型のフォトレジストを用いることができる。レジストマスク279となるフォトレジストは、例えばスピンコート法などを用いて成膜することで、均一な厚さに成膜することができる。
 なお、リソグラフィ法では、まず、マスクを介してレジストを露光する。次に、露光された領域を、現像液を用いて除去または残存させてレジストマスクを形成する。次に、当該レジストマスクを介してエッチング処理することで、導電体、半導体、または絶縁体などを所望の形状に加工することができる。例えば、KrFエキシマレーザ光、ArFエキシマレーザ光、EUV(Extreme Ultraviolet)光などを用いて、レジストを露光することでレジストマスクを形成することができる。また、基板と投影レンズとの間に液体(例えば水)を満たして露光する、液浸技術を用いてもよい。また、前述した光に代えて、電子ビームまたはイオンビームを用いてもよい。なお、電子ビームまたはイオンビームを用いる場合には、マスクを用いなくてもよい場合がある。
 以下、図1B乃至図1Fに係る工程では、ドライエッチング法を用いて、図1Aに示す積層膜のエッチング処理を行う。ドライエッチング法は、異方性エッチングが可能なため、アスペクト比が高い、絶縁体224、酸化物230、導電体242、及び絶縁体271を含む、微細構造の積層体を形成するのに、好適である。
 ここで、ドライエッチング処理用のエッチングガスとしては、ハロゲンを含むエッチングガスを用いることができ、具体的には、フッ素、塩素、及び臭素のうち、一または複数を含むエッチングガスを用いることができる。例えば、エッチングガスとして、Cガス、Cガス、Cガス、CFガス、SFガス、CHFガス、CHガス、Clガス、BClガス、SiClガス、またはBBrガスなどを単独または2以上のガスを混合して用いることができる。また、上記のエッチングガスに酸素ガス、炭酸ガス、窒素ガス、ヘリウムガス、アルゴンガス、水素ガス、または炭化水素ガスなどを適宜添加することができる。また、ドライエッチング処理の被処理物によっては、ハロゲンガスを含まず、炭化水素ガスまたは水素ガスを含むガスを、エッチングガスとして用いることができる。エッチングガスに用いる炭化水素としては、メタン(CH)、エタン(C)、プロパン(C)、ブタン(C10)、エチレン(C)、プロピレン(C)、アセチレン(C)、およびプロピン(C)の一または複数を用いることができる。エッチング条件は、エッチングする対象に合わせて適宜設定することができる。
 また、ドライエッチング装置としては、平行平板型電極を有する容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング装置を用いることができる。平行平板型電極を有する容量結合型プラズマエッチング装置は、平行平板型電極の一方の電極に高周波電圧を印加する構成でもよい。または平行平板型電極の一方の電極に複数の異なった高周波電圧を印加する構成でもよい。または平行平板型電極それぞれに同じ周波数の高周波電圧を印加する構成でもよい。または平行平板型電極それぞれに周波数の異なる高周波電圧を印加する構成でもよい。または高密度プラズマ源を有するドライエッチング装置を用いることができる。高密度プラズマ源を有するドライエッチング装置は、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング装置などを用いることができる。エッチング装置は、エッチングする対象に合わせて適宜設定することができる。
 なお、図1B乃至図1Fに係る工程は、外気に曝さず連続して行うことが好ましい。例えば、マルチチャンバー方式のエッチング装置を用いて、外気に曝さず処理を行えばよい。ここで、図1B乃至図1Fに係る工程で、チャンバーの平行平板型電極それぞれに周波数の異なる高周波電圧を印加する、CCPエッチング装置を用いることが好ましい。この場合、上部電極に周波数の高い高周波電圧を印加し、基板を設置する下部電極に周波数の低い高周波電圧を印加する構成にすることができる。
 まず、レジストマスク279を用いて、塗布膜278fを加工して、島状の塗布膜278を形成する。例えば、塗布膜278fにSOG膜を用いる場合、CHFとOをエッチングガスとして用いることができる。
 次に、塗布膜278をマスクとして用いて、塗布膜277fを加工して、島状の塗布膜277を形成する(図1B)。例えば、塗布膜277fにSOC膜を用いる場合、HとNをエッチングガスとして用いることができる。ここで、塗布膜278としてSOG膜を用いているため、塗布膜277fのエッチング工程中に、塗布膜278が消失するのを防ぐことができる。
 また、塗布膜277fの加工中に、レジストマスク279を同時に除去することが好ましい。塗布膜277fにSOC膜を用いているため、容易にレジストマスク279を除去することができる。なお、塗布膜277の形成後に、レジストマスク279が残存している場合、レジストマスク279を除去することが好ましい。
 次に、塗布膜277をマスクとして用いて、無機膜276f、絶縁膜271_2f、絶縁膜271_1f、及び導電膜242fを、この順で加工して、島状の無機膜276、島状の絶縁体271_1、島状の絶縁体271_2、及び島状の導電体242を形成する(図1C)。例えば、無機膜276fにタングステン膜を用いる場合、CFとClをエッチングガスとして用いることができる。また、例えば、絶縁膜271_1fに窒化シリコンを用い、絶縁膜271_2fに酸化シリコンを用いる場合、絶縁膜271_1f及び絶縁膜271_2fのエッチングにおいて、CHFとOをエッチングガスとして用いることができる。また、例えば、導電膜242fに窒化タンタル膜を用いる場合、CHFとClとArをエッチングガスとして用いることができる。また、導電膜242fに、窒化タンタル層とタングステン層の積層膜を用いる場合も、同様に、HFとClとArをエッチングガスとして用いることができる。
 ここで、無機膜276と、導電膜242fに同じ金属材料(例えばタングステンなど)が用いられる場合がある。導電膜242fのエッチング中に、マスクとして機能する塗布膜277が消失すると、無機膜276が当該エッチングに曝される。これにより、導電膜242fなどが過剰にエッチングされ、導電体242の幅が設計より狭くなる恐れがある。
 そこで、導電膜242fのエッチング工程では、導電膜242fのエッチングレートが、塗布膜277のエッチングレートより大きい条件でエッチングを行うことが好ましい。例えば、導電膜242fのエッチング工程において、基板が設置された下部電極の電力を低くすることが好ましい。例えば、基板が設置された下部電極の電力を、上述の無機膜276fをエッチングしたときの下部電極の電力より低くすればよく、25W未満にすることが好ましく、10W以下にすることがより好ましい。このような条件でエッチングを行うことで、微細構造の積層体においても、設計通りに加工を行うことができる。
 なお、絶縁膜271_1f、及び絶縁膜271_2fの加工中に、塗布膜278を同時に除去することが好ましい。絶縁膜271_1f、及び絶縁膜271_2fにシリコン系の絶縁膜を用いているため、容易に塗布膜278を除去することができる。
 次に、無機膜276をマスクとして用いて、酸化膜230bf、及び酸化膜230afを加工して、島状の酸化物230b、及び島状の酸化物230aを形成する(図1D)。例えば、酸化膜230bf、及び酸化膜230afにIn、Ga、及びZnの中から選ばれるいずれか一または複数を有する酸化物を用いる場合、CHとArをエッチングガスとして用いることができる。In、Ga、Znを含む酸化物は、CHラジカルと反応して、揮発性が高い金属錯体を形成しやすい。よって、基板温度が比較的低くても、CHを含むガスを用いることで、難エッチング材料であるIn、Ga、Znを含む酸化物の加工を容易に行うことができる。
 さらに、無機膜276がタングステンを含み、絶縁膜224fがシリコン酸化物を含む場合、メタン(CH)ガスを用いて、酸化膜230bf、及び酸化膜230afのエッチングを行うことが好ましい。このように、エッチングを行うことで、酸化膜230bf、及び酸化膜230afのエッチングレートを、無機膜276及び絶縁膜224fより、顕著に大きくすることができる。よって、本工程において、絶縁膜224fを平坦にしたままで、酸化膜230bf、及び酸化膜230afを島状に形成することができる。これにより、後述する絶縁膜224fを島状に形成する工程において、絶縁膜224fの酸化物230aと重畳しない領域をきれいに除去し、且つ絶縁体222がオーバーエッチングされるのを防ぐことができる。
 なお、酸化膜230bf、及び酸化膜230afの加工中に、塗布膜277を同時に除去することが好ましい。なお、塗布膜277が、図1Dに示す工程後に残存した場合は、アッシングなどのドライエッチング処理を行う、ウェットエッチング処理を行う、ドライエッチング処理後にウェットエッチング処理を行う、またはウェットエッチング処理後にドライエッチング処理を行うことで、除去すればよい。
 また、導電体242の形成が終ったあとであって、酸化膜230bf、及び酸化膜230afの加工を行う前に、塗布膜277を除去してもよい。
 次に、無機膜276を用いて、絶縁膜224fを加工して、島状の絶縁体224を形成する(図1E)。例えば、絶縁膜224fに酸化シリコン膜を用いる場合、CHFとArをエッチングガスとして用いることができる。
 ここで、絶縁膜224fの加工中に、絶縁体222がオーバーエッチングされないことが好ましい。よって、絶縁体222に対するエッチング選択比が大きい条件でエッチングすることが好ましい。例えば、絶縁膜224fがシリコン酸化物を含み、フッ素を含むガスでエッチングする場合、絶縁体222はハフニウム酸化物を含むことが好ましい。
 最後に、無機膜276を除去する。(図1F)。ここで、絶縁体271_1及び絶縁体271_2は、エッチングストップ膜として機能し、導電体242を保護する。ここで、絶縁体271_2としてシリコン系の酸化物絶縁膜を用いているため、無機膜276のエッチング工程中に、絶縁体271_1及び絶縁体271_2が消失するのを防ぐことができる。
 例えば、無機膜276にタングステン膜を用いる場合、CFとClとOをエッチングガスとして用いることができる。なお、無機膜276の材料が後工程に影響が無い、あるいは後工程で利用できる場合、必ずしも無機膜276を除去する必要は無い。
 また、無機膜276の除去工程において、絶縁体271_1及び絶縁体271_2が導電体242を保護するマスクとして機能するため、導電体242は側面と上面の間に湾曲面を有しない。これにより、導電体242は、側面と上面が交わる端部が角状になる。導電体242の側面と上面が交わる端部が角状になることで、当該端部が曲面を有する場合に比べて、導電体242の断面積が大きくなる。さらに、絶縁体271_1に、金属を酸化させにくい窒化物絶縁体を用いることで、導電体242が過剰に酸化されるのを防ぐことができる。以上により、上記積層体をトランジスタに用いる場合、ソース電極及びドレイン電極の元になる導電体242の抵抗が低減されるため、トランジスタのオン電流を大きくすることができる。
 以上のようにして、図1Fに示すように、導電体242の側面が、酸化物230の側面に対して、過剰に後退していない、言い換えると、導電体242の側端部と、酸化物230の側端部が概略一致している、島状の積層体を形成することができる。このような微細構造の積層体を用いて、トランジスタを作製することで、半導体装置の微細化、及び高集積化を図ることができる。
 また、絶縁体224、酸化物230a、酸化物230b、導電体242、絶縁体271_1、及び絶縁体271_2を一括で島状に加工することができる。これにより、絶縁体224、酸化物230a、酸化物230b、導電体242、絶縁体271_1、及び絶縁体271_2を個別に島状に加工したときよりも、工程数を削減することができる。よって、半導体装置の生産性向上を図ることができる。
<半導体装置の構成例>
 図2乃至図4を用いて、上記の積層体を用いた半導体装置の構成例について説明する。図2A乃至図2Dは、半導体装置(トランジスタ200)の平面図および断面図である。図2Aは、当該半導体装置の平面図である。また、図2B乃至図2Dは、当該半導体装置の断面図である。ここで、図2Bは、図2AにA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、図2Cは、図2AにA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、図2Dは、図2AにA5−A6の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。なお、図2Aの平面図では、図の明瞭化のために一部の要素を省いている。また、図3A及び図3Bに、トランジスタ200のチャネル長方向の断面拡大図を示し、図4A及び図4Bに、トランジスタ200のチャネル幅方向の断面拡大図を示す。
 トランジスタ200は、絶縁体215上の絶縁体216と、絶縁体216に埋め込まれるように設けられた導電体205(導電体205a及び導電体205b)と、絶縁体216及び導電体205上の絶縁体222と、絶縁体222上の絶縁体224と、絶縁体224上の酸化物230(酸化物230a及び酸化物230b)と、酸化物230上の、導電体242a及び導電体242bと、導電体242a上の絶縁体271a(絶縁体271a1及び絶縁体271a2)と、導電体242b上の絶縁体271b(絶縁体271b1及び絶縁体271b2)と、酸化物230上の絶縁体250と、絶縁体250上の導電体260(導電体260a及び導電体260b)と、を有する。
 絶縁体271a、271b上には、絶縁体275が設けられ、絶縁体275上には絶縁体280が設けられている。絶縁体250、及び導電体260は、絶縁体280及び絶縁体275に設けられた開口の内部に埋め込まれている。絶縁体280上及び導電体260上に絶縁体282が設けられている。また、絶縁体282上に絶縁体283が設けられている。
 酸化物230は、トランジスタ200のチャネル形成領域として機能する領域を有する。また、導電体260は、トランジスタ200の第1のゲート電極(上側のゲート電極)として機能する領域を有する。絶縁体250は、トランジスタ200の第1のゲート絶縁体として機能する領域を有する。また、導電体205は、トランジスタ200の第2のゲート電極(下側のゲート電極)として機能する領域を有する。絶縁体224及び絶縁体222は、それぞれ、トランジスタ200の第2のゲート絶縁体として機能する領域を有する。
 導電体242aは、トランジスタ200のソース電極またはドレイン電極の一方として機能する領域を有する。導電体242bは、トランジスタ200のソース電極またはドレイン電極の他方として機能する領域を有する。
 図2B乃至図2Dに示すように、トランジスタ200の断面視において、導電体242aの側端部の一方は、酸化物230の側端部の一方と概略一致し、導電体242bの側端部の一方は、酸化物230の側端部の他方と概略一致することが好ましい。さらに、絶縁体224の側端部が、酸化物230の側端部と概略一致することが好ましい。上述の通り、本発明の一態様は、絶縁体224、酸化物230、ならびに導電体242a及び導電体242bとなる導電体242を一括で島状に加工することができる。これにより、本発明の一態様に係る半導体装置は、良好な生産性で作製することができる。上述のように加工する場合、絶縁体224、酸化物230、導電体242a、及び導電体242bは、上記のように側端部がそれぞれ概略一致する形状になる。
 また、絶縁体271a及び絶縁体271bは、上記島状の加工において、導電体242a及び導電体242bを保護するエッチングストッパとして機能する。よって、図2B及び図2Dに示すように、トランジスタ200の断面視において、絶縁体271aの側端部は、導電体242aの側端部と概略一致し、絶縁体271bの側端部は、導電体242bの側端部と概略一致することが好ましい。
 なお、断面視において、側端部が一致している、または概略一致している場合、及び、上面形状が一致または概略一致している場合、上面視において、積層した層と層との間で少なくとも輪郭の一部が重なっているといえる。例えば、上層の側端部の下部が、下層の側端部の上部と接する場合を含む。また、例えば、上層と下層とが、同一のマスクパターン、または一部が同一のマスクパターンにより加工された場合を含む。ただし、厳密には輪郭が重なり合わず、上層が下層の内側に位置すること、または、上層が下層の外側に位置することもあり、この場合も側端部が概略一致している、または、上面形状が概略一致している、という。
 酸化物230は、絶縁体224上の酸化物230aと、酸化物230a上の酸化物230bと、を有することが好ましい。酸化物230b下に酸化物230aを有することで、酸化物230aよりも下方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。
 なお、本実施の形態では、酸化物230が、酸化物230a及び酸化物230bの2層構造である例を示すが、これに限定されない。酸化物230は、例えば、酸化物230bの単層構造であってもよく、3層以上の積層構造としてもよい。
 酸化物230bは、図3Aに示すように、トランジスタ200における、領域230bcと、領域230bcを挟むように設けられる領域230ba及び領域230bbと、を有する。ここで、領域230bcはチャネル形成領域として機能する。また、領域230baは、ソース領域及びドレイン領域の一方として機能し、領域230bbは、ソース領域及びドレイン領域の他方として機能する。領域230bcの少なくとも一部は、導電体260と重なる。領域230baは導電体242aと重なり、領域230bbは導電体242bと重なる。
 領域230bcは、領域230ba及び領域230bbよりも、酸素欠損が少ない、または不純物濃度が低いため、キャリア濃度が低い高抵抗領域である。よって、領域230bcは、i型(真性)または実質的にi型であるということができる。
 また、領域230ba及び領域230bbは、酸素欠損が多い、または水素、窒素、金属元素などの不純物濃度が高いため、キャリア濃度が高い低抵抗領域である。すなわち、領域230ba及び領域230bbは、領域230bcと比較してキャリア濃度が高い、n型の領域(低抵抗領域)である。
 なお、領域230bcのキャリア濃度は、1×1018cm−3以下、1×1017cm−3未満、1×1016cm−3未満、1×1015cm−3未満、1×1014cm−3未満、1×1013cm−3未満、1×1012cm−3未満、1×1011cm−3未満、または、1×1010cm−3未満であることが好ましい。また、領域230bcのキャリア濃度の下限値については、特に限定は無いが、例えば、1×10−9cm−3とすることができる。
 なお、酸化物230bのキャリア濃度を低くする場合においては、酸化物230b中の不純物濃度を低くし、欠陥準位密度を低くする。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性という。なお、キャリア濃度の低い酸化物半導体(または金属酸化物)を、高純度真性または実質的に高純度真性な酸化物半導体(または金属酸化物)と呼ぶ場合がある。
 トランジスタ200の電気特性を安定にするためには、酸化物230b中の不純物濃度を低減することが有効である。また、酸化物230bの不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。なお、酸化物230b中の不純物とは、例えば、酸化物230bを構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物といえる。
 なお、領域230bc、領域230ba、及び、領域230bbは、それぞれ、酸化物230bだけでなく、酸化物230aまで形成されていてもよい。
 また、酸化物230において、各領域の境界を明確に検出することが困難な場合がある。各領域内で検出される金属元素、並びに、水素、及び窒素などの不純物元素の濃度は、領域ごとの段階的な変化に限らず、各領域内でも連続的に変化していてもよい。つまり、領域230bcに近い領域であるほど、金属元素、並びに、水素、及び窒素などの不純物元素の濃度が減少していてもよい。
 酸化物230(酸化物230a及び酸化物230b)には、半導体として機能する金属酸化物(以下、酸化物半導体ともいう)を用いることが好ましい。
 半導体として機能する金属酸化物のバンドギャップは、2eV以上が好ましく、2.5eV以上がより好ましい。バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減できる。このように、チャネル形成領域に金属酸化物を有するトランジスタをOSトランジスタと呼ぶ。OSトランジスタは、オフ電流が小さいため、半導体装置の消費電力を十分に低減できる。また、OSトランジスタの周波数特性が高いため、半導体装置を高速に動作させることができる。
 酸化物230は、金属酸化物(酸化物半導体)を有することが好ましい。酸化物230に用いることができる金属酸化物として、例えば、インジウム酸化物、ガリウム酸化物、及び亜鉛酸化物が挙げられる。金属酸化物は、少なくともインジウム(In)または亜鉛(Zn)を含むことが好ましい。また、金属酸化物は、インジウムと、元素Mと、亜鉛と、の中から選ばれる二または三を有することが好ましい。なお、元素Mは、酸素との結合エネルギーが高い金属元素又は半金属元素であり、例えば、酸素との結合エネルギーがインジウムよりも高い金属元素又は半金属元素である。元素Mとして、具体的には、アルミニウム、ガリウム、錫、イットリウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、ジルコニウム、モリブデン、ハフニウム、タンタル、タングステン、ランタン、セリウム、ネオジム、マグネシウム、カルシウム、ストロンチウム、バリウム、ホウ素、シリコン、ゲルマニウム、及びアンチモンなどが挙げられる。金属酸化物が有する元素Mは、上記元素のいずれか一種または複数種であることが好ましく、アルミニウム、ガリウム、錫、及びイットリウムから選ばれた一種または複数種であることがより好ましく、ガリウムがさらに好ましい。なお、本明細書等において、金属元素と半金属元素をまとめて「金属元素」と呼ぶことがあり、本明細書等に記載の「金属元素」には半金属元素が含まれることがある。
 酸化物230は、例えば、インジウム亜鉛酸化物(In−Zn酸化物)、インジウム錫酸化物(In−Sn酸化物)、インジウムチタン酸化物(In−Ti酸化物)、インジウムガリウム酸化物(In−Ga酸化物)、インジウムガリウムアルミニウム酸化物(In−Ga−Al酸化物)、インジウムガリウム錫酸化物(In−Ga−Sn酸化物)、ガリウム亜鉛酸化物(Ga−Zn酸化物、GZOとも記す)、アルミニウム亜鉛酸化物(アルミニウム亜鉛酸化物)、インジウムアルミニウム亜鉛酸化物(In−Al−Zn酸化物、IAZOとも記す)、インジウム錫亜鉛酸化物(In−Sn−Zn酸化物)、インジウムチタン亜鉛酸化物(In−Ti−Zn酸化物)、インジウムガリウム亜鉛酸化物(In−Ga−Zn酸化物、IGZOとも記す)、インジウムガリウム錫亜鉛酸化物(In−Ga−Sn−Zn酸化物、IGZTOとも記す)、インジウムガリウムアルミニウム亜鉛酸化物(In−Ga−Al−Zn酸化物、IGAZOまたはIAGZOとも記す)などを用いることができる。または、シリコンを含むインジウム錫酸化物、ガリウム錫酸化物(Ga−Sn酸化物)、アルミニウム錫酸化物(Al−Sn酸化物)などを用いることができる。
 金属酸化物に含まれる全ての金属元素の原子数の和に対するインジウムの原子数の割合を高くすることにより、トランジスタの電界効果移動度を高めることができる。
 なお、金属酸化物は、インジウムに代えて、又は、インジウムに加えて、周期の数が大きい金属元素の一種または複数種を有してもよい。金属元素の軌道の重なりが大きいほど、金属酸化物におけるキャリア伝導は大きくなる傾向がある。よって、周期の数が大きい金属元素を含むことで、トランジスタの電界効果移動度を高めることができる場合がある。周期の数が大きい金属元素として、第5周期に属する金属元素、及び第6周期に属する金属元素などが挙げられる。当該金属元素として、具体的には、イットリウム、ジルコニウム、銀、カドミウム、錫、アンチモン、バリウム、鉛、ビスマス、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、及びユウロピウムなどが挙げられる。なお、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、及びユウロピウムは、軽希土類元素と呼ばれる。
 また、金属酸化物は、非金属元素の一種または複数種を有してもよい。金属酸化物が非金属元素を有することで、トランジスタの電界効果移動度を高めることができる場合がある。非金属元素として、例えば、炭素、窒素、リン、硫黄、セレン、フッ素、塩素、臭素、及び水素などが挙げられる。
 また、金属酸化物に含まれる全ての金属元素の原子数の和に対する亜鉛の原子数の割合を高くすることにより、結晶性の高い金属酸化物となり、金属酸化物中の不純物の拡散を抑制できる。したがって、トランジスタの電気特性の変動が抑制され、信頼性を高めることができる。
 また、金属酸化物に含まれる全ての金属元素の原子数の和に対する元素Mの原子数の割合を高くすることにより、金属酸化物に酸素欠損が形成されるのを抑制できる。したがって、酸素欠損に起因するキャリア生成が抑制され、オフ電流の小さいトランジスタとすることができる。また、トランジスタの電気特性の変動が抑制され、信頼性を高めることができる。
 前述したように、酸化物230に適用する金属酸化物の組成により、トランジスタの電気特性、及び信頼性が異なる。したがって、トランジスタに求められる電気特性、及び信頼性に応じて金属酸化物の組成を異ならせることにより、優れた電気特性と高い信頼性を両立した半導体装置とすることができる。
 酸化物230は、化学組成が異なる複数の酸化物層の積層構造を有することが好ましい。例えば、酸化物230aに用いる金属酸化物において、主成分である金属元素に対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、主成分である金属元素に対する元素Mの原子数比より、大きいことが好ましい。また、酸化物230aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。当該構成にすることで、酸化物230aよりも下方に形成された構造物からの、酸化物230bに対する、不純物及び酸素の拡散を抑制できる。
 また、酸化物230bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物230aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。当該構成とすることで、トランジスタ200は大きいオン電流、及び高い周波数特性を得ることができる。
 また、酸化物230a及び酸化物230bが、酸素以外に共通の元素を主成分として有することで、酸化物230a及び酸化物230bの界面における欠陥準位密度を低減できる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ200は大きいオン電流、及び高い周波数特性を得ることができる。
 具体的には、酸化物230aとして、In:M:Zn=1:3:2[原子数比]もしくはその近傍の組成、In:M:Zn=1:3:4[原子数比]もしくはその近傍の組成、またはIn:M:Zn=1:1:0.5[原子数比]もしくはその近傍の組成の金属酸化物を用いることができる。また、酸化物230bとして、In:M:Zn=1:1:1[原子数比]もしくはその近傍の組成、In:M:Zn=1:1:1.2[原子数比]もしくはその近傍の組成、In:M:Zn=1:1:2[原子数比]もしくはその近傍の組成、またはIn:M:Zn=4:2:3[原子数比]もしくはその近傍の組成の金属酸化物を用いることができる。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。また、元素Mとして、ガリウムを用いることが好ましい。また、酸化物230として酸化物230bの単層を設ける場合、酸化物230bとして、酸化物230aに用いることができる金属酸化物を適用してもよい。また、酸化物230a、及び酸化物230bに用いることのできる金属酸化物の組成については、上記に限定されない。例えば、酸化物230aに用いることのできる金属酸化物の組成は、酸化物230bに適用してもよい。同様に、酸化物230bに用いることのできる金属酸化物の組成は、酸化物230aに適用してもよい。
 なお、金属酸化物をスパッタリング法により成膜する場合、上記の原子数比は、成膜された金属酸化物の原子数比に限られず、金属酸化物の成膜に用いるスパッタリングターゲットの原子数比であってもよい。
 酸化物230bは、結晶性を有することが好ましい。特に、酸化物230bとして、CAAC−OS(c−axis aligned crystalline oxide semiconductor)を用いることが好ましい。
 CAAC−OSは、結晶性の高い、緻密な構造を有しており、不純物及び欠陥(例えば、酸素欠損)が少ない金属酸化物である。特に、金属酸化物の形成後に、金属酸化物が多結晶化しない程度の温度(例えば、400℃以上600℃以下)で加熱処理することで、CAAC−OSをより結晶性の高い、緻密な構造にすることができる。このようにして、CAAC−OSの密度をより高めることで、当該CAAC−OS中の不純物または酸素の拡散をより低減することができる。
 また、CAAC−OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。したがって、CAAC−OSを有する金属酸化物は、物理的性質が安定する。そのため、CAAC−OSを有する金属酸化物は熱に強く、信頼性が高い。
 また、酸化物230bとしてCAAC−OSなどの結晶性を有する酸化物を用いることで、ソース電極またはドレイン電極による、酸化物230bからの酸素の引き抜きを抑制することができる。これにより、熱処理を行っても、酸化物230bから酸素が引き抜かれることを低減できるため、トランジスタ200は、製造工程における高い温度(所謂サーマルバジェット)に対して安定である。
 酸化物半導体を用いたトランジスタは、酸化物半導体中のチャネルが形成される領域に不純物及び酸素欠損が存在すると、電気特性が変動しやすく、信頼性が悪くなる場合がある。また、酸素欠損近傍の水素が、酸素欠損に水素が入った欠陥(以下、VHと呼ぶ場合がある)を形成し、キャリアとなる電子を生成する場合がある。このため、酸化物半導体中のチャネルが形成される領域230bcに酸素欠損が含まれていると、トランジスタはノーマリーオン特性(ゲート電極に電圧を印加しなくてもチャネルが存在し、トランジスタに電流が流れる特性)となりやすい。したがって、酸化物半導体中の領域230bcでは、不純物、酸素欠損、及びVHはできる限り低減されていることが好ましい。言い換えると、酸化物半導体中の領域230bcは、キャリア濃度が低減され、i型(真性化)または実質的にi型であることが好ましい。
 これに対して、酸化物半導体の近傍に、加熱により脱離する酸素(以下、過剰酸素と呼ぶ場合がある)を含む絶縁体を設け、熱処理を行うことで、当該絶縁体から酸化物半導体に酸素を供給し、酸素欠損、及びVHを低減することができる。ただし、領域230baまたは領域230bbに過剰な量の酸素が供給されると、トランジスタ200のオン電流の低下、または電界効果移動度の低下を引き起こすおそれがある。さらに、領域230baまたは領域230bbに供給される酸素の量が基板面内でばらつくことで、トランジスタを有する半導体装置の特性にばらつきが出ることになる。また、当該絶縁体から酸化物半導体に供給する酸素が、ゲート電極、ソース電極、及びドレイン電極などの導電体に拡散すると、当該導電体が酸化してしまい、導電性が損なわれることなどにより、トランジスタの電気特性及び信頼性に悪影響を及ぼす場合がある。
 よって、酸化物半導体中において、領域230bcは、キャリア濃度が低減され、i型または実質的にi型であることが好ましいが、領域230ba及び領域230bbは、キャリア濃度が高く、n型であることが好ましい。つまり、酸化物半導体の領域230bcの酸素欠損、及びVHを低減することが好ましい。また、領域230ba及び領域230bbには過剰な量の酸素が供給されないようにすること、及び領域230ba及び領域230bbのVHの量が過剰に低減しないようにすることが好ましい。また、導電体260、導電体242a、及び導電体242bなどの導電率が低下することを抑制する構成にすることが好ましい。例えば、導電体260、導電体242a、及び導電体242bなどの酸化を抑制する構成にすることが好ましい。なお、酸化物半導体中の水素はVHを形成しうるため、VHの量を低減するには、水素濃度を低減する必要がある。
 そこで、本実施の形態では、半導体装置を、領域230bcの水素濃度を低減し、かつ、導電体242a、導電体242b、及び導電体260の酸化を抑制し、かつ、領域230ba及び領域230bb中の水素濃度が低減することを抑制する構成とする。
 酸化物230bにおける領域230bcと接する絶縁体250は、水素を捕獲及び水素を固着する機能を有することが好ましい。これにより、酸化物230bの領域230bc中の水素濃度を低減できる。よって、領域230bc中のVHを低減し、領域230bcをi型または実質的にi型とすることができる。
 ここで、図3A及び図4Aに示すように、絶縁体250は、酸化物230に接する絶縁体250aと、絶縁体250a上の絶縁体250bと、絶縁体250b上の絶縁体250cの積層構造とすることが好ましい。この場合、絶縁体250aが水素を捕獲及び水素を固着する機能を有することが好ましい。
 水素を捕獲及び水素を固着する機能を有する絶縁体として、アモルファス構造を有する金属酸化物が挙げられる。絶縁体250aとして、例えば、酸化マグネシウム、またはアルミニウム及びハフニウムの一方または双方を含む酸化物などの金属酸化物を用いることが好ましい。このようなアモルファス構造を有する金属酸化物では、酸素原子がダングリングボンドを有しており、当該ダングリングボンドで水素を捕獲または固着する性質を有する場合がある。つまり、アモルファス構造を有する金属酸化物は、水素を捕獲または固着する能力が高いといえる。
 また、絶縁体250aに、高誘電率(high−k)材料を用いることが好ましい。なお、high−k材料の一例として、アルミニウム及びハフニウムの一方または双方を含む酸化物がある。絶縁体250aとしてhigh−k材料を用いることで、ゲート絶縁体の物理膜厚を保持したまま、トランジスタ動作時に印加するゲート電位の低減化が可能となる。また、ゲート絶縁体として機能する絶縁体の等価酸化膜厚(EOT)の薄膜化が可能となる。
 以上より、絶縁体250aとして、アルミニウム及びハフニウムの一方または双方を含む酸化物を用いることが好ましく、アモルファス構造を有し、アルミニウム及びハフニウムの一方または双方を含む酸化物を用いることがより好ましく、アモルファス構造を有する酸化アルミニウムを用いることがさらに好ましい。本実施の形態では、絶縁体250aとして、酸化アルミニウムを用いる。この場合、絶縁体250aは、少なくとも酸素と、アルミニウムと、を有する絶縁体となる。また、当該酸化アルミニウムは、アモルファス構造を有する。この場合、絶縁体250aは、アモルファス構造を有する。
 次に、絶縁体250bは、酸化シリコンまたは酸化窒化シリコンなどの、熱に対し安定な構造の絶縁体を用いることが好ましい。なお、本明細書等において、酸化窒化物とは、その組成として、窒素よりも酸素の含有量が多い材料を指し、窒化酸化物とは、その組成として、酸素よりも窒素の含有量が多い材料を指す。例えば、酸化窒化シリコンと記載した場合は、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンと記載した場合は、その組成として、酸素よりも窒素の含有量が多い材料を示す。
 また、図3B及び図4Bに示すように、絶縁体250bの上に絶縁体250dを設ける構造にしてもよい。この場合、絶縁体250dとしては、絶縁体250aに用いることができる絶縁体を設けることができる。例えば、絶縁体250dとして、酸化ハフニウムを用いることができる。ここで、絶縁体250cと絶縁体250bの間に、絶縁体250dを設けることにより、絶縁体250bなどに含まれる水素を、より効果的に捕獲及び固着させることができる。
 導電体242a、導電体242b、及び導電体260の酸化を抑制するために、導電体242a、導電体242b、及び導電体260それぞれの近傍に酸素に対するバリア絶縁体を設けることが好ましい。本実施の形態で説明する半導体装置において、当該絶縁体は、例えば、絶縁体250a、絶縁体250c、絶縁体250d、及び絶縁体275である。
 なお、本明細書等において、バリア絶縁体とは、バリア性を有する絶縁体のことを指す。本明細書等において、バリア性とは、対応する物質の拡散を抑制する機能(透過性が低いともいう)とする。または、対応する物質を、捕獲、及び固着する(ゲッタリングともいう)機能とする。
 酸素に対するバリア絶縁体としては、例えば、アルミニウム及びハフニウムの一方または双方を含む酸化物、酸化マグネシウム、酸化ガリウム、インジウムガリウム亜鉛酸化物、窒化シリコン、及び窒化酸化シリコンが挙げられる。また、アルミニウム及びハフニウムの一方または双方を含む酸化物として、例えば、酸化アルミニウム、酸化ハフニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)、並びに、ハフニウム及びシリコンを含む酸化物(ハフニウムシリケート)が挙げられる。例えば、絶縁体250a、絶縁体250c、及び絶縁体275はそれぞれ、上記酸素に対するバリア絶縁体の単層構造または積層構造であると好ましい。
 絶縁体250aは、酸素に対するバリア性を有することが好ましい。絶縁体250aは、少なくとも絶縁体280よりも酸素を透過しにくいことが好ましい。絶縁体250aは、導電体242aの側面、及び導電体242bの側面と接する領域を有する。絶縁体250aが酸素に対するバリア性を有することで、導電体242a及び導電体242bの側面が酸化され、当該側面に酸化膜が形成されることを抑制できる。これにより、トランジスタ200のオン電流の低下、または電界効果移動度の低下を起こすことを抑制できる。
 また、絶縁体250aは、酸化物230bの上面及び側面、酸化物230aの側面、絶縁体224の側面、及び絶縁体222の上面に接して設けられる。絶縁体250aが酸素に対するバリア性を有することで、熱処理などを行った際に、酸化物230bの領域230bcから酸素が脱離することを抑制できる。よって、酸化物230a及び酸化物230bに酸素欠損が形成されることを低減できる。
 また、絶縁体250aを設けることにより、絶縁体280に過剰な量の酸素が含まれていても、当該酸素が酸化物230a及び酸化物230bに過剰に供給されることを抑制し、適量の酸素を酸化物230a及び酸化物230bに供給することができる。よって、領域230ba及び領域230bbが過剰に酸化され、トランジスタ200のオン電流の低下、または電界効果移動度の低下を起こすことを抑制できる。
 アルミニウム及びハフニウムの一方または双方を含む酸化物は酸素に対するバリア性を有するため、絶縁体250aとして好適に用いることができる。
 絶縁体250cは、酸素に対するバリア性を有することが好ましい。絶縁体250cは酸化物230の領域230bcと導電体260との間、及び絶縁体280と導電体260との間に設けられている。当該構成にすることで、酸化物230の領域230bcに含まれる酸素が導電体260へ拡散し、酸化物230の領域230bcに酸素欠損が形成されることを抑制できる。また、酸化物230に含まれる酸素及び絶縁体280に含まれる酸素が導電体260へ拡散し、導電体260が酸化することを抑制できる。絶縁体250cは、少なくとも絶縁体280よりも酸素を透過しにくいことが好ましい。例えば、絶縁体250cとして、窒化シリコンを用いることが好ましい。この場合、絶縁体250cは、少なくとも窒素と、シリコンと、を有する絶縁体となる。
 また、絶縁体250cは、水素に対するバリア性を有することが好ましい。これにより、導電体260に含まれる水素などの不純物が、酸化物230bに拡散することを防ぐことができる。
 絶縁体275は、酸素に対するバリア性を有することが好ましい。絶縁体275は、絶縁体280と導電体242aとの間、及び、絶縁体280と導電体242bとの間に設けられている。当該構成にすることで、絶縁体280に含まれる酸素が導電体242a及び導電体242bに拡散することを抑制できる。したがって、絶縁体280に含まれる酸素によって、導電体242a及び導電体242bが酸化されて抵抗率が増大し、オン電流が低減することを抑制できる。絶縁体275は、少なくとも絶縁体280よりも酸素を透過しにくいことが好ましい。例えば、絶縁体275として、窒化シリコンを用いることが好ましい。この場合、絶縁体275は、少なくとも窒素と、シリコンと、を有する絶縁体となる。
 酸化物230における領域230ba及び領域230bbの水素濃度が低減することを抑制するために、領域230ba及び領域230bbそれぞれの近傍に水素に対するバリア絶縁体を設けることが好ましい。本実施の形態で説明する半導体装置において、当該水素に対するバリア絶縁体は、例えば、絶縁体275である。
 水素に対するバリア絶縁体として、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの酸化物、及び窒化シリコンなどの窒化物が挙げられる。例えば、絶縁体275は、上記水素に対するバリア絶縁体の単層構造または積層構造であると好ましい。
 絶縁体275は、水素に対するバリア性を有することが好ましい。絶縁体275が水素に対するバリア性を有することで、絶縁体250が領域230ba及び領域230bb中の水素を捕獲及び固着することを抑制できる。したがって、領域230ba及び領域230bbをn型とすることができる。
 上記構成にすることで、領域230bcをi型または実質的にi型とし、領域230ba及び領域230bbをn型とすることができ、良好な電気特性を有する半導体装置を提供できる。また、上記構成にすることで、半導体装置を微細化または高集積化しても良好な電気特性を有することができる。また、トランジスタ200を微細化することで高周波特性を向上することができる。具体的には、遮断周波数を向上することができる。
 絶縁体250a乃至絶縁体250dは、第1のゲート絶縁体の一部として機能する。絶縁体250a乃至絶縁体250dは、導電体260とともに、絶縁体280などに形成された開口に設ける。トランジスタ200の微細化を図るにあたって、絶縁体250a乃至絶縁体250dの膜厚はそれぞれ薄いことが好ましい。絶縁体250a乃至絶縁体250dの膜厚は、それぞれ、0.1nm以上10nm以下が好ましく、0.1nm以上5.0nm以下がより好ましく、0.5nm以上5.0nm以下がより好ましく、1.0nm以上5.0nm未満がより好ましく、1.0nm以上3.0nm以下がさらに好ましい。なお、絶縁体250a乃至絶縁体250dは、それぞれ、少なくとも一部において、上記のような膜厚の領域を有していればよい。
 絶縁体250a乃至絶縁体250dの膜厚を上記のように薄くするには、原子層堆積(ALD:Atomic Layer Deposition)法を用いて成膜することが好ましい。ALD法は、プリカーサ及びリアクタントの反応を熱エネルギーのみで行う熱ALD(Thermal ALD)法、プラズマ励起されたリアクタントを用いるPEALD(Plasma Enhanced ALD)法などがある。PEALD法では、プラズマを利用することで、より低温での成膜が可能となり好ましい場合がある。
 ALD法は、一層ずつ原子を堆積することができるため、極薄の成膜が可能、アスペクト比の高い構造への成膜が可能、ピンホールなどの欠陥の少ない成膜が可能、被覆性に優れた成膜が可能、低温での成膜が可能、などの効果がある。よって、絶縁体250を、絶縁体280などに形成された開口部の側面、及び導電体242a、242bの側端部などに被覆性良く、上記のような薄い膜厚で成膜することができる。
 なお、ALD法で用いるプリカーサには炭素などを含むものがある。このため、ALD法により設けられた膜は、他の成膜法により設けられた膜と比較して、炭素などの不純物を多く含む場合がある。なお、不純物の定量は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)、X線光電子分光法(XPS:X−ray Photoelectron Spectroscopy)、またはオージェ電子分光法(AES:Auger Electron Spectroscopy)を用いて行うことができる。
 なお、上記において、絶縁体250が、絶縁体250a乃至絶縁体250cの3層構造、または絶縁体250a乃至絶縁体250dの4層構造となる構成について説明したが、本発明はこれに限られるものではない。絶縁体250は、絶縁体250a乃至絶縁体250dのうち、少なくとも一つを有する構成にすることができる。絶縁体250を、絶縁体250a乃至絶縁体250dのうち、1層、2層または3層で構成することで、半導体装置の作製工程を簡略化し、生産性の向上を図ることができる。
 また、本実施の形態では、半導体装置を、上記構成に加えて、水素がトランジスタ200等に混入することを抑制する構成とすることが好ましい。例えば、水素の拡散を抑制する機能を有する絶縁体を、トランジスタ200等の上下の一方または双方を覆うように設けることが好ましい。本実施の形態で説明する半導体装置において、当該絶縁体は、例えば、絶縁体282及び絶縁体283などである。また、トランジスタ200の下に設ける絶縁体215を、絶縁体282、及び絶縁体283のいずれか一方、または両方と同様の構成にしてもよい。この場合、絶縁体215を、絶縁体282と絶縁体283の積層構造にしてもよく、絶縁体282を下にし、絶縁体283を上にする構成にしてもよいし、絶縁体282を上にし、絶縁体283を下にする構成にしてもよい。
 絶縁体282、及び絶縁体283のうち一つまたは複数は、水、水素などの不純物が、基板側から、または、トランジスタ200等の上方からトランジスタ200等に拡散することを抑制するバリア絶縁体として機能することが好ましい。したがって、絶縁体282、及び絶縁体283のうち一つまたは複数は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい)絶縁性材料を有することが好ましい。または、酸素(例えば、酸素原子、及び酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料を有することが好ましい。
 絶縁体282、及び絶縁体283は、それぞれ、水、水素などの不純物、及び酸素の拡散を抑制する機能を有する絶縁体を有することが好ましく、例えば、酸化アルミニウム、酸化マグネシウム、酸化ハフニウム、酸化ガリウム、インジウムガリウム亜鉛酸化物、窒化シリコン、または窒化酸化シリコンなどを用いることができる。例えば、絶縁体283として、より水素バリア性が高い、窒化シリコンなどを用いることが好ましい。また、例えば、絶縁体282は、水素を捕獲及び水素を固着する機能が高い、酸化アルミニウムまたは酸化マグネシウムなどを有することが好ましい。これにより、水、水素などの不純物が絶縁体283よりも外側に配置されている層間絶縁膜などから、トランジスタ200等に拡散することを抑制できる。また、絶縁体280などに含まれる酸素が、絶縁体282などを介してトランジスタ200等より上方に拡散することを抑制できる。また、絶縁体215として、絶縁体282及び絶縁体283の一方または両方と同様の構成にすることで、水、水素などの不純物が絶縁体215を介して、基板側からトランジスタ200等に拡散することを抑制できる。また、絶縁体224などに含まれる酸素が、基板側に拡散することを抑制できる。この様に、トランジスタ200等の上下を、水、水素などの不純物、及び酸素の拡散を抑制する機能を有する絶縁体で取り囲む構造とすることが好ましい。
 トランジスタ200において、導電体205は、酸化物230及び導電体260と重なるように配置する。ここで、導電体205は、絶縁体216に形成された開口部に埋め込まれて設けることが好ましい。また、導電体205は、図2A及び図2Cに示すように、チャネル幅方向に延在して設けられることが好ましい。このような構成にすることで、複数のトランジスタを設ける場合に、導電体205は配線として機能する。
 導電体205は、単層構造であってもよく、積層構造であってもよい。図2等において、導電体205は、導電体205a及び導電体205bを有する。導電体205aは、上記開口部の底面及び側壁に接して設けられる。導電体205bは、上記開口部に沿って形成された導電体205a凹部を埋め込むように設けられる。ここで、導電体205の上面の高さは、絶縁体216の上面の高さと概略一致する。
 ここで、導電体205aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を有することが好ましい。または、酸素(例えば、酸素原子、及び酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を有することが好ましい。
 導電体205aに、水素の拡散を低減する機能を有する導電性材料を用いることにより、導電体205bに含まれる水素などの不純物が、絶縁体216等を介して、酸化物230に拡散することを防ぐことができる。また、導電体205aに、酸素の拡散を抑制する機能を有する導電性材料を用いることにより、導電体205bが酸化して導電率が低下することを抑制できる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、チタン、窒化チタン、タンタル、窒化タンタル、ルテニウム、及び、酸化ルテニウムが挙げられる。導電体205aは、上記導電性材料の単層構造または積層構造とすることができる。例えば、導電体205aは、窒化チタンを有することが好ましい。
 また、導電体205bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。例えば、導電体205bは、タングステンを有することが好ましい。
 導電体205は、第2のゲート電極として機能することができる。その場合、導電体205に印加する電位を、導電体260に印加する電位と連動させず、独立して変化させることで、トランジスタ200のしきい値電圧(Vth)を制御することができる。特に、導電体205に負の電位を印加することにより、トランジスタ200のVthをより大きくし、オフ電流を低減することが可能となる。したがって、導電体205に負の電位を印加したほうが、印加しない場合よりも、導電体260に印加する電位が0Vのときのドレイン電流を小さくすることができる。
 また、導電体205の電気抵抗率は、上記の導電体205に印加する電位を考慮して設計され、導電体205の膜厚は当該電気抵抗率に合わせて設定される。また、絶縁体216の膜厚は、導電体205とほぼ同じになる。ここで、導電体205の設計が許す範囲で導電体205及び絶縁体216の膜厚を薄くすることが好ましい。絶縁体216の膜厚を薄くすることで、絶縁体216中に含まれる水素などの不純物の絶対量を低減することができるため、当該不純物が酸化物230に拡散することを低減することができる。
 絶縁体222及び絶縁体224は、第2のゲート絶縁体として機能する。
 絶縁体222は、水素(例えば、水素原子、及び水素分子などの少なくとも一)の拡散を抑制する機能を有することが好ましい。また、絶縁体222は、酸素(例えば、酸素原子、及び酸素分子などの少なくとも一)の拡散を抑制する機能を有することが好ましい。例えば、絶縁体222は、絶縁体224よりも水素及び酸素の一方または双方の拡散を抑制する機能を有することが好ましい。
 絶縁体222は、絶縁性材料であるアルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体を有することが好ましい。当該絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。または、ハフニウム及びジルコニウムを含む酸化物、例えばハフニウムジルコニウム酸化物を用いることが好ましい。このような材料を用いて絶縁体222を形成した場合、絶縁体222は、酸化物230から基板側への酸素の放出、及び、トランジスタ200の周辺部から酸化物230への水素等の不純物の拡散を抑制する層として機能する。よって、絶縁体222を設けることで、水素等の不純物が、トランジスタ200の内側へ拡散することを抑制し、酸化物230中の酸素欠損の生成を抑制できる。また、導電体205が、絶縁体224、及び、酸化物230が有する酸素と反応することを抑制できる。
 または、上記絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、または酸化ジルコニウムを添加してもよい。または、これらの絶縁体を窒化処理してもよい。また、絶縁体222は、上記絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
 また、絶縁体222は、例えば、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、ハフニウムジルコニウム酸化物などの、いわゆるhigh−k材料を含む絶縁体の単層構造または積層構造としてもよい。トランジスタの微細化、及び高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。また、絶縁体222として、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)、(Ba,Sr)TiO(BST)などの誘電率が高い物質を用いることができる場合もある。
 酸化物230と接する絶縁体224は、例えば、酸化シリコンまたは酸化窒化シリコンを有することが好ましい。これにより、絶縁体224から酸化物230に酸素を供給し、酸素欠損を低減することができる。
 また、絶縁体224は、酸化物230と同様に、島状に加工することが好ましい。これにより、複数のトランジスタ200を設ける場合、1個のトランジスタ200に対して、ほぼ同程度の大きさの絶縁体224が設けられることになる。これにより、各トランジスタ200において、絶縁体224から酸化物230に供給される酸素の量が、同程度になる。よって、基板面内でトランジスタ200の電気特性のばらつきを抑制することができる。ただし、これに限られず、絶縁体222と同様に、絶縁体224をパターン形成しない構成にすることもできる。
 なお、絶縁体222及び絶縁体224は、それぞれ、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。
 導電体242a、導電体242b、及び導電体260として、それぞれ、酸化しにくい導電性材料、または、酸素の拡散を抑制する機能を有する導電性材料を用いることが好ましい。当該導電性材料として、例えば、窒素を含む導電性材料、及び酸素を含む導電性材料が挙げられる。これにより、導電体242a、導電体242b、及び導電体260の導電率が低下することを抑制できる。導電体242a、導電体242b、及び導電体260として、金属及び窒素を含む導電性材料を用いる場合、導電体242a、導電体242b、及び導電体260は、少なくとも金属と、窒素と、を有する導電体となる。
 導電体242a、242bは、単層構造であってもよく、積層構造であってもよい。また、導電体260は単層構造であってもよく、積層構造であってもよい。
 導電体242a、242bとしては、金属窒化物を用いることが好ましく、例えば、タンタルを含む窒化物、チタンを含む窒化物、モリブデンを含む窒化物、タングステンを含む窒化物、タンタル及びアルミニウムを含む窒化物、チタン及びアルミニウムを含む窒化物などを用いることが好ましい。本発明の一態様においては、タンタルを含む窒化物が特に好ましい。また、例えば、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いてもよい。これらの材料は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。
 なお、酸化物230bなどに含まれる水素が、導電体242aまたは導電体242bに拡散する場合がある。特に、導電体242a及び導電体242bに、タンタルを含む窒化物を用いることで、酸化物230bなどに含まれる水素は、導電体242aまたは導電体242bに拡散しやすく、拡散した水素は、導電体242aまたは導電体242bが有する窒素と結合することがある。つまり、酸化物230bなどに含まれる水素は、導電体242aまたは導電体242bに吸い取られる場合がある。
 また、図3Bに示すように、導電体242a、242bを2層構造にしてもよい。この場合、導電体242aは、導電体242a1と導電体242a1上の導電体242a2の積層膜であり、導電体242bは、導電体242b1と導電体242b1上の導電体242b2の積層膜である。このとき、酸化物230bに接する層(導電体242a1及び導電体242b1)として、上述の酸化しにくい導電性材料、または、酸素の拡散を抑制する機能を有する導電性材料を用いることが好ましい。これにより、導電体242a、242bの導電率が低下することを抑制できる。
 また、導電体242a2及び導電体242b2は、導電体242a1及び導電体242b1よりも、導電性が高いことが好ましい。例えば、導電体242a2及び導電体242b2の膜厚を、導電体242a1及び導電体242b1の膜厚より大きくすることが好ましい。導電体242a2及び導電体242b2としては、上記導電体205bに用いることが可能な導電体を用いればよい。上記のような構造にすることで、導電体242a2、242b2の抵抗を低減することができる。これにより、トランジスタ200の動作速度の向上を図ることができる。
 例えば、導電体242a1及び導電体242b1として、窒化タンタルまたは窒化チタンを用い、導電体242a2及び導電体242b2として、タングステンを用いることができる。
 導電体242a、242bの導電率が低下することを抑制するために、酸化物230bとして、CAAC−OSなどの結晶性を有する酸化物を用いることが好ましい。特に、インジウムと、亜鉛と、ガリウム、アルミニウム、及び錫から選ばれる一または複数と、を有する金属酸化物を用いることが好ましい。CAAC−OSを用いることで、導電体242aまたは導電体242bによる、酸化物230bからの酸素の引き抜きを抑制できる。また、導電体242a及び導電体242bの導電率が低下することを抑制できる。
 絶縁体271a及び絶縁体271bは、上述のように無機膜276を除去する際にエッチングストッパとして機能し、導電体242a及び導電体242bを保護する無機絶縁体である。また、絶縁体271a及び絶縁体271bは、導電体242a及び導電体242bに接するため、導電体242a、242bを酸化させにくい、無機絶縁体であることが好ましい。よって、絶縁体271aを、絶縁体271a1と、絶縁体271a1上の絶縁体271a2の積層構造にし、絶縁体271bを、絶縁体271b1と、絶縁体271b1上の絶縁体271b2の積層構造にすることが好ましい。ここで、絶縁体271a1、271b1は、導電体242a、242bを酸化させにくいように、絶縁体250cに用いることができる窒化物絶縁体を用いることが好ましい。また、絶縁体271a2、271b2は、上述のように無機膜276を除去する際にエッチングストッパとして機能するように、絶縁体250bに用いることができる酸化物絶縁体を用いることが好ましい。
 ここで、絶縁体271a1は、導電体242aの上面及び絶縁体275の一部に接し、絶縁体271b1は、導電体242bの上面及び絶縁体275の一部に接する。また、絶縁体271a2は、絶縁体271a1の上面及び絶縁体275の下面に接し、絶縁体271b2は、絶縁体271b1の上面及び絶縁体275の下面に接する。例えば、絶縁体271a1及び絶縁体271b1として、窒化シリコンを用い、絶縁体271a2及び絶縁体271b2として、酸化シリコンを用いることができる。
 このような絶縁体271a及び絶縁体271bの元になる絶縁体271は、上記のように、導電体242のマスクとして機能するため、導電体242は側面と上面の間に湾曲面を有しない。これにより、導電体242aおよび導電体242bは、側面と上面が交わる端部が角状になる。導電体242の側面と上面が交わる端部が角状になることで、当該端部が曲面を有する場合に比べて、導電体242の断面積が大きくなる。さらに、絶縁体271a1、271b1に、金属を酸化させにくい窒化物絶縁体を用いることで、導電体242が過剰に酸化されるのを防ぐことができる。以上により、導電体242の抵抗が低減されるため、トランジスタのオン電流を大きくすることができる。
 導電体260は、図3A及び図4Aに示すように、絶縁体280、絶縁体275に形成された開口内に配置される。導電体260は、当該開口内において、絶縁体250を介して、絶縁体224の側面、酸化物230aの側面、酸化物230bの側面、及び酸化物230bの上面を覆うように設けられる。また、導電体260は、その上面が、絶縁体250の最上部、及び絶縁体280の上面と高さが概略一致するように配置される。
 なお、導電体260及び絶縁体250が配置された、絶縁体280等に設けられた開口部において、当該開口部の側壁は、絶縁体222の上面に対して概略垂直であってもよく、テーパー形状であってもよい。側壁をテーパー形状にすることで、絶縁体280の開口部に設ける絶縁体250などの被覆性が向上し、鬆などの欠陥を低減できる。
 導電体260は、トランジスタ200の第1のゲート電極として機能する。ここで、導電体260は、図2B、図4A、及び図4Bに示すように、チャネル幅方向に延在して設けられることが好ましい。このような構成にすることで、複数のトランジスタを設ける場合に、導電体260は配線として機能する。
 上記のような構造にする場合、図4A、及び図4Bに示すように、トランジスタ200のチャネル幅方向の断面視において、酸化物230bの側面と酸化物230bの上面との間に、湾曲面を有してもよい。つまり、当該側面の端部と当該上面の端部は、湾曲してもよい(以下、ラウンド状ともいう)。
 上記湾曲面での曲率半径は、0nmより大きく、導電体242と重なる領域の酸化物230bの膜厚より小さい、または、上記湾曲面を有さない領域の長さの半分より小さいことが好ましい。上記湾曲面での曲率半径は、具体的には、0nmより大きく20nm以下、好ましくは1nm以上15nm以下、さらに好ましくは2nm以上10nm以下とする。このような形状にすることで、絶縁体250、および導電体260の、酸化物230bへの被覆性を高めることができる。
 なお、本明細書等において、少なくとも第1のゲート電極の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S−channel)構造とよぶ。また、本明細書等で開示するS−channel構造は、Fin型構造およびプレーナ型構造とは異なる構造を有する。一方で、本明細書等で開示するS−channel構造は、Fin型構造の一種として捉えることも可能である。なお、本明細書等において、Fin型構造とは、ゲート電極が少なくともチャネルの2面以上(具体的には、2面、3面、または4面等)を包むように配置される構造を示す。Fin型構造、およびS−channel構造を採用することで、短チャネル効果に対する耐性を高める、別言すると短チャネル効果が発生し難いトランジスタとすることができる。
 トランジスタ200を、上記のS−channel構造とすることで、チャネル形成領域を電気的に取り囲むことができる。なお、S−channel構造は、チャネル形成領域を電気的に取り囲んでいる構造であるため、実質的にGAA(Gate All Around)構造、またはLGAA(Lateral Gate All Around)構造と、同等の構造であるともいえる。トランジスタ200をS−channel構造、GAA構造、又はLGAA構造とすることで、酸化物230とゲート絶縁体との界面又は界面近傍に形成されるチャネル形成領域を、酸化物230のバルク全体とすることができる。したがって、トランジスタに流れる電流密度を向上させることが可能となるため、トランジスタのオン電流の向上、またはトランジスタの電界効果移動度を高めることが期待できる。
 本実施の形態では、上述のように、絶縁体224を島状に設ける構成にする。よって、図4A、及び図4Bに示すように、導電体260の下面の少なくとも一部を、酸化物230bの下面、より下に設けることができる。これにより、酸化物230bの上面及び側面に対向して、導電体260を設けることができるため、導電体260の電界を酸化物230bの上面及び側面に作用させることができる。このように、絶縁体224を島状に設ける構成にすることで、トランジスタ200をS−channel構造にすることができる。
 なお、図4A、及び図4Bに示すトランジスタ200については、S−channel構造のトランジスタを例示したが、本発明の一態様の半導体装置はこれに限定されない。例えば、本発明の一態様に用いることができるトランジスタ構造としては、プレーナ型構造、Fin型構造、およびGAA構造の中から選ばれるいずれか一または複数としてもよい。
 図2Bなどでは、導電体260を2層構造で示す。ここで、導電体260は、導電体260aと、導電体260aの上に配置された導電体260bと、を有することが好ましい。例えば、導電体260aは、導電体260bの底面及び側面を包むように配置されることが好ましい。このとき、導電体260aとして、酸化しにくい導電性材料、または、酸素の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
 導電体260aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、及び酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
 また、導電体260aが酸素の拡散を抑制する機能を有することにより、絶縁体280などに含まれる酸素により、導電体260bが酸化して導電率が低下することを抑制できる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、チタン、窒化チタン、タンタル、窒化タンタル、ルテニウム、酸化ルテニウムなどを用いることが好ましい。
 また、導電体260bは、導電性が高い導電体を用いることが好ましい。例えば、導電体260bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体260bは積層構造としてもよく、例えば、チタン、または窒化チタンと上記導電性材料との積層構造としてもよい。
 また、トランジスタ200では、導電体260は、絶縁体280などに形成されている開口を埋めるように自己整合的に形成される。導電体260をこのように形成することにより、導電体242aと導電体242bとの間の領域に、導電体260を位置合わせすることなく確実に配置することができる。
 絶縁体216、及び絶縁体280は、それぞれ、絶縁体214よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減できる。
 例えば、絶縁体216、及び絶縁体280は、それぞれ、酸化シリコン、酸化窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素及び窒素を添加した酸化シリコン、及び、空孔を有する酸化シリコンのうち一つまたは複数を有することが好ましい。
 特に、酸化シリコン及び酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、酸化窒化シリコン、空孔を有する酸化シリコンなどの材料は、加熱により脱離する酸素を含む領域を容易に形成することができるため好ましい。
 また、絶縁体216、及び絶縁体280の上面は、それぞれ、平坦化されていてもよい。
 絶縁体280中の水、水素などの不純物濃度は低減されていることが好ましい。例えば、絶縁体280は、酸化シリコン、酸化窒化シリコンなどのシリコンを含む酸化物を有することが好ましい。
<半導体装置の構成材料>
 以下では、半導体装置に用いることができる構成材料について説明する。なお、半導体装置を構成する各層は、単層構造であってもよく、積層構造であってもよい。
<<基板>>
 トランジスタを形成する基板としては、例えば、絶縁体基板、半導体基板、または導電体基板を用いることができる。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、及び、樹脂基板が挙げられる。また、半導体基板としては、例えば、シリコンまたはゲルマニウムを材料とした半導体基板、及び、炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、もしくは酸化ガリウムからなる化合物半導体基板が挙げられる。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えば、SOI(Silicon On Insulator)基板などが挙げられる。導電体基板としては、例えば、黒鉛基板、金属基板、合金基板、及び導電性樹脂基板が挙げられる。また、基板としては、例えば、金属の窒化物を有する基板、金属の酸化物を有する基板、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、及び、導電体基板に半導体または絶縁体が設けられた基板が挙げられる。または、これらの基板に1種または複数種の素子が設けられたものを用いてもよい。基板に設けられる素子としては、例えば、容量素子、抵抗素子、スイッチ素子、発光素子、及び記憶素子が挙げられる。
<<絶縁体>>
 絶縁体としては、例えば、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、及び、金属窒化酸化物が挙げられる。
 例えば、トランジスタの微細化、及び高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体に、high−k材料を用いることで物理膜厚を保ちながら、トランジスタ動作時の低電圧化が可能となる。一方、層間膜として機能する絶縁体には、比誘電率が低い材料を用いることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。
 比誘電率の高い絶縁体としては、例えば、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウム及びハフニウムを有する酸化物、アルミニウム及びハフニウムを有する酸化窒化物、シリコン及びハフニウムを有する酸化物、シリコン及びハフニウムを有する酸化窒化物、並びに、シリコン及びハフニウムを有する窒化物が挙げられる。
 比誘電率が低い絶縁体としては、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素及び窒素を添加した酸化シリコン、空孔を有する酸化シリコン、及び、樹脂が挙げられる。
 また、金属酸化物を用いたトランジスタは、水素などの不純物及び酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。水素などの不純物及び酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム、及びタンタルのうち一つまたは複数を含む絶縁体を、単層で、または積層で用いることができる。具体的には、水素などの不純物及び酸素の透過を抑制する機能を有する絶縁体として、例えば、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、酸化タンタルなどの金属酸化物、及び、窒化アルミニウム、窒化酸化シリコン、窒化シリコンなどの金属窒化物が挙げられる。
 また、ゲート絶縁体として機能する絶縁体は、加熱により脱離する酸素を含む領域を有する絶縁体であることが好ましい。例えば、加熱により脱離する酸素を含む領域を有する酸化シリコンまたは酸化窒化シリコンを酸化物230と接する構造とすることで、酸化物230が有する酸素欠損を補償することができる。
<<導電体>>
 導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。導電体としては、例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、及び、ランタンとニッケルを含む酸化物が挙げられる。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、及び、ランタンとニッケルを含む酸化物は、それぞれ、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、または、ニッケルシリサイドなどのシリサイドを用いてもよい。
 積層構造の導電体を用いる場合、例えば、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造、前述した金属元素を含む材料と、窒素を含む導電性材料と、を組み合わせた積層構造、または、前述した金属元素を含む材料と、酸素を含む導電性材料と、窒素を含む導電性材料と、を組み合わせた積層構造を適用してもよい。
 なお、トランジスタのチャネル形成領域に酸化物を用いる場合において、ゲート電極として機能する導電体には、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造を用いることが好ましい。この場合は、酸素を含む導電性材料をチャネル形成領域側に設けるとよい。酸素を含む導電性材料をチャネル形成領域側に設けることで、当該導電性材料から脱離した酸素がチャネル形成領域に供給されやすくなる。
 特に、ゲート電極として機能する導電体として、チャネルが形成される金属酸化物に含まれる金属元素及び酸素を含む導電性材料を用いることが好ましい。また、前述した金属元素及び窒素を含む導電性材料を用いてもよい。例えば、窒化チタン、窒化タンタルなどの窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、及び、シリコンを添加したインジウム錫酸化物のうち一つまたは複数を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。このような材料を用いることで、チャネルが形成される金属酸化物に含まれる水素を捕獲することができる場合がある。または、外方の絶縁体などから混入する水素を捕獲することができる場合がある。
<<金属酸化物>>
 酸化物230として、半導体として機能する金属酸化物(酸化物半導体)を用いることが好ましい。以下では、本発明の一態様に係る酸化物230に適用可能な金属酸化物について説明する。
 金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特に、インジウム及び亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、錫、アンチモンなどが含まれていることが好ましい。また、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどから選ばれた一種、または複数種が含まれていてもよい。
 ここでは、金属酸化物が、インジウム、元素M及び亜鉛を有するIn−M−Zn酸化物である場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウム、錫、またはアンチモンとする。その他、元素Mに適用可能な元素としては、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。特に、元素Mは、ガリウム、アルミニウム、イットリウム、及び錫から選ばれた一種または複数種であることが好ましい。
 なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸化窒化物(metal oxynitride)と呼称してもよい。
 以降では、金属酸化物の一例として、In−Ga−Zn酸化物について説明する。
 酸化物半導体の結晶構造としては、アモルファス(completely amorphousを含む)、CAAC(c−axis−aligned crystalline)、nc(nanocrystalline)、CAC(cloud−aligned composite)、単結晶(single crystal)、及び多結晶(polycrystal)等が挙げられる。
 なお、酸化物半導体は、構造に着目した場合、上記とは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、上述のCAAC−OS、及びnc−OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、非晶質酸化物半導体などが含まれる。
 ここで、上述のCAAC−OS、nc−OS、及びa−like OSの詳細について、説明を行う。
[CAAC−OS]
 CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。
 なお、上記複数の結晶領域のそれぞれは、1つまたは複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の最大径は、数十nm程度となる場合がある。
 CAAC−OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入、欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物及び欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。したがって、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
[nc−OS]
 nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc−OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSまたは非晶質酸化物半導体と区別が付かない場合がある。
[a−like OS]
 a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆または低密度領域を有する。即ち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。また、a−like OSは、nc−OS及びCAAC−OSと比べて、膜中の水素濃度が高い。
 次に、上述のCAC−OSの詳細について、説明を行う。なお、CAC−OSは材料構成に関する。
[CAC−OS]
 CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
 さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
 また、In−Ga−Zn酸化物におけるCAC−OSとは、In、Ga、Zn、及びOを含む材料構成において、一部にInを主成分とする領域(第1の領域)と、一部にGaを主成分とする領域(第2の領域)とが、それぞれモザイク状であり、これらの領域がランダムに存在している構成をいう。よって、CAC−OSは、金属元素が不均一に分布した構造を有していると推測される。
 CAC−OSは、例えば基板を加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、及び窒素ガスの中から選ばれたいずれか一つまたは複数を用いることができる。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましい。例えば、成膜時の成膜ガスの総流量に対する酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とする。
 ここで、第1の領域は、第2の領域と比較して、導電性が高い領域である。つまり、第1の領域を、キャリアが流れることにより、金属酸化物としての導電性が発現する。従って、第1の領域が、金属酸化物中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
 一方、第2の領域は、第1の領域と比較して、絶縁性が高い領域である。つまり、第2の領域が、金属酸化物中に分布することで、リーク電流を抑制することができる。
 したがって、CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、及び良好なスイッチング動作を実現することができる。
 また、CAC−OSを用いたトランジスタは、信頼性が高い。従って、CAC−OSは、表示装置をはじめとするさまざまな半導体装置に最適である。
 酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<<その他の半導体材料>>
 トランジスタの半導体層には、バンドギャップを有する半導体材料(ゼロギャップ半導体ではない半導体材料)を用いてもよい。例えば、シリコンなどの単体元素の半導体、ヒ化ガリウムなどの化合物半導体を用いてもよい。
 また、トランジスタの半導体層に、例えば、半導体として機能する遷移金属カルコゲナイドを用いることが好ましい。トランジスタの半導体層に適用可能な遷移金属カルコゲナイドとして、具体的には、硫化モリブデン(代表的にはMoS)、セレン化モリブデン(代表的にはMoSe)、モリブデンテルル(代表的にはMoTe)、硫化タングステン(代表的にはWS)、セレン化タングステン(代表的にはWSe)、タングステンテルル(代表的にはWTe)、硫化ハフニウム(代表的にはHfS)、セレン化ハフニウム(代表的にはHfSe)、硫化ジルコニウム(代表的にはZrS)、セレン化ジルコニウム(代表的にはZrSe)などが挙げられる。上述の遷移金属カルコゲナイドを、トランジスタの半導体層に適用することで、オン電流が大きい半導体装置を提供することができる。
<半導体装置の作製方法例>
 図5A乃至図11Dを用いて、本発明の一態様の半導体装置の作製方法例について説明する。ここでは、図2A乃至図2Dに示す半導体装置を作製する場合を例に挙げて説明する。
 各図のAは、平面図を示す。また、各図のBはそれぞれ、各図のAにA1−A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、各図のCはそれぞれ、各図のAにA3−A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、各図のDはそれぞれ、各図のAにA5−A6の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。なお、各図のAの平面図では、図の明瞭化のために一部の要素を省いている。
 以下において、絶縁体を形成するための絶縁性材料、導電体を形成するための導電性材料、または半導体を形成するための半導体材料は、スパッタリング法、化学気相成長(CVD:Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、パルスレーザ堆積(PLD:Pulsed Laser Deposition)法、ALD法などを適宜用いて成膜することができる。
 なお、スパッタリング法にはスパッタリング用電源に高周波電源を用いるRFスパッタリング法、直流電源を用いるDCスパッタリング法、さらにパルス的に電極に印加する電圧を変化させるパルスDCスパッタリング法がある。RFスパッタリング法は主に絶縁膜を成膜する場合に用いられ、DCスパッタリング法は主に金属導電膜を成膜する場合に用いられる。また、パルスDCスパッタリング法は、主に、酸化物、窒化物、炭化物などの化合物をリアクティブスパッタリング法で成膜する際に用いられる。
 なお、CVD法は、プラズマを利用するプラズマCVD(PECVD)法、熱を利用する熱CVD(TCVD:Thermal CVD)法、光を利用する光CVD(Photo CVD)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Metal CVD)法、有機金属CVD(MOCVD:Metal Organic CVD)法に分けることができる。
 プラズマCVD法は、比較的低温で高品質の膜が得られる。また、熱CVD法は、プラズマを用いないため、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。例えば、半導体装置に含まれる配線、電極、素子(トランジスタ、容量素子など)などは、プラズマから電荷を受け取ることでチャージアップする場合がある。このとき、蓄積した電荷によって、半導体装置に含まれる配線、電極、素子などが破壊される場合がある。一方、プラズマを用いない熱CVD法の場合、こういったプラズマダメージが生じないため、半導体装置の歩留まりを高くすることができる。また、熱CVD法では、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。
 また、ALD法としては、プリカーサ及びリアクタントの反応を熱エネルギーのみで行う熱ALD法、プラズマ励起されたリアクタントを用いるPEALD法などを用いることができる。
 CVD法及びALD法は、ターゲットなどから放出される粒子が堆積するスパッタリング法とは異なる。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性と、を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。
 また、CVD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。例えば、CVD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送または圧力調整に掛かる時間を要さない分、成膜に掛かる時間を短くすることができる。したがって、半導体装置の生産性を高めることができる場合がある。
 また、ALD法では、異なる複数種のプリカーサを同時に導入することで任意の組成の膜を成膜することができる。または、異なる複数種のプリカーサを導入する場合、各プリカーサのサイクル数を制御することで任意の組成の膜を成膜することができる。
 まず、基板(図示しない)を準備し、当該基板上に絶縁体215を成膜する(図5A乃至図5D参照)。上述の通り、絶縁体215は、絶縁体224、絶縁体282、及び絶縁体283のいずれか一、または複数の積層膜と同様の絶縁体を用いることができる。絶縁体215の成膜方法は、例えば、スパッタリング法、CVD法、MBE法、PLD法、または、ALD法を用いることができる。成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁体215中の水素濃度を低減できるため好ましい。
 次に、絶縁体215上に絶縁体216を成膜する。絶縁体216の成膜は、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁体216中の水素濃度を低減できる。ただし、絶縁体216の成膜は、スパッタリング法に限られるものではなく、CVD法、MBE法、PLD法、ALD法などを適宜用いてもよい。
 本実施の形態では、絶縁体216として、酸素ガスを含む雰囲気でシリコンターゲットを用いて、パルスDCスパッタリング法で酸化シリコンを成膜する。パルスDCスパッタリング法を用いることで、膜厚分布をより均一にし、スパッタレート、および膜質を向上することができる。
 絶縁体215、及び絶縁体216は、大気に暴露することなく連続して成膜することが好ましい。例えば、マルチチャンバー方式の成膜装置を用いればよい。これにより、絶縁体215、及び絶縁体216を、膜中の水素を低減して成膜し、さらに、各成膜工程の合間に膜中に水素が混入するのを低減できる。
 次に、絶縁体216に絶縁体215に達する開口を形成する。開口の形成はウェットエッチングを用いてもよいが、ドライエッチングを用いるほうが微細加工には好ましい。また、絶縁体215は、絶縁体216をエッチングして溝を形成する際のエッチングストッパ膜として機能する絶縁体を選択することが好ましい。例えば、溝を形成する絶縁体216に酸化シリコンまたは酸化窒化シリコンを用いた場合は、絶縁体215は窒化シリコン、酸化アルミニウム、または酸化ハフニウムを用いるとよい。
 開口の形成後に、導電体205aとなる導電膜を成膜する。導電体205aとなる導電膜は、酸素の透過を抑制する機能を有する導電体を含むことが望ましい。例えば、窒化タンタル、窒化タングステン、窒化チタンなどを用いることができる。または、酸素の透過を抑制する機能を有する導電体と、タンタル、タングステン、チタン、モリブデン、アルミニウム、銅、モリブデンタングステン合金との積層膜とすることができる。導電体205aとなる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。
 本実施の形態では、導電体205aとなる導電膜として窒化チタンを成膜する。このような金属窒化物を導電体205bの下層に用いることにより、絶縁体216などによって、導電体205bが酸化されるのを抑制できる。また、導電体205bとして銅などの拡散しやすい金属を用いても、当該金属が導電体205aから外に拡散するのを防ぐことができる。
 次に、導電体205bとなる導電膜を成膜する。導電体205bとなる導電膜としては、タンタル、タングステン、チタン、モリブデン、アルミニウム、銅、モリブデンタングステン合金などを用いることができる。該導電膜の成膜は、メッキ法、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。本実施の形態では、導電体205bとなる導電膜として、タングステンを成膜する。
 次に、CMP処理を行うことで、導電体205aとなる導電膜および導電体205bとなる導電膜の一部を除去し、絶縁体216を露出する(図5A乃至図5D参照)。その結果、開口部のみに、導電体205aおよび導電体205bが残存する。なお、当該CMP処理により、絶縁体216の一部が除去される場合がある。
 次に、絶縁体216上及び導電体205上に絶縁体222を成膜する(図6A乃至図6D参照)。
 絶縁体222として、アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体として、例えば、酸化アルミニウム、酸化ハフニウム、または、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)を用いることが好ましい。または、ハフニウムジルコニウム酸化物を用いることが好ましい。アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体は、酸素、水素、及び水に対するバリア性を有する。絶縁体222が、水素及び水に対するバリア性を有することで、トランジスタの周辺に設けられた構造体に含まれる水素、及び水が、絶縁体222を通じてトランジスタの内側へ拡散することが抑制され、酸化物230中の酸素欠損の生成を抑制できる。
 または、絶縁体222は、アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体と、酸化シリコン、酸化窒化シリコン、窒化シリコン、または窒化酸化シリコンと、の積層膜とすることができる。
 絶縁体222は、例えば、スパッタリング法、CVD法、MBE法、PLD法、または、ALD法を用いて成膜することができる。本実施の形態では、絶縁体222として、ALD法を用いて、酸化ハフニウムを成膜する。または、絶縁体222として、PEALD法を用いて成膜した窒化シリコンと、ALD法を用いて成膜した酸化ハフニウムと、の積層体を用いてもよい。
 次に、絶縁体222上に絶縁膜224fを成膜する(図6A乃至図6D参照)。絶縁膜224fとしては、上記絶縁体224に対応する絶縁体を用いればよい。
 絶縁膜224fは、例えば、スパッタリング法、CVD法、MBE法、PLD法、または、ALD法を用いて成膜することができる。本実施の形態では、絶縁膜224fとして、スパッタリング法を用いて、酸化シリコンを成膜する。成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁膜224f中の水素濃度を低減できる。絶縁膜224fは、後の工程で酸化物230aと接するため、このように水素濃度が低減されていることが好適である。
 なお、絶縁膜224fの成膜前に、加熱処理を行ってもよい。当該加熱処理は、減圧下で行い、大気に暴露することなく、連続して絶縁膜224fを成膜してもよい。このような処理を行うことによって、絶縁体222の表面に吸着している水分及び水素を除去し、さらに絶縁体222中の水分濃度及び水素濃度を低減させることができる。加熱処理の温度は、100℃以上400℃以下が好ましい。本実施の形態では、加熱処理の温度を250℃とする。
 次に、絶縁膜224f上に、酸化膜230afを成膜し、酸化膜230af上に、酸化膜230bfを成膜する(図6A乃至図6D参照)。酸化膜230afとしては、上記酸化物230aに対応する金属酸化物を、酸化膜230bfとしては、上記酸化物230bに対応する金属酸化物を、用いればよい。なお、酸化膜230af及び酸化膜230bfは、大気環境にさらさずに連続して成膜することが好ましい。大気開放せずに成膜することで、酸化膜230af上及び酸化膜230bf上に大気環境からの不純物または水分が付着することを防ぐことができ、酸化膜230afと酸化膜230bfとの界面近傍を清浄に保つことができる。
 酸化膜230af及び酸化膜230bfは、それぞれ、例えば、スパッタリング法、CVD法、MBE法、PLD法、または、ALD法を用いて成膜することができる。本実施の形態では、酸化膜230af及び酸化膜230bfの成膜はスパッタリング法を用いる。
 例えば、酸化膜230af及び酸化膜230bfをスパッタリング法によって成膜する場合は、スパッタリングガスとして、酸素、または、酸素と貴ガスの混合ガスを用いる。スパッタリングガスに含まれる酸素の割合を高めることで、成膜される酸化膜中の過剰酸素を増やすことができる。また、上記の酸化膜をスパッタリング法によって成膜する場合は、In−M−Zn酸化物ターゲットなどを用いることができる。
 特に、酸化膜230afの成膜時に、スパッタリングガスに含まれる酸素の一部が絶縁膜224fに供給される場合がある。したがって、当該スパッタリングガスに含まれる酸素の割合は70%以上が好ましく、80%以上がより好ましく、100%がさらに好ましい。
 また、酸化膜230bfをスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を、30%を超えて100%以下、好ましくは70%以上100%以下として成膜すると、酸素過剰型の酸化物半導体が形成される。酸素過剰型の酸化物半導体をチャネル形成領域に用いたトランジスタは、比較的高い信頼性が得られる。ただし、本発明の一態様はこれに限定されない。酸化膜230bfをスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を1%以上30%以下、好ましくは5%以上20%以下として成膜すると、酸素欠乏型の酸化物半導体が形成される。酸素欠乏型の酸化物半導体をチャネル形成領域に用いたトランジスタは、比較的高い電界効果移動度が得られる。また、基板を加熱しながら成膜を行うことによって、当該酸化膜の結晶性を向上させることができる。
 本実施の形態では、酸化膜230afを、スパッタリング法によって、In:Ga:Zn=1:3:2[原子数比]の酸化物ターゲット、またはIn:Ga:Zn=1:3:4[原子数比]の酸化物ターゲットを用いて成膜する。また、酸化膜230bfを、スパッタリング法によって、In:Ga:Zn=1:1:1[原子数比]の酸化物ターゲット、In:Ga:Zn=1:1:1.2[原子数比]の酸化物ターゲット、In:Ga:Zn=4:2:4.1[原子数比]の酸化物ターゲット、またはIn:Ga:Zn=1:1:2[原子数比]の酸化物ターゲットを用いて成膜する。なお、各酸化膜は、成膜条件、及び原子数比を適宜選択することで、酸化物230a、及び酸化物230bに求める特性に合わせて形成するとよい。
 なお、絶縁膜224f、酸化膜230af、及び酸化膜230bfを、大気に暴露することなく、スパッタリング法で成膜することが好ましい。例えば、マルチチャンバー方式の成膜装置を用いることが好ましい。これにより、絶縁膜224f、酸化膜230af、及び酸化膜230bfについて、各成膜工程の合間に膜中に水素が混入することを低減できる。
 次に、加熱処理を行うことが好ましい。加熱処理は、酸化膜230af、及び酸化膜230bfが多結晶化しない温度範囲で行えばよい。加熱処理の温度は、100℃以上、250℃以上、または350℃以上であり、かつ、650℃以下、600℃以下、または550℃以下であると好ましい。
 なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、窒素ガスと酸素ガスの混合雰囲気で加熱処理をする場合、酸素ガスを20%程度にすることが好ましい。また、加熱処理は減圧状態で行ってもよい。または、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行ってもよい。
 また、上記加熱処理で用いるガスは、高純度化されていることが好ましい。例えば、上記加熱処理で用いるガスに含まれる水分量は、1ppb以下が好ましく、0.1ppb以下がより好ましく、0.05ppb以下がさらに好ましい。高純度化されたガスを用いて加熱処理を行うことで、酸化膜230af、及び酸化膜230bfなどに水分等が取り込まれることを可能な限り防ぐことができる。
 本実施の形態では、加熱処理として、窒素ガスと酸素ガスの流量比を4:1として、450℃の温度で1時間の処理を行う。このような酸素ガスを含む加熱処理によって、酸化膜230af及び酸化膜230bf中の炭素、水、水素などの不純物を低減できる。このように膜中の不純物を低減することで、酸化膜230bfの結晶性を向上させ、より密度の高い、緻密な構造にすることができる。これにより、酸化膜230af及び酸化膜230bf中の結晶領域を増大させ、酸化膜230af及び酸化膜230bf中における、結晶領域の面内ばらつきを低減できる。よって、トランジスタの電気特性の面内ばらつきを低減できる。
 また、加熱処理を行うことで、絶縁体216、絶縁膜224f、酸化膜230af、及び酸化膜230bf中の水素が絶縁体222に移動し、絶縁体222内に吸い取られる。別言すると、絶縁体216、絶縁膜224f、酸化膜230af、及び酸化膜230bf中の水素が絶縁体222に拡散する。従って、絶縁体222の水素濃度は高くなるが、絶縁体216、絶縁膜224f、酸化膜230af、及び酸化膜230bf中のそれぞれの水素濃度は低下する。
 特に、絶縁膜224f(後の絶縁体224)は、トランジスタ200の第2のゲート絶縁体として機能し、酸化膜230af及び酸化膜230bf(後の酸化物230a及び酸化物230b)は、トランジスタ200のチャネル形成領域として機能する。水素濃度が低減された絶縁膜224f、酸化膜230af及び酸化膜230bfを用いて形成されたトランジスタ200は、良好な信頼性を有するため好ましい。
 次に、酸化膜230bf上に、導電膜242fを成膜する(図6A乃至図6D参照)。導電膜242fとしては、上記導電体242に対応する導電体を、用いればよい。酸化膜230bfの成膜後に、エッチング工程などを挟まずに、酸化膜230bf上に接して導電膜242fを成膜することで、酸化膜230bfの上面を、導電膜242fで保護することができる。これにより、トランジスタを構成する酸化物230に不純物が拡散するのを低減することができるため、半導体装置の電気特性及び信頼性の向上を図ることができる。
 導電膜242fは、スパッタリング法、CVD法、MBE法、PLD法、メッキ法またはALD法を用いて成膜することができる。
 本実施の形態では、導電膜242fとしてスパッタリング法を用いて窒化タンタルを成膜する。なお、導電膜242fの成膜前に、加熱処理を行ってもよい。当該加熱処理は、減圧下で行い、大気に暴露することなく、連続して導電膜242fを成膜してもよい。このような処理を行うことによって、酸化物230bの表面に吸着している水分及び水素を除去し、さらに酸化物230a、及び酸化物230b中の水分濃度及び水素濃度を低減させることができる。加熱処理の温度は、100℃以上400℃以下が好ましい。本実施の形態では、加熱処理の温度を250℃とする。
 なお、導電膜242fは、積層膜としてもよい。例えば、図3Bなどに示すように、導電体242a1、242b1と、導電体242a2、242b2の積層構造にする場合、導電膜242fとしてスパッタリング法を用いて窒化タンタルを成膜し、さらにその上にスパッタリング法を用いてタングステンを成膜すればよい。
 次に、導電膜242f上に絶縁膜271_1fを成膜し、さらにその上に絶縁膜271_2fを成膜する(図6A乃至図6D参照)。絶縁膜271_1fとしては、上記絶縁体271_1に対応する絶縁体を、絶縁膜271_2fとしては、上記絶縁体271_2に対応する絶縁体を、用いればよい。ここで、絶縁膜271_1fとして、上述のように、酸素の透過を抑制する機能を有する絶縁膜を用いることで、以降の工程で導電膜242fが酸化されるのを抑制することができる。
 絶縁膜271_1f及び絶縁膜271_2fの成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。例えば、絶縁膜271_1fとして、スパッタリング法によって、窒化シリコン膜を成膜し、絶縁膜271_2fとして、スパッタリング法によって、酸化シリコン膜を成膜すればよい。
 ここで、絶縁膜271_1f及び絶縁膜271_2fは、大気環境にさらさずに連続して成膜することが好ましい。大気開放せずに成膜することで、絶縁膜271_1f及び絶縁膜271_2f上に大気環境からの不純物または水分が付着することを防ぐことができ、絶縁膜271_1fと絶縁膜271_2fとの界面近傍を清浄に保つことができる。また、導電膜242fから絶縁膜271_2fまで、大気環境にさらさずに連続して成膜すると、より好ましい。
 なお、絶縁膜271_1f及び絶縁膜271_2fの成膜前に、加熱処理を行ってもよい。当該加熱処理は、減圧下で行い、大気に暴露することなく、連続して絶縁膜271_1f及び絶縁膜271_2fを成膜してもよい。このような処理を行うことによって、導電膜242fの表面に吸着している水分及び水素を除去し、さらに導電膜242f中の水分濃度及び水素濃度を低減させることができる。加熱処理の温度は、100℃以上400℃以下が好ましい。本実施の形態では、加熱処理の温度を250℃とする。
 次に、リソグラフィ法を用いて、絶縁膜224f、酸化膜230af、酸化膜230bf、導電膜242f、絶縁膜271_1f、及び絶縁膜271_2fを島状に加工して、絶縁体224、酸化物230a、酸化物230b、導電体242、絶縁体271_1、及び絶縁体271_2を形成する(図7A乃至図7D参照)。絶縁膜224f、酸化膜230af、酸化膜230bf、導電膜242f、絶縁膜271_1f、及び絶縁膜271_2fの加工は、上述の図1B乃至図1Fに係る記載の方法で行えばよい。
<積層体の加工方法例>に記載の方法で加工することで、導電体242の側面が、酸化物230の側面に対して、過剰に後退していない、言い換えると、導電体242の側端部と、酸化物230の側端部が概略一致している、島状の積層体を形成することができる。このような微細構造の積層体を用いて、トランジスタ200を作製することで、半導体装置の微細化、及び高集積化を図ることができる。
 また、絶縁体224、酸化物230a、酸化物230b、導電体242、絶縁体271_1、及び絶縁体271_2を一括で島状に加工することが好ましい。このとき、導電体242の側端部は、酸化物230aの側端部及び酸化物230bの側端部と概略一致することが好ましい。さらに、絶縁体224の側端部が、酸化物230の側端部と概略一致することが好ましい。さらに、絶縁体271の側端部は、導電体242の側端部と概略一致することが好ましい。このような構成にすることで、本発明の一態様に係る半導体装置の工程数を削減することができる。よって、生産性の良好な半導体装置の作製方法を提供することができる。
 また、絶縁体224、酸化物230a、酸化物230b、導電体242、絶縁体271_1は、少なくとも一部が導電体205と重なるように形成する。また、絶縁体224、酸化物230a、酸化物230b、導電体242、絶縁体271_1、及び絶縁体271_2と重畳しない領域において、絶縁体222が露出する。
 また、無機膜276の除去工程において、絶縁体271が導電体242のマスクとして機能するため、導電体242は側面と上面の間に湾曲面を有しない。これにより、後で形成する導電体242aおよび導電体242bは、側面と上面が交わる端部が角状になる。導電体242の側面と上面が交わる端部が角状になることで、当該端部が曲面を有する場合に比べて、導電体242の断面積が大きくなる。さらに、絶縁体271_1に、金属を酸化させにくい窒化物絶縁体を用いることで、導電体242が過剰に酸化されるのを防ぐことができる。これにより、導電体242の抵抗が低減されるため、トランジスタのオン電流を大きくすることができる。
 また、絶縁体224を島状に加工することで、後述する工程で、絶縁体224の側面および絶縁体222の上面に接して絶縁体275を設けることができる。つまり、絶縁体224を、絶縁体275によって、絶縁体280と離隔することができる。このような構成にすることで、絶縁体280から絶縁体224を介して、過剰な量の酸素、及び水素などの不純物が、酸化物230に混入するのを防ぐことができる。
 また、絶縁体224を、島状に加工することにより、複数のトランジスタ200を設ける場合、1個のトランジスタ200に対して、ほぼ同程度の大きさの絶縁体224が設けられることになる。これにより、各トランジスタ200において、絶縁体224から酸化物230に供給される酸素の量が、同程度になる。よって、基板面内でトランジスタ200の電気特性のばらつきを抑制することができる。ただし、これに限られず、絶縁体222と同様に、絶縁体224をパターン形成しない構成にすることもできる。
 また、図7B乃至図7Dに示すように、絶縁体224、酸化物230a、酸化物230b、導電体242、絶縁体271_1、及び絶縁体271_2の側面が、テーパー形状になっていてもよい。絶縁体224、酸化物230a、酸化物230b、導電体242、絶縁体271_1、及び絶縁体271_2の側面のテーパー角は、例えば、60°以上90°未満であってもよい。このように側面をテーパー形状にすることで、これより後の工程において、絶縁体275などの被覆性が向上し、鬆などの欠陥を低減できる。
 また、上記に限られず、絶縁体224、酸化物230a、酸化物230b、導電体242、絶縁体271_1、及び絶縁体271_2の側面が絶縁体222の上面に対し、概略垂直になる構成にしてもよい。このような構成にすることで、複数のトランジスタを設ける際に、小面積化、高密度化が可能となる。
 次に、絶縁体224、酸化物230a、酸化物230b、導電体242、絶縁体271_1、及び絶縁体271_2を覆って、絶縁体275を成膜し、さらに絶縁体275上に絶縁体280を成膜する。絶縁体275、及び絶縁体280としては、上述の絶縁体を用いればよい。
 ここで、絶縁体275は、絶縁体222の上面に接することが好ましい。
 絶縁体280としては、絶縁体280となる絶縁膜を形成し、当該絶縁膜にCMP処理を行うことで、上面が平坦な絶縁体を形成することが好ましい。なお、絶縁体280上に、例えば、スパッタリング法によって窒化シリコンを成膜し、該窒化シリコンを絶縁体280に達するまで、CMP処理を行ってもよい。
 絶縁体275及び絶縁体280は、それぞれ、例えば、スパッタリング法、CVD法、MBE法、PLD法、またはALD法を用いて成膜することができる。
 絶縁体275には、酸素の透過を抑制する機能を有する絶縁体を用いることが好ましい。例えば、絶縁体275として、PEALD法を用いて窒化シリコンを成膜することが好ましい。または、絶縁体275として、スパッタリング法を用いて、酸化アルミニウムを成膜し、その上にPEALD法を用いて窒化シリコンを成膜することが好ましい。絶縁体275を上記のような構造とすることで、水、水素などの不純物、及び酸素の拡散を抑制する機能の向上を図ることができる。
 このようにして、酸化物230a、酸化物230b、及び導電体242を、酸素の拡散を抑制する機能を有する絶縁体275で覆うことができる。これにより、のちの工程で、絶縁体224、酸化物230a、酸化物230b、及び導電体242に、絶縁体280などから酸素が直接拡散することを低減できる。
 また、絶縁体280として、スパッタリング法を用いて酸化シリコンを成膜することが好ましい。絶縁体280となる絶縁膜を、酸素を含む雰囲気で、スパッタリング法で成膜することで、過剰酸素を含む絶縁体280を形成することができる。また、成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁体280中の水素濃度を低減できる。なお、当該絶縁膜の成膜前に、加熱処理を行ってもよい。加熱処理は、減圧下で行い、大気に暴露することなく、連続して当該絶縁膜を成膜してもよい。このような処理を行うことによって、絶縁体275の表面などに吸着している水分及び水素を除去し、さらに酸化物230a、酸化物230b、及び絶縁体224中の水分濃度及び水素濃度を低減できる。当該加熱処理には、上述した加熱処理条件を用いることができる。
 次に、リソグラフィ法を用いて、導電体242、絶縁体271_1、絶縁体271_2、絶縁体275、及び絶縁体280を加工して、酸化物230bに達する開口を形成する(図8A乃至図8D参照)。酸化物230bに達する開口は、酸化物230bと導電体205とが重なる領域に設ける。
 上記加工はドライエッチング法またはウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。また、導電体242、絶縁体271_1、絶縁体271_2、絶縁体275、及び絶縁体280の加工は、それぞれ異なる条件で行ってもよい。特に、導電体242の加工に、ドライエッチング法を用いる場合、ICPエッチング装置を用いることが好ましい。この場合、バイアス電力を印加して、導電体242に対するエッチングレートを向上させて、エッチング処理を行うことが好ましい。
 当該加工により、導電体242は、それぞれ島状の、導電体242a、242bに分断される。同様に、絶縁体271_1は、それぞれ島状の、絶縁体271a1、271b1に分断される。同様に、絶縁体271_2は、それぞれ島状の、絶縁体271a2、271b2に分断される。
 上記開口の幅は、トランジスタ200のチャネル長に反映されるため、微細であることが好ましい。例えば、上記開口の幅が、60nm以下、50nm以下、40nm以下、30nm以下、20nm以下、または10nm以下であって、1nm以上、または5nm以上であることが好ましい。このように、上記開口を微細に加工するには、EUV光などの短波長の光、または電子ビームを用いたリソグラフィ法を用いることが好ましい。
 上記エッチング処理によって、酸化物230aの側面、酸化物230bの上面及び側面、導電体242a、242bの側面、絶縁体271a、271bの側面、絶縁体275の側面、絶縁体280の側面などへの不純物の付着またはこれらの内部への該不純物の拡散が生じる場合がある。このような不純物を除去する工程を行ってもよい。また、上記ドライエッチングで酸化物230bの表面に損傷領域が形成される場合がある。このような損傷領域を除去してもよい。当該不純物としては、例えば、絶縁体280、絶縁体275、絶縁体271a、271b、導電体242a、242bに含まれる成分、上記開口を形成する際に用いられる装置の部材に含まれる成分、及び、エッチングに使用するガスまたは液体に含まれる成分に起因したものが挙げられる。当該不純物としては、例えば、ハフニウム、アルミニウム、シリコン、タンタル、フッ素、塩素などが挙げられる。
 特に、アルミニウム、シリコンなどの不純物は、酸化物230bの結晶性を低下させる場合がある。よって、酸化物230bの表面及びその近傍において、アルミニウム、シリコンなどの不純物は除去されることが好ましい。また、当該不純物の濃度は低減されていることが好ましい。例えば、酸化物230b表面及びその近傍における、アルミニウム原子の濃度が、5.0原子%以下が好ましく、2.0原子%以下がより好ましく、1.5原子%以下がより好ましく、1.0原子%以下がさらに好ましく、0.3原子%未満がさらに好ましい。
 なお、アルミニウム、シリコンなどの不純物により、酸化物230bの結晶性が低い領域では、結晶構造の緻密さが低下しているため、VHが多量に形成され、トランジスタがノーマリーオン化しやすくなる。よって、酸化物230bの結晶性が低い領域は、低減または除去されていることが好ましい。
 これに対して、酸化物230bに層状のCAAC構造を有していることが好ましい。特に、酸化物230bのドレイン下端部までCAAC構造を有することが好ましい。ここで、トランジスタにおいて、導電体242aまたは導電体242bがドレインとして機能することが好ましい。つまり、導電体242aまたは導電体242bの下端部近傍の酸化物230bが、CAAC構造を有することが好ましい。このように、ドレイン耐圧に顕著に影響するドレイン端部においても、酸化物230bの結晶性の低い領域が除去され、CAAC構造を有することで、トランジスタの電気特性の変動をさらに抑制することができる。また、トランジスタの信頼性を向上させることができる。
 上記エッチング工程で酸化物230b表面に付着した不純物などを除去するために、洗浄処理を行う。洗浄方法としては、洗浄液など用いたウェット洗浄(ウェットエッチング処理ということもできる)、プラズマを用いたプラズマ処理、熱処理による洗浄などがあり、上記洗浄を適宜組み合わせて行ってもよい。なお、当該洗浄処理によって、上記溝部が深くなる場合がある。
 ウェット洗浄としては、アンモニア水、シュウ酸、リン酸、及びフッ化水素酸のうち一つまたは複数を炭酸水または純水で希釈した水溶液、純水、炭酸水などを用いて行ってもよい。または、これらの水溶液、純水、または炭酸水を用いた超音波洗浄を行ってもよい。または、これらの洗浄を適宜組み合わせて行ってもよい。
 なお、本明細書等では、フッ化水素酸を純水で希釈した水溶液を希釈フッ化水素酸と呼び、アンモニア水を純水で希釈した水溶液を希釈アンモニア水と呼ぶ場合がある。また、当該水溶液の濃度、温度などは、除去したい不純物、洗浄される半導体装置の構成などによって、適宜調整する。希釈アンモニア水のアンモニア濃度は0.01%以上5%以下が好ましく、0.1%以上0.5%以下がより好ましい。また、希釈フッ化水素酸のフッ化水素濃度は0.01ppm以上100ppm以下が好ましく、0.1ppm以上10ppm以下がより好ましい。
 なお、超音波洗浄には、200kHz以上の周波数を用いることが好ましく、900kHz以上の周波数を用いることがより好ましい。当該周波数を用いることで、酸化物230bなどへのダメージを低減することができる。
 また、上記洗浄処理を複数回行ってもよく、洗浄処理毎に洗浄液を変更してもよい。例えば、第1の洗浄処理として希釈フッ化水素酸、または希釈アンモニア水を用いた処理を行い、第2の洗浄処理として純水、または炭酸水を用いた処理を行ってもよい。
 上記洗浄処理として、本実施の形態では、希釈アンモニア水を用いてウェット洗浄を行う。当該洗浄処理を行うことで、酸化物230a、酸化物230bなどの表面に付着または内部に拡散した不純物を除去することができる。さらに、酸化物230bの結晶性を高めることができる。
 上記エッチング後、または上記洗浄後に加熱処理を行ってもよい。加熱処理の温度は、100℃以上、250℃以上、または350℃以上であり、かつ、650℃以下、600℃以下、550℃以下、または400℃以下であると好ましい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、窒素ガスと酸素ガスの流量比を4:1として、350℃の温度で1時間の処理を行うことが好ましい。これにより、酸化物230a及び酸化物230bに酸素を供給して、酸素欠損の低減を図ることができる。また、このような熱処理を行うことで、酸化物230bの結晶性を向上させることができる。さらに、酸化物230a及び酸化物230b中に残存した水素に供給された酸素が反応することで、当該水素をHOとして除去する(脱水化する)ことができる。これにより、酸化物230a及び酸化物230b中に残存していた水素が酸素欠損に再結合してVHが形成されることを抑制できる。また、加熱処理は減圧状態で行ってもよい。または、酸素雰囲気で加熱処理した後に、大気に露出せずに連続して窒素雰囲気で加熱処理を行ってもよい。
 酸化物230bに、導電体242a及び導電体242bが接した状態で加熱処理を行う場合、酸化物230bにおける導電体242aと重なる領域、及び、導電体242bと重なる領域は、それぞれシート抵抗が低下することがある。また、キャリア濃度が増加することがある。したがって、酸化物230bにおける導電体242aと重なる領域、及び、導電体242bと重なる領域を、自己整合的に低抵抗化することができる。
 なお、上記加熱処理を行わない構成としてもよい。例えば、図3Bなどに示すように、導電体242a、242bを積層構造にし、導電体242a2、242b2に、比較的酸化されやすいタングステン膜などを用いる場合は、上記加熱処理を行わない構成としてもよい。これにより、上記加熱処理で、導電体242a2、242b2が過剰に酸化されるのを防ぐことができる。
 次に、上記開口を埋めるように、絶縁体250となる絶縁膜250Aを成膜する(図9A乃至図9D参照)。絶縁膜250Aは、例えば、スパッタリング法、CVD法、MBE法、PLD法、または、ALD法を用いて成膜することができる。絶縁膜250AはALD法を用いて成膜することが好ましい。絶縁体250は薄い膜厚で形成することが好ましく、膜厚のばらつきが小さくなるようにする必要がある。これに対して、ALD法は、プリカーサと、リアクタント(例えば酸化剤など)を交互に導入して行う成膜方法であり、このサイクルを繰り返す回数によって膜厚を調節することができるため、精密な膜厚調節が可能である。また、絶縁体250は、開口の底面及び側面に、被覆性良く形成される必要がある。ALD法を用いることで、上記開口の底面及び側面において、原子の層を一層ずつ堆積させることができるため、絶縁体250を当該開口に対して良好な被覆性で形成できる。
 また、絶縁膜250AをALD法で成膜する場合、酸化剤として、オゾン(O)、酸素(O)、水(HO)などを用いることができる。水素を含まない、オゾン(O)、酸素(O)などを酸化剤として用いることで、酸化物230bに拡散する水素を低減できる。
 絶縁体250は、図3A及び図4A、ならびに図3B及び図4Bで示したように、積層構造にすることができる。図3A及び図4Aに示す構造の場合、絶縁体250aとなる絶縁膜として、酸化アルミニウムを熱ALD法によって成膜し、絶縁体250bとなる絶縁膜として、酸化シリコンをPEALD法によって成膜し、絶縁体250cとなる絶縁膜として、窒化シリコンをPEALD法によって成膜することができる。さらに、図3B及び図4Bに示す構造の場合、絶縁体250dとなる絶縁膜として、酸化ハフニウムを熱ALD法によって成膜することができる。
 次に、酸素を含む雰囲気でマイクロ波処理を行うことが好ましい。ここで、マイクロ波処理とは、例えばマイクロ波を用いて高密度プラズマを発生させる電源を有する装置を用いた処理のことを指す。また、本明細書などにおいて、マイクロ波とは、300MHz以上300GHz以下の周波数を有する電磁波を指すものとする。ただし、絶縁体250を積層構造にする場合は、上記マイクロ波処理を、全部の絶縁膜250Aを成膜した後に行うとは限らない。例えば、図3A及び図4Aに示す構造の場合、絶縁体250aとなる絶縁膜、及び絶縁体250bとなる絶縁膜を成膜した後で、マイクロ波処理を行い、それから絶縁体250cとなる絶縁膜を成膜してもよい。また、例えば、図3B及び図4Bに示す構造の場合、絶縁体250aとなる絶縁膜、及び絶縁体250bとなる絶縁膜を成膜した後で、マイクロ波処理を行い、次に、絶縁体250dとなる絶縁膜を成膜した後で、マイクロ波処理を行い、それから絶縁体250cとなる絶縁膜を成膜してもよい。このように、酸素を含む雰囲気でのマイクロ波処理は、複数回(少なくとも2回以上)の処理としてもよい。
 マイクロ波処理では、例えばマイクロ波を用いた高密度プラズマを発生させる電源を有する、マイクロ波処理装置を用いることが好ましい。ここで、マイクロ波処理装置の周波数は、300MHz以上300GHz以下が好ましく、2.4GHz以上2.5GHz以下がより好ましく、例えば、2.45GHzにすることができる。高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができる。また、マイクロ波処理装置のマイクロ波を印加する電源の電力は、1000W以上10000W以下が好ましく、2000W以上5000W以下が好ましい。また、マイクロ波処理装置は基板側にRFを印加する電源を有してもよい。また、基板側にRFを印加することで、高密度プラズマによって生成された酸素イオンを、効率よく酸化物230b中に導くことができる。
 また、上記マイクロ波処理は、減圧下で行うことが好ましく、圧力は、10Pa以上1000Pa以下が好ましく、300Pa以上700Pa以下がより好ましい。また、処理温度は、750℃以下が好ましく、500℃以下がより好ましく、例えば250℃程度とすることができる。また、酸素プラズマ処理を行った後に、外気に曝すことなく、連続して加熱処理を行ってもよい。加熱処理の温度は、例えば、100℃以上750℃以下が好ましく、300℃以上500℃以下がより好ましい。
 また、例えば、上記マイクロ波処理は、酸素ガスとアルゴンガスを用いて行うことができる。ここで、酸素流量比(O/(O+Ar))は、0%より大きく、100%以下とする。好ましくは、酸素流量比(O/(O+Ar))を、0%より大きく、50%以下とする。より好ましくは、酸素流量比(O/(O+Ar))を、10%以上、40%以下とする。さらに好ましくは、酸素流量比(O/(O+Ar))を、10%以上、30%以下とする。このように、酸素を含む雰囲気でマイクロ波処理を行うことで、酸化物230b中のキャリア濃度を低下させることができる。また、マイクロ波処理において、チャンバーに過剰な量の酸素が導入されないようにすることで、酸化物230bでキャリア濃度が過剰に低下することを防ぐことができる。
 酸素を含む雰囲気でマイクロ波処理を行うことで、マイクロ波、またはRF等の高周波を用いて酸素ガスをプラズマ化し、当該酸素プラズマを酸化物230bの、導電体242aと導電体242bとの間の領域に作用させることができる。プラズマ、マイクロ波などの作用により、当該領域におけるVHを酸素欠損と水素とに分断し、水素を当該領域から除去することができる。ここで、図3Aまたは図3Bに示す構造にする場合、絶縁体250aとなる絶縁膜として、水素を捕獲及び水素を固着する機能を有する絶縁膜(例えば、酸化アルミニウムなど)を用いることが好ましい。このような構成にすることで、マイクロ波処理により生じた水素を、絶縁体250aに捕獲、または固着させることができる。このようにして、チャネル形成領域に含まれるVHを低減できる。以上により、チャネル形成領域中の酸素欠損、及びVHを低減し、キャリア濃度を低下させることができる。また、チャネル形成領域で形成された酸素欠損に、上記酸素プラズマで発生した酸素ラジカルを供給することで、さらに、チャネル形成領域中の酸素欠損を低減し、キャリア濃度を低下させることができる。
 チャネル形成領域中に注入される酸素は、酸素原子、酸素分子、酸素イオン、及び酸素ラジカル(Oラジカルともいう、不対電子をもつ原子、分子、またはイオン)など様々な形態がある。なお、チャネル形成領域中に注入される酸素は、上述の形態のいずれか一または複数であればよく、特に酸素ラジカルであると好適である。また、絶縁体250の膜質を向上させることができるため、トランジスタの信頼性が向上する。
 一方、酸化物230bには、導電体242a、242bのいずれかと重なる領域が存在する。当該領域は、ソース領域またはドレイン領域として機能することができる。ここで、導電体242a、242bは、酸素を含む雰囲気でマイクロ波処理を行う際、マイクロ波、RF等の高周波、酸素プラズマなどの作用に対する遮蔽膜として機能することが好ましい。このため、導電体242a、242bは、300MHz以上300GHz以下、例えば、2.4GHz以上2.5GHz以下の電磁波を遮蔽する機能を有することが好ましい。
 導電体242a、242bは、マイクロ波、またはRF等の高周波、酸素プラズマなどの作用を遮蔽するため、これらの作用は、酸化物230bの導電体242a、242bのいずれかと重なる領域には及ばない。これにより、マイクロ波処理によって、ソース領域及びドレイン領域で、VHの低減、及び過剰な量の酸素供給が発生しないため、キャリア濃度の低下を防ぐことができる。
 また、導電体242a、242bの側面に接して、酸素に対するバリア性を有する絶縁体250が設けられている。これにより、マイクロ波処理によって、導電体242a、242bの側面に酸化膜が形成されることを抑制できる。
 また、絶縁体250の膜質を向上させることができるため、トランジスタの信頼性が向上する。
 以上のようにして、酸化物半導体のチャネル形成領域で選択的に酸素欠損、及びVHを除去して、チャネル形成領域をi型または実質的にi型とすることができる。さらに、ソース領域またはドレイン領域として機能する領域に過剰な酸素が供給されることを抑制し、マイクロ波処理を行う前の導電性(低抵抗領域である状態)を維持することができる。これにより、トランジスタの電気特性の変動を抑制し、基板面内でトランジスタの電気特性がばらつくことを抑制できる。
 なお、マイクロ波処理では、マイクロ波と酸化物230b中の分子の電磁気的な相互作用により、酸化物230bに直接的に熱エネルギーを伝達する場合がある。この熱エネルギーにより、酸化物230bが加熱される場合がある。このような加熱処理をマイクロ波アニールと呼ぶ場合がある。マイクロ波処理を、酸素を含む雰囲気中で行うことで、酸素アニールと同等の効果が得られる場合がある。また、酸化物230bに水素が含まれる場合、この熱エネルギーが酸化物230b中の水素に伝わり、これにより活性化した水素が酸化物230bから放出されることが考えられる。
 なお、絶縁膜250Aの成膜後にマイクロ波処理を行わず、当該絶縁膜の成膜前にマイクロ波処理を行ってもよい。
 また、絶縁膜250Aの成膜後のマイクロ波処理後に減圧状態を保ったままで、加熱処理を行ってもよい。このような処理を行うことで、当該絶縁膜中、酸化物230b中、及び酸化物230a中の水素を効率よく除去できる。また、水素の一部は、導電体242a、242bにゲッタリングされる場合がある。または、マイクロ波処理後に減圧状態を保ったままで、加熱処理を行うステップを複数回繰り返して行ってもよい。加熱処理を繰り返し行うことで、当該絶縁膜中、酸化物230b中、及び酸化物230a中の水素をさらに効率よく除去できる。なお、加熱処理温度は、300℃以上500℃以下とすることが好ましい。また、上記マイクロ波処理、すなわちマイクロ波アニールが該加熱処理を兼ねてもよい。マイクロ波アニールにより、酸化物230bなどが十分加熱される場合、該加熱処理を行わなくてもよい。
 また、マイクロ波処理を行って絶縁膜250Aの膜質を改質することで、水素、水、不純物等の拡散を抑制できる。従って、導電体260となる導電膜の成膜などの後工程、または熱処理などの後処理により、絶縁体250を介して、水素、水、不純物等が、酸化物230b、酸化物230aなどへ拡散することを抑制できる。
 次に、導電体260aとなる導電膜260Aと、導電体260bとなる導電膜260Bと、を順に成膜する(図10A乃至図10D参照)。導電膜260A、及び、導電膜260Bは、それぞれ、例えば、スパッタリング法、CVD法、MBE法、PLD法、メッキ法または、ALD法を用いて成膜することができる。本実施の形態では、ALD法を用いて、導電膜260Aとして窒化チタンを成膜し、CVD法を用いて導電膜260Bとしてタングステンを成膜する。
 次に、CMP処理によって、絶縁膜250A、導電膜260A、及び、導電膜260Bを、絶縁体280が露出するまで研磨する。つまり、絶縁膜250A、導電膜260A、及び、導電膜260Bの、上記開口から露出した部分を除去する。これによって、導電体205と重なる開口の中に、絶縁体250、及び導電体260(導電体260a及び導電体260b)を形成する(図11A乃至図11D参照)。
 これにより、絶縁体250は、酸化物230bに重畳する開口の内壁及び側面に接して設けられる。また、導電体260は、絶縁体250を介して、開口を埋め込むように配置される。このようにして、トランジスタ200が形成される。
 次に、絶縁体250上、導電体260上、及び絶縁体280上に、絶縁体282を形成する。絶縁体282は、例えば、スパッタリング法、CVD法、MBE法、PLD法、またはALD法を用いて成膜することができる。絶縁体282の成膜は、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁体282中の水素濃度を低減できる。
 本実施の形態では、絶縁体282として、酸素ガスを含む雰囲気でアルミニウムターゲットを用いて、パルスDCスパッタリング法で酸化アルミニウムを成膜する。パルスDCスパッタリング法を用いることで、膜厚分布をより均一にし、スパッタレート、及び膜質を向上することができる。また、基板に印加するRF電力は1.86W/cm以下とする。好ましくは、0W/cm以上0.62W/cm以下とする。なお、RF電力が0W/cmとは、基板にRF電力を印加しないことと同義である。基板に印加するRF電力の大きさによって、絶縁体282より下層へ注入する酸素量を制御することができる。例えば、RF電力が小さいほど絶縁体282より下層へ注入する酸素量が減り、絶縁体282の膜厚が薄くても当該酸素量は飽和しやすくなる。また、RF電力が大きいほど絶縁体282より下層へ注入する酸素量が増える。RF電力を小さくすることで、絶縁体280へ注入される酸素量を抑制できる。または、絶縁体282を2層の積層構造で成膜してもよい。このとき、例えば、絶縁体282の下層を、基板に印加するRF電力を0W/cmとして成膜し、絶縁体282の上層を、基板に印加するRF電力を0.62W/cmとして成膜する。
 また、RFの周波数は、10MHz以上が好ましい。代表的には、13.56MHzである。RFの周波数が高いほど基板へ与えるダメージを小さくすることができる。
 また、スパッタリング法を用いて、酸素を含む雰囲気で絶縁体282の成膜を行うことで、成膜しながら、絶縁体280に酸素を添加できる。これにより、絶縁体280に過剰酸素を含ませることができる。このとき、基板加熱を行いながら、絶縁体282を成膜することが好ましい。
 なお、絶縁体282の成膜前に、加熱処理を行ってもよい。当該加熱処理は、減圧下で行い、大気に暴露することなく、連続して絶縁体282を成膜してもよい。このような処理を行うことによって、絶縁体280の表面に吸着している水分及び水素を除去し、さらに絶縁体280中の水分濃度及び水素濃度を低減させることができる。加熱処理の温度は、100℃以上400℃以下が好ましい。本実施の形態では、加熱処理の温度を250℃とする。
 次に、絶縁体282上に、絶縁体283を形成する。絶縁体283は、例えば、スパッタリング法、CVD法、MBE法、PLD法、またはALD法を用いて成膜することができる。絶縁体283の成膜は、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁体283中の水素濃度を低減できる。本実施の形態では、絶縁体283として、スパッタリング法を用いて、窒化シリコンを成膜する。
 ここで、絶縁体282及び絶縁体283は、大気環境にさらさずに連続して成膜することが好ましい。大気開放せずに成膜することで、絶縁体282及び絶縁体283上に大気環境からの不純物または水分が付着することを防ぐことができ、絶縁体282及び絶縁体283との界面近傍を清浄に保つことができる。
 以上により、図2に示す半導体装置を作製できる。
 本実施の形態に係る、積層体の加工方法を用いることで、導電体の側端部と、酸化物半導体の側端部が概略一致した、島状の積層体を作製することができる。このような微細構造の積層体を用いて、OSトランジスタを作製することで、半導体装置の微細化、及び高集積化を図ることができる。
 本実施の形態に係る半導体装置は、OSトランジスタを有する。OSトランジスタは、オフ電流が小さいため、消費電力が少ない半導体装置または記憶装置を実現できる。また、OSトランジスタは、周波数特性が高いため、動作速度が速い半導体装置または記憶装置を実現できる。また、OSトランジスタを用いることで、良好な電気特性を有する半導体装置、トランジスタの電気特性のばらつきが少ない半導体装置、オン電流が大きい半導体装置、信頼性が高い半導体装置または記憶装置を実現できる。
 本実施の形態は、他の実施の形態または実施例と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
(実施の形態2)
 本実施の形態では、本発明の一態様のトランジスタを用いた記憶装置について図12乃至図18を用いて説明する。
 本実施の形態では、上記実施の形態で説明したトランジスタを有するメモリセルを用いた記憶装置の構成例について説明する。本実施の形態では、積層されたメモリセルを有する層の間に、メモリセルに保持したデータ電位を増幅して出力する機能を有する機能回路を有する層が設けられた、記憶装置の構成例について説明する。
[記憶装置の構成例]
 図12に、本発明の一態様の記憶装置のブロック図を示す。
 図12に示す記憶装置300は、駆動回路21と、メモリアレイ20と、を有する。メモリアレイ20は、複数のメモリセル10と、複数の機能回路51を有する機能層50と、を有する。
 図12では、メモリアレイ20がm行n列(m及びnは2以上の整数。)のマトリクス状に配置された複数のメモリセル10を有する例を示している。また、図12では、機能回路51を、ビット線として機能する配線BLごとに設ける例を示しており、機能層50が、n本の配線BLに対応して設けられた複数の機能回路51を有する例を示している。
 図12では、1行1列目のメモリセル10をメモリセル10[1,1]と示し、m行n列目のメモリセル10をメモリセル10[m,n]と示している。また、本実施の形態などでは、任意の行を示す場合にi行と記す場合がある。また、任意の列を示す場合にj列と記す場合がある。よって、iは1以上m以下の整数であり、jは1以上n以下の整数である。また、本実施の形態などでは、i行j列目のメモリセル10をメモリセル10[i,j]と示している。なお、本実施の形態などにおいて、「i+α」(αは正または負の整数)と示す場合は、「i+α」は1を下回らず、mを超えない。同様に、「j+α」と示す場合は、「j+α」は1を下回らず、nを超えない。
 また、メモリアレイ20は、行方向に延在するm本の配線WLと、行方向に延在するm本の配線PLと、列方向に延在するn本の配線BLと、を備える。本実施の形態などでは、1本目(1行目)に設けられた配線WLを配線WL[1]と示し、m本目(m行目)に設けられた配線WLを配線WL[m]と示す。同様に、1本目(1行目)に設けられた配線PLを配線PL[1]と示し、m本目(m行目)に設けられた配線PLを配線PL[m]と示す。同様に、1本目(1列目)に設けられた配線BLを配線BL[1]と示し、n本目(n列目)に設けられた配線BLを配線BL[n]と示す。
 i行目に設けられた複数のメモリセル10は、i行目の配線WL(配線WL[i])とi行目の配線PL(配線PL[i])に電気的に接続される。j列目に設けられた複数のメモリセル10は、j列目の配線BL(配線BL[j])と電気的に接続される。
 メモリアレイ20には、DOSRAM(登録商標)(Dynamic Oxide Semiconductor Random Access Memory)を適用することができる。DOSRAMは、1T(トランジスタ)1C(容量)型のメモリセルを有するRAMであり、アクセストランジスタがOSトランジスタであるメモリのことをいう。OSトランジスタはオフ状態でソースとドレインとの間を流れる電流、つまりリーク電流が極めて小さい。DOSRAMは、アクセストランジスタをオフ(非導通状態)にすることで、容量素子(キャパシタ)に保持しているデータに応じた電荷を長時間保持することが可能である。そのためDOSRAMは、チャネル形成領域にシリコンを有するトランジスタ(Siトランジスタ)で構成されるDRAMと比較して、リフレッシュ動作の頻度を低減できる。その結果、低消費電力化を図ることができる。また、OSトランジスタの周波数特性は高いため、記憶装置の読み出し、及び書き込みを高速に行うことができる。これにより、動作速度が速い記憶装置を提供することができる。
 図12に示すメモリアレイ20では、複数のメモリアレイ20[1]乃至20[m]を積層して設けることができる。メモリアレイ20が有するメモリアレイ20[1]乃至20[m]は、駆動回路21が設けられる基板表面の垂直方向に配置することで、メモリセル10のメモリ密度の向上を図ることができる。
 配線BLは、データの書き込み及び読み出しを行うためのビット線として機能する。配線WLは、スイッチとして機能するアクセストランジスタのオンまたはオフ(導通状態または非導通状態)を制御するためのワード線として機能する。配線PLは、容量素子に接続される定電位線としての機能を有する。なお、アクセストランジスタであるOSトランジスタのバックゲートにバックゲート電位を伝える機能を有する配線として、配線CL(図示せず)を別途設けることができる。また、配線PLが、バックゲート電位を伝える機能を兼ねる構成にしてもよい。
 メモリアレイ20[1]乃至20[m]がそれぞれ有するメモリセル10は、配線BLを介して機能回路51に接続される。配線BLは、駆動回路21が設けられる基板表面の垂直方向に配置することができる。メモリアレイ20[1]乃至20[m]が有するメモリセル10から延びて設けられる配線BLを基板表面の垂直方向に設けることで、メモリアレイ20と機能回路51との間の配線の長さを短くできる。そのため、ビット線に接続される2つの回路の間の信号伝搬距離を短くでき、ビット線の抵抗及び寄生容量が大幅に削減されるため、消費電力及び信号遅延の低減が実現できる。またメモリセル10が有する容量素子の容量を小さくしても動作させることが可能となる。
 機能回路51は、メモリセル10に保持したデータ電位を増幅し、後述する配線GBL(図示せず)を介して駆動回路21が有するセンスアンプ46に出力する機能を有する。当該構成にすることで、データ読み出し時に配線BLのわずかな電位差を増幅することができる。配線GBLは、配線BLと同様に駆動回路21が設けられる基板表面の垂直方向に配置することができる。メモリアレイ20[1]乃至20[m]が有するメモリセル10から延びて設けられる配線BL及び配線GBLを基板表面の垂直方向に設けることで、機能回路51とセンスアンプ46との間の配線の長さを短くできる。そのため、配線GBLに接続される2つの回路の間の信号伝搬距離を短くでき、配線GBLの抵抗及び寄生容量が大幅に削減されるため、消費電力及び信号遅延の低減が実現できる。
 なお配線BLは、メモリセル10が有するトランジスタの半導体層に接して設けられる。あるいは配線BLは、メモリセル10が有するトランジスタの半導体層のソースまたはドレインとして機能する領域に接して設けられる。あるいは配線BLは、メモリセル10が有するトランジスタの半導体層のソースまたはドレインとして機能する領域と接して設けられる導電体に接して設けられる。つまり配線BLは、メモリアレイ20の各層におけるメモリセル10が有するトランジスタのソースまたはドレインの一方のそれぞれと、機能回路51と、を垂直方向で電気的に接続するための配線であるといえる。
 メモリアレイ20は、駆動回路21上に重ねて設けることができる。駆動回路21とメモリアレイ20を重ねて設けることで、駆動回路21とメモリアレイ20の間の信号伝搬距離を短くすることができる。よって、駆動回路21とメモリアレイ20の間の抵抗及び寄生容量が低減され、消費電力及び信号遅延の低減が実現できる。また、記憶装置300の小型化が実現できる。
 機能回路51は、DOSRAMのメモリセル10が有するトランジスタと同様にOSトランジスタで構成することで、メモリアレイ20[1]乃至20[m]と同様にしてSiトランジスタを用いた回路上などに自由に配置可能であるため、集積化を容易に行うことができる。機能回路51で信号を増幅する構成とすることで後段の回路であるセンスアンプ46等の回路を小型化できるため、記憶装置300の小型化を図ることができる。
 駆動回路21は、PSW22(パワースイッチ)、PSW23、及び周辺回路31を有する。周辺回路31は、周辺回路41、コントロール回路32(Control Circuit)、及び電圧生成回路33を有する。
 記憶装置300において、各回路、各信号及び各電圧は、必要に応じて、適宜取捨することができる。あるいは、他の回路または他の信号を追加してもよい。信号BW、信号CE、信号GW、信号CLK、信号WAKE、信号ADDR、信号WDA、信号PON1、信号PON2は外部からの入力信号であり、信号RDAは外部への出力信号である。信号CLKはクロック信号である。
 また、信号BW、信号CE、及び信号GWは制御信号である。信号CEはチップイネーブル信号であり、信号GWはグローバル書き込みイネーブル信号であり、信号BWはバイト書き込みイネーブル信号である。信号ADDRはアドレス信号である。信号WDAは書き込みデータであり、信号RDAは読み出しデータである。信号PON1、信号PON2は、パワーゲーティング制御用信号である。なお、信号PON1、信号PON2は、コントロール回路32で生成してもよい。
 コントロール回路32は、記憶装置300の動作全般を制御する機能を有するロジック回路である。例えば、コントロール回路は、信号CE、信号GW及び信号BWを論理演算して、記憶装置300の動作モード(例えば、書き込み動作、読み出し動作)を決定する。または、コントロール回路32は、この動作モードが実行されるように、周辺回路41の制御信号を生成する。
 電圧生成回路33は負電圧を生成する機能を有する。信号WAKEは、信号CLKの電圧生成回路33への入力を制御する機能を有する。例えば、信号WAKEにHレベルの信号が与えられると、信号CLKが電圧生成回路33へ入力され、電圧生成回路33は負電圧を生成する。
 周辺回路41は、メモリセル10に対するデータの書き込み及び読み出しをするための回路である。また周辺回路41は、機能回路51を制御するための各種信号を出力する回路である。周辺回路41は、行デコーダ42(Row Decoder)、列デコーダ44(Column Decoder)、行ドライバ43(Row Driver)、列ドライバ45(Column Driver)、入力回路47(Input Cir.)、出力回路48(Output Cir.)、センスアンプ46(Sense Amplifier)を有する。
 行デコーダ42及び列デコーダ44は、信号ADDRをデコードする機能を有する。行デコーダ42は、アクセスする行を指定するための回路であり、列デコーダ44は、アクセスする列を指定するための回路である。行ドライバ43は、行デコーダ42が指定する配線WLを選択する機能を有する。列ドライバ45は、データをメモリセル10に書き込む機能、メモリセル10からデータを読み出す機能、読み出したデータを保持する機能等を有する。
 入力回路47は、信号WDAを保持する機能を有する。入力回路47が保持するデータは、列ドライバ45に出力される。入力回路47の出力データが、メモリセル10に書き込むデータ(Din)である。列ドライバ45がメモリセル10から読み出したデータ(Dout)は、出力回路48に出力される。出力回路48は、Doutを保持する機能を有する。また、出力回路48は、Doutを記憶装置300の外部に出力する機能を有する。出力回路48から出力されるデータが信号RDAである。
 PSW22は周辺回路31へのVDDの供給を制御する機能を有する。PSW23は、行ドライバ43へのVHMの供給を制御する機能を有する。ここでは、記憶装置300の高電源電圧がVDDであり、低電源電圧はGND(接地電位)である。また、VHMは、ワード線を高レベルにするために用いられる高電源電圧であり、VDDよりも高い。信号PON1によってPSW22のオン・オフが制御され、信号PON2によってPSW23のオン・オフが制御される。図12では、周辺回路31において、VDDが供給される電源ドメインの数を1としているが、複数にすることもできる。この場合、各電源ドメインに対してパワースイッチを設ければよい。
 メモリアレイ20[1]乃至20[m](mは2以上の整数)及び機能層50を有するメモリアレイ20は、駆動回路21上に複数層のメモリアレイ20を重ねて設けることができる。複数層のメモリアレイ20を重ねて設けることで、メモリセル10のメモリ密度を高めることができる。図13Aに、駆動回路21上に機能層50と、5層(m=5)のメモリアレイ20[1]乃至20[5]と、を重ねて有する記憶装置300の斜視図を示している。
 図13Aでは、1層目に設けられたメモリアレイ20をメモリアレイ20[1]と示し、2層目に設けられたメモリアレイ20をメモリアレイ20[2]と示し、5層目に設けられたメモリアレイ20をメモリアレイ20[5]と示している。また図13Aにおいて、X方向に延びて設けられる配線WL、配線CL、及び配線PLと、Z方向(駆動回路が設けられる基板表面に垂直な方向)に延びて設けられる配線BLと、を図示している。なお、図面を見やすくするため、メモリアレイ20それぞれが有する配線WL及び配線PLの記載を一部省略している。
 図13Bに、図13Aで図示した配線BLに接続された機能回路51、及び配線BLに接続されたメモリアレイ20[1]乃至20[5]が有するメモリセル10の構成例を説明する模式図を示す。また図13Bでは、機能回路51と駆動回路21との間に設けられる配線GBLを図示している。なお、1つの配線BLに複数のメモリセル(メモリセル10)が電気的に接続される構成を「メモリストリング」ともいう。なお図面において、配線GBLは、視認性を高めるため、太線で図示する場合がある。
 図13Bでは、配線BLに接続されるメモリセル10の回路構成の一例を図示している。メモリセル10は、トランジスタ11及び容量素子12を有する。トランジスタ11、容量素子12、及び各配線(配線BL、及び配線WLなど)についても、例えば配線BL[1]及び配線WL[1]を配線BL及び配線WLなどのようにいう場合がある。ここで、トランジスタ11は、実施の形態1で示したトランジスタ200と対応する。
 メモリセル10において、トランジスタ11のソースまたはドレインの一方は配線BLに接続される。トランジスタ11のソースまたはドレインの他方は容量素子12の一方の電極に接続される。容量素子12の他方の電極は、配線PLに接続される。トランジスタ11のゲートは配線WLに接続される。トランジスタ11のバックゲートは配線CLに接続される。
 配線PLは、容量素子12の電位を保持するための定電位を与える配線である。配線CLは、トランジスタ11のしきい値電圧を制御するための定電位である。配線PLと配線CLは、同じ電位でもよい。この場合、2つの配線を接続することで、メモリセル10に接続される配線数を削減することができる。
 図13Bに図示する配線GBLは、駆動回路21と機能層50との間を電気的に接続するように設けられる。図14Aでは、機能回路51、及びメモリアレイ20[1]乃至20[m]を繰り返し単位70とする記憶装置300の模式図を示している。なお図14Aでは、配線GBLを1本図示しているが、配線GBLは機能層50に設けられる機能回路51の数に応じて適宜設ければよい。
 なお配線GBLは、機能回路51が有するトランジスタの半導体層に接して設けられる。あるいは配線GBLは、機能回路51が有するトランジスタの半導体層のソースまたはドレインとして機能する領域に接して設けられる。あるいは配線GBLは、機能回路51が有するトランジスタの半導体層のソースまたはドレインとして機能する領域と接して設けられる導電体に接して設けられる。つまり配線GBLは、機能層50における機能回路51が有するトランジスタのソースまたはドレインの一方と、駆動回路21と、を垂直方向で電気的に接続するための配線であるといえる。
 また機能回路51、及びメモリアレイ20[1]乃至20[m]を有する繰り返し単位70は、さらに積層する構成としてもよい。本発明の一態様の記憶装置300Aは、図14Bに図示するように繰り返し単位70[1]乃至70[p](pは2以上の整数)とすることができる。配線GBLは繰り返し単位70が有する機能層50に接続される。配線GBLは、機能回路51の数に応じて適宜設ければよい。
 本発明の一形態では、OSトランジスタを積層して設けるとともに、ビット線として機能する配線を、駆動回路21が設けられる基板表面の垂直方向に配置する。メモリアレイ20から延びて設けられるビット線として機能する配線を基板表面の垂直方向に設けることで、メモリアレイ20と駆動回路21との間の配線の長さを短くできる。そのため、ビット線の寄生容量を大幅に削減できる。
 また本発明の一形態は、メモリアレイ20が設けられる層において、メモリセル10に保持したデータ電位を増幅して出力する機能を有する機能回路51を有する機能層50を備えている。当該構成にすることで、データ読み出し時にビット線として機能する配線BLのわずかな電位差を増幅して、駆動回路21が有するセンスアンプ46を駆動することができる。センスアンプ等の回路を小型化できるため、記憶装置300の小型化を図ることができる。またメモリセル10が有する容量素子12の容量を小さくしても動作させることが可能となる。
 なお、上記においては、メモリセル10を1T(トランジスタ)1C(容量)型の構成にする例について示したが、本発明はこれに限られるものではない。例えば、図18Aに示すように、3T1C型のメモリセルを記憶装置に用いてもよい。図18Aに示すメモリセルは、トランジスタ11a、11b、11cと、容量素子12aを有する。ここで、トランジスタ11a、11b、11cは、トランジスタ11と同様の構成にすることができ、容量素子12aは、容量素子12と同様の構成にすることができる。また、このような構成のRAMを、NOSRAM(登録商標)(Nonvolatile Oxide Semiconductor RAM)と呼ぶ場合がある。
 図18Aに示すように、トランジスタ11aのソースまたはドレインの一方が、容量素子12aの電極の一方、及びトランジスタ11bの第1のゲートと電気的に接続される。また、トランジスタ11bのソース及びドレインの一方が、トランジスタ11cのソース及びドレインの一方と電気的に接続される。なお、トランジスタ11aの第1のゲート、ソース及びドレインの他方、ならびに第2のゲート、トランジスタ11bのソース及びドレインの他方、ならびに第2のゲート、トランジスタ11cの第1のゲート、ソース及びドレインの他方、ならびに第2のゲート、ならびに容量素子12aの電極の他方には、適宜配線を設ければよい。また、これらの配線に合わせて、記憶装置の構造も適宜変形させることができる。
 また、図18Bに示すように、トランジスタ11cを設けずに、トランジスタ11a、11bと容量素子12aだけを有する、2T1C型のメモリセルにしてもよい。
 また、トランジスタ11a、及びトランジスタ11bの寄生容量が十分大きい場合、図18Cに示すように、容量素子12aを設けない構成にしてもよい。この場合、トランジスタ11a及びトランジスタ11bだけでメモリセルが構成される。
[メモリアレイ20及び機能回路51の構成例]
 図15を用いて、図12乃至図14で説明した機能回路51の構成例、及びメモリアレイ20及び駆動回路21が有するセンスアンプ46の構成例について説明する。図15では、異なる配線BL(配線BL_A、配線BL_B)に接続されたメモリセル10(メモリセル10_A、メモリセル10_B)に接続された機能回路51(機能回路51_A、機能回路51_B)に接続される配線GBL(配線GBL_A、配線GBL_B)に接続された駆動回路21を図示している。図15に図示する駆動回路21として、センスアンプ46の他、プリチャージ回路71_A、プリチャージ回路71_B、スイッチ回路72_A、スイッチ回路72_B及び書き込み読み出し回路73を図示している。
 機能回路51_A、51_Bとして、トランジスタ52_a、52_b、53_a、53_b、54_a、54_b、55_a、55_bを図示している。図15に図示するトランジスタ52_a、52_b、53_a、53_b、54_a、54_b、55_a、55_bは、メモリセル10が有するトランジスタ11と同様にOSトランジスタである。機能回路51を有する機能層50は、メモリアレイ20[1]乃至20[m]と同様に積層して設けることができる。
 配線BL_Aは、トランジスタ52_aのゲートに接続され、配線BL_Bはトランジスタ52_bのゲートに接続される。配線GBL_Aは、トランジスタ53_a、54_aのソースまたはドレインの一方が接続される。配線GBL_Bは、トランジスタ53_b、54_bのソースまたはドレインの一方が接続される。配線GBL_A、GBL_Bは、配線BL_A、BL_Bと同様に垂直方向に設けられ、駆動回路21が有するトランジスタに接続される。トランジスタ53_a、53_b、54_a、54_b、55_a、55_bのゲートには、図15に示すように、それぞれ、選択信号MUX、制御信号WE、または制御信号REが与えられる。
 図15に示すセンスアンプ46、プリチャージ回路71_A、及びプリチャージ回路71_Bを構成するトランジスタ81_1乃至81_6、及び82_1乃至82_4は、Siトランジスタで構成される。スイッチ回路72_A及びスイッチ回路72_Bを構成するスイッチ83_A乃至83_DもSiトランジスタで構成することができる。トランジスタ53_a、53_b、54_a、54_bのソースまたはドレインの一方は、プリチャージ回路71_A、プリチャージ回路71_B、センスアンプ46、スイッチ回路72_Aを構成するトランジスタまたはスイッチに接続される。
 プリチャージ回路71_Aは、nチャネル型のトランジスタ81_1乃至81_3を有する。プリチャージ回路71_Aは、プリチャージ線PCL1に与えられるプリチャージ信号に応じて、配線BL_A及び配線BL_Bを高電源電位(VDD)と低電源電位(VSS)の間の電位VDD/2に相当する中間電位VPCにプリチャージするための回路である。
 プリチャージ回路71_Bは、nチャネル型のトランジスタ81_4乃至81_6を有する。プリチャージ回路71_Bは、プリチャージ線PCL2に与えられるプリチャージ信号に応じて、配線GBL_A及び配線GBL_BをVDDとVSSの間の電位VDD/2に相当する中間電位VPCにプリチャージするための回路である。
 センスアンプ46は、配線VHHまたは配線VLLに接続された、pチャネル型のトランジスタ82_1、82_2及びnチャネル型のトランジスタ82_3、82_4を有する。配線VHHまたは配線VLLは、VDDまたはVSSを与える機能を有する配線である。トランジスタ82_1乃至82_4は、インバータループを構成するトランジスタである。メモリセル10_A、10_Bを選択することでプリチャージされた配線BL_A及び配線BL_Bの電位が変化し、当該変化に応じて配線GBL_A及び配線GBL_Bの電位をVDDまたはVSSとする。配線GBL_A及び配線GBL_Bの電位は、スイッチ83_C及びスイッチ83_D、及び書き込み読み出し回路73を介して外部に出力することができる。配線BL_A及び配線BL_B、並びに配線GBL_A及び配線GBL_Bは、ビット線対に相当する。書き込み読み出し回路73は、信号EN_dataに応じて、データ信号の書き込みが制御される。
 スイッチ回路72_Aは、センスアンプ46と配線GBL_A及び配線GBL_Bとの間の導通状態を制御するための回路である。スイッチ回路72_Aは、切り替え信号CSEL1の制御によってオンまたはオフが切り替えられる。スイッチ83_A及び83_Bが、nチャネルトランジスタの場合、切り替え信号CSEL1がハイレベルでオン、ローレベルでオフとなる。スイッチ回路72_Bは、書き込み読み出し回路73と、センスアンプ46に接続されるビット線対との間の導通状態を制御するための回路である。スイッチ回路72_Bは、切り替え信号CSEL2の制御によってオンまたはオフが切り替えられる。スイッチ83_C及び83_Dは、スイッチ83_A及び83_Bと同様にすればよい。
 図15に示すように記憶装置300は、メモリセル10と、機能回路51と、センスアンプ46と、を最短距離である垂直方向に設けられる配線BL及び配線GBLを介して接続する構成とすることができる。機能回路51を構成するトランジスタを有する機能層50が増えるが、配線BLの負荷が低減されることで、書き込み時間を短縮し、データを読み出しやすくすることができる。
 また図15に示すように機能回路51_A、51_Bが有する各トランジスタは、制御信号WE、RE、及び選択信号MUXに応じて制御される。各トランジスタは、制御信号及び選択信号に応じて、配線GBLを介して配線BLの電位を駆動回路21に出力することができる。機能回路51_A、51_Bは、OSトランジスタで構成されるセンスアンプとして機能させることができる。当該構成にすることで、読み出し時に配線BLのわずかな電位差を増幅して、Siトランジスタを用いたセンスアンプ46を駆動することができる。
<メモリセルの構成例>
 図16を用いて、上記記憶装置に用いられるメモリセル10の構成例について説明する。
 なお、図16において、X方向は、図示するトランジスタのチャネル幅方向と平行であり、Y方向は、X方向に垂直であり、Z方向は、X方向及びY方向に垂直である。
 図16に示すように、メモリセル10は、トランジスタ11及び容量素子12を有する。トランジスタ11の上には、絶縁体285が設けられ、絶縁体285の上には、絶縁体284が設けられている。絶縁体285、及び絶縁体284は、絶縁体216に用いることが可能な絶縁体を用いればよい。なお、トランジスタ11は、先の実施の形態に示すトランジスタ200と同様の構成を有し、同じ構成要素には同符号を付す。トランジスタ200の詳細については、先の実施の形態を参照することができる。また、トランジスタ11のソースまたはドレインの一方(導電体242a)に接して導電体240が設けられる。導電体240は、Z方向に延伸して設けられており、配線BLとして機能する。
 容量素子12は、導電体242b上の導電体153と、導電体153上の絶縁体154と、絶縁体154上の導電体160(導電体160a及び導電体160b)と、を有する。
 導電体153、絶縁体154、及び、導電体160は、それぞれ、少なくとも一部が、絶縁体271b、絶縁体275、絶縁体280、絶縁体282、絶縁体283及び絶縁体285に設けられた開口の内部に配置されている。導電体153、絶縁体154、及び、導電体160のそれぞれの端部は、少なくとも絶縁体282上に位置し、好ましくは絶縁体285上に位置する。絶縁体154は、導電体153の端部を覆うように設けられる。これにより、導電体153と導電体160とを電気的に絶縁させることができる。
 絶縁体271b、絶縁体275、絶縁体280、絶縁体282、絶縁体283及び絶縁体285に設けられる開口の深さを深くする(つまり、絶縁体271b、絶縁体275、絶縁体280、絶縁体282、絶縁体283及び絶縁体285のうち一つまたは複数の厚さを厚くする)ほど、容量素子12の静電容量を大きくすることができる。容量素子12の単位面積当たりの静電容量を大きくすることで、半導体装置の微細化または高集積化を図ることができる。
 導電体153は、容量素子12の一方の電極(下部電極)として機能する領域を有する。絶縁体154は、容量素子12の誘電体として機能する領域を有する。導電体160は、容量素子12の他方の電極(上部電極)として機能する領域を有する。容量素子12は、MIM(Metal−Insulator−Metal)容量を構成している。
 また、酸化物230上に重畳して設けられた導電体242bは、容量素子12の導電体153と電気的に接続する配線として機能する。
 容量素子12が有する導電体153及び導電体160は、それぞれ、導電体205、導電体242、または導電体260に用いることができる各種導電体を用いて形成することができる。導電体153及び導電体160は、それぞれ、ALD法またはCVD法などの被覆性の良好な成膜法を用いて成膜することが好ましい。例えば、導電体153として、ALD法またはCVD法を用いて成膜した窒化チタンまたは窒化タンタルを用いることができる。
 また、導電体153の下面には、導電体242bの上面が接する。ここで、導電体242bとして、導電性の良好な導電性材料を用いることで、導電体153と導電体242bとの接触抵抗を低減することができる。
 また、導電体160aとして、ALD法またはCVD法を用いて成膜した窒化チタンを用い、導電体160bとして、CVD法を用いて成膜したタングステンを用いることができる。なお、絶縁体154に対するタングステンの密着性が十分高い場合は、導電体160として、CVD法を用いて成膜したタングステンの単層構造を用いてもよい。
 容量素子12が有する絶縁体154には、高誘電率(high−k)材料(高い比誘電率の材料)を用いることが好ましい。絶縁体154は、ALD法またはCVD法などの被覆性の良好な成膜法を用いて成膜することが好ましい。
 高誘電率(high−k)材料の絶縁体としては、例えば、アルミニウム、ハフニウム、ジルコニウム、及びガリウムなどから選ばれた金属元素を一種以上含む、酸化物、酸化窒化物、窒化酸化物、及び窒化物が挙げられる。また、上記酸化物、酸化窒化物、窒化酸化物、または窒化物に、シリコンを含有させてもよい。また、上記の材料からなる絶縁体を積層して用いることもできる。
 例えば、高誘電率(high−k)材料の絶縁体として、例えば、酸化アルミニウム、酸化ハフニウム、酸化ジルコニウム、アルミニウム及びハフニウムを有する酸化物、アルミニウム及びハフニウムを有する酸化窒化物、シリコン及びハフニウムを有する酸化物、シリコン及びハフニウムを有する酸化窒化物、シリコン及びジルコニウムを有する酸化物、シリコン及びジルコニウムを有する酸化窒化物、ハフニウム及びジルコニウムを有する酸化物、並びに、ハフニウム及びジルコニウムを有する酸化窒化物が挙げられる。このようなhigh−k材料を用いることで、リーク電流を抑制できる程度に絶縁体154を厚くし、且つ容量素子12の静電容量を十分確保することができる。
 また、上記の材料からなる絶縁体を積層して用いることが好ましく、高誘電率(high−k)材料と、当該高誘電率(high−k)材料より絶縁耐力が大きい材料との積層構造を用いることが好ましい。例えば、絶縁体154として、酸化ジルコニウム、酸化アルミニウム、酸化ジルコニウムの順番で積層された絶縁体を用いることができる。また、例えば、酸化ジルコニウム、酸化アルミニウム、酸化ジルコニウム、酸化アルミニウムの順番で積層された絶縁体を用いることができる。また、例えば、ハフニウムジルコニウム酸化物、酸化アルミニウム、ハフニウムジルコニウム酸化物、酸化アルミニウムの順番で積層された絶縁膜を用いることができる。酸化アルミニウムのような、比較的絶縁耐力が大きい絶縁体を積層して用いることで、絶縁耐力が向上し、容量素子12の静電破壊を抑制することができる。
 絶縁体271b、絶縁体275、絶縁体280、絶縁体282、絶縁体283及び絶縁体285に設けられる開口の深さを深くする(つまり、絶縁体271b、絶縁体275、絶縁体280、絶縁体282、絶縁体283及び絶縁体285のうち一つまたは複数の厚さを厚くする)ほど、容量素子12の静電容量を大きくすることができる。ここで、絶縁体271b、絶縁体275、絶縁体282、及び絶縁体283はバリア絶縁体として機能するため、半導体装置に求められるバリア性に応じて膜厚を設定することが好ましい。また、絶縁体280の膜厚に応じて、ゲート電極として機能する導電体260の膜厚が決定されるため、絶縁体280の膜厚は、半導体装置に求められる導電体260の膜厚に合わせて設定することが好ましい。
 よって、絶縁体285の膜厚を調節することで、容量素子12の静電容量を設定することが好ましい。例えば、絶縁体285の膜厚を50nm以上250nm以下の範囲で設定し、上記開口の深さを150nm以上350nm以下程度にすればよい。このような範囲で容量素子12を形成することで、容量素子12に十分な静電容量を有せしめ、且つ複数のメモリセルの層を積層する半導体装置において、一つの層の高さが過剰に高くならないようにすることができる。なお、複数のメモリセルの層のそれぞれにおいて、各メモリセルに設けられる容量素子の静電容量を異ならせる構成としてもよい。当該構成の場合、例えば、各メモリセルの層に設けられる絶縁体285の膜厚を異ならせればよい。
 なお、容量素子12が配置された、絶縁体285等に設けられた開口部において、当該開口部の側壁は、絶縁体222の上面に対して概略垂直であってもよく、テーパー形状であってもよい。側壁をテーパー形状にすることで、絶縁体285等の開口部に設ける導電体153などの被覆性が向上し、鬆などの欠陥を低減できる。
 また、酸化物230上に重畳して設けられた導電体242aは、導電体240と電気的に接続する配線として機能する。例えば、図16では、導電体242aの上面及び側端部が、Z方向に延在する導電体240と電気的に接続している。
 導電体240が直接、導電体242aの上面、及び側端部の少なくとも一と接することで、別途接続用の電極を設ける必要がないため、メモリアレイの占有面積を低減できる。また、メモリセルの集積度が向上し、記憶装置の記憶容量を増大できる。なお、導電体240は、導電体242aの上面の一部、及び側端部と接することが好ましい。導電体240が導電体242aの複数面と接することで、導電体240と導電体242aの接触抵抗を低減できる。
 導電体240は、絶縁体216、絶縁体222、絶縁体275、絶縁体280、絶縁体282、絶縁体283、絶縁体285及び、絶縁体284に形成された開口内に設けられている。
 導電体240は、導電体240aと導電体240bとの積層構造とすることが好ましい。例えば、図16に示すように、導電体240は、導電体240aが上記開口部の内壁に接して設けられ、さらに内側に導電体240bが設けられる構造にすることができる。つまり、導電体240aは、導電体240bに比べて、絶縁体216、絶縁体222、絶縁体275、絶縁体280、絶縁体282、絶縁体283、絶縁体285、及び、絶縁体284の近傍に配置される。また、導電体240aは、導電体242aの上面及び側端部と接する。
 導電体240aとしては、水、水素などの不純物の透過を抑制する機能を有する導電性材料を用いることが好ましい。導電体240aは、例えば、タンタル、窒化タンタル、チタン、窒化チタン、ルテニウム、及び、酸化ルテニウムのうち一つまたは複数を用いた、単層構造または積層構造とすることができる。これにより、水、水素などの不純物が、導電体240を通じて酸化物230に混入することを抑制できる。
 また、導電体240は、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、導電体240bには、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。
 例えば、導電体240aとして窒化チタンを用い、導電体240bとしてタングステンを用いることが好ましい。この場合、導電体240aは、チタンと、窒素とを有する導電体となり、導電体240bは、タングステンを有する導電体となる。
 なお、導電体240は、単層構造であってもよく、3層以上の積層構造であってもよい。
 また、図16に示すように、導電体240の側面に接して絶縁体241が設けられることが好ましい。具体的には、絶縁体216、絶縁体222、絶縁体275、絶縁体280、絶縁体282、絶縁体283、絶縁体285、及び絶縁体284の開口の内壁に接して絶縁体241が設けられる。また、当該開口内に突出して形成される、絶縁体224、酸化物230、及び導電体242aの側面にも絶縁体241が形成される。ここで、導電体242aの少なくとも一部は、絶縁体241から露出しており、導電体240に接している。つまり、導電体240は、絶縁体241を介して、上記開口の内部を埋め込むように設けられる。
 なお、図16に示すように、導電体242aより下に形成される絶縁体241の最上部は、導電体242aの上面よりも下方に位置することが好ましい。当該構成にすることで、導電体240が導電体242aの側端部の少なくとも一部と接することができる。なお、導電体242aより下に形成される絶縁体241は、酸化物230の側面と接する領域を有することが好ましい。当該構成にすることで、絶縁体280等に含まれる水、水素等の不純物が、導電体240を通じて酸化物230に混入するのを抑制できる。
 絶縁体241として、絶縁体275等に用いることができるバリア絶縁膜を用いればよい。例えば、絶縁体241は、窒化シリコン、酸化アルミニウム、窒化酸化シリコン等の絶縁体を用いればよい。当該構成にすることで、絶縁体280等に含まれる水、水素等の不純物が、導電体240を通じて酸化物230に混入するのを抑制できる。特に、窒化シリコンは水素に対するブロッキング性が高いため好適である。また、絶縁体280に含まれる酸素が導電体240に吸収されるのを抑制できる。
 なお、図16では、絶縁体241を単層とする構成について示したが、本発明はこれに限られない。絶縁体241は、2層以上の積層構造としてもよい。
 絶縁体241を2層積層構造にする場合、絶縁体280等の開口の内壁に接する第1の層に酸素に対するバリア絶縁膜を用い、その内側の第2の層に水素に対するバリア絶縁膜を用いればよい。例えば、第1の層として、ALD法で成膜された酸化アルミニウムを用い、第2の層として、PEALD法で成膜された窒化シリコンを用いればよい。当該構成にすることで、導電体240の酸化を抑制し、さらに、導電体240から酸化物230等に水素が混入するのを低減できる。これにより、トランジスタ11の電気特性及び信頼性の向上を図ることができる。
 なお、導電体240、及び絶縁体241が配置された、開口部において、当該開口部の側壁は、絶縁体222の上面に対して概略垂直であってもよく、テーパー形状であってもよい。側壁をテーパー形状にすることで、当該開口部に設ける絶縁体241などの被覆性が向上する。
<記憶装置300の構成例>
 図17を用いて、上記記憶装置300の構成例について説明する。
 記憶装置300は、トランジスタ310等を有する層である、駆動回路21と、駆動回路21上の、トランジスタ52、53、54、55等を有する層である、機能層50と、機能層50上のメモリアレイ20[1]乃至20[m](図17では、メモリアレイ20[1]、20[2]だけを図示。)と、を有する。なお、トランジスタ52は、上記トランジスタ52_a、52_bに対応し、トランジスタ53は、上記トランジスタ53_a、53_bに対応し、トランジスタ54は、上記トランジスタ54_a、54_bに対応し、トランジスタ55は、上記トランジスタ55_a、55_bに対応する。
 図17では、駆動回路21が有するトランジスタ310を例示している。トランジスタ310は、基板311上に設けられ、ゲートとして機能する導電体316、ゲート絶縁体として機能する絶縁体315、基板311の一部を含む半導体領域313、及びソース領域またはドレイン領域として機能する低抵抗領域314a、及び低抵抗領域314bを有する。トランジスタ310は、pチャネル型のトランジスタ、あるいはnチャネル型のトランジスタのいずれでもよい。基板311としては、例えば単結晶シリコン基板を用いることができる。
 ここで、図17に示すトランジスタ310はチャネルが形成される半導体領域313(基板311の一部)が凸形状を有する。また、半導体領域313の側面及び上面を、絶縁体315を介して、導電体316が覆うように設けられている。なお、導電体316は仕事関数を調整する材料を用いてもよい。このようなトランジスタ310は半導体基板の凸部を利用していることからFIN型トランジスタとも呼ばれる。なお、凸部の上部に接して、凸部を形成するためのマスクとして機能する絶縁体を有していてもよい。また、ここでは半導体基板の一部を加工して凸部を形成する場合を示したが、SOI(Silicon on Insulator)基板を加工して凸形状を有する半導体膜を形成してもよい。
 なお、図17に示すトランジスタ310は一例であり、その構造に限定されず、回路構成または駆動方法に応じて適切なトランジスタを用いることができる。
 各構造体の間には、層間膜、配線、及びプラグ等が設けられた配線層が設けられていてもよい。また、配線層は、設計に応じて複数層設けることができる。また、本明細書等において、配線と、配線と電気的に接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、及び導電体の一部がプラグとして機能する場合もある。
 例えば、トランジスタ310上には、層間膜として、絶縁体320、絶縁体322、絶縁体324、及び絶縁体326が順に積層して設けられている。また、絶縁体320及び絶縁体322には導電体328などが埋め込まれている。また、絶縁体324及び絶縁体326には導電体330などが埋め込まれている。なお、導電体328及び導電体330はコンタクトプラグまたは配線として機能する。
 また、層間膜として機能する絶縁体は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP:Chemical Mechanical Polishing)法等を用いた平坦化処理により平坦化されていてもよい。
 また、図17では、機能層50が有するトランジスタ52、53、55を例示している。トランジスタ52、53、55は、メモリセル10が有するトランジスタ11と同様の構成を有する。トランジスタ52、53、55は、互いのソース及びドレインが直列に接続されている。
 トランジスタ52、53、55上に、絶縁体208が設けられ、絶縁体208に形成された開口に導電体207が設けられる。さらに、絶縁体208上に絶縁体210が設けられ、絶縁体210に形成された開口に導電体209が設けられる。さらに、絶縁体210上に絶縁体212が設けられ、絶縁体212上に絶縁体214が設けられる。絶縁体212及び絶縁体214に形成された開口には、メモリアレイ20[1]に設けられた導電体240の一部が埋め込まれている。ここで、絶縁体208、及び絶縁体210は、絶縁体216に用いることが可能な絶縁体を用いることができる。また、絶縁体212は、絶縁体283に用いることが可能な絶縁体を用いることができる。また、絶縁体214は、絶縁体282に用いることが可能な絶縁体を用いることができる。
 導電体207の下面は、トランジスタ52の導電体260の上面に接して設けられる。また、導電体207の上面は、導電体209の下面に接して設けられる。また、導電体209の上面は、メモリアレイ20[1]に設けられた導電体240の下面に接して設けられる。このような構成にすることで、配線BLに相当する導電体240と、トランジスタ52のゲートを電気的に接続することができる。
 メモリアレイ20[1]乃至20[m]は、それぞれ、複数のメモリセル10を含む。各メモリセル10が有する導電体240は、上の層の導電体240、及び下の層の導電体240と電気的に接続される。
 図17に示すように、隣接するメモリセル10において、導電体240が共有されている。また、隣接するメモリセル10において、導電体240を境に、右側の構成と左側の構成と、が対称に配置される。
 ここで、下の層(例えばメモリアレイ20[1]の層)の容量素子12の上部電極として機能する導電体160と、上の層(例えば、メモリアレイ20[2]の層)のトランジスタ11の第2のゲート電極として機能する導電体261は、同じ層に形成することができる。言い換えると、下の層の容量素子12の導電体160と、上の層のトランジスタ11の導電体261は、同一の絶縁体216に形成された開口に埋め込まれるように形成することができる。下の層の容量素子12の導電体160及び上の層のトランジスタ11の導電体261を、一つの導電膜を加工して形成することで、上記のような構成になる。このとき、下の層の容量素子12の導電体160は、上の層のトランジスタ11の導電体261と同一の材料を有する。
 以上のように、下の層の容量素子12の導電体160と、上の層のトランジスタ11の導電体261を同時に形成することで、本実施の形態に係る記憶装置の作製工程を削減し、当該記憶装置の生産性を向上することができる。
 上述のメモリアレイ20では、複数のメモリアレイ20[1]乃至20[m]を積層して設けることができる。メモリアレイ20が有するメモリアレイ20[1]乃至20[m]は、駆動回路21が設けられる基板表面の垂直方向に配置することで、メモリセル10のメモリ密度の向上を図ることができる。またメモリアレイ20は、垂直方向に繰り返し同じ製造工程を用いて作製することができる。記憶装置300は、メモリアレイ20の製造コストの低減を図ることができる。
 本実施の形態は、他の実施の形態または実施例と適宜組み合わせることができる。
(実施の形態3)
 本実施の形態では、本発明の一態様の記憶装置が実装されたチップの一例について、図19を用いて説明する。
 図19A及び図19Bに示すチップ1200には、複数の回路(システム)が実装されている。このように、複数の回路(システム)を一つのチップに集積する技術を、システムオンチップ(System on Chip:SoC)と呼ぶ場合がある。
 図19Aに示すように、チップ1200は、CPU1211、GPU1212、一または複数のアナログ演算部1213、一または複数のメモリコントローラ1214、一または複数のインターフェース1215、一または複数のネットワーク回路1216等を有する。
 チップ1200には、バンプ(図示しない)が設けられ、図19Bに示すように、パッケージ基板1201の第1の面と接続する。また、パッケージ基板1201の第1の面の裏面には、複数のバンプ1202が設けられており、マザーボード1203と接続する。
 マザーボード1203には、DRAM1221、フラッシュメモリ1222等の記憶装置が設けられていてもよい。例えば、DRAM1221に先の実施の形態に示すDOSRAMを用いることができる。これにより、DRAM1221を、低消費電力化、高速化、及び大容量化させることができる。
 CPU1211は、複数のCPUコアを有することが好ましい。また、GPU1212は、複数のGPUコアを有することが好ましい。また、CPU1211、及びGPU1212は、それぞれ一時的にデータを格納するメモリを有していてもよい。または、CPU1211、及びGPU1212に共通のメモリが、チップ1200に設けられていてもよい。該メモリには、前述したDOSRAMを用いることができる。また、GPU1212は、多数のデータの並列計算に適しており、画像処理または積和演算に用いることができる。GPU1212に、先の実施の形態に記載のOSトランジスタを用いた画像処理回路、または、積和演算回路を設けることで、画像処理、または積和演算を低消費電力で実行することが可能になる。
 また、CPU1211、及びGPU1212が同一チップに設けられていることで、CPU1211、及びGPU1212間の配線を短くすることができ、CPU1211からGPU1212へのデータ転送、CPU1211、及びGPU1212が有するメモリ間のデータ転送、及びGPU1212での演算後に、GPU1212からCPU1211への演算結果の転送を高速に行うことができる。
 アナログ演算部1213はA/D(アナログ/デジタル)変換回路、及びD/A(デジタル/アナログ)変換回路の一、または両方を有する。また、アナログ演算部1213に上記積和演算回路を設けてもよい。
 メモリコントローラ1214は、DRAM1221のコントローラとして機能する回路、及びフラッシュメモリ1222のインターフェースとして機能する回路を有する。
 インターフェース1215は、表示装置、スピーカー、マイクロフォン、カメラ、コントローラなどの外部接続機器とのインターフェース回路を有する。コントローラとは、マウス、キーボード、ゲーム用コントローラなどを含む。このようなインターフェースとして、USB(Universal Serial Bus)、HDMI(登録商標)(High−Definition Multimedia Interface)などを用いることができる。
 ネットワーク回路1216は、LAN(Local Area Network)などのネットワーク回路を有する。また、ネットワークセキュリティー用の回路を有してもよい。
 チップ1200には、上記回路(システム)を同一の製造プロセスで形成することが可能である。そのため、チップ1200に必要な回路の数が増えても、製造プロセスを増やす必要が無く、チップ1200を低コストで作製することができる。
 GPU1212を有するチップ1200が設けられたパッケージ基板1201、DRAM1221、及びフラッシュメモリ1222が設けられたマザーボード1203は、GPUモジュール1204と呼ぶことができる。
 GPUモジュール1204は、SoC技術を用いたチップ1200を有しているため、そのサイズを小さくすることができる。また、画像処理に優れていることから、スマートフォン、タブレット端末、ラップトップPC、携帯型(持ち出し可能な)ゲーム機などの携帯型電子機器に用いることが好適である。また、GPU1212を用いた積和演算回路により、ディープニューラルネットワーク(DNN)、畳み込みニューラルネットワーク(CNN)、再帰型ニューラルネットワーク(RNN)、自己符号化器、深層ボルツマンマシン(DBM)、深層信念ネットワーク(DBN)などの手法を実行できるため、チップ1200をAIチップ、またはGPUモジュール1204をAIシステムモジュールとして用いることができる。
 本実施の形態は、他の実施の形態または実施例と適宜組み合わせることができる。
(実施の形態4)
 本実施の形態では、本発明の一態様の記憶装置が組み込まれた電子部品の一例を示す。
[電子部品]
 図20Aに電子部品700及び電子部品700が実装された基板(実装基板704)の斜視図を示す。図20Aに示す電子部品700は、モールド711内に本発明の一態様の記憶装置である記憶装置300を有している。図20Aは、電子部品700の内部を示すために、一部の記載を省略している。電子部品700は、モールド711の外側にランド712を有する。ランド712は電極パッド713と電気的に接続され、電極パッド713は記憶装置300とワイヤ714を介して電気的に接続されている。電子部品700は、例えばプリント基板702に実装される。このような電子部品が複数組み合わされて、それぞれがプリント基板702上で電気的に接続されることで実装基板704が完成する。
 上記実施の形態で示した通り、記憶装置300は、駆動回路21と、メモリアレイ20と、を有する。
 図20Bに電子部品730の斜視図を示す。電子部品730は、SiP(System in package)またはMCM(Multi Chip Module)の一例である。電子部品730は、パッケージ基板732(プリント基板)上にインターポーザ731が設けられ、インターポーザ731上に半導体装置735、及び複数の記憶装置300が設けられている。
 また、半導体装置735は、CPU、GPU、FPGAなどの集積回路(半導体装置)を用いることができる。これらのCPU、GPU、FPGAなどの集積回路に、先の実施の形態に示すOSトランジスタを用いることで、低消費電力化を図ることができる。
 パッケージ基板732は、例えば、セラミックス基板、プラスチック基板、または、ガラスエポキシ基板を用いることができる。インターポーザ731は、例えば、シリコンインターポーザ、または樹脂インターポーザを用いることができる。
 インターポーザ731は、複数の配線を有し、端子ピッチの異なる複数の集積回路を電気的に接続する機能を有する。複数の配線は、単層または多層で設けられる。また、インターポーザ731は、インターポーザ731上に設けられた集積回路をパッケージ基板732に設けられた電極と電気的に接続する機能を有する。これらのことから、インターポーザを「再配線基板」または「中間基板」と呼ぶ場合がある。また、インターポーザ731に貫通電極を設けて、当該貫通電極を用いて集積回路とパッケージ基板732を電気的に接続する場合もある。また、シリコンインターポーザでは、貫通電極として、TSV(Through Silicon Via)を用いることもできる。
 インターポーザ731としてシリコンインターポーザを用いることが好ましい。シリコンインターポーザでは能動素子を設ける必要が無いため、集積回路よりも低コストで作製することができる。一方で、シリコンインターポーザの配線形成は半導体プロセスで行うことができるため、樹脂インターポーザでは難しい微細配線の形成が容易である。
 記憶装置300では、広いメモリバンド幅を実現するために多くの配線を接続する必要がある。このため、記憶装置300を実装するインターポーザには、微細かつ高密度の配線形成が求められる。よって、記憶装置300を実装するインターポーザには、シリコンインターポーザを用いることが好ましい。
 また、シリコンインターポーザを用いたSiP、MCMなどでは、集積回路とインターポーザ間の膨張係数の違いによる信頼性の低下が生じにくい。また、シリコンインターポーザは表面の平坦性が高いため、シリコンインターポーザ上に設ける集積回路とシリコンインターポーザ間の接続不良が生じにくい。特に、インターポーザ上に複数の集積回路を横に並べて配置する2.5Dパッケージ(2.5次元実装)では、シリコンインターポーザを用いることが好ましい。
 また、電子部品730と重ねてヒートシンク(放熱板)を設けてもよい。ヒートシンクを設ける場合は、インターポーザ731上に設ける集積回路の高さを揃えることが好ましい。例えば、本実施の形態に示す電子部品730では、記憶装置300と半導体装置735の高さを揃えることが好ましい。
 電子部品730を他の基板に実装するため、パッケージ基板732の底部に電極733を設けてもよい。図20Bでは、電極733を半田ボールで形成する例を示している。パッケージ基板732の底部に半田ボールをマトリクス状に設けることで、BGA(Ball Grid Array)実装を実現できる。また、電極733を導電性のピンで形成してもよい。パッケージ基板732の底部に導電性のピンをマトリクス状に設けることで、PGA(Pin Grid Array)実装を実現できる。
 電子部品730は、BGA及びPGAに限らず様々な実装方法を用いて他の基板に実装することができる。実装方法としては、例えば、SPGA(Staggered Pin Grid Array)、LGA(Land Grid Array)、QFP(Quad Flat Package)、QFJ(Quad Flat J−leaded package)、及び、QFN(Quad Flat Non−leaded package)が挙げられる。
 本実施の形態は、他の実施の形態または実施例と適宜組み合わせることができる。
(実施の形態5)
 本実施の形態では、本発明の一態様の記憶装置の応用例について説明する。
 本発明の一態様の記憶装置は、各種電子機器(例えば、情報端末、コンピュータ、スマートフォン、電子書籍端末、デジタルスチルカメラ、ビデオカメラ、録画再生装置、ナビゲーションシステム、及び、ゲーム機)の記憶装置に適用できる。また、イメージセンサ、IoT(Internet of Things)、ヘルスケア関連機器などに用いることもできる。これにより、電子機器の省電力化を図ることができる。また、上記電子機器のCPU、またはGPUなどの集積回路に、先の実施の形態に示すOSトランジスタを用いることで、さらに省電力化を図ることができる。なお、ここで、コンピュータとは、タブレット型のコンピュータ、ノート型のコンピュータ、及び、デスクトップ型のコンピュータの他、サーバシステムのような大型のコンピュータを含むものである。
 本発明の一態様の記憶装置を有する電子機器の一例について説明する。なお、図21A乃至図21J、及び、図22A乃至図22Eには、先の実施の形態で説明した、当該記憶装置を有する電子部品700または電子部品730が各電子機器に含まれている様子を図示している。
[携帯電話]
 図21Aに示す情報端末5500は、情報端末の一種である携帯電話(スマートフォン)である。情報端末5500は、筐体5510と、表示部5511と、を有しており、入力用インターフェースとして、タッチパネルが表示部5511に備えられ、ボタンが筐体5510に備えられている。
 情報端末5500は、本発明の一態様の記憶装置を適用することで、アプリケーションの実行時に生成される一時的なファイル(例えば、ウェブブラウザの使用時のキャッシュなど)を保持することができる。
[ウェアラブル端末]
 図21Bに、ウェアラブル端末の一例である情報端末5900を示す。情報端末5900は、筐体5901、表示部5902、操作スイッチ5903、操作スイッチ5904、バンド5905などを有する。
 ウェアラブル端末は、先述した情報端末5500と同様に、本発明の一態様の記憶装置を適用することで、アプリケーションの実行時に生成される一時的なファイルを保持することができる。
[情報端末]
 図21Cに、デスクトップ型情報端末5300を示す。デスクトップ型情報端末5300は、情報端末の本体5301と、表示部5302と、キーボード5303と、を有する。
 デスクトップ型情報端末5300は、先述した情報端末5500と同様に、本発明の一態様の記憶装置を適用することで、アプリケーションの実行時に生成される一時的なファイルを保持することができる。
 図21A乃至図21Cでは、電子機器として、スマートフォン、ウェアラブル端末、及び、デスクトップ用情報端末について説明したが、他の情報端末としては、例えば、PDA(Personal Digital Assistant)、ノート型情報端末、及び、ワークステーションが挙げられる。
[電化製品]
 図21Dに、電化製品の一例として電気冷凍冷蔵庫5800を示す。電気冷凍冷蔵庫5800は、筐体5801、冷蔵室用扉5802、冷凍室用扉5803等を有する。例えば、電気冷凍冷蔵庫5800は、IoT(Internet of Things)に対応した電気冷凍冷蔵庫である。
 電気冷凍冷蔵庫5800に本発明の一態様の記憶装置を適用することができる。電気冷凍冷蔵庫5800は、電気冷凍冷蔵庫5800に保存されている食材、その食材の消費期限などの情報を、インターネットなどを通じて、情報端末などに送受信することができる。電気冷凍冷蔵庫5800は、当該情報を送信する際に生成される一時的なファイルを、本発明の一態様の記憶装置に保持することができる。
 図21Dでは、電化製品として電気冷凍冷蔵庫について説明したが、その他の電化製品としては、例えば、掃除機、電子レンジ、電気オーブン、炊飯器、湯沸かし器、IH調理器、ウォーターサーバ、エアーコンディショナーを含む冷暖房器具、洗濯機、乾燥機、及び、オーディオビジュアル機器が挙げられる。
[ゲーム機]
 図21Eには、ゲーム機の一例である携帯ゲーム機5200を示す。携帯ゲーム機5200は、筐体5201、表示部5202、ボタン5203等を有する。
 また、図21Fには、ゲーム機の一例である据え置き型ゲーム機7500を示す。据え置き型ゲーム機7500は、特に、家庭用の据え置き型ゲーム機ということができる。据え置き型ゲーム機7500は、本体7520と、コントローラ7522を有する。なお、本体7520には、無線または有線によってコントローラ7522を接続することができる。また、図21Fには示していないが、コントローラ7522は、ゲームの画像を表示する表示部、ボタン以外の入力インターフェースとなる、タッチパネル、スティック、回転式つまみ、またはスライド式つまみなどを備えることができる。また、コントローラ7522は、図21Fに示す形状に限定されず、ゲームのジャンルに応じて、コントローラ7522の形状を様々に変更してもよい。例えば、FPS(First Person Shooter)などのシューティングゲームでは、トリガーをボタンとし、銃を模した形状のコントローラを用いることができる。また、例えば、音楽ゲームなどでは、楽器、音楽機器などを模した形状のコントローラを用いることができる。さらに、据え置き型ゲーム機は、コントローラを使わず、代わりにカメラ、深度センサ、及び、マイクロフォンの一つまたは複数を備えて、ゲームプレイヤーのジェスチャー、または音声によって操作する形式としてもよい。
 また、上述したゲーム機の映像は、テレビジョン装置、パーソナルコンピュータ用ディスプレイ、ゲーム用ディスプレイ、またはヘッドマウントディスプレイなどの表示装置によって出力することができる。
 携帯ゲーム機5200または据え置き型ゲーム機7500に本発明の一態様の記憶装置を適用することによって、消費電力を低減できる。また、低消費電力化により、回路からの発熱を低減でき、発熱によるその回路自体、周辺回路、及びモジュールへの影響を少なくすることができる。
 さらに、携帯ゲーム機5200または据え置き型ゲーム機7500に本発明の一態様の記憶装置を適用することによって、ゲームの実行中に発生する演算に必要な一時ファイルなどの保持を行うことができる。
 図21E及び図21Fでは、ゲーム機の一例として、携帯ゲーム機及び家庭用の据え置き型ゲーム機について説明したが、その他のゲーム機としては、例えば、娯楽施設(ゲームセンター、遊園地など)に設置されるアーケードゲーム機、及び、スポーツ施設に設置されるバッティング練習用の投球マシンが挙げられる。
[移動体]
 本発明の一態様の記憶装置は、移動体である自動車、及び自動車の運転席周辺に適用することができる。
 図21Gには移動体の一例である自動車5700が図示されている。
 自動車5700の運転席周辺には、スピードメーター、タコメーター、走行距離、燃料計、ギア状態、エアコンの設定などを表示することで、様々な情報を提供するインストゥルメントパネルが備えられている。また、運転席周辺には、それらの情報を示す記憶装置が備えられていてもよい。
 特に当該表示装置には、自動車5700に設けられた撮像装置(図示しない)からの映像を映し出すことによって、ピラーなどで遮られた視界、運転席の死角などを補うことができ、安全性を高めることができる。すなわち、自動車5700の外側に設けられた撮像装置からの画像を表示することによって、死角を補い、安全性を高めることができる。
 本発明の一態様の記憶装置は、情報を一時的に保持することができるため、例えば、当該記憶装置を、自動車5700の自動運転、道路案内、危険予測などを行うシステムなどにおける、必要な一時的な情報の保持に用いることができる。当該表示装置には、道路案内、危険予測などの一時的な情報を表示する構成としてもよい。また、自動車5700に備え付けられたドライビングレコーダの映像を保持する構成としてもよい。
 なお、上述では、移動体の一例として自動車について説明しているが、移動体は自動車に限定されない。例えば、移動体としては、電車、モノレール、船、及び、飛行体(ヘリコプター、無人航空機(ドローン)、飛行機、ロケット)も挙げることができる。
[カメラ]
 本発明の一態様の記憶装置は、カメラに適用することができる。
 図21Hに、撮像装置の一例であるデジタルカメラ6240を示す。デジタルカメラ6240は、筐体6241、表示部6242、操作スイッチ6243、シャッターボタン6244等を有し、また、デジタルカメラ6240には、着脱可能なレンズ6246が取り付けられている。なお、ここではデジタルカメラ6240を、レンズ6246を筐体6241から取り外して交換することが可能な構成としたが、レンズ6246と筐体6241とが一体となっていてもよい。また、デジタルカメラ6240は、ストロボ装置、ビューファインダー等を別途装着することができる構成としてもよい。
 デジタルカメラ6240に本発明の一態様の記憶装置を適用することによって、消費電力を低減することができる。また、低消費電力化により、回路からの発熱を低減でき、発熱によるその回路自体、周辺回路、及びモジュールへの影響を少なくすることができる。
[ビデオカメラ]
 本発明の一態様の記憶装置は、ビデオカメラに適用することができる。
 図21Iに、撮像装置の一例であるビデオカメラ6300を示す。ビデオカメラ6300は、第1筐体6301、第2筐体6302、表示部6303、操作スイッチ6304、レンズ6305、接続部6306等を有する。操作スイッチ6304及びレンズ6305は第1筐体6301に設けられており、表示部6303は第2筐体6302に設けられている。そして、第1筐体6301と第2筐体6302とは、接続部6306により接続されており、第1筐体6301と第2筐体6302の間の角度は、接続部6306により変更が可能である。表示部6303における映像を、接続部6306における第1筐体6301と第2筐体6302との間の角度に従って切り替える構成としてもよい。
 ビデオカメラ6300で撮影した映像を記録する際、データの記録形式に応じたエンコードを行う必要がある。本発明の一態様の記憶装置を利用することによって、ビデオカメラ6300は、エンコードの際に発生する一時的なファイルの保持を行うことができる。
[ICD]
 本発明の一態様の記憶装置は、植え込み型除細動器(ICD)に適用できる。
 図21Jは、ICDの一例を示す断面模式図である。ICD本体5400は、バッテリー5401と、電子部品700と、レギュレータと、制御回路と、アンテナ5404と、右心房へのワイヤ5402と、右心室へのワイヤ5403とを少なくとも有している。
 ICD本体5400は手術により体内に設置され、二本のワイヤは、人体の鎖骨下静脈5405及び上大静脈5406を通過させて一方のワイヤ先端が右心室、もう一方のワイヤ先端が右心房に設置されるようにする。
 ICD本体5400は、ペースメーカとしての機能を有し、心拍数が規定の範囲から外れた場合に心臓に対してペーシングを行う。また、ペーシングによって心拍数が改善しない場合(速い心室頻拍、心室細動など)、電気ショックによる治療が行われる。
 ICD本体5400は、ペーシング及び電気ショックを適切に行うため、心拍数を常に監視する必要がある。そのため、ICD本体5400は、心拍数を検知するためのセンサを有する。また、ICD本体5400は、当該センサなどによって取得した心拍数のデータ、ペーシングによる治療を行った回数、時間などを電子部品700に記憶することができる。
 また、アンテナ5404で電力が受信でき、その電力はバッテリー5401に充電される。また、ICD本体5400は複数のバッテリーを有することにより、安全性を高くすることができる。具体的には、ICD本体5400の一部のバッテリーが使えなくなったとしても残りのバッテリーが機能させることができるため、補助電源としても機能する。
 また、電力を受信できるアンテナ5404とは別に、生理信号を送信できるアンテナを有していてもよく、例えば、脈拍、呼吸数、心拍数、体温などの生理信号を外部のモニタ装置で確認できるような心臓活動を監視するシステムを構成してもよい。
[PC用の拡張デバイス]
 本発明の一態様の記憶装置は、PC(Personal Computer)などの計算機、情報端末用の拡張デバイスに適用することができる。
 図22Aは、当該拡張デバイスの一例として、持ち運びのできる、情報の記憶が可能なチップが搭載された、PCに外付けする拡張デバイス6100を示している。拡張デバイス6100は、例えば、USB(Universal Serial Bus)などでPCに接続することで、当該チップによる情報の記憶を行うことができる。なお、図22Aは、持ち運びが可能な形態の拡張デバイス6100を図示しているが、本発明の一態様の拡張デバイスは、これに限定されず、例えば、冷却用ファンなどを搭載した比較的大きい形態の拡張デバイスとしてもよい。
 拡張デバイス6100は、筐体6101、キャップ6102、USBコネクタ6103及び基板6104を有する。基板6104は、筐体6101に収納されている。基板6104には、本発明の一態様の記憶装置などを駆動する回路が設けられている。例えば、基板6104には、電子部品700、コントローラチップ6106が取り付けられている。USBコネクタ6103は、外部装置と接続するためのインターフェースとして機能する。
[SDカード]
 本発明の一態様の記憶装置は、情報端末、デジタルカメラなどの電子機器に取り付けが可能なSDカードに適用することができる。
 図22BはSDカードの外観の模式図であり、図22Cは、SDカードの内部構造の模式図である。SDカード5110は、筐体5111、コネクタ5112及び基板5113を有する。コネクタ5112が外部装置と接続するためのインターフェースとして機能する。基板5113は筐体5111に収納されている。基板5113には、記憶装置及び記憶装置を駆動する回路が設けられている。例えば、基板5113には、電子部品700、コントローラチップ5115が取り付けられている。なお、電子部品700とコントローラチップ5115とのそれぞれの回路構成は、上述の記載に限定せず、状況に応じて、適宜回路構成を変更してもよい。例えば、電子部品に備えられている書き込み回路、ロードライバ、読み出し回路などは、電子部品700でなく、コントローラチップ5115に組み込んだ構成としてもよい。
 基板5113の裏面側にも電子部品700を設けることで、SDカード5110の容量を増やすことができる。また、無線通信機能を備えた無線チップを基板5113に設けてもよい。これによって、外部装置とSDカード5110との間で無線通信を行うことができ、電子部品700のデータの読み出し及び書き込みが可能となる。
[SSD]
 本発明の一態様の記憶装置は、情報端末など電子機器に取り付けが可能なSSD(Solid State Drive)に適用することができる。
 図22DはSSDの外観の模式図であり、図22Eは、SSDの内部構造の模式図である。SSD5150は、筐体5151、コネクタ5152及び基板5153を有する。コネクタ5152が外部装置と接続するためのインターフェースとして機能する。基板5153は筐体5151に収納されている。基板5153には、記憶装置及び記憶装置を駆動する回路が設けられている。例えば、基板5153には、電子部品700、メモリチップ5155、コントローラチップ5156が取り付けられている。基板5153の裏面側にも電子部品700を設けることで、SSD5150の容量を増やすことができる。メモリチップ5155にはワークメモリが組み込まれている。例えば、メモリチップ5155には、DRAMチップを用いることができる。コントローラチップ5156には、プロセッサ、ECC(Error Check and Correct)回路などが組み込まれている。なお、電子部品700と、メモリチップ5155と、コントローラチップ5115と、のそれぞれの回路構成は、上述の記載に限定せず、状況に応じて、適宜回路構成を変更してもよい。例えば、コントローラチップ5156にも、ワークメモリとして機能するメモリを設けてもよい。
[計算機]
 図23Aに示す計算機5600は、大型の計算機の例である。計算機5600には、ラック5610にラックマウント型の計算機5620が複数格納されている。
 計算機5620は、例えば、図23Bに示す斜視図の構成とすることができる。図23Bにおいて、計算機5620は、マザーボード5630を有し、マザーボード5630は、複数のスロット5631、複数の接続端子を有する。スロット5631には、PCカード5621が挿されている。加えて、PCカード5621は、接続端子5623、接続端子5624、接続端子5625を有し、それぞれ、マザーボード5630に接続されている。
 図23Cに示すPCカード5621は、CPU、GPU、記憶装置などを備えた処理ボードの一例である。PCカード5621は、ボード5622を有する。また、ボード5622は、接続端子5623と、接続端子5624と、接続端子5625と、半導体装置5626と、半導体装置5627と、半導体装置5628と、接続端子5629と、を有する。なお、図23Cには、半導体装置5626、半導体装置5627、及び半導体装置5628以外の半導体装置を図示しているが、それらの半導体装置については、以下に記載する半導体装置5626、半導体装置5627、及び半導体装置5628の説明を参照できる。
 接続端子5629は、マザーボード5630のスロット5631に挿すことができる形状を有しており、接続端子5629は、PCカード5621とマザーボード5630とを接続するためのインターフェースとして機能する。接続端子5629の規格としては、例えば、PCIeなどが挙げられる。
 接続端子5623、接続端子5624、接続端子5625は、例えば、PCカード5621に対して電力供給、信号入力などを行うためのインターフェースとすることができる。また、例えば、PCカード5621によって計算された信号の出力などを行うためのインターフェースとすることができる。接続端子5623、接続端子5624、接続端子5625のそれぞれの規格としては、例えば、USB(Universal Serial Bus)、SATA(Serial ATA)、及び、SCSI(Small Computer System Interface)が挙げられる。また、接続端子5623、接続端子5624、接続端子5625から映像信号を出力する場合、それぞれの規格としては、HDMI(登録商標)などが挙げられる。
 半導体装置5626は、信号の入出力を行う端子(図示しない)を有しており、当該端子をボード5622が備えるソケット(図示しない)に対して差し込むことで、半導体装置5626とボード5622を電気的に接続することができる。
 半導体装置5627は、複数の端子を有しており、当該端子をボード5622が備える配線に対して、例えば、リフロー方式のはんだ付けを行うことで、半導体装置5627とボード5622を電気的に接続することができる。半導体装置5627としては、例えば、FPGA(Field Programmable Gate Array)、GPU、CPUなどが挙げられる。半導体装置5627として、例えば、電子部品730を用いることができる。
 半導体装置5628は、複数の端子を有しており、当該端子をボード5622が備える配線に対して、例えば、リフロー方式のはんだ付けを行うことで、半導体装置5628とボード5622を電気的に接続することができる。半導体装置5628としては、例えば、記憶装置などが挙げられる。半導体装置5628として、例えば、電子部品700を用いることができる。
 計算機5600は並列計算機としても機能できる。計算機5600を並列計算機として用いることで、例えば、人工知能の学習、及び推論に必要な大規模の計算を行うことができる。
 上記の各種電子機器などに、本発明の一態様の記憶装置を用いることにより、電子機器の小型化、及び低消費電力化を図ることができる。また、本発明の一態様の記憶装置は消費電力が少ないため、回路からの発熱を低減することができる。よって、当該発熱によるその回路自体、周辺回路、及びモジュールへの悪影響を低減できる。また、本発明の一態様の記憶装置を用いることにより、高温環境下においても動作が安定した電子機器を実現できる。よって、電子機器の信頼性を高めることができる。
 本実施の形態は、他の実施の形態または実施例と適宜組み合わせることができる。
(実施の形態6)
 本実施の形態では、本発明の一態様の半導体装置を宇宙用機器に適用する場合の具体例について、図24を用いて説明する。
 本発明の一態様の半導体装置は、OSトランジスタを含む。OSトランジスタは、放射線照射による電気特性の変動が小さい。つまり放射線に対する耐性が高いため、放射線が入射しうる環境において好適に用いることができる。例えば、OSトランジスタは、宇宙空間にて使用する場合に好適に用いることができる。具体的には、OSトランジスタを、スペースシャトル、人工衛星、または、宇宙探査機に設けられる半導体装置を構成するトランジスタに用いることができる。放射線として、例えば、X線、及び中性子線などが挙げられる。なお、宇宙空間とは、例えば、高度100km以上を指すが、本明細書に記載の宇宙空間は、熱圏、中間圏、及び成層圏のうち一つまたは複数を含んでもよい。
 図24には、宇宙用機器の一例として、人工衛星6800を示している。人工衛星6800は、機体6801と、ソーラーパネル6802と、アンテナ6803と、二次電池6805と、制御装置6807と、を有する。なお、図24においては、宇宙空間に惑星6804を例示している。
 また、宇宙空間は、地上に比べて100倍以上、放射線量の高い環境である。なお、放射線として、例えば、X線、及びガンマ線に代表される電磁波(電磁放射線)、並びにアルファ線、ベータ線、中性子線、陽子線、重イオン線、中間子線などに代表される粒子放射線が挙げられる。
 ソーラーパネル6802に太陽光が照射されることにより、人工衛星6800が動作するために必要な電力が生成される。しかしながら、例えばソーラーパネルに太陽光が照射されない状況、またはソーラーパネルに照射される太陽光の光量が少ない状況では、生成される電力が少なくなる。よって、人工衛星6800が動作するために必要な電力が生成されない可能性がある。生成される電力が少ない状況下であっても人工衛星6800を動作させるために、人工衛星6800に二次電池6805を設けるとよい。なお、ソーラーパネルは、太陽電池モジュールと呼ばれる場合がある。
 人工衛星6800は、信号を生成することができる。当該信号は、アンテナ6803を介して送信され、例えば地上に設けられた受信機、または他の人工衛星が当該信号を受信することができる。人工衛星6800が送信した信号を受信することにより、当該信号を受信した受信機の位置を測定することができる。以上より、人工衛星6800は、衛星測位システムを構成することができる。
 また、制御装置6807は、人工衛星6800を制御する機能を有する。制御装置6807としては、例えば、CPU、GPU、及び記憶装置の中から選ばれるいずれか一または複数を用いて構成される。なお、制御装置6807には、本発明の一態様であるOSトランジスタを含む半導体装置を用いると好適である。OSトランジスタは、Siトランジスタと比較し、放射線照射による電気特性の変動が小さい。つまり放射線が入射しうる環境においても信頼性が高く、好適に用いることができる。
 また、人工衛星6800は、センサを有する構成とすることができる。例えば、可視光センサを有する構成とすることにより、人工衛星6800は、地上に設けられている物体に当たって反射された太陽光を検出する機能を有することができる。または、熱赤外センサを有する構成とすることにより、人工衛星6800は、地表から放出される熱赤外線を検出する機能を有することができる。以上より、人工衛星6800は、例えば地球観測衛星としての機能を有することができる。
 なお、本実施の形態においては、宇宙用機器の一例として、人工衛星について例示したがこれに限定されない。例えば、本発明の一態様の半導体装置は、宇宙船、宇宙カプセル、宇宙探査機などの宇宙用機器に好適に用いることができる。
 または、例えば、OSトランジスタは、原子力発電所、及び、放射性廃棄物の処理場または処分場の作業用ロボットに設けられる半導体装置を構成するトランジスタに用いることができる。特に、原子炉施設の解体、核燃料または燃料デブリの取り出し、放射性物質の多い空間の実地調査などで遠隔操作される遠隔操作ロボットに設けられる半導体装置を構成するトランジスタに好適に用いることができる。
 本実施の形態は、他の実施の形態または実施例と適宜組み合わせることができる。
 本実施例では、図1A乃至図1Fに示す、酸化物230を含む構造体を作製し、断面SEM観察を行った結果について説明する。当該構造体は、実施の形態1に示す積層体に対応する。
 本実施例では、シリコン基板上に、下地酸化シリコン膜、酸化ハフニウム膜(以下、HfOx膜と呼ぶ。)、酸化シリコン膜(以下、SiOx膜と呼ぶ。)、In−Ga−Zn酸化物膜(以下、IGZO膜と呼ぶ。)、窒化タンタルとタングステンの積層膜(以下、TaNx\W膜と呼ぶ。)、窒化シリコンと酸化シリコンの積層膜(以下、SiNx\SiOx膜と呼ぶ。)、タングステン膜(以下、W膜と呼ぶ。)、SOC膜、SOG膜の順に積層した試料を用意した。当該試料上に、レジストマスクを設けて、図1A乃至図1Fに示すエッチング処理を行った。
 ここで、下地酸化シリコン膜は、図1A乃至図1Fに示す絶縁体216に対応する。HfOx膜は絶縁体222に対応する。SiOx膜は、絶縁膜224f及び絶縁体224に対応する。IGZO膜は、酸化膜230afと酸化膜230bfの積層膜、及び酸化物230aと酸化物230bの積層膜に対応する。TaNx\W膜は、導電膜242f及び導電体242に対応する。SiNx\SiOx膜は、絶縁膜271_1fと絶縁膜271_2fの積層膜、及び絶縁体271_1と絶縁体271_2の積層膜に対応する。W膜は、無機膜276f、及び無機膜276に対応する。SOC膜は、塗布膜277f、及び塗布膜277に対応する。SOG膜は、塗布膜278f、及び塗布膜278に対応する。
 最初に、図1A乃至図1Fに示す工程において必要になるエッチング条件の選定を行った。図1Cと同様に、TaNx\W膜をエッチングする際には、SOC膜がマスクとして機能する必要がある。TaNx\W膜のエッチング中に、SOC膜が除去されてしまうと、SOC膜の下に設けられたW膜も除去されることになる。
 そこで、SOC膜と、TaNx\W膜を構成する、TaNx膜及びW膜について、ドライエッチング処理を行って、それぞれのエッチングレートを測定した。さらに、SOC膜に対するTaNx膜のエッチング選択比(以下、TaNx/SOC選択比と呼ぶ。)、及びSOC膜に対するW膜のエッチング選択比(以下、W/SOC選択比と呼ぶ。)を算出した。
 上記のドライエッチング処理は、CCPエッチング装置を用いて行った。エッチング条件は、エッチングガスとして、CHFガス35sccm、Clガス15sccm、及びArガス10sccmを用い、圧力を0.6Paとし、電極間距離を80mmとし、上部電極電力を1000Wとし、基板温度を60℃とした。下部電極電力を10W、25W、50W、100Wとして、それぞれの条件でエッチングレートの測定を行った。
 エッチングレートの測定結果を図25Aに示し、エッチング選択比を図25Bに示す。ここで、図25Aは、横軸に下部電極電力(Btm Power[W])をとり、縦軸にエッチングレート[nm/min]をとる。また、図25Bは、横軸に下部電極電力(Btm Power[W])をとり、縦軸にエッチング選択比をとる。
 図25Aに示すように、下部電極電力が25W以上の条件では、TaNx膜及びW膜のエッチングレートが、SOC膜のエッチングレートと同程度またはそれより小さくなった。図25Bでは、TaNx/SOC選択比、及びW/SOC選択比が1.0以下になった。これに対して、下部電極電力が10Wの条件では、TaNx膜及びW膜のエッチングレートが、SOC膜のエッチングレートより大きくなった。下部電極電力が10Wの条件では、TaNx/SOC選択比が1.38となり、W/SOC選択比が1.42となった。
 このように、TaNx\W膜のエッチングにおいては、下部電極電力を少なくとも25W未満、好ましくは、10W以下にすればよい。このような条件で、TaNx\W膜をエッチングすることで、SOC膜を消失させずに、TaNx\W膜を除去することができる。
 次に、上記の構造体を形成した、試料1A、及び試料1Bの作製方法について、説明する。
 まず、シリコン基板を準備し、CVD法を用いて、当該シリコン基板上に下地酸化シリコン膜を成膜した。次に、ALD法を用いて、下地酸化シリコン膜上に、膜厚20nmのHfOx膜を成膜した。
 次に、HfOx膜上にSiOx膜を成膜し、さらにSiOx膜上にIGZO膜を成膜した。SiOx膜及びIGZO膜の成膜は、外気にさらさずに、連続して行った。SiOx膜は、Siターゲットを用いたスパッタリング法で、膜厚20nmで成膜した。
 ここで、IGZO膜は、膜厚10nmのIGZO(132)膜と、IGZO(132)膜上の、膜厚15nmのIGZO(111)膜の積層構造になっている。IGZO(132)膜は、図1A乃至図1Fに示す酸化膜230af及び酸化物230aに対応する。また、IGZO(111)膜は、図1A乃至図1Fに示す酸化膜230bf及び酸化物230bに対応する。IGZO膜(132)は、In:Ga:Zn=1:3:2[原子数比]のターゲットを用いたスパッタリング法で成膜し、IGZO膜(111)は、In:Ga:Zn=1:1:1.2[原子数比]のターゲットを用いたスパッタリング法で成膜した。
 次に、スパッタリング法を用いて、IGZO膜上にTaNx\W膜を成膜した。TaNx\W膜は、膜厚5nmのTaNx膜と、TaNx膜上の、膜厚15nmのW膜との積層膜である。TaNx膜は、タンタルターゲットを用いて、窒素ガスを含む雰囲気で成膜した。W膜は、タングステンターゲットを用いて、成膜した。
 次に、スパッタリング法を用いて、TaNx\W膜上にSiNx\SiOx膜を成膜した。SiNx\SiOx膜は、膜厚5nmのSiNx膜と、SiNx膜上の、膜厚10nmのSiOx膜との積層膜である。SiNx膜は、シリコンターゲットを用いて、窒素ガスを含む雰囲気で成膜した。SiOx膜は、シリコンターゲットを用いて、酸素ガスを含む雰囲気で成膜した。
 次に、スパッタリング法を用いて、SiNx\SiOx膜上に、膜厚15nmのW膜を成膜した。次に、W膜上にスピンコート法を用いてSOC膜を成膜した。次に、SOC膜上にスピンコート法を用いてSOG膜を成膜した。
 以上のように作製した積層膜の上に、図1Aと同様に、ネガ型のレジスト膜を形成した。当該レジスト膜に電子ビームを照射して、島状のレジストマスクを形成した。なお、試料1A、及び試料1Bのそれぞれにおいて、島状のレジストマスクの幅が30nmの領域と、島状のレジストマスクの幅が60nmの領域を形成した。
 次に、島状のレジストマスクを用いて、図1B乃至図1Fに対応するドライエッチング処理を行った。ドライエッチング処理はCCPエッチング装置を用いて行った。当該ドライエッチング処理の条件を表1に示す。表1には、それぞれの膜のドライエッチングにおける、電極間距離(Gap(mm))、上部電極電力(Top Power(W))、下部電極電力(Btm Power(W))、圧力(Press(Pa))、ガス流量(Gas(sccm))、基板温度(Tsub(℃))を示している。
Figure JPOXMLDOC01-appb-T000001
 まず、図1Bと同様に、表1に示す条件で、SOG膜のエッチングを行い、次にSOC膜のエッチングを行った。
 次に、図1Cと同様に、表1に示す条件で、W膜のエッチングを行い(表1中ではW_1と表記。)、次にSiNx\SiOx膜のエッチングを行い、さらにTaNx\W膜のエッチングを行った。ここで、試料1AのTaNx\W膜のエッチングでは、下部電極電力を10Wにし、試料1BのTaNx\W膜のエッチングでは、下部電極電力を25Wにした。
 次に、図1Dと同様に、表1に示す条件でIGZO膜のエッチングを行った。次に、図1Eと同様に、表1に示す条件でSiOx膜のエッチングを行った。
 最後に、図1Fと同様に、表1に示す条件で、SiNx\SiOx膜上に残存したW膜をエッチングによって除去した(表1中ではW_2と表記。)。
 以上のように作製した、試料1A及び試料1Bについて、断面SEM像の撮影を行った。断面SEM像の撮影は、日立ハイテク製「SU8030」を用いて、加速電圧5kVで行った。
 試料1A及び試料1Bの断面SEM像を図26A乃至図27Bに示す。ここで、図26Aは、試料1Aの構造体の幅が30nmの領域の断面SEM像であり、図26Bは、試料1Bの構造体の幅が30nmの領域の断面SEM像である。また、図27Aは、試料1Aの構造体の幅が60nmの領域の断面SEM像であり、図27Bは、試料1Bの構造体の幅が60nmの領域の断面SEM像である。
 図26A乃至図27Bに示すように、下部電極電力を25Wにした試料1Bでは、下部電極電力を10Wにした試料1Aより、TaNx\W膜が顕著に後退しており、構造体の幅が狭くなっていた。つまり、図25A及び図25Bで示したように、下部電極電力を低くすることで、TaNx\W膜のエッチング中もSOC膜が残存し、W膜がエッチングされなかったことが推測される。よって、本発明の一態様は、図1A乃至図1Fに示す方法で、TaNx\W膜と、IGZO膜の加工を一括で行うことができるため、半導体装置の生産性を向上させることができる。
 特に、試料1Bの構造体の幅が30nmの領域では、TaNx\W膜の後退がより大きかったが、試料1Aの構造体の幅が30nmの領域では、TaNx\W膜の後退が抑制されていた。よって、先の実施の形態に示すように、微細構造を有する半導体装置においても、本実施例で示す条件で加工を行うことで、設計通りに加工を行うことができる。
 本実施例は、実施の形態、及び他の実施例と適宜組み合わせることができる。
 本実施例では、図8A乃至図8Dに示す構造体(以下、試料2Aと呼ぶ。)を作製した結果について説明する。
 試料2Aは、試料1Aと同様の構造体上に、窒化シリコン膜(以下、バリアSiNx膜と呼ぶ。)、酸化シリコン膜(以下、層間SiOx膜と呼ぶ。)を順に成膜し、図8A乃至図8Dに示すように、開口を形成したものである。ここで、バリアSiNx膜は絶縁体275に対応し、層間SiOx膜は絶縁体280に対応する。なお、以下において、試料1Aに対応する各構成要素は、実施例1と同様に呼ぶ。
 最初に、図8A乃至図8Dに示す工程において必要になるエッチング条件の選定を行った。図8A乃至図8Dに示すように、TaNx\W膜をエッチングする際には、IGZO膜の表面がエッチングされるのを防ぐ必要がある。よって、TaNx\W膜とIGZO膜のエッチング選択比が大きくなるように、エッチングを行う必要がある。
 そこで、IGZO膜と、TaNx\W膜を構成する、TaNx膜及びW膜について、ドライエッチング処理を行って、それぞれのエッチングレートを測定した。さらに、IGZO膜に対するTaNx膜のエッチング選択比(以下、TaNx/IGZO選択比と呼ぶ。)、及びIGZO膜に対するW膜のエッチング選択比(以下、W/IGZO選択比と呼ぶ。)を算出した。
 上記のドライエッチング処理は、ICPエッチング装置を用いて行った。エッチング条件は、エッチングガスとして、CFガス40sccm、及びClガス60sccmを用い、圧力を0.67Paとし、ICP電力を1000Wとし、基板温度を−10℃とした。バイアス電力を10W、50W、100Wとして、それぞれの条件でエッチングレートの測定を行った。
 エッチングレートの測定結果を図28Aに示し、エッチング選択比を図28Bに示す。ここで、図28Aは、横軸にバイアス電力(Bias[W])をとり、縦軸にエッチングレート[nm/min]をとる。また、図28Bは、横軸にバイアス電力(Bias[W])をとり、縦軸にエッチング選択比をとる。
 図28Aに示すように、バイアス電力を大きくするにつれて、TaNx膜及びW膜のエッチングレートが大きくなる一方、IGZO膜のエッチングレートはほぼ変わらなかった。図28Bに示すように、いずれの条件においても、TaNx/IGZO選択比、及びW/IGZO選択比は、1.0より大きくなっていた。TaNx膜及びW膜のエッチングレートが最大になる、バイアス電力100Wの条件においても、TaNx/IGZO選択比、及びW/IGZO選択比は、顕著に大きかった。よって、試料2Aの作製では、TaNx\W膜をエッチングする際に、バイアス電力を100Wにした。
 次に、上記の構造体を形成した、試料2Aの作製方法について、説明する。
 まず、試料1Aと同様の構造体を準備し、SiOx膜、IGZO膜、TaNx\W膜、及びSiNx\SiOx膜の積層膜からなる構造体を覆って、バリアSiNx膜を成膜した。バリアSiNx膜の成膜は、PEALD法を用いて、膜厚5nmで行った。なお、試料2Aは、試料1Aと同様に、構造体の幅が30nmの領域と、構造体の幅が60nmの領域を有している。
 次に、スパッタリング法を用いて、バリアSiNx膜上に層間SiOx膜を成膜した。層間SiOx膜は、シリコンターゲットを用いて、酸素ガスを含む雰囲気で成膜した。層間SiOx膜は、成膜後にCMP処理を行って、上面を平坦化した。層間SiOx膜は、SiNx\SiOx膜上の膜厚が45nmになるようにした。
 次に、ドライエッチング処理を行って、層間SiOx膜、バリアSiNx膜、及びSiNx\SiOx膜を加工し、TaNx\W膜に達する開口を形成した。
 次に、ドライエッチング処理を行って、TaNx\W膜を分断し、図8Bに示す導電体242a、242b、つまりソース電極及びドレイン電極を形成した。ここで、ドライエッチング処理はICPエッチング装置を用いて行った。エッチング条件は、エッチングガスとして、CFガス40sccm、及びClガス60sccmを用い、圧力を0.67Paとし、ICP電力を1000Wとし、バイアス電力を100Wとし、基板温度を−10℃とした。
 なお、上記の開口は、構造体の幅が30nmの領域では、開口の幅が30nmとなるようにし、構造体の幅が60nmの領域では、開口の幅が60nmとなるようにした。つまり、構造体の幅が30nmの領域では、チャネル長L/チャネル幅W=30nm/30nmのトランジスタを想定し、構造体の幅が60nmの領域では、チャネル長L/チャネル幅W=60nm/60nmのトランジスタを想定した。
 以上のように作製した、試料2Aについて、断面SEM像の撮影を行った。断面SEM像の撮影は、日立ハイテク製「SU8030」を用いて、加速電圧5kVで行った。
 試料2Aの断面SEM像を図29A乃至図30Bに示す。ここで、図29Aは、構造体の幅が30nmの領域のチャネル長方向の断面SEM像であり、図29Bは、構造体の幅が30nmの領域のチャネル幅方向の断面SEM像である。また、図30Aは、構造体の幅が60nmの領域のチャネル長方向の断面SEM像であり、図30Bは、構造体の幅が60nmの領域のチャネル幅方向の断面SEM像である。
 図29A、及び図29Bに示すように、構造体の幅が30nmの領域において、TaNx\W膜が残っている部分は見られず、IGZO膜が過剰にエッチングされている部分も見られなかった。また、図30A、及び図30Bに示すように、構造体の幅が60nmの領域においても、同様に、TaNx\W膜が残っている部分は見られず、IGZO膜が過剰にエッチングされている部分も見られなかった。
 以上より、上記の条件でTaNx\W膜を加工することで、設計通りにソース電極及びドレイン電極を形成できる。
 本実施例は、実施の形態、及び他の実施例と適宜組み合わせることができる。
BL[1]:配線、BL[j]:配線、BL[n]:配線、BL_A:配線、BL_B:配線、BL:配線、BW:信号、CE:信号、CLK:信号、EN_data:信号、GBL_A:配線、GBL_B:配線、GBL:配線、GW:信号、MUX:選択信号、PL[1]:配線、PL[i]:配線、PL[m]:配線、PL:配線、RDA:信号、RE:制御信号、VHH:配線、VLL:配線、VPC:中間電位、WAKE:信号、WDA:信号、WE:制御信号、WL[1]:配線、WL[i]:配線、WL[m]:配線、WL:配線、10[1,1]:メモリセル、10[i,j]:メモリセル、10[m,n]:メモリセル、10_A:メモリセル、10_B:メモリセル、10:メモリセル、11a:トランジスタ、11b:トランジスタ、11c:トランジスタ、11:トランジスタ、12a:容量素子、12:容量素子、20[1]:メモリアレイ、20[2]:メモリアレイ、20[5]:メモリアレイ、20[m]:メモリアレイ、20:メモリアレイ、21:駆動回路、22:PSW、23:PSW、31:周辺回路、32:コントロール回路、33:電圧生成回路、41:周辺回路、42:行デコーダ、43:行ドライバ、44:列デコーダ、45:列ドライバ、46:センスアンプ、47:入力回路、48:出力回路、50:機能層、51_A:機能回路、51_B:機能回路、51:機能回路、52_a:トランジスタ、52_b:トランジスタ、52:トランジスタ、53_a:トランジスタ、53_b:トランジスタ、53:トランジスタ、54_a:トランジスタ、54_b:トランジスタ、54:トランジスタ、55_a:トランジスタ、55_b:トランジスタ、55:トランジスタ、70[1]:繰り返し単位、70:繰り返し単位、71_A:プリチャージ回路、71_B:プリチャージ回路、72_A:スイッチ回路、72_B:スイッチ回路、73:書き込み読み出し回路、81_1:トランジスタ、81_3:トランジスタ、81_4:トランジスタ、81_6:トランジスタ、82_1:トランジスタ、82_2:トランジスタ、82_3:トランジスタ、82_4:トランジスタ、83_A:スイッチ、83_B:スイッチ、83_C:スイッチ、83_D:スイッチ、153:導電体、154:絶縁体、160a:導電体、160b:導電体、160:導電体、200:トランジスタ、205a:導電体、205b:導電体、205:導電体、207:導電体、208:絶縁体、209:導電体、210:絶縁体、212:絶縁体、214:絶縁体、215:絶縁体、216:絶縁体、222:絶縁体、224f:絶縁膜、224:絶縁体、230a:酸化物、230af:酸化膜、230b:酸化物、230ba:領域、230bb:領域、230bc:領域、230bf:酸化膜、230:酸化物、240a:導電体、240b:導電体、240:導電体、241:絶縁体、242a:導電体、242a1:導電体、242a2:導電体、242b:導電体、242b1:導電体、242b2:導電体、242f:導電膜、242:導電体、250a:絶縁体、250A:絶縁膜、250b:絶縁体、250c:絶縁体、250d:絶縁体、250:絶縁体、260a:導電体、260A:導電膜、260b:導電体、260B:導電膜、260:導電体、261:導電体、271_1:絶縁体、271_1f:絶縁膜、271_2:絶縁体、271_2f:絶縁膜、271a:絶縁体、271a1:絶縁体、271a2:絶縁体、271b:絶縁体、271b1:絶縁体、271b2:絶縁体、271:絶縁体、275:絶縁体、276f:無機膜、276:無機膜、277f:塗布膜、277:塗布膜、278f:塗布膜、278:塗布膜、279:レジストマスク、280:絶縁体、282:絶縁体、283:絶縁体、284:絶縁体、285:絶縁体、300A:記憶装置、300:記憶装置、310:トランジスタ、311:基板、313:半導体領域、314a:低抵抗領域、314b:低抵抗領域、315:絶縁体、316:導電体、320:絶縁体、322:絶縁体、324:絶縁体、326:絶縁体、328:導電体、330:導電体、700:電子部品、702:プリント基板、704:実装基板、711:モールド、712:ランド、713:電極パッド、714:ワイヤ、730:電子部品、731:インターポーザ、732:パッケージ基板、733:電極、735:半導体装置、1200:チップ、1201:パッケージ基板、1202:バンプ、1203:マザーボード、1204:GPUモジュール、1211:CPU、1212:GPU、1213:アナログ演算部、1214:メモリコントローラ、1215:インターフェース、1216:ネットワーク回路、1221:DRAM、1222:フラッシュメモリ、5110:SDカード、5111:筐体、5112:コネクタ、5113:基板、5115:コントローラチップ、5150:SSD、5151:筐体、5152:コネクタ、5153:基板、5155:メモリチップ、5156:コントローラチップ、5200:携帯ゲーム機、5201:筐体、5202:表示部、5203:ボタン、5300:デスクトップ型情報端末、5301:本体、5302:表示部、5303:キーボード、5400:ICD本体、5401:バッテリー、5402:ワイヤ、5403:ワイヤ、5404:アンテナ、5405:鎖骨下静脈、5406:上大静脈、5500:情報端末、5510:筐体、5511:表示部、5600:計算機、5610:ラック、5620:計算機、5621:PCカード、5622:ボード、5623:接続端子、5624:接続端子、5625:接続端子、5626:半導体装置、5627:半導体装置、5628:半導体装置、5629:接続端子、5630:マザーボード、5631:スロット、5700:自動車、5800:電気冷凍冷蔵庫、5801:筐体、5802:冷蔵室用扉、5803:冷凍室用扉、5900:情報端末、5901:筐体、5902:表示部、5903:操作スイッチ、5904:操作スイッチ、5905:バンド、6100:拡張デバイス、6101:筐体、6102:キャップ、6103:USBコネクタ、6104:基板、6106:コントローラチップ、6240:デジタルカメラ、6241:筐体、6242:表示部、6243:操作スイッチ、6244:シャッターボタン、6246:レンズ、6300:ビデオカメラ、6301:第1筐体、6302:第2筐体、6303:表示部、6304:操作スイッチ、6305:レンズ、6306:接続部、6800:人工衛星、6801:機体、6802:ソーラーパネル、6803:アンテナ、6804:惑星、6805:二次電池、6807:制御装置、7500:据え置き型ゲーム機、7520:本体、7522:コントローラ

Claims (12)

  1.  基板上に、酸化物半導体、第1の導電体、窒化物を有する第1の絶縁体、酸化物を有する第2の絶縁体、無機膜、第1の塗布膜、及び第2の塗布膜を、この順で成膜し、
     前記第2の塗布膜上にレジストマスクを形成し、
     前記レジストマスクをマスクとして、ドライエッチング法を用いて、前記第2の塗布膜を加工して、島状の第2の塗布膜を形成し、
     前記島状の第2の塗布膜をマスクとして、ドライエッチング法を用いて、前記第1の塗布膜を加工して、島状の第1の塗布膜を形成し、且つ前記レジストマスクを除去し、
     前記島状の第1の塗布膜をマスクとして、ドライエッチング法を用いて、前記無機膜、前記第2の絶縁体、前記第1の絶縁体、及び前記第1の導電体を、この順で加工して、島状の無機膜、島状の第2の絶縁体、島状の第1の絶縁体、及び島状の第1の導電体を形成し、且つ前記島状の第2の塗布膜を除去し、
     前記島状の無機膜をマスクとして、ドライエッチング法を用いて、前記酸化物半導体を加工して、島状の酸化物半導体を形成し、且つ前記島状の第1の塗布膜を除去し、
     ドライエッチング法を用いて、前記島状の無機膜を除去する、
     積層体の作製方法。
  2.  請求項1において、
     前記酸化物半導体は、インジウム、ガリウム、及び亜鉛を有する、積層体の作製方法。
  3.  請求項1において、
     前記第1の導電体は、窒化タンタルを有する、積層体の作製方法。
  4.  請求項1において、
     前記第1の導電体は、窒化タンタルを含む層と、前記窒化タンタルを含む層上のタングステンを含む層の積層構造を有する、積層体の作製方法。
  5.  請求項1において、
     前記第1の絶縁体は、窒化シリコンを有する、積層体の作製方法。
  6.  請求項1において、
     前記第2の絶縁体は、酸化シリコンを有する、積層体の作製方法。
  7.  請求項1において、
     前記無機膜は、タングステンを有する、積層体の作製方法。
  8.  請求項1において、
     前記第1の塗布膜は、炭素を有する、積層体の作製方法。
  9.  請求項1において、
     前記第2の塗布膜は、シリコン及び酸素を有する、積層体の作製方法。
  10.  請求項1において、
     前記基板と前記酸化物半導体の間に、第3の絶縁体、及び第4の絶縁体を、この順で成膜し、
     前記島状の酸化物半導体を形成した後で、前記島状の無機膜をマスクとして、ドライエッチング法を用いて、前記第4の絶縁体を加工して、島状の第4の絶縁体を形成する、
     積層体の作製方法。
  11.  請求項10において、
     前記第3の絶縁体は、酸化ハフニウムを有し、
     前記第4の絶縁体は、酸化シリコンを有する、積層体の作製方法。
  12.  請求項1乃至請求項11のいずれか一項に記載の積層体の作製方法を用いて、積層体を作製した後で、
     前記第1の導電体を、第2の導電体と第3の導電体に分断し、
     前記第2の導電体と前記第3の導電体の間の領域に重なるように、第5の絶縁体と、前記第5の絶縁体上の第4の導電体と、を形成する、
     半導体装置の作製方法。
PCT/IB2023/053509 2022-04-15 2023-04-06 積層体の作製方法、及び半導体装置の作製方法 WO2023199181A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022067489 2022-04-15
JP2022-067489 2022-04-15

Publications (1)

Publication Number Publication Date
WO2023199181A1 true WO2023199181A1 (ja) 2023-10-19

Family

ID=88329216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/053509 WO2023199181A1 (ja) 2022-04-15 2023-04-06 積層体の作製方法、及び半導体装置の作製方法

Country Status (2)

Country Link
TW (1) TW202349459A (ja)
WO (1) WO2023199181A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020229914A1 (ja) * 2019-05-10 2020-11-19 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
WO2020250083A1 (ja) * 2019-06-14 2020-12-17 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
WO2021070007A1 (ja) * 2019-10-11 2021-04-15 株式会社半導体エネルギー研究所 半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020229914A1 (ja) * 2019-05-10 2020-11-19 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
WO2020250083A1 (ja) * 2019-06-14 2020-12-17 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
WO2021070007A1 (ja) * 2019-10-11 2021-04-15 株式会社半導体エネルギー研究所 半導体装置

Also Published As

Publication number Publication date
TW202349459A (zh) 2023-12-16

Similar Documents

Publication Publication Date Title
JP7387418B2 (ja) 半導体装置
JPWO2019048968A1 (ja) 半導体装置、および半導体装置の作製方法
WO2023199181A1 (ja) 積層体の作製方法、及び半導体装置の作製方法
WO2023180859A1 (ja) 半導体装置及び半導体装置の作製方法
KR20230074757A (ko) 반도체 장치
WO2023175422A1 (ja) 半導体装置
WO2023148571A1 (ja) 半導体装置
WO2023156877A1 (ja) 半導体装置
WO2023152588A1 (ja) 半導体装置
WO2023156869A1 (ja) 半導体装置
WO2024047486A1 (ja) 記憶装置
WO2024028681A1 (ja) 半導体装置、及び記憶装置
WO2023209486A1 (ja) 半導体装置、及び記憶装置
WO2023237961A1 (ja) 半導体装置、記憶装置、及び半導体装置の作製方法
WO2023156883A1 (ja) 半導体装置、及び半導体装置の作製方法
WO2023152586A1 (ja) 半導体装置、及び半導体装置の作製方法
WO2023166374A1 (ja) 半導体装置、及び半導体装置の作製方法
WO2023144652A1 (ja) 記憶装置
WO2023144653A1 (ja) 記憶装置
WO2024042404A1 (ja) 半導体装置
WO2024042419A1 (ja) 記憶装置
JP7417596B2 (ja) 半導体装置
WO2023180849A1 (ja) 半導体装置
WO2024069339A1 (ja) 記憶装置
WO2024047487A1 (ja) 記憶装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787897

Country of ref document: EP

Kind code of ref document: A1