WO2023195515A1 - 反復塩基配列および反復回数が互いに異なる核酸からなる混合集団の構築方法 - Google Patents

反復塩基配列および反復回数が互いに異なる核酸からなる混合集団の構築方法 Download PDF

Info

Publication number
WO2023195515A1
WO2023195515A1 PCT/JP2023/014202 JP2023014202W WO2023195515A1 WO 2023195515 A1 WO2023195515 A1 WO 2023195515A1 JP 2023014202 W JP2023014202 W JP 2023014202W WO 2023195515 A1 WO2023195515 A1 WO 2023195515A1
Authority
WO
WIPO (PCT)
Prior art keywords
stranded nucleic
nucleic acid
base
repetitive
mixed population
Prior art date
Application number
PCT/JP2023/014202
Other languages
English (en)
French (fr)
Inventor
俊将 本間
Original Assignee
独立行政法人国立高等専門学校機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人国立高等専門学校機構 filed Critical 独立行政法人国立高等専門学校機構
Publication of WO2023195515A1 publication Critical patent/WO2023195515A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • C40B40/08Libraries containing RNA or DNA which encodes proteins, e.g. gene libraries
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/10Libraries containing peptides or polypeptides, or derivatives thereof

Definitions

  • the present invention relates to a method for constructing a mixed population consisting of nucleic acids having different repeat base sequences and repeat numbers, or a mixed population consisting of peptides encoded by the mixed population.
  • Non-Patent Document 2 a peptide with a repeating very long unit in which a highly flexible expression site, an integrin binding site, a matrix metalloprotease recognition site, and a heparin binding site are connected in tandem.
  • Non-Patent Document 4 a method of performing polymerase chain reaction (PCR) using one type of circular single-stranded DNA as a template is known (Non-Patent Document 4).
  • PCR polymerase chain reaction
  • the DNA polymerase and the template repeat attachment and detachment many times, so it is possible to create a mixed population consisting of one type of repeated base sequence with a different number of repeats, but the repeated base sequences and the number of repeats are different from each other.
  • a technical drawback is that it is not possible to create a mixed population composed of different repeat sequences.
  • the present invention aims to provide a novel approach for designing peptides that exhibit ideal functions.
  • the present inventor used a mixed population of circular single-stranded DNA synthesized using mixed bases to synthesize a part of a nucleic acid so as to encode an amino acid sequence in which amino acid residue substitutions have occurred, and used a strand-displacing DNA polymerase as a template.
  • a mixed population consisting of nucleic acids with different repeat base sequences and repeat numbers can be easily constructed, and furthermore, by introducing an expression vector containing the nucleic acids into host cells and expressing them, repeat amino acid sequences and repeat numbers can be easily constructed.
  • the present inventors have discovered that it is possible to easily construct a mixed population consisting of peptides having different counts, and have thus completed the present invention.
  • a method for constructing a mixed population consisting of nucleic acids with different repeat base sequences and repeat numbers including the following steps: (A) Using a mixed population of circular single-stranded nucleic acids consisting of repeating base sequences in which at least one base differs from each other as a template, a mixed population of linear single-stranded nucleic acids corresponding to each circular single-stranded nucleic acid is prepared. (B) a step of preparing each linear single-stranded nucleic acid, wherein each linear single-stranded nucleic acid includes 2 or more and 300 or less repeats of a base sequence complementary to each repeated base sequence; and (B) each linear single-stranded nucleic acid.
  • each double-stranded nucleic acid population further has a cloning base sequence added to both ends thereof for incorporation into a vector.
  • [3] The method according to [1] or [2], further comprising the following steps: (C) a step of incorporating the mixed population consisting of each double-stranded nucleic acid population into an expression vector in an expressible manner; and (D) a step of introducing the expression vector into a host cell.
  • [4] The method according to any one of [1] to [3], wherein the nucleic acid is DNA.
  • [5] The method according to [4], wherein a strand displacement DNA polymerase is used in step (A) and step (B).
  • [6] The method according to [5], wherein step (A) and step (B) are performed simultaneously.
  • step (A) and step (B) are performed under isothermal conditions, and the isothermal conditions are a constant temperature within 50°C to 68°C.
  • step (A) and step (B) are performed under isothermal conditions, and the isothermal conditions are a constant temperature within 50°C to 68°C.
  • step (A) and step (B) are performed under isothermal conditions, and the isothermal conditions are a constant temperature within 50°C to 68°C.
  • step (A) and step (B) are performed under isothermal conditions, and the isothermal conditions are a constant temperature within 50°C to 68°C.
  • the method according to any one of [1] to [7] wherein there are 16 or more types and 10,000 types or less of repetitive base sequences in which at least one base differs from each other.
  • the repetitive base sequences that differ from each other in at least one base are base sequences that encode repetitive amino acid sequences that differ from each other in at least one amino acid residue The method described in.
  • a double-stranded nucleic acid consisting of two or more types but not more than 300 types of double-stranded nucleic acids, which contain 1 or more and 300 or less repeats of a repetitive base sequence, and the number of repeats of the contained repetitive base sequences is different from each other.
  • a mixed population of nucleic acids comprising a population for each of the repetitive base sequences, wherein the repetitive base sequences are repetitive base sequences in which at least one base is different from each other.
  • the mixed population according to [10] wherein the double-stranded nucleic acid population further has a cloning base sequence added to both ends thereof for incorporation into a vector.
  • the mixed population according to [10] or [11], wherein the nucleic acid is DNA.
  • a method for constructing a mixed population consisting of peptides having different repetitive amino acid sequences and repeat numbers including the following steps: (a) Using a mixed population of circular single-stranded nucleic acids consisting of repeating base sequences in which at least one base differs from each other as a template, a mixed population of linear single-stranded nucleic acids corresponding to each circular single-stranded nucleic acid is prepared.
  • the repetitive base sequence is a base sequence encoding a repetitive amino acid sequence in which at least one amino acid residue differs from each other, and each linear single-stranded nucleic acid is complementary to each repetitive base sequence.
  • each of the double-stranded nucleic acid populations further has a cloning base sequence added to both ends thereof for incorporation into a vector.
  • the nucleic acid is DNA.
  • a strand displacement DNA polymerase is used in step (a) and step (b).
  • step (a) and step (b) are performed simultaneously.
  • step (a) and step (b) are performed under isothermal conditions, and the isothermal conditions are a constant temperature within 50°C to 68°C.
  • a reaction including a mixed population of circular single-stranded DNA synthesized using mixed bases and a strand-displacing DNA polymerase, in which a portion of a nucleic acid encodes an amino acid sequence in which an amino acid residue has been substituted.
  • a mixed population of nucleic acids with different repeat base sequences and repeat numbers can be constructed.
  • the nucleic acid can be easily introduced into an expression vector with the corresponding base sequence, allowing for expression tests and physical property evaluations of the peptide. can be done quickly.
  • amino acid sequence information of a peptide can be simplified (for example, expressed in the form [VPGXG] 90 ), and when developing a new peptide with better functionality, the amino acid sequence information can be easily reflected in the design. Furthermore, since there is no need to use restriction enzymes for gene synthesis, there is also the advantage that there is a high degree of freedom in repeating amino acid sequences.
  • FIG. 2 is a diagram showing a process of preparing a mixed population consisting of nucleic acids having different repeat base sequences and repeat numbers.
  • FIG. 2 is a diagram showing DNA products obtained by isothermal amplification.
  • FIG. 2 is a diagram showing the base sequence from upstream to downstream of the insertion site of a nucleic acid (a repeated base sequence is repeated three times) inserted into a linear vector in Brevibacillus by homologous recombination.
  • Enclosed text Base sequence encoding the secretion signal.
  • Uppercase letters repeated base sequences (e.g., 3 repeats).
  • Lowercase letters linear vector terminal base sequence.
  • Underlined region base sequence for cloning.
  • Bold letters Base sequence encoding the his tag sequence.
  • FIG. 2 is a diagram showing a His-tag fusion protein staining image of a polyacrylamide gel in which culture supernatants of 20 transformants were electrophoresed.
  • FIG. 2 is a diagram showing a His-tag fusion protein staining image of a polyacrylamide gel in which culture supernatants of four transformants were electrophoresed.
  • FIG. 3 shows repetitive amino acid sequences of peptides expressed by the first, second, third or fourth transformants. The underlined portion represents the amino acid residue that changes depending on the introduced mixed base. Note that the first repeating amino acid sequence and the last repeating amino acid sequence of all peptides were omitted because the amino acids were determined using mixed bases derived from the primers.
  • FIG. 2 is a diagram showing a His-tag fusion protein staining image of a polyacrylamide gel in which soluble and insoluble fractions of 10 transformants were electrophoresed. Soluble: soluble fraction, insoluble: insoluble fraction It is a figure showing the expression level of His fusion protein.
  • FIG. 3 is a diagram showing the abundance ratio of His fusion proteins contained in the soluble fraction and His fusion proteins contained in the insoluble fraction.
  • FIG. 3 shows repetitive amino acid sequences of peptides expressed by the 1st, 4th, 5th, 6th, 8th or 10th transformants. The underlined portion represents the amino acid residue that changes depending on the introduced mixed base.
  • FIG. 3 shows the hydropathic index of peptides expressed by the 4th, 5th, 6th, 8th or 10th transformants.
  • FIG. 2 is a diagram showing a CBB staining image of a polyacrylamide gel in which soluble and insoluble fractions of 10 transformants were electrophoresed.
  • FIG. 3 is a diagram showing the base sequence of the recombinant protein expressed by the comparative strain ELP as base sequence 17.
  • FIG. 4 is a diagram showing the amino acid sequence of the recombinant protein expressed by the comparative strain ELP as amino acid sequence 4.
  • FIG. 3 is a diagram showing the fluorescence intensity of a purified GFP solution. *:P ⁇ 0.05; ****:P ⁇ 0.0001
  • FIG. 3 is a diagram showing a CBB staining image of a polyacrylamide gel on which a purified GFP solution was electrophoresed.
  • FIG. 3 shows repetitive amino acid sequences of peptides expressed by transformants of colony 6. The underlined portion represents the amino acid residue that changes depending on the introduced mixed base.
  • the present invention provides a method for constructing a mixed population consisting of nucleic acids having different repeat base sequences and repeat numbers (hereinafter referred to as the method for constructing a nucleic acid population of the present invention).
  • the nucleic acid may be DNA, RNA, or a modified nucleic acid (RNA, DNA), but is preferably DNA.
  • modified nucleic acids include, but are not limited to, sulfur and thiophosphate derivatives of nucleic acids, and those resistant to degradation of polynucleosidamides and oligonucleosidamides.
  • the method for constructing a nucleic acid population of the present invention uses as a template a mixed population of circular single-stranded nucleic acids consisting of repeating base sequences in which at least one base differs from each other, and each linear single-stranded nucleic acid corresponding to each circular single-stranded nucleic acid is used as a template.
  • step (A) of the present invention a mixed population of circular single-stranded nucleic acids consisting of repetitive base sequences in which at least one base differs from each other is used as a template (Step 1 in Figure 1).
  • the repetitive base sequence (the repetitive base sequence of the present invention) is repeatedly contained in each circular single-stranded nucleic acid constituting the mixed population constructed in the method for constructing a nucleic acid population of the present invention.
  • the type of each repeating base sequence of the present invention is not particularly limited as long as at least one base differs from each other, but usually 4 or more types, preferably 16 or more types, more preferably 64 or more types. Usually, there are 10,000 types or less, preferably 1,000 types or less, and more preferably 100 types or less.
  • the length range of the repetitive base sequences of the present invention is usually about 15 bp to about 500 bp, preferably about 30 bp to about 350 bp, more preferably about 45 bp to about 160 bp.
  • sequence information of the repetitive nucleotide sequences of the present invention is not particularly limited as long as the nucleotide sequences have at least one base that differs from each other; It is preferable that the base sequence is a base sequence encoding a repetitive amino acid sequence.
  • each repeating amino acid sequence of the present invention is not particularly limited as long as at least one amino acid residue differs from each other, but usually 2 or more types, preferably 5 or more types, more preferably 10 or more types. There are at least 100 types, and usually 1000 types or less, preferably 300 types or less, and more preferably 100 types or less.
  • the length of the repetitive amino acid sequences of the invention generally ranges from about 5 to about 165, preferably from about 10 to about 115, more preferably from about 15 to about 55.
  • repetitive amino acid sequences of the present invention include peptides with unknown functions or peptides whose functions are required to be improved or lost.
  • Functions of peptides are not particularly limited, and include, for example, enzymatic activity, protein binding activity, nucleic acid binding activity, and the like.
  • each circular single-stranded nucleic acid (circular single-stranded nucleic acid of the present invention) consists of each of the above-mentioned repetitive base sequences.
  • the circular single-stranded nucleic acid of the present invention can be produced according to known means in the art. An example of such means is the following method.
  • a linear single-stranded nucleic acid consisting of the repetitive base sequence of the present invention whose 5' end is modified with a phosphate group is prepared.
  • it consists of a base sequence complementary to a base sequence of about 20 bp to about 40 bp formed around the joining site between the 5' end and 3' end that occurs when the linear single-stranded nucleic acid is made into a circular structure.
  • Synthesize a single-stranded nucleic acid (primer A).
  • the linear single-stranded nucleic acid is formed into a circular structure, and using ligase, the 5' Connect the ends and 3' ends.
  • the temperature at which primer A anneals to the circular single-stranded nucleic acid (or linear single-stranded nucleic acid) of the present invention is determined by the base sequence of primer A, but is usually about 4°C to about 75°C, preferably About 4°C to about 55°C, more preferably about 4°C to about 20°C.
  • the circular single-stranded nucleic acids of the present invention are produced for each repetitive base sequence, and constitute a mixed population (mixed population consisting of the circular single-stranded nucleic acids of the present invention) (Step 2 in Figure 1). .
  • Primer A used when producing the circular single-stranded nucleic acid of the present invention in step (A) of the present invention may further have a cloning base sequence added to the 5' end for incorporation into a vector.
  • the length of the added base sequence is not particularly limited as long as it is suitable for cloning, but for example, about 5 bp to about 50 bp, preferably about 7 bp to about 20 bp, more preferably about 12 bp. -about 17bp.
  • step (A) of the present invention a mixed population consisting of circular single-stranded nucleic acids of the present invention obtained as described above is used as a template, and a mixture consisting of each linear single-stranded nucleic acid corresponding to each circular single-stranded nucleic acid is used as a template.
  • a population (a mixed population consisting of linear single-stranded nucleic acids of the invention) is prepared.
  • the linear single-stranded nucleic acid corresponding to the circular single-stranded nucleic acid of the present invention refers to two or more consecutive base sequences complementary to each repeated base sequence, 300 refers to a linear single-stranded nucleic acid containing no more than 150 repeats, preferably no more than 75 repeats.
  • the hydrogen bond between the already synthesized linear single-stranded nucleic acid and the circular single-stranded nucleic acid is 5' ⁇
  • the repeated base sequence of the present invention can be repeated twice in succession without changing the reaction temperature.
  • a linear single-stranded nucleic acid can be extended to include the above (Step 3 1 and 2 in Figure 1).
  • Such a method includes a nucleic acid synthesis method using a strand-displacing DNA polymerase using the circular single-stranded nucleic acid of the present invention as a template.
  • each linear single-stranded nucleic acid is synthesized by reacting a mixture containing a mixed population of circular single-stranded nucleic acids of the present invention, a strand-displacing DNA polymerase, dNTPs, and primer A under isothermal conditions for a desired time. can do.
  • Strand displacement DNA polymerases are not particularly limited as long as they have 5' ⁇ 3' polymerase activity and strand displacement activity, but include, for example, Bst DNA polymerase, ⁇ 29 DNA polymerase, Csa DNA polymerase, 96-7 DNA polymerase, and Examples include SD DNA polymerase. Isothermal conditions are not limited as long as primer A can anneal to the circular single-stranded nucleic acid of the present invention and strand displacement DNA polymerase can exhibit 5' ⁇ 3' polymerase activity and strand displacement activity, but for example, , about 25°C to about 72°C, preferably about 50°C to about 68°C, more preferably about 55°C to about 65°C, and the like.
  • reaction time of the isothermal gene amplification method is not particularly limited as long as a linear single-stranded nucleic acid containing 2 or more and 300 or less repeats of a nucleotide sequence complementary to each repeated nucleotide sequence can be synthesized, but for example, Examples include about 0.001 hour to about 8 hours, preferably about 0.01 hour to about 4 hours, particularly preferably about 0.05 hour to about 2 hours.
  • the method for constructing a nucleic acid population of the present invention is a step of preparing a mixed population of double-stranded nucleic acid populations corresponding to each circular single-stranded nucleic acid using a mixed population of linear single-stranded nucleic acids as a template, the method comprising:
  • Each double-stranded nucleic acid population contains at least 1 and not more than 300 consecutive repeats of each repeated base sequence, and the number of repeats of each included repeat base sequence is different from each other, and is a double strand of at least 2 types and not more than 300 types.
  • the method includes a step (step (B) of the present invention) consisting of a nucleic acid.
  • step (B) of the present invention the mixed population consisting of the linear single-stranded nucleic acids of the present invention prepared in step (A) of the present invention is used as a template, and each two groups corresponding to each circular single-stranded nucleic acid are A mixed population consisting of a stranded nucleic acid population (a mixed population consisting of nucleic acids of the present invention having different repeat base sequences and repeat numbers) is prepared.
  • a double-stranded nucleic acid population corresponding to the circular single-stranded nucleic acid of the present invention double-stranded nucleic acid population of the present invention refers to each repeated base sequence consecutively repeated 1 or more and 300 or less, preferably 150 times or more.
  • Such a method includes a nucleic acid synthesis method using a strand-displacing DNA polymerase using the linear single-stranded nucleic acid of the present invention as a template.
  • the nucleic acid synthesis method using a strand-displacing DNA polymerase in step (B) of the present invention can be carried out according to known means as in step (A) of the present invention.
  • the double-stranded nucleic acid population of the present invention can be prepared by reacting the solution under isothermal conditions for a desired time.
  • Strand displacement DNA polymerases are not particularly limited as long as they have 5' ⁇ 3' polymerase activity and strand displacement activity, but include, for example, Bst DNA polymerase, ⁇ 29 DNA polymerase, Csa DNA polymerase, 96-7 DNA polymerase, and Examples include SD DNA polymerase.
  • Isothermal conditions are not limited as long as the strand displacement DNA polymerase can exhibit 5' ⁇ 3' polymerase activity and strand displacement activity, but are, for example, about 25°C to about 72°C, preferably about 50°C. Included are constant temperatures, such as from about 68°C to about 68°C, more preferably from about 55°C to about 65°C.
  • reaction time of the isothermal gene amplification method is based on the reaction time of two types or more and up to 300 types of repeating base sequences that contain at least one repeat and up to 300 consecutive repeats, and where the number of repeats of each repeated base sequence is different from each other.
  • examples include about 0.5 hours to about 5 hours, preferably about 1 hour to about 4 hours, particularly preferably about 2 hours to about 3 hours.
  • reaction time for isothermal gene amplification is approximately 0.5 hours to About 48 hours, preferably about 3 hours to about 24 hours, particularly preferably about 6 hours to about 12 hours.
  • Primer B which is used in step (B) of the present invention to create a mixed population of nucleic acids having different repeat base sequences and repeat numbers of the present invention, is used for cloning at the 5' end for incorporation into a vector.
  • a base sequence may be further added.
  • the length of the added base sequence is not particularly limited as long as it is suitable for cloning, but for example, about 5 bp to about 50 bp, preferably about 7 bp to about 20 bp, particularly preferably about 12 bp. -about 17bp.
  • Step (A) and step (B) of the present invention in the method for constructing a nucleic acid population of the present invention may be performed sequentially in the order of step (A) and step (B), or may be performed simultaneously.
  • step (A) and step (B) are carried out in this order, the mixed population consisting of the linear single-stranded nucleic acid of the present invention prepared in step (A) may be used as is in step (B). It may be used in step (B) after being purified in advance using known means (eg, ethanol precipitation).
  • step (A) and step (B) of the present invention may be performed simultaneously.
  • a common primer A is used under common isothermal conditions and a common reaction time.
  • Common isothermal conditions include, for example, constant temperatures ranging from about 25°C to about 72°C, preferably from about 50°C to about 68°C, more preferably from about 55°C to about 65°C.
  • the common reaction time is for double-stranded nucleic acids of 2 or more types and 300 or less types that contain 1 or more consecutive repeats of each repeated base sequence and 300 or less repeats, and the number of repeats of each repeated base sequence is different from each other.
  • step (B) the linear single-stranded nucleic acid of the present invention prepared in step (A) is used as a template, so if step (A) and step (B) are started and ended at the same time, The reaction initiation in step (B) is slightly delayed from step (A).
  • step (A) and step (B) of the present invention are performed at the same time, the double-stranded nucleic acid population of the present invention continuously repeats each repeated base sequence 1 or more and 200 or less, preferably 120 2 or more types, 200 or less types, preferably 120 or less types, more preferably 60 types or less, which contain less than or equal to 60 repeats, and the number of repeats of each of the included repeat base sequences is different from each other.
  • primer A and primer B used in step (A) and step (B) of the present invention further have a cloning base sequence added to their 5' ends for incorporation into a vector
  • the double-stranded nucleic acid population of the present invention further has a cloning base sequence added to both ends thereof for incorporation into a vector.
  • the method for constructing a nucleic acid population of the present invention which includes step (A) and step (B) of the present invention, constructs a mixed population consisting of nucleic acids having different repeat base sequences and repeat numbers of the present invention. can do. Therefore, the present invention also provides at least 2 types of double-stranded nucleic acids, which contain at least 1 but not more than 300 repeats of a repetitive base sequence, and which have different numbers of repetitions of the repeated base sequences.
  • a mixed population of nucleic acids containing a double-stranded nucleic acid population for each repetitive base sequence, wherein the repetitive base sequences are repetitive base sequences in which at least one base differs from each other the nucleic acid population of the present invention).
  • the types of nucleic acids, the types and lengths of repetitive base sequences, the number of repeats of repetitive base sequences contained in double-stranded nucleic acids, the type of double-stranded nucleic acids, the The terminal cloning base sequence and the like may be the same as defined in the method for constructing a nucleic acid population of the present invention.
  • the method for constructing a nucleic acid population of the present invention may further include a step of integrating the mixed population consisting of the respective double-stranded nucleic acid populations into an expression vector in an expressible manner (step (C) of the present invention).
  • Step (C) of the present invention can be carried out, for example, by ligating a mixed population of nucleic acids having different repeat base sequences and repeat numbers of the present invention downstream of a promoter in an appropriate expression vector.
  • the expression vector has cloning base sequences for incorporation into the vector that are added to the 5' ends of primer A and primer B, respectively, on the 5' and 3' sides of the insertion site of the expression vector.
  • a mixed population consisting of the repetitive base sequences of the present invention and nucleic acids having different repeat numbers can be incorporated into an expression vector in an expressible manner (Step 4 in FIG. 1).
  • a method for later limiting the range of the number of repeats of a nucleic acid includes a method of separating molecules based on differences in molecular weight. Such methods include agarose gel electrophoresis, acrylamide gel electrophoresis, gel filtration, and the like.
  • the base length range of the nucleic acid to be isolated is calculated from the desired range of the length of the repeated base sequence and the number of repeats, and the concentration is determined so that the base length range can be well separated.
  • Create an agarose gel All of the nucleic acids contained in the above-mentioned mixed population are separated by electrophoresis using the prepared agarose gel, and the agarose gel containing only the nucleic acids having the number of repeats within the desired range is cut out, and the nucleic acids can be extracted.
  • Expression vectors include expression plasmids for Escherichia (e.g., pBR322, pBR325, pUC12, pUC13, pET22b); expression plasmids for Bacillus (e.g., pUB110, pTP5, pC194); expression plasmids for yeast (e.g., pSH19, pSH15); expression plasmids for insect cells (e.g. pFast-Bac); expression plasmids for animal cells (e.g.
  • bacteriophages such as ⁇ phage
  • Insect virus vectors such as baculovirus (e.g. BmNPV, AcNPV); animal virus vectors such as retrovirus, vaccinia virus, and adenovirus; and plant cell plasmids such as Ti plasmid are used.
  • any promoter may be used as long as it is suitable for the host used to express the nucleic acid.
  • a cytomegalovirus (CMV)-derived promoter e.g., CMV immediate early promoter
  • HMV human immunodeficiency virus
  • HIV LTR HIV LTR
  • RSV Rous sarcoma virus
  • MMTV mouse mammary tumor virus
  • MoMLV Moloney murine leukemia virus
  • HSV herpes simplex virus
  • TK herpes simplex virus
  • SV40-derived promoter e.g. SV40 early promoter
  • Epstein-Barr virus (EBV)-derived promoter e.g. Epstein-Barr virus (EBV)-derived promoter
  • AAV adeno-associated virus
  • AdV Ad2 or Ad5 major late promoter
  • the host is a bacterium belonging to the genus Escherichia, trp promoter, lac promoter, recA promoter, ⁇ PL promoter, lpp promoter, T7 promoter, etc. are preferred.
  • SPO1 promoter, SPO2 promoter, penP promoter, etc. are preferred.
  • yeast PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, etc. are preferred.
  • polyhedrin promoter, P10 promoter, etc. are preferred.
  • those containing an enhancer, a polyA addition signal, a selection marker, an SV40 replication origin, etc. can be used as desired.
  • the selection marker include the dihydrofolate reductase (dhfr) gene [methotrexate (MTX) resistance], the ampicillin resistance (Amp r ) gene, the neomycin resistance (Neo r ) gene (G418 resistance), and the like.
  • CHO-dhfr - into which the expression vector has been introduced can also be selected using a thymidine-free medium.
  • a base sequence (signal codon) encoding a signal sequence suitable for the host may be added to the 5' end of the nucleic acid to be integrated, if necessary.
  • the host is Escherichia
  • the PhoA signal sequence, OmpA signal sequence, etc. are used.
  • the host is Bacillus, the ⁇ -amylase signal sequence, subtilisin signal sequence, etc. are used.
  • the host is yeast, the MF ⁇
  • an insulin signal sequence, an ⁇ -interferon signal sequence, an antibody molecule signal sequence, etc. are used as the signal sequence, SUC2 signal sequence, etc., respectively.
  • the method for constructing a nucleic acid population of the present invention which includes step (A), step (B), and step (C) of the present invention, can be performed from nucleic acids of the present invention having different repeat base sequences and repeat numbers.
  • a mixed population can be constructed in such a manner that it is expressibly integrated into an expression vector.
  • the present invention also provides an expression vector (an expression vector of the present invention) into which a population of nucleic acids of the present invention is operably integrated.
  • the type of expression vector may be the same as defined in the method for constructing a nucleic acid population of the present invention.
  • the method for constructing a nucleic acid population of the present invention may further include a step of introducing an expression vector into a host cell (step (D) of the present invention).
  • Escherichia bacteria for example, Escherichia bacteria, Bacillus bacteria, yeast, insect cells, insects, animal cells, plant cells, etc. are used.
  • Escherichia bacteria for example, Escherichia coli K12, DH1, JM103, JA221, HB101, C600, etc. are used.
  • Bacillus genus bacteria include Bacillus subtilis MI114, 207-21, Bacillus brevis HPD31, and the like.
  • yeast include Saccharomyces cerevisiae AH22, AH22R - , NA87-11A, DKD-5D, 20B-12, Schizosaccharomyces pombe NCYC1913, NCYC2036, Pichia pastoris KM71 etc. are used.
  • Insect cells include, for example, when the virus is AcNPV, Spodoptera frugiperda cells (Sf cells), MG1 cells derived from the midgut of Trichoplusia ni, and High Five TM cells derived from Trichoplusia ni eggs. , cells derived from Mamestra brassicae, cells derived from Estigmena acrea, etc. are used.
  • Sf cells Spodoptera frugiperda cells
  • MG1 cells derived from the midgut of Trichoplusia ni
  • High Five TM cells derived from Trichoplusia ni eggs cells derived from Mamestra brassicae, cells derived from Estigmena acrea, etc. are used.
  • BmNPV silkworm-derived cell lines (Bombyx mori N cells; BmN cells) are used as the insect cells.
  • Sf cells used include Sf9 cells (ATCC CRL1711) and Sf21 cells (see Vaughn, JL et al
  • animal cells examples include monkey-derived cells (e.g. COS-1, COS-7, CV-1, Vero), hamster-derived cells (e.g. BHK, CHO, CHO-K1, CHO-dhfr - ), and mouse-derived cells.
  • cells e.g. NIH3T3, L, L929, CTLL-2, AtT-20
  • rat-derived cells e.g. H4IIE, PC-12, 3Y1, NBT-II
  • human-derived cells e.g. HEK293, A549, HeLa, HepG2, HL-60, Jurkat, U937), etc. are used.
  • plant cells for example, Arabidopsis-derived cells, poplar-derived cells, etc. are used.
  • Escherichia bacteria can be introduced, for example, according to the methods described in Proc. Natl. Acad. Sci. USA, 69, 2110 (1972) and Gene, 17, 107 (1982).
  • Bacillus bacteria can be introduced, for example, according to the method described in Molecular and General Genetics, 168, 111 (1979). If the host is Brevibacillus choshinensis HPD31, it can be introduced into Brevibacillus according to the Brevibacillus in vivo cloning method (BIC method).
  • Yeast can be introduced, for example, according to methods described in Methods in Enzymology, 194, 182-187 (1991), Proc. Natl.
  • Insect cells and insects can be introduced, for example, according to the method described in Bio/Technology, 6, 47-55 (1988).
  • Animal cells can be introduced, for example, according to the method described in Cell Engineering Special Issue 8, New Cell Engineering Experimental Protocols, 263-267 (1995) (published by Shujunsha), Virology, 52, 456 (1973).
  • Plant cells can be introduced, for example, according to the method described in Plant Cell Engineering, 2, 287 (1990).
  • the method for constructing a nucleic acid population of the present invention uses the repetitive base sequence and repeat number of the present invention.
  • a mixed population of nucleic acids with different nucleic acids can be constructed in a manner contained in a host cell.
  • the present invention also provides host cells containing the expression vectors of the present invention (host cells of the present invention).
  • host cells of the present invention In the host cell of the present invention, the type of host cell, etc. may be the same as defined in the method for constructing a nucleic acid population of the present invention.
  • the method for constructing a nucleic acid population of the present invention also involves culturing host cells capable of expressing a mixed population consisting of nucleic acids having different repeat base sequences and repeat numbers of the present invention, thereby mixing peptides encoded by the mixed population. Groups can be easily built. Therefore, the present invention also provides a method for constructing a mixed population consisting of peptides having different repeating amino acid sequences and repeat numbers (hereinafter referred to as the method for constructing a peptide population of the present invention).
  • the method for constructing a peptide population of the present invention includes the following steps. (a) Using a mixed population of circular single-stranded nucleic acids consisting of repeating base sequences in which at least one base differs from each other as a template, a mixed population of linear single-stranded nucleic acids corresponding to each circular single-stranded nucleic acid is prepared.
  • the repetitive base sequence is a base sequence encoding a repetitive amino acid sequence in which at least one amino acid residue differs from each other, and each linear single-stranded nucleic acid is complementary to each repetitive base sequence.
  • a step (step (a) of the present invention) comprising 2 or more consecutive nucleotide sequences and 300 or less repeats;
  • Steps (a) to (d) of the present invention included in the method for constructing a peptide population of the present invention are the same as steps (A) to (D) of the present invention included in the method for constructing a nucleic acid population of the present invention. It's fine.
  • the method for constructing a peptide population of the present invention includes the step of expressing the peptide by culturing the host cell (step (e) of the present invention).
  • Culturing of host cells can be carried out according to known methods depending on the type of host.
  • a liquid medium is preferably used as the culture medium.
  • the medium preferably contains carbon sources, nitrogen sources, inorganic substances, etc. necessary for the growth of host cells.
  • carbon sources include, for example, glucose, dextrin, soluble starch, and sucrose
  • nitrogen sources include, for example, ammonium salts, nitrates, corn steep liquor, peptone, casein, meat extract, soybean meal, Inorganic or organic substances such as potato extract
  • examples of inorganic substances include calcium chloride, sodium dihydrogen phosphate, magnesium chloride, etc.
  • yeast extract vitamins, growth promoting factors, etc. may be added to the medium.
  • the pH of the medium is preferably about 5-8.
  • M9 medium containing glucose and casamino acids is preferable.
  • a drug such as 3 ⁇ -indolyl acrylic acid may be added to the medium in order to make the promoter work efficiently.
  • Cultivation is usually carried out at about 15 to 43°C for about 3 to 24 hours. Aeration and stirring may be performed if necessary.
  • Culture of host cells where the host is a bacterium belonging to the genus Bacillus, is usually carried out at about 30 to 40°C for about 6 to 24 hours. Aeration and stirring may be performed if necessary.
  • Examples of the medium for culturing host cells in which the host is yeast include Burkholder's minimal medium and SD medium containing 0.5% casamino acids. The pH of the medium is preferably about 5-8. Cultivation is usually carried out at about 20°C to 35°C for about 24 to 72 hours. Aeration and stirring may be performed as necessary.
  • Grace's Insect Medium to which an additive such as inactivated 10% bovine serum is appropriately added is used.
  • the pH of the medium is preferably about 6.2-6.4. Cultivation is usually carried out at about 27°C for about 3 to 5 days. Aeration and stirring may be performed as necessary.
  • media for culturing animal host cells include minimal essential medium (MEM) containing about 5 to 20% fetal bovine serum, Dulbecco's modified Eagle's medium (DMEM), RPMI1640 medium, 199 medium, etc. is used.
  • the pH of the medium is preferably about 6-8. Cultivation is usually carried out at about 30°C to 40°C for about 15 to 60 hours. Aeration and stirring may be performed as necessary.
  • Examples of the medium for culturing host cells in which the host is a plant include MS medium.
  • the pH of the medium is preferably about 5-6. Cultivation is usually carried out at about 10°C to 25°C for about 5 to 50 days. Aeration and stirring may be performed as necessary.
  • a peptide can be produced intracellularly or extracellularly in a host cell
  • the peptide can be separated and purified according to a method known per se. For example, when extracting peptides from host cells, host cells collected from a culture using a known method are suspended in an appropriate buffer, disrupted by ultrasound, lysozyme, and/or freeze-thaw, and then centrifuged. A method of obtaining a crude extract of soluble peptides by separation or filtration may be used as appropriate.
  • the buffer may contain a protein denaturant such as urea or guanidine hydrochloride, or a surfactant such as Triton X-100 TM .
  • the culture supernatant is recovered from the culture by centrifugation, filtration, or the like.
  • the peptides contained in the soluble fraction or culture supernatant thus obtained can be isolated and purified according to methods known per se. Such methods include methods that utilize solubility such as salting out and solvent precipitation methods; methods that mainly utilize differences in molecular weight such as dialysis, ultrafiltration, gel filtration, and SDS-polyacrylamide gel electrophoresis.
  • the method for constructing a peptide population of the present invention can construct a mixed population consisting of peptides with different repeating amino acid sequences and repeat numbers. Therefore, the present invention also provides 2 or more and 300 or more types of peptides (the peptides of the present invention) that contain 1 or more and 300 or less consecutive repeats of a repetitive amino acid sequence and have different repeat numbers of the repetitive amino acid sequences. ) for each repetitive amino acid sequence, wherein the repetitive amino acid sequences are repetitive amino acid sequences in which at least one amino acid residue differs from each other. peptide population).
  • the type, length, etc. of the repetitive amino acid sequences may be the same as defined in the method for constructing the nucleic acid population of the present invention.
  • the peptide of the present invention refers to a peptide that contains each repeating amino acid sequence consecutively at least 1 repeat, but not more than 300 times, preferably not more than 150 times, and more preferably not more than 75 times, and the number of times each repetitive amino acid sequence is repeated is It refers to a group consisting of 2 or more types and 300 types or less, preferably 150 types or less, and more preferably 75 types or less of peptides that are different from each other.
  • Example 1 Preparation of a Brevibacillus library expressing peptides with repetitive amino acid sequences and different repeat numbers using transformation by homologous recombination
  • the process of constructing a mixed population consisting of nucleic acids with different repeat base sequences and repeat numbers is illustrated below. Shown in 1. Synthesis of circular single-stranded DNA with a mixed base introduced into a part of the base sequence Single- stranded DNA 1 (base sequence 1) with the 5' end phosphorylated and a part of the base mixed with a mixed base was produced by Eurofins Genomics Co., Ltd. Purchased from.
  • This nucleotide sequence 1 encodes an amino acid sequence 1 in which the 16th to 18th (underlined) nucleotide sequences are the first amino acids.
  • Circularization of single-stranded DNA 1 was performed using a general method using template DNA.
  • Primer 1 base sequence 2 having sequences complementary to both ends of base sequence 1 was used as a template.
  • 2 ⁇ L of 50 ⁇ M single-stranded DNA 1, 4 ⁇ L of 50 ⁇ M Primer 1, and 29 ⁇ L of sterile water were mixed, incubated at 95° C. for 2 minutes, and then left standing on ice.
  • 4 ⁇ L of T4 Ligase Buffer and 1 ⁇ L of T4 DNA Ligase were added, and the single-stranded DNA 1 was circularized by standing at 20° C. overnight.
  • Base sequence 2 ATGGTGGTGATGATG ATCGGATGGACGCCCTCCKYBCCCACCACC (SEQ ID NO: 3) (The base sequences that are complementary to both ends of base sequence 1 are underlined. For mixed base K, enter G or T, for mixed base Y, enter C or T, and for mixed base B, enter T or C or G.)
  • Isothermal amplification A reaction solution was prepared with the composition shown in Table 2 and incubated at 60°C for 6 hours to perform isothermal amplification.
  • the base sequence of primer 2 is base sequence 3.
  • the isothermal amplification product was purified using a Fastgene Gel/PCR extraction kit manufactured by Nippon Genetics Co., Ltd., and transformed into Brevibacillus using the Brevibacillus in vivo cloning method (BIC method).
  • BIC method Brevibacillus in vivo cloning method
  • a 15 base pair sequence homologous to both ends of a linear vector is added to both ends of the nucleic acid to be introduced, and a recombination reaction occurs within the bacterial cell, forming an expression vector.
  • a linear vector was prepared that had a base sequence encoding a Brevibacillus secretion signal on the start codon side and a base sequence encoding a His tag on the stop codon side.
  • nucleotide sequences homologous to the His tag end and the secretion signal end are added to the 5' ends of Primer 1 and Primer 2, respectively, and the corresponding nucleotide sequences are provided at both ends of the nucleic acid to be introduced (Fig. 3).
  • Example 2 Preparation of an E. coli library expressing peptides with different repetitive amino acid sequences and repeat numbers using in vitro seamless cloning
  • Preparation of pET22b linear vector Inverse PCR was performed using a Prime Star Max (manufactured by Takara Bio) reaction solution containing the pET22b vector purchased from Merck as a template, primer 3 with nucleotide sequence 4, and primer 4 with nucleotide sequence 5. Obtained vector.
  • MK is added to the N-terminus of the peptide, and the amino acid sequence ALTHHHHHH (SEQ ID NO: 5) is added to the C-terminus.
  • Base sequence 4 TTTCATATGTATATCTCCTTC (SEQ ID NO: 6) base sequence 5 GCATTAACTCATCATCACCACCACCACTGAGATC (SEQ ID NO: 7)
  • base sequence 6 ATGATGAGTTAATGC ATCGGATGGACGCCCTCCKYBCCCACCACC (SEQ ID NO: 8) (The base sequences complementary to both ends of base sequence 1 are underlined.)
  • Isothermal amplification A reaction solution was prepared with the composition shown in Table 4 and was incubated at 60° C. for 12 hours to perform isothermal amplification.
  • the base sequence of primer 6 is base sequence 7.
  • the developed colonies were analyzed by colony PCR, and a strain containing the introduced gene of about 1 kb was selected and inoculated into LB medium containing 100 ⁇ g/mL ampicillin. After culturing overnight at 37°C and 120 rpm, IPTG was added to a final concentration of 0.3 mM, the stirring speed was changed to 160 rpm, and the culture was continued for an additional 6 hours. For comparison, a sample cultured without adding IPTG was also prepared. 500 ⁇ L of the culture solution was centrifuged at 6,000 rpm for 5 minutes to collect bacterial cells.
  • the bacterial pellet was suspended in 250 ⁇ L of 50 mM phosphate buffer (pH 7.0), and the bacterial cells were disrupted by sonication. Centrifugation was performed at 15,000 G for 5 minutes, and 20 ⁇ L of the obtained supernatant and 5 ⁇ L of SDS-Buffer were mixed and denatured at 95°C for 5 minutes. 5 ⁇ L of marker (SIMASIMA Unstained Broad Range Protein Ladder manufactured by Cosmo Bio) and 10 ⁇ L of sample were applied to polyacrylamide gel and analyzed by electrophoresis. Using In Vision, which specifically stains His-tagged fusion proteins, stained bands were confirmed in all four selected strains ( Figure 5).
  • SIMASIMA Unstained Broad Range Protein Ladder manufactured by Cosmo Bio
  • libraries can be constructed using Escherichia coli, which is often used to prepare vectors for genetic recombination and genome editing, indicating that the library can be used for genetic recombination and genome editing in a variety of species.
  • Example 3 Preparation of an E. coli library expressing a peptide containing the repeated amino acid sequence RNXGXPXS (SEQ ID NO: 10) with different repeat numbers using in vitro seamless cloning Synthesis of circular single-stranded DNA with a mixed base introduced into a part of the base sequence Single-stranded DNA 2 (base sequence 8) with the 5' end phosphorylated and a part of the base mixed with a mixed base was produced by Eurofin Genomics Co., Ltd. Purchased from. This base sequence 8 encodes amino acid sequence 2.
  • Base sequence 8 AGTGCCACACTCCCGTAATGGTGGANTACCGNATAGCCGGAACGNCGGTNTTCCTNACTCGCGCAATGNTGGCNTCCCGNATTCTAGGAACGNTGG (SEQ ID NO: 11) (For 96 nt, mixed base N, enter either A, G, C or T.) Amino acid sequence 2 RNGG(X 1 )P(X 2 )SRN(X 3 )G(X 4 )P(X 5 )SRN(X 6 )G(X 7 )P(X 8 )SRN(X 9 )GVPHS (32 aa) (Sequence number 12) Amino acids listed in Table 5 may be included in X 1 to X 9 depending on the type of mixed base.
  • Base sequence 9 ATGATGAGTTAATGC GGAGTGTGGCACTCCANCGTTCCTAG (SEQ ID NO: 13) (The nucleotide sequences complementary to both ends of nucleotide sequence 8 are underlined.)
  • primer 8 is base sequence 10.
  • the bacterial pellet was suspended in 250 ⁇ L of 50 mM phosphate buffer (pH 7.0), and the bacterial cells were disrupted by sonication. Centrifugation was performed at 15,000 G for 5 minutes to obtain a soluble fraction. Further, the precipitate was dissolved in 250 ⁇ L of 4 M urea/Tris buffer (pH 8.0), centrifuged at 15,000 G for 5 min, and the supernatant was used as an insoluble fraction. 20 ⁇ L of sample and 5 ⁇ L of SDS-Buffer were mixed and denatured at 95°C for 5 minutes.
  • Hydropathy index was calculated using Kyte &Doolittle's value in Expasy's ProtScale. As a result of calculating the average of nine neighboring residues using a sequence repeated six times, it was found that peptides 4, 6, and 8, which were surprisingly abundant in the insoluble fraction, were relatively hydropathic in the entire amino acid sequence. index was low. This indicates that it is difficult to understand the function of peptides by predicting protein functions using conventional indicators, and in order to obtain peptides with the desired function, it is necessary to develop a peptide library and use evolutionary molecular engineering using it. It was suggested that the method was useful (Figure 11).
  • a peptide with the desired properties should be obtained.
  • insoluble and highly expressed peptides are useful as protein purification tags.
  • the purity of the insoluble peptides in the insoluble fractions obtained in No. 1 and No. 8 was 88% and 85%, and the purification of the protein as an insoluble tag was found. The possibility of its use has been shown.
  • Example 4 Analysis of repetitive sequence library using next-generation sequencer
  • Illumina amplicon sequence analysis was requested to Hokkaido System Science Co., Ltd. Samples were prepared as follows. Synthesis of circular single-stranded DNA with mixed bases introduced into part of the base sequence Single- stranded DNA 3 (base sequence 11) with the 5' end phosphorylated and mixed bases in part was produced by Eurofins Genomics Co., Ltd. Purchased from. This base sequence 11 encodes amino acid sequence 3.
  • Base sequence 12 Single-stranded DNA 3 was circularized using primer 9 (base sequence 12) having a base sequence complementary to both ends of base sequence 11 and T4 DNA ligase. It was purified using GenElute PCR Clean-up kit manufactured by Sigma-aldrich, dissolved in TE buffer, and then the concentration was measured.
  • base sequence 12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG ACCAGGAACACCAACACCAGGTAC (SEQ ID NO: 17) (The base sequences complementary to both ends of base sequence 11 are underlined.)
  • Isothermal amplification was performed using circular single-stranded DNA with base sequence 11 and primers 9 and 10.
  • the composition of the reaction solution was as shown in Table 6 except that the type of primer was changed. Incubated at 60°C for 12 hours.
  • the base sequence of primer 10 is base sequence 13.
  • Base sequence 13 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGT GTAGGTGTCCCAGGTGTCGG (SEQ ID NO: 18)
  • the repeat base sequence closest to the 5' end (primer 9 side) and the repeat base sequence closest to the 3' end (primer 10 side) were converted to amino acids, and the sequences and number of occurrences were calculated.
  • a group of repetitive sequences that differed only at the location where mixed bases were added (from X 1 to X 3 ) in the sequence of SEQ ID NO: 16 was obtained.
  • the top 100 sequences in number of occurrences are shown in Table 7. All theoretically possible combinations of 1,728 types of repetitive sequences were confirmed within the top 1,739 in number of occurrences. In addition, even the most frequently repeated sequences accounted for less than 0.9% of the library.
  • Example 5 Search for recombinant protein purification tags using repetitive sequence libraries
  • Elastin-like polypeptide [VGVPG] n , ELP
  • LCST critical solution temperature
  • ELP Elastin-like polypeptide
  • LCST critical solution temperature
  • GFP Green Fluorescent Protein
  • Isothermal amplification was performed using circular single-stranded DNA with base sequence 11 and primers 11 and 12.
  • the composition of the reaction solution was as shown in Table 6 except that the type of primer was changed. Incubated at 60°C for 12 hours.
  • the base sequences of primer 11 and primer 12 are base sequences 14 and 15.
  • base sequence 14 GATATACATATGAAA GTAGGTGTCCCAGGTGTCGG (SEQ ID NO: 119)
  • Centrifugation was performed at 3,000 rpm, 4°C, and 10 minutes to obtain a cell extract.
  • the fluorescence intensity of the cell extract was measured using EnSight manufactured by PerkinElmer (FIG. 15). Similar experiments were performed in triplicate wells. 80 ⁇ L of 5 M NaCl was added to 120 ⁇ L of cell extracts of transformants (colonies 1, 5, and 6) that showed fluorescence intensity comparable to or higher than that of PC, and the mixture was incubated at 37° C. for 15 minutes. Centrifugation was performed at 3,000 rpm, 25°C, and 30 minutes, and the supernatant was removed.
  • a mixed population consisting of nucleic acids having different repeat base sequences and repeat numbers can be easily constructed.
  • the repeating amino acid sequences have high homology, the amino acid sequence information of the peptide can be simplified, and when developing a new peptide with better functionality, the amino acid sequence information can be easily reflected in the design.
  • it does not require the use of restriction enzymes for gene synthesis or cloning, so it has the advantage of having a high degree of freedom in repeating amino acid sequences.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本発明は、以下の工程を含む、反復塩基配列および反復回数が互いに異なる核酸からなる混合集団の構築方法を提供する: (A)少なくとも1か所の塩基が互いに異なる反復塩基配列からなる各環状一本鎖核酸の混合集団を鋳型として、各環状一本鎖核酸に対応する各線状一本鎖核酸からなる混合集団を調製する工程であって、該各線状一本鎖核酸は各反復塩基配列に相補的な塩基配列を連続して2反復以上、300反復以下含む、工程、および (B)各線状一本鎖核酸の混合集団を鋳型として、各環状一本鎖核酸に対応する各二本鎖核酸集団からなる混合集団を調製する工程であって、該各二本鎖核酸集団は各反復塩基配列を連続して1反復以上、300反復以下含みかつ含まれる該各反復塩基配列の反復回数が互いに異なる、2種類以上、300種類以下の二本鎖核酸からなる、工程。

Description

反復塩基配列および反復回数が互いに異なる核酸からなる混合集団の構築方法
 本発明は、反復塩基配列および反復回数が互いに異なる核酸からなる混合集団または該混合集団によってコードされるペプチドからなる混合集団の構築方法に関する。
 特定のアミノ酸の並びが繰り返し現れるペプチドを人工的にデザインすることで環境応答性高分子や特殊ハイドロゲル、繊維素材などが開発されている。例えば、エラスチンの配列をベースにデザインされた[VPGXG]90(数字は反復回数、XにはV:G:Aが5:3:2の割合で入る。)は体温に近い転移温度の付近で急激に相転移を起こす環境応答性があり、薬剤放出や組換えタンパク質精製タグなどへの応用が試されている(特許文献1、非特許文献1)。また、クモ糸フィブロインの反復アミノ酸配列情報を改変して発酵生産法で強靭な繊維を作る取り組み(特許文献2)や、イカの歯に存在する反復アミノ酸配列情報を基にデザインした組換えタンパク質で自己修復性樹脂の研究開発(非特許文献2)なども進められている。さらに、高機能な細胞培養基材を目指し、高柔軟性発現部位、インテグリン結合サイト、マトリックスメタロプロテアーゼ認識サイト、ヘパリン結合サイトがタンデムに繋がった非常に長い単位が反復するペプチド(非特許文献3)も開発されている。
 しかしながら、人工的な反復アミノ酸配列を持つペプチドをコードする遺伝子の合成はプライマーや制限酵素の使用が制限されるために非常に手間がかかる。たとえ遺伝子を合成できたとしても宿主での発現が難しい場合も多く、さらにデザインされた反復アミノ酸配列が予想どおりの物性を示すとは限らないため、デザインと遺伝子合成を繰り返し行わなければならない。こうした問題の解決法として、反復アミノ酸配列の混合集団を構築して、適した選抜方法でその中から有用な配列を見出す進化分子工学的手法が開発(特許文献3)された。しかしながらこの手法には、1)反復塩基配列の延伸操作に制限酵素を使うため、使用する塩基配列情報が制限される、2)延伸操作が複雑であり、時間がかかる、3)反復単位毎にアミノ酸配列が違うため、機能に及ぼすアミノ酸の置換の影響の解明が困難であり、配列情報をデザインに反映しにくい、などの課題がある。
 同一のアミノ酸配列が繰り返し現れる反復アミノ酸配列を合成する手段としては、1種類の環状一本鎖DNAを鋳型にしてポリメラーゼ連鎖反応(PCR)を行う方法(非特許文献4)が知られている。しかしながら、この方法は、DNAポリメラーゼと鋳型が何度も着脱を繰り返すため、反復回数が異なる1種類の反復塩基配列で構成される混合集団を作ることができるが、反復塩基配列および反復回数が互いに異なる反復配列で構成される混合集団を作れない技術的欠点がある。
国際公開2016/081884号公報 国際公開2019/022163号公報 国際公開2002/020565号公報
Y. Fan el al., Polymers, 10, 468, 2018 H. Jung et al., PNAS, 113, 6478-6483, 2016 C. L. McGann et al., Macromolecules, 214, 203-213, 2013 M. Amiram et al., Nat. Mater., 10, 141-148, 2011
 本発明は、理想的な機能を示すペプチドをデザインするための新規なアプローチを提供することを目的としている。
 本発明者は、アミノ酸残基置換が生じたアミノ酸配列をコードするように核酸の一部を混合塩基を用いて合成した環状一本鎖DNAの混合集団を鋳型に鎖置換型DNAポリメラーゼを用いて等温増幅することで、反復塩基配列および反復回数が互いに異なる核酸からなる混合集団を簡便に構築でき、さらに該核酸を含む発現ベクターを宿主細胞に導入し、発現させることによって、反復アミノ酸配列および反復回数が互いに異なるペプチドからなる混合集団をも簡便に構築できることを見出し、以て本発明を完成するに至った。
 すなわち、本発明は、以下を提供する。
[1]以下の工程を含む、反復塩基配列および反復回数が互いに異なる核酸からなる混合集団の構築方法:
(A)少なくとも1か所の塩基が互いに異なる反復塩基配列からなる各環状一本鎖核酸の混合集団を鋳型として、各環状一本鎖核酸に対応する各線状一本鎖核酸からなる混合集団を調製する工程であって、該各線状一本鎖核酸は各反復塩基配列に相補的な塩基配列を連続して2反復以上、300反復以下含む、工程、および
(B)各線状一本鎖核酸の混合集団を鋳型として、各環状一本鎖核酸に対応する各二本鎖核酸集団からなる混合集団を調製する工程であって、該各二本鎖核酸集団は各反復塩基配列を連続して1反復以上、300反復以下含みかつ含まれる該各反復塩基配列の反復回数が互いに異なる、2種類以上、300種類以下の二本鎖核酸からなる、工程。
[2]前記各二本鎖核酸集団が、その両末端にベクターに組み込むためのクローニング用塩基配列がさらに付加されている、[1]に記載の方法。
[3]さらに以下の工程を含む、[1]または[2]に記載の方法:
(C)前記各二本鎖核酸集団からなる混合集団を発現ベクターに発現可能に組み込む工程、および
(D)該発現ベクターを宿主細胞に導入する工程。
[4]核酸が、DNAである、[1]~[3]のいずれか1つに記載の方法。
[5]工程(A)および工程(B)において、鎖置換型DNAポリメラーゼが用いられる、[4]に記載の方法。
[6]工程(A)および工程(B)が同時に行われる、[5]に記載の方法。
[7]工程(A)および工程(B)が等温条件下で行われ、該等温条件が50℃~68℃内の一定温度である、[6]に記載の方法。
[8]少なくとも1か所の塩基が互いに異なる反復塩基配列が、16種類以上10000種類以下である、[1]~[7]のいずれか1つに記載の方法。
[9]少なくとも1か所の塩基が互いに異なる反復塩基配列が、少なくとも1か所のアミノ酸残基が互いに異なる反復アミノ酸配列をコードする塩基配列である、[1]~[8]のいずれか1つに記載の方法。
[10]反復塩基配列を連続して1反復以上、300反復以下含みかつ含まれる該反復塩基配列の反復回数が互いに異なる、2種類以上、300種類以下の二本鎖核酸からなる二本鎖核酸集団を該反復塩基配列毎に含む、核酸の混合集団であって、該反復塩基配列は少なくとも1か所の塩基が互いに異なる反復塩基配列である、混合集団。
[11]前記二本鎖核酸集団が、その両末端にベクターに組み込むためのクローニング用塩基配列がさらに付加されている、[10]に記載の混合集団。
[12]核酸が、DNAである、[10]または[11]に記載の混合集団。
[13]少なくとも1か所の塩基が互いに異なる反復塩基配列が、16種類以上10000種類以下である、[10]~[12]のいずれか1つに記載の混合集団。
[14]少なくとも1か所の塩基が互いに異なる反復塩基配列が、少なくとも1か所のアミノ酸残基が互いに異なる反復アミノ酸配列をコードする塩基配列である、[10]~[13]のいずれか1つに記載の混合集団。
[15][10]~[14]のいずれか1つに記載の混合集団が発現可能に組み込まれた、発現ベクター。
[16][15]に記載の発現ベクターを含む、宿主細胞。
[17]以下の工程を含む、反復アミノ酸配列および反復回数が互いに異なるペプチドからなる混合集団の構築方法:
(a)少なくとも1か所の塩基が互いに異なる反復塩基配列からなる各環状一本鎖核酸の混合集団を鋳型として、各環状一本鎖核酸に対応する各線状一本鎖核酸からなる混合集団を調製する工程であって、該反復塩基配列は少なくとも1か所のアミノ酸残基が互いに異なる反復アミノ酸配列をコードする塩基配列であり、該各線状一本鎖核酸は各反復塩基配列に相補的な塩基配列を連続して2反復以上、300反復以下含む、工程、
(b)各線状一本鎖核酸の混合集団を鋳型として、各環状一本鎖核酸に対応する各二本鎖核酸集団からなる混合集団を調製する工程であって、該各二本鎖核酸集団は各反復塩基配列を連続して1反復以上、300反復以下含み、かつ互いに該各反復塩基配列の反復回数が異なる2種類以上、300種類以下の二本鎖核酸からなる、工程、
(c)前記各二本鎖核酸集団からなる混合集団を発現ベクターに発現可能に組み込む工程、
(d)該発現ベクターを宿主細胞に導入する工程、および
(e)該宿主細胞を培養することによってペプチドを発現させる工程。
[18]前記各二本鎖核酸集団が、その両末端にベクターに組み込むためのクローニング用塩基配列がさらに付加されている、[17]に記載の方法。
[19]核酸が、DNAである、[17]または[18]に記載の方法。
[20]工程(a)および工程(b)において、鎖置換型DNAポリメラーゼが用いられる、[19]に記載の方法。
[21]工程(a)および工程(b)が同時に行われる、[20]に記載の方法。
[22]工程(a)および工程(b)が等温条件下で行われ、該等温条件が50℃~68℃内の一定温度である、[21]に記載の方法。
[23]少なくとも1か所の塩基が互いに異なる反復塩基配列が、16種類以上10000種類以下である、[17]~[22]のいずれか1つに記載の方法。
[24]反復アミノ酸配列を連続して1反復以上、300反復以下含みかつ含まれる該反復アミノ酸配列の反復回数が互いに異なる、2種類以上、300種類以下のペプチドからなるペプチド集団を該反復アミノ酸配列毎に含む、ペプチドの混合集団であって、該反復アミノ酸配列は少なくとも1か所のアミノ酸残基が互いに異なる反復アミノ酸配列である、混合集団。
[25]少なくとも1か所のアミノ酸残基が互いに異なる反復アミノ酸配列が、2種類以上1000種類以下である、[24]に記載の混合集団。
 本発明によれば、アミノ酸残基置換が生じたアミノ酸配列をコードするように核酸の一部を混合塩基を用いて合成した環状一本鎖DNAの混合集団と鎖置換型DNAポリメラーゼを含んだ反応溶液を一定温度でインキュベートするだけで、反復塩基配列および反復回数が互いに異なる核酸からなる混合集団を構築することができる。また、反応の際に5’末端側にクローニング用塩基配列を持った2種類のプライマーを用いることで対応する塩基配列を有する発現ベクターに容易に該核酸を導入でき、ペプチドの発現試験、物性評価を迅速に行うことができる。また、ペプチドのアミノ酸配列情報を単純化(例えば[VPGXG]90の形で表記)でき、より優れた機能を持ったペプチドを新たに開発する際にそのアミノ酸配列情報を容易にデザインへ反映できる。さらに、遺伝子合成に制限酵素を使用せずに済むため、反復アミノ酸配列の自由度が高いという利点も有する。
反復塩基配列および反復回数が互いに異なる核酸からなる混合集団を調製する工程を示す図である。 等温増幅によって得られたDNA産物を示す図である。 Brevibacillus内で線状ベクターに相同組み換えで挿入された核酸(反復塩基配列が3回反復されている)の挿入部位の上流から下流の塩基配列を示す図である。囲み文字:分泌シグナルをコードする塩基配列。大文字:反復塩基配列(例:3回反復)。小文字:線状ベクター末端塩基配列。下線部位:クローニング用塩基配列。太文字:hisタグ配列をコードする塩基配列。 20個の形質転換体の培養上清が電気泳動されたポリアクリルアミドゲルのHisタグ融合タンパク質染色像を示す図である。 4個の形質転換体の培養上清が電気泳動されたポリアクリルアミドゲルのHisタグ融合タンパク質染色像を示す図である。無:IPTG無添加、有:0.3 mM IPTG 1、2、3または4番目の形質転換体によって発現されたペプチドの反復アミノ酸配列を示す図である。下線部は導入された混合塩基によって変化するアミノ酸残基を表す。なお、全てのペプチドで最初の反復アミノ酸配列と最後の反復アミノ酸配列はプライマー由来の混合塩基でアミノ酸が決定されるため省略した。 10個の形質転換体の可溶性画分と不溶性画分が電気泳動されたポリアクリルアミドゲルのHisタグ融合タンパク質染色像を示す図である。溶:可溶性画分、不:不溶性画分 His融合タンパク質の発現量を示す図である。 可溶性画分に含まれるHis融合タンパク質と不溶性画分に含まれるHis融合タンパク質の存在比を示す図である。 1、4、5、6、8または10番目の形質転換体によって発現されたペプチドの反復アミノ酸配列を示す図である。下線部は導入された混合塩基によって変化するアミノ酸残基を表す。なお、全てのペプチドで最初の反復アミノ酸配列と最後の反復アミノ酸配列はプライマー由来の混合塩基でアミノ酸が決定されるため省略した。 4、5、6、8または10番目の形質転換体によって発現されたペプチドのハイドロパシーインデックスを示す図である。 10個の形質転換体の可溶性画分と不溶性画分が電気泳動されたポリアクリルアミドゲルのCBB染色像を示す図である。 比較対象株ELPが発現する組換えタンパク質の塩基配列を塩基配列17として示す図である。 比較対象株ELPが発現する組換えタンパク質のアミノ酸配列をアミノ酸配列4として示す図である。 細胞抽出液の蛍光強度を示す図である。 精製GFP溶液の蛍光強度を示す図である。*:P<0.05; ****:P<0.0001 精製GFP溶液が電気泳動されたポリアクリルアミドゲルのCBB染色像を示す図である。 コロニー6の形質転換体によって発現されたペプチドの反復アミノ酸配列を示す図である。下線部は導入された混合塩基によって変化するアミノ酸残基を表す。
 本発明は、反復塩基配列および反復回数が互いに異なる核酸からなる混合集団の構築方法(以下、本発明の核酸集団の構築方法)を提供する。
 本発明の核酸集団の構築方法において、核酸は、DNA、RNAまたは修飾された核酸(RNA、DNA)であってよいが、好ましくはDNAである。修飾された核酸の具体例としては核酸の硫黄誘導体やチオホスフェート誘導体、そしてポリヌクレオシドアミドやオリゴヌクレオシドアミドの分解に抵抗性のものが挙げられるが、それに限定されるものではない。
 本発明の核酸集団の構築方法は、少なくとも1か所の塩基が互いに異なる反復塩基配列からなる各環状一本鎖核酸の混合集団を鋳型として、各環状一本鎖核酸に対応する各線状一本鎖核酸からなる混合集団を調製する工程であって、該各線状一本鎖核酸は各反復塩基配列に相補的な塩基配列を連続して2反復以上、300反復以下含む、工程(本発明の工程(A))を含む。
 本発明の工程(A)では、少なくとも1か所の塩基が互いに異なる反復塩基配列からなる各環状一本鎖核酸の混合集団が鋳型として用いられる(図1のStep 1)。
 本発明の工程(A)において反復塩基配列(本発明の反復塩基配列)は、本発明の核酸集団の構築方法において構築される混合集団を構成する各環状一本鎖核酸に反復して含まれる塩基配列をいう。本発明の各反復塩基配列は、少なくとも1か所の塩基が互いに異なるものであればその種類は特に制限されないが、通常、4種類以上、好ましくは、16種類以上、より好ましくは、64種類以上であり、通常、10000種類以下、好ましくは、1000種類以下、より好ましくは、100種類以下である。本発明の反復塩基配列の長さの範囲は、通常、約15bp~約500bp、好ましくは、約30bp~約350bp、より好ましくは、約45bp~約160bpである。また、本発明の反復塩基配列の配列情報は、少なくとも1か所の塩基が互いに異なる塩基配列であれば特に制限されないが、少なくとも1か所のアミノ酸残基が互いに異なる反復アミノ酸配列(本発明の反復アミノ酸配列)をコードする塩基配列であることが好ましい。
 本発明の各反復アミノ酸配列は、少なくとも1か所のアミノ酸残基が互いに異なるものであればその種類は特に制限されないが、通常、2種類以上、好ましくは、5種類以上、より好ましくは、10種類以上であり、通常、1000種類以下、好ましくは、300種類以下、より好ましくは、100種類以下である。本発明の反復アミノ酸配列の長さの範囲は、通常、約5個~約165個、好ましくは、約10個~約115個、より好ましくは、約15個~約55個である。
 本発明の反復アミノ酸配列としては、例えば、機能未知のペプチド、または機能の向上もしくは喪失を求められるペプチドなどが挙げられる。ペプチドの機能としては、特に制限されるものではないが、例えば、酵素活性、タンパク質結合活性、核酸結合活性などが挙げられる。
 本発明の工程(A)において各環状一本鎖核酸(本発明の環状一本鎖核酸)は、上記の各反復塩基配列からなる。本発明の環状一本鎖核酸は、本分野における公知の手段に従って作製することができる。そのような手段の一例としては、例えば、以下のような方法が挙げられる。
 まず、5’末端がリン酸基で修飾された、本発明の反復塩基配列からなる線状一本鎖核酸を調製する。次に、該線状一本鎖核酸を環状構造にした際に生じる5’末端と3’末端の連結部位を中心として形成される約20bp~約40bpの塩基配列に相補的な塩基配列からなる一本鎖核酸(プライマーA)を合成する。さらに、該一本鎖核酸に該線状一本鎖核酸をアニーリングさせることによって、該線状一本鎖核酸に環状構造を形成させ、リガーゼを用いて、該線状一本鎖核酸の5’末端と3’末端を連結する。プライマーAが本発明の環状一本鎖核酸(または線状一本鎖核酸)にアニーリングする温度は、プライマーAの塩基配列によって決定されるが、通常、約4℃~約75℃、好ましくは、約4℃~約55℃、より好ましくは、約4℃~約20℃が挙げられる。以上の通りにして、本発明の環状一本鎖核酸は、反復塩基配列ごとに作製され、混合集団(本発明の環状一本鎖核酸からなる混合集団)を構成する(図1のStep 2)。
 本発明の工程(A)において本発明の環状一本鎖核酸を作製する際に使用されるプライマーAは、5’側末端にベクターに組み込むためのクローニング用塩基配列がさらに付加されていてもよい。付加される塩基配列の長さはクローニングに適した長さであれば特に制限されるものではないが、例えば、約5bp~約50bp、好ましくは、約7bp~約20bp、より好ましくは、約12bp~約17bpが挙げられる。
 本発明の工程(A)では、以上の通りにして得られる本発明の環状一本鎖核酸からなる混合集団を鋳型として、各環状一本鎖核酸に対応する各線状一本鎖核酸からなる混合集団(本発明の線状一本鎖核酸からなる混合集団)を調製する。本発明の環状一本鎖核酸に対応する線状一本鎖核酸(本発明の線状一本鎖核酸)とは、各反復塩基配列に相補的な塩基配列を連続して2反復以上、300反復以下、好ましくは、150反復以下、より好ましくは、75反復以下含む線状一本鎖核酸をいう。本発明の環状一本鎖核酸を鋳型として本発明の線状一本鎖核酸を合成する過程において、既に合成された線状一本鎖核酸と環状一本鎖核酸間の水素結合を5'→3'へ解離させつつ、新たな相補的核酸を5'→3'へ合成することができるポリメラーゼを使用することによって、反応温度を変化させることなく本発明の反復塩基配列を連続して2反復以上含むように線状一本鎖核酸を伸長することができる(図1のStep 3の1、2)。そのような方法としては、本発明の環状一本鎖核酸を鋳型とした鎖置換型DNAポリメラーゼを用いた核酸合成方法が挙げられる。
 本発明の工程(A)における鎖置換型DNAポリメラーゼを用いた核酸合成方法は、公知のプロトコールに従って実施することができる。例えば、本発明の環状一本鎖核酸からなる混合集団、鎖置換型DNAポリメラーゼ、dNTPsおよびプライマーAを含む混合液を等温条件下、所望の時間、反応させることによって各線状一本鎖核酸を合成することができる。鎖置換型DNAポリメラーゼは、5'→3'ポリメラーゼ活性および鎖置換活性を有する限り特に制限されるものではないが、例えば、Bst DNAポリメラーゼ、φ29 DNAポリメラーゼ、Csa DNAポリメラーゼ、96-7 DNAポリメラーゼおよびSD DNAポリメラーゼなどが挙げられる。等温条件としては、プライマーAが本発明の環状一本鎖核酸にアニーリングし、鎖置換型DNAポリメラーゼが5'→3'ポリメラーゼ活性および鎖置換活性を発揮できる限り制限されるものではないが、例えば、約25℃~約72℃、好ましくは、約50℃~約68℃、より好ましくは、約55℃~約65℃などに含まれる一定温度が挙げられる。また、等温遺伝子増幅法の反応時間は、各反復塩基配列に相補的な塩基配列を連続して2反復以上、300反復以下含む線状一本鎖核酸を合成できるかぎり特に制限されないが、例えば、約0.001時間~約8時間、好ましくは、約0.01時間~約4時間、特に好ましくは、約0.05時間~約2時間などが挙げられる。
 本発明の核酸集団の構築方法は、各線状一本鎖核酸の混合集団を鋳型として、各環状一本鎖核酸に対応する各二本鎖核酸集団からなる混合集団を調製する工程であって、該各二本鎖核酸集団は各反復塩基配列を連続して1反復以上、300反復以下含みかつ含まれる該各反復塩基配列の反復回数が互いに異なる、2種類以上、300種類以下の二本鎖核酸からなる、工程(本発明の工程(B))を含む。
 本発明の工程(B)では、本発明の工程(A)で調製された、本発明の線状一本鎖核酸からなる混合集団を鋳型として、各環状一本鎖核酸に対応する各二本鎖核酸集団からなる混合集団(本発明の反復塩基配列および反復回数が互いに異なる核酸からなる混合集団)を調製する。本発明の環状一本鎖核酸に対応する二本鎖核酸集団(本発明の二本鎖核酸集団)とは、各反復塩基配列を連続して1反復以上、300反復以下、好ましくは、150反復以下、より好ましくは、75反復以下含みかつ含まれる該各反復塩基配列の反復回数が互いに異なる、2種類以上、300種類以下、好ましくは、150種類以下、より好ましくは、75種類以下の二本鎖核酸からなる集団をいう。本発明の線状一本鎖核酸を鋳型として本発明の二本鎖核酸集団を合成する過程において、鋳型となる本発明の線状一本鎖核酸と既に合成された相補的核酸間の水素結合を5'→3'へ解離させつつ、新たな相補的核酸を5'→3'へ合成することができるポリメラーゼを使用することによって、反応温度を変化させることなく本発明の反復塩基配列を連続して1反復以上、300反復以下含みかつ含まれる該各反復塩基配列の反復回数が互いに異なる、2種類以上、300種類以下の相補的線状一本鎖核酸を伸長することができる。2種類以上、300種類以下の該相補的線状一本鎖核酸は環状一本鎖核酸ごとに合成され、2種類以上、300種類以下の相補的線状一本鎖核酸を環状一本鎖核酸ごとに含む混合集団を構成する(図1のStep 3の3、4)。そして、該混合集団をさらなる鋳型として、本発明の反復塩基配列および反復回数が互いに異なる核酸からなる混合集団が合成される(図1のStep 3の5)。そのような方法としては、本発明の線状一本鎖核酸を鋳型とした鎖置換型DNAポリメラーゼを用いた核酸合成方法が挙げられる。
 本発明の工程(B)における鎖置換型DNAポリメラーゼを用いた核酸合成方法は、本発明の工程(A)と同様に公知の手段に従って実施することができるが、例えば、本発明の線状一本鎖核酸からなる混合集団、鎖置換型DNAポリメラーゼ、dNTPs、プライマーAおよび本発明の線状一本鎖核酸の塩基配列に相補的な塩基配列からなる一本鎖核酸(プライマーB)を含む混合液を等温条件下、所望の時間、反応させることによって本発明の二本鎖核酸集団を調製することができる。鎖置換型DNAポリメラーゼは、5'→3'ポリメラーゼ活性および鎖置換活性を有する限り特に制限されるものではないが、例えば、Bst DNAポリメラーゼ、φ29 DNAポリメラーゼ、Csa DNAポリメラーゼ、96-7 DNAポリメラーゼおよびSD DNAポリメラーゼなどが挙げられる。等温条件としては、鎖置換型DNAポリメラーゼが5'→3'ポリメラーゼ活性および鎖置換活性を発揮できる限り制限されるものではないが、例えば、約25℃~約72℃、好ましくは、約50℃~約68℃、より好ましくは、約55℃~約65℃などに含まれる一定温度が挙げられる。また、等温遺伝子増幅法の反応時間は、各反復塩基配列を連続して1反復以上、300反復以下含みかつ含まれる該各反復塩基配列の反復回数が互いに異なる、2種類以上、300種類以下の二本鎖核酸を合成できるかぎり特に制限されないが、例えば、約0.5時間~約5時間、好ましくは、約1時間~約4時間、特に好ましくは、約2時間~約3時間などが挙げられる。また、後述する工程(C)において、発現ベクターに発現可能に組み込むための二本鎖核酸の十分な分子数を確保することを考慮した場合、等温遺伝子増幅法の反応時間は、約0.5時間~約48時間、好ましくは、約3時間~約24時間、特に好ましくは、約6時間~約12時間などが挙げられる。
 本発明の工程(B)において本発明の反復塩基配列および反復回数が互いに異なる核酸からなる混合集団を作製する際に使用されるプライマーBは、さらに5’側末端にベクターに組み込むためのクローニング用塩基配列がさらに付加されていてもよい。付加される塩基配列の長さはクローニングに適した長さであれば特に制限されるものではないが、例えば、約5bp~約50bp、好ましくは、約7bp~約20bp、特に好ましくは、約12bp~約17bpが挙げられる。
 本発明の核酸集団の構築方法の本発明の工程(A)および工程(B)は、工程(A)、工程(B)の順に連続的に実施されてもよいし、同時に実施されてもよい。工程(A)、工程(B)の順に実施される場合、工程(A)で調製された、本発明の線状一本鎖核酸からなる混合集団をそのまま工程(B)で用いてもよいし、公知の手段(例:エタノール沈殿法)を用いて予め精製したのち、工程(B)で用いてもよい。本発明の工程(A)および工程(B)において、同一の鎖置換型DNAポリメラーゼが使用される場合、本発明の工程(A)および工程(B)は同時に行われてもよい。その場合、本発明の工程(A)および工程(B)においては、共通の等温条件、共通の反応時間の下、共通のプライマーAが使用される。共通の等温条件としては、例えば、約25℃~約72℃、好ましくは、約50℃~約68℃、より好ましくは、約55℃~約65℃などに含まれる一定温度が挙げられる。共通の反応時間としては、各反復塩基配列を連続して1反復以上、300反復以下含みかつ含まれる該各反復塩基配列の反復回数が互いに異なる、2種類以上、300種類以下の二本鎖核酸を合成できる時間として、例えば、約0.5時間~約5時間、好ましくは、約1時間~約4時間、特に好ましくは、約2時間~約3時間などが挙げられ、発現ベクターに発現可能に組み込むための二本鎖核酸の十分な分子数を確保することを考慮した場合、約0.5時間~約48時間、好ましくは、約3時間~約24時間、特に好ましくは、約6時間~約12時間などが挙げられる。工程(B)では、工程(A)で調製される本発明の線状一本鎖核酸が鋳型として利用されるため、工程(A)と工程(B)が同時に開始され、同時に終了する場合、工程(B)の反応開始は工程(A)より僅かに遅れる。結果として、工程(B)で調製される二本鎖核酸の反復塩基配列の反復回数は、本発明の線状一本鎖核酸よりも減少し、それに伴い得られる種類も減少する。従って、本発明の工程(A)および工程(B)が同時に行われる場合、本発明の二本鎖核酸集団は、各反復塩基配列を連続して1反復以上、200反復以下、好ましくは、120反復以下、より好ましくは、60反復以下含みかつ含まれる該各反復塩基配列の反復回数が互いに異なる、2種類以上、200種類以下、好ましくは、120種類以下、より好ましくは、60種類以下の二本鎖核酸からなる集団である。また、本発明の工程(A)および工程(B)において使用される、プライマーAおよびプライマーBが、それぞれの5’側末端にベクターに組み込むためのクローニング用塩基配列がさらに付加されている場合、本発明の二本鎖核酸集団は、その両末端にベクターに組み込むためのクローニング用塩基配列がさらに付加されている。
 以上の通りにして、本発明の工程(A)および工程(B)を含む、本発明の核酸集団の構築方法は、本発明の反復塩基配列および反復回数が互いに異なる核酸からなる混合集団を構築することができる。従って、本発明はまた、反復塩基配列を連続して1反復以上、300反復以下含みかつ含まれる該反復塩基配列の反復回数が互いに異なる、2種類以上、300種類以下の二本鎖核酸からなる二本鎖核酸集団を該反復塩基配列毎に含む、核酸の混合集団であって、該反復塩基配列は少なくとも1か所の塩基が互いに異なる反復塩基配列である、混合集団(本発明の核酸集団)を提供する。本発明の核酸集団において、核酸の種類、反復塩基配列の種類、長さ、二本鎖核酸に含まれる反復塩基配列の反復回数、二本鎖核酸の種類、二本鎖核酸に付加される両末端のクローニング用塩基配列などは、本発明の核酸集団の構築方法における定義と同一であってよい。
 本発明の核酸集団の構築方法は、前記各二本鎖核酸集団からなる混合集団を発現ベクターに発現可能に組み込む工程(本発明の工程(C))をさらに含んでもよい。
 本発明の工程(C)は、例えば、本発明の反復塩基配列および反復回数が互いに異なる核酸からなる混合集団を適当な発現ベクター中のプロモーターの下流に連結することにより実施することができる。例えば、発現ベクターが、プライマーAおよびプライマーBの5’側末端にそれぞれ付加された、ベクターに組み込むためのクローニング用塩基配列を、発現ベクターの挿入部位の5’側および3’側に有する場合、該塩基配列を介した相同組み換えによって、本発明の反復塩基配列および反復回数が互いに異なる核酸からなる混合集団を発現ベクターに発現可能に組み込むことができる(図1のStep 4)。
 また、上記の混合集団に含まれる核酸の反復回数を後から所望の範囲に限定し、当該範囲の反復回数を有する核酸からなる混合集団のみを上記の発現ベクターに組み込むことも可能である。核酸の反復回数の範囲を後から限定する方法としては、分子量の違いに基づいて分子を分離する方法が挙げられる。そのような方法としては、アガロースゲル電気泳動法、アクリルアミドゲル電気泳動法およびゲルろ過法などが挙げられる。例えば、アガロースゲル電気泳動法の場合、反復塩基配列の長さと反復回数の所望の範囲から単離したい核酸の塩基長の範囲を計算し、当該塩基長の範囲をよく分離することができる濃度のアガロースゲルを作製する。作製したアガロースゲルで上記の混合集団に含まれる核酸全てを電気泳動によって分離し、所望の範囲の反復回数を有する核酸のみを含むアガロースゲルを切り出し、当該核酸を抽出することができる。
 発現ベクターとしては、エシェリヒア属菌用発現プラスミド(例、pBR322、pBR325、pUC12、pUC13、pET22b);バチルス属菌用発現プラスミド(例、pUB110、pTP5、pC194);酵母用発現プラスミド(例、pSH19、pSH15);昆虫細胞用発現プラスミド(例:pFast-Bac);動物細胞用発現プラスミド(例:pA1-11、pXT1、pRc/CMV、pRc/RSV、pcDNAI/Neo);λファージなどのバクテリオファージ;バキュロウイルスなどの昆虫ウイルスベクター(例:BmNPV、AcNPV);レトロウイルス、ワクシニアウイルス、アデノウイルスなどの動物ウイルスベクター;Tiプラスミドなどの植物細胞用プラスミドなどが用いられる。
 プロモーターとしては、核酸の発現に用いる宿主に対応して適切なプロモーターであればいかなるものでもよい。例えば、宿主が動物細胞である場合、サイトメガロウイルス(CMV)由来プロモーター(例:CMV前初期プロモーター)、ヒト免疫不全ウイルス(HIV)由来プロモーター(例:HIV LTR)、ラウス肉腫ウイルス(RSV)由来プロモーター(例:RSV LTR)、マウス乳癌ウイルス(MMTV)由来プロモーター(例:MMTV LTR)、モロニーマウス白血病ウイルス(MoMLV)由来プロモーター(例:MMTV LTR)、単純ヘルペスウイルス(HSV)由来プロモーター(例:HSVチミジンキナーゼ(TK)プロモーター)、SV40由来プロモーター(例:SV40初期プロモーター)、エプスタインバーウイルス(EBV)由来プロモーター、アデノ随伴ウイルス(AAV)由来プロモーター(例:AAV p5プロモーター)、アデノウイルス(AdV)由来プロモーター(Ad2またはAd5主要後期プロモーター)などが用いられる。宿主がエシェリヒア属菌である場合、trpプロモーター、lacプロモーター、recAプロモーター、λPLプロモーター、lppプロモーター、T7プロモーターなどが好ましい。宿主がバチルス属菌である場合、SPO1プロモーター、SPO2プロモーター、penPプロモーターなどが好ましい。宿主が酵母である場合、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーターなどが好ましい。宿主が昆虫細胞である場合、ポリヘドリンプロモーター、P10プロモーターなどが好ましい。
 発現ベクターとしては、上記の他に、所望によりエンハンサー、ポリA付加シグナル、選択マーカー、SV40複製起点などを含有しているものを用いることができる。選択マーカーとしては、例えば、ジヒドロ葉酸還元酵素(dhfr)遺伝子[メソトレキセート(MTX)耐性]、アンピシリン耐性(Ampr)遺伝子、ネオマイシン耐性(Neor)遺伝子(G418耐性)等が挙げられる。特に、dhfr遺伝子欠損チャイニーズハムスター(CHO-dhfr-)細胞を用い、dhfr遺伝子を選択マーカーとして使用する場合、発現ベクターが導入されたCHO-dhfr-をチミジンを含まない培地によって選択することもできる。
 発現ベクターは、必要に応じて、宿主に合ったシグナル配列をコードする塩基配列(シグナルコドン)を、組み込まれる核酸の5’末端側に付加してもよい。宿主がエシェリヒア属菌である場合、PhoAシグナル配列、OmpAシグナル配列などが、宿主がバチルス属菌である場合、α-アミラーゼシグナル配列、サブチリシンシグナル配列などが、宿主が酵母である場合、MFαシグナル配列、SUC2シグナル配列などが、宿主が動物細胞である場合、インシュリンシグナル配列、α-インターフェロンシグナル配列、抗体分子シグナル配列などがそれぞれ用いられる。
 以上の通りにして、本発明の工程(A)、工程(B)および工程(C)を含む、本発明の核酸集団の構築方法は、本発明の反復塩基配列および反復回数が互いに異なる核酸からなる混合集団を発現ベクターに発現可能に組み込まれた態様で構築することができる。従って、本発明はまた、本発明の核酸集団が発現可能に組み込まれた、発現ベクター(本発明の発現ベクター)を提供する。本発明の発現ベクターにおいて、発現ベクターの種類などは、本発明の核酸集団の構築方法における定義と同一であってよい。
 本発明の核酸集団の構築方法は、発現ベクターを宿主細胞に導入する工程(本発明の工程(D))をさらに含んでもよい。
 宿主としては、例えば、エシェリヒア属菌、バチルス属菌、酵母、昆虫細胞、昆虫、動物細胞、植物細胞などが用いられる。エシェリヒア属菌としては、例えば、エシェリヒア・コリ(Escherichia coli)K12、DH1、JM103、JA221、HB101、C600などが用いられる。バチルス属菌としては、例えば、バチルス・サブチルス(Bacillus subtilis)MI114、207-21、バチルス・ブレビス(Bacillus brevis)HPD31などが用いられる。酵母としては、例えば、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)AH22、AH22R-、NA87-11A、DKD-5D、20B-12、シゾサッカロマイセス・ポンベ(Schizosaccharomyces pombe)NCYC1913、NCYC2036、ピキア・パストリス(Pichia pastoris)KM71などが用いられる。
 昆虫細胞としては、例えば、ウイルスがAcNPVの場合、夜盗蛾の幼虫由来株化細胞(Spodoptera frugiperda cell;Sf細胞)、Trichoplusia niの中腸由来のMG1細胞、Trichoplusia niの卵由来のHigh FiveTM細胞、Mamestra brassicae由来の細胞、Estigmena acrea由来の細胞などが用いられる。ウイルスがBmNPVの場合、昆虫細胞としては、蚕由来株化細胞(Bombyx mori N 細胞;BmN細胞)などが用いられる。該Sf細胞としては、例えば、Sf9細胞(ATCC CRL1711)、Sf21細胞(以上、Vaughn, J.L.ら、イン・ヴィボ(In Vivo), 13, 213-217 (1977))などが用いられる。昆虫としては、例えば、カイコの幼虫などが用いられる。
 動物細胞としては、例えば、サル由来細胞(例:COS-1、COS-7、CV-1、Vero)、ハムスター由来細胞(例:BHK、CHO、CHO-K1、CHO-dhfr-)、マウス由来細胞(例:NIH3T3、L、L929、CTLL-2、AtT-20)、ラット由来細胞(例:H4IIE、PC-12、3Y1、NBT-II)、ヒト由来細胞(例:HEK293、A549、HeLa、HepG2、HL-60、Jurkat、U937)などが用いられる。
 植物細胞としては、例えば、シロイヌナズナ由来細胞、ポプラ由来細胞などが用いられる。
 宿主細胞への導入は、宿主の種類に応じ、公知の方法に従って実施することができる。エシェリヒア属菌は、例えば、Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)やGene, 17, 107 (1982)などに記載の方法に従って導入することができる。バチルス属菌は、例えば、Molecular and General Genetics, 168, 111 (1979)などに記載の方法に従って導入することができる。宿主がブレビバチルス・ チョウシネンシス(Brevibacillus choshinensis)HPD31である場合は、Brevibacillus in vivo Cloning法(BIC法)に従って、Brevibacillusに導入することができる。酵母は、例えば、Methods in Enzymology, 194, 182-187 (1991)、Proc. Natl. Acad. Sci. USA, 75, 1929 (1978)などに記載の方法に従って導入することができる。昆虫細胞および昆虫は、例えば、Bio/Technology, 6, 47-55 (1988)などに記載の方法に従って導入することができる。動物細胞は、例えば、細胞工学別冊8 新細胞工学実験プロトコール, 263-267 (1995)(秀潤社発行)、Virology, 52, 456(1973)に記載の方法に従って導入することができる。植物細胞は、例えば、植物細胞工学, 2, 287 (1990)に記載の方法に従って、導入することができる。
 以上の通りにして、本発明の工程(A)、工程(B)、工程(C)および工程(D)を含む、本発明の核酸集団の構築方法は、本発明の反復塩基配列および反復回数が互いに異なる核酸からなる混合集団を宿主細胞に含まれた態様で構築することができる。従って、本発明はまた、本発明の発現ベクターを含む宿主細胞(本発明の宿主細胞)を提供する。本発明の宿主細胞において、宿主細胞の種類などは、本発明の核酸集団の構築方法における定義と同一であってよい。
 本発明の核酸集団の構築方法はまた、本発明の反復塩基配列および反復回数が互いに異なる核酸からなる混合集団を発現可能な宿主細胞を培養することによって、当該混合集団によってコードされるペプチドの混合集団を容易に構築することができる。従って、本発明はまた、反復アミノ酸配列および反復回数が互いに異なるペプチドからなる混合集団の構築方法(以下、本発明のペプチド集団の構築方法)を提供する。
 本発明のペプチド集団の構築方法は、以下の工程を含む。
(a)少なくとも1か所の塩基が互いに異なる反復塩基配列からなる各環状一本鎖核酸の混合集団を鋳型として、各環状一本鎖核酸に対応する各線状一本鎖核酸からなる混合集団を調製する工程であって、該反復塩基配列は少なくとも1か所のアミノ酸残基が互いに異なる反復アミノ酸配列をコードする塩基配列であり、該各線状一本鎖核酸は各反復塩基配列に相補的な塩基配列を連続して2反復以上、300反復以下含む、工程(本発明の工程(a))、
(b)各線状一本鎖核酸の混合集団を鋳型として、各環状一本鎖核酸に対応する各二本鎖核酸集団からなる混合集団を調製する工程であって、該各二本鎖核酸集団は各反復塩基配列を連続して1反復以上、300反復以下含み、かつ互いに該各反復塩基配列の反復回数が異なる2種類以上、300種類以下の二本鎖核酸からなる、工程(本発明の工程(b))、
(c)前記各二本鎖核酸集団からなる混合集団を発現ベクターに発現可能に組み込む工程(本発明の工程(c))、および
(d)該発現ベクターを宿主細胞に導入する工程(本発明の工程(d))。
 本発明のペプチド集団の構築方法に含まれる本発明の工程(a)~(d)は、本発明の核酸集団の構築方法に含まれる本発明の工程(A)~(D)と同一であってよい。
 本発明のペプチド集団の構築方法は、該宿主細胞を培養することによってペプチドを発現させる工程(本発明の工程(e))を含む。
 宿主細胞の培養は、宿主の種類に応じ、公知の方法に従って実施することができる。例えば、宿主がエシェリヒア属菌またはバチルス属菌である宿主細胞を培養する場合、培養に使用される培地としては液体培地が好ましい。また、培地は、宿主細胞の生育に必要な炭素源、窒素源、無機物などを含有することが好ましい。ここで、炭素源としては、例えば、グルコース、デキストリン、可溶性澱粉、ショ糖などが;窒素源としては、例えば、アンモニウム塩類、硝酸塩類、コーンスチープ・リカー、ペプトン、カゼイン、肉エキス、大豆粕、バレイショ抽出液などの無機または有機物質が;無機物としては、例えば、塩化カルシウム、リン酸二水素ナトリウム、塩化マグネシウムなどがそれぞれ挙げられる。また、培地には、酵母エキス、ビタミン類、生長促進因子などを添加してもよい。培地のpHは、好ましくは約5~8である。宿主がエシェリヒア属菌である宿主細胞を培養する場合の培地としては、例えば、グルコース、カザミノ酸を含むM9培地が好ましい。必要により、プロモーターを効率よく働かせるために、例えば、3β-インドリルアクリル酸のような薬剤を培地に添加してもよい。培養は、通常約15~43℃で、約3~24時間行なわれる。必要により、通気や撹拌を行ってもよい。宿主がバチルス属菌である宿主細胞の培養は、通常約30~40℃で、約6~24時間行なわれる。必要により、通気や撹拌を行ってもよい。宿主が酵母である宿主細胞を培養する場合の培地としては、例えば、バークホールダー(Burkholder)最小培地や0.5% カザミノ酸を含有するSD培地などが挙げられる。培地のpHは、好ましくは約5~8である。培養は、通常約20℃~35℃で、約24~72時間行なわれる。必要に応じて、通気や撹拌を行ってもよい。宿主が昆虫である宿主細胞を培養する場合の培地としては、例えばGrace's Insect Mediumに非働化した10% ウシ血清等の添加物を適宜加えたものなどが用いられる。培地のpHは、好ましくは約6.2~6.4である。培養は、通常約27℃で、約3~5日間行なわれる。必要に応じて通気や撹拌を行ってもよい。宿主が動物である宿主細胞を培養する場合の培地としては、例えば、約5~20%の胎児牛血清を含む最小必須培地(MEM)、ダルベッコ改変イーグル培地(DMEM)、RPMI1640培地、199培地などが用いられる。培地のpHは、好ましくは約6~8である。培養は、通常約30℃~40℃で、約15~60時間行なわれる。必要に応じて通気や撹拌を行ってもよい。宿主が植物である宿主細胞を培養する場合の培地としては、例えば、MS培地などが挙げられる。培地のpHは、好ましくは約5~6である。培養は、通常約10℃~25℃で、約5~50日間行なわれる。必要に応じて通気や撹拌を行ってもよい。以上のようにして、宿主細胞の細胞内または細胞外にペプチドを生成させることができる。
 前記宿主細胞を培養して得られる培養物から、ペプチドを自体公知の方法に従って分離精製することができる。例えば、ペプチドを宿主細胞から抽出する場合、培養物から公知の方法で集めた宿主細胞を適当な緩衝液に懸濁し、超音波、リゾチームおよび/または凍結融解などによって宿主細胞を破壊した後、遠心分離やろ過により可溶性ペプチドの粗抽出液を得る方法などが適宜用いられる。該緩衝液は、尿素や塩酸グアニジンなどのタンパク質変性剤や、トリトンX-100TMなどの界面活性剤を含んでいてもよい。一方、ペプチドが細胞外に分泌される場合は、培養物から遠心分離または濾過等により培養上清を回収する。このようにして得られた可溶性画分もしくは培養上清中に含まれるペプチドの単離精製は、自体公知の方法に従って行うことができる。このような方法としては、塩析や溶媒沈澱法などの溶解度を利用する方法;透析法、限外ろ過法、ゲルろ過法、およびSDS-ポリアクリルアミドゲル電気泳動法などの主として分子量の差を利用する方法;イオン交換クロマトグラフィーなどの荷電の差を利用する方法;アフィニティークロマトグラフィーなどの特異的親和性を利用する方法;逆相高速液体クロマトグラフィーなどの疎水性の差を利用する方法;等電点電気泳動法などの等電点の差を利用する方法;などが用いられる。これらの方法は、適宜組み合わせることもできる。かくして得られるペプチドの存在は、特異的な抗体を用いたエンザイムイムノアッセイやウエスタンブロッティングなどにより確認することができる。
 以上の通りにして、本発明のペプチド集団の構築方法は、反復アミノ酸配列および反復回数が互いに異なるペプチドからなる混合集団を構築することができる。従って、本発明はまた、反復アミノ酸配列を連続して1反復以上、300反復以下含みかつ含まれる該反復アミノ酸配列の反復回数が互いに異なる、2種類以上、300種類以下のペプチド(本発明のペプチド)からなるペプチド集団を該反復アミノ酸配列毎に含む、ペプチドの混合集団であって、該反復アミノ酸配列は少なくとも1か所のアミノ酸残基が互いに異なる反復アミノ酸配列である、混合集団(本発明のペプチド集団)を提供する。本発明のペプチド集団において、反復アミノ酸配列の種類、長さなどは、本発明の核酸集団の構築方法における定義と同一であってよい。
 本発明のペプチドとは、各反復アミノ酸配列を連続して1反復以上、300反復以下、好ましくは、150反復以下、より好ましくは、75反復以下含みかつ含まれる該各反復アミノ酸配列の反復回数が互いに異なる、2種類以上、300種類以下、好ましくは、150種類以下、より好ましくは、75種類以下のペプチドからなる集団をいう。
実施例1 相同組換えによる形質転換を利用した反復アミノ酸配列および反復回数が互いに異なるペプチドを発現するBrevibacillusライブラリーの調製
 反復塩基配列および反復回数が互いに異なる核酸からなる混合集団を構築する工程を図1に示す。
塩基配列の一部に混合塩基を導入した環状一本鎖DNAの合成
 5’末端がリン酸化され、かつ一部に混合塩基が入った一本鎖DNA1(塩基配列1)をユーロフィンジェノミクス株式会社から購入した。この塩基配列1は16番目~18番目(下線部)の塩基配列を第1番目のアミノ酸としたアミノ酸配列1をコードする。
塩基配列1
GGGCGTCCATCCGATACTYWCGGGGCTCCAGGAGGCGGCVRMGGTGGACGCCCTTCTTCCTCCYWCGGCGCACCTGGTGGTGGGVRMGGA (90 nt、混合塩基YではC or T、混合塩基WではA or T、混合塩基VではA or C or G、 混合塩基RではA or G、混合塩基MではA or Cが入る。)(配列番号1)
アミノ酸配列1
T(X1)GAPGGG(X2)GGRPSSS(X3)GAPGGG(X4)GGRPSD (30 aa)(配列番号2)
X1からX4には混合塩基の種類により表1のアミノ酸が入る可能性がある。
 一本鎖DNA1の環状化は一般的な方法であるテンプレートDNAを使う方法で行った。塩基配列1の両末端と相補的な配列を持つプライマー1(塩基配列2)をテンプレートとして用いた。まず、50 μM一本鎖DNA1 2 μL、50 μM プライマー1 4 μL、滅菌水29 μLを混合し、95℃で2分間インキュベートし、その後氷上で静置した。次にT4 Ligase Buffer 4 μL、T4 DNA Ligase 1 μLを加え、20℃で一晩放置することで一本鎖DNA1を環状化した。生成物はフェノール/クロロホルム/イソアミルアルコール抽出で精製し、TE緩衝液に溶解したのち、濃度を測定した。
塩基配列2
ATGGTGGTGATGATGATCGGATGGACGCCCTCCKYBCCCACCACC(配列番号3)
(塩基配列1の両末端と相補的な塩基配列を下線で表す。混合塩基KではG or T、混合塩基YではC or T、混合塩基BではT or C or Gが入る。)
等温増幅
 表2の組成で反応溶液を調製し、60℃で6時間インキュベートすることで等温増幅を行った。プライマー2の塩基配列は塩基配列3である。
塩基配列3
GTATCGGCTGCAGATACTYWCGGGGCTCCAGGAGG(配列番号4)
(下線部が環状一本鎖DNAを鋳型に生成した一本鎖DNAと相補的であるため、プライマー2の3’末端からの伸長反応も同時に進行する。)
 アガロースゲル電気泳動により等温増幅によって得られた産物を確認した(図2)。レーン全体にスメアが見られ、長短様々なDNA断片が合成されたことがわかった。
クローニングおよび形質転換
 等温増幅産物を日本ジェネティクス株式会社製Fastgene Gel/PCRエクストラクションキットで精製し、Brevibacillus in vivo Cloning法(BIC法)でBrevibacillusに形質転換した。この方法では、導入したい核酸の両端に線状ベクターの両端と相同な15塩基対の配列を付加することで、菌体内で組換え反応が起こり、発現ベクターが形成される。ここでは、開始コドン側にBrevibacillusの分泌シグナルをコードする塩基配列、終止コドン側にHisタグをコードする塩基配列を持った線状ベクターを用意した。そのためあらかじめプライマー1とプライマー2の5’末端にはHisタグ側と分泌シグナル側の末端と相同な塩基配列がそれぞれ付加されており、導入したい核酸の両端に対応する塩基配列が備わっている(図3)。
発現試験およびアミノ酸配列の確認
 形質転換体20コロニーを選択し、50 μg/mLのネオマイシンを含む2SY培地3 mLに植菌し、33℃、180 rpmの条件で1日培養した。5,000 rpm、 2minの条件で遠心分離を行い、培地上清を回収した。培地上清20 μLとSDS-Buffer 5 μLを混合し、95℃, 5分で変性させた後、マーカー(コスモバイオ製SIMASIMA Unstained Broad Range Protein Ladder) 5 μL、サンプル10 μLをポリアクリルアミドゲルにアプライし、電気泳動法で解析した。Hisタグ融合タンパク質を特異的に染色するIn Visionを使用したところ、2、7、8、9、11および13番のコロニーに染まったバンドが確認できた(図4)。これらのコロニーを形成した形質転換体が発現するペプチドのアミノ酸配列をDNAシーケンス解析を通じて特定した。その結果、反復回数が2回であった8番を除いたその他の形質転換体では、反復アミノ酸配列の相同性が100%(プライマーの塩基配列が影響する末端の反復配列を除く)であるペプチドが観察された。DNAシーケンスの解読限界のため、6回反復以上は解読できなかったが、SDS-PAGEの結果から長短様々なペプチドが得られたと推測される。また、反復アミノ酸配列のX1からX4に当たる位置には、形質転換体ごとに違うアミノ酸が入っていた(表3)。X1からX4すべての位置で想定した種類のアミノ酸に置換されており、混合塩基の選択によって入る可能性のあるアミノ酸を選択できることがわかった。
 一定の温度でインキュベートするだけの簡単な方法で反復回数と反復アミノ酸配列の両方が無作為に決まったペプチドのライブラリーを構築することができた。このライブラリー構築法は、反復アミノ酸配列の相同性が極めて高いペプチドの混合集団が得られるため、アミノ酸の種類や位置の情報からより優れたペプチドをデザインすることが容易になる。すなわち、反復アミノ酸配列を持った組換えタンパク質素材の研究への進化分子工学的手法の適用を可能にし、開発スピードを劇的に高めることが期待できる。
実施例2 In Vitroシームレスクローニングを利用した反復アミノ酸配列および反復回数が互いに異なるペプチドを発現する大腸菌ライブラリーの調製
pET22b線状ベクターの調製
 鋳型としてメルク社から購入したpET22bベクター、塩基配列4のプライマー3、塩基配列5のプライマー4を含むPrime star max(タカラバイオ製)の反応液でインバースPCRを行い、線状ベクターを得た。プライマーのデザインによりペプチドのN末端側にはMK、C末端側にはALTHHHHHH(配列番号5)のアミノ酸配列が付加される。
塩基配列4
TTTCATATGTATATCTCCTTC(配列番号6)
塩基配列5
GCATTAACTCATCATCACCACCACCACTGAGATC(配列番号7)
塩基配列の一部に混合塩基を導入した環状一本鎖DNAの合成
 塩基配列1の両末端と相補的な塩基配列を持つプライマー5(塩基配列6)とT4 DNAリガーゼを用いて塩基配列1の一本鎖DNA1を環状化した。フェノール/クロロホルム/イソアミルアルコール抽出で精製し、TE緩衝液に溶解したのち、濃度を測定した。
塩基配列6
ATGATGAGTTAATGCATCGGATGGACGCCCTCCKYBCCCACCACC(配列番号8)
(塩基配列1の両末端と相補的な塩基配列を下線で表す。)
等温増幅
 表4の組成で反応溶液を調製し、60℃で12時間インキュベートすることで等温増幅を行った。プライマー6の塩基配列は塩基配列7である。
塩基配列7
GATATACATATGAAAACTYWCGGGGCTCCAGGAGG(配列番号9)
クローニングおよび形質転換
 アガロースゲル電気泳動により等温増幅を確認後、1kb相当の断片をゲルから切り出した。切り出したDNA断片を日本ジェネティクス株式会社製Fastgene Gel/PCRエクストラクションキットで精製した。このDNA断片とpET22bの線状ベクターをIn-fusion反応(タカラバイオ製の試薬を使用)で融合し、E. coli BLR (DE3)に形質転換した。
発現試験およびアミノ酸配列の確認
 発生したコロニーをコロニーPCRで解析し、1kb程度の導入遺伝子を持つ株を選抜し、100 μg/mLアンピシリンを含むLB培地に植菌した。37℃、120 rpmの条件で一晩培養した後、終濃度0.3 mMになるようIPTGを添加し、さらに攪拌速度を160 rpmに変更してさらに6時間培養した。比較としてIPTGを添加せずに培養したサンプルも用意した。培養液500 μLを6,000 rpm、5minの条件で遠心し、菌体を回収した。菌体のペレットを50 mM リン酸緩衝液(pH 7.0)250 μLに懸濁し、超音波処理で菌体を破砕した。15,000 G, 5minの条件で遠心を行い、得た上清20 μLとSDS-Buffer 5 μLを混合し、95℃、5分で変性させた。マーカー(コスモバイオ製SIMASIMA Unstained Broad Range Protein Ladder) 5μL、サンプル10 μLをポリアクリルアミドゲルにアプライし、電気泳動法で解析した。Hisタグ融合タンパク質を特異的に染色するIn Visionを使用したところ、選抜した4つの株すべてで染まったバンドが確認できた(図5)。これらのコロニーを形成した形質転換体が発現するペプチドのアミノ酸配列をDNAシーケンス解析を通じて特定した。その結果、反復アミノ酸配列の相同性が100%(プライマーの塩基配列が影響する末端の反復配列を除く)の株が2つ、ペプチドの途中でランダムにアミノ酸が決まる箇所のアミノ酸の種類が変化した株が2つ観察された(図6)。SDS-PAGEとDNAシーケンスの結果からIn Vitroシームレスクローニングによってもライブラリーを構築できることがわかった。また、アガロースゲル電気泳動後に、任意の長さを持つDNA断片を切り抜くことにより、ペプチドに含まれる反復アミノ酸配列の反復回数を制御できることがわかった。さらに、遺伝子組換えやゲノム編集のためのベクター調製に多用される大腸菌でもライブラリーを構築できることが明らかとなり、多様な生物種の遺伝子組換え、ゲノム編集に利用できることが示された。
実施例3 In Vitroシームレスクローニングを利用した互いに異なる反復回数の反復アミノ酸配列RNXGXPXS(配列番号10)を含むペプチドを発現する大腸菌ライブラリーの調製
塩基配列の一部に混合塩基を導入した環状一本鎖DNAの合成
 5’末端がリン酸化され、かつ一部に混合塩基が入った一本鎖DNA2(塩基配列8)をユーロフィンジェノミクス株式会社から購入した。この塩基配列8はアミノ酸配列2をコードする。
塩基配列8
AGTGCCACACTCCCGTAATGGTGGANTACCGNATAGCCGGAACGNCGGTNTTCCTNACTCGCGCAATGNTGGCNTCCCGNATTCTAGGAACGNTGG(配列番号11)
(96 nt、混合塩基NではA, G, C or Tのどれかが入る。)
アミノ酸配列2
RNGG(X1)P(X2)SRN(X3)G(X4)P(X5)SRN(X6)G(X7)P(X8)SRN(X9)GVPHS (32 aa) (配列番号12)
X1からX9には混合塩基の種類により表5のアミノ酸が入る可能性がある。
 塩基配列8の両末端と相補的な塩基配列を持つプライマー7(塩基配列9)とT4 DNAリガーゼを用いて一本鎖DNA2を環状化した。フェノール/クロロホルム/イソアミルアルコール抽出で精製し、TE緩衝液に溶解したのち、濃度を測定した。
塩基配列9
ATGATGAGTTAATGCGGAGTGTGGCACTCCANCGTTCCTAG(配列番号13)
(塩基配列8の両末端と相補的な塩基配列を下線で表す。)
等温増幅
 表6の組成で反応溶液を調製し、62.8℃で12時間インキュベートすることで等温増幅を行った。プライマー8の塩基配列は塩基配列10である。
塩基配列10
GATATACATATGAAACGTAATGGTGGANTACCG(配列番号14)
(下線部が環状一本鎖DNAを鋳型として合成された一本鎖DNAと相補的であるため、プライマー8の3‘末端からの伸長反応も同時に進行する。)
クローニングおよび形質転換
 アガロースゲル電気泳動により等温増幅を確認後、1~2 kb相当の断片をゲルから切り出した。切り出したDNA断片を日本ジェネティクス株式会社製Fastgene Gel/PCRエクストラクションキットで精製した。このDNA断片とpET22bの線状ベクターをIn-fusion反応(タカラバイオ製の試薬を使用)で融合し、E. coli BLR (DE3)に形質転換した。
発現試験およびアミノ酸配列の確認
 発生したコロニーをコロニーPCRで解析した結果、21コロニー中19コロニーで1~2kbの塩基配列を持っていることが示された。10個の形質転換体を選択し、100 μg/mLアンピシリンを含むLB培地に植菌した。37℃、120 rpmの条件で一晩培養した後、終濃度0.3 mMになるようIPTGを添加し、さらに攪拌速度を160 rpmに変更してさらに6時間培養した。比較として空ベクターを持つ形質転換体をネガティブコントロールとして培養した。培養液500 μLを6,000 rpm、5minの条件で遠心し、菌体を回収した。菌体のペレットを50 mM リン酸緩衝液(pH 7.0)250 μLに懸濁し、超音波処理で菌体を破砕した。15,000 G、5minの条件で遠心を行い、可溶性画分を得た。また、沈殿を4 M尿素/Tris緩衝液(pH 8.0)250 μLに溶解し、15,000 G、5minの条件で遠心を行い、上清を不溶性画分とした。サンプル20 μLとSDS-Buffer 5 μLを混合し、95℃、5分で変性させた。マーカー(コスモバイオ製SIMASIMA Unstained Broad Range Protein Ladder) 5μL、サンプル10 μLをポリアクリルアミドゲルにアプライし、電気泳動法で解析した。Hisタグ融合タンパク質を特異的に染色するIn Visionを使用したところ、10形質転換体中9個で30~60 kDaのHisタグ融合タンパク質が観察された(図7)。Hisタグ融合タンパク質の発現量(図8)および可溶性画分と不溶性画分の存在比(図9)をデンシトメトリーにより算出した。デンシトメトリーにはimageJを使用し、マーカーの蛍光強度を定量の指標とした。1番と8番は不溶性Hisタグ融合タンパク質が多量に発現していることがわかった。また、3番、5番、10番は不溶性画分よりも可溶性画分に存在することがわかった。1、4、5、6、8および10番の形質転換体が発現するペプチドのアミノ酸配列をDNAシーケンス解析を通じて特定した結果、反復アミノ酸配列の相同性が100%(プライマーの塩基配列が影響する末端の反復配列を除く)の株が5つ、ペプチドの途中でランダムにアミノ酸が決まる箇所のアミノ酸の種類が変化した株が1つ観察された(図10)。得られた反復アミノ酸配列はX1からX9すべての位置で想定した種類のアミノ酸に置換され、発現量と溶解性が変化した。ExpasyのProtScaleにおいて、Kyte&Doolittleの値を用い、ハイドロパシーインデックスを計算した。6回反復した配列を計算対象として、近隣9残基の平均を計算した結果、意外にも不溶性画分に多く存在した4番、6番および8番のペプチドはアミノ酸配列全体で比較的ハイドロパシーインデックスが低かった。これは、従来の指標を使用したタンパク質の機能予測ではペプチドの機能把握が難しいことを示しており、目的の機能を持ったペプチドを得るには、ペプチドライブラリーおよびそれを用いた進化分子工学的手法が有用であることが示唆された(図11)。ペプチドの混合集団の中から目的の性質に近いペプチドを選択し、さらにアミノ酸を置換していくことで目的の性質を持ったペプチドが得られるはずである。例えば、不溶性かつ高発現するペプチドはタンパク質精製タグとして有用である。CBB染色画像(図12)をATTO製ソフトウェアCS Analyzerで解析した結果、1番、8番で得られる不溶性画分中の不溶性ペプチドの純度は88%と85%であり、不溶性タグとしてタンパク質の精製に利用できる可能性が示された。
実施例4 次世代シーケンサーを利用した反復配列ライブラリーの解析
 ライブラリー内の配列を網羅的に解析するためIlluminaアンプリコンシーケンス解析を北海道システム・サイエンス株式会社に依頼した。サンプルは以下のとおり調製した。
塩基配列の一部に混合塩基を導入した環状一本鎖DNAの合成
 5’末端がリン酸化され、かつ一部に混合塩基が入った一本鎖DNA3(塩基配列11)をユーロフィンジェノミクス株式会社から購入した。この塩基配列11はアミノ酸配列3をコードする。
塩基配列11
GGTGTTCCTGGTGTAGGTGTCCCAGGTGTCGGCGTGCCGGGTNDTGGTGTACCAGGCNDTGGCGTACCGGGCNDTGGGGTACCTGGTGTT(配列番号15)
(90 nt、混合塩基NではA, G, C or Tのどれか、混合塩基DではA, G or Tのどれかが入る。)
アミノ酸配列3
GVPGVGVPGVGVPG(X1)GVPG(X2)GVPG(X3)GVPGV (30 aa) (配列番号16)
X1からX3には混合塩基の種類によりF, Y, C, L, H, R, I, N, S, V, D or Gのどれかのアミノ酸が入る可能性がある。
 塩基配列11の両末端と相補的な塩基配列を持つプライマー9(塩基配列12)とT4 DNAリガーゼを用いて一本鎖DNA3を環状化した。Sigma-aldrich製GenElute PCR Clean-up kitで精製し、TE緩衝液に溶解したのち、濃度を測定した。
塩基配列12
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACCAGGAACACCAACACCAGGTAC(配列番号17)
(塩基配列11の両末端と相補的な塩基配列を下線で表す。)
等温増幅
 塩基配列11の環状一本鎖DNAとプライマー9、プライマー10を用いて等温増幅を行った。反応溶液の組成はプライマーの種類を変更した以外は表6の組成に従った。60℃で12時間インキュベートした。プライマー10の塩基配列は塩基配列13である。
塩基配列13
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGTAGGTGTCCCAGGTGTCGG(配列番号18)
 アガロースゲル電気泳動により等温増幅を確認後、5回反復に相当する0.5 kbの断片をゲルから切り出した。切り出したDNA断片を日本ジェネティクス株式会社製Fastgene Gel/PCRエクストラクションキットで精製した。このDNA断片を1stPCRサンプルとして、2ndPCRからターゲット解析までを北海道システム・サイエンス株式会社に依頼した。
発現試験およびアミノ酸配列の確認
 切り出した断片の長さをAgilent社 TapeStationで分析した。分析値(535 bp)が理論的な5回反復断片の長さ518bpに近いことから、ライブラリーには5回反復断片が多く含まれると考えられる。配列番号16の5回反復配列(150 aa)についてライブラリー中に含まれる配列の種類と出現数の算出を試みたが、プライマー配列下流から91 bp以降の塩基の読み取りが上手くいかなかった。これは反復配列がクラスターの形成に支障を与えたためと考えられる。そこで5’末端(プライマー9側)に最も近い反復塩基配列と3’末端(プライマー10側)に最も近い反復塩基配列をアミノ酸に変換し、配列と出現数を算出した。出現数上位1500の配列を確認したところ、配列番号16の配列のうち混合塩基を加えた箇所(X1からX3)のみ異なる反復配列の集団が得られた。(出現数上位100の配列を表7に示す。出現数上位1739以内に理論上取りうる全ての組み合わせ1728種類の反復配列が確認された。(反復配列のうち、3ヵ所のX部分にそれぞれ12種類のアミノ酸が入る可能性がある)また、最も多い反復配列でもライブラリーに占める割合は0.9%未満であった。これらの結果は構築された遺伝子混合集団は配列の偏りが少ない多様な配列を含むライブラリーであることを示している。
実施例5 反復配列ライブラリーを利用した組換えタンパク質精製タグの探索
 エラスチン様ポリペプチド([VGVPG]n, ELP)は下限臨界溶液温度(Lower Critical Solution Temperature: LCST)を持ち、この温度以上では不溶性、以下では水溶性を示す。近年、組換えタンパク質の精製コスト削減を目指し、組換えタンパク質の精製用タグとしてELPを活用する研究が盛んに行われている。例えば、ELPと自己切断部位インテインからなるアミノ酸配列を精製タグとして組換えタンパク質の末端に融合発現させることでアフィニティーカラムを使わずに温度変化や塩の添加で組換えタンパク質を精製する。しかしながら、このようなELPタグを融合した場合、組換えタンパク質の生産量が低下してしまう課題がある。そこで、反復配列ライブラリーを用いて生産性に優れたタンパク質精製タグの開発を試みた。
sspDnaB-GFPの構築
 精製する組換えタンパク質のモデルとして改良型緑色蛍光タンパク質(Enhanced Green Fluorescent Protein, GFP)、生産宿主としてE.Coli BLR(DE3)を選択した。発現する組換えタンパク質からELP部位を除去するためELPとGFPの間にはCyanobacterium Synechocystis sp.由来のsspDnaBインテインを配置した。
pET22b-sspDnaB-GFP線状ベクターの調製
 ユーロフィンジェノミクス株式会社にELP部位を除いたsspDnaB融合GFP部位を発現するpET22b-sspDnaB-GFPの構築を依頼した。pET22b-sspDnaB-GFPを鋳型として、適当なプライマーとPrime star max(タカラバイオ製)を用いたインバースPCRを行い、線状ベクターを得た。
等温増幅
 塩基配列11の環状一本鎖DNAとプライマー11、プライマー12を用いて等温増幅を行った。反応溶液の組成はプライマーの種類を変更した以外は表6の組成に従った。60℃で12時間インキュベートした。プライマー11およびプライマー12の塩基配列は塩基配列14および15である。
塩基配列14
GATATACATATGAAAGTAGGTGTCCCAGGTGTCGG(配列番号119)
塩基配列15
GATAGCACCACCAGAACCAGGAACACCAACACCAGGTAC(配列番号120)
クローニングおよび形質転換
 アガロースゲル電気泳動により等温増幅を確認後、8回反復に相当する断片をゲルから切り出した。切り出したDNA断片を日本ジェネティクス株式会社製Fastgene Gel/PCRエクストラクションキットで精製した。このDNA断片とpET22b-sspDnaB-GFP線状ベクターをIn-fusion反応(タカラバイオ製の試薬を使用)で融合し、E. coli BLR (DE3)に形質転換した。
比較対象株の作製
 比較として、混合塩基を含まない塩基配列16で調製した環状一本鎖DNAを用いて増幅したDNA断片でも同様の実験を行った。塩基配列16はVGVPGを6回反復するアミノ酸配列17をコードする。本研究ではVGVPGが48回反復した配列を使用した。コロニーPCRとDNAシーケンサーを用いてVGVPGが48回反復する塩基配列を持つポジティブコントロール(PC)が得られたことを確認した。PCが発現する組換えタンパク質の塩基配列およびアミノ酸配列を塩基配列17(図13)とアミノ酸配列4(図14)として示す。インテインの働きにより配列中大文字表記したNとGの間が開裂し、下流のGFPが遊離するため、タグ配列の除去が可能である。
 また、pET22bの空ベクターを持った形質転換体をネガティブコントロール(NC)として使用した。
塩基配列16
GGTGTTCCTGGTGTAGGTGTCCCAGGTGTCGGCGTGCCGGGTGTGGGTGTACCAGGCGTTGGCGTACCGGGCGTAGGGGTACCTGGTGTT(配列番号121)
スクリーニング
 形質転換後、蛍光を強く発する6つのコロニーを選択し、100 μg/mLアンピシリンを含むLB培3 mLに植菌した。37℃、120 rpmの条件で一晩培養した後、OD590を測定し、100 μg/mLアンピシリンを含むZYP-5052培地1 mLにOD590=0.05になるように一晩培養した液を加えた。25℃で2日間培養した後、3,000 rpm、25℃、10分の条件で遠心分離を行い、菌体ペレットを回収した。菌体ペレットにBug Buster Protein Extraction Reagent 200 μLを加え、菌体を懸濁し、37℃で15分間インキュベートした。3,000 rpm、4℃、10分の条件で遠心分離を行い、細胞抽出液を得た。細胞抽出液の蛍光強度をPerkinElmer製EnSightで測定した(図15)。同様の実験を3つのウェルで実施した。PCと同程度もしくはそれ以上の蛍光強度を示した形質転換体(コロニー1、5および6)の細胞抽出液120 μLに5 M NaCl 80 μLを加え、15分間、37℃でインキュベートした。3,000 rpm、25℃、30分の条件で遠心分離を行い、上清を除去した。沈殿に20 mM リン酸ナトリウム緩衝液(pH 6.4) 50 μLを加え、懸濁し、20℃で一晩放置した。9,000 G、35℃、10分の条件で遠心分離を行い、不溶性画分を除去し、粗精製GFP溶液を得た。粗精製GFP溶液20 μLに5 M NaCl 30 μLを加え、10分間、42℃でインキュベートした。9,000 G、35℃、10分の条件で遠心分離を行い、不溶性画分を除去し、精製GFP溶液を得た。精製GFP溶液の蛍光強度をPerkinElmer製EnSightで測定した(図16)。同様の実験を3つのウェルで実施し、得た値をKaleidaGraphを用いたDunnettの多重比較でELPの値に対して有意な差があるか確認した。コロニー6の精製GFP溶液ではPCより有意に高い蛍光強度が得られた。そこでPCと、コロニー6の精製GFP溶液に含まれるタンパク質をSDS-PAGEで解析した。サンプルとATTO製EzApplyを1:1で混合し、95℃で5分間加熱した後、10 μLをゲルにアプライした。マーカーにはコスモバイオ製SIMASIMA Unstained Broad Range Protein Ladder 5μLを用いた。CBB染色の結果(図17)、PCと同様、コロニー6からもGFPの理論分子量:28.3 kDaに相当するバンドのみ確認され、コロニー6の形質転換体が持つ配列も精製タグとして機能することが明らかとなった。DNAシーケンスでコロニー6の精製タグ中の反復配列を解析したところ、一部のアミノ酸が入れ替わったVGVPGの反復配列を持つことがわかった(図18)。これらの配列が優れた生産性を示すことを予測には既知の情報だけでは困難である。このように、反復配列と反復回数の両方が異なる反復配列ライブラリーとハイスループットスクリーニングを組み合わせることでより効率的に有益な反復配列を探索することが可能になる。
 本発明によれば、反復塩基配列および反復回数が互いに異なる核酸からなる混合集団を簡便に構築することができる。また、反復アミノ酸配列同士の相同性が高いため、ペプチドのアミノ酸配列情報を単純化でき、より優れた機能を持ったペプチドを新たに開発する際にそのアミノ酸配列情報を容易にデザインへ反映できる。さらに、遺伝子合成やクローニングに制限酵素を使用せずに済むため、反復アミノ酸配列の自由度が高いという利点も有する。本出願は、日本で出願された特願2022-063650(出願日:令和4年4月6日)を基礎としており、その内容はすべて本明細書に包含されるものとする。

Claims (25)

  1.  以下の工程を含む、反復塩基配列および反復回数が互いに異なる核酸からなる混合集団の構築方法:
    (A)少なくとも1か所の塩基が互いに異なる反復塩基配列からなる各環状一本鎖核酸の混合集団を鋳型として、各環状一本鎖核酸に対応する各線状一本鎖核酸からなる混合集団を調製する工程であって、該各線状一本鎖核酸は各反復塩基配列に相補的な塩基配列を連続して2反復以上、300反復以下含む、工程、および
    (B)各線状一本鎖核酸の混合集団を鋳型として、各環状一本鎖核酸に対応する各二本鎖核酸集団からなる混合集団を調製する工程であって、該各二本鎖核酸集団は各反復塩基配列を連続して1反復以上、300反復以下含みかつ含まれる該各反復塩基配列の反復回数が互いに異なる、2種類以上、300種類以下の二本鎖核酸からなる、工程。
  2. 前記各二本鎖核酸集団が、その両末端にベクターに組み込むためのクローニング用塩基配列がさらに付加されている、請求項1に記載の方法。
  3.  さらに以下の工程を含む、請求項1または2に記載の方法:
    (C)前記各二本鎖核酸集団からなる混合集団を発現ベクターに発現可能に組み込む工程、および
    (D)該発現ベクターを宿主細胞に導入する工程。
  4.  核酸が、DNAである、請求項1または2に記載の方法。
  5.  工程(A)および工程(B)において、鎖置換型DNAポリメラーゼが用いられる、請求項4に記載の方法。
  6.  工程(A)および工程(B)が同時に行われる、請求項5に記載の方法。
  7.  工程(A)および工程(B)が等温条件下で行われ、該等温条件が50℃~68℃内の一定温度である、請求項6に記載の方法。
  8.  少なくとも1か所の塩基が互いに異なる反復塩基配列が、16種類以上10000種類以下である、請求項1または2に記載の方法。
  9.  少なくとも1か所の塩基が互いに異なる反復塩基配列が、少なくとも1か所のアミノ酸残基が互いに異なる反復アミノ酸配列をコードする塩基配列である、請求項1または2に記載の方法。
  10.  反復塩基配列を連続して1反復以上、300反復以下含みかつ含まれる該反復塩基配列の反復回数が互いに異なる、2種類以上、300種類以下の二本鎖核酸からなる二本鎖核酸集団を該反復塩基配列毎に含む、核酸の混合集団であって、該反復塩基配列は少なくとも1か所の塩基が互いに異なる反復塩基配列である、混合集団。
  11.  前記二本鎖核酸集団が、その両末端にベクターに組み込むためのクローニング用塩基配列がさらに付加されている、請求項10に記載の混合集団。
  12.  核酸が、DNAである、請求項10または11に記載の混合集団。
  13.  少なくとも1か所の塩基が互いに異なる反復塩基配列が、16種類以上10000種類以下である、請求項10または11に記載の混合集団。
  14.  少なくとも1か所の塩基が互いに異なる反復塩基配列が、少なくとも1か所のアミノ酸残基が互いに異なる反復アミノ酸配列をコードする塩基配列である、請求項10または11に記載の混合集団。
  15.  請求項10または11に記載の混合集団が発現可能に組み込まれた、発現ベクター。
  16.  請求項15に記載の発現ベクターを含む、宿主細胞。
  17.  以下の工程を含む、反復アミノ酸配列および反復回数が互いに異なるペプチドからなる混合集団の構築方法:
    (a)少なくとも1か所の塩基が互いに異なる反復塩基配列からなる各環状一本鎖核酸の混合集団を鋳型として、各環状一本鎖核酸に対応する各線状一本鎖核酸からなる混合集団を調製する工程であって、該反復塩基配列は少なくとも1か所のアミノ酸残基が互いに異なる反復アミノ酸配列をコードする塩基配列であり、該各線状一本鎖核酸は各反復塩基配列に相補的な塩基配列を連続して2反復以上、300反復以下含む、工程、
    (b)各線状一本鎖核酸の混合集団を鋳型として、各環状一本鎖核酸に対応する各二本鎖核酸集団からなる混合集団を調製する工程であって、該各二本鎖核酸集団は各反復塩基配列を連続して1反復以上、300反復以下含み、かつ互いに該各反復塩基配列の反復回数が異なる2種類以上、300種類以下の二本鎖核酸からなる、工程、
    (c)前記各二本鎖核酸集団からなる混合集団を発現ベクターに発現可能に組み込む工程、
    (d)該発現ベクターを宿主細胞に導入する工程、および
    (e)該宿主細胞を培養することによってペプチドを発現させる工程。
  18.  前記各二本鎖核酸集団が、その両末端にベクターに組み込むためのクローニング用塩基配列がさらに付加されている、請求項17に記載の方法。
  19.  核酸が、DNAである、請求項17または18に記載の方法。
  20.  工程(a)および工程(b)において、鎖置換型DNAポリメラーゼが用いられる、請求項19に記載の方法。
  21.  工程(a)および工程(b)が同時に行われる、請求項20に記載の方法。
  22.  工程(a)および工程(b)が等温条件下で行われ、該等温条件が50℃~68℃内の一定温度である、請求項21に記載の方法。
  23.  少なくとも1か所の塩基が互いに異なる反復塩基配列が、16種類以上10000種類以下である、請求項17または18に記載の方法。
  24.  反復アミノ酸配列を連続して1反復以上、300反復以下含みかつ含まれる該反復アミノ酸配列の反復回数が互いに異なる、2種類以上、300種類以下のペプチドからなるペプチド集団を該反復アミノ酸配列毎に含む、ペプチドの混合集団であって、該反復アミノ酸配列は少なくとも1か所のアミノ酸残基が互いに異なる反復アミノ酸配列である、混合集団。
  25.  少なくとも1か所のアミノ酸残基が互いに異なる反復アミノ酸配列が、2種類以上1000種類以下である、請求項24に記載の混合集団。
PCT/JP2023/014202 2022-04-06 2023-04-06 反復塩基配列および反復回数が互いに異なる核酸からなる混合集団の構築方法 WO2023195515A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022063650 2022-04-06
JP2022-063650 2022-04-06

Publications (1)

Publication Number Publication Date
WO2023195515A1 true WO2023195515A1 (ja) 2023-10-12

Family

ID=88243043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014202 WO2023195515A1 (ja) 2022-04-06 2023-04-06 反復塩基配列および反復回数が互いに異なる核酸からなる混合集団の構築方法

Country Status (1)

Country Link
WO (1) WO2023195515A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117756925A (zh) * 2023-12-26 2024-03-26 广州普言生物科技有限公司 一种重组弹性蛋白Pro.ELP及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179942A (ja) * 2000-09-08 2013-09-12 Univ Zuerich 反復モジュールを含む反復タンパク質の集合体
JP2018139603A (ja) * 2008-09-02 2018-09-13 ゼネラル・エレクトリック・カンパニイ Dnaミニサークルおよびその使用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179942A (ja) * 2000-09-08 2013-09-12 Univ Zuerich 反復モジュールを含む反復タンパク質の集合体
JP2018139603A (ja) * 2008-09-02 2018-09-13 ゼネラル・エレクトリック・カンパニイ Dnaミニサークルおよびその使用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AMIRAM MIRIAM, QUIROZ FELIPE GARCIA, CALLAHAN DANIEL J., CHILKOTI ASHUTOSH: "A highly parallel method for synthesizing DNA repeats enables the discovery of ‘smart’ protein polymers", NATURE MATERIALS, NATURE PUBLISHING GROUP UK, LONDON, vol. 10, no. 2, 1 February 2011 (2011-02-01), London, pages 141 - 148, XP093096096, ISSN: 1476-1122, DOI: 10.1038/nmat2942 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117756925A (zh) * 2023-12-26 2024-03-26 广州普言生物科技有限公司 一种重组弹性蛋白Pro.ELP及其制备方法和应用

Similar Documents

Publication Publication Date Title
JP7061078B2 (ja) 耐熱性の逆転写酵素変異体
WO2023195515A1 (ja) 反復塩基配列および反復回数が互いに異なる核酸からなる混合集団の構築方法
US9005935B2 (en) Methods and compositions for DNA fragmentation and tagging by transposases
US10100080B2 (en) Split inteins and uses thereof
US20060147990A1 (en) Process for producing template DNA and process for producing protein in cell-free protein synthesis system with the use of the same
EP3487998B1 (en) Compositions and methods for identifying rna binding polypeptide targets
WO2011086293A1 (fr) Sulfatase modifiant selectivement les glycosaminoglycanes
CN111378047A (zh) 一种提高蛋白表达的融合标签蛋白及其应用
Nogueira et al. High-level secretion of recombinant full-length streptavidin in Pichia pastoris and its application to enantioselective catalysis
JP6440820B2 (ja) 無細胞タンパク質合成系に用いるための翻訳促進剤及びその利用
JP6698993B2 (ja) ピキア酵母を用いた遺伝子組換えによるアスパルティックプロテアーゼの製造方法
Keum et al. The presence of a common downstream box enables the simultaneous expression of multiple proteins in an E. coli extract
KR20220062230A (ko) 퍼옥시좀에서 변형 단백질의 발현
KR101658081B1 (ko) CysQ를 융합파트너로 이용한 재조합 단백질의 제조방법
JP4808361B2 (ja) 新規dna合成酵素
CN112680431B (zh) 基于片段化酶的dna文库制备方法
RU2807615C2 (ru) Способ получения биологически активных рекомбинантных протеинов
CN115261363B (zh) Apobec3a的rna脱氨酶活性测定方法及rna高活性的apobec3a变体
Cramer Chemical synthesis of oligo-and polynucleotides
US20080166769A1 (en) High-Copy-Number, High-Expression Vector Having Methionine Aminopeptidase Gene
CN116606874A (zh) 胱硫醚-β-合成酶的制备方法和应用
WO2023164593A2 (en) Systems and methods for transposing cargo nucleotide sequences
CN116615547A (zh) 用于对货物核苷酸序列转座的系统和方法
WO2022005966A1 (en) Biosensors for selectively identifying azide ions
WO2023164592A2 (en) Fusion proteins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784799

Country of ref document: EP

Kind code of ref document: A1