WO2011086293A1 - Sulfatase modifiant selectivement les glycosaminoglycanes - Google Patents

Sulfatase modifiant selectivement les glycosaminoglycanes Download PDF

Info

Publication number
WO2011086293A1
WO2011086293A1 PCT/FR2010/052893 FR2010052893W WO2011086293A1 WO 2011086293 A1 WO2011086293 A1 WO 2011086293A1 FR 2010052893 W FR2010052893 W FR 2010052893W WO 2011086293 A1 WO2011086293 A1 WO 2011086293A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
sulfatase
seq
polypeptide
sequence
Prior art date
Application number
PCT/FR2010/052893
Other languages
English (en)
Inventor
Olivier Berteau
Alhosna Benjdia
David Bonnaffe
Christine Le Narvor
Annie Malleron
Original Assignee
Institut National De La Recherche Agronomique - Inra
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut National De La Recherche Agronomique - Inra filed Critical Institut National De La Recherche Agronomique - Inra
Publication of WO2011086293A1 publication Critical patent/WO2011086293A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)

Definitions

  • the invention relates to the fields of glycosaminoglycan synthesis and detecting their presence in a sample.
  • Glycosaminoglycans are polysaccharides essential for the proper functioning of the human body.
  • GAGs are involved in many biological functions, from coagulation to cellular communication processes. They also play a major role in many diseases such as cancer, degenerative diseases, atherosclerosis, etc. It has already been identified more than one hundred proteins capable of interacting with GAGs.
  • GAGs form a family of heterogeneous polysaccharides, divided into five subfamilies: chondroitin, dermatan, hyaluronic acid, keratan and the family of heparan sulphates / heparin. These GAG subfamilies have distinct locations and roles in the human body. Thus chondroitins are located mainly in bones and cartilage, where they have a mechanical role, while heparins are found inside the arteries, where they exert an anti-coagulant function.
  • the GAGs consist of a repeating disaccharide unit based (i) on a V-acetyl-hexosamine and hexose unit, (ii) or on a V-acetyl-hexosamine and uronic acid unit.
  • the different osidic rings are connected to each other only by 1 -4 or 1 -3 bonds.
  • GAGs have considerable structural and functional heterogeneity. Indeed, the backbone of GAGs is highly functionalized with acetyl groups and a complex sulfation unit, with sulfate groups located on one or more of the 2, 3, 4 and 6 positions of each unit of oside, as well as on the amino functions of these molecules.
  • GAGs The majority of the biological functions exerted by the various GAGs are related to their type of sulphation (polysaccharide sulphatation rate, position (s) of the sulphate groups on the osidic cycles). Sulphate groups are known to give GAGs a high negative charge. Sulphate groups also play a role in the conformation of GAGs and the ability of GAGs to interact with many biological factors, such as, for example, enzymes and growth factors.
  • GAGs are the most widely used polysaccharides in the pharmaceutical and cosmetic fields, and their use in the field of food additives is also increasing, only a few GAGs are now commercially available.
  • the GAGs that are marketed are mainly, if not exclusively, heparins, hyaluronic acid and chondroitin. These polysaccharides find an increasing number of applications and represent a global market of several billion euros. However, their industrial development is still limited by the many difficulties related to their synthesis and physico-chemical characterization.
  • GAGs are molecules that are difficult to synthesize.
  • the saccharides possess many hydroxyl groups of similar reactivities, which makes it difficult, in GAG synthesis processes, to add or remove sulfate groups and to resort to complex coupling strategies. elimination of various protective groups and complex structure.
  • these strategies for synthesizing GAGs involving coupling and removal of protective groups obviously have a significant impact on the duration, the yield and the costs of the synthetic processes.
  • GAGs with good yields and selectively can be achieved by chemoenzymatic synthesis methods, in which chemical synthesis steps and enzymatic modification steps are combined.
  • chemoenzymatic synthesis methods in which chemical synthesis steps and enzymatic modification steps are combined.
  • enzymes that can be used to control selective sulphation or selective desulfation steps of GAGs.
  • the physico-chemical characterization of GAGs includes the determination of their type of sulfation.
  • the type of sulfation of a particular GAG can be determined by desulfation tests.
  • Enzymes catalyzing the selective desulphating of GAGs at a specific position of the osidic unit from positions 2, 3, 4 and 6 can be used in combination with the detection / quantification of desulfated oses or sulphates released after hydrolysis.
  • the present invention relates to a purified 4-O-sulfatase capable of selectively hydrolysing the sulfate groups present at the 4-position of substituted or unsubstituted N-acetylgalactosamine residues.
  • the subject of the invention is a 4-O-sulfatase comprising a polypeptide having at least 50% amino acid identity with the polypeptide of sequence SEQ ID No. 1, or a fragment or a variant of said polypeptide.
  • the invention also relates to nucleic acids encoding said 4-O-sulfatase, as well as to expression cassettes and vectors and recombinant host cells comprising at least one nucleic acid encoding said 4-O-sulfatase.
  • the present invention also relates to the use of the above 4-O-sulfatase, or nucleic acids encoding said 4-O-sulfatase, in methods for synthesizing glycosaminoglycans (GAGs).
  • GAGs glycosaminoglycans
  • the present invention also relates to the use of the above 4-O-sulfatase, or nucleic acids encoding said 4-O-sulfatase, in methods for determining the presence of 4-O-sulfated glycosaminoglycans in a sample.
  • Figure 1 shows the chemical structure of the different subfamilies of the GAG family, from left to right and from top to bottom respectively of Figure 1: Chondroitin, Dermatan, Hyaluronate, Heparin and Keratan sulfate; n is an integer which represents the number of units in the final polymer molecule.
  • Figure 2 schematically depicts the reaction catalyzed by 4-O-sulfatase, object of the invention.
  • Figure 3 shows the library of oligosaccharides tested in the examples and specifies the action of the 4-O-sulfatase object of the invention which was observed thereon.
  • a barred arrow means that 4-O-sulfatase does not react with the target sulfate group.
  • a normal arrow means that 4-O-sulfatase catalyzes a desulfation reaction on the target sulfate group.
  • Figure 4 shows the map of the pRSF plasmid in which (i) the nucleic acid encoding 4-O-sulfatase was cloned and (ii) the nucleic acid encoding a sulfatase maturation enzyme (named anSME).
  • the sequence of the recombinant plasmid is referenced as the sequence SEQ ID No. 53. In the plasmid of sequence SEQ ID No.
  • Figure 5 is a picture of an SDS PAGE electrophoresis gel (12%).
  • Lane 1 Induction of Expression of Sulphatase and Enzyme Enzyme (anSME) in E. coli
  • Figure 6 illustrates the disaccharide compounds of chondroitin sulfate type contained in each of the 2 ⁇ 1 -4 ⁇ and 3 ⁇ 1 -4 ⁇ chemothel libraries described by Lubineau et al. (Lubineau et al., 1999, Eur J Org Chem,: 2523-2532).
  • Figure 7 illustrates the separation profile and the identification of the 4 disaccharide compounds contained in Chemio expertise 2 ⁇ 1 -4 ⁇ .
  • the two saccharide rings of the disaccharides are schematized by oval symbols and the presence of a sulfate or hydroxyl group on the positions of interest is indicated. Symbols of the same type are also shown in Figures 8 to 12.
  • Figure 8 illustrates the separation profile and the identification of the 4 disaccharide compounds contained in Chemical Library 3 ⁇ 1-4 ⁇ .
  • Figure 9 illustrates the profile of compounds obtained after subjecting the compounds of Chemio expertise 2 ⁇ 1 -4 ⁇ to the action of 4-O-sulfatase in a concentrated form.
  • Figure 10 illustrates the profile of compounds obtained after subjecting the compounds of Chemio expertise 3 ⁇ 1 -4 ⁇ to the action of 4-O-sulfatase in a concentrated form.
  • Figure 11 illustrates the profile of compounds obtained after subjecting the compounds of Chemio expertise 2 ⁇ 1 -4 ⁇ to the action of 4-O-sulfatase in a 50-fold diluted form.
  • Figure 12 illustrates the profile of compounds obtained after subjecting compounds of Chemio expertise 3 ⁇ 1 -4 ⁇ to the action of 4-O-sulfatase in a 50-fold diluted form.
  • Figure 13 illustrates, from top to bottom of the figure, an alignment of the sulfatase sequences of SEQ ID NO: 1 to SEQ ID NO: 13, respectively.
  • the Applicant has isolated and characterized a sulphatase capable of catalyzing a desulfation reaction of a glycosaminoglycan (GAG), selectively on the sulphate groups located at the 4-position of the saccharide units constituting said GAG.
  • Said sulphatase may also be designated "/ V-acetylgalactosamine-4-sulphatase” or "4-O-sulphatase” in the following description.
  • GAGs include osidic compounds including from 2 to 100 saccharide units, including disaccharide GAGs and tetrasaccharide GAGs.
  • GAGs include chondroitin sulphates (CS), dermatan sulphates, hyaluronic acid, keratan sulphates and the family of heparan sulphates (HS) / heparins, which are shown in Figure 1, and which differ from each other by the identity of their disaccharide subunit.
  • the various HS and CS type GAGs have various lengths (generally 5 or 10 to 100 saccharide units) including high level regions. sulfation and low sulfation regions.
  • GAGs encompass compounds consisting of a repeating disaccharide unit based on (i) either a V-acetyl hexosamine and hexose unit, or (ii) an A / acetyl hexosamine and acid unit. uronic.
  • the different osidic rings are connected to each other only by 1 -4 or 1 -3 bonds.
  • heparan sulphates and heparins consist of disaccharide units comprising a D-glucosamine (GIcN) and a uronic acid which can be either a D-glucuronic acid (GIcA) or an L-iduronic acid (IdoA).
  • chondroitin sulphates have subunits / V-acetylgalactosamine (GaINAc) and GIcA, and alternating ⁇ (1, 3) and ⁇ (1, 4) bonds.
  • the GAG backbone is highly functionalized with acetyl groups and a complex sulfation unit, with sulfate groups located at one or more of the 2, 3, 4 and 6 positions of each unit of oside, as well as on the amino functions of these molecules.
  • sulphation takes place mainly on the C2 hydroxyl of the IdoA unit and on the C3 and C6 hydroxyls of the GIcN unit.
  • sulphated chondroitin sulphates CS
  • sulfation can take place on any of the free hydroxyls, resulting in a tetrasaccharide CS compound potentially having the potential to give rise to 256 sulphate compounds. separate.
  • the structure of GAGs is described in detail by Vogel et al. (Gandhi et al., 2008, Chem Biol Drug Des, Vol 72: 455-482), to which one skilled in the art can advantageously refer.
  • the GAGs include in particular the following compounds:
  • R is S0 3 - or H
  • R1 is S0 3 -, H or Ac and n is an integer from 1 to 50;
  • R is S0 3 - or H
  • R1 is S0 3 -, H or Ac and n is an integer from 1 to 50;
  • R is S0 3 - or H
  • R1 is S0 3 -, H or Ac and n is an integer from 1 to 50;
  • a 4-O-sulfatase from Bacteroides thetaiotaomicron has been isolated, cloned and characterized and this 4-O-sulfatase expressed in E. coli to obtain the corresponding recombinant protein.
  • the Applicant has shown in the examples that the novel 4-O-sulfatase catalyzes the selective desulfation at the 4-position of the saccharide units constituting various glycosaminoglycans (GAGs).
  • GAGs glycosaminoglycans
  • the nucleic acid encoding the novel 4-O-sulfatase according to the invention was cloned, then sequenced, and was used to transfect host cells. Said 4-O-sulphatase was produced in recombinant form by the transfected host cells.
  • the Applicant has also identified a family of 4-O-sulfatases having a high sequence similarity to each other, which encompasses the above 4-O-sulfatase, and which can be used for synthesis and characterization of GAGs, in particular for determining the presence or absence of a sulfate group at the 4-position of the saccharide units.
  • polypeptide in the sense of the invention a chain of amino acids linked together by peptide bonds.
  • nucleotide sequence may be used to denote either a polynucleotide or a nucleic acid.
  • nucleotide sequence encompasses the genetic material itself and is therefore not restricted to information about its sequence.
  • nucleic acid include RNA sequences, DNA sequences, cDNA sequences or hybrid RNA / DNA sequences of more than one nucleotide, regardless of in the single-stranded form or in the form of duplex.
  • nucleotide refers to natural nucleotides (A, T, G, C and U).
  • a first polynucleotide is considered to be "complementary" to a second polynucleotide when each base of the first nucleotide is paired with the complementary base of the second polynucleotide whose orientation is reversed.
  • the complementary “bases” are A and T (or A and U), and C and G.
  • purified within the meaning of the invention does not require that the substance in question, for example the polypeptide under consideration or the nucleic acid in question, be in a form of absolute purity.
  • a purified polynucleotide, or a purified nucleic acid includes said polypeptide, or said nucleic acid, at a concentration greater than the concentration in which said polypeptide, or said nucleic acid, is found in its natural environment, in the organism that contains it or in which it is produced.
  • a polypeptide is "purified” if its weight concentration, or specific activity, is at least 10-fold greater, and more preferably at least 20, 30, 40, 50, 100, 150, 200, 300, 400, 500 , 1000, 1500, or at least 2000 times, relative to the weight concentration, or the specific activity, of said non-recombinant polypeptide as found in its natural environment, including for example in a cell lysate or a supernatant cell culture, prepared from cells that produce said polypeptide naturally, in non-recombinant form.
  • a purified polypeptide includes a polypeptide which is present in the composition in which it is contained at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, % 59% 60% 61% 62% 63% 64% 65% 66% 67% 68% 69% 70% 71% 72% 73% 74% 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91% , 92%, 93%, 94%, 95%, 96%, 97%, 97,5%, 98%, 98,3% 98,6%, 99% or at least 99,6% of the total proteins of said composition.
  • a purified nucleic acid includes a nucleic acid which is present in the composition in which it is present at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57% 58% 59% 60% 61% 62% 63% 64% 65% 66% 67% 68% 69% 70% 71% 72% 73% 74 %, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 97.5%, 98%, 98.3% 98.6%, 99% or at least 99.6% of the grade total of nucleic acids of said composition.
  • the "percentage identity" between two nucleic acid sequences, or between two amino acid sequences, within the meaning of the present invention is determined by comparing the two optimally aligned sequences, through a comparison window.
  • the part of the nucleotide sequence, or of the amino acid sequence, in the comparison window may thus comprise additions or deletions (for example "Gaps") relative to the reference sequence (which does not include these additions or deletions) so as to obtain an optimal alignment between the two sequences.
  • additions or deletions for example "Gaps”
  • the percent identity is calculated by determining the number of positions at which an identical nucleotide base, or amino acid, is observed for the two compared sequences, and then dividing the number of positions at which there is identity between the two nucleic bases, or between the two amino acids, by the total number of positions in the comparison window, and then multiplying the result by one hundred to obtain the percentage of nucleotide identity, or the percentage of amino acids, of the two sequences between them .
  • the optimal alignment of the sequences for the comparison can be performed in a computer manner using known algorithms.
  • highly stringent hybridization conditions between two nucleic acids respectively between a reference nucleic acid and a nucleic acid which hybridizes, in said high stringency conditions, with the reference nucleic acid, are defined below.
  • the parameters defining the stringency conditions depend on the temperature at which 50% of the paired strands separate (Tm).
  • Tm is defined by the relation:
  • Tm 81, 5 + 0.41 (% G + C) +16.6 Log (cation concentration) - 0.63 (% formamide) -
  • Tm 4 (G + C) + 2 (A + T).
  • the hybridization temperature is approximately 5 to 30 ° C, preferably 5 to 10 ⁇ ⁇ below Tm.
  • hybridization conditions described above are used for the hybridization of a nucleic acid of 20 bases in length and can be adapted as a function of the length of the nucleic acid whose hybridization is sought or of the type selected marking, according to techniques known to those skilled in the art.
  • Suitable hybridization conditions may be adapted, for example, according to the teachings of HAMES and HIGGINS (HAMES and HIGGINS, 1985. Nucleic Acid Hybridization: A Practical Approach, Hames & Higgins Ed. IRL Press, Oxford. ) or in the work of AUSUBEL et al. (AUSUBEL et al., 1989. Current Protocols in Molecular Biology, Green Publishing Associates and Wiley Interscience, N.Y.).
  • the rate of hybridization increases with the increase of the ionic strength and the duration of the incubation time;
  • the concentration of the nucleic acid on which the probe or primer is to hybridize f) the concentration of the nucleic acid on which the probe or primer is to hybridize; g) the presence of denaturing agents, such as hydrogen bond breaking agents, such as formamide or urea, which increase the stringency of hybridization;
  • denaturing agents such as hydrogen bond breaking agents, such as formamide or urea
  • the incubation time increasing with the duration of the incubation
  • volume exclusion agents such as dextran or dextran sulfate, which increase the rate of hybridization by increasing the concentrations effectives of the probe or the primer and the nucleic acid that is to hybridize, within the preparation.
  • variant of a nucleic acid according to the invention is meant a nucleic acid which differs from the reference nucleic acid by one or more substitutions, additions or deletions of a nucleotide, relative to the nucleic acid of the nucleic acid. reference.
  • a variant of a nucleic acid according to the invention may be of natural origin, such as an allelic variant which exists naturally. Such a variant nucleic acid may also be an unnatural nucleic acid obtained, for example, by mutagenesis techniques.
  • the differences between the reference nucleic acid and the "variant" nucleic acid are reduced so that the reference nucleic acid and the variant nucleic acid have very similar nucleotide sequences and, in many regions , identical.
  • the nucleotide modifications present in a variant nucleic acid can be silent, which means that they do not affect the amino acid sequence that can be encoded by this variant nucleic acid.
  • Nucleotide modifications in the variant nucleic acid may also result in substitutions, additions or deletions of one or more amino acids in the polypeptide sequence that may be encoded by that variant nucleic acid.
  • a variant nucleic acid according to the invention having an open reading phase encodes a polypeptide which retains the same function or the same biological activity as the polypeptide encoded by the reference nucleic acid.
  • a nucleic acid which is variant according to the invention and which comprises an open reading phase encodes a polypeptide which retains the capacity to be recognized by antibodies directed against the polypeptide encoded by the nucleic acid of reference.
  • Such fragments of a polypeptide according to the invention have at least 5, 10, 15, 20, 25, 30, 40, 50, 60, 100, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510 or 520 consecutive amino acids of a reference polypeptide 4-O-sulfatase, it being understood that the maximum length of said fragment is by definition limited by the amino acid length of the polypeptide of which said peptide fragment is derived
  • a fragment of a polypeptide of the invention is "biologically active" if said polypeptide fragment has a 4-O-sulfatase activity, including against a sulfated 4-0 substrate GAG comprising at least one other group. sulfate on the osidic cycle.
  • fragment of a nucleic acid according to the invention is meant a nucleotide sequence of reduced length relative to the reference nucleic acid, the nucleic acid fragment having a nucleotide sequence identical to the nucleotide sequence of the reference nucleic acid on the common part.
  • Such fragments of a nucleic acid according to the invention possess at least 12, 15, 18, 20, 25, 30, 35, 40, 45, 50, 60, 100, 150, 200, 300, 400, 500, 500 , 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1510, 1520, or 1528 consecutive nucleotides of the reference nucleic acid, the maximum nucleotide length of a fragment of a nucleic acid according to the invention is of course limited by the maximum nucleotide length of the reference nucleic acid.
  • the present invention relates to a purified 4-O-sulfatase, comprising a polypeptide having at least 50% amino acid identity with the polypeptide of sequence SEQ ID ⁇ , or a biologically active peptide fragment or a variant thereof.
  • the applicant has made a comparison of the amino acid sequence of the known human arylsulfatase B and of the sequence SEQ ID No. 1 and thus determined that the known human arylsulfatase B does not have a significant amino acid homology with the 4-O-sulfatase object of the present invention.
  • the Applicant has also identified a plurality of 4-O-sulphatases having sequence similarities and therefore of function with 4-O-sulphatase of sequence SEQ ID ⁇ , in particular a plurality of 4-O-sulphatases having at least 50% amino acid identity with 4-O-sulphatase SEQ ID NO: 1 sequence.
  • the set of 4-O-sulfatases identified by the applicant constitutes a family of 4-
  • O-sulfatases with common structural and functional characteristics, ie the type of catalyzed reaction and the type of substrate that is transformed.
  • the 4-O-sulfatase family of the invention each member of which has at least 50% amino acid sequence identity with 4-O-sulfatase of SEQ ID ⁇ sequence, includes 4-O-sulfatase comprising polypeptide selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 13.
  • the present invention also relates to biologically active fragments of a polypeptide having at least 50% amino acid sequence identity with 4-O-sulphatase of sequence SEQ ID NO: 1.
  • the present invention also relates to variants of a polypeptide having at least 50% amino acid sequence identity with 4-O-sulfatase of sequence SEQ ID No. 1, and in particular variants of a polypeptide selected in the present invention. group consisting of SEQ ID NO: 1 to SEQ ID NO: 13.
  • a first polypeptide having at least 50% identity with a second reference polypeptide preferably has at least 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%. % 59% 60% 61% 62% 63% 64% 65% 66% 67% 68% 69% 70% 71% 72% 73% 74% 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91% , 92%, 93%, 94%, 95%, 96%, 97%, 97.5%, 98%, 98.3% 98.6%, 99%, or at least 99.6% identity amino acids with said second reference polypeptide.
  • the 4-O-sulfatase object of the invention comprises a polypeptide having at least 50% amino acid identity with the polypeptide of sequence SEQ ID ⁇ . It is specified that the polypeptides of SEQ ID NO: 2 to SEQ ID NO: 12 have at least 66% amino acid identity with the polypeptide of sequence SEQ ID No. 1. It is also specified that the polypeptides of SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO, SEQ ID NO: 8 and SEQ ID NO: 9 have at least 80% identity. in amino acids with the polypeptide of sequence SEQ ID ⁇
  • the 4-O-sulfatase object of the invention comprises a polypeptide having at least 90% amino acid identity with the polypeptide of sequence SEQ ID No. 1. It is specified that the polypeptides of sequences SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO, and SEQ ID NO: 9 have at least 90% amino acid identity with the polypeptide of sequence SEQ ID.
  • amino acid differences between a polypeptide of the invention and the polypeptide of sequence SEQ ID No. 1, when they exist, include:
  • substitution (s) of an amino acid is (are) preferentially in one (or more) “conservative” substitution (s).
  • a “conservative substitution” of an amino acid is the substitution of an amino acid of a given class by an amino acid of the same given class, in which the given class is defined by the physicochemical properties of the side chains of acids amino acids and the high frequency value of said conservative substitution of homologous proteins found in nature.
  • the 4-O-sulfatase object of the invention comprises a polypeptide of sequence SEQ ID ⁇ .
  • This embodiment includes polypeptides which comprise, with respect to the sequence SEQ ID ⁇ , or also with respect to a sequence having at least 50% amino acid identity with the sequence SEQ ID No. 1, one or two sequences in additional amino acids, located indifferently at the N-terminal or C-terminal end of the polypeptide of sequence SEQ ID ⁇ .
  • Some embodiments include polypeptides comprising a single additional amino acid sequence that is located at the N-terminus of SEQ ID ⁇ .
  • Certain other embodiments include polypeptides comprising a single additional amino acid sequence that is located at the C-terminus of SEQ ID ⁇ .
  • the additional sequence (s) have an amino acid length ranging from 1 to 50 amino acids, which includes the additional sequences having 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
  • the additional sequence (s) have less than 20 amino acids in length, for example less than 10 amino acids in length.
  • the additional sequences may be identical or different.
  • the additional sequences include sequences facilitating the purification of a sulfatase according to the invention, for example sequences retained by a chromatographic support, including an immunoaffinity chromatography support, such as a sequence of GST (Glutathione-S- Transferase), an HA antigen sequence (Schneider, C.
  • a polypeptide of the invention comprising the sequence of 4-O-sulphatase SEQ ID ⁇ sequence having a poly-histidine sequence at its C-terminal end is concretely illustrated in the examples.
  • the present invention also encompasses 4-O-sulfatases encoded by a nucleic acid hybridizing, under the stringency conditions defined above, with a nucleic acid encoding the polypeptide of sequence SEQ ID No. 1.
  • the present invention also encompasses 4-O-sulfatases encoded by a nucleic acid hybridizing, under the stringency conditions defined above, with a nucleic acid encoding a polypeptide of sequence chosen from the sequences SEQ ID Nos. 2 to 13.
  • the present invention therefore encompasses 4-O-sulfatases encoded by a nucleic acid hybridizing, under the stringency conditions defined above, with a nucleic acid selected from the nucleic acids of SEQ ID NO: 14 to 26 sequences.
  • polypeptides encompassed by the present invention other than the polypeptide of sequence SEQ ID No. 1, have an enzymatic activity 4-O-sulphatase and a level of 4-O-sulphatase activity of at least 0.1. times the level of activity of the 4-O-sulphatase of sequence SEQ ID No. 1.
  • the polypeptides defined above include those whose level of 4-O-sulfatase activity is at least 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1, 12, 13, 14, 15, 16,
  • the relative level of 4-O-sulphatase activity can be determined by comparing, for a given and identical final amount or concentration respectively, the 4-O-sulphatase of SEQ ID No. 1 of reference and 4-O-sulphatase. comparative sulphatase, and for a given substrate compound and for a given duration of incubation with each of the two enzymes, the amount of final desulfated product generated.
  • the amount of final product generated by the enzymatic reaction is preferably determined by capillary electrophoresis, by calculating the area of the absorbance signal peak at the wavelength of 200 nanometers corresponding to the product generated by the enzymatic reaction, as described in the examples.
  • a chondroitin sulfate compound as described in the examples is preferably used as the substrate.
  • the substrate compound can be used at the final concentration of 1 mg / ml.
  • the value of the ratio between (i) the amount of desulphated end product generated with the compared enzyme and (ii) the amount of desulfated end product generated with the polypeptide of sequence SEQ ID No. 1 is the level of activity of the comparative enzyme tested with respect to the 4-O-sulfatase SEQ ID NO: 1 sequence.
  • the 4-O-sulfatase object of the invention consists of a polypeptide of sequence SEQ ID ⁇ .
  • the 4-O-sulfatase SEQ ID ⁇ sequence has 508 amino acids in length.
  • the sequence of 4-O-sulphatase SEQ ID NO: 1 has the sequence of amino acids of formula (I) "SX1 PX2R" wherein X 1 and X 2 are each independently of one another, amino acid residue.
  • the sequence of formula (I) is located from the Serine residue ("S") at position 84 to the Arginine residue ("R”) at position 88.
  • Serine residue ( "S") undergoes a post-translational modification by conversion to 3-oxoalanine residue, also known as residue C -formylglycine or "FGIy". This post-translational modification of the Serine residue to 3-oxoalanine residue is essential for the catalytic activity of 4-O-sulfatase.
  • Serine residue of the sequence of formula (I) can be carried out by the action of a sulfatase maturation enzyme, which can also be designated “anaerobic sulphatase maturing enzyme” or “anSME", or “atsB” , well known to those skilled in the art, and which has been described in particular by Benjdia et al. (Benjdia et al., 2008, J Biol Chem, Vol 283 (26): 17815-17826) and Berteau et al. (Berteau et al., 2006, J Biol Chem, Vol 281 (32): 22464-22470).
  • a sulfatase maturation enzyme which can also be designated “anaerobic sulphatase maturing enzyme” or “anSME”, or “atsB” , well known to those skilled in the art, and which has been described in particular by Benjdia et al. (Benjdia et
  • the activation of the 4-O-sulfatase SEQ ID No. 1 sequence can also be carried out in different hosts, prokaryotic or eukaryotic, including B. thetaiotaomicron, not requiring the heterologous expression of a system of
  • prokaryotic or eukaryotic including B. thetaiotaomicron
  • methods of chemical activation of sulphatases having a serine residue have also been described in the state of the art and could allow the in vitro activation of the present sulphatase, in particular by the use of vanadyl-type compounds. .
  • the 4-O-sulfatase which is the subject of the invention consists of a polypeptide derived from the polypeptide of sequence SEQ ID ⁇ , in which the Serine residue at position 84 of the sequence SEQ ID ⁇ is replaced by a Cysteine residue.
  • the 4-O-sulfatase object of the invention was cloned and produced in purified form, which means that it represents at least 50% by weight of the proteins contained in the final sample obtained.
  • the 4-O-sulfatase represents from 50% to 100% by weight of the proteins contained in the final sample obtained, said final sample being free from any contamination by any other enzyme capable of desulfating the GAGs.
  • said purified 4-O-sulfatase may also be designated "isolated 4-O-sulfatase".
  • the invention also relates to a composition comprising a 4-O-sulfatase as described above.
  • the composition comprising a 4-O-sulfatase according to the invention is in the form of a liquid composition or a solid composition.
  • Said composition may be in the form of an aqueous solution, and is preferably free from any contamination by any other enzyme capable of desulfating GAGs.
  • the other constituents of the solid or liquid composition essentially comprise one or more constituents chosen from the solvent, generally water or a buffer solution adapted to the preservation of proteins, salts, antibiotics, stabilizing agents, but also solvents. in particular for the solubilization of substrates.
  • the composition comprising a 4-O-sulfatase according to the invention is in the form of a solid composition, including a lyophilized composition.
  • a person skilled in the art can advantageously refer to PCT Application No. WO 03/018778 or PCT Application No. WO 2006 / 079,722.
  • a polypeptide with 4-O-sulfatase activity or a composition comprising said polypeptide is useful as a biological catalyst in a method for synthesizing GAG.
  • a polypeptide with 4-O-sulfatase activity or a composition comprising said polypeptide advantageously complements the currently available enzymatic tools repertoire, which is applicable in particular in the pharmaceutical field, including processes for synthesizing glycosaminoglycans and for determining the presence of 4-O-sulfated glycosaminoglycans in a sample (diagnostic sequencing of GAGs).
  • the invention therefore also relates to a nucleic acid encoding a 4-O-sulfatase as described above.
  • the present invention relates to a nucleic acid comprising a polynucleotide encoding a polypeptide having at least 50% amino acid identity with a polypeptide comprising the polypeptide of sequence SEQ ID No. 1, or a nucleic acid of complementary sequence. It also relates to a nucleic acid comprising a polynucleotide encoding a polypeptide having at least 50% amino acid identity, the polypeptide of sequence SEQ ID No. 1, or a nucleic acid of complementary sequence. It also relates to a nucleic acid encoding a polypeptide having at least 50% amino acid identity with the polypeptide of sequence SEQ ID No. 1, or a complementary nucleic acid.
  • the invention relates to a nucleic acid comprising a polynucleotide encoding a polypeptide selected from the group consisting of the sequences SEQ ID ⁇ to SEQ ID ⁇ 3, or a nucleic acid of complementary sequence.
  • the invention also relates to a nucleic acid encoding a polypeptide selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 3, or a nucleic acid of complementary sequence.
  • the nucleic acid which is the subject of the invention comprises a polynucleotide of sequence SEQ ID No. 14 to SEQ ID No. 26, which respectively codes for the polypeptides of sequences SEQ ID No. 1 to SEQ ID No. 13, or a nucleic acid of complementary sequence.
  • the nucleic acid which is the subject of the invention comprises a polynucleotide of sequence SEQ ID No. 14 or a nucleic acid of complementary sequence.
  • the subject of the present invention is also a nucleic acid having at least 50% nucleotide identity with a nucleic acid chosen from the group consisting of the sequences SEQ ID No. 14 to SEQ ID No. 26, or a complementary sequence nucleic acid. , or a fragment or variant thereof.
  • a first nucleic acid having at least 50% identity with a second reference nucleic acid has at least 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%. % 59% 60% 61% 62% 63% 64% 65% 66% 67% 68% 69% 70% 71% 72% 73% 74% 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91% , 92%, 93%, 94%, 95%, 96%, 97%, 97.5%, 98%, 98.3% 98.6%, 99%, or at least 99.6% identity nucleotides with said second reference nucleic acid.
  • the present invention also relates to a hybridizing nucleic acid, under the highly stringent hybridization conditions as defined above, with a nucleic acid chosen from the group consisting of the sequences SEQ ID No. 14 to SEQ ID No. 26, or a nucleic acid of complementary sequence.
  • a first nucleic acid which hybridizes under the conditions of high stringency above with a second nucleic acid means that the two nucleic acids have complementary sequences having between them a very high level of structural identity.
  • nucleic acids whose nucleotide sequence is complementary to a nucleic acid which hybridizes, under the conditions of high stringency above, with a nucleic acid selected from the group consisting of the sequences SEQ ID No. 14 to SEQ ID No. 26, is a nucleic acid encoding a 4-O-sulfatase polypeptide according to the invention.
  • Nucleic acids which hybridize, under the conditions of high stringency above, with nucleic acid selected from the group consisting of the sequences SEQ ID NO: 14 to SEQ ID NO: 26, can also be used as probes or primers for the detection or the specific amplification of a nucleic acid encoding a 4-O-sulfatase, or a nucleic acid complementary to a polynucleotide encoding a 4-O-sulfatase.
  • nucleic acid fragments derived from any of the nucleotide sequences SEQ ID No. 14 to SEQ ID No. 26 are useful for the detection of the presence of at least one copy of a nucleotide sequence chosen from the SEQ sequences ID N ° 14 at
  • SEQ ID No. 26 or a fragment or a variant thereof in a sample.
  • the probes or nucleotide primers according to the invention comprise at least eight consecutive nucleotides of a nucleic acid chosen from the group consisting of the sequences
  • SEQ ID NO: 14 to SEQ ID NO: 26, or nucleic acid of complementary sequence are SEQ ID NO: 14 to SEQ ID NO: 26, or nucleic acid of complementary sequence.
  • probes or nucleotide primers according to the invention will have a length of 10, 12, 15, 18 or 20 to 25, 35, 40, 50, 70, 80, 100, 200, 500, 1000, 1500 consecutive nucleotides.
  • a nucleic acid according to the invention in particular a nucleic acid of nucleotide sequence selected from the sequences SEQ ID No. 14 to SEQ ID No. 26 or a nucleic acid of complementary sequence.
  • a nucleotide probe or primer according to the invention will consist of and / or comprise fragments with a length of 9, 12, 15, 18, 20, 25, 35, 40, 50, 100, 200, 500, 1000, 1500 consecutive nucleotides of a nucleic acid according to the invention, more particularly a nucleic acid chosen from the sequences SEQ ID No. 14 to SEQ ID No.
  • a probe and a nucleotide primer according to the invention therefore encompasses oligonucleotides which hybridize, under the high stringency hybridization conditions defined above, with a nucleic acid chosen from the sequences SEQ ID No. 14 SEQ ID No. 26 or with a sequence complementary thereto.
  • SEQ ID No. 27 and SEQ ID No. 28 for amplifying a nucleic acid encoding a 4-O-sulfatase, and in particular 4-O-sulfatase of sequence SEQ ID No. 1.
  • Table 1 located at the end of the present description, there are also described pairs of primers that can be used to amplify the nucleic acids encoding each of the polypeptides of SEQ ID NO: 2 to SEQ ID NO: 13; they are the primers of sequences SEQ ID No. 29 to SEQ ID No. 52;
  • the "GGATCC" sequence allows the production of an amplicon which can then be introduced at a BamHI restriction site present in a cloning polysite of a cloning or expression vector.
  • the sequence "CTGCAG” allows the production of an amplicon which can be then introduced at a PSTI restriction site present in a cloning polysite of a cloning or expression vector.
  • the present invention also encompasses nucleotide primers derived from the primers of SEQ ID NO: 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 and 52, in which the sequence "CTGCAG" has been eliminated or is absent.
  • the present invention also encompasses nucleotide primers derived from the primers of SEQ ID NO: 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 and 52, in which the sequence "CTGCAG" has been eliminated or is absent.
  • a primer or a nucleotide probe according to the invention may be prepared by any suitable method well known to those skilled in the art, including by cloning and the action of restriction enzymes or by direct chemical synthesis according to techniques such as the method with the phosphodiester of NARANG et al. (Narang SA, Hsiung HM, Brousseau R, Methods Enzymol 1979, Vol 68: 90-98) or BROWN et al. (Brown EL, Belagaje R, Ryan MJ, Khorana HG, Methods Enzymol 1979, Vol.68: 109-151), the diethylphosphoramidite method of BEAUCAGE et al. (Beaucage et al, Tetrahedron Letf 1981 Vol. 22:. 1859-1862) or the solid support technique described in European Patent Application EP 00 0707592.
  • Each of the nucleic acids according to the invention can be labeled, if desired, by incorporating a detectable label by spectroscopic, photochemical, biochemical, immunochemical or chemical means.
  • such labels may consist of radioactive isotopes ( 32 P, 33 P, 3 H, 35 S), fluorescent molecules (5-bromodeoxyuridine, fluorescein acetylaminofluorene, digoxigenin) or ligands such as biotin.
  • the labeling of the probes is preferably done by incorporation of labeled molecules into the polynucleotides by primer extension, or by addition to the 5 'or 3' ends.
  • oligonucleotide probes according to the invention can be used in particular in Southern hybridizations to genomic DNA or in hybridizations to RNA. corresponding messenger when the expression of the corresponding transcript is sought in a sample.
  • the probes according to the invention can also be used for the detection of PCR amplification products or for the detection of mismatches.
  • Probes or nucleotide primers according to the invention may be immobilized on a solid support.
  • solid supports are well known to those skilled in the art and include surfaces of microtitration plate wells, polystyrene beds, magnetic beds, nitrocellulose strips, or even microparticles such as latex particles.
  • the present invention also relates to a method for detecting the presence of a nucleic acid as described above in a sample, said method comprising the steps of:
  • the oligonucleotide probe (s) are immobilized on a support.
  • the oligonucleotide probes comprise a detectable label.
  • the invention further relates to a kit or kit for detecting the presence of a nucleic acid according to the invention in a sample, said kit comprising:
  • the kit or detection kit is characterized in that the probe or probes are immobilized on a support.
  • the kit or detection kit is characterized in that the oligonucleotide probes comprise a detectable marker.
  • such a kit will comprise a plurality of oligonucleotide probes according to the invention that may be used to detect target sequences of interest or alternatively detect mutations in the coding regions. or the non-coding regions of the nucleic acids according to the invention, more particularly nucleic acids of sequences SEQ ID NO: 14 to SEQ ID NO : 26 or the nucleic acids of complementary sequence.
  • the probes according to the invention immobilized on a support can be ordered in matrices such as "DNA chips".
  • matrices such as "DNA chips".
  • Such ordered arrays have in particular been described in US Patent No. 5,143,854, in PCT Applications Nos. WO 90/150 70 and 92/10092.
  • Support matrices on which oligonucleotide probes have been immobilized at a high density are described, for example, in US Pat. Nos. 5,412,087 and PCT Application No. WO 95/1995.
  • the nucleotide primers according to the invention may be used to amplify any of the nucleic acids according to the invention, and more particularly all or part of a nucleic acid of sequences SEQ ID No. 14 to SEQ ID No. 26, or still a variant of it.
  • Another subject of the invention relates to a method for the amplification of a nucleic acid according to the invention, and more particularly a nucleic acid of sequences SEQ ID No. 14 to SEQ ID No. 26 or a fragment or a variant of it contained in a sample, said method comprising the steps of:
  • the subject of the invention is furthermore a kit or kit for the amplification of a nucleic acid according to the invention, and more particularly all or part of a nucleic acid of sequences SEQ ID No. 14 to SEQ ID No. 26.
  • said kit or kit comprising:
  • a pair of nucleotide primers according to the invention whose hybridization position is located respectively on the 5 'and the 3' side of the target nucleic acid whose amplification is sought;
  • kit or amplification kit will advantageously comprise at least one pair of nucleotide primers as described above.
  • the cloning of the 4-O-sulfatase which is the subject of the invention can be carried out according to conventional methods of genetic engineering involving the amplification of the gene by PCR, its digestion with restriction enzymes specific for the primers used and its ligation in different vectors. previously digested by the same enzymes.
  • the nucleic acid object of the invention which encodes a 4-O-sulfatase as described above, can be amplified by PCR using specific primers, and then purified. It can then be introduced into an expression cassette, using specific restriction enzymes and a ligation step.
  • the invention therefore also relates to a 4-O-sulfatase expression cassette, comprising a nucleic acid as described above.
  • nucleic acid according to the invention may be inserted into a vector for cloning purposes or for expression purposes.
  • an expression cassette according to the invention will comprise in particular the following elements:
  • regulatory elements for expression of the nucleic acid to be inserted such as promoters and "enhancers"
  • an expression cassette comprising a nucleic acid according to the invention are described more particularly in relation to the recombinant vectors of the invention which comprise at least one expression cassette.
  • nucleic acid according to the invention may be inserted into a vector for cloning purposes or for expression purposes.
  • Said expression cassette, or directly said nucleic acid can then be introduced into a recombinant vector, for the expression of the 4-O-sulfatase object of the invention in a host cell.
  • the invention therefore also relates to a recombinant vector, comprising a nucleic acid as described above or an expression cassette as described above.
  • the invention also relates to a recombinant vector comprising a nucleic acid, or an expression cassette, encoding a pure 4-0-sulfatase polypeptide, a fragment or a variant of this polypeptide, optionally fused with a heterologous polypeptide and for which said nucleic acid has been artificially inserted into the vector.
  • such a recombinant vector will comprise a nucleic acid chosen from the following nucleic acids:
  • nucleic acid encoding a polypeptide having an amino acid sequence selected from the group of SEQ ID NO: 1 to SEQ ID NO: 13 or a fragment or variant thereof, optionally fused to a heterologous polypeptide;
  • nucleic acid comprising a polynucleotide selected from the sequences SEQ ID No. 14 to SEQ ID No. 26, or a fragment or a variant thereof; c) a nucleic acid having at least 95% nucleotide identity with a nucleic acid selected from the group consisting of SEQ ID NO: 14 to SEQ ID NO: 26 or a fragment or variant thereof;
  • nucleic acid hybridizing under high stringency hybridization conditions, with a nucleic acid of sequences SEQ ID No. 14 to SEQ ID No. 26, or a fragment or a variant thereof.
  • vector will be understood to mean a circular or linear DNA or RNA molecule which is indifferently in the form of a single-stranded or double-stranded form.
  • a recombinant vector according to the invention is used in order to amplify the nucleic acid inserted therein after transformation or transfection of the desired cellular host.
  • these are expression vectors comprising, in addition to a nucleic acid according to the invention, regulatory sequences making it possible to direct the transcription and / or translation thereof, that is to say the polynucleotide elements constituting an expression cassette according to the invention.
  • a recombinant vector according to the invention will comprise in particular the following elements constituting an expression cassette according to the invention:
  • regulatory elements for expression of the nucleic acid to be inserted such as promoters and enhancers
  • the regulatory elements for the expression of a polynucleotide encoding a 4-O-sulfatase of the invention include functional promoters in prokaryotic cells and functional promoters in eukaryotic cells, including functional promoters in yeast cells.
  • Functional promoters in prokaryotic cells include the phage lambda "int” promoter, the CAT promoter of the chloramphenicol acetyl transferase gene, the "right” (P R ) and “left” (P L ) promoters of bacteriophage lambda, and that the trp, recA, lacZ, lacl and gal promoters of E. coli, well known to those skilled in the art.
  • Glick Glick, 1987, J. Ind., Microbiol., Vol.1: 277-282).
  • the expression cassette or the expression vector also advantageously comprises a ribosome binding site, which is preferably located upstream; say 5 ', relative to the open reading frame encoding 4-O-sulfatase.
  • Ribosome binding sites include those described by Gold et al. (Gold et al., 1981, Ann Rev. Microbiol., Vol 35: 365-404).
  • a nucleic acid encoding a polypeptide of the invention is inserted into a recipient vector, said recipient vector already comprising one or more of the elements chosen from the elements of regulation, the initiation sequences and the translation stop sequences above.
  • the expression cassette does not pre-exist in the nucleic acid that is inserted into the recipient vector.
  • the expression cassette is present in the recombinant vector, after insertion at the appropriate place of the nucleic acid encoding a polypeptide according to the invention.
  • the nucleic acid which may also be called the DNA insert, comprises said expression cassette.
  • the insertion of the DNA insert consists of the insertion of the expression cassette of interest.
  • the recombinant vectors according to the invention may include one or more origins of replication in cell hosts in which their amplification or expression is sought, marker genes or selection marker genes.
  • the polynucleotide encoding a 4-O-sulfatase is placed under the control ("operably linked to") of the various regulatory elements of transcription or translation. .
  • the 4-O-sulfatase polypeptides of the invention consist of, or originate from, polypeptides produced in bacterial cells.
  • the polypeptides of the invention can therefore be produced in recombinant form without inconvenience in bacterial cells. Because these polypeptides do not include specific glycosylation patterns, they can also be produced quite satisfactorily in eukaryotic cells, including yeast cells or mammalian cells.
  • the bacterial promoters include the LacI, LacZ promoters, the T3 or T7 bacteriophage RNA polymerase promoters, the PR promoters, or the phage lambda PL promoters.
  • Eukaryotic cell promoters include the HSV thymidine kinase promoter or the mouse L-metallothionein promoter.
  • the preferred bacterial vectors according to the invention are for example the pBR322 (ATCC37017) pUC18 (ATCC 37253), pUC19c (ATCC 37254) or vectors vectors. such as pAA223-3 (Pharmacia, Uppsala, Sweden), and pGEM1 (Promega Biotech, Madison, WI, USA).
  • vectors pQE70, pQE60, pQE9 Qiagen
  • psiX174 pBluescript SA
  • pNH8A pNH16A
  • pNH18A pNH46A
  • pWLNEO pSV2CAT
  • pOG44 pOG44
  • pXTI pSG
  • baculovirus-type vectors such as the vector pVL1392 / 1393 (Pharmingen) used to transfect the cells of the Sf9 line (ATCC No. RL 171 1) derived from Spodoptera frugiperda.
  • adenoviral vectors such as human adenovirus type 2 or
  • a recombinant vector according to the invention may also be a retroviral vector or an adeno-associated vector (AAV).
  • AAV adeno-associated vector
  • adeno-associated vectors are for example described by FLOTTE et al. (Flotte et al., 1992, Am J Respir Cell Mol Bioi, Vol 7: 349-356), SAMULSKI et al. (Samulski et al., 1989, J. Virol., Vol 63: 3822-3828), or McLAUGHLIN BA et al. (Samulski et al., 1989, J. Virol., Vol 63: 3822-3828).
  • the examples describe the preparation of a recombinant vector for the expression of a 4-O-sulfatase in E. coli.
  • said recombinant expression vector comprises in its sequence both (i) an expression cassette encoding 4-O-sulfatase and (ii) an expression cassette encoding an aging enzyme of the "anSME" type.
  • the transfection of bacterial cells, and in particular of E. coli cells, with such recombinant vectors makes it possible to carry out in an autonomous manner, that is to say indifferently of the type of transfected bacterial cell, the production of the 4- O-sulfatase of interest and its activation by maturation using the enzyme anSME which is simultaneously produced in the same bacterial cell.
  • the invention also relates to a recombinant host cell that has been artificially transfected or transformed with a nucleic acid or a recombinant vector as defined above.
  • a recombinant host cell according to the invention is a eukaryotic cell, and most preferably a recombinant human host cell.
  • the preferred host cells according to the invention are for example the following:
  • prokaryotic host cells Escherichia coli strains, Bacillus subtilis, Salmonella typhimurium, or strains of species such as Pseudomonas, Streptomyces and Staphylococus.
  • a bacterium selected from Bacillus subtilis (Palva et al., (1982) Proc Natl Acad Sci USA 79: 5582, EP 0 036 259 and EP 0 063 953, WO 84/04541) may also be used; Escherichia coli (Shimatake et al., (1981) Nature 292: 128, Amann et al (1985) Gene 40: 183, Studier et al (1986) J.
  • HeLa cells ATCC N ⁇ € CL2
  • Cv 1 cells ATCC N q CCL70
  • COS cells ATCC No. CRL 1650
  • Sf-9 cells ATCC N ⁇ € RL 171 1
  • CHO cells ATCC No. CCL-61
  • 3T3 cells ATCC No. CRL-6361.
  • BHK Boby Hamster Kidney
  • BHK tk " ts13 (CRL 10314, Waechter and Baserga, Proc Natl Acad Sci USA 79: 1 106-1 1 10, 1982)
  • CHO ATCC CCL 61
  • COS-1 ATCC CRL 1650
  • HEK293 ATCC CRL 1573, Graham et al., J. Gen.
  • yeast cells selected from Candida (Kurtz et al (1986) Mol Cell Biol 6: 142, Kunze et al (1985) J. Basic Microbiol 25: 141), Hansenula (Gleeson et al. 1986) J. Gen. Microbiol 132: 3459, Roggenkamp et al (1986) Mol Gen. Genet 202: 302), Kluyveromyces (D as et al. (1984) J. Bacteriol. 158: 1,165; From Louvencourt et al. (1983) J. Bacterial. 154: 1,165; Van den Berg et al.
  • recombinant polypeptide any polypeptide according to the invention obtained from a transformed cell or from a genetically modified organism, that is to say from a microorganism, or from a eukaryotic cell, including yeast cells, insect cells, mammalian cells or plant cells.
  • a recombinant polypeptide of the invention is derived from the transcription and then the translation of a DNA molecule encoding said polypeptide according to the invention and produced by a recombinant cell.
  • a recombinant polypeptide of the invention can be obtained by means of standard techniques, well known to those skilled in the art, allowing the expression of a recombinant protein in a biological system.
  • the present invention also relates to a method for producing a recombinant polypeptide according to the present invention comprising the following steps:
  • step b) culturing the transformed cell obtained in step a) so that the cell expresses said recombinant polypeptide
  • step b) purifying said recombinant polypeptide expressed by the transformed cell cultured in step b).
  • the transformed cell is cultured in a suitable medium enabling it to express a polypeptide according to the invention.
  • the culture media used are chosen on purpose by the skilled person depending on the cultured cells. Suitable media for cell culture include IMDM (Iscove's Modified Dulbecco's Medium), DMEM (Dulbecco's Modified Eagle Medium), RPMI 1640 or others. These culture media are mainly composed of inorganic salts, amino acids, vitamins and other components, in particular glucose for its energy supply and HEPES for its buffering capacity, basic supplements such as in particular amino acids, minerals, trace elements, specific molecular complements of growth and metabolic activities for each cultured cell type etc.
  • said host cells are transfected with both (i) an expression cassette encoding 4-O-sulfatase and (ii) an expression cassette encoding an enzyme. maturation type "anSME".
  • said host cells can be transfected with both (i) an expression cassette encoding the 4-O-sulfatase variant and (ii) ) an expression cassette encoding an "anSME” or FGE-type processing enzyme (Dierks et al., 2005 Cell 121, 541-552, Carlson et al., 2008 J Biol Chem 283, 201 17-20125).
  • each of the two expression cassettes is included in a specific vector and the recombinant host cell of the invention is obtained after transfection by each of the two distinct expression vectors.
  • the two expression cassettes are inserted appropriately into the same container vector, to obtain a recombinant vector in which the two expression cassettes are present, said final vector then being used to transfect host cells and obtain recombinant host cells according to the invention.
  • This second alternative is illustrated in the examples.
  • the 4-O-sulfatase object of the invention can be used in particular as a tool for engineering GAGs.
  • the action of the 4-O-sulfatase which is the subject of the invention is described in FIG. 2. It is a selective desulfation action at the 4-position of a saccharide cycle of a GAG.
  • the purified 4-O-sulfatase which is the subject of the invention, or the composition comprising a 4-O-sulphatase as described above is used in a process for synthesizing a GAG .
  • the GAG that it is desired to synthesize is a chondroitin disaccharide.
  • Example 4 An example of use of a purified 4-O-sulfatase object of the invention in a process for synthesizing a chondroitin disaccharide is given in Example 4.
  • the purified 4-O-sulfatase object of the invention or the composition comprising a 4-O-sulfatase as described above, is used in a method for determining the presence of a sulfated GAG 4-0- in a sample.
  • sample means a solution containing at least one
  • the 4-O-sulfated GAG whose presence is to be determined in a sample is a chondroitin disaccharide.
  • Example 5 An example of using a purified 4-O-sulfatase object of the invention in a method for determining the presence of a 4-O-sulphated chondroitin disaccharide in a sample is given in Example 5.
  • the invention also relates to a method for synthesizing a GAG, comprising a step of reaction of a GAG with a 4-O-sulfatase as described above.
  • Said 4-O-sulphatase may be included in a composition as described above.
  • the invention is therefore also related to a process for synthesizing a GAG compound comprising the following steps:
  • the GAG precursor compound used is a precursor comprising sulphated alcohols functions on the oside rings, which is to be specifically desulfated at the 4-position.
  • a selective desulfation step of said precursor will be carried out by incubating it with the 4-O-sulfatase of the invention.
  • the term "precursor" means an osidic unit comprising from one to more than 100 saccharide units, naturally occurring or not present in GAGs, and in which at least one saccharide unit comprises an O-sulfate group at the 4-position.
  • the GAG that it is desired to synthesize is a chondroitin disaccharide, desulfated at the 4-position of the saccharide units that constitute it.
  • the precursor GAG compound which is reacted with a 4-O-sulfatase as described above is a chondroitin disaccharide.
  • the GAG precursor compound is preferably in the form of a solution containing said precursor in dissolved form, at a final concentration suitable for carrying out the desulfation reaction in the presence of 4-O-sulfatase. .
  • the final concentration of precursor compound will determine in particular the time required for the complete hydrolysis of the 4-O-sulphate groups of the molecules of the GAG precursor compound by 4-O-sulphatase.
  • step b) the GAG precursor compound is incubated with 4-O-sulphatase which is at a final concentration suitable for effecting the hydrolysis of the 4-O-sulphate groups of the GAG precursor compound molecules.
  • step b) of the GAG synthesis method above 4-O-sulphatase is used in concentrated form, that is to say at a final concentration greater than 1 mg / ml, we obtain in step c) a final product GAG in which all the sulfate groups at the 4-position of the saccharide units have been hydrolysed.
  • step b) of the GAG synthesis method above 4-O-sulphatase is used at a low concentration, that is to say at a concentration of less than 0.5 mg / ml, one obtains step c) a GAG final product desulfated at position 4 only on unsulfated sugar units at position 6
  • the duration of step b) varies with (i) the final concentration of GAG precursor compound and (ii) the final concentration 4-O-sulfatase.
  • the step of selective desulphating of a GAG with a 4-O-sulphatase as described above can be carried out in particular under the following operating conditions: 1 ⁇ l of the enzymatic solution of 4-O-sulphatase is added to a buffer solution Tris / 34 mM HCI pH 7.5 containing the oligosaccharide or oligosaccharides to be desulfated. Incubation is carried out at 25 ° C. At regular intervals samples are taken. Preferably, the reaction mixture is continuously analyzed to control the rate of desulfation. The reaction is then stopped when there is no further evolution of the products in the reaction mixture.
  • the composition of GAGs in the reaction mixture is analyzed in step b) in order to monitor the degree of progress of the hydrolysis of the sulfate groups in position 4 and thus to stop the reaction when the results of The analysis revealed that all the molecules of the GAG precursor compound were enzymatically transformed.
  • the analysis of the reaction mixture, during step b) of the above synthesis method can be carried out according to the capillary electrophoresis technique, which is described below for the implementation of a method of determination of the presence of a 4-O-sulfated GAG in a sample.
  • the final GAG product is preferably recovered by purification, according to any known purification technique well known to those skilled in the art.
  • a 4-O-sulfatase of the invention may be used in a method for analyzing a composition comprising GAGs compounds, and more particularly in a method for determining the presence of GAGs compounds.
  • 4-0- sulfated in such a composition 4-0- sulfated in such a composition.
  • the invention also relates to a method for determining the presence of a 4-0-sulfated GAG in a sample, comprising the following steps:
  • the term "effective amount” is intended to mean an appropriate amount of enzyme, easily determinable by those skilled in the art, allowing the removal of more than 5% of the sulfate groups from the control incubated without enzyme.
  • Said 4-O-sulphatase may be included in a composition as described above.
  • the 4-O-sulfated GAG is a chondroitin disaccharide.
  • Step (b) of said process may be carried out according to any analytical technique known to those skilled in the art of sugar chemistry.
  • the analysis of the product obtained in step (a) of said process is carried out by mass spectrometry, capillary electrophoresis, thin layer chromatography, HPLC, NMR or any other type of analyzes.
  • step b) consists of an analysis of the reaction mixture according to the capillary electrophoresis technique, with detection of peaks at the wavelength of 200 nanometers.
  • a volume of 1 ⁇ of B. thetaiotaomicron VPI-5482 genomic DNA was mixed with two nucleotide primers (10 ⁇ l) specifically targeting the BT3349 gene (Seq ID ⁇ ) according to a standard protocol, using the following primer pair :
  • the sequence "GGATCC" of the primer Go above allows the production of an amplicon which can then be introduced at a site of BamHI restriction present in a cloning polysite of a cloning or expression vector.
  • the sequence "CTGCAG" of the primer Return above allows the production of an amplicon which can then be introduced at a PSTI restriction site present in a cloning polysite. of a cloning or expression vector.
  • the following amplification cycle was carried out: 1 min of denaturation at 95 ° C., 1 min of hybridization at 55 ° C. and 1 min of elongation at 72 ° C., said cycle being repeated 25 times.
  • PCR product thus obtained was purified using the "QIAquick PCR Purification Kit” kit from Qiagen (Courtaboeuf, France) according to the manufacturer's recommendations.
  • the DNA thus amplified was ligated into a pGEMT plasmid according to the pGEMT-Easy kit (Promega). After transformation of E. coli DH5 ⁇ , several transformants were selected on LB + Ampicillin medium (100 ⁇ g / ml) and the plasmids were extracted and sequenced according to standard molecular biology techniques.
  • a plasmid containing the sequence SEQ ID No. 14 and the two restriction sites was then digested with the BamHI / PstI enzymes and the thus digested sulfatase gene was purified on an agarose gel using the QIAquick Gel Extraction Kit ( Qiagen) according to the manufacturer's instructions.
  • the amplicon was then cloned into site 1 of a pRSF vector in which the nucleic acid encoding anSME in site 2 had already been inserted, using the same procedure as the 4-O-sulfatase gene.
  • the anSME of Clostridium perfringens or the anSME of B. thetaiotaomicron described in Benjdia et al., 2008, J Biol Chem, Vol. 283 (26): 17815-17826 have been used to successfully activate 4-O-sulfatase (See Figure 4).
  • the map of the final recombinant vector comprising (i) an expression cassette coding for 4-O-sulfatase of sequence SEQ ID No. and (ii) an expression cassette encoding the enzyme anSME is shown in FIG. of the vector is the sequence SEQ ID No. 53.
  • the final recombinant vector designated pRSF-4Sulf-anSME, was used to transfect E. coli cells of strain BL21 (DE3) (Andreishcheva et al., 2006, Gene, Vol 384: 13-1-19). expressing the T7 polymerase gene, according to a standard protocol described in (Sambrook, J., Fritsch, EF and Maniatis, T. (1989), Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. .), which allows the expression of the two genes cloned respectively in sites 1 and 2.
  • the recombinant 4-O-sulfatase produced by recombinant E. coli BL21 (DE3) cells obtained as described above was purified by its histidine tag (6-His) on a column of Ni NTA agarose (Qiagen). ) according to the manufacturer's recommendations.
  • the sulfatase was eluted specifically by applying Tris / HCl buffer pH 7.5 containing 500 mM imidazole.
  • the applicant has identified a family of polypeptides having at least 50% amino acid identity with 4-O-sulphatase of Bacteroides thetaiotaomicron SEQ ID No. 1. These are the polypeptides of SEQ ID NO: 2 sequences. at SEQ ID NO: 13.
  • composition of each of the 2 ⁇ 1 -4 ⁇ and 3 ⁇ 1 -4 ⁇ libraries is shown in Figure 1 of Lubineau et al. (1999), which is reproduced in Figure 6 of the present description.
  • the 4 disaccharide compounds of the chondroitin sulfate type contained in the 2 ⁇ 1 -4 ⁇ and 3 ⁇ 1 -4 ⁇ libraries were separated and identified by capillary electrophoresis, using an Agilent apparatus equipped with a capillary 72 cm in length, of inner diameter 50 ⁇ .
  • the capillary is washed with 1 N sodium hydroxide and water and filled with 20 mM borate buffer at pH 9.3.
  • the electrophoresis test is performed by applying a constant voltage of 30 kV. Peak detection is monitored at the wavelength of 200 nm.
  • 1 to 2 nanoliters of a 1 mg / ml solution of the compounds of the 2 ⁇ 1 -4 ⁇ chemical library or of the 3 ⁇ 1 -4 ⁇ chemio partner are injected.
  • Figure 7 illustrates the separation profile and the identification of the 4 disaccharide compounds contained in Chemiogen 2 ⁇ 1-4 ⁇ .
  • Figure 8 illustrates the separation profile and the identification of the 4 disaccharide compounds contained in Chemical Library 3 ⁇ 1-4 ⁇ . Specificity of 4-O-sulfatase
  • Enzymatic reaction assays were performed with 6 microliters of a solution of 2 ⁇ 1 -4 ⁇ or 3 ⁇ 1 -4 ⁇ at 15 mg / mL, 68 microliters of 34 mM Tris buffer pH7.5 and 1 microliter of the enzymatic solution of recombinant 4-O-sulfatase.
  • FIG. 9 illustrates the profile of compounds obtained after subjecting the compounds of Chemio expertise 2 ⁇ 1 -4 ⁇ to the action of 4-O-sulphatase in a concentrated form
  • FIG. 10 illustrates the profile of compounds obtained after having subjected the compounds of Chemio expertise 3 ⁇ 1 -4 ⁇ to the action of 4-O-sulphatase in a concentrated form
  • FIG. 11 illustrates the profile of compounds obtained after having subjected the compounds of Chemio expertise 2 ⁇ 1 -4 ⁇ to the action of 4-O-sulfatase in a 50-fold diluted form
  • FIG. 12 illustrates the profile of compounds obtained after having subjected the compounds of Chemio expertise 3 ⁇ 1 -4 ⁇ to the action of 4-O-sulfatase in a 50-fold diluted form.
  • results presented in this example show that the cloned and purified sulphatase, after activation by the enzyme anSME, specifically catalyzes the hydrolysis of sulfate groups carried on the 4-acetyl-galactosamine residues.
  • this enzyme is inactive with respect to residues in position 6 and 2.
  • the enzyme thus identified thus has a strict specificity with respect to the 4-position and constitutes a new enzyme capable of selectively modifying the GAGs.
  • various disaccharides of chondroitin representing the different possible combinations of sulphation have been brought into contact with the purified 4-O-sulphatase which is the subject of the invention.
  • Figure 3 recalls the series of oligosaccharides tested in this example and specifies the action of the 4-O-sulfatase object of the invention which was observed thereon.
  • a disaccharide compound of the chondroitin sulfate type synthesized as described by Lubineau et al is placed in the presence of a solution of 4-O-sulphatase in Tris / HCl buffer pH 10.5 pH 7.5 at 25 ° C.
  • the desulfation reaction is followed by capillary electrophoresis, using an Agilent apparatus equipped with a capillary 72 cm in length, inside diameter 50 ⁇ .
  • the capillary is washed with 1 N sodium hydroxide and water and filled with 20 mM borate buffer at pH 9.3.
  • the electrophoresis test is carried out by injecting 1 nanoliter of the enzyme mixture and applying a constant voltage of 30 kV. Peak detection is monitored at the wavelength of 200 nm.
  • Example 5 Use of purified 4-O-sulfatase in a method for determining the presence of a 4-O-sulfated chondroitin disaccharide in a sample
  • the 2 ⁇ 1 -4 ⁇ and 3 ⁇ 1 -4 ⁇ libraries consisting of four disaccharides, only two of which are sulphated in the 4-position of ⁇ -acetylglucosamine, are subjected to the action of 4-O-sulphatase.
  • Enzymatic reaction assays were performed with 6 microliters of a solution of 2 ⁇ 1 -4 ⁇ or 3 ⁇ 1 -4 ⁇ at 15 mg / mL, 68 microliters of 34 mM Tris buffer pH7.5 and 1 microliter of the Recombinant 4-O-sulfatase
  • the reaction is analyzed by capillary electrophoresis, using an Agilent apparatus equipped with a capillary 72 cm long, with an inner diameter of 50 ⁇ .
  • the capillary is washed with 1 N sodium hydroxide and water and filled with 20 mM borate buffer at pH 9.3.
  • the electrophoresis test is carried out by applying a constant voltage of 30 kV after injection of 1 nanoliter of the reaction. Peak detection is monitored at the wavelength of 200 nm.
  • the enzyme is capable in a mixture of several compounds of only desulfating compounds having a 4-sulfate N-acetylglucosamine.
  • Nucleic acid encodes the polypeptide of sequence SEQ ID NO: 1
  • Nucleic acid encodes the polypeptide of sequence SEQ ID NO: 2
  • Nucleic acid encodes the polypeptide of sequence SEQ ID NO: 3
  • Nucleic acid encodes the polypeptide of sequence SEQ ID NO: 4
  • Nucleic acid encodes the polypeptide of sequence SEQ ID NO: 5
  • Nucleic acid encodes the polypeptide of sequence SEQ ID NO: 6
  • Nucleic acid encodes the polypeptide of sequence SEQ ID NO: 7
  • Nucleic acid encodes the polypeptide of sequence SEQ ID NO: 8
  • Nucleic acid encodes the polypeptide of sequence SEQ ID NO: 9
  • Nucleic acid encodes the polypeptide of sequence SEQ ID NO: 10
  • Nucleic acid encodes the polypeptide of sequence SEQ ID NO: 1
  • Nucleic acid encodes the polypeptide of sequence SEQ ID NO: 12
  • Nucleic acid encodes the polypeptide of sequence SEQ ID NO: 13

Abstract

L'invention se rapporte à une 4-O-sulfatase purifiée, comprenant un polypeptide ayant au moins 50% d'identité en acides aminés avec le polypeptide de séquence SEQ ID N °1 tel que défini dans la description.

Description

SULFATASE MODIFIANT SELECTIVEMENT LES GLYCOSAMINOGLYCANES
DOMAINE DE L'INVENTION
L'invention se rapporte aux domaines de la synthèse des glycosaminoglycanes et de la détection de leur présence dans un échantillon.
ETAT DE LA TECHNIQUE
Les glycosaminoglycanes (GAGs) sont des polysaccharides essentiels au bon fonctionnement du corps humain.
En effet, les GAGs sont impliqués dans de très nombreuses fonctions biologiques, depuis la coagulation jusqu'aux processus de communication cellulaire. Ils jouent également un rôle majeur dans de nombreuses pathologies telles que le cancer, les maladies dégénératives, l'athérosclérose, etc. Il a ainsi déjà été identifié plus d'une centaine de protéines capables d'interagir avec les GAGs.
Ces polysaccharides revêtent par conséquent un intérêt majeur dans les domaines pharmaceutique, cosmétique mais également alimentaire.
Les GAGs forment une famille de polysaccharides hétérogènes, divisée en cinq sous- familles : les chondroïtines, le dermatane, l'acide hyaluronique, le kératane et la famille des héparanes sulfates/héparine. Ces sous-familles de GAGs ont des localisations et des rôles distincts dans le corps humain. Ainsi les chondroïtines sont localisées principalement dans les os et les cartilages, où elles ont un rôle mécanique, tandis que les héparines sont retrouvées à l'intérieur des artères, où elles exercent une fonction d'agent anti-coagulant.
Les GAGs sont constitués d'une unité disaccharidique répétitive basée (i) soit sur un motif de /V-acétyl-hexosamine et d'hexose, (ii) soit sur un motif de /V-acétyl-hexosamine et d'acide uronique. Les différents cycles osidiques sont reliés entres eux uniquement par des liaisons 1 -4 ou 1 -3.
En dépit de cette structure relativement simple, les GAGs possèdent une hétérogénéité structurelle et fonctionnelle considérable. En effet, le squelette des GAGs est hautement fonctionnalisé avec des groupements acétyle et un motif complexe de sulfatation, avec des groupes sulfate localisés sur une ou plusieurs des positions 2, 3, 4 et 6 de chaque unité d'oside, ainsi que sur les fonctions aminés de ces molécules.
La majorité des fonctions biologiques exercées par les divers GAGs sont liées à leur type de sulfatation (taux de sulfatation du polysaccharide, position(s) des groupements sulfate sur les cycles osidiques). On sait que les groupements sulfate confèrent aux GAGs une forte charge négative. Les groupements sulfate ont également un rôle dans la conformation des GAGs et sur la capacité des GAGs à interagir avec de nombreux facteurs biologiques, tels que par exemple les enzymes et les facteurs de croissance.
Bien que les GAGs soient les polysaccharides les plus utilisés dans les domaines pharmaceutique et cosmétique, et que leur utilisation dans le domaine des additifs alimentaires soit également croissante, seuls quelques GAGs sont aujourd'hui retrouvés dans le commerce. Les GAGs qui sont commercialisés sont principalement, sinon exclusivement, des héparines, de l'acide hyaluronique et des chondroïtines. Ces polysaccharides trouvent un nombre croissant d'applications et représentent un marché mondial de plusieurs milliards d'euros. Toutefois, leur développement industriel est encore limité par les nombreuses difficultés liées à leur synthèse et à leur caractérisation physico-chimique.
Du fait de leur nature osidique, les GAGs sont des molécules difficiles à synthétiser. Les oses possèdent en effet de nombreux groupes hydroxyle de réactivités similaires ce qui rend difficile, dans les procédés de synthèse des GAGs, les étapes d'ajout ou d'élimination de groupements sulfate et oblige à recourir à des stratégies complexes de couplage et d'élimination de groupements protecteurs variés et de structure complexe. En outre, ces stratégies de synthèse de GAGs mettant en oeuvre des étapes de couplage et d'élimination de groupements protecteurs ont bien entendu une incidence significative sur la durée, le rendement et les coûts des procédés de synthèse.
L'obtention de GAGs avec de bons rendements et de manière sélective peut être réalisée par des procédés de synthèse chimioenzymatique, dans lesquels sont combinées des étapes de synthèse chimique et des étapes de modification enzymatique. Toutefois, il existe actuellement peu d'outils enzymatiques disponibles, et notamment peu d'enzymes susceptibles d'être utilisées pour contrôler des étapes de sulfatation sélective ou de désulfatation sélective des GAGs.
Egalement, la caractérisation physico-chimique des GAGs inclut la détermination de leur type de sulfatation. Le type de sulfatation d'un GAG particulier peut être déterminé par des essais de désulfatation. Des enzymes catalysant la désulfatation sélective des GAGs à une position spécifique de l'unité osidique, parmi les positions 2, 3, 4 et 6 peuvent être utilisées en combinaison avec la détection/quantification des oses désulfatés ou des sulfates libérés après hydrolyse.
Dans l'état de la technique, on connaît les sulfatases, qui constituent une famille d'enzymes hautement conservée du point de vue structurel et fonctionnel, notamment dans leur partie N-terminale. Cette famille d'enzymes est décrite notamment comme la famille PFAM : PF00884 (voir par exemple à l'adresse http://pfam.sanger.ac.uk/family?acc=PF00884).
Certaines sulfatases sont potentiellement impliquées dans la modification des GAGs. A la connaissance du demandeur, seule une 2-O-sulfatase ayant une activité sélective de désulfatation des GAGs a été clonée et caractérisée, comme cela est décrit dans le brevet n ° US 7,247,445.
Des auteurs ont décrit une activité de désulfatation sélective de la chondroïtine en position 4 et en position 6 chez la bactérie Proteus vulgaris (voir K. Sugahara et al., 1996, Eur. J. Biochem., 239(3) :865-870). Toutefois, les enzymes responsables de cette activité, que ces auteurs ont désignées respectivement chondro-4-sulfatase et chondro-6-sulfatase, n'ont pas été clonées, et leur séquence respective n'a pas été déterminée. On connaît aussi une enzyme humaine ayant une activité chondro-4-sulfatase qui est l'arylsulfatase B (Numéro d'accès, par exemple dans la base de données d'enzymes « ExPASy » : P15848). Il existe par conséquent un besoin d'identifier de nouvelles sulfatases, plus faciles à produire et présentant de nouvelles spécificités, utilisables pour la désulfatation sélective des GAGs, y compris à des fins de synthèse ou à des fins de caractérisation des GAGs. RESUME DE L'INVENTION
La présente invention est relative à une 4-O-sulfatase purifiée capable d'hydrolyser sélectivement les groupements sulfate présents en position 4 de résidus de N- acétylgalactosamine substitutés ou non.
En particulier, l'invention a pour objet une 4-O-sulfatase comprenant un polypeptide ayant au moins 50 % d'identité en acides aminés avec le polypeptide de séquence SEQ ID N ° 1 , ou encore un fragment ou un variant dudit polypeptide.
L'invention est aussi relative à des acides nucléiques codant ladite 4-O-sulfatase, ainsi qu'à des cassettes d'expression et des vecteurs et cellules hôtes recombinants comprenant au moins un acide nucléique codant ladite 4-O-sulfatase.
La présente invention concerne aussi l'utilisation de la 4-O-sulfatase ci-dessus, ou d'acides nucléiques codant ladite 4-O-sulfatase, dans des procédés de synthèse de glycosaminoglycanes (GAGs).
La présente invention a également trait à l'utilisation de la 4-O-sulfatase ci-dessus, ou d'acides nucléiques codant ladite 4-O-sulfatase, dans des procédés de détermination de la présence de glycosaminoglycanes 4-O-sulfatés dans un échantillon.
BREVE DESCRIPTION DES DESSINS
La Figure 1 présente la structure chimique des différentes sous-familles de la famille des GAGs, respectivement de gauche à droite et du haut vers le bas de la Figure 1 : Chondroïtine, Dermatane, Hyaluronate, Héparine et Kératane sulfate ; n est un nombre entier qui représente le nombre de motifs dans la molécule polymère finale.
La Figure 2 décrit schématiquement la réaction catalysée par la 4-O-sulfatase, objet de l'invention.
La Figure 3 présente la librairie des oligosaccharides testés dans les exemples et précise l'action de la 4-O-sulfatase objet de l'invention qui a été observée sur ceux-ci. Une flèche barrée signifie que la 4-O-sulfatase ne réagit pas avec le groupe sulfate cible. Une flèche normale signifie que la 4-O-sulfatase catalyse une réaction de désulfatation sur le groupe sulfate cible.
La Figure 4 représente la carte du plasmide pRSF dans lequel ont été clonés (i) l'acide nucléique codant la 4-O-sulfatase et (ii) l'acide nucléique codant une enzyme de maturation des sulfatases (nommée anSME). La séquence du plasmide recombinant est référencée comme la séquence SEQ ID N° 53. Dans le plasmide de séquence SEQ ID N° 53, (i) la séquence codant la 4-O-sulfatase débute au nucléotide en position 1 13 et se termine au nucléotide en position 1639 et (ii) la séquence codant l'enzyme de maturation anSME débute au nucléotide en position 1809 et se termine au nucléotide en position 2921. La Figure 5 représente un cliché d'un gel d'électrophorèse SDS PAGE (12%).
- Piste « MW » : Marqueurs de poids moléculaires
- Piste 1 : Induction de l'expression de la sulfatase et de l'enzyme de maturation (anSME) chez E. coli
- Piste 2 : Surnageant protéique
- Piste 3 : 4-O-Sulfatase purifiée
La Figure 6 illustre les composés disaccharidiques de type chondroitine sulfate contenus dans chacune des chimiothèques 2 {1 -4} et 3 {1 -4} décrites par Lubineau et al. (Lubineau et al., 1999, Eur J Org Chem, : 2523-2532).
La Figure 7 illustre le profil de séparation et l'identification des 4 composés disaccharidiques contenus dans la Chimiothèque 2 {1 -4}. Les deux cycles saccharidiques des disaccharides sont schématisés par des symboles ovales et la présence d'un groupe sulfate ou hydroxyle sur les positions d'intérêt est indiquée. Des symboles du même type sont représentés également dans les figures 8 à 12.
La Figure 8 illustre le profil de séparation et l'identification des 4 composés disaccharidiques contenus dans la Chimiothèque 3 {1-4}.
La Figure 9 illustre le profil de composés obtenus après avoir soumis les composés de la Chimiothèque 2 {1 -4} à l'action de la 4-O-sulfatase sous une forme concentrée.
La Figure 10 illustre le profil de composés obtenus après avoir soumis les composés de la Chimiothèque 3 {1 -4} à l'action de la 4-O-sulfatase sous une forme concentrée.
La Figure 11 illustre le profil de composés obtenus après avoir soumis les composés de la Chimiothèque 2 {1 -4} à l'action de la 4-O-sulfatase sous une forme diluée 50 fois.
La Figure 12 illustre le profil de composés obtenus après avoir soumis les composés de la Chimiothèque 3 {1 -4} à l'action de la 4-O-sulfatase sous une forme diluée 50 fois.
La Figure 13 (figures 13-1 à 13-8) illustre, du haut vers le bas de la figure, un alignement des séquences de sulfatase de SEQ ID N°1 à SEQ ID N°13, respectivement.
DESCRIPTION DETAILLEE DE L'INVENTION
Le Demandeur a isolé et caractérisé une sulfatase apte à catalyser une réaction de désulfatation d'un glycosaminoglycane (GAG), sélectivement sur les groupes sulfate localisés en position 4 des unités osidiques constitutives dudit GAG. Ladite sulfatase peut être aussi désignée « /V-acetylgalactosamine-4-sulfatase » ou encore « 4-O-sulfatase » dans la suite de la présente description.
Les GAGs englobent les composés osidiques incluant de 2 et jusqu'à 100 unités osidiques, ce qui inclut les GAGs disaccharides et les GAGs tétrasaccharides. Les GAGs englobent les chondroïtines sulfates (CS), les dermatanes sulfates, l'acide hyaluronique, les kératanes sulfates et la famille des héparanes sulfates (HS)/ héparines, qui sont représentées sur la Figure 1 , et qui diffèrent entre eux par l'identité de leur sous-unité disaccharidique. Au niveau macromoléculaire, les divers GAGs de type HS et CS présentent des longueurs variées (généralement de 5 ou 10 à 100 unités saccharidiques) comprenant des régions de haut niveau de sulfatation et des régions de faible niveau de sulfatation. Les GAGs englobent les composés constitués d'une unité disaccharidique répétitive basée (i) soit sur un motif de /V-acétyl- hexosamine et d'hexose, (ii) soit sur un motif de A/-acétyl-hexosamine et d'acide uronique. Les différents cycles osidiques sont reliés entre eux uniquement par des liaisons 1 -4 ou 1 -3. Par exemple, les héparanes sulfates et les héparines sont constitués de motifs disaccharidiques comprenant une D-glucosamine (GIcN) et un acide uronique pouvant être soit un acide D- glucuronique (GIcA), soit un acide L-iduronique (IdoA). Dans les héparanes sulfates et les héparines, les motifs disaccharidiques sont liés entre eux par des liaisons de type oc(1 ,4) et β(1 ,4). Les chondroïtines sulfates (CS) possèdent des sous-unités /V-acétylgalactosamine (GaINAc) et GIcA, et une alternance de liaisons β(1 ,3) et β(1 ,4). Le squelette des GAGs est hautement fonctionnalisé avec des groupements acétyle et un motif complexe de sulfatation, avec des groupes sulfate localisés sur une ou plusieurs des positions 2, 3, 4 et 6 de chaque unité d'oside, ainsi que sur les fonctions aminés de ces molécules. Pour les héparanes sulfates et les héparines, la sulfatation a lieu principalement sur l'hydroxyle en C2 de l'unité IdoA et sur les hydroxyles en C3 et C6 de l'unité GIcN. Pour les chondroïtines sulfates (CS), la sulfatation peut avoir lieu sur n'importe le(s)quel(s) des hydroxyles libres, ce qui entraîne qu'un composé CS de type tétrasaccharide peut potentiellement donner lieu à 256 composés sulfatés de manière distincte. La structure des GAGs est notamment décrite en détail par Gandhi et al. (Gandhi e al., 2008, Chem Biol Drug Des, Vol. 72 : 455-482), auquel l'homme du métier peut avantageusement se référer.
Selon l'invention, les GAGs englobent en particulier les composés suivants :
- les GAGs de type hépar ssous :
Figure imgf000006_0001
(A),
dans laquelle R signifie S03- ou H ; R1 signifie S03-, H ou Ac et n est un entier allant de 1 à 50 ;
- les GAGs de type chondroitine sulfate de formule (B) ci-dessous :
Figure imgf000006_0002
dans laquelle R signifie S03- ou H ; R1 signifie S03-, H ou Ac et n est un entier allant de 1 à 50 ;
- les GAGs de type dermatane sulfate de formule (C) ci-dessous :
Figure imgf000007_0001
dans laquelle R signifie S03- ou H ; R1 signifie S03-, H ou Ac et n est un entier allant de 1 à 50 ; et
- les GAGs de type
Figure imgf000007_0002
(D), dans laquelle R signifie S03- ou H ; R1 signifie S03-, H ou Ac et n est un entier allant de
1 à 50.
Selon l'invention, on a en particulier isolé, cloné et caractérisé une 4-O-sulfatase provenant de Bacteroides thetaiotaomicron et exprimé cette 4-O-sulfatase dans E. coli afin d'obtenir la protéine recombinante correspondante.
Le demandeur a montré dans les exemples que la nouvelle 4-O-sulfatase catalyse la désulfatation sélective en position 4 des motifs osidiques constitutifs de divers glycosaminoglycanes (GAGs).
L'acide nucléique codant la nouvelle 4-O-sulfatase selon l'invention a été cloné, puis séquencé, et a été utilisé pour transfecter de cellules hôtes. Ladite 4-O-sulfatase a été produite sous forme recombinante par les cellules hôtes transfectées.
Enfin, le demandeur a identifié également une famille de 4-O-sulfatases possédant une grande similarité de séquences entre elles, qui englobe la 4-O-sulfatase ci-dessus, et qui peuvent être utilisées pour la synthèse et la caractérisation des GAGs, en particulier pour la détermination de la présence ou l'absence d'un groupe sulfate en position 4 des motifs osidiques.
Définitions générales
Par « polypeptide », on entend au sens de l'invention une chaîne d'acides aminés reliés entre eux par des liaisons peptidiques.
Aux fins de la présente description, l'expression " séquence nucléotidique " peut être employée pour désigner indifféremment un polynucléotide ou un acide nucléique. L'expression " séquence nucléotidique " englobe le matériel génétique lui-même et n'est donc pas restreinte à l'information concernant sa séquence. Les termes " acide nucléique ", " polynucléotide ", " oligonucléotide " ou encore " séquence nucléotidique " englobent des séquences d'ARN, d'ADN, d'ADNc ou encore des séquences hybrides ARN/ADN de plus d'un nucléotide, indifféremment sous la forme simple brin ou sous la forme de duplex.
Le terme " nucléotide " désigne les nucléotides naturels (A, T, G, C et U).
Aux fins de la présente invention, un premier polynucléotide est considéré comme étant " complémentaire " d'un second polynucléotide lorsque chaque base du premier nucléotide est appariée à la base complémentaire du second polynucléotide dont l'orientation est inversée. Les « bases », complémentaires sont A et T (ou A et U), et C et G.
Le terme « purifié », au sens de l'invention, ne requiert pas que la substance considérée, par exemple le polypeptide considéré ou l'acide nucléique considéré, soit sous une forme de pureté absolue. Par exemple, un polynucléotide purifié, ou un acide nucléique purifié, englobe ledit polypeptide, ou ledit acide nucléique, à une concentration plus grande que la concentration dans laquelle ledit polypeptide, ou ledit acide nucléique, est retrouvé dans son environnement naturel, dans l'organisme qui le contient ou dans lequel il est produit. Un polypeptide est « purifié » si sa concentration pondérale, ou son activité spécifique, est supérieur d'au moins 10 fois, et mieux d'au moins 20, 30, 40, 50, 100, 150, 200, 300, 400, 500, 1000, 1500, ou au moins 2000 fois, par rapport à la concentration pondérale, ou l'activité spécifique, dudit polypeptide non recombinant tel qu'il est retrouvé dans son environnement naturel, y compris par exemple dans un lysat cellulaire ou un surnageant de culture cellulaire, préparé à partir de cellules qui produisent ledit polypeptide naturellement, sous forme non recombinante.
Un polypeptide purifié englobe un polypeptide qui est présent, dans la composition dans laquelle il est contenu, à raison d'au moins 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61 %, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 97,5%, 98%, 98,3% 98,6%, 99% ou au moins 99,6% de la teneur totale en protéines de ladite composition.
Un acide nucléique purifié englobe un acide nucléique qui est présent, dans la composition dans laquelle il est contenu, à raison d'au moins 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 97,5%, 98%, 98,3% 98,6%, 99% ou au moins 99,6% de la teneur totale en acides nucléiques de ladite composition.
Le « pourcentage d'identité » entre deux séquences d'acides nucléiques, ou entre deux séquences d'acides aminés, au sens de la présente invention, est déterminé en comparant les deux séquences alignées de manière optimale, à travers une fenêtre de comparaison.
La partie de la séquence nucléotidique, ou de la séquence d'acides aminés, dans la fenêtre de comparaison peut ainsi comprendre des additions ou des délétions (par exemple des « gaps ») par rapport à la séquence de référence (qui ne comprend pas ces additions ou ces délétions) de manière à obtenir un alignement optimal entre les deux séquences.
Le pourcentage d'identité est calculé en déterminant le nombre de positions auxquelles une base nucléique identique, ou un acide aminé, est observé pour les deux séquences comparées, puis en divisant le nombre de positions auxquelles il y a identité entre les deux bases nucléiques, ou entre les deux acides aminés, par le nombre total de positions dans la fenêtre de comparaison, puis en multipliant le résultat par cent afin d'obtenir le pourcentage d'identité en nucléotides, ou le pourcentage en acides aminés, des deux séquences entre elles.
L'alignement optimal des séquences pour la comparaison peut être réalisé de manière informatique à l'aide d'algorithmes connus.
De manière tout à fait préférée, le pourcentage d'identité de séquence est déterminé à l'aide du logiciel CLUSTAL W (version 1 .82) les paramètres étant fixés comme suit : (1 ) CPU MODE = ClustalW mp ; (2) ALIGNMENT = « full » ; (3) OUTPUT FORMAT = « aln w/numbers » ; (4) OUTPUT ORDER = « aligned » ; (5) COLOR ALIGNMENT = « no » ; (6) KTUP (word size) = « default » ; (7) WINDOW LENGTH = « default » ; (8) SCORE TYPE = « percent » ; (9) TOPDIAG = « default » ; (10) PAIRGAP = « default » ; (1 1 ) PHYLOGENETIC TREE/TREE TYPE = « none » ; (12) MATRIX = « default » ; (13) GAP OPEN = « default » ; (14) END GAPS = « default » ; (15) GAP EXTENSION = « default » ; (16) GAP DISTANCES = « default » ; (17) TREE TYPE = « cladogram » et (18) TREE GRAP DISTANCES = « hide ».
Aux fins de la présente description, des conditions d'hybridation hautement stringentes entre deux acides nucléiques, respectivement entre un acide nucléique de référence et un acide nucléique qui hybride, dans lesdites conditions de haute stringence, avec l'acide nucléique de référence, sont définies ci-dessous.
Par conditions d'hybridation de forte stringence, au sens de l'invention, on entend les conditions d'hybridation suivantes:
Préhvbridation:
mêmes conditions que pour l'hybridation
durée: 1 nuit.
Hybridation:
5 x SSPE (0.9 M NaCI, 50 mM phosphate de sodium pH 7.7, 5 mM EDTA)
5 x Denhardt's (0.2% PVP, 0.2% Ficoll, 0.2% SAB)
100 μ9 ητιΙ ADN de sperme de saumon
0.1 % SDS
durée: 1 nuit.
Lavages:
2 x SSC, 0.1% SDS 10 min 65 °C
1 x SSC, 0.1 % SDS 10 min 65 <
0.5 x SSC, 0.1 % SDS 10 min 65<
0.1 x SSC, 0.1 % SDS 10 min 65°C. Les paramètres définissant les conditions de stringence dépendent de la température à laquelle 50% des brins appariés se séparent (Tm).
Pour les séquences comprenant plus de 360 bases, Tm est définie par la relation:
Tm= 81 ,5 + 0,41 (%G+C)+16,6 Log(concentration en cations) - 0,63 (% formamide)-
(600/nombre de bases) (SAMBROOK, J. FRITSCH, E. F., and T. Maniatis, 1989. Molecular cloning: a laboratory manual. 2ed. Cold Spring Harbor Laboratory, Cold spring Harbor, New York., pages 9.54-9.62).
Pour les séquences de longueur inférieure à 30 bases, Tm est définie par la relation: Tm= 4(G+C) + 2(A+T).
Dans des conditions de stringence appropriées, dans lesquelles les séquences aspécifiques n'hybrident pas, la température d'hybridation est approximativement de 5 à 30°C, de préférence de 5 à 10<Ό en-dessous de Tm.
Les conditions d'hybridation ci-dessus décrites sont mises en œuvre pour l'hybridation d'un acide nucléique de 20 bases de longueur et peuvent être adaptées en fonction de la longueur de l'acide nucléique dont l'hybridation est recherchée ou du type de marquage choisi, selon les techniques connues de l'homme du métier.
Les conditions convenables d'hybridation peuvent par exemple être adaptées selon l'enseignement contenu dans l'ouvrage de HAMES et H IGGINS (HAMES and HIGGINS, 1985. Nucleic Acid Hybridization: a practical approach, Hames & Higgins Ed. IRL Press, Oxford.) ou encore dans l'ouvrage de AUSUBEL et al. (AUSUBEL et T al., 1989. Current Protocols in Molecular Biology, Green Publishing Associates and Wiley Interscience, N.Y).
En particulier, il faut prendre en compte que le niveau et la spécificité d'hybridation dépendent de différents paramètres, tels que :
a) la pureté de la préparation de l'acide nucléique sur lequel la sonde ou l'amorce doit s'hybrider ;
b) la composition en base de la sonde ou de l'amorce, les paires de bases G-C possédant une plus grande stabilité thermique que les paires de bases A-T ou A-U ;
c) la longueur de la séquence de bases homologue entre la sonde ou l'amorce et l'acide nucléique ;
d) la force ionique : le taux d'hybridation augmente avec l'accroissement de la force ionique et la durée du temps d'incubation ;
e) la température d'incubation ;
f) la concentration de l'acide nucléique sur lequel la sonde ou l'amorce doit s'hybrider ; g) la présence d'agents dénaturants, tels que des agents favorisant la rupture de liaisons hydrogène , comme le formamide ou l'urée, qui accroissent la stringence de l'hybridation ;
h) le temps d'incubation, le taux d'incubation augmentant avec la durée de l'incubation ; i) la présence d'agents d'exclusion de volume, tels que le dextran ou le sulfate de dextran, qui augmentent le taux d'hybridation du fait qu'ils accroissent les concentrations effectives de la sonde ou de l'amorce et de l'acide nucléique qui doit s'hybrider, au sein de la préparation.
Par " variant " d'un acide nucléique selon l'invention, on entend un acide nucléique qui diffère de l'acide nucléique de référence par une ou plusieurs substitutions, additions ou délétions d'un nucléotide, par rapport à l'acide nucléique de référence. Un variant d'un acide nucléique selon l'invention peut être d'origine naturelle, tel qu'un variant allélique qui existe naturellement. Un tel acide nucléique variant peut être également un acide nucléique non naturel obtenu, par exemple, par des techniques de mutagenèse.
En général, les différences entre l'acide nucléique de référence et l'acide nucléique " variant " sont réduites de telle sorte que l'acide nucléique de référence et l'acide nucléique variant ont des séquences nucléotidiques très similaires et, dans de nombreuses régions, identiques. Les modifications nucléotidiques présentes dans un acide nucléique variant peuvent être silencieuses, ce qui signifie qu'elles n'affectent pas la séquence d'acides aminés qui peut être codée par cet acide nucléique variant.
Les modifications de nucléotides dans l'acide nucléique variant peuvent aussi résulter en des substitutions, additions ou délétions d'un ou plusieurs acides aminés dans la séquence du polypeptide qui peut être codé par cet acide nucléique variant.
De manière tout à fait préférée, un acide nucléique variant selon l'invention comportant une phase de lecture ouverte, code pour un polypeptide qui conserve la même fonction ou la même activité biologique que le polypeptide codé par l'acide nucléique de référence.
De manière tout à fait préférée, un acide nucléique variant selon l'invention et qui comporte une phase de lecture ouverte, code pour un polypeptide qui conserve la capacité d'être reconnu par des anticorps dirigés contre le polypeptide codé par l'acide nucléique de référence.
Par « fragment » d'un polypeptide selon l'invention, on entend un fragment polypeptidique d'une longueur réduite par rapport au polypeptide de référence, le fragment polypeptidique possédant une séquence en acides aminés identique à la séquence en acides aminés du polypeptide de référence sur la partie commune. De tels fragments d'un polypeptide selon l'invention possèdent au moins 5, 10, 15, 20, 25, 30, 40, 50, 60, 100, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510 ou 520 acides aminés consécutifs d'un polypeptide 4-O-sulfatase de référence, étant entendu que la longueur maximale dudit fragment est par définition limitée par la longueur en acides aminés du polypeptide dont ledit fragment peptidique dérive.
Un fragment d'un polypeptide de l'invention est « biologiquement actif » si ledit fragment polypeptidique possède une activité 4-O-sulfatase, y compris vis-à-vis d'un GAG substrat 4-0 sulfaté comprenant au moins un autre groupement sulfate sur le cycle osidique.
Par " fragment " d'un acide nucléique selon l'invention, on entend une séquence nucléotidique d'une longueur réduite par rapport à l'acide nucléique de référence, le fragment d'acide nucléique possédant une séquence nucléotidique identique à la séquence nucléotidique de l'acide nucléique de référence sur la partie commune. De tels fragments d'un acide nucléique selon l'invention possèdent au moins 12, 15, 18, 20, 25, 30, 35, 40, 45, 50, 60, 100, 150, 200, 300, 400, 500, 500, 600, 700, 800, 900, 1000, 1 100, 1200, 1300, 1400, 1500, 1510, 1520, ou 1528 nucléotides consécutifs de l'acide nucléique de référence, la longueur maximale en nucléotides d'un fragment d'un acide nucléique selon l'invention étant bien entendue limitée par la longueur maximale en nucléotides de l'acide nucléique de référence.
Polypeptides 4-O-sulfatase et compositions les contenant
La présente invention concerne une 4-O-sulfatase purifiée, comprenant un polypeptide ayant au moins 50% d'identité en acides aminés avec le polypeptide de séquence SEQ ID Ν , ou un fragment peptidique biologiquement actif ou un variant de celui-ci.
Le demandeur a réalisé une comparaison de la séquence en acides aminés de l'arylsulfatase B humaine connue et de la séquence SEQ ID N °1 et a ainsi déterminé que l'arylsulfatase B humaine connue ne comporte pas d'homologie significative en acides aminés avec la 4-O-sulfatase objet de la présente invention.
Le demandeur a aussi identifié une pluralité de 4-O-sulfatases ayant des similarités de séquence et donc de fonction avec la 4-O-sulfatase de séquence SEQ ID Ν , en particulier une pluralité de 4-O-sulfatases ayant au moins 50% d'identité en acides aminés avec la 4-O- sulfatase de séquence SEQ ID N °1 .
L'ensemble des 4-O-sulfatases identifiées par le demandeur constitue une famille de 4-
O-sulfatases possédant des caractéristiques structurelles et fonctionnelles communes, à savoir le type de réaction catalysée et le type de substrat qui est transformé.
La famille de 4-O-sulfatase de l'invention, dont chaque membre possède au moins 50% d'identité de séquence en acides aminés avec la 4-O-sulfatase de séquence SEQ ID Ν englobe les 4-O-sulfatase comprenant un polypeptide choisi dans le groupe constitué des séquences SEQ ID N °1 à SEQ ID N °13.
La présente invention est aussi relative à des fragments biologiquement actifs d'un polypeptide ayant au moins 50% d'identité de séquence en acides aminés avec la 4-O- sulfatase de séquence SEQ ID N °1 .
La présente invention concerne aussi des variants d'un polypeptide ayant au moins 50% d'identité de séquence en acides aminés avec la 4-O-sulfatase de séquence SEQ ID N °1 , et notamment des variants d'un polypeptide choisi dans le groupe constitué des séquences SEQ ID N °1 à SEQ ID N °13.
Selon l'invention, un premier polypeptide ayant au moins 50% d'identité avec un second polypeptide de référence, possède de préférence au moins 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 97,5%, 98%, 98,3% 98,6%, 99%, ou au moins 99,6% d'identité en acides aminés avec ledit second polypeptide de référence. Dans certains modes de réalisation préférés, la 4-O-sulfatase objet de l'invention comprend un polypeptide ayant au moins 50% d'identité en acides aminés avec le polypeptide de séquence SEQ ID Ν . On précise que les polypeptides de séquences SEQ ID N° 2 à SEQ ID N ° 12 possèdent au moins 66% d'identité en acides aminés avec le polypeptide de séquence SEQ ID N°1 . On précise aussi que les polypeptides de séquences SEQ ID N ° 2, SEQ ID N °3, SEQ ID N °5, SEQ ID N ¾, SEQ ID N °8 et SEQ ID N °9 possèdent au moins 80% d'identité en acides aminés avec le polypeptide de séquence SEQ ID Ν
Dans certains modes de réalisation préférés, la 4-O-sulfatase objet de l'invention comprend un polypeptide ayant au moins 90% d'identité en acides aminés avec le polypeptide de séquence SEQ ID N °1 . On précise que les polypeptides de séquences SEQ ID N ° 2, SEQ ID N °5, SEQ ID N ¾ et SEQ ID N° 9 possèdent au moins 90% d'identité en acides aminés avec le polypeptide de séquence SEQ ID Ν
Les différences en acides aminés entre un polypeptide de l'invention et le polypeptide de séquence SEQ ID N °1 , lorsqu'elles existent, englobent :
- une ou plusieurs substitutions d'un acide aminé, et/ou
- une ou plusieurs délétions d'un acide aminé, et/ou
- une ou plusieurs additions d'un acide aminé.
La ou les substitution(s) d'un acide aminé consiste(nt) préférentiellement en une (des) substitution(s) « conservative(s). Une « substitution conservative » d'un acide aminé est la substitution d'un acide aminé d'une classe donnée par un acide aminé de la même classe donnée, dans laquelle la classe donnée est définie par les propriétés physicochimiques des chaînes latérales d'acides aminés ainsi que par la haute valeur de fréquence de ladite substitution conservative des protéines homologues retrouvées dans la nature. Six classes générales d'acides aminés sont reconnues, qui incluent la Classe I (Cys), la Classe II (Ser, Thr, Pro, ala, Gly), la Classe III (Asn, Asp, Gin, Glu), la Classe IV (His, Arg, Lys), la Classe V (Ile, Leu, Val, Met) et la Casse VI (Phe, Tyr, Trp). Par exemple, la substitution d'un résidu Asp par un autre résidu d'acide aminé appartenant à la Classe III choisi parmi Asn, Gin ou Glu consiste en une « substitution conservative » d'un acide aminé.
Dans un mode de réalisation préféré, la 4-O-sulfatase objet de l'invention comprend un polypeptide de séquence SEQ ID Ν . Ce mode de réalisation englobe les polypeptides qui comprennent, par rapport à la séquence SEQ ID Ν , ou encore par rapport à une séquence ayant au moins 50% d'identité en acides aminés avec la séquence SEQ ID N °1 , une ou deux séquences en acides aminés additionnelles, localisées indifféremment à l'extrémité N-terminale ou C-terminale du polypeptide de séquence SEQ ID Ν . Certains modes de réalisation englobent des polypeptides comprenant une seule séquence en acides aminés additionnelle qui est localisée à l'extrémité N-terminale de la séquence SEQ ID Ν . Certains autres modes de réalisation englobent des polypeptides comprenant une seule séquence en acides aminés additionnelle qui est localisée à l'extrémité C-terminale de la séquence SEQ ID Ν . La ou les séquence(s) additionnelle(s) ont une longueur en acides aminés allant de 1 à 50 acides aminés, ce qui englobe les séquences additionnelles ayant 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 , 32, 33, 34, 35, 36, 37, 38, 39, 40,
41 , 42, 43, 44, 45, 46, 47, 48, 49, ou 50 acides aminés de longueur. Dans certains modes de réalisation, la ou les séquence(s) additionnelle(s) possèdent moins de 20 acides aminés de longueur, par exemple moins de 10 acides aminés de longueur. Lorsqu'un polypeptide comprend deux séquences additionnelles, respectivement à l'extrémité N-terminale et à l'extrémité C-terminale de la séquence SEQ ID Ν , lesdites séquences additionnelles peuvent être identiques ou différentes. Les séquences additionnelles englobent des séquences facilitant la purification d'une sulfatase selon l'invention, par exemple des séquences retenues par un support de chromatographie, y compris un support de chromatographie par immunoaffinité, telles qu'une séquence de GST (Glutathion-S-Transférase), une séquence d'antigène HA (Schneider, C. et al. Arch. Virol. 125, 103 (1992); Sleigh, MJ. et al. J. Virol. 37, 845 (1981 ); Czech, M. et al. J. Cell Biol. 123, 127 (1993)), une séquence d'antigène FLAG sous forme de monomère ou de trimère (Chiang et al., Peptide Research, 6(2):62-64), ou encore une séquence de poly-histidine (Hengen, 1995, Trends Biochem Sci, n °20(7) : 285-286), ces séquences étant par ailleurs bien connues de l'homme du métier.
Un polypeptide de l'invention comprenant la séquence de la 4-O-sulfatase de séquence SEQ ID Ν possédant une séquence de poly-histidine à son extrémité C-teminale est concrètement illustrée dans les exemples.
La présente invention englobe aussi les 4-O-sulfatases codées par un acide nucléique hybridant, dans les conditions de stringence définies précédemment, avec un acide nucléique codant le polypeptide de séquence SEQ ID N° 1 . La présente invention englobe aussi les 4-O- sulfatases codées par un acide nucléique hybridant, dans les conditions de stringence définies précédemment, avec un acide nucléique codant un polypeptide de séquence choisie parmi les séquences SEQ ID N ° 2 à 13. La présente invention englobe donc les 4-O-sulfatases codées par un acide nucléique hybridant, dans les conditions de stringence définies précédemment, avec un acide nucléique choisi parmi les acides nucléiques de séquences SEQ ID N ° 14 à 26.
Les polypeptides ci-dessus englobés par la présente invention, autres que le polypeptide de séquence SEQ ID N °1 , possèdent une activité enzymatique 4-O-sulfatase et un niveau d'activité 4-O-sulfatase d'au moins 0,1 fois le niveau d'activité de la 4-O-sulfatase de séquence SEQ ID N °1 . Les polypeptides définis ci-dessus englobent ceux dont le niveau d'activité 4-O-sulfatase est d'au moins 0,1 , 0,5, 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16,
17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 , 32, 33, 34, 35, 36, 37, 38, 39, 40,41 ,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51 , 52, 53, 54, 55, 56, 57, 58, 59, 60, 61 , 62, 63, 64, 65, 66, 67, 68, 69, 70, 71 , 72, 73, 74, 75, 76, 77, 78, 79, 80, 81 , 82, 83, 84, 85, 86, 87, 88, 89, 90, 91 , 92, 93, 94, 95, 96, 97, 98, 99, 100, 1 10, 120, 130, 140, 150, 160, 170, 180, 190, ou au moins 200 fois le niveau d'activité de la 4-O-sulfatase de séquence SEQ ID Ν .
Le niveau relatif d'activité 4-O-sulfatase peut être déterminé en comparant, pour une quantité ou une concentration finale donnée et identique respectivement de la 4-O-sulfatase de SEQ ID N ° 1 de référence et de la 4-O-sulfatase comparative, et pour un composé substrat donné et pour une durée donnée d'incubation avec chacune des deux enzymes, la quantité de produit final désulfaté généré. La quantité de produit final généré par la réaction enzymatique est préférentiellement déterminée par électrophorèse capillaire, en calculant la surface du pic de signal d'absorbance à la longueur d'onde de 200 nanomètres correspondant au produit généré par la réaction enzymatique, comme cela est décrit dans les exemples. Comme substrat, on utilise préférentiellement un composé de chondroïtine sulfate tel que décrit dans les exemples. Le composé substrat peut être utilisé à la concentration finale de 1 mg/ml. La valeur du rapport entre (i) la quantité de produit final désulfaté généré avec l'enzyme comparée et (ii) la quantité de produit final désulfaté généré avec le polypeptide de séquence SEQ ID N° 1 consiste en le niveau d'activité de l'enzyme comparative testée par rapport à la 4-O-sulfatase de séquence SEQ ID N °1 .
Dans un mode de réalisation préféré, la 4-O-sulfatase objet de l'invention consiste en un polypeptide de séquence SEQ ID Ν .
La 4-O-sulfatase de séquence SEQ ID Ν possède 508 acides aminés de longueur. La 4-O-sulfatase de séquence SEQ ID N°1 possède l'enchaînement d'acides aminés de formule (I) « SX1 PX2R », dans laquelle X1 et X2 représentent chacun, indépendamment l'un de l'autre, un résidu d'acide aminé. Dans la 4-O-sulfatase de séquence SEQ ID Ν , l'enchaînement de formule (I) est localisé du résidu Sérine (« S ») en position 84 jusqu'au résidu Arginine (« R ») en position 88. Dans l'enchaînement d'acides aminés de formule (I), qui est caractéristique des polypeptides à activité sulfatase, le résidu Sérine (« S ») subit une modification post- traductionnelle par transformation en résidu 3-oxoalanine, aussi appelé résidu Ca-formylglycine ou « FGIy ». Cette modification post-traductionnelle du résidu Sérine en résidu 3-oxoalanine est essentielle pour l'activité catalytique de la 4-O-sulfatase. La transformation du résidu Sérine de l'enchaînement de formule (I) peut être réalisée par l'action d'une enzyme de maturation des sulfatases, qui peut être aussi désignée « anaerobic Sulfatase Maturating Enzyme » ou « anSME », ou « atsB », bien connue de l'homme du métier, et qui a été décrite notamment par Benjdia et al. (Benjdia et al., 2008, J Biol Chem, Vol. 283 (26) : 17815-17826) et par Berteau et al. (Berteau et al., 2006, J Biol Chem, Vol. 281 (32) : 22464-22470). Toutefois, lorsque le résidu Sérine de l'enchaînement de formule (I) est remplacé par un résidu Cystéine (« C »), la 4-O- sulfatase est alors susceptible d'être active, en particulier chez E coli, sans nécessiter la présence d'une enzyme de maturation des sulfatases du type « anSME », comme décrit par exemple par Benjdia et al. (Benjdia et al , 2007, FEBS Letters, Vol ; 581 (5) : 1009-1014).
On précise aussi que l'activation de la 4-O-sulfatase de séquence SEQ ID N° 1 peut également être réalisée chez différents hôtes, procaryotes ou eucaryotes, incluant B. thetaiotaomicron, ne nécessitant pas l'expression hétérologue d'un système de maturation Enfin, des modes d'activation chimique des sulfatases possédant un résidu de sérine ont été également décrits dans l'état de la technique et pourraient permettre l'activation in vitro de la présente sulfatase, notamment par l'emploi de composés de type vanadyles.
Ainsi, dans d'autres modes de réalisation préférés, la 4-O-sulfatase objet de l'invention consiste en un polypeptide dérivé du polypeptide de séquence SEQ ID Ν , dans lequel le résidu Sérine en position 84 de la séquence SEQ ID Ν est remplacé par une résidu Cystéine. Comme cela a été indiqué, la 4-0-sulfatase objet de l'invention a été clonée et produite sous forme purifiée, ce qui signifie qu'elle représente au moins 50% en poids des protéines contenues dans l'échantillon final obtenu.
Dans d'autres modes de réalisation, la 4-O-sulfatase représente de 50% à 100% en poids des protéines contenues dans l'échantillon final obtenu, ledit échantillon final étant exempt de toute contamination par une quelconque autre enzyme susceptible de désulfater les GAGs.
Dans le mode de réalisation particulier où la 4-O-sulfatase représente plus de 99% en poids des protéines contenues dans l'échantillon final obtenu, ladite 4-O-sulfatase purifiée peut aussi être désignée « 4-O-sulfatase isolée ».
L'invention concerne aussi une composition comprenant une 4-O-sulfatase telle que décrite précédemment.
Dans certains modes de réalisation, la composition comprenant une 4-O-sulfatase selon l'invention se présente sous la forme d'une composition liquide ou d'une composition solide. Ladite composition peut se présenter sous la forme d'une solution aqueuse, et est préférentiellement exempte de toute contamination par une quelconque autre enzyme susceptible de désulfater les GAGs. Les autres constituants de la composition solide ou liquide englobent essentiellement un ou plusieurs constituants choisis parmi le solvant, en général de l'eau ou une solution tampon adaptée à la conservation des protéines, des sels, des antibiotiques, des agents stabilisants mais également des solvants organiques notamment pour la solubilisation de substrats.
Dans d'autres modes de réalisation, la composition comprenant une 4-O-sulfatase selon l'invention se présente sous la forme d'une composition solide, y compris une composition lyophilisée. Pour la préparation d'une composition solide lyophilisée comprenant une 4-O-sulfatase selon l'invention, l'homme du métier peut avantageusement se référer à la demande PCT n °WO 03/018778 ou à la demande PCT n ° WO 2006/079722.
Pour la préparation d'une composition comprenant une 4-O-sulfatase selon l'invention sous forme solide ou liquide, l'homme du métier peut de manière générale se référer aux demandes PCT n° WO 2009/030728, WO200202727, les demandes de brevet aux Etats-Unis US20090144840, US2008090276, US2007232514, la demande de brevet européen n ° EP1252879, les demandes de brevet au Royaume Uni GB0620494, GB0020379, les demandes de brevet japonais n ° JP2007097586, JP2006191863, JP2004141 162, les demandes de brevet coréen n° KR20040042636, KR20030055442.
Un polypeptide à activité 4-O-sulfatase ou une composition comprenant ledit polypeptide, est utile comme catalyseur biologique dans un procédé de synthèse d'un GAG. Un polypeptide à activité 4-O-sulfatase ou une composition comprenant ledit polypeptide, complète avantageusement le répertoire d'outils enzymatiques actuellement disponibles, qui est applicable notamment dans le domaine pharmaceutique, y compris dans des procédés de synthèse de glycosaminoglycanes et de détermination de la présence de glycosaminoglycanes 4-O-sulfatés dans un échantillon (séquençage diagnostique des GAGs). Acides nucléiques codant une 4-O-sulfatase et compositions les contenant
Acides nucléiques
L'invention concerne donc également un acide nucléique codant une 4-O-sulfatase telle que décrite précédemment.
Ainsi, la présente invention est relative à un acide nucléique comprenant un polynucléotide codant un polypeptide ayant au moins 50% d'identité en acides aminés avec un polypeptide comprenant le polypeptide de séquence SEQ ID N °1 , ou un acide nucléique de séquence complémentaire. Elle est aussi relative à un acide nucléique comprenant un polynucléotide codant un polypeptide ayant au moins 50% d'identité en acides aminés le polypeptide de séquence SEQ ID N °1 , ou un acide nucléique de séquence complémentaire. Elle est également relative à un acide nucléique codant un polypeptide ayant au moins 50% d'identité en acides aminés avec le polypeptide de séquence SEQ ID N° 1 , ou un acide nucléique complémentaire.
En particulier, l'invention a trait à un acide nucléique comprenant un polynucléotide codant un polypeptide choisi dans le groupe constitué des séquences SEQ ID Ν à SEQ ID Ν 3, ou un acide nucléique de séquence complémentaire. L'invention concerne aussi un acide nucléique codant un polypeptide choisi dans le groupe constitué des séquences SEQ ID N°1 à SEQ ID Ν 3, ou un acide nucléique de séquence complémentaire.
Dans certains modes de réalisation, l'acide nucléique objet de l'invention comprend un polynucléotide de séquence SEQ ID N° 14 à SEQ ID N ° 26, qui code respectivement pour les polypeptides de séquences SEQ ID N° 1 à SEQ ID N° 13, ou un acide nucléique de séquence complémentaire.
Dans un mode de réalisation préféré, l'acide nucléique objet de l'invention comprend un polynucléotide de séquence SEQ ID N ° 14 ou un acide nucléique de séquence complémentaire.
La présente invention a aussi pour objet un acide nucléique ayant au moins 50% d'identité en nucléotides avec un acide nucléique choisi dans le groupe constitué des séquences SEQ ID N° 14 à SEQ ID N ° 26, ou un acide nucléique de séquence complémentaire, ou un fragment ou un variant de celui-ci.
Selon l'invention, un premier acide nucléique ayant au moins 50 % d'identité avec un second acide nucléique de référence, possède au moins 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 97,5%, 98%, 98,3% 98,6%, 99%, ou au moins 99,6% d'identité en nucléotides avec ledit second acide nucléique de référence.
La présente invention a aussi trait à un acide nucléique hybridant, dans les conditions d'hybridation hautement stringentes telles que définies précédemment, avec un acide nucléique choisi dans le groupe constitué des séquences SEQ ID N° 14 à SEQ ID N° 26, ou un acide nucléique de séquence complémentaire. Par définition, un premier acide nucléique qui hybride dans les conditions de haute stringence ci-dessus, avec un second acide nucléique signifie que les deux acides nucléiques possèdent des séquences complémentaires ayant entre elles un très haut niveau d'identité structurelle.
Les acides nucléiques dont la séquence nucléotidique est complémentaire à un acide nucléique qui hybride, dans les conditions de haute stringence ci-dessus, avec acide nucléique choisi dans le groupe constitué des séquences SEQ ID N ° 14 à SEQ ID N ° 26, est un acide nucléique codant un polypeptide 4-O-sulfatase selon l'invention.
Les acides nucléiques qui hybrident, dans les conditions de haute stringence ci-dessus, avec acide nucléique choisi dans le groupe constitué des séquences SEQ ID N ° 14 à SEQ ID N ° 26, peuvent aussi être utilisés comme sondes ou amorces pour la détection ou l'amplification spécifique d'un acide nucléique codant une 4-O-sulfatase, ou d'un acide nucléique complémentaire à un polynucléotide codant une 4-O-sulfatase. Sondes et amorces nucléotidigues
Les fragments d'acides nucléiques dérivés de l'une quelconque des séquences nucléotidiques SEQ ID N ° 14 à SEQ ID N° 26 sont utiles pour la détection de la présence d'au moins une copie d'une séquence nucléotidique choisie parmi les séquences SEQ ID N° 14 à
SEQ ID N° 26 ou encore d'un fragment ou d'un variant de cette dernière dans un échantillon.
Les sondes ou les amorces nucléotidiques selon l'invention comprennent au moins huit nucléotides consécutifs d'un acide nucléique choisi dans le groupe constitué des séquences
SEQ ID N° 14 à SEQ ID N ° 26, ou d'un acide nucléique de séquence complémentaire.
De préférence, des sondes ou amorces nucléotidiques selon l'invention auront une longueur de 10, 12, 15, 18 ou 20 à 25, 35, 40, 50, 70, 80, 100, 200, 500, 1000, 1500 nucléotides consécutifs d'un acide nucléique selon l'invention, en particulier un acide nucléique de séquence nucléotidique choisie parmi les séquences SEQ ID N° 14 à SEQ ID N° 26 ou d'un acide nucléique de séquence complémentaire.
Alternativement, une sonde ou une amorce nucléotidique selon l'invention consistera et/ou comprendra les fragments d'une longueur de 9, 12, 15, 18, 20, 25, 35, 40, 50, 100, 200, 500, 1000, 1500 nucléotides consécutifs d'un acide nucléique selon l'invention, plus particulièrement d'un acide nucléique choisi parmi les séquences SEQ ID N ° 14 à SEQ ID N °
26, ou d'un acide nucléique de séquence complémentaire.
La définition d'une sonde et d'une amorce nucléotidique selon l'invention englobe donc des oligonucléotides qui hybrident, dans les conditions d'hybridation de forte stringence définies ci-avant, avec un acide nucléique choisi parmi les séquences SEQ ID N° 14 à SEQ ID N° 26 ou avec une séquence complémentaire de ces derniers.
A titre illustratif, on décrit dans les exemples l'utilisation des amorces de séquences SEQ
ID N ° 27 et SEQ ID N ° 28 pour amplifier un acide nucléique codant une 4-O-sulfatase, et en particulier la 4-O-sulfatase de séquence SEQ ID N° 1. Dans le Tableau 1 localisé à la fin de la présente description, on décrit aussi des illustrations de couples d'amorces qui peuvent être utilisées pour amplifier les acides nucléiques codant chacun des polypeptides de séquences SEQ ID N ° 2 à SEQ ID N ° 13 ; il s'agit des amorces de séquences SEQ ID N ° 29 à SEQ ID N° 52 ;
Dans les amorces de séquences SEQ ID N ° 27, 29, 31 , 33, 35, 37, 39, 41 , 43, 45, 47,
49 et 51 , la séquence « GGATCC » permet la réalisation d'un amplicon qui peut être ensuite introduit au niveau d'un site de restriction BamHI présente dans un polysite de clonage d'un vecteur de clonage ou d'expression.
Dans les amorces de séquences SEQ ID N ° 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 et 52, la séquence « CTGCAG » permet la réalisation d'un amplicon qui peut être ensuite introduit au niveau d'un site de restriction PSTI présente dans un polysite de clonage d'un vecteur de clonage ou d'expression.
La présente invention englobe aussi des amorces nucléotidiques dérivées des amorces de séquences SEQ ID N° 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 et 52, dans lesquelles la séquence « CTGCAG » a été éliminée ou est absente.
La présente invention englobe aussi des amorces nucléotidiques dérivées des amorces de séquences SEQ ID N° 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 et 52, dans lesquelles la séquence « CTGCAG » a été éliminée ou est absente.
Une amorce ou une sonde nucléotidique selon l'invention peut être préparée par toute méthode adaptée bien connue de l'homme du métier, y compris par clonage et action d'enzymes de restriction ou encore par synthèse chimique directe selon des techniques telles que la méthode au phosphodiester de NARANG et al. (Narang SA, Hsiung HM, Brousseau R, Methods Enzymol 1979; Vol. 68:90-98) ou de BROWN et al. (Brown EL, Belagaje R, Ryan MJ, Khorana HG, Methods Enzymol 1979;Vol. 68:109-151 ), la méthode aux diéthylphosphoramidites de BEAUCAGE et al. (Beaucage et al., Tetrahedron Letf 1981 , Vol. 22: 1859-1862) ou encore la technique sur support solide décrite dans la demande de brevet européen n 00EP 0 707 592.
Chacun des acides nucléiques selon l'invention, y compris les sondes et amorces oligonucléotidiques décrites ci-dessus, peuvent être marqués, si désiré, en incorporant un marqueur détectable par des moyens spectroscopiques, photochimiques, biochimiques, immunochimiques ou encore chimiques.
Par exemple, de tels marqueurs peuvent consister en des isotopes radioactifs (32P, 33P, , 3H, 35S, ), des molécules fluorescentes (5-bromodeoxyuridine, fluorescéine acétylaminofluorène, digoxigénine) ou encore des ligands tels que la biotine.
Le marquage des sondes est fait de préférence par incorporation de molécules marquées au sein des polynucléotides par extension d'amorces, ou bien par rajout sur les extrémités 5' ou 3'
Les sondes oligonucléotides selon l'invention peuvent être utilisées notamment dans des hybridations de type Southern à l'ADN génomique ou encore dans des hybridations à l'ARN messager correspondant lorsque l'expression du transcrit correspondant est recherchée dans un échantillon.
Les sondes selon l'invention peuvent aussi être utilisées pour la détection de produits d'amplification PCR ou encore pour la détection de mésappariements.
Des sondes ou amorces nucléotidiques selon l'invention peuvent être immobilisées sur un support solide. De tels supports solides sont bien connus de l'homme du métier et comprennent des surfaces des puits de plaques de microtitration, des lits de polystyrène, des lits magnétiques, des bandes de nitrocellulose, ou encore des microparticules telles que des particules de latex.
En conséquence, la présente invention concerne également un procédé de détection de la présence d'un acide nucléique tel que décrit ci-avant dans un échantillon, ladite méthode comprenant les étapes de :
1 ) mettre en contact une ou plusieurs sondes nucléotidiques selon l'invention avec l'échantillon à tester.
2) détecter le complexe éventuellement formé entre la ou les sondes et l'acide nucléique présent dans l'échantillon.
Selon un mode de réalisation particulier du procédé de détection selon l'invention, la ou les sondes oligonucléotidiques sont immobilisées sur un support.
Selon un autre aspect, les sondes oligonucléotidiques comprennent un marqueur détectable.
L'invention concerne en outre un nécessaire ou kit pour la détection de la présence d'un acide nucléique selon l'invention dans un échantillon, ledit nécessaire comprenant :
a) une ou plusieurs sondes nucléotidiques telles que décrites ci-dessus ;
b) le cas échéant, les réactifs nécessaires à la réaction d'hybridation.
Selon un premier aspect, le nécessaire ou kit de détection est caractérisé en ce que la ou les sondes sont immobilisées sur un support.
Selon un second aspect, le nécessaire ou kit de détection est caractérisé en ce que les sondes oligonucléotidiques comprennent un marqueur détectable.
Selon un mode de réalisation particulier du kit de détection décrit ci-dessus, un tel kit comprendra une pluralité de sondes oligonucléotidiques conformes à l'invention qui pourront être utilisées pour détecter des séquences cibles d'intérêt ou alternativement détecter des mutations dans les régions codantes ou les régions non codantes des acides nucléiques selon l'invention, plus particulièrement des acides nucléiques de séquences SEQ ID N ° 14 à SEQ ID N 026 ou les acides nucléiques de séquence complémentaire.
Ainsi, les sondes selon l'invention immobilisées sur un support peuvent être ordonnées en matrices telles que les " puces à ADN ". De telles matrices ordonnées ont été en particulier décrites dans le brevet US N° 5,143,854, dans les demandes PCT N° WO 90/150 70 et 92/10092. Des matrices supports sur lesquelles des sondes oligonucléotidiques ont été immobilisées à une haute densité sont par exemple décrites dans les brevets US N °5,412,087 et dans la demande PCT N °WO 95/1 1995.
Les amorces nucléotidiques selon l'invention peuvent être utilisées pour amplifier l'un quelconque des acides nucléiques selon l'invention, et plus particulièrement tout ou partie d'un acide nucléique de séquences SEQ ID N ° 14 à SEQ ID N° 26, ou encore un variant de celui-ci.
Un autre objet de l'invention concerne un procédé pour l'amplification d'un acide nucléique selon l'invention, et plus particulièrement un acide nucléique de séquences SEQ ID N ° 14 à SEQ ID N ° 26 ou un fragment ou un variant de celui-ci contenu dans un échantillon, ledit procédé comprenant les étapes de :
a) mettre en contact l'échantillon dans lequel la présence de l'acide nucléique cible est suspectée avec une paire d'amorces nucléotidiques dont la position d'hybridation est localisée respectivement du côté 5' et du côté 3' de la région de l'acide nucléique cible dont l'amplification est recherchée, en présence des réactifs nécessaires à la réaction d'amplification ; et
b) détection des acides nucléiques amplifiés.
Pour mettre en oeuvre le procédé d'amplification tel que défini ci-dessus, on aura avantageusement recours à l'une quelconque des amorces nucléotidiques décrites ci-avant.
L'invention a en outre pour objet un nécessaire ou kit pour l'amplification d'un acide nucléique selon l'invention, et plus particulièrement tout ou partie d'un acide nucléique de séquences SEQ ID N ° 14 à SEQ ID N ° 26, ledit nécessaire ou kit comprenant :
a) un couple d'amorces nucléotidiques conformes à l'invention, dont la position d'hybridation est localisée respectivement du côté 5' et du côté 3' de l'acide nucléique cible dont l'amplification est recherchée ;
b) le cas échéant, les réactifs nécessaires à la réaction d'amplification.
Un tel nécessaire ou kit d'amplification comprendra avantageusement au moins une paire d'amorces nucléotidiques telles que décrites ci-dessus.
Pour la réalisation des procédés ci-dessus, on peut mettre en œuvre une sonde ou une amorce définie dans la présente description, et en particulier les acides nucléiques choisis parmi les séquences SEQ ID N ° 27 à 52.
Cassettes d'expression
Le clonage de la 4-O-sulfatase objet de l'invention peut être réalisé selon les méthodes classiques de génie génétique impliquant l'amplification du gène par PCR, sa digestion par des enzymes de restriction spécifiques des amorces utilisées et sa ligation dans différents vecteurs d'expression préalablement digérés par les même enzymes.
L'acide nucléique objet de l'invention, qui code une 4-O-sulfatase telle que décrite précédemment, peut être amplifié par PCR au moyen d'amorces spécifiques, puis purifié. Il peut ensuite être introduit dans une cassette d'expression, au moyen d'enzymes de restriction spécifiques et d'une étape de ligation. L'invention concerne donc également une cassette d'expression d'une 4-0-sulfatase, comprenant un acide nucléique tel que décrit précédemment.
Tout acide nucléique selon l'invention peut être inséré dans un vecteur à des fins de clonage ou à des fins d'expression.
Selon un mode de réalisation avantageux, une cassette d'expression selon l'invention comprendra notamment les éléments suivants :
(1 ) des éléments de régulation de l'expression de l'acide nucléique à insérer, tels que des promoteurs et des « enhanceurs » ;
(2) la séquence codante comprise dans l'acide nucléique conforme à l'invention à insérer dans un tel vecteur, ladite séquence codante étant placée en phase avec les signaux de régulation décrits aux (1 ) ; et
(3) des séquences d'initiation et d'arrêt de la transcription appropriées.
Les différents modes de réalisation d'une cassette d'expression comprenant un acide nucléique selon l'invention sont décrits plus particulièrement en relation avec les vecteurs recombinants de l'invention qui comprennent au moins une cassette d'expression.
Vecteurs recombinants
Tout acide nucléique selon l'invention peut être inséré dans un vecteur à des fins de clonage ou à des fins d'expression.
Ladite cassette d'expression, ou bien directement ledit acide nucléique, peut ensuite être introduit(e) dans un vecteur recombinant, en vue de l'expression de la 4-0-sulfatase objet de l'invention dans une cellule hôte. L'invention concerne donc également un vecteur recombinant, comprenant un acide nucléique tel que décrit précédemment ou une cassette d'expression telle que décrite précédemment.
L'invention est également relative à un vecteur recombinant comprenant un acide nucléique, ou une cassette d'expression, codant pur un polypeptide 4-0-sulfatase, un fragment ou un variant de ce polypeptide, éventuellement fusionné avec un polypeptide hétérologue et pour lequel ledit acide nucléique a été artificiellement inséré dans le vecteur.
Avantageusement, un tel vecteur recombinant comprendra un acide nucléique choisi parmi les acides nucléiques suivants :
a) un acide nucléique codant pour un polypeptide ayant une séquence en acides aminés choisie dans le groupe des séquences SEQ ID N° 1 à SEQ ID N° 13 ou un fragment ou un variant de ce polypeptide, éventuellement fusionné à un polypeptide hétérologue ;
b) un acide nucléique comprenant un polynucléotide choisi parmi les séquences SEQ ID N ° 14 à SEQ ID N ° 26, ou un fragment ou un variant de ce dernier ; c) un acide nucléique ayant au moins 95% d'identité en nucléotides avec un acide nucléique choisi dans le groupe constitué des séquences SEQ ID N ° 14 à SEQ ID N ° 26 ou un fragment ou un variant de ce dernier ;
d) un acide nucléique hybridant, dans des conditions d'hybridation de forte stringence, avec un acide nucléique de séquences SEQ ID N ° 14 à SEQ ID N ° 26, ou un fragment ou un variant de ce dernier.
Par " vecteur " au sens de la présente invention on entendra une molécule d'ADN ou d'ARN circulaire ou linéaire qui est indifféremment sous forme de simple brin ou double brin.
Selon un premier mode de réalisation, un vecteur recombinant selon l'invention est utilisé afin d'amplifier l'acide nucléique qui y est inséré après transformation ou transfection de l'hôte cellulaire désiré.
Selon un second mode de réalisation, il s'agit de vecteurs d'expression comprenant, outre un acide nucléique conforme à l'invention, des séquences régulatrices permettant d'en diriger la transcription et/ou la traduction, c'est à dire les éléments polynucléotidiques constitutif d'une cassette d'expression selon l'invention.
Selon un mode de réalisation avantageux, un vecteur recombinant selon l'invention comprendra notamment les éléments suivants, constitutifs d'une cassette d'expression selon l'invention:
(1 ) des éléments de régulation de l'expression de l'acide nucléique à insérer, tels que des promoteurs et des enhanceurs ;
(2) la séquence codante comprise dans l'acide nucléique conforme à l'invention à insérer dans un tel vecteur, ladite séquence codante étant placée en phase avec les signaux de régulation décrits aux (1 ) ; et
(3) des séquences d'initiation et d'arrêt de la transcription appropriées.
Les éléments de régulation de l'expression d'un polynucléotide codant une 4-0- sulfatase de l'invention englobent les promoteurs fonctionnels dans des cellules procaryotes et les promoteurs fonctionnels dans les cellules eucaryotes, y compris les promoteurs fonctionnels dans les cellules de levure, les promoteurs fonctionnels dans les cellules d'insecte et les promoteurs fonctionnels dans les cellules de mammifère. Les promoteurs englobent les promoteurs constitutifs, les promoteurs inductibles et les promoteurs répressibles.
Les promoteurs fonctionnels dans les cellules procaryotes englobent le promoteur « int » du phage lambda, le promoteur CAT du gène de la chloramphenicol acétyl transférase, les promoteurs « droit » (PR) et « gauche » (PL) du bactériophage lambda, ainsi que les promoteurs trp, recA, lacZ, lacl et gai de E. coli, bien connus de l'homme du métier. De manière générale, pour la sélection d'un promoteur fonctionnel dans les cellules eucaryotes, l'homme du métier peut se référer avantageusement à Glick (Glick, 1987, J. Ind. Microbiol., Vol. 1 : 277-282).
Pour une expression optimale du polynucléotide codant la 4-O-sulfatase de l'invention, la cassette d'expression ou le vecteur d'expression comprend aussi avantageusement un site de liaison aux ribosomes, qui est placé préférentiellement en amont, c'est à dire en 5', par rapport au cadre de lecture ouvert codant la 4-O-sulfatase. Les sites de liaison aux ribosomes englobent ceux décrits par Gold et al. (Gold et al., 1981 , Ann. Rev. Microbiol., Vol . 35 : 365- 404).
On précise que, dans certains modes de réalisation d'un vecteur recombinant selon l'invention, on insère dans un vecteur receveur un acide nucléique codant un polypeptide de l'invention, ledit vecteur receveur comprenant déjà un ou plusieurs des éléments choisis parmi les éléments de régulation, les séquences d'initiation et les séquences d'arrêt de la traduction ci-dessus. Dans ces modes de réalisation, la cassette d'expression ne préexiste pas dans l'acide nucléique qui est inséré dans le vecteur receveur. Dans ces modes de réalisation, la cassette d'expression est présente dans le vecteur recombinant, après insertion à l'endroit approprié de l'acide nucléique codant un polypeptide selon l'invention.
Dans d'autres modes de réalisation d'un vecteur recombinant selon l'invention, l'acide nucléique, qui peut être aussi appelé insert d'ADN, comprend ladite cassette d'expression. Dans ces modes de réalisation, l'insertion de l'insert d'ADN consiste en l'insertion de la cassette d'expression d'intérêt.
En outre, les vecteurs recombinants selon l'invention peuvent inclure une ou plusieurs origines de réplication chez les hôtes cellulaires dans lesquels leur amplification ou leur expression est recherchée, des gènes marqueurs ou des gènes marqueurs de sélection.
Dans une cassette d'expression ou dans un vecteur d'expression selon l'invention, le polynucléotide codant une 4-O-sulfatase est placé sous le contrôle (« operably linked to ») des différents éléments régulateurs de la transcription ou de la traduction.
Les polypeptides 4-O-sulfatase de l'invention consistent en des, ou proviennent de, polypeptides produits dans des cellules bactériennes. Les polypeptides de l'invention peuvent donc être produits sous forme recombinante sans inconvénient dans des cellules bactériennes. Du fait que ces polypeptides ne comprennent pas de motifs de glycosylation spécifiques, ils peuvent aussi être produits de manière tout à fait satisfaisante dans des cellules eucaryotes, y compris des cellules de levure ou des cellules de mammifère.
A titre d'exemple, les promoteurs bactériens englobent les promoteurs Lacl, LacZ, les promoteurs de l'ARN polymérase du bactériophage T3 ou T7, les promoteurs PR, ou PL du phage lambda.
Les promoteurs pour cellules eucaryotes englobent le promoteur de la thymidine kinase du virus HSV ou encore le promoteur de la métallothionéine-L de souris.
De manière générale, pour le choix d'un promoteur adapté, l'homme du métier pourra avantageusement se référer à l'ouvrage de SAMBROOK et al. (Sambrook, J., Fritsch, E. F., and T. Maniatis, 1989. Molecular cloning: a laboratory manual. 2ed. Cold Spring Harbor Laboratory, Cold spring Harbor, New York.) précité ou encore aux techniques décrites par FULLER et al. (Fuller S.A. et al., 1996, Immunology in Current Protocols in Molecular Biology, Ausubel et al).
Les vecteurs bactériens préférés selon l'invention sont par exemple les vecteurs pBR322(ATCC37017) pUC18 (ATCC 37253), pUC19c (ATCC 37254), ou encore des vecteurs tels que pAA223-3 (Pharmacia, Uppsala, Suède), et pGEM1 (Promega Biotech, Madison, Wl, ETATS-UNIS).
On peut encore citer d'autres vecteurs commercialisés tels que les vecteurs pQE70, pQE60, pQE9 (Qiagen), psiX174, pBluescript SA, pNH8A, pNH16A, pNH18A, pNH46A, pWLNEO, pSV2CAT, pOG44, pXTI, pSG(Stratagene).
On peut aussi utiliser les vecteurs bactériens pRSF-1 b, pRSF-2 Ek/LIC et pRSFDuet-1 commercialisés par la société Novagen (Nottingham, Royaume-Uni).
Il peut s'agir également de vecteurs de type baculovirus tel que le vecteur pVL1392/1393 (Pharmingen) utilisé pour transfecter les cellules de la lignée Sf9 (ATCC N° RL 171 1 ) dérivées de Spodoptera frugiperda.
Il peut encore s'agir de vecteurs adénoviraux tels que l'adénovirus humain de type 2 ou
5.
Un vecteur recombinant selon l'invention peut aussi être un vecteur rétroviral ou encore un vecteur adéno-associé (AAV). De tels vecteurs adéno-associés sont par exemple décrits par FLOTTE et al. (Flotte et al., 1992, Am. J. Respir. Cell Mol. Bioi, Vol. 7 : 349-356), SAMULSKI et al. (Samulski et al., 1989, J. Virol., Vol. 63 : 3822-3828), ou encore McLAUGHLIN BA et al. (Samulski et al., 1989, J. Virol., Vol. 63 : 3822-3828).
A titre illustratif, on décrit dans les exemples la préparation d'un vecteur recombinant pour l'expression d'une 4-O-sulfatase dans E. coli.
Dans certains modes de réalisation d'un vecteur d'expression recombinant selon l'invention, ledit vecteur d'expression recombinant comprend dans sa séquence à la fois (i) une cassette d'expression codant la 4-O-sulfatase et (ii) une cassette d'expression codant un enzyme de maturation du type « anSME ». La transfection de cellules bactériennes, et en particulier de cellules de E. coli, avec de tels vecteurs recombinants, permet de réaliser de manière autonome, c'est-à-dire indifféremment du type de cellule bactérienne transfectée, la production de la 4-O-sulfatase d'intérêt et son activation par maturation à l'aide de l'enzyme anSME qui est simultanément produite dans la même cellule bactérienne.
Un mode de réalisation d'un vecteur d'expression recombinant comprenant à la fois (i) une cassette d'expression codant la 4-O-sulfatase et (ii) une cassette d'expression codant un enzyme de maturation du type « anSME » est illustré dans les exemples. Il s'agit du vecteur désigné « pRSF-4Sulf-anSME » de séquence SEQ ID N ° 53, dont la structure générale est décrite dans la figure 4.
Cellules hôtes recombinantes
L'invention concerne aussi une cellule hôte recombinante qui a été artificiellement transfectée ou transformée par un acide nucléique ou par un vecteur recombinant tels que définis ci-dessus.
De préférence, une cellule hôte recombinante selon l'invention est une cellule eucaryote, et de manière tout à fait préférée une cellule hôte recombinante humaine. Les cellules hôtes préférées selon l'invention sont par exemple les suivantes :
a) cellules hôtes procaryotes: souches û'Escherichia coli, de Bacillus subtilis, de Salmonella typhimurium, ou encore des souches d'espèces telles que Pseudomonas, Streptomyces et Staphylococus. On peut aussi utiliser une bactérie choisie parmi Bacillus subtilis (Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582 ; EP 0 036 259 et EP 0 063 953; WO 84/04541 ) ; Escherichia coli (Shimatake et al. (1981 ) Nature 292:128; Amann et al. (1985) Gene 40:183; Studier et al. (1986) J. Mol. Biol. 189:1 13; EP 0 036 776, EP 0 136 829 et EP 0 136 907) ; Streptococcus cremoris (Powell et al. (1988) Appl. Environ. Microbiol. 54:655] ; Streptococcus lividans [Powell et al. (1988) Appl. Environ. Microbiol. 54:655) ; Streptomyces lividans (US 4,745,056)
b) cellules hôtes eucaryotes: cellules HeLa (ATCC N <€CL2), cellules Cv 1 (ATCC N qCCL70), cellules COS (ATCC N°CRL 1650), cellules Sf-9 (ATCC N <€RL 171 1 ), cellules CHO (ATCC N °CCL-61 ) ou encore cellules 3T3 (ATCC N°CRL-6361 ). On peut aussi utiliser les cellules hôtes eucaryotes suivantes : BHK (Baby Hamster Kidney) et notamment BHK tk"ts13 (CRL 10314, Waechter and Baserga, Proc. Natl. Acad. Sci. USA 79:1 106-1 1 10, 1982), CHO (ATCC CCL 61 ), COS-1 (ATCC CRL 1650), HEK293 (ATCC CRL 1573; Graham et al., J. Gen. Virol. 36:59-72, 1977), Rat Hep I (Rat hepatoma; ATCC CRL 1600), Rat Hep II (Rat hepatoma; ATCC CRL 1548), TCMK (ATCC CCL 139), Human lung (ATCC HB 8065), NCTC 1469 (ATCC CCL 9.1 ) and DUKX cells (CHO cell line) (Uriaub and Chasin, Proc. Natl. Acad. Sci. USA 77:4216-4220, 1980), cellules YB2/0, cellules 3T3, cellules Namalwa, ou des cellules BHK adaptées à la culture sans sérum (Document US 6,903,069). On peut aussi utiliser des cellules de levures choisies parmi Candida (Kurtz et al. (1986) Mol. Cell. Biol. 6:142; Kunze et al. (1985) J. Basic Microbiol. 25:141 ) ; Hansenula (Gleeson et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genêt. 202:302) ; Kluyveromyces (Das et al. (1984) J. Bacteriol. 158:1 165; De Louvencourt et al. (1983) J. Bacterial. 154:1 165; Van den Berg et al. (1990) Bio/Technology 8:135) ; Pichia (Cregg et al. (1985) Mol. Cell. Biol. 5:3376; Kunze et al. (1985) J. Basic Microbiol. 25:141 ; U.S. Pat. Nos. 4,837,148 and 4,929,555) ; Saccharomyces (Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75;1929; Ito et al. (1983) J. Bacteriol. 153:163) ; Schizosaccharomyces (Beach and Nurse (1981 ) Nature 300:706) ; Yarrowia (Davidow et al. (1985) Curr. Genêt. 10:39; Gaillardin et al. (1985) Curr. Genêt. 10:49).
Par « polypeptide recombinant», on désigne tout polypeptide selon l'invention obtenu à partir d'une cellule transformée ou d'un organisme génétiquement modifié, c'est à dire à partir d'un microorganisme, ou d'une cellule eucaryote, y compris des cellules de levure, des cellules d'insecte, des cellules de mammifère ou encore des cellules végétales.
Ainsi, un polypeptide recombinant de l'invention est issu de la transcription puis de la traduction d'une molécule d'ADN codant pour ledit polypeptide selon l'invention et produit par une cellule recombinante. Ainsi un polypeptide recombinant de l'invention peut être obtenu au moyen de techniques standard, bien connues de l'homme du métier, permettant l'expression d'une protéine recombinante dans un système biologique. La présente invention concerne également un procédé de fabrication d'un polypeptide recombinant selon la présente invention comprenant les étapes suivantes :
a) transformation d'une cellule hôte avec un acide nucléique codant pour un polypeptide tel que défini dans la présente description,
b) mise en culture de la cellule transformée obtenue à l'étape a) de manière à ce que la cellule exprime ledit polypeptide recombinant, et
c) purification dudit polypeptide recombinant exprimé par la cellule transformée mise en culture à l'étape b).
La cellule transformée est mise en culture dans un milieu approprié lui permettant d'exprimer un polypeptide selon l'invention. Les milieux de cultures utilisés sont choisis à dessein par l'homme du métier en fonction des cellules cultivées. Des milieux appropriés pour la culture cellulaire comprennent l'IMDM (Iscove's Modified Dulbecco's Médium), le DMEM (Dulbecco's Modified Eagle Médium), le RPMI 1640 ou autres. Ces milieux de culture sont composés pour l'essentiel de sels inorganiques, d'acides aminés, de vitamines et d'autres composants, notamment le glucose pour son apport énergétique et l'HEPES pour son pouvoir tampon, des compléments de base tels que notamment des acides aminés, des minéraux, des éléments traces, des compléments moléculaires spécifiques de la croissance et des activités métaboliques pour chaque type cellulaire cultivé etc.
L'expression de la 4-O-sulfatase objet de l'invention par les techniques de génie génétique décrites ci-dessus permet d'obtenir, après purification par des méthodes classiques connues de l'homme du métier, soit une 4-O-sulfatase purifiée telle que décrite précédemment, soit une composition comprenant une 4-O-sulfatase telle que décrite précédemment.
Dans certains modes de réalisation de cellules hôtes recombinantes selon l'invention, lesdites cellules hôtes sont transfectées à la fois avec (i) une cassette d'expression codant la 4- O-sulfatase et (ii) une cassette d'expression codant un enzyme de maturation du type « anSME ». En particulier, si un mutant « cysteine » de la 4-O-sulfatase est utilisé, lesdites cellules hôtes peuvent être transfectées à la fois avec (i) une cassette d'expression codant le variant de la 4-O-sulfatase et (ii) une cassette d'expression codant un enzyme de maturation du type « anSME » ou FGE (Dierks et al. 2005 Cell 121 , 541 -552 ; Carlson et al. 2008 J Biol Chem 283, 201 17-20125). Selon une première alternative, chacune des deux cassettes d'expression est comprise dans un vecteur spécifique et la cellule hôte recombinante de l'invention est obtenue après transfection par chacun des deux vecteurs d'expression distincts. Selon une seconde alternative, les deux cassettes d'expression sont insérées de manière appropriée dans le même vecteur récipient, pour obtenir un vecteur recombinant dans lequel sont présentes les deux cassettes d'expression, ledit vecteur final étant ensuite utilisé pour transfecter des cellules hôtes et obtenir des cellules hôtes recombinantes selon l'invention. Cette seconde alternative est illustrée dans les exemples. Utilisation d'un polypeptide ou d'un acide nucléique selon l'invention
Comme cela a été décrit précédemment dans la présente description, la 4-O-sulfatase objet de l'invention peut être notamment utilisée comme outil d'ingénierie des GAGs.
L'action de la 4-O-sulfatase objet de l'invention est décrite dans la Figure 2. Il s'agit d'une action de désulfatation sélective en position 4 d'un cycle osidique d'un GAG.
Dans certains modes de réalisation de l'invention, la 4-O-sulfatase purifiée objet de l'invention, ou bien la composition comprenant une 4-O-sulfatase telle que décrite précédemment, est utilisée dans un procédé de synthèse d'un GAG.
De préférence, le GAG que l'on souhaite synthétiser est un disaccharide de chondroïtine.
Un exemple d'utilisation d'une 4-O-sulfatase purifiée objet de l'invention dans un procédé de synthèse d'un disaccharide de chondroïtine est donné dans l'exemple 4.
Dans d'autres modes de réalisation de l'invention, la 4-O-sulfatase purifiée objet de l'invention, ou bien la composition comprenant une 4-O-sulfatase telle que décrite précédemment, est utilisée dans un procédé de détermination de la présence d'un GAG 4-0- sulfaté dans un échantillon.
Par « échantillon », on entend au sens de l'invention une solution contenant au moins un
GAG.
De préférence, le GAG 4-O-sulfaté dont on souhaite déterminer la présence dans un échantillon est un disaccharide de chondroïtine.
Un exemple d'utilisation d'une 4-O-sulfatase purifiée objet de l'invention dans un procédé de détermination de la présence d'un disaccharide de chondroïtine 4-O-sulfaté dans un échantillon est donné dans l'exemple 5.
L'invention concerne également un procédé de synthèse d'un GAG, comprenant une étape de réaction d'un GAG avec une 4-O-sulfatase telle que décrite précédemment. Ladite 4- O-sulfatase peut être comprise dans une composition telle que décrite plus haut.
L'invention est donc aussi relative à un procédé de synthèse d'un composé GAG comprenant les étapes suivantes :
a) fournir un composé précurseur du GAG désiré, ledit composé précurseur consistant en un GAG comprenant au moins un groupe O-sulfate en position 4 dans au moins une unité osidique constitutive dudit GAG,
b) incuber ledit précurseur de GAG avec une 4-0- sulfatase de l'invention,
c) récupérer le produit GAG final.
Le composé précurseur du GAG utilisé est un précurseur comportant des fonctions alcools sulfatées sur les cycles osidiques, que l'on veut spécifiquement désulfater en position 4. Dans ce cas, on mettra en œuvre une étape de désulfatation sélective dudit précurseur en l'incubant avec la 4-O-sulfatase de l'invention. Par « précurseur », on entend au sens de l'invention un motif osidique comportant de une à plus de 100 unités osidiques présentes ou non naturellement dans les GAGs et dans lequel au moins une unité osidique comprend un groupe O-sulfate en position 4.
De préférence, le GAG que l'on souhaite synthétiser est un disaccharide de chondroïtine, désulfaté en position 4 des unités osidiques qui le constituent. De même, de préférence, le composé GAG précurseur que l'on fait réagir avec une 4-O-sulfatase telle que décrite précédemment est un disaccharide de chondroïtine.
A l'étape a), le composé précurseur de GAG se présente de préférence sous la forme d'une solution contenant ledit précurseur sous forme dissoute, à une concentration finale appropriée pour réaliser la réaction de désulfatation en présence de la 4-O-sulfatase. La concentration finale de composé précurseur déterminera notamment la durée nécessaire à l'hydrolyse complète des groupes 4-O-sulfates des molécules du composé précurseur de GAG par la 4-O-sulfatase.
A l'étape b), on incube le composé précurseur de GAG avec la 4-O-sulfatase qui est à une concentration finale appropriée pour réaliser l'hydrolyse des groupes 4-O-sulfates des molécules du composé précurseur de GAG.
Lorsque, à l'étape b) du procédé de synthèse de GAGs ci-dessus, on utilise la 4-O- sulfatase sous forme concentrée, c'est-à-dire à une concentration finale supérieure à 1 mg/ml, on obtient à l'étape c) un GAG produit final dont tous les groupes sulfate en position 4 des unités osidiques ont été hydrolysés.
Lorsque, à l'étape b) du procédé de synthèse GAGs ci-dessus, on utilise la 4-O- sulfatase à faible concentration, c'est-à-dire à une concentration inférieure à 0.5mg/ml, on obtient à l'étape c) un GAG produit final désulfaté en position 4 seulement sur les unités osidiques non sulfatées en position 6 La durée de l'étape b) varie avec (i) la concentration finale en composé précurseur de GAG et (ii) la concentration finale de 4-O-sulfatase.
L'étape de désulfatation sélective d'un GAG par une 4-O-sulfatase telle que décrite précédemment peut être réalisée notamment dans les conditions opératoires suivantes : 1 μί de la solution enzymatique de 4-O-sulfatase est ajouté à une solution de tampon Tris/HCI 34 mM pH 7.5 contenant l'oligosaccharide ou les oligosaccharides à désulfater. L'incubation est effectuée à 25 °C. A des intervalles réguliers des prélèvements sont effectués. De préférence, le mélange réactionnel est analysé en continu pour contrôler le taux de désulfatation. La réaction est alors arrêtée lorsqu'il n'y a plus d'évolution des produits dans le mélange réactionnel.
Dans certains modes de réalisation, on analyse à l'étape b) la composition en composés GAGs du mélange réactionnel, afin de suivre le degré d'avancement de l'hydrolyse des groupes sulfate en position 4 et ainsi stopper la réaction lorsque les résultats d'analyse ont révélé que la totalité des molécules du composé précurseur de GAG ont été enzymatiquement transformées. L'analyse du mélange réactionnel, au cours de l'étape b) du procédé de synthèse ci-dessus, peut être effectuée selon la technique d'électrophorése capillaire, qui est décrite ci-dessous pour la mise en œuvre d'un procédé de détermination de la présence d'un GAG 4-O-sulfaté dans un échantillon. A l'étape c), le produit GAG final est préférentiellement récupéré par purification, selon toute technique connue de purification bien connue de l'homme du métier.
Comme cela est décrit ci-après, on peut utiliser une 4-O-sulfatase de l'invention dans un procédé d'analyse d'une composition comprenant des composés GAGs, et plus particulièrement dans un procédé de détermination de la présence de composés GAGs 4-0- sulfatés dans une telle composition.
L'invention concerne également un procédé de détermination de la présence d'un GAG 4-0-sulfaté dans un échantillon, comprenant les étapes suivantes :
(a) la mise en contact de l'échantillon avec une 4-O-sulfatase telle que décrite précédemment, et
(b) l'analyse du produit obtenu en présence d'une quantité efficace d'enzyme.
Par « quantité efficace », on entend au sens de l'invention une quantité appropriée d'enzyme, aisément déterminable par l'homme du métier, permettant l'élimination de plus de 5% des groupements sulfate par rapport au contrôle incubé sans enzyme.
Ladite 4-O-sulfatase peut être comprise dans une composition telle que décrite plus haut.
De préférence, le GAG 4-0-sulfaté dont on souhaite déterminer la présence dans un échantillon est un disaccharide de chondroïtine.
L'étape (b) dudit procédé peut être mise en œuvre selon n'importe quelle technique d'analyse connue de l'homme du métier spécialiste de la chimie des sucres.
Dans certains modes de réalisation préférés de l'invention, l'analyse du produit obtenu dans l'étape (a) dudit procédé est effectuée par spectrométrie de masse, par électrophorèse capillaire, chromatographie couche mince, HPLC, RMN ou tout autre type d'analyses. Les caractéristiques et avantages de l'invention ressortiront mieux des exemples qui suivent, donnés à titre illustratif et non limitatif.
On décrit dans les exemples un procédé de détermination de la présence d'un composé GAG 4-0-sulfaté dans lequel l'étape b) consiste en une analyse du mélange réactionnel selon la technique d'électrophorèse capillaire, avec détection des pics à la longueur d'onde de 200 nanomètres.
EXEMPLES
Exemple 1 : Clonage et expression d'une 4-O-sulfatase purifiée.
Un volume de 1 μί d'ADN génomique de B. thetaiotaomicron VPI-5482 a été mélangé à deux amorces nucléotidiques (10 μΜ) ciblant spécifiquement le gène BT3349 (Seq ID Ν ) selon un protocole standard, en utilisant la paire d'amorces suivante :
- Amorce aller : GGA TCC A ATG GGA GGC TTG ACC CTC TTT GCA GCG (SEQ ID N ° 27)
- Amorce Retour : CTG CAG TCA GTA AGG TAT ACG GTC CGA AAG (SEQ ID N° 28)
Dans l'amorce SEQ ID N° 27, la séquence « GGATCC » de l'amorce Aller ci-dessus permet la réalisation d'un amplicon qui peut être ensuite introduit au niveau d'un site de restriction BamHI présente dans un polysite de clonage d'un vecteur de clonage ou d'expression.
Dans l'amorce SEQ ID N ° 28, la séquence « CTGCAG » de l'amorce Retour ci-dessus permet la réalisation d'un amplicon qui peut être ensuite introduit au niveau d'un site de restriction PSTI présente dans un polysite de clonage d'un vecteur de clonage ou d'expression.
Le cycle d'amplification suivant a été réalisé : 1 min de dénaturation à 95°C, 1 min d'hybridation à 55°C et 1 min30 d'élongation à 72 °C, ledit cycle étant répété 25 fois.
A l'issue de ces 25 cycles d'amplification, une dernière étape d'élongation à 72°C pendant 10 minutes a été réalisée. Le produit de PCR ainsi obtenu a été purifié à l'aide du kit « QIAquick PCR Purification Kit » de la Société Qiagen (Courtaboeuf, France) selon les recommandations du fabricant.
L'ADN ainsi amplifié a été ligué dans un plasmide pGEMT selon le kit pGEMT-Easy (Promega). Après transformation de E. coli DH5a, plusieurs transformants ont été sélectionnés sur milieu LB + Ampicilline (100μg/ml) et les plasmides ont été extraits et séquencés selon les techniques classiques de biologie moléculaire.
Un plasmide contenant la séquence SEQ ID N ° 14 et les deux sites de restriction a été ensuite digéré par les enzymes BamHI/PstI et le gène de sulfatase ainsi digéré a été purifié sur gel d'agarose en utilisant le kit QIAquick Gel Extraction Kit (Qiagen) selon les instructions du fabricant.
L'amplicon a ensuite été cloné dans le site 1 d'un vecteur pRSF dans lequel avait déjà été inséré l'acide nucléique codant pour une anSME dans le site 2, selon la même procédure que le gène de 4-O-sulfatase. Ainsi soit l'anSME de Clostridium perfringens soit l'anSME de B. thetaiotaomicron décrites dans Benjdia et al., 2008, J Biol Chem, Vol. 283 (26) : 17815-17826 ont été utilisées pour activer avec succès la 4-O-sulfatase (Voir Figure 4).
La carte du vecteur recombinant final comprenant (i) une cassette d'expression codant la 4-O-sulfatase de séquence SEQ ID Ν et (ii) une cassette d'expression codant l'enzyme anSME est représentée sur la Figure 4. La séquence du vecteur est la séquence SEQ ID N ° 53.
Le vecteur recombinant final, désigné pRSF-4Sulf-anSME, a été utilisé pour transfecter des cellules de E. coli de la souche BL21 (DE3) (Andreishcheva et al., 2006, Gene, Vol. 384 : 1 13-1 19) exprimant le gène de la polymérase T7, selon un protocole standard décrit dans (Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.), ce qui permet l'expression des deux gènes clonés respectivement dans les sites 1 et 2.
En réalisant une analyse sur gel d'électrophorèse en conditions dénaturantes selon le protocole de Laemmli (gel SDS PAGE 12%), on a démontré l'expression à la fois de la 4- Osulfatase et de l'anSME, comme cela a est illustré sur la Figure 5.
La 4-O-sulfatase recombinante produite par les cellules recombinantes de E. coli BL21 (DE3) obtenues comme cela est décrit ci-dessus a été purifiée grâce à son tag histidine (6-His) sur une colonne de Ni NTA agarose (Qiagen) selon les recommandations du fabricant. La sulfatase a été éluée spécifiquement en appliquant un tampon Tris/HCI pH 7.5 contenant 500 mM d'imidazole.
Exemple 2 : Identification d'une famille de 4-Osulfatase
Le demandeur a identifié une famille de polypeptides possédant au moins 50% d'identité en acides aminés avec la 4-O-sulfatase de Bacteroides thetaiotaomicron de séquence SEQ ID N ° 1. Il s'agit des polypeptides de séquences SEQ ID N° 2 à SEQ ID N ° 13.
Un alignement des séquences des polypeptides SEQ ID N ° 1 à SEQ ID N ° 13 est représenté sur la Figure 13 (Figures 13-1 à 13-8).
Exemple 3 : Détermination de l'action de la 4-O-sulfatase objet de l'invention
On a utilisé la 4-O-sulfatase de séquence SEQ ID N°1 recombinante produite par les cellules recombinantes de E co// obtenues comme cela est décrit à l'exemple 1 ci-dessus, puis purifiée.
L'activité et la spécificité de la 4-O-sulfatase recombinante purifiée a été testée sur une variété de disaccharides de chondroïtine sulfate ayant des profils distincts de sulfatation.
On a utilisé respectivement la chimiothèque 2 {1-4} et la chimiothèque 3 {1 -4} décrite par Lubineau et al. (Lubineau et al., 1999, Eur J Org Chem, : 2523-2532).
La composition de chacune des chimiothèques 2 {1 -4} et 3 {1 -4} est illustrée dans la Figure 1 de Lubineau et al. (1999), qui est reproduite dans la Figure 6 de la présente description.
Les 4 composés disaccharidiques de type chondroïtine sulfate contenus dans les Chimiothèques 2 {1 -4} et 3 {1 -4} ont été séparés et identifiés par électrophorèse capillaire, en utilisant un appareil Agilent équipé d'un capillaire de 72 cm de longueur, de diamètre intérieur 50 μηπ. Le capillaire est lavé avec de la soude 1 N, de l'eau et rempli avec du tampon borate 20 mM à pH 9,3. L'essai d'électrophorèse est réalisé en appliquant un voltage constant de 30 kV. La détection des pics est suivie à la longueur d'onde de 200 nm. Pour la séparation des produits composant les chimiothèques, on injecte de 1 à 2 nanolitres d'une solution à 1 mg/ml des composés de la chimiothèque 2 {1 -4} ou de la chimiothèque 3 {1 -4}
La Figure 7 illustre le profil de séparation et l'identification des 4 composés disaccharidiques contenus dans la Chimiothèque 2 {1-4}.
La Figure 8 illustre le profil de séparation et l'identification des 4 composés disaccharidiques contenus dans la Chimiothèque 3 {1-4}. Spécificité de la 4-O-sulfatase
Les essais de réaction enzymatique ont été réalisés avec 6 microlitres d'une solution de 2 {1 -4} ou 3 {1 -4} à 15 mg/mL, 68 microlitres de tampon Tris 34 mM pH7.5 et 1 microlitre de la solution enzymatique de 4-O-sulfatase recombinante.
Pour les essais, la 4-O-sulfatase a été utilisée sous forme purifiée 25 μΜ et sous une forme diluée 50 fois dans une solution tampon Tris pH 7.4. Les résultats sont illustrés dans les figures 9 à 12 :
- La figure 9 illustre le profil de composés obtenus après avoir soumis les composés de la Chimiothèque 2 {1 -4} à l'action de la 4-O-sulfatase sous une forme concentrée,
- La figure 10 illustre le profil de composés obtenus après avoir soumis les composés de la Chimiothèque 3 {1 -4} à l'action de la 4-O-sulfatase sous une forme concentrée,
- La figure 1 1 illustre le profil de composés obtenus après avoir soumis les composés de la Chimiothèque 2 {1 -4} à l'action de la 4-O-sulfatase sous une forme diluée 50 fois,
- La figure 12 illustre le profil de composés obtenus après avoir soumis les composés de la Chimiothèque 3 {1 -4} à l'action de la 4-O-sulfatase sous une forme diluée 50 fois.
Lorsque l'enzyme est utilisée non diluée, on constate la disparition de tous les composés sulfatés en 4 qu'ils soient sulfatés ou non en 6 et/ou 2, comme cela est illustré dans les figures 9 et 10.
Lorsque l'enzyme est diluée 50 fois, seuls les composés sulfatés en 4, n'ayant pas de sulfate en 6 mais qu'ils soient ou non sulfatés en 2 sont désulfatés ; comme cela est illustré dans les Figures 1 1 et 12.
Les résultats présentés dans cet exemple montrent que la sulfatase clonée et purifiée, après activation par l'enzyme anSME, catalyse spécifiquement l'hydrolyse des groupements sulfate portés sur les résidus de A-acétyl-galactosamine en position 4.
En revanche, cette enzyme est inactive vis-à-vis des résidus en position 6 et 2.
L'enzyme ainsi identifiée présente donc une spécificité stricte vis-à-vis de la position 4 et constitue une nouvelle enzyme capable de modifier sélectivement les GAGs. Ainsi, afin de vérifier la spécificité de la 4-O-sulfatase objet de l'invention, différents disaccharides de chondroïtines représentant les différentes combinaisons possibles de sulfatation ont été mis en contact avec la 4-O-sulfatase purifiée objet de l'invention.
La Figure 3 rappelle la série des oligosaccharides testés dans cet exemple et précise l'action de la 4-O-sulfatase objet de l'invention qui a été observée sur ceux-ci.
Le schéma de la Figure 3 rappelle les résultats ci-dessus, à savoir que la 4-O-sulfatase objet de l'invention est incapable de désulfater les fonctions alcool sulfatées présentes en position 2 et 6 sur les disaccharides de chondroïtines. En revanche, elle permet de désulfater sélectivement la fonction alcool présente en position 4 sur les disaccharides de chondroïtines. Exemple 4 : Utilisation d'une 4-O-sulfatase purifiée dans un procédé de synthèse d'un disaccharide de chondroïtine
Un composé disaccharidique de type chondroïtine sulfate synthétisé comme décrit par Lubineau et al est mis en présence d'une solution de 4-O-sulfatase dans du tampon Tris/HCI 34 ÎTIM pH 7.5, à 25 °C. La réaction de désulfatation est suivie par électrophorèse capillaire, en utilisant un appareil Agilent équipé d'un capillaire de 72 cm de longueur, de diamètre intérieur 50 μηπ. Le capillaire est lavé avec de la soude 1 N, de l'eau et rempli avec du tampon borate 20 mM à pH 9,3. L'essai d'électrophorèse est réalisé en injectant 1 nanolitre du mélange enzymatique et en appliquant un voltage constant de 30 kV. La détection des pics est suivie à la longueur d'onde de 200 nm.
Tous les composés possédant un sulfate en position 4 du résidu /V-acétylglucosamine sont désulfatés quand l'enzyme est utilisée très concentrée. Lorsque l'enzyme est diluée 50 fois, seuls les composés n'ayant pas de sulfate en 6 perdent le sulfate en 4.
Exemple 5 : Utilisation d'une 4-O-sulfatase purifiée dans un procédé de détermination de la présence d'un disaccharide de chondroïtine 4-O-sulfaté dans un échantillon
Les Chimiothèques 2 {1 -4} et 3 {1 -4} composées de quatre disaccharides dont deux seulement sont sulfatés en position 4 de la /V-acétylglucosamine sont soumis à l'action de la 4- O-sulfatase. Les essais de réaction enzymatique ont été réalisés avec 6 microlitres d'une solution de 2 {1 -4} ou 3 {1 -4} à 15 mg/mL, 68 microlitres de tampon Tris 34 mM pH7.5 et 1 microlitre de la 4-O-sulfatase recombinante. La réaction est analysée par électrophorèse capillaire, en utilisant un appareil Agilent équipé d'un capillaire de 72 cm de longueur, de diamètre intérieur 50 μπι. Le capillaire est lavé avec de la soude 1 N, de l'eau et rempli avec du tampon borate 20 mM à pH 9,3. L'essai d'électrophorèse est réalisé en appliquant un voltage constant de 30 kV après injection de 1 nanolitre de la réaction. La détection des pics est suivie à la longueur d'onde de 200 nm.
Comme montré dans les Figures 9 et 10, seuls les produits possédant un sulfate en 4 de la position /V-acétylglucosamine sont désulfatés. L'enzyme est capable dans un mélange de plusieurs composés de ne désulfater que les composés possédant un sulfate en 4 de la N- acétylglucosamine.
Tableau 1 : Séquences
SEQ ID N° Type Description
1 polypeptide 4-O-sulfatase NP 812261
2 polypeptide 4-O-sulfatase ZP 01959927
3 polypeptide 4-O-sulfatase ZP 03677283
4 polypeptide 4-O-sulfatase ZP 03207093
5 polypeptide 4-O-sulfatase ZP 02064997
6 polypeptide 4-O-sulfatase ZP 04547232.1
7 polypeptide 4-O-sulfatase ZP 02031487
8 polypeptide 4-O-sulfatase ZP 03013818
9 polypeptide 4-O-sulfatase ZP 04846309
10 polypeptide 4-O-sulfatase ZP 03478349
1 1 polypeptide 4-O-sulfatase ZP 02436215
12 polypeptide 4-O-sulfatase ZP 03460590
13 polypeptide 4-O-sulfatase AAO 08013
14 Acide nucléique code le polypeptide de séquence SEQ ID N ° 1
15 Acide nucléique code le polypeptide de séquence SEQ ID N ° 2
16 Acide nucléique code le polypeptide de séquence SEQ ID N ° 3
17 Acide nucléique code le polypeptide de séquence SEQ ID N ° 4
18 Acide nucléique code le polypeptide de séquence SEQ ID N ° 5
19 Acide nucléique code le polypeptide de séquence SEQ ID N ° 6
20 Acide nucléique code le polypeptide de séquence SEQ ID N ° 7
21 Acide nucléique code le polypeptide de séquence SEQ ID N ° 8
22 Acide nucléique code le polypeptide de séquence SEQ ID N ° 9
23 Acide nucléique code le polypeptide de séquence SEQ ID N ° 10
24 Acide nucléique code le polypeptide de séquence SEQ ID N ° 1 1
25 Acide nucléique code le polypeptide de séquence SEQ ID N ° 12
26 Acide nucléique code le polypeptide de séquence SEQ ID N ° 13
27 Acide nucléique Amorce BT3349 Aller pour SEQ ID N° 1
28 Acide nucléique Amorce BT3349 Retour pour SEQ ID N° 1
29 Acide nucléique Amorce Aller pour SEQ ID N° 2
30 Acide nucléique Amorce Retour pour SEQ ID N ° 2
31 Acide nucléique Amorce Aller pour SEQ ID N° 3
32 Acide nucléique Amorce Retour pour SEQ ID N ° 3
33 Acide nucléique Amorce Aller pour SEQ ID N° 4
34 Acide nucléique Amorce Retour pour SEQ ID N ° 4
35 Acide nucléique Amorce Aller pour SEQ ID N° 5
36 Acide nucléique Amorce Retour pour SEQ ID N ° 5 SEQ ID N ° Type Description
37 Acide nucléique Amorce Aller pour SEQ ID N° 6
38 Acide nucléique Amorce Retour pour SEQ ID N ° 6
39 Acide nucléique Amorce Aller pour SEQ ID N° 7
40 Acide nucléique Amorce Retour pour SEQ ID N ° 7
41 Acide nucléique Amorce Aller pour SEQ ID N° 8
42 Acide nucléique Amorce Retour pour SEQ ID N °8
43 Acide nucléique Amorce Aller pour SEQ ID N° 9
44 Acide nucléique Amorce Retour pour SEQ ID N ° 9
45 Acide nucléique Amorce Aller pour SEQ ID N° 10
46 Acide nucléique Amorce Retour pour SEQ ID N ° 10
47 Acide nucléique Amorce Aller pour SEQ ID N° 1 1
48 Acide nucléique Amorce Retour pour SEQ ID N ° 1 1
49 Acide nucléique Amorce Aller pour SEQ ID N° 12
50 Acide nucléique Amorce Retour pour SEQ ID N ° 12
51 Acide nucléique Amorce Aller pour SEQ ID N° 13
52 Acide nucléique Amorce Retour pour SEQ ID N ° 13
53 Acide nucléique Séquence du plasmide prSF-4Sulf-anSME exprimant la 4-O-sulfatase de séquence SEQ ID N ° 1 et une enzyme de maturation (anSME)

Claims

REVENDICATIONS
1. 4-O-sulfatase recombinante, comprenant un polypeptide ayant au moins 50% d'identité en acides aminés avec le polypeptide de séquence SEQ ID N °1.
2. 4-O-sulfatase selon la revendication 1 , comprenant un polypeptide choisi parmi les polypeptides de séquences SEQ ID Ν à 13.
3. 4-O-sulfatase selon la revendication 1 ou 2, comprenant un polypeptide de séquence SEQ ID N °1 .
4. Composition comprenant une 4-O-sulfatase selon l'une quelconque des revendications 1 à 3.
5. Cassette d'expression d'une 4-O-sulfatase, comprenant un acide nucléique choisi parmi :
a) un acide nucléique codant une 4-O-sulfatase selon l'une quelconque des revendications 1 à 3, ou un acide nucléique de séquence complémentaire,
b) un acide nucléique codant une 4-O-sulfatase selon l'une quelconque des revendications 1 à 3 ou un acide nucléique de séquence complémentaire, comprenant un polynucléotide de séquence SEQ ID N° 14 à SEQ ID N° 26 ou un acide nucléique de séquence complémentaire.
6. Vecteur recombinant, comprenant un acide nucléique tel que décrit dans la revendication 5 ou une cassette d'expression selon la revendication 5.
7. Cellule hôte eucaryote ou procaryote, transformée par un acide nucléique tel que décrit dans la revendication 5, par une cassette d'expression selon la revendication 5, ou par un vecteur recombinant selon la revendication 6.
8. Utilisation d'une 4-O-sulfatase selon l'une quelconque des revendications 1 à 3 ou d'une composition selon la revendication 4, dans un procédé de synthèse d'un glycosaminoglycane.
9. Utilisation d'une 4-O-sulfatase selon l'une quelconque des revendications 1 à 3 ou d'une composition selon la revendication 4, dans un procédé de détermination de la présence d'un glycosaminoglycane 4-O-sulfaté dans un échantillon.
10. Utilisation selon la revendication 8 ou 9, dans laquelle le glycosaminoglycane est un disaccharide de chondroïtine.
1 1 . Procédé de synthèse d'un glycosaminoglycane, comprenant une étape de réaction d'un glycosaminoglycane avec une 4-0-sulfatase selon l'une quelconque des revendications 1 à 3.
12. Procédé selon la revendication 1 1 , dans lequel l'étape de réaction est une étape de sulfatation sélective ou une étape de désulfatation sélective.
13. Procédé de détermination de la présence d'un glycosaminoglycane 4-O-sulfaté dans un échantillon, comprenant (a) la mise en contact de l'échantillon avec une 4-0-sulfatase selon l'une quelconque des revendications 1 à 3, puis (b) l'analyse du produit obtenu.
14. Procédé selon l'une quelconque des revendications 1 1 à 13, dans lequel le glycosaminoglycane est un disaccharide de chondroïtine.
PCT/FR2010/052893 2009-12-22 2010-12-22 Sulfatase modifiant selectivement les glycosaminoglycanes WO2011086293A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0959431A FR2954349A1 (fr) 2009-12-22 2009-12-22 Sulfatase modifiant selectivement les glycosaminoglycanes
FR0959431 2009-12-22

Publications (1)

Publication Number Publication Date
WO2011086293A1 true WO2011086293A1 (fr) 2011-07-21

Family

ID=42167436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/052893 WO2011086293A1 (fr) 2009-12-22 2010-12-22 Sulfatase modifiant selectivement les glycosaminoglycanes

Country Status (2)

Country Link
FR (1) FR2954349A1 (fr)
WO (1) WO2011086293A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104480140B (zh) 2007-04-03 2019-12-31 奥克西雷恩英国有限公司 分子的糖基化
US9598682B2 (en) 2009-09-29 2017-03-21 Vib Vzw Hydrolysis of mannose-1-phospho-6-mannose linkage to phospho-6-mannose
EP2501805B1 (fr) 2009-11-19 2019-02-20 Oxyrane UK Limited Souches de levures produisant des n-glycanes complexes de type mammifère
KR101979220B1 (ko) 2010-09-29 2019-05-16 옥시레인 유케이 리미티드 인산화된 n-글리칸들의 탈-만노실화
WO2012042386A2 (fr) 2010-09-29 2012-04-05 Oxyrane Uk Limited Mannosidases capables d'éliminer la coiffe des liaisons mannose-1-phospho- 6-mannose et de démannosyler les n-glycanes phosphorylés, et méthodes facilitant l'assimilation des glycoprotéines par des cellules de mammifères
JP6194324B2 (ja) 2012-03-15 2017-09-06 オキシレイン ユーケー リミテッド ポンペ病の処置のための方法および材料
WO2014136065A2 (fr) * 2013-03-05 2014-09-12 Oxyrane Uk Limited Production de sulfatase de type i catalytiquement active

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0036259A2 (fr) 1980-03-10 1981-09-23 Cetus Corporation Méthode, vecteurs et organismes pour des produits génétiques, héterologues, transportés et clonés dans bacillus subtilis et E.coli
EP0036776A2 (fr) 1980-03-24 1981-09-30 Genentech, Inc. Méthode pour la création d'un plasmide d'expression
EP0063953A2 (fr) 1981-04-29 1982-11-03 Biogen N.V. Vecteurs de clonage de bacillus, molécules de DNA recombinant, hôtes de bacillus transformés par celles-ci et méthode pour l'expression de séquences de DNA étrangères et pour la production de polypeptides codés par ce DNA
WO1984004541A1 (fr) 1983-05-19 1984-11-22 New York Health Res Inst Vecteurs d'expression et de secretion et procede de formation de ces vecteurs
EP0136829A2 (fr) 1983-09-02 1985-04-10 SUNTORY KABUSHIKI KAISHA, also known as SUNTORY LTD. Vecteur d'expression et son application
EP0136907A2 (fr) 1983-10-03 1985-04-10 Genentech, Inc. Système de contrôle d'expression xenogénésiaque, méthode pour son utilisation, vecteurs d'expression le contenant, cellules transformées par ceux-ci et protéines hétérologues produites par ceux-ci
US4745056A (en) 1984-10-23 1988-05-17 Biotechnica International, Inc. Streptomyces secretion vector
US4837148A (en) 1984-10-30 1989-06-06 Phillips Petroleum Company Autonomous replication sequences for yeast strains of the genus pichia
US4929555A (en) 1987-10-19 1990-05-29 Phillips Petroleum Company Pichia transformation
WO1990015070A1 (fr) 1989-06-07 1990-12-13 Affymax Technologies N.V. Synthese a grande echelle de peptides immobilises
WO1992010092A1 (fr) 1990-12-06 1992-06-25 Affymax Technologies N.V. Synthese de polymeres immobilises sur tres grande echelle
US5412087A (en) 1992-04-24 1995-05-02 Affymax Technologies N.V. Spatially-addressable immobilization of oligonucleotides and other biological polymers on surfaces
WO1995011995A1 (fr) 1993-10-26 1995-05-04 Affymax Technologies N.V. Reseaux de sondes d'acide nucleique sur des microplaquettes biologiques
EP0707592A1 (fr) 1993-07-09 1996-04-24 Genset Sa Procede de synthese d'acides nucleiques sur support solide et comoposes utiles notamment comme support solide dans ledit procede
WO2002002727A1 (fr) 2000-06-29 2002-01-10 Ecolab Inc. Compositions enzymatiques liquides stables presentant une activite amelioree
EP1252879A1 (fr) 2001-04-27 2002-10-30 Cosmoferm B.V. Compositions d'enzymes stabilisées
WO2003018778A2 (fr) 2001-08-30 2003-03-06 Institut National De La Recherche Agronomique (Inra) Procede de preparation d'une composition lyophilisee contenant des bacteries lactiques a viabilite et activite bacteriennes ameliorees lors d'un stockage a temperature ambiante et composition obtenue
KR20030055442A (ko) 2001-12-26 2003-07-04 주식회사 참 존 다당체를 이용한 안정화 효소의 제조방법 및 이들 안정화효소가 첨가된 조성물
JP2004141162A (ja) 2002-10-03 2004-05-20 Toyobo Co Ltd 酵素の安定化方法および組成物
KR20040042636A (ko) 2002-11-15 2004-05-20 주식회사 바이오세움 효소 안정화 조성물 및 상기 조성물을 이용한 효소 보관방법
US6903069B2 (en) 2000-10-02 2005-06-07 Novo Nordisk Health Care A/S Factor VII glycoforms
JP2006191863A (ja) 2005-01-14 2006-07-27 Menicon Co Ltd 安定化酵素組成物
WO2006079722A2 (fr) 2005-01-26 2006-08-03 Institut National De La Recherche Agronomique Compositions pour la lyophilisation de proteines
JP2007097586A (ja) 2005-09-12 2007-04-19 Kochi Univ 酵素活性の安定化方法および酵素組成物
US7247445B2 (en) 2003-01-08 2007-07-24 Massachusetts Institute Of Technology 2-O sulfatase compositions and methods of hydrolyzing therewith
US20070232514A1 (en) 2006-03-31 2007-10-04 Novozymes A/S Stabilized liquid enzyme composition
US20080090276A1 (en) 2006-10-12 2008-04-17 Van Dyck Stefaan M O Heat-stable enzyme compositions
WO2009030728A2 (fr) 2007-09-05 2009-03-12 Novozymes A/S Compositions enzymatiques contenant un constituant de stabilisation
US20090144840A1 (en) 1998-12-31 2009-06-04 Elan Pharmaceuticals, Inc. Beta-secretase enzyme compositions and methods

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0036259A2 (fr) 1980-03-10 1981-09-23 Cetus Corporation Méthode, vecteurs et organismes pour des produits génétiques, héterologues, transportés et clonés dans bacillus subtilis et E.coli
EP0036776A2 (fr) 1980-03-24 1981-09-30 Genentech, Inc. Méthode pour la création d'un plasmide d'expression
EP0063953A2 (fr) 1981-04-29 1982-11-03 Biogen N.V. Vecteurs de clonage de bacillus, molécules de DNA recombinant, hôtes de bacillus transformés par celles-ci et méthode pour l'expression de séquences de DNA étrangères et pour la production de polypeptides codés par ce DNA
WO1984004541A1 (fr) 1983-05-19 1984-11-22 New York Health Res Inst Vecteurs d'expression et de secretion et procede de formation de ces vecteurs
EP0136829A2 (fr) 1983-09-02 1985-04-10 SUNTORY KABUSHIKI KAISHA, also known as SUNTORY LTD. Vecteur d'expression et son application
EP0136907A2 (fr) 1983-10-03 1985-04-10 Genentech, Inc. Système de contrôle d'expression xenogénésiaque, méthode pour son utilisation, vecteurs d'expression le contenant, cellules transformées par ceux-ci et protéines hétérologues produites par ceux-ci
US4745056A (en) 1984-10-23 1988-05-17 Biotechnica International, Inc. Streptomyces secretion vector
US4837148A (en) 1984-10-30 1989-06-06 Phillips Petroleum Company Autonomous replication sequences for yeast strains of the genus pichia
US4929555A (en) 1987-10-19 1990-05-29 Phillips Petroleum Company Pichia transformation
WO1990015070A1 (fr) 1989-06-07 1990-12-13 Affymax Technologies N.V. Synthese a grande echelle de peptides immobilises
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
WO1992010092A1 (fr) 1990-12-06 1992-06-25 Affymax Technologies N.V. Synthese de polymeres immobilises sur tres grande echelle
US5412087A (en) 1992-04-24 1995-05-02 Affymax Technologies N.V. Spatially-addressable immobilization of oligonucleotides and other biological polymers on surfaces
EP0707592A1 (fr) 1993-07-09 1996-04-24 Genset Sa Procede de synthese d'acides nucleiques sur support solide et comoposes utiles notamment comme support solide dans ledit procede
WO1995011995A1 (fr) 1993-10-26 1995-05-04 Affymax Technologies N.V. Reseaux de sondes d'acide nucleique sur des microplaquettes biologiques
US20090144840A1 (en) 1998-12-31 2009-06-04 Elan Pharmaceuticals, Inc. Beta-secretase enzyme compositions and methods
WO2002002727A1 (fr) 2000-06-29 2002-01-10 Ecolab Inc. Compositions enzymatiques liquides stables presentant une activite amelioree
US6903069B2 (en) 2000-10-02 2005-06-07 Novo Nordisk Health Care A/S Factor VII glycoforms
EP1252879A1 (fr) 2001-04-27 2002-10-30 Cosmoferm B.V. Compositions d'enzymes stabilisées
WO2003018778A2 (fr) 2001-08-30 2003-03-06 Institut National De La Recherche Agronomique (Inra) Procede de preparation d'une composition lyophilisee contenant des bacteries lactiques a viabilite et activite bacteriennes ameliorees lors d'un stockage a temperature ambiante et composition obtenue
KR20030055442A (ko) 2001-12-26 2003-07-04 주식회사 참 존 다당체를 이용한 안정화 효소의 제조방법 및 이들 안정화효소가 첨가된 조성물
JP2004141162A (ja) 2002-10-03 2004-05-20 Toyobo Co Ltd 酵素の安定化方法および組成物
KR20040042636A (ko) 2002-11-15 2004-05-20 주식회사 바이오세움 효소 안정화 조성물 및 상기 조성물을 이용한 효소 보관방법
US7247445B2 (en) 2003-01-08 2007-07-24 Massachusetts Institute Of Technology 2-O sulfatase compositions and methods of hydrolyzing therewith
JP2006191863A (ja) 2005-01-14 2006-07-27 Menicon Co Ltd 安定化酵素組成物
WO2006079722A2 (fr) 2005-01-26 2006-08-03 Institut National De La Recherche Agronomique Compositions pour la lyophilisation de proteines
JP2007097586A (ja) 2005-09-12 2007-04-19 Kochi Univ 酵素活性の安定化方法および酵素組成物
US20070232514A1 (en) 2006-03-31 2007-10-04 Novozymes A/S Stabilized liquid enzyme composition
US20080090276A1 (en) 2006-10-12 2008-04-17 Van Dyck Stefaan M O Heat-stable enzyme compositions
WO2009030728A2 (fr) 2007-09-05 2009-03-12 Novozymes A/S Compositions enzymatiques contenant un constituant de stabilisation

Non-Patent Citations (52)

* Cited by examiner, † Cited by third party
Title
AMANN ET AL., GENE, vol. 40, 1985, pages 183
ANDREISHCHEVA ET AL., GENE, vol. 384, 2006, pages 113 - 119
AUSUBEL: "Current Protocols in Molecular Biology", 1989, GREEN PUBLISHING ASSOCIATES AND WILEY INTERSCIENCE
BEACH; NURSE, NATURE, vol. 300, 1981, pages 706
BEAUCAGE ET AL., TETRAHEDRON LETT, vol. 22, 1981, pages 1859 - 1862
BENJDIA ET AL., FEBS LETTERS, vol. 581, no. 5, 2007, pages 1009 - 1014
BENJDIA ET AL., J BIOL CHEM, vol. 283, no. 26, 2008, pages 17815 - 17826
BERTEAU ET AL., J BIOL CHEM, vol. 281, no. 32, 2006, pages 22464 - 22470
BROWN EL; BELAGAJE R; RYAN MJ; KHORANA HG, METHODS ENZYMOL, vol. 68, 1979, pages 109 - 151
CARLSON ET AL., J BIOL CHEM, vol. 283, 2008, pages 20117 - 20125
CHIANG ET AL., PEPTIDE RESEARCH, vol. 6, no. 2, pages 62 - 64
CREGG ET AL., MOL. CELL. BIOL., vol. 5, 1985, pages 3376
CZECH, M. ET AL., J. CELL BIOL., vol. 123, 1993, pages 127
DAS ET AL., J. BACTERIOL., vol. 158, 1984, pages 1165
DATABASE UniProt [online] 1 June 2003 (2003-06-01), "SubName: Full=Putative sulfatase yidJ;", XP002583120, retrieved from EBI accession no. UNIPROT:Q8A2F6 Database accession no. Q8A2F6 *
DATABASE UniProt [online] 1 March 2003 (2003-03-01), "SubName: Full=Arylsulfatase A;", XP002583123, retrieved from EBI accession no. UNIPROT:Q8D520 Database accession no. Q8D520 *
DATABASE UniProt [online] 14 October 2008 (2008-10-14), "SubName: Full=Putative uncharacterized protein;", XP002583122, retrieved from EBI accession no. UNIPROT:B5CVI0 Database accession no. B5CVI0 *
DATABASE UniProt [online] 24 July 2007 (2007-07-24), "SubName: Full=Putative uncharacterized protein;", XP002583121, retrieved from EBI accession no. UNIPROT:A5ZF73 Database accession no. A5ZF73 *
DAVIDOW ET AL., CURR. GENET., vol. 10, 1985, pages 39
DE LOUVENCOURT ET AL., J. BACTERIAL., vol. 154, 1983, pages 1165
DIERKS ET AL., CEIL, vol. 121, 2005, pages 541 - 552
FLOTTE ET AL., AM. J. RESPIR. CELL MOL. BIOL., vol. 7, 1992, pages 349 - 356
FULLER S.A. ET AL., IMMUNOLOGY IN CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, 1996
GAILLARDIN ET AL., CURR. GENET., vol. 10, 1985, pages 49
GANDHI, CHEM BIOL DRUG DES, vol. 72, 2008, pages 455 - 482
GLEESON ET AL., J. GEN. MICROBIOL, vol. 132, 1986, pages 3459
GLICK, J. IND. MICROBIOL., vol. 1, 1987, pages 277 - 282
GOLD ET AL., ANN. REV. MICROBIOL., vol. 35, 1981, pages 365 - 404
GRAHAM ET AL., J. GEN. VIROL., vol. 36, 1977, pages 59 - 72
HAMES; HIGGINS: "Nucleic Acid Hybridization: a practical approach", 1985, IRL PRESS
HENGEN, TRENDS BIOCHEM SCI, vol. 20, no. 7, 1995, pages 285 - 286
HINNEN ET AL., PROC. NATL. ACAD. SCI. USA, vol. 75, 1978, pages 1929
ITO ET AL., J. BACTERIOL., vol. 153, pages 163
K. SUGAHARA ET AL., EUR. J. BIOCHEM., vol. 239, no. 3, 1996, pages 865 - 870
KUNZE ET AL., J. BASIC MICROBIOL., vol. 25, 1985, pages 141
KURTZ ET AL., MOL. CELL. BIOL., vol. 6, 1986, pages 142
LUBINEAU ET AL., EUR J ORG CHEM, 1999, pages 2523 - 2532
NARANG SA; HSIUNG HM; BROUSSEAU R, METHODS ENZYMOL, vol. 68, 1979, pages 90 - 98
PALVA ET AL., PROC. NATL. ACAD. SCI. USA, vol. 79, 1982, pages 5582
POWELL ET AL., APPL. ENVIRON. MICROBIOL., vol. 54, 1988, pages 655
ROGGENKAMP ET AL., MOL. GEN. GENET., vol. 202, 1986, pages 302
SAMBROOK, J.; FRITSCH, E. F.; MANIATIS, T.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
SAMBROOK, J.; FRITSCH, E. F.; T. MANIATIS: "Molecular cloning: a laboratory manual", 1989, COLD SPRING HARBOR LABORATORY
SAMBROOK, J.; FRITSCH, E. F.; T. MANIATIS: "Molecular cloning: a laboratory manual", 1989, COLD SPRING HARBOR LABORATORY, pages: 9.54 - 9.62
SAMULSKI ET AL., J. VIROL., vol. 63, 1989, pages 3822 - 3828
SCHNEIDER, C. ET AL., ARCH. VIROL., vol. 125, 1992, pages 103
SHIMATAKE ET AL., NATURE, vol. 292, 1981, pages 128
SLEIGH, MJ. ET AL., J. VIROL., vol. 37, 1981, pages 845
STUDIER ET AL., J. MOL. BIOL., vol. 189, 1986, pages 113
URLAUB; CHASIN, PROC. NATL. ACAD. SCI. USA, vol. 77, 1980, pages 4216 - 4220
VAN DEN BERG ET AL., BIO/TECHNOLOGY, vol. 8, 1990, pages 135
WAECHTER; BASERGA, PROC. NATL. ACAD. SCI. USA, vol. 79, 1982, pages 1106 - 1110

Also Published As

Publication number Publication date
FR2954349A1 (fr) 2011-06-24

Similar Documents

Publication Publication Date Title
WO2011086293A1 (fr) Sulfatase modifiant selectivement les glycosaminoglycanes
JP6475620B2 (ja) グルカンポリマー生成のためのグルコシルトランスフェラーゼ酵素
CN107922958A (zh) 用于产生线性聚α‑1,3‑葡聚糖的葡糖基转移酶氨基酸序列基序
KR101891649B1 (ko) 신규 푸코실트랜스페라제 및 그 적용
Barrett et al. Analysis of glycan polymers produced by peptidoglycan glycosyltransferases
FR2897069A1 (fr) Construction de nouveaux variants de l&#39;enzyme dextrane-saccharase dsr-s par ingienerie moleculaire.
EP3011019B1 (fr) Polypeptide ayant la capacite de former des branchements d&#39;unites glucosyle en alpha-1,3 sur un accepteur
US11859216B2 (en) Compositions and methods comprising the use of a Bacillus agaradhaerens inulosucrase (INUO)
US7642071B2 (en) Methods of expressing gram-negative glycosaminoglycan synthase genes in gram-positive hosts
KR20210126019A (ko) 엔지니어링된 아릴 설페이트-의존 효소
Melançon et al. Characterization of TDP-4-keto-6-deoxy-D-glucose-3, 4-ketoisomerase from the D-mycaminose biosynthetic pathway of Streptomyces fradiae: in vitro activity and substrate specificity studies
CA1213232A (fr) Procede de purification de la dextrane-saccharase
JP5094461B2 (ja) ヒアルロン酸加水分解酵素をコードする遺伝子
CN112921020B (zh) 解除二价金属离子依赖的褐藻胶裂解酶突变体及其应用
EP3512942B1 (fr) Nouvelle ulvane lyase et son utilisation pour cliver des polysaccharides
EP3359656A1 (fr) Compositions et procédés comprenant l&#39;utilisation d&#39;enzymes a-glucanotransférase d&#39;exiguobacterium acetylicum et de bacillus coagulans
JP2021513862A (ja) ホスホリラーゼ酵素による、アルファ−1,3グリコシド結合を含むグルカンの合成
JP4752026B2 (ja) 新規なピリドキサール4−デヒドロゲナーゼ及びその利用
EP2758528A1 (fr) 3s-rhamnose-glucuronyl hydrolase, procédé de fabrication et utilisations
US20220333144A1 (en) Recombinant microorganisms for in vivo production of sulfated glycosaminoglycans
FR3045667A1 (fr) Procede de bioproduction de dextrane en milieu tensioactif
FR3045608A1 (fr) Dextrane carboxyle
EP3757209A1 (fr) Production enzymatique de fructooligosaccharides prébiotiques à base de levan
JPH1084975A (ja) ヒト由来α−1,6−フコシルトランスフェラーゼ遺伝子
JPWO2018194092A1 (ja) エキソ−β−1,2−グルカナーゼ及びソホロースの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10808927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10808927

Country of ref document: EP

Kind code of ref document: A1