WO2023195413A1 - 窒化物、圧電体、圧電素子、強誘電体、及び強誘電素子 - Google Patents

窒化物、圧電体、圧電素子、強誘電体、及び強誘電素子 Download PDF

Info

Publication number
WO2023195413A1
WO2023195413A1 PCT/JP2023/013246 JP2023013246W WO2023195413A1 WO 2023195413 A1 WO2023195413 A1 WO 2023195413A1 JP 2023013246 W JP2023013246 W JP 2023013246W WO 2023195413 A1 WO2023195413 A1 WO 2023195413A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride
piezoelectric
thin film
layer
ferroelectric
Prior art date
Application number
PCT/JP2023/013246
Other languages
English (en)
French (fr)
Inventor
ゆか梨 井上
朋広 寺田
純一 木村
雅人 上原
研二 平田
浩志 山田
守人 秋山
Original Assignee
Tdk株式会社
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社, 国立研究開発法人産業技術総合研究所 filed Critical Tdk株式会社
Publication of WO2023195413A1 publication Critical patent/WO2023195413A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/079Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing using intermediate layers, e.g. for growth control
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/40Piezoelectric or electrostrictive devices with electrical input and electrical output, e.g. functioning as transformers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions

Definitions

  • the present disclosure relates to nitrides, piezoelectric materials, piezoelectric elements (piezoelectric devices), ferroelectrics, and ferroelectric elements (ferroelectric devices).
  • MEMS Micro Electro Mechanical Systems
  • MEMS Micro Electro Mechanical Systems
  • MEMS microelectromechanical system
  • MEMS is a device in which mechanical components, electronic circuits, etc. are integrated on one substrate (for example, a semiconductor substrate) using microfabrication technology.
  • MEMS utilizes the piezoelectric effect or inverse piezoelectric effect of piezoelectric thin films.
  • a lower electrode layer, a piezoelectric thin film, and an upper electrode layer are laminated on a substrate such as silicon or sapphire.
  • subsequent post-processes microfabrication such as patterning, etching, and dicing
  • piezoelectric thin film By selecting a piezoelectric thin film with excellent piezoelectricity, the performance of piezoelectric thin film elements such as MEMS can be improved, and the piezoelectric thin film elements can be made smaller.
  • the piezoelectricity of a piezoelectric thin film is evaluated based on various piezoelectric constants (for example, piezoelectric strain constant d 33 ) depending on the function of the piezoelectric thin film element.
  • Examples of the piezoelectric composition constituting the piezoelectric thin film include Pb(Zr,Ti)O 3 (lead zirconate titanate, abbreviation: PZT), LiNbO 3 (lithium niobate), AlN (aluminum nitride), ZnO (oxidized Zinc) and CdS (cadmium sulfide) are known. In recent years, new piezoelectric compositions have been developed in order to obtain excellent piezoelectricity.
  • Non-Patent Document 1 discloses a nitride consisting of titanium, zinc and nitrogen (TiZnN 2 ), a nitride consisting of zirconium, zinc and nitrogen (ZrZnN 2 ), and hafnium, zinc as novel piezoelectric compositions. , and a nitride consisting of nitrogen (HfZnN 2 ).
  • phase diagram and various physical property values (piezoelectric constant, etc.) of nitride described in the above-mentioned Non-Patent Documents 1 and 2 are only the results of simulations based on first-principles calculations. Simulations based on first-principles calculations are performed under ideal atomic arrangement and non-experimental conditions such as absolute zero (zero K). Furthermore, the simulation based on first-principles calculations assumes a stoichiometric ratio that maintains the charge balance in the nitride. Therefore, the composition of nitride suitable for practical use as a piezoelectric composition cannot be known from Non-Patent Documents 1 and 2.
  • Non-Patent Documents 1 and 2 do not take into account the dimensions and shape of the piezoelectric composition. Therefore, the composition of nitride suitable for practical use as a piezoelectric thin film cannot be known from Non-Patent Documents 1 and 2.
  • the inventors In order to identify the composition of nitride suitable for practical use, the inventors actually produced a piezoelectric thin film made of nitride containing zinc and Group 4 elements, and evaluated its piezoelectricity. did. As a result, the inventors obtained knowledge that could not be obtained from the simulations of Non-Patent Documents 1 and 2 above. Additionally, the inventors have discovered that adding aluminum to the nitride increases the d33 of the nitride.
  • the bond between Al and N is a covalent bond and is harder than ionic bonds such as the bond between Zn and N and the bond between Group 4 elements and N. The harder the chemical bonds formed in nitride, the more the piezoelectricity of nitride tends to deteriorate. Therefore, aluminum is not normally added to nitrides containing zinc and Group 4 elements.
  • An object of one aspect of the present invention is to provide a nitride with excellent piezoelectricity, a piezoelectric material containing the nitride, a piezoelectric element containing the piezoelectric material, a ferroelectric material containing the nitride, and a ferroelectric material containing the ferroelectric material.
  • An object of the present invention is to provide a dielectric element.
  • first nitride The nitride according to the first aspect of the present invention is referred to as "first nitride.”
  • second nitride The nitride according to the second aspect of the present invention is referred to as a “second nitride.”
  • the first nitride contains zinc and a Group 4 element.
  • the Group 4 element contained in the first nitride is at least one element selected from the group consisting of titanium and zirconium.
  • the content of zinc in the first nitride is expressed as [Zn] atomic %.
  • the total content of Group 4 elements in the first nitride is expressed as [M] atomic %. In the first nitride, [M]/([Zn]+[M]) is greater than 20% and less than 50%.
  • the second nitride contains zinc and a Group 4 element.
  • the Group 4 element contained in the second nitride is at least one element selected from the group consisting of titanium and zirconium.
  • the second nitride further contains aluminum.
  • the content of zinc in the second nitride is expressed as [Zn] atomic %.
  • the total content of Group 4 elements in the second nitride is expressed as [M] atomic %.
  • the content of aluminum in the second nitride is expressed as [Al] atomic %.
  • [M]/([Zn]+[M]) is greater than 20% and less than 70%.
  • [Al]/([Zn]+[M]+[Al]) is 10% or more and less than 70%.
  • a piezoelectric body [1] includes a first nitride or a second nitride.
  • a piezoelectric body [2] includes a first piezoelectric layer containing aluminum nitride, and a second piezoelectric layer containing a first nitride or a second nitride.
  • the second piezoelectric layer is laminated directly onto the first piezoelectric layer.
  • a piezoelectric element according to one aspect of the present invention includes the piezoelectric body [1] or the piezoelectric body [2] described above.
  • the ferroelectric material [3] includes a first nitride or a second nitride.
  • a ferroelectric material [4] includes a first piezoelectric layer containing aluminum nitride and a second piezoelectric layer containing a first nitride or a second nitride.
  • the second piezoelectric layer is laminated directly onto the first piezoelectric layer.
  • a ferroelectric element according to one aspect of the present invention includes the above-mentioned ferroelectric material [3] or ferroelectric material [4].
  • a nitride with excellent piezoelectricity a piezoelectric material containing the nitride, a piezoelectric element containing the piezoelectric material, a ferroelectric material containing the nitride, and a ferroelectric material containing the ferroelectric material An element is provided.
  • FIG. 1 is a schematic cross section of a piezoelectric thin film element (ferroelectric thin film element) according to an embodiment of the present invention, and the cross section shown in FIG. It is perpendicular to the stacking direction of the second electrode layer.
  • FIG. 2 is a schematic cross section of a piezoelectric element (ferroelectric element) according to an embodiment of the present invention, and the cross section shown in FIG. perpendicular to
  • X, Y, and Z shown in each figure mean three coordinate axes that are orthogonal to each other.
  • the first nitride according to this embodiment contains zinc (Zn) and a Group 4 element.
  • the Group 4 element contained in the first nitride is at least one element selected from the group consisting of titanium (Ti) and zirconium (Zr).
  • the content of zinc in the first nitride is expressed as [Zn] atomic %.
  • the total content of Group 4 elements in the first nitride is expressed as [M] atomic %.
  • [M]/([Zn]+[M]) in the first nitride is greater than 20% and less than 50%. That is, 100 ⁇ [M]/([Zn]+[M]) in the first nitride is greater than 20 and less than 50.
  • the first nitride does not need to contain Al. That is, the first nitride may be a nitride that does not contain Al.
  • the first nitride may consist only of zinc, Group 4 elements, and nitrogen (N).
  • the first nitride may be represented by the following chemical formula 1.
  • ⁇ in the above chemical formula 1 is greater than 0.20 and less than 0.50.
  • ⁇ in the above chemical formula 1 is 0.00 or more and 1.00 or less.
  • ⁇ in the above chemical formula 1 is greater than 0.00.
  • ⁇ in the above chemical formula 1 may be equal to 2.
  • ⁇ in the above chemical formula 1 may be less than 2. As long as the first nitride has sufficient piezoelectricity, ⁇ in the above chemical formula 1 may be greater than 2. Since the first nitride has the above composition, the first nitride can have excellent piezoelectricity. Furthermore, since the first nitride has the above composition, the first nitride can have ferroelectricity.
  • zinc in the first nitride is a divalent cation
  • group 4 elements (Ti, Zr) in the first nitride are tetravalent cations
  • N in the first nitride is It is a trivalent anion.
  • [M]/([Zn]+[Ti]) in the first nitride is 50% (stoichiometric ratio)
  • cations and anions are easily electrically balanced. Therefore, according to theoretical speculation, when [M]/([Zn] + [Ti]) is 50% (stoichiometric ratio), the electrical resistivity of the first nitride should be the highest.
  • the first nitride should tend to have excellent piezoelectricity.
  • the composition of the nitride in stoichiometric ratio is expressed as Zn 0.5 (Ti 1- ⁇ Zr ⁇ ) 0.5 N or Zn(Ti 1- ⁇ Zr ⁇ )N 2 .
  • the composition of the first nitride is different from the composition of the nitride in the stoichiometric ratio, so that the first nitride (particularly the piezoelectric thin film made of the first nitride) has a high electric potential.
  • the first nitride (particularly a piezoelectric thin film made of the first nitride) can have excellent piezoelectricity (for example, a large d 33 ). Furthermore, since the composition of the first nitride is different from the composition of the nitride in the stoichiometric ratio, the first nitride (particularly the thin film made of the first nitride) has ferroelectricity (e.g., remanent polarization value P r ). can have. In other words, the piezoelectric thin film made of the first nitride may be a ferroelectric thin film.
  • [M]/([Zn]+[M]) in the first nitride is 20% or less, the charge derived from anions in the first nitride tends to be greater than the charge derived from cations. , the electrical resistivity of the first nitride is very low, and the first nitride hardly has piezoelectricity or ferroelectricity. If [M]/([Zn]+[M]) in the first nitride is 50% or more, it is difficult to electrically balance cations and anions, so the electrical resistivity of the first nitride becomes extremely low. The first nitride has low piezoelectricity and ferroelectricity.
  • [M]/([Zn]+[M]) in the first nitride is 24% or more and 49% or less, or 32%. It may be more than 44%.
  • ⁇ in the above chemical formula 1 may be 0.24 or more and 0.49 or less, or 0.32 or more and 0.44 or less.
  • [Zn]/([Zn]+[M]) in the first nitride may be greater than 50% and less than 80%, greater than or equal to 51% and less than or equal to 76%, or greater than or equal to 56% and less than or equal to 68%.
  • d33 of the first nitride is 0.5 pC/N or more and 6.0 pC/N or less, 0.6 pC/N or more and 5.8 pC/N or less, or 1.3 pC /N or more and 5.8 pC/N or less.
  • the electrical resistivity ⁇ of the first nitride is 1.0 ⁇ 10 9 ⁇ cm or more and 1.0 ⁇ 10 14 ⁇ cm or less, or 3.1 ⁇ 10 It may be greater than or equal to 9 ⁇ cm and less than or equal to 1.0 ⁇ 10 13 ⁇ cm.
  • the residual polarization value P r of the first nitride (a ferroelectric thin film made of the first nitride) at 25°C is 0.10 ⁇ C/cm 2 or more and 0.60 ⁇ C/cm 2 or less, and 0.15 ⁇ C/cm 2 It may be greater than or equal to 0.50 ⁇ C/cm 2 or less, or greater than or equal to 0.23 ⁇ C/cm 2 and less than or equal to 0.50 ⁇ C/cm 2 .
  • the second nitride contains zinc and a Group 4 element.
  • the Group 4 element contained in the second nitride is at least one element selected from the group consisting of titanium and zirconium.
  • the second nitride further contains aluminum (Al).
  • the content of zinc in the second nitride is expressed as [Zn] atomic %.
  • the total content of Group 4 elements in the second nitride is expressed as [M] atomic %.
  • the content of aluminum in the second nitride is expressed as [Al] atomic %. [M]/([Zn]+[M]) in the second nitride is greater than 20% and less than 70%.
  • 100 ⁇ [M]/([Zn]+[M]) in the second nitride is greater than 20 and less than 70.
  • [Al]/([Zn]+[M]+[Al]) in the second nitride is 10% or more and less than 70%. That is, 100 ⁇ [Al]/([Zn]+[M]+[Al]) in the second nitride is 10 or more and less than 70.
  • [M]/([Zn]+[M]) in the second nitride may be greater than 20% and less than 55%. That is, 100 ⁇ [M]/([Zn]+[M]) in the second nitride may be greater than 20 and less than 55.
  • [Al]/([Zn]+[M]+[Al]) in the second nitride may be 10% or more and less than 50%. That is, 100 ⁇ [Al]/([Zn]+[M]+[Al]) in the second nitride may be 10 or more and less than 50.
  • the second nitride may consist only of zinc, Group 4 elements, aluminum and nitrogen. When the second nitride consists only of zinc, a Group 4 element, aluminum, and nitrogen, the second nitride may be represented by the following chemical formula 2. ⁇ Zn 1- ⁇ (Ti 1- ⁇ Zr ⁇ ) ⁇ ⁇ 1- ⁇ Al ⁇ N ⁇ (2) ⁇ in the above chemical formula 2 is greater than 0.20 and less than 0.70.
  • ⁇ in the above chemical formula 2 may be greater than 0.20 and less than 0.55. ⁇ in the above chemical formula 2 is 0.00 or more and 1.00 or less. ⁇ in the above chemical formula 2 is 0.10 or more and less than 0.70. ⁇ in the above chemical formula 2 may be 0.10 or more and less than 0.50. ⁇ in the above chemical formula 2 is greater than 0.00. ⁇ in the above chemical formula 2 may be equal to 2. As long as the second nitride has sufficient piezoelectricity, ⁇ in the above chemical formula 2 may be less than 2. As long as the second nitride has sufficient piezoelectricity, ⁇ in the above chemical formula 2 may be greater than 2.
  • 50% may be removed from the range of [M]/([Zn]+[M]) in the second nitride containing zinc, a Group 4 element, and aluminum, and [Al] in the second nitride /([Zn]+[M]+[Al]), 50% and 65% may be excluded.
  • the second nitride has the above composition
  • the second nitride (particularly the piezoelectric thin film made of the second nitride) tends to have high electrical resistivity, and (piezoelectric thin film) can have excellent piezoelectricity.
  • the second nitride (particularly a thin film made of the second nitride) can have ferroelectricity (for example, residual polarization value P r ).
  • the piezoelectric thin film made of the second nitride may be a ferroelectric thin film.
  • the second nitride since the second nitride further contains aluminum in addition to zinc and the Group 4 element, the second nitride tends to have better piezoelectricity than the first nitride which does not contain aluminum. tends to have better ferroelectric properties than primary nitrides. For example, d 33 of the second nitride tends to be greater than d 33 of the first nitride, and P r of the second nitride tends to be greater than P r of the first nitride.
  • [M]/([Zn]+[M]) in the second nitride may be 21% or more and 69% or less
  • [Al]/([Zn]+[M]+[Al]) in the second nitride may be 10% or more and 69% or less.
  • ⁇ in the above chemical formula 2 may be 0.21 or more and 0.69 or less
  • ⁇ in the above chemical formula 2 may be 0.10 or more and 0.69 or less.
  • [M]/([Zn]+[M]) in the second nitride may be 21% or more and 53% or less
  • [Al]/([Zn]+[M]+[Al]) in the second nitride may be 10% or more and 43% or less.
  • ⁇ in the above chemical formula 2 may be 0.21 or more and 0.53 or less
  • ⁇ in the above chemical formula 2 may be 0.10 or more and 0.43 or less.
  • [M]/([Zn] + [M]) in the second nitride may be 34% or more and 47% or less
  • [Al]/([Zn]+[M]+[Al]) in the second nitride may be 16% or more and 41% or less.
  • ⁇ in the above chemical formula 2 may be 0.34 or more and 0.47 or less
  • ⁇ in the above chemical formula 2 may be 0.16 or more and 0.41 or less.
  • [Zn]/([Zn]+[M]) in the second nitride is 30% or more and less than 80%, more than 45% and less than 80%, 47% or more and 79% or less, or 53% or more and less than 76%. It's good.
  • d33 of the second nitride is 0.7 pC/N or more and 12.6 pC/N or less, 0.8 pC/N or more and 12.5 pC/N or less, or 4. It may be 5 pC/N or more and 12.5 pC/N or less.
  • the electrical resistivity ⁇ of the second nitride may be 1.0 ⁇ 10 9 ⁇ cm or more and 1.0 ⁇ 10 14 ⁇ cm or less.
  • the residual polarization value P r of the second nitride (a ferroelectric thin film made of a second nitride) at 25°C is 0.09 ⁇ C/cm 2 or more and 2.30 ⁇ C/cm 2 or less, and 0.10 ⁇ C/cm 2 It may be greater than or equal to 2.25 ⁇ C/cm 2 or less, 0.20 ⁇ C/cm 2 or more and less than 2.25 ⁇ C/cm 2 , or 0.46 ⁇ C/cm 2 or more and less than 2.25 ⁇ C/cm 2 .
  • the first nitride may further contain other elements in addition to zinc, titanium, zirconium, and nitrogen.
  • the second nitride may further contain other elements in addition to zinc, titanium, zirconium, aluminum and nitrogen.
  • the crystal structures of the first nitride and the second nitride are not limited.
  • the crystals of the first nitride and the second nitride may be hexagonal.
  • the crystal structure of the first nitride and the second nitride may be a wurtzite structure.
  • Zn, Ti, and Zr may be substituted for each other.
  • Zn, Ti, Zr, and Al may be substituted for each other.
  • the crystal structure of the second nitride may be the same as the crystal structure of the first nitride, except that the crystal structure of the second nitride includes Al.
  • the crystal structure of the second nitride may be different from the crystal structure of the first nitride.
  • the piezoelectric body according to this embodiment includes a first nitride or a second nitride.
  • piezoelectric bodies may be used for piezoelectric elements.
  • the piezoelectric body may be a piezoelectric thin film containing a first nitride or a second nitride.
  • the piezoelectric body does not have to be a piezoelectric thin film.
  • the piezoelectric body may be a coarse ceramic (sintered body) containing a first nitride or a second nitride.
  • a piezoelectric thin film element using a piezoelectric thin film will be explained as an example of a piezoelectric element.
  • the piezoelectric element is not limited to a piezoelectric thin film element.
  • the structure of the piezoelectric element is not limited to the structure described below.
  • the ferroelectric material according to this embodiment includes a first nitride or a second nitride.
  • ferroelectrics may be used in ferroelectric elements.
  • the ferroelectric material may be a ferroelectric thin film containing a first nitride or a second nitride.
  • the ferroelectric material does not have to be a ferroelectric thin film.
  • the ferroelectric material may be a coarse ceramic (sintered body) containing a first nitride or a second nitride.
  • the ferroelectric element may be a ferroelectric thin film element using a ferroelectric thin film.
  • the ferroelectric element is not limited to a ferroelectric thin film element.
  • the piezoelectric material described below is a ferroelectric material.
  • the piezoelectric thin film described below is a ferroelectric thin film.
  • the piezoelectric thin film element described below is a ferroelectric thin film element.
  • the piezoelectric elements described below are ferroelectric elements.
  • the structure of the ferroelectric element is not limited to the structure described below.
  • the piezoelectric thin film element 10 (ferroelectric thin film element) according to the present embodiment includes a substrate 6, an adhesion layer 5 directly laminated on the surface of the substrate 6, and a substrate via the adhesion layer 5. a first electrode layer 4 laminated indirectly on the surface of the piezoelectric thin film 3; a piezoelectric thin film 3 (ferroelectric thin film) laminated directly on the surface of the first electrode layer 4; and a second electrode layer 7.
  • the piezoelectric thin film 3 may be composed of multiple layers.
  • the piezoelectric thin film 3 may include a first piezoelectric layer 1 containing aluminum nitride (AlN) and a second piezoelectric layer 2 containing a first nitride or a second nitride.
  • the first piezoelectric layer 1 may consist only of aluminum nitride.
  • the first piezoelectric layer 1 may be made of aluminum nitride containing additive elements.
  • the second piezoelectric layer 2 may consist only of the first nitride or the second nitride.
  • the first piezoelectric layer 1 may be laminated directly on the surface of the first electrode layer 4, the second piezoelectric layer 2 may be laminated directly on the surface of the first piezoelectric layer 1, and the second electrode layer 7 may be laminated directly on the surface of the first piezoelectric layer 4. It may be laminated directly onto the surface of layer 2.
  • the first piezoelectric layer 1 may be translated into an intermediate layer disposed between the first electrode layer 4 and the second piezoelectric layer 2.
  • Aluminum nitride contained in the first piezoelectric layer 1 has excellent electrical insulation. Therefore, by arranging the first piezoelectric layer 1 between the first electrode layer 4 and the second piezoelectric layer 2, the first electrode layer 4 and the second electrode layer 7 The electrical insulation between the two is improved.
  • the crystal lattice of aluminum nitride contained in the first piezoelectric layer 1 is easily matched with the crystal lattice of the second piezoelectric layer 2. Therefore, by forming the second piezoelectric layer 2 on the surface of the first piezoelectric layer 1, the crystallinity and piezoelectricity of the second piezoelectric layer 2 (first nitride or second nitride) are improved.
  • the second piezoelectric layer 2 may be directly laminated on only a part of the surface of the first piezoelectric layer 1, a part of the second electrode layer 7 may be directly laminated on the surface of the second piezoelectric layer 2, and the second electrode Other parts of the layer 7 may be laminated directly onto the surface of the first piezoelectric layer 1.
  • the second piezoelectric layer 2 may be directly laminated on the entire surface of the first piezoelectric layer 1 , and the second electrode layer 7 may be directly laminated on the entire surface of the second piezoelectric layer 2 .
  • the first piezoelectric layer 1 containing aluminum nitride is not essential for the piezoelectric thin film element 10 (ferroelectric thin film element).
  • a piezoelectric thin film 3 containing only a first nitride or a second nitride as a nitride may be directly laminated on the surface of the first electrode layer 4.
  • the piezoelectric thin film 3 may be directly laminated on the surface of the adhesive layer 5.
  • the piezoelectric thin film 3 may be directly laminated on the surface of the substrate 6.
  • the entire piezoelectric thin film 3 may be made of only the first nitride or the second nitride.
  • the first nitride or second nitride contained in the piezoelectric thin film 3 may be single crystal or polycrystalline.
  • the first nitride or the second nitride in the piezoelectric thin film 3 may be a columnar crystal extending in the normal direction (Z-axis direction) to the surface of the first electrode layer 4.
  • the (001) plane and (002) plane of the first nitride or the second nitride in the piezoelectric thin film 3 (second piezoelectric layer 2) are parallel to the surface of the first electrode layer 4 (or piezoelectric thin film 3). It may be.
  • the (001) plane and (002) plane of the first nitride or the second nitride in the piezoelectric thin film 3 are the surface of the first electrode layer 4 (or piezoelectric thin film 3). may be oriented in the normal direction.
  • the piezoelectric thin film 3 (second piezoelectric layer 2) includes a plurality of crystalline grains made of the first nitride or the second nitride
  • the (001) plane and (002) plane of some or all of the crystalline grains ) plane may be parallel to the surface of the first electrode layer 4.
  • the piezoelectric thin film 3 (second piezoelectric layer 2) tends to have excellent piezoelectricity and ferroelectricity.
  • the orientation direction of the lattice plane of the first nitride or the second nitride in the piezoelectric element is not limited.
  • the aluminum nitride contained in the first piezoelectric layer 1 may be single crystal or polycrystalline.
  • the aluminum nitride in the first piezoelectric layer 1 may be columnar crystals extending in the normal direction to the surface of the first electrode layer 4.
  • the (001) plane and (002) plane of aluminum nitride in the first piezoelectric layer 1 may be parallel to the surface of the first electrode layer 4 (or piezoelectric thin film 3).
  • the (001) plane and (002) plane of aluminum nitride in the first piezoelectric layer 1 may be oriented in the normal direction of the surface of the first electrode layer 4 (or piezoelectric thin film 3).
  • the first piezoelectric layer 1 includes a plurality of crystal grains made of aluminum nitride
  • the (001) plane and (002) plane of some or all of the crystal grains are parallel to the surface of the first electrode layer 4. good.
  • the first nitride in the second piezoelectric layer 2 When the (001) plane and (002) plane of aluminum nitride in the first piezoelectric layer 1 are parallel to the surface of the first electrode layer 4 (or piezoelectric thin film 3), the first nitride in the second piezoelectric layer 2 The (001) plane and (002) plane of the material or the second nitride also tend to be parallel to the surface of the first electrode layer 4 (or piezoelectric thin film 3). In other words, the (001) plane and (002) plane of aluminum nitride in the first piezoelectric layer 1 are the same as the (001) plane and (002) plane of the first nitride or the second nitride in the second piezoelectric layer 2. May be parallel.
  • the crystal orientation (polarization direction) in which aluminum nitride exhibits piezoelectricity is [001] of a wurtzite structure. Therefore, when the (001) plane and (002) plane of aluminum nitride are parallel to the surface of the first electrode layer 4 (or piezoelectric thin film 3), the piezoelectric thin film 3 (first piezoelectric layer 1) has excellent piezoelectric properties. easy to have.
  • the orientation direction of the lattice planes of aluminum nitride in the piezoelectric element is not limited.
  • the thickness of the piezoelectric thin film 3 may be 50 nm or more and 30,000 nm or less.
  • the thickness of the first piezoelectric layer 1 may be 5 nm or more and 50 nm or less
  • the thickness of the second piezoelectric layer 2 may be 45 nm or more and 29950 nm or less. It's fine.
  • the lamination direction of the substrate 6, adhesive layer 5, first electrode layer 4, piezoelectric thin film 3 (first piezoelectric layer 1 and second piezoelectric layer 2), and second electrode layer 7 is the Z-axis direction.
  • the substrate 6, adhesive layer 5, first electrode layer 4, piezoelectric thin film 3 (first piezoelectric layer 1 and second piezoelectric layer 2), and second electrode layer 7 are arranged in the XY plane direction (X axis and Y axis). It has a flat shape extending along.
  • the thicknesses of the substrate 6, adhesive layer 5, first electrode layer 4, piezoelectric thin film 3 (first piezoelectric layer 1 and second piezoelectric layer 2), and second electrode layer 7 may be uniform.
  • the adhesive layer 5 may directly cover a part or the entire surface of the substrate 6.
  • the first electrode layer 4 may directly cover a part or the entire surface of the adhesive layer 5.
  • the piezoelectric thin film 3 (first piezoelectric layer 1) may directly or indirectly cover a part or the entire surface of the first electrode layer 4.
  • the piezoelectric thin film 3 (first piezoelectric layer 1) may directly cover a part or the entire surface of the adhesive layer 5.
  • the piezoelectric thin film 3 (first piezoelectric layer 1) may directly cover a part or the entire surface of the substrate 6.
  • the second electrode layer 7 may directly or indirectly cover a part or the entire surface of the piezoelectric thin film 3 (second piezoelectric layer 2).
  • the second piezoelectric layer 2 may cover part or all of the surface of the first piezoelectric layer 1.
  • the adhesive layer 5 is not essential for the piezoelectric thin film element 10. If there is no adhesive layer 5, the first electrode layer 4 may directly cover part or the entire surface of the substrate 6.
  • the first electrode layer 4 may be referred to as a lower electrode layer.
  • the second electrode layer 7
  • the substrate 6 may be a semiconductor substrate such as a silicon substrate, a gallium arsenide substrate, or an SOI (Silicon-on-Insulator) substrate.
  • the substrate 6 may be an optical crystal substrate (such as a sapphire substrate), an insulating substrate (such as a glass substrate or a ceramic substrate), or a metal substrate (such as a stainless steel plate).
  • the first electrode layer 4 includes Pt (platinum), Ir (iridium), Au (gold), Rh (rhodium), Pd (palladium), Ag (silver), Ni (nickel), Cu (copper), and Al (aluminum). ), Mo (molybdenum), W (tungsten), V (vanadium), Cr (chromium), Nb (niobium), Ta (tantalum), Ru (ruthenium), Zr (zirconium), Hf (hafnium), Ti (titanium) ), Y (yttrium), Sc (scandium), and Mg (magnesium).
  • the first electrode layer 4 may be made of a single metal.
  • the first electrode layer 4 may be an alloy containing at least two types of elements, a ceramic, or the like.
  • the adhesive layer 5 is made of Al (aluminum), Si (silicon), Ti (titanium), Zn (zinc), Y (yttrium), Zr (zirconium), Ce (cerium), Cr (chromium), Nb (niobium), It may contain at least one element selected from the group consisting of Mo (molybdenum), Hf (hafnium), Ta (tantalum), W (tungsten), Pt (platinum), and Ru (ruthenium).
  • the adhesive layer 5 may be a simple metal, an alloy, or a compound (oxide, nitride, etc.).
  • the adhesive layer 5 may be made of another piezoelectric thin film, polymer, or ceramics.
  • the adhesive layer 5 also has a function of suppressing peeling of the first electrode layer 4 due to mechanical impact or the like.
  • the adhesive layer 5 may be referred to as an interface layer, a support layer, or a buffer layer.
  • the second electrode layer 7 is made of Pt, Ir, Au, Rh, Pd, Ag, Ni, Cu, Al, Mo, W, V, Cr, Nb, Ta, Ru, Zr, Hf, Ti, Y, Sc, and Mg. It may contain at least one element selected from the group consisting of.
  • the second electrode layer 7 may be made of a single metal.
  • the second electrode layer 7 may be an alloy containing at least two types of elements selected from the above group, ceramics, or the like.
  • the thickness of the substrate 6 may be 50 ⁇ m or more and 10,000 ⁇ m or less.
  • the thickness of the adhesive layer 5 may be 0.003 ⁇ m or more and 2 ⁇ m or less.
  • the thickness of the first electrode layer 4 may be 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the second electrode layer 7 may be 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the adhesive layer 5, the first electrode layer 4, the piezoelectric thin film 3 (the first piezoelectric layer 1 and the second piezoelectric layer 2), and the second electrode layer 7 are formed on the surface of the substrate 6 by a vapor phase growth method such as sputtering. May be laminated.
  • the first piezoelectric layer 1 when the first piezoelectric layer 1 is made only of aluminum nitride, the first piezoelectric layer 1 may be formed by sputtering using a metal target made of Al.
  • the second piezoelectric layer 2 when the second piezoelectric layer 2 is made of only the first nitride, the second piezoelectric layer 2 is formed by sputtering using at least one of a metal target made of Ti and a metal target made of Zr, and a metal target made of Zn.
  • the second piezoelectric layer 2 when the second piezoelectric layer 2 is made of only the second nitride, the second piezoelectric layer 2 is made of at least one of a metal target made of Ti and a metal target made of Zr, a metal target made of Zn, and a metal target made of Al. It may be formed by sputtering using a metal target.
  • the piezoelectric thin film 3 when the piezoelectric thin film 3 is entirely made of the first nitride, the piezoelectric thin film 3 is formed by sputtering using at least one of a metal target made of Ti and a metal target made of Zr, and a metal target made of Zn. It's okay to be.
  • the piezoelectric thin film 3 when the entire piezoelectric thin film 3 is made of only the second nitride, the piezoelectric thin film 3 includes at least one of a metal target made of Ti and a metal target made of Zr, a metal target made of Zn, and a metal target made of Al. It may be formed by sputtering using a target. In sputtering using a plurality of metal targets, the higher the input power (power density) given to each target, the more likely elements originating from each target will be included in the piezoelectric thin film 3. Therefore, the content of each element in the piezoelectric thin film 3 may be controlled by adjusting the input power (power density) given to each target.
  • the input power (power density) can be expressed as the power per unit area of each sputtering target (unit: W/cm 2 ).
  • the sputtering atmosphere (film formation atmosphere) for forming the piezoelectric thin film 3 contains nitrogen gas (N 2 ).
  • the nitrogen contained in the piezoelectric thin film 3 originates from nitrogen gas in the film forming atmosphere.
  • the film-forming atmosphere may be a mixed gas containing a rare gas (such as argon) and nitrogen gas.
  • a rare gas such as argon
  • the nitrogen content of may be controlled. The duration of sputtering, the temperature of the surface of the substrate during sputtering, the substrate bias, etc.
  • a piezoelectric thin film 3 having a desired shape or pattern may be formed by etching (eg plasma etching).
  • the adhesive layer 5, the first electrode layer 4, and the second electrode layer 7 may each be formed by sputtering using at least one type of target.
  • the adhesive layer 5, the first electrode layer 4, and the second electrode layer 7 may each be formed by sputtering using a plurality of targets.
  • the target used to form each layer may contain at least one of the elements constituting each layer. By selecting and combining targets having predetermined compositions, each layer having a desired composition can be formed.
  • the target may be a simple metal, an alloy, an oxide, or the like.
  • Each layer may be formed in a noble gas (such as argon). Some of the elements constituting each layer may originate from the sputtering atmosphere.
  • the crystal structures of the adhesion layer 5, the first electrode layer 4, the piezoelectric thin film 3 (the first piezoelectric layer 1 and the second piezoelectric layer 2), and the second electrode layer 7 are specified by an X-ray diffraction (XRD) method. It's fine.
  • the composition of each layer and the piezoelectric thin film 3 can be determined by X-ray fluorescence spectroscopy (XRF method), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), inductively coupled plasma mass spectrometry (ICP-MS), and laser ablation.
  • the analysis method may be specified for at least one of inductively coupled plasma mass spectrometry (LA-ICP-MS) and electron beam microanalyzer (EPMA).
  • LA-ICP-MS inductively coupled plasma mass spectrometry
  • EPMA electron beam microanalyzer
  • the thickness of the adhesive layer 5, the first electrode layer 4, the piezoelectric thin film 3 (the first piezoelectric layer 1 and the second piezoelectric layer 2), and the second electrode layer 7 is in the thickness direction (Z-axis direction in FIG. 1). Measurements may be made using a scanning electron microscope (SEM) in a cross section of the piezoelectric thin film element 10 parallel to .
  • SEM scanning electron microscope
  • the piezoelectric element or ferroelectric element has a wide variety of uses.
  • piezoelectric elements or ferroelectric elements can be used in actuators, sensors, microphones, speakers, harvesters (vibration generators), oscillators (timing devices), resonators (acoustic multilayer films), high-frequency filters, ferroelectric memories (FeRAM), etc. , or an X-ray generator (X-ray source).
  • the piezoelectric or ferroelectric element may be part or all of the MEMS.
  • the actuator may be a mirror actuator for a scanning imaging module.
  • actuators may be used for haptics. That is, the actuator may be used in various devices that require skin sensation (tactile) feedback.
  • a device requiring tactile feedback may be, for example, a wearable device, a touch pad, a display, or a game controller.
  • the actuator may be used in a head assembly, head stack assembly, or hard disk drive.
  • the actuator may be used in a printer head or inkjet printer device.
  • actuators may be used in switches.
  • the sensor may be a pyroelectric sensor (e.g., an infrared sensor), a vibration sensor, an acceleration sensor, a shock sensor, a gyro sensor, an acoustic emission (AE) sensor, a pressure sensor, a pulse wave sensor, an ultrasonic sensor, or a piezoelectric micromechanical ultrasonic sensor.
  • a piezoelectric micromachined ultrasonic transducer such as a piezoelectric micromachined ultrasonic transducer (PMUT).
  • pyroelectric sensors may be used as blood glucose sensors, human sensors, motion sensors, infrared image sensors, in-vehicle sensors, infrared thermometers, flame detection sensors, or gas detection sensors.
  • a product to which a piezoelectric micromechanical ultrasonic transducer is applied may be a biometric sensor, a medical/healthcare sensor (a fingerprint sensor or an ultrasonic blood vessel authentication sensor), or a ToF (Time of Flight) sensor.
  • the filter may be a BAW (Bulk Acoustic Wave) filter or a SAW (Surface Acoustic Wave) filter.
  • the piezoelectric element 10a (ferroelectric element) includes a first electrode layer 4, a piezoelectric layer 3a (ferroelectric layer) laminated directly on the first electrode layer 4, and a piezoelectric layer 3a. (the ferroelectric layer).
  • the piezoelectric layer 3a (ferroelectric layer) contains a first nitride or a second nitride as a piezoelectric material (ferroelectric material).
  • the piezoelectric layer 3a may be a ceramic (sintered body) containing a first nitride or a second nitride.
  • the thickness of the piezoelectric layer 3a (ferroelectric layer) may be from several mm to several tens of mm (for example, 10 mm).
  • the nitrides in Examples 1 to 6 below are examples of the first nitride.
  • Example 1 ⁇ Preparation of nitride film> A wafer made of single crystal Si was used as the substrate. The surface of the substrate was parallel to the (100) plane of Si. The thickness of the substrate was 725 ⁇ m. The diameter of the substrate was approximately 8 inches. The thickness of the substrate was uniform. The resistance of the substrate in the thickness direction was 100 ⁇ or less.
  • a thin film containing nitride was directly formed on the entire surface of the substrate by RF magnetron sputtering in a vacuum chamber.
  • sputtering targets a metal target made of Zn (single Zn) and a metal target made of Ti (single Ti) were used.
  • the input power (power density) of each sputtering target was adjusted so that [M]/([Zn]+[M]) in the nitride matched the value shown in Table 1 below.
  • the atmosphere inside the vacuum chamber was a mixed gas of Ar and N2 .
  • the atmospheric pressure inside the vacuum chamber was 0.5 Pa.
  • the flow rate of Ar supplied to the vacuum chamber per unit time was 15 sccm.
  • the flow rate of N 2 supplied to the vacuum chamber per unit time was 15 sccm.
  • the temperature of the substrate during the nitride film formation process was maintained at 150°C.
  • the thickness of the nitride film was adjusted to 0.5 ⁇ m
  • a thin film element of Example 1 was fabricated by the following method.
  • a first electrode layer (lower electrode layer) made of Mo was directly formed on the entire surface of the above substrate by RF magnetron sputtering in a vacuum chamber.
  • a simple substance of Mo was used as a sputtering target.
  • the atmosphere inside the vacuum chamber was Ar gas.
  • the thickness of the first electrode layer was uniform.
  • the thickness of the first electrode layer was 0.2 ⁇ m.
  • a thin film made of nitride was directly formed on the entire surface of the first electrode layer by RF magnetron sputtering in a vacuum chamber.
  • the method of forming the nitride film directly on the surface of the first electrode layer was similar to the method of forming the nitride directly on the surface of the substrate.
  • the composition and dimensions of the nitride film directly formed on the surface of the first electrode layer were similar to the composition and dimensions of the above-mentioned nitride film formed directly on the surface of the substrate.
  • a second electrode layer (electrode pattern) made of Ag was directly formed on the entire surface of the nitride film by electron beam evaporation using a metal mask in a vacuum chamber.
  • the thickness of the second electrode layer was 0.1 ⁇ m.
  • the thickness of the second electrode layer was uniform.
  • the laminate produced by the above procedure includes a substrate, a first electrode layer directly laminated on the substrate, a nitride film laminated directly on the first electrode layer, and a second electrode layer laminated directly on the nitride film. It consisted of an electrode layer. Subsequent photolithography was used to pattern the layered structure on the substrate. After patterning, the entire laminate was cut by dicing to obtain a rectangular thin film element of Example 1.
  • the thin film element is composed of a substrate, a first electrode layer laminated directly on the substrate, a nitride film laminated directly on the first electrode layer, and a second electrode layer laminated directly on the nitride film. was.
  • the thin film element of Example 1 was manufactured by the above method. The following analyzes and measurements were carried out using the above two types of samples.
  • ⁇ Analysis of composition of nitride film> The composition of the nitride film formed directly on the surface of the substrate was analyzed by X-ray fluorescence analysis (XRF method), and [M]/([Zn]+[M]) in the nitride film was identified.
  • XRF method a wavelength-dispersive fluorescent X-ray device (RIGAKU AZX-400) manufactured by Rigaku Co., Ltd. was used.
  • the analysis results showed that the nitride (nitride film) of Example 1 was composed of Zn, Ti, and N.
  • [M]/([Zn]+[M]) of Example 1 specified by the XRF method matched the value shown in Table 1 below.
  • [Zn]/([Zn]+[M]) of Example 1 specified by the XRF method matched the values shown in Table 1 below.
  • X-ray diffraction X-ray diffraction
  • SmartLab multipurpose X-ray diffraction device manufactured by Rigaku Co., Ltd.
  • a 2 ⁇ - ⁇ scan, an ⁇ scan, and a 2 ⁇ - ⁇ scan were performed on the surface of the nitride film using the above-mentioned X-ray diffraction device.
  • the nitride film had a wurtzite structure.
  • the (002) plane of the wurtzite structure was parallel to the surfaces of the nitride film and the substrate.
  • ⁇ Measurement of piezoelectric strain constant d33 The piezoelectric strain constant d 33 (unit: pC/N) of the nitride film of Example 1 was measured. The details of the method for measuring the piezoelectric strain constant d33 were as follows. The measurement results showed that the nitride film of Example 1 was a thin film (piezoelectric thin film) having sufficient piezoelectricity. The piezoelectric strain constant d 33 (average value of three measurement points) of Example 1 is shown in Table 1 below. Measuring device: d 33 meter (PM200) manufactured by Piezotest Frequency: 110Hz Clamp pressure: 0.25N
  • the residual polarization value P r of Example 1 is shown in Table 1 below.
  • the remanent polarization value P r shown in Table 1 below is the average value of three remanent polarization values obtained by three measurements.
  • the residual polarization value P r is an index indicating the ferroelectricity of the nitride film. The larger the residual polarization value P r is, the better the ferroelectricity of the nitride film is.
  • Examples 2 to 6 and Comparative Examples 1 to 5 As sputtering targets for forming nitride films in Examples 2 to 4 and 6 and Comparative Examples 2 to 4, a metal target made of Zn (single substance of Zn) and a metal target made of Ti were used as in Example 1. A metal target (single Ti) was used. As sputtering targets for forming the nitride film of Example 5, a metal target made of Zn (single Zn) and a metal target made of Zr (single Zr) were used.
  • the intermediate layer (first piezoelectric layer) was formed on the entire surface of the first electrode layer, and the nitride film (second piezoelectric layer) was formed on the entire surface of the intermediate layer.
  • the intermediate layer of Example 6 was formed by the following method.
  • An interlayer of AlN was formed by RF magnetron sputtering in a vacuum chamber.
  • As a sputtering target only a metal target made of Al (alone) was used.
  • the atmosphere inside the vacuum chamber was a mixed gas of Ar and N2 .
  • the thickness of the intermediate layer was uniform.
  • the thickness of the intermediate layer was adjusted to 0.03 ⁇ m.
  • Example 2 to 6 and Comparative Examples 1 to 5 Two types of samples, Examples 2 to 6 and Comparative Examples 1 to 5, were prepared in the same manner as in Example 1 except for the above matters. Analysis and measurements using two types of samples, Examples 2 to 6 and Comparative Examples 1 to 5, were carried out in the same manner as in Example 1.
  • the results of analysis by the XRF method were as follows.
  • the nitrides (nitride films) of Examples 2 to 4 and 6 and Comparative Examples 3 to 4 were composed of Zn, Ti, and N.
  • the nitride (nitride film) of Example 5 was composed of Zn, Zr, and N.
  • the nitride film of Comparative Example 1 was a mixture composed of Zn nitride and Zn oxide.
  • the nitride film of Comparative Example 2 was a mixture composed of a nitride containing Zn and Ti and an oxide containing Zn and Ti.
  • the nitride (nitride film) was composed of Ti and N.
  • the results of analysis based on the XRD method were as follows.
  • the nitride films of Examples 2 to 6 each had a wurtzite structure.
  • the (002) plane of the wurtzite structure in each of Examples 2 to 6 was parallel to the surfaces of the nitride film and the substrate.
  • the electrical resistivity ⁇ , piezoelectric strain constant d 33 and residual polarization value P r of Examples 2 to 6 and Comparative Examples 1 to 5 are shown in Table 1 below.
  • the results of the measurement of the piezoelectric strain constant d33 showed that the nitride films of Examples 2 to 6 were thin films (piezoelectric thin films) having sufficient piezoelectricity.
  • the measurement results of the residual polarization value P r showed that the nitride films of Examples 2 to 6 were thin films having ferroelectric properties (ferroelectric thin films).
  • Comparative Examples 1 and 2 nitride films containing not only nitrides but also oxides were formed, so the electrical resistivity ⁇ of the nitride films was not measured.
  • the nitride film constituting the thin film element had peeled off from the first electrode layer, so it was not possible to measure the piezoelectric strain constant d33 and the residual polarization value Pr .
  • the electrical resistivity ⁇ of the nitride film was too low, so it was not possible to measure the piezoelectric strain constant d 33 and the residual polarization value P r .
  • the electrical resistivity ⁇ of the nitride film could not be accurately measured because the electrical resistivity ⁇ of the nitride film was too low.
  • the nitride films of Comparative Examples 3 to 5 did not have insulating properties, piezoelectric properties, or ferroelectric properties.
  • Example 7 to 19 are examples of the second nitride.
  • metal targets made of Zn single Zn
  • metal targets made of Ti single Ti
  • metal targets made of Al were used as sputtering targets for forming the nitride films in Examples 7 to 19 and Comparative Example 6.
  • a metal target (Al alone) was used.
  • [M]/([Zn]+[M]) and [Al]/([Zn]+[M] The input power (power density) of each sputtering target was adjusted so that +[Al]) corresponded to the value shown in Table 2 below.
  • Example 17 to 19 the flow rate of Ar per unit time supplied to the vacuum chamber during the nitride film formation process was 10 sccm. In Examples 17 to 19, the flow rate of N 2 supplied to the vacuum chamber during the nitride film formation process per unit time was 20 sccm.
  • the intermediate layer (first piezoelectric layer) was formed on the entire surface of the first electrode layer, and the nitride film (second piezoelectric layer) was formed on the entire surface of the intermediate layer. .
  • the intermediate layer of Example 16 was formed by the same method as the intermediate layer of Example 6 above.
  • Example 7 to 19 and Comparative Example 6 Two types of samples, Examples 7 to 19 and Comparative Example 6, were prepared in the same manner as in Example 1 except for the above matters. Analysis and measurements using two types of samples, Examples 7 to 19 and Comparative Example 6, were carried out in the same manner as in Example 1.
  • the results of analysis by the XRF method were as follows.
  • the nitride films of Examples 7 to 19 and Comparative Example 6 were composed of Zn, Ti, Al, and N.
  • [M]/([Zn]+[M]) of Examples 7 to 19 and Comparative Example 6 matched the values shown in Table 2 below.
  • [Al]/([Zn]+[M]+[Al]) of Examples 7 to 19 and Comparative Example 6 matched the values shown in Table 2 below.
  • the results of analysis based on the XRD method were as follows.
  • the nitride films of Examples 7 to 19 had a wurtzite structure.
  • the (002) plane of the wurtzite structure in each of Examples 7 to 19 was parallel to the surfaces of the nitride film and the substrate.
  • the piezoelectric strain constant d 33 and residual polarization value P r of Examples 7 to 19 are shown in Table 2 below.
  • the results of the measurement of the piezoelectric strain constant d33 showed that the nitride films of Examples 7 to 19 were thin films (piezoelectric thin films) having sufficient piezoelectricity.
  • the measurement results of the residual polarization value P r showed that the nitride films of Examples 7 to 19 were thin films having ferroelectric properties (ferroelectric thin films).
  • the nitride film of Comparative Example 6 did not have insulation, piezoelectricity, or ferroelectricity.
  • the nitride according to one aspect of the present invention may be used in the piezoelectric element described above.
  • SYMBOLS 1 First piezoelectric layer, 2... Second piezoelectric layer, 3... Piezoelectric thin film (ferroelectric thin film), 3a... Piezoelectric layer (ferroelectric layer), 4... First electrode layer, 5... Adhesive layer, 6... Substrate, 7... Second electrode layer, 10... Piezoelectric thin film element (ferroelectric thin film element), 10a... Piezoelectric element (ferroelectric element).

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

窒化物は、亜鉛及び第4族元素を含有する。窒化物に含まれる第4族元素は、チタン及びジルコニウムからなる群より選ばれる少なくとも一種の元素である。窒化物中の亜鉛の含有量は、[Zn]原子%と表される。窒化物中の第4族元素の含有量の合計は、[M]原子%と表される。窒化物において、[M]/([Zn]+[M])は、20%より大きく50%未満である。

Description

窒化物、圧電体、圧電素子、強誘電体、及び強誘電素子
 本開示は、窒化物、圧電体、圧電素子(圧電デバイス)、強誘電体、及び強誘電素子(強誘電デバイス)に関する。
 近年、MEMS(Micro Electro Mechanical Systems)が注目されている。MEMS(微小電気機械システム)とは、機械要素部品及び電子回路等が、微細加工技術によって一つの基板(例えば、半導体基板)上に集積化されたデバイスである。MEMSでは、圧電薄膜の圧電効果又は逆圧電効果が利用される。圧電薄膜を用いたMEMSの製造では、シリコン又はサファイア等の基板上に下部電極層、圧電薄膜、及び上部電極層が積層される。続く後工程(パターンニング、エッチング及びダイシング等の微細加工)の実施により、任意の機能を有するMEMSが得られる。圧電性に優れた圧電薄膜を選択することで、MEMS等の圧電薄膜素子の性能が向上し、圧電薄膜素子の小型化が可能になる。圧電薄膜の圧電性は、圧電薄膜素子の機能に応じた様々な圧電定数(例えば、圧電歪定数d33)に基づいて評価される。
 圧電薄膜を構成する圧電組成物としては、例えば、Pb(Zr,Ti)O(チタン酸ジルコン酸鉛,略称;PZT)、LiNbO(ニオブ酸リチウム)、AlN(窒化アルミニウム)、ZnO(酸化亜鉛)及びCdS(硫化カドミウム)等が知られている。近年、優れた圧電性を得るために、新規の圧電組成物の開発が行われている。例えば、下記の非特許文献1は、新規の圧電組成物として、チタン、亜鉛及び窒素からなる窒化物(TiZnN)、ジルコニウム、亜鉛及び窒素からなる窒化物(ZrZnN)、並びに、ハフニウム、亜鉛、及び窒素からなる窒化物(HfZnN)を開示している。下記の非特許文献2は、TMx/2x/2Al1-xN(TM=Ti,Zr,Hf; M=Mg,Ca,Zn)と表されるウルツ鉱型合金を開示している。
 上記の非特許文献1及び2に記載の窒化物の相図及び諸物性値(圧電定数等)は、第一原理計算によるシミュレーションの結果に過ぎない。第一原理計算によるシミュレーションは、理想的な原子配置、及び絶対零度(ゼロK)等の非実験的な諸条件下で行われる。さらに第一原理計算によるシミュレーションは、窒化物におけるチャージバランスが維持される化学量論比を前提としている。したがって、圧電組成物として実用に適した窒化物の組成を、非特許文献1及び2から知ることはできない。さらに非特許文献1及び2に記載のシミュレーションでは、圧電組成物の寸法及び形状が考慮されていない。したがって、圧電薄膜として実用に適した窒化物の組成を、非特許文献1及び2から知ることもできない。
 発明者らは、実用に適した窒化物の組成を特定するために、亜鉛及び第4族元素(Grоup 4 element)を含有する窒化物からなる圧電薄膜を実際に作製し、その圧電性を評価した。その結果、発明者らは、上記の非特許文献1及び2のシミュレーションからは得られなかった知見を得た。さらに発明者らは、アルミニウムを上記の窒化物へ添加することにより、上記の窒化物のd33が増加することを発見した。Al及びNの間の結合は、共有結合であり、Zn及びNの間の結合、並びに第4族元素及びNの間の結合等のイオン結合よりも硬い。窒化物中に形成される化学結合が硬いほど窒化物の圧電性は劣化する傾向がある。したがってアルミニウムは、亜鉛及び第4族元素を含有する窒化物へ通常添加されない。
 本発明の一側面に係る目的は、圧電性に優れた窒化物、当該窒化物を含む圧電体、当該圧電体を含む圧電素子、窒化物を含む強誘電体、及び当該強誘電体を含む強誘電素子を提供することである。
 本発明の第一の側面に係る窒化物は、「第一窒化物」と表記される。本発明の第二の側面に係る窒化物は、「第二窒化物」と表記される。
 第一窒化物は、亜鉛及び第4族元素を含有する。第一窒化物に含まれる第4族元素は、チタン及びジルコニウムからなる群より選ばれる少なくとも一種の元素である。第一窒化物中の亜鉛の含有量は、[Zn]原子%と表される。第一窒化物中の第4族元素の含有量の合計は、[M]原子%と表される。第一窒化物において、[M]/([Zn]+[M])は、20%より大きく50%未満である。
 第二窒化物は、亜鉛及び第4族元素を含有する。第二窒化物に含まれる第4族元素は、チタン及びジルコニウムからなる群より選ばれる少なくとも一種の元素である。第二窒化物は、アルミニウムを更に含有する。第二窒化物中の亜鉛の含有量は、[Zn]原子%と表される。第二窒化物中の第4族元素の含有量の合計は、[M]原子%と表される。第二窒化物中のアルミニウムの含有量は、[Al]原子%と表される。第二窒化物において、[M]/([Zn]+[M])は、20%より大きく70%未満である。第二窒化物において、[Al]/([Zn]+[M]+[Al])は、10%以上70%未満である。
 本発明の一側面に係る圧電体[1]は、第一窒化物又は第二窒化物を含む。
 本発明の一側面に係る圧電体[2]は、窒化アルミニウムを含む第一圧電層と、第一窒化物又は第二窒化物を含む第二圧電層と、を含む。第二圧電層は、第一圧電層に直接積層されている。
 本発明の一側面に係る圧電素子は、上記の圧電体[1]又は圧電体[2]を含む。
 本発明の一側面に係る強誘電体[3]は、第一窒化物又は第二窒化物を含む。
 本発明の一側面に係る強誘電体[4]は、窒化アルミニウムを含む第一圧電層と、第一窒化物又は第二窒化物を含む第二圧電層と、を含む。第二圧電層は、第一圧電層に直接積層されている。
 本発明の一側面に係る強誘電素子は、上記の強誘電体[3]又は強誘電体[4]を含む。
 本発明の一側面によれば、圧電性に優れた窒化物、当該窒化物を含む圧電体、当該圧電体を含む圧電素子、窒化物を含む強誘電体、及び当該強誘電体を含む強誘電素子が提供される。
図1は、本発明の一実施形態に係る圧電薄膜素子(強誘電薄膜素子)の模式的な断面であり、図1に示される断面は、基板、密着層、第一電極層、圧電薄膜及び第二電極層の積層方向に垂直である。 図2は、本発明の一実施形態に係る圧電素子(強誘電素子)の模式的な断面であり、図2に示される断面は、第一電極層、圧電層及び第二電極層の積層方向に垂直である。
 以下、図面を参照しながら、本発明の好適な実施形態が説明される。図面において、同等の構成要素には同等の符号が付される。本発明は下記実施形態に限定されるものではない。各図に示すX,Y及びZは、互いに直交する3つの座標軸を意味する。
 本実施形態に係る第一窒化物は、亜鉛(Zn)及び第4族元素を含有する。第一窒化物に含まれる第4族元素は、チタン(Ti)及びジルコニウム(Zr)からなる群より選ばれる少なくとも一種の元素である。第一窒化物中の亜鉛の含有量は、[Zn]原子%と表される。第一窒化物中の第4族元素の含有量の合計は、[M]原子%と表される。第一窒化物における[M]/([Zn]+[M])は、20%より大きく50%未満である。つまり、第一窒化物における100×[M]/([Zn]+[M])は、20より大きく50未満である。第一窒化物は、Alを含有する必要はない。つまり、第一窒化物は、Alを含有しない窒化物であってよい。
 第一窒化物は、亜鉛、第4族元素及び窒素(N)のみからなっていてよい。第一窒化物が、亜鉛、第4族元素及び窒素のみからなる場合、第一窒化物は、下記化学式1で表されてよい。
Zn1-α(Ti1-βZrβαγ (1)
 上記化学式1中のαは、0.20より大きく0.50未満である。上記化学式1中のβは、0.00以上1.00以下である。上記化学式1中のγは、0.00より大きい。上記化学式1中のγは、2に等しくてよい。第一窒化物が十分な圧電性を有する限りにおいて、上記化学式1中のγは、2未満であってよい。第一窒化物が十分な圧電性を有する限りにおいて、上記化学式1中のγは、2より大きくてよい。
 第一窒化物が上記の組成を有することに因り、第一窒化物は優れた圧電性を有することができる。さらに第一窒化物が上記の組成を有することに因り、第一窒化物は強誘電性を有することができる。
 理論的には第一窒化物中の亜鉛は2価のカチオンであり、第一窒化物中の第4族元素(Ti、Zr)は4価のカチオンであり、第一窒化物中のNは3価のアニオンである。理論的な推測に拠れば、第一窒化物における[M]/([Zn]+[Ti])が50%(化学量論比)である場合、カチオン及びアニオンが電気的にバランスし易い。したがって、理論的な推測に拠れば、[M]/([Zn]+[Ti])が50%(化学量論比)である場合、第一窒化物の電気抵抗率が最も高いはずであり、第一窒化物が優れた圧電性を有し易いはずである。例えば、化学量論比における窒化物の組成は、Zn0.5(Ti1-βZrβ0.5N、又はZn(Ti1-βZrβ)Nと表される。しかし、理論的な推測に反して、第一窒化物の組成が化学量論比における窒化物の組成と異なることに因り、第一窒化物(特に第一窒化物からなる圧電薄膜)が高い電気抵抗率を有し易く、第一窒化物(特に第一窒化物からなる圧電薄膜)が優れた圧電性(例えば、大きいd33)を有することができる。さらに第一窒化物の組成が化学量論比における窒化物の組成と異なることに因り、第一窒化物(特に第一窒化物からなる薄膜)が強誘電性(例えば、残留分極値P)を有することができる。つまり、第一窒化物からなる圧電薄膜は強誘電薄膜であってよい。
 仮に第一窒化物における[M]/([Zn]+[M])が20%以下である場合、第一窒化物においてアニオンに由来する電荷がカチオンに由来する電荷よりも多い傾向があるので、第一窒化物の電気抵抗率が非常に低く、第一窒化物は圧電性及び強誘電性を有し難い。仮に第一窒化物における[M]/([Zn]+[M])が50%以上である場合、カチオン及びアニオンが電気的にバランスし難いので、第一窒化物の電気抵抗率が非常に低く、第一窒化物は圧電性及び強誘電性を有し難い。
 仮に[M]/([Zn]+[M])が20%以下である第一窒化物を製造しようと試みたとしても、Znの酸化物及びZnの窒化物を含む混合物が形成され易い。つまり[M]/([Zn]+[M])が20%以下である第一窒化物を形成することは困難である。Znの酸化物及びZnの窒化物を含む混合物(薄膜)は、電極(電極層)から剥離し易いので、Znの酸化物及びZnの窒化物を含む混合物の圧電性及び強誘電性を測定することは困難である。
 第一窒化物が優れた圧電性及び強誘電性を有し易いことから、第一窒化物における[M]/([Zn]+[M])は、24%以上49%以下、又は32%以上44%以下であってよい。同様の理由から、上記化学式1中のαは、0.24以上0.49以下、又は0.32以上0.44以下であってよい。
 第一窒化物における[Zn]/([Zn]+[M])は、50%より大きく80%未満、51%以上76%以下、又は56%以上68%以下であってよい。
 例えば、第一窒化物(第一窒化物からなる圧電薄膜)のd33は0.5pC/N以上6.0pC/N以下、0.6pC/N以上5.8pC/N以下、又は1.3pC/N以上5.8pC/N以下であってよい。
 例えば、第一窒化物(第一窒化物からなる圧電薄膜)の電気抵抗率ρは、1.0×10Ω・cm以上1.0×1014Ω・cm以下、又は3.1×10Ω・cm以上1.0×1013Ω・cm以下であってよい。
 例えば、第一窒化物(第一窒化物からなる強誘電薄膜)の25℃での残留分極値Pは、0.10μC/cm以上0.60μC/cm以下、0.15μC/cm以上0.50μC/cm以下、又は0.23μC/cm以上0.50μC/cm以下、であってよい。
 第二窒化物は、亜鉛及び第4族元素を含有する。第二窒化物に含まれる第4族元素は、チタン及びジルコニウムからなる群より選ばれる少なくとも一種の元素である。第二窒化物は、アルミニウム(Al)を更に含有する。第二窒化物中の亜鉛の含有量は、[Zn]原子%と表される。第二窒化物中の第4族元素の含有量の合計は、[M]原子%と表される。第二窒化物中のアルミニウムの含有量は、[Al]原子%と表される。
 第二窒化物における[M]/([Zn]+[M])は、20%より大きく70%未満である。つまり、第二窒化物における100×[M]/([Zn]+[M])は、20より大きく70未満である。第二窒化物における[Al]/([Zn]+[M]+[Al])は、10%以上70%未満である。つまり、第二窒化物における100×[Al]/([Zn]+[M]+[Al])は、10以上70未満である。
 第二窒化物における[M]/([Zn]+[M])は、20%より大きく55%未満であってもよい。つまり、第二窒化物における100×[M]/([Zn]+[M])は、20より大きく55未満であってもよい。第二窒化物における[Al]/([Zn]+[M]+[Al])は、10%以上50%未満であってもよい。つまり、第二窒化物における100×[Al]/([Zn]+[M]+[Al])は、10以上50未満であってもよい。
 第二窒化物は、亜鉛、第4族元素、アルミニウム及び窒素のみからなっていてよい。第二窒化物が、亜鉛、第4族元素、アルミニウム及び窒素のみからなる場合、第二窒化物は、下記化学式2で表されてよい。
{Zn1-α(Ti1-βZrβα1-δAlδγ (2)
 上記化学式2中のαは、0.20より大きく0.70未満である。上記化学式2中のαは、0.20より大きく0.55未満であってもよい。上記化学式2中のβは、0.00以上1.00以下である。上記化学式2中のδは、0.10以上0.70未満である。上記化学式2中のδは、0.10以上0.50未満であってもよい。上記化学式2中のγは、0.00より大きい。上記化学式2中のγは、2に等しくてよい。第二窒化物が十分な圧電性を有する限りにおいて、上記化学式2中のγは、2未満であってよい。第二窒化物が十分な圧電性を有する限りにおいて、上記化学式2中のγは、2より大きくてよい。
 亜鉛、第4族元素及びアルミニウムを含有する第二窒化物における[M]/([Zn]+[M])の範囲から、50%は除かれてもよく、第二窒化物における[Al]/([Zn]+[M]+[Al])の範囲から、50%及び65%は除かれてもよい。
 第二窒化物が上記の組成を有することに因り、第二窒化物(特に第二窒化物からなる圧電薄膜)が高い電気抵抗率を有し易く、第二窒化物(特に第二窒化物からなる圧電薄膜)が優れた圧電性を有することができる。さらに第二窒化物が上記の組成を有することに因り、第二窒化物(特に第二窒化物からなる薄膜)が強誘電性(例えば、残留分極値P)を有することができる。つまり、第二窒化物からなる圧電薄膜は強誘電薄膜であってよい。第二窒化物は、亜鉛及び第4族元素に加えて更にアルミニウムを含有するので、第二窒化物はアルミニウムを含有しない第一窒化物よりも優れた圧電性を有し易く、第二窒化物は第一窒化物よりも優れた強誘電性を有し易い。例えば、第二窒化物のd33は第一窒化物のd33よりも大きい傾向があり、第二窒化物のPは第一窒化物のPよりも大きい傾向がある。
 仮に第二窒化物における[M]/([Zn]+[M])が20%以下又は70%以上である場合、第二窒化物は圧電性及び強誘電性を有し難い。仮に第二窒化物における[Al]/([Zn]+[M]+[Al])が10%未満である場合、第二窒化物は圧電性及び強誘電性を有し難い。仮に第二窒化物における[Al]/([Zn]+[M]+[Al])が70%以上である場合、第二窒化物の電気抵抗率が非常に低く、第二窒化物は圧電性及び強誘電性を有し難い。
 第二窒化物が優れた圧電性及び強誘電性を有し易いことから、第二窒化物における[M]/([Zn]+[M])は21%以上69%以下であってよく、且つ第二窒化物における[Al]/([Zn]+[M]+[Al])は、10%以上69%以下であってよい。同様の理由から、上記化学式2中のαは0.21以上0.69以下であってよく、且つ上記化学式2中のδは0.10以上0.69以下であってよい。
 第二窒化物が優れた圧電性及び強誘電性を有し易いことから、第二窒化物における[M]/([Zn]+[M])は21%以上53%以下であってよく、且つ第二窒化物における[Al]/([Zn]+[M]+[Al])は、10%以上43%以下であってよい。同様の理由から、上記化学式2中のαは0.21以上0.53以下であってよく、且つ上記化学式2中のδは0.10以上0.43以下であってよい。
 第二窒化物が優れた圧電性及び強誘電性を有し易いことから、第二窒化物における[M]/([Zn]+[M])は34%以上47%以下であってよく、且つ第二窒化物における[Al]/([Zn]+[M]+[Al])は、16%以上41%以下であってよい。同様の理由から、上記化学式2中のαは0.34以上0.47以下であってよく、且つ上記化学式2中のδは0.16以上0.41以下であってよい。
 第二窒化物における[Zn]/([Zn]+[M])は、30%以上80%未満、45%より大きく80%未満、47%以上79%以下、又は53%以上76%以下であってよい。
 例えば、第二窒化物(第二窒化物からなる圧電薄膜)のd33は、0.7pC/N以上12.6pC/N以下、0.8pC/N以上12.5pC/N以下、又は4.5pC/N以上12.5pC/N以下であってよい。
 例えば、第二窒化物(第二窒化物からなる圧電薄膜)の電気抵抗率ρは、1.0×10Ω・cm以上1.0×1014Ω・cm以下であってよい。
 例えば、第二窒化物(第二窒化物からなる強誘電薄膜)の25℃での残留分極値Pは、0.09μC/cm以上2.30μC/cm以下、0.10μC/cm以上2.25μC/cm以下、0.20μC/cm以上2.25μC/cm以下、又は0.46μC/cm以上2.25μC/cm以下であってよい。
 第一窒化物は、亜鉛、チタン、ジルコニウム及び窒素に加えて他の元素を更に含有してよい。第二窒化物は、亜鉛、チタン、ジルコニウム、アルミニウム及び窒素に加えて他の元素を更に含有してよい。
 第一窒化物及び第二窒化物其々の結晶構造は限定されない。例えば、第一窒化物及び第二窒化物其々の結晶は、六方晶であってよい。例えば、第一窒化物及び第二窒化物其々の結晶構造は、ウルツ鉱型構造(wurtzite structure)であってよい。第一窒化物の結晶構造において、Zn、Ti及びZr其々は互いに置換可能であってよい。第二窒化物の結晶構造において、Zn、Ti、Zr及びAl其々は互いに置換可能であってよい。第二窒化物の結晶構造がAlを含む点を除いて、第二窒化物の結晶構造は第一窒化物の結晶構造と同じであってよい。第二窒化物の結晶構造は第一窒化物の結晶構造と異なってもよい。
 本実施形態に係る圧電体は、第一窒化物又は第二窒化物を含む。例えば、圧電体は、圧電素子に用いられてよい。例えば、圧電体は、第一窒化物又は第二窒化物を含む圧電薄膜であってよい。ただし、圧電体は圧電薄膜でなくてもよい。例えば、圧電体は、第一窒化物又は第二窒化物を含む粗大なセラミックス(焼結体)であってもよい。以下では、圧電素子の一例として、圧電薄膜を用いた圧電薄膜素子が説明される。ただし、圧電素子は圧電薄膜素子に限定されない。圧電素子の構造は、下記の構造に限定されない。
 本実施形態に係る強誘電体は、第一窒化物又は第二窒化物を含む。例えば、強誘電体は、強誘電素子に用いられてよい。例えば、強誘電体は、第一窒化物又は第二窒化物を含む強誘電薄膜であってよい。ただし、強誘電体は強誘電薄膜でなくてもよい。例えば、強誘電体は、第一窒化物又は第二窒化物を含む粗大なセラミックス(焼結体)であってもよい。例えば、強誘電素子は、強誘電薄膜を用いた強誘電薄膜素子であってよい。ただし、強誘電素子は強誘薄膜素子に限定されない。以下に記載の圧電体は、強誘電体である。以下に記載の圧電薄膜は、強誘電薄膜である。以下に記載の圧電薄膜素子は、強誘電薄膜素子である。以下に記載の圧電素子は、強誘電素子である。強誘電素子の構造は、下記の構造に限定されない。
 図1に示されるように、本実施形態に係る圧電薄膜素子10(強誘電薄膜素子)は、基板6と、基板6の表面に直接積層された密着層5と、密着層5を介して基板6の表面に間接的に積層された第一電極層4と、第一電極層4の表面に直接に積層された圧電薄膜3(強誘電薄膜)と、圧電薄膜3の表面に直に積層された第二電極層7と、を含む。
 圧電薄膜3(強誘電薄膜)は、複数の層から構成されていてよい。例えば、圧電薄膜3は、窒化アルミニウム(AlN)を含む第一圧電層1と、第一窒化物又は第二窒化物を含む第二圧電層2と、を含んでよい。第一圧電層1は、窒化アルミニウムのみからなっていてよい。第一圧電層1は、添加元素を含む窒化アルミニウムからなっていてもよい。第二圧電層2は、第一窒化物又は第二窒化物のみからなっていてよい。第一圧電層1は第一電極層4の表面に直接積層されてよく、第二圧電層2は第一圧電層1の表面に直接に積層されてよく、第二電極層7は第二圧電層2の表面に直接に積層されてよい。第一圧電層1は、第一電極層4及び第二圧電層2の間に配置される中間層と言い換えられてよい。第一圧電層1に含まれる窒化アルミニウムは、電気的絶縁性に優れる。したがって、第一圧電層1を第一電極層4及び第二圧電層2の間に配置することに因り、第一圧電層1がない場合に比べて第一電極層4及び第二電極層7の間の電気的絶縁性が向上する。第一圧電層1に含まれる窒化アルミニウムの結晶格子は、第二圧電層2の結晶格子と整合し易い。したがって、第二圧電層2を第一圧電層1の表面に形成することに因り、第二圧電層2(第一窒化物又は第二窒化物)の結晶性及び圧電性が向上する。第二圧電層2が第一圧電層1の表面の一部分のみに直接積層されてもよく、第二電極層7の一部分が第二圧電層2の表面に直接積層されてもよく、第二電極層7の他の部分が第一圧電層1の表面に直接積層されてもよい。第二圧電層2が第一圧電層1の表面全体に直接積層されてもよく、第二電極層7が第二圧電層2の表面全体に直接積層されてもよい。
 窒化アルミニウムを含む第一圧電層1は圧電薄膜素子10(強誘電薄膜素子)にとって必須ではない。窒化物として第一窒化物又は第二窒化物のみを含む圧電薄膜3が、第一電極層4の表面に直接積層されてよい。圧電薄膜3が、密着層5の表面に直接積層されていてもよい。圧電薄膜3が、基板6の表面に直接積層されていてもよい。圧電薄膜3の全体が、第一窒化物又は第二窒化物のみからなっていてよい。
 圧電薄膜3(第二圧電層2)に含まれる第一窒化物又は第二窒化物は、単結晶又は多結晶であってよい。圧電薄膜3(強誘電薄膜)中の第一窒化物又は第二窒化物は、第一電極層4の表面の法線方向(Z軸方向)に延びる柱状結晶であってよい。例えば、圧電薄膜3(第二圧電層2)中の第一窒化物又は第二窒化物の(001)面及び(002)面は、第一電極層4(又は圧電薄膜3)の表面に平行であってよい。換言すれば、圧電薄膜3(第二圧電層2)中の第一窒化物又は第二窒化物の(001)面及び(002)面は、第一電極層4(又は圧電薄膜3)の表面の法線方向において配向してよい。圧電薄膜3(第二圧電層2)が、第一窒化物又は第二窒化物からなる複数の結晶粒(crystalline grain)を含む場合、一部又は全部の結晶粒の(001)面及び(002)面が、第一電極層4の表面に平行であってよい。第一窒化物又は第二窒化物の(001)面及び(002)面が、第一電極層4(又は圧電薄膜3)の表面に平行である場合、圧電薄膜3(第二圧電層2)は優れた圧電性及び強誘電性を有し易い。ただし、圧電素子における第一窒化物又は第二窒化物の格子面の配向方向は限定されない。
 第一圧電層1に含まれる窒化アルミニウムは、単結晶又は多結晶であってよい。第一圧電層1中の窒化アルミニウムは、第一電極層4の表面の法線方向に延びる柱状結晶であってよい。第一圧電層1中の窒化アルミニウムの(001)面及び(002)面は、第一電極層4(又は圧電薄膜3)の表面に平行であってよい。換言すれば、第一圧電層1中の窒化アルミニウムの(001)面及び(002)面は、第一電極層4(又は圧電薄膜3)の表面の法線方向において配向してよい。第一圧電層1が、窒化アルミニウムからなる複数の結晶粒を含む場合、一部又は全部の結晶粒の(001)面及び(002)面が、第一電極層4の表面に平行であってよい。
 第一圧電層1中の窒化アルミニウムの(001)面及び(002)面が、第一電極層4(又は圧電薄膜3)の表面に平行である場合、第二圧電層2中の第一窒化物又は第二窒化物の(001)面及び(002)面も、第一電極層4(又は圧電薄膜3)の表面に平行になり易い。つまり、第一圧電層1中の窒化アルミニウムの(001)面及び(002)面は、第二圧電層2中の第一窒化物又は第二窒化物の(001)面及び(002)面と平行であってよい。窒化アルミニウムの圧電性が発現する結晶方位(分極方向)は、ウルツ鉱型構造の[001]である。したがって、窒化アルミニウムの(001)面及び(002)面が、第一電極層4(又は圧電薄膜3)の表面に平行である場合、圧電薄膜3(第一圧電層1)は優れた圧電性を有し易い。ただし、圧電素子における窒化アルミニウムの格子面の配向方向は限定されない。
 例えば、圧電薄膜3(強誘電薄膜)の厚みは、50nm以上30000nm以下であってよい。圧電薄膜3が第一圧電層1及び第二圧電層2を含む場合、第一圧電層1の厚みは5nm以上50nm以下であってよく、第二圧電層2の厚みは45nm以上29950nm以下であってよい。
 基板6、密着層5、第一電極層4、圧電薄膜3(第一圧電層1及び第二圧電層2)、並びに第二電極層7の積層方向は、Z軸方向である。基板6、密着層5、第一電極層4、圧電薄膜3(第一圧電層1及び第二圧電層2)並びに第二電極層7其々は、XY面方向(X軸及びY軸)に沿って延びる平坦な形状を有する。基板6、密着層5、第一電極層4、圧電薄膜3(第一圧電層1及び第二圧電層2)、並びに第二電極層7其々の厚みは、均一であってよい。
 密着層5は、基板6の表面の一部又は全体を直接覆ってよい。第一電極層4は、密着層5の表面の一部又は全体を直接覆ってよい。圧電薄膜3(第一圧電層1)は、第一電極層4の表面の一部又は全体を直接又は間接的に覆ってよい。圧電薄膜3(第一圧電層1)は、密着層5の表面の一部又は全体を直接覆っていてもよい。圧電薄膜3(第一圧電層1)は、基板6の表面の一部又は全体を直接覆っていてもよい。第二電極層7は、圧電薄膜3(第二圧電層2)の表面の一部又は全体を直接又は間接的に覆ってよい。第二圧電層2は、第一圧電層1の表面の一部又は全体を覆ってよい。
 密着層5は圧電薄膜素子10にとって必須ではない。密着層5がない場合、第一電極層4は、基板6の表面の一部又は全体を直接覆ってよい。第一電極層4は、下部電極層と言い換えられてよい。第二電極層7は、上部電極層と言い換えられてよい。
 例えば、基板6は、シリコン基板、ガリウム砒素基板、又はSOI(Silicon-on-Insulator)基板等の半導体基板であってよい。基板6は、光学結晶基板(サファイア基板等)、絶縁体基板(ガラス基板、若しくはセラミックス基板等)、又は金属基板(ステンレス鋼板等)であってもよい。
 第一電極層4は、Pt(白金)、Ir(イリジウム)、Au(金)、Rh(ロジウム)、Pd(パラジウム)、Ag(銀)、Ni(ニッケル)、Cu(銅)、Al(アルミニウム)、Mo(モリブデン)、W(タングステン)、V(バナジウム)、Cr(クロム)、Nb(ニオブ)、Ta(タンタル)、Ru(ルテニウム)、Zr(ジルコニウム)、Hf(ハフニウム)、Ti(チタン)、Y(イットリウム)、Sc(スカンジウム)及びMg(マグネシウム)からなる群より選ばれる少なくとも一種の元素を含んでよい。第一電極層4は、金属単体であってよい。第一電極層4は、少なくとも二種類の元素を含む合金、もしくはセラミックス等であってもよい。
 密着層5は、Al(アルミニウム)、Si(ケイ素)、Ti(チタン)、Zn(亜鉛)、Y(イットリウム)、Zr(ジルコニウム)、Ce(セリウム)、Cr(クロム)、Nb(ニオブ)、Mo(モリブデン)、Hf(ハフニウム)、Ta(タンタル)、W(タングステン)、Pt(白金)及びRu(ルテニウム)及びからなる群より選ばれる少なくとも一種の元素を含んでよい。密着層5は、金属単体、合金又は化合物(酸化物、窒化物等)であってよい。密着層5は、別の圧電薄膜、高分子、又はセラミックスから構成されていてもよい。密着層5は、機械的な衝撃等に因る第一電極層4の剥離を抑制する機能も有する。密着層5は、界面層、支持層、又はバッファ層と言い換えられてよい。
 第二電極層7は、Pt、Ir、Au、Rh、Pd、Ag、Ni、Cu、Al、Mo、W、V、Cr、Nb、Ta、Ru、Zr、Hf、Ti、Y、Sc及びMgからなる群より選ばれる少なくとも一種の元素を含んでよい。第二電極層7は、金属単体であってよい。第二電極層7は、上記の群より選ばれる少なくとも二種類の元素を含む合金、もしくはセラミックス等であってもよい。
 例えば、基板6の厚みは、50μm以上10000μm以下であってよい。例えば、密着層5の厚みは、0.003μm以上2μm以下であってよい。例えば、第一電極層4の厚みは、0.01μm以上1μm以下であってよい。例えば、第二電極層7の厚みは、0.01μm以上1μm以下であってよい。
 密着層5、第一電極層4、圧電薄膜3(第一圧電層1及び第二圧電層2)、並びに第二電極層7其々は、スパッタリング等の気相成長法によって基板6の表面に積層されてよい。
 例えば、第一圧電層1が窒化アルミニウムのみからなる場合、第一圧電層1は、Alからなる金属ターゲットを用いたスパッタリングによって形成されてよい。
 例えば、第二圧電層2が第一窒化物のみからなる場合、第二圧電層2は、Tiからなる金属ターゲット及びZrからなる金属ターゲットのうち少なくとも一つと、Znからなる金属ターゲットを用いたスパッタリングによって形成されてよい。
 例えば、第二圧電層2が第二窒化物のみからなる場合、第二圧電層2は、Tiからなる金属ターゲット及びZrからなる金属ターゲットのうち少なくとも一つと、Znからなる金属ターゲットと、Alからなる金属ターゲットを用いたスパッタリングによって形成されてよい。
 例えば、圧電薄膜3の全体が第一窒化物のみからなる場合、圧電薄膜3は、Tiからなる金属ターゲット及びZrからなる金属ターゲットのうち少なくとも一つと、Znからなる金属ターゲットを用いたスパッタリングによって形成されてよい。
 例えば、圧電薄膜3の全体が第二窒化物のみからなる場合、圧電薄膜3は、Tiからなる金属ターゲット及びZrからなる金属ターゲットのうち少なくとも一つと、Znからなる金属ターゲットと、Alからなる金属ターゲットを用いたスパッタリングによって形成されてよい。
 複数の金属ターゲットを用いたスパッタリングにおいては、各ターゲットに与えられる入力パワー(電力密度)が高いほど、各ターゲットに由来する元素が圧電薄膜3に含まれ易い。したがって、各ターゲットに与えられる入力パワー(電力密度)の調整によって、圧電薄膜3中の各元素の含有量が制御されてよい。入力パワー(電力密度)とは、各スパッタリングターゲットの単位面積当たりの電力(単位:W/cm)と言い換えられる。
 圧電薄膜3(第一圧電層1及び第二圧電層2)を形成するためのスパッタリングの雰囲気(成膜雰囲気)は、窒素ガス(N)を含む。圧電薄膜3に含まれる窒素は、成膜雰囲気中の窒素ガスに由来する。例えば成膜雰囲気は、希ガス(アルゴン等)及び窒素ガスを含む混合ガスであってよい。成膜雰囲気へ供給される窒素ガスの単位時間当たりの流量、及び成膜雰囲気の気圧(窒素ガスの分圧)の調整によって、圧電薄膜3(第一圧電層1及び第二圧電層2)中の窒素の含有量が制御されてよい。スパッタリングの継続時間、スパッタリング中の基板の表面の温度、及び基板バイアス等も、圧電薄膜3(第一圧電層1及び第二圧電層2)の組成及び厚みの制御因子であってよい。エッチング(例えばプラズマエッチング)により、所望の形状又はパターンを有する圧電薄膜3が形成されてよい。
 密着層5、第一電極層4、及び第二電極層7其々は、少なくとも一種のターゲットを用いたスパッタリングによって形成されてよい。密着層5、第一電極層4、及び第二電極層7其々は、複数のターゲットを用いたスパッタリングによって形成されてもよい。各層の形成に用いられるターゲットは、各層を構成する元素のうち少なくとも一種を含んでよい。所定の組成を有するターゲットの選定及び組合せにより、目的とする組成を有する各層を形成することができる。例えば、ターゲットは、金属単体、合金又は酸化物等であってよい。各層は、希ガス(アルゴン等)中で形成されてよい。各層を構成する元素の一部が、スパッタリングの雰囲気に由来してもよい。
 密着層5、第一電極層4、圧電薄膜3(第一圧電層1及び第二圧電層2)、並びに第二電極層7其々の結晶構造は、X線回折(XRD)法によって特定されてよい。各層及び圧電薄膜3の組成は、蛍光X線分析法(XRF法)、X線光電子分光(XPS)、エネルギー分散型X線分析(EDX)、誘導結合プラズマ質量分析(ICP-MS)、レーザーアブレーション誘導結合プラズマ質量分析(LA-ICP-MS)、及び電子線マイクロアナライザ(EPMA)のうち少なくともいずれか一つの分析方法にとって特定されてよい。密着層5、第一電極層4、圧電薄膜3(第一圧電層1及び第二圧電層2)、並びに第二電極層7其々の厚みは、厚み方向(図1中のZ軸方向)に平行な圧電薄膜素子10の断面において、走査型電子顕微鏡(SEM)によって測定されてよい。
 本実施形態に係る圧電素子又は強誘電素子の用途は、多岐にわたる。例えば、圧電素子又は強誘電素子は、アクチュエータ、センサ、マイクロフォン、スピーカー、ハーベスタ(振動発電機)、発振子(タイミングデバイス)、共振子(音響多層膜)、高周波フィルタ、強誘電体メモリ(FeRAM)、又はX線発生装置(X線源)であってよい。圧電素子又は強誘電素子は、MEMSの一部又は全体であってよい。例えば、アクチュエータは、走査型映像モジュール用のミラーアクチュエータであってよい。例えば、アクチュエータは、ハプティクス(haptics)に用いられてよい。つまり、アクチュエータは、皮膚感覚(触覚)によるフィードバックが求められる様々なデバイスに用いられてよい。皮膚感覚によるフィードバックが求められるデバイスとは、例えば、ウェアラブルデバイス、タッチパッド、ディスプレイ、又はゲームコントローラであってよい。例えば、アクチュエータは、ヘッドアセンブリ、ヘッドスタックアセンブリ、又はハードディスクドライブに用いられてよい。例えば、アクチュエータは、プリンタヘッド、又はインクジェットプリンタ装置に用いられてもよい。例えば、アクチュエータは、スイッチに用いられてもよい。例えば、センサは、焦電センサ(例えば、赤外線センサ)、振動センサ、加速度センサ、ショックセンサ、ジャイロセンサ、アコースティックエミッション(AE)センサ、圧力センサ、脈波センサ、超音波センサ、又は圧電微小機械超音波トランスデューサ(Piezoelectric Micromachined Ultrasonic Transducer; PMUT)等の超音波トランスデューサに用いられてよい。例えば、焦電センサの用途は、血糖値センサ、人感センサ、モーションセンサ、赤外イメージセンサ、車載センサ、赤外線温度計、炎検知センサ、又はガス検知センサであってよい。例えば、圧電微小機械超音波トランスデューサを応用した製品は、生体認証センサ、若しくは医療/ヘルスケア用センサ(指紋センサ、若しくは超音波式血管認証センサ)、又はToF(Time of Flight)センサであってよい。例えば、フィルタは、BAW(Bulk Acoustic Wave)フィルタ又はSAW(Surface Acoustic Wave)フィルタであってよい。
 本発明は必ずしも上述された実施形態に限定されるものではない。本発明の趣旨を逸脱しない範囲において、本発明の種々の変更が可能であり、これ等の変更例も本発明に含まれる。例えば、図2に示されるように、圧電素子10a(強誘電素子)は、第一電極層4と、第一電極層4に直接積層された圧電層3a(強誘電層)と、圧電層3a(強誘電層)に直接積層された第二電極層7と、を含んでよい。圧電層3a(強誘電層)は、圧電体(強誘電体)として、第一窒化物又は第二窒化物を含む。例えば、圧電層3a(強誘電層)は、第一窒化物又は第二窒化物を含むセラミックス(焼結体)であってよい。例えば、圧電層3a(強誘電層)の厚みは、数mm以上数十mm以下(例えば10mm)であってよい。
 以下の実施例及び比較例により、本発明が詳細に説明される。本発明は以下の実施例によって限定されるものではない。
 下記の実施例1~6其々の窒化物は、第一窒化物の実施例である。
(実施例1)
<窒化物膜の作製>
 基板として、Siの単結晶からなるウェハが用いられた。基板の表面は、Siの(100)面に平行であった。基板の厚みは、725μmであった。基板の直径は、約8インチであった。基板の厚みは均一であった。厚み方向における基板の抵抗は、100Ω以下であった。
 真空チャンバー内でのRFマグネトロンスパッタリングにより、窒化物を含む薄膜(窒化物膜)が、基板の表面全体に直接形成された。スパッタリングターゲットとしては、Znからなる金属ターゲット(Znの単体)と、Tiからなる金属ターゲット(Tiの単体)が用いられた。窒化物における[M]/([Zn]+[M])が下記表1に示される値に一致するように、各スパッタリングターゲットの入力パワー(電力密度)が調整された。真空チャンバー内の雰囲気は、Ar及びNの混合ガスであった。真空チャンバー内の気圧は、0.5Paであった。真空チャンバーへ供給されるArの単位時間当たりの流量は、15sccmであった。真空チャンバーへ供給されるNの単位時間当たりの流量は、15sccmであった。窒化物膜の形成過程における基板の温度は150℃に維持された。窒化物膜の厚みは、0.5μmに調整された。
<薄膜素子の作製>
 上記の試料(基板の表面に直接積層された窒化物膜)とは別の試料として、実施例1の薄膜素子が以下の方法によって作製された。
 真空チャンバー内でのRFマグネトロンスパッタリングにより、Mоからなる第一電極層(下部電極層)が、上記の基板の表面全体に直接形成された。スパッタリングターゲットしては、Mоの単体が用いられた。真空チャンバー内の雰囲気は、Arガスであった。第一電極層の厚みは均一であった。第一電極層の厚みは、0.2μmであった。
 真空チャンバー内でのRFマグネトロンスパッタリングにより、窒化物からなる薄膜(窒化物膜)が、第一電極層の表面全体に直接形成された。窒化物膜を第一電極層の表面に直接形成する方法は、窒化物を基板の表面に直接形成する方法と同様であった。第一電極層の表面に直接形成された窒化物膜の組成及び寸法は、基板の表面に直接形成された上記の窒化膜の組成及び寸法と同様であった。
 真空チャンバー内でのメタルマスクを用いた電子ビーム蒸着法により、Agからなる第二電極層(電極パターン)が窒化物膜の表面全体に直接形成された。第二電極層の厚みは、0.1μmであった。第二電極層の厚みは均一であった。
 上記の手順で作製された積層体は、基板と、基板に直接積層された第一電極層と、第一電極層に直接積層された窒化物膜と、窒化物膜に直接積層された第二電極層と、から構成されていた。続くフォトリソグラフィにより、基板上の積層構造のパターニングが行われた。パターニング後、積層体全体をダイシングにより切断することにより、四角形状の実施例1の薄膜素子が得られた。薄膜素子は、基板と、基板に直接積層された第一電極層と、第一電極層に直接積層された窒化物膜と、窒化物膜に直接積層された第二電極層と、から構成されていた。
 以上の方法により、実施例1の薄膜素子が作製された。上記の2種類の試料を用いた以下の分析及び測定が実施された。
<窒化物膜の組成の分析>
 基板の表面に直接形成された窒化物膜の組成が、蛍光X線分析法(XRF法)により分析され、窒化物膜における[M]/([Zn]+[M])が特定された。XRF法には、株式会社リガク製の波長分散型蛍光X線装置(RIGAKU AZX-400)が用いられた。分析の結果は、実施例1の窒化物(窒化物膜)がZn、Ti及びNからなることを示していた。XRF法によって特定された実施例1の[M]/([Zn]+[M])は、下記表1に示される値に一致した。XRF法によって特定された実施例1の[Zn]/([Zn]+[M])は、下記表1に示される値に一致した。
<窒化物膜の結晶構造の測定>
 基板の表面に直接形成された窒化物膜の結晶構造が、X線回折(XRD)法により分析された。XRD法には、株式会社リガク製の多目的X線回折装置(SmartLab)が用いられた。窒化物膜の表面において、上記のX線回折装置を用いた2θ-θスキャン、ωスキャン及び2θχ-φスキャンが行われた。XRD法に基づく分析の結果、窒化物膜はウルツ鉱型構造を有することが確認された。ウルツ鉱型構造の(002)面は、窒化物膜及び基板其々の表面に平行であった。
<電気抵抗率ρの測定>
 実施例1の薄膜素子における第一電極層と第二電極層との間に直流電圧を印加することにより、第一電極層と第二電極層との間における窒化物膜の電気抵抗率ρが測定された。直流電圧は、1V/μmであった。直流電圧を印加した時間は、30秒であった。実施例1の窒化物膜の電気抵抗率ρは、下記表1に示される。下記表1中の「E+0n」(nは任意の正の整数である。)は、「×10」を意味する。下記表1中の「E+m」(mは任意の正の整数である。)は、「×10」を意味する。
<圧電歪定数d33の測定>
 実施例1の窒化物膜の圧電歪定数d33(単位:pC/N)が測定された。圧電歪定数d33の測定方法の詳細は以下の通りであった。測定の結果は、実施例1の窒化物膜が十分な圧電性を有する薄膜(圧電薄膜)であることを示していた。実施例1の圧電歪定数d33(3点測定点平均値)は、下記表1に示される。
測定装置:Piezotest社製のd33メーター(PM200)
周波数: 110Hz
クランプ圧: 0.25N
<残留分極値Pの測定>
 実施例1の窒化物膜のヒステリシス曲線が測定された。ヒステリシス曲線から残留分極値(単位:μC/cm)が読み取られた。ヒステリシス曲線の測定には、株式会社東陽テクニカ製の強誘電体特性評価システム(FCE)が用いられた。ヒステリシス曲線の測定における交流電圧の周波数は、10kHzであった。ヒステリシス曲線の測定において窒化物膜に印加される電圧の最大値は、20Vppであった。ヒステリシス曲線の測定中の窒化物膜の温度は、25℃であった。実施例1の残留分極値Pは、下記表1に示される。下記表1に示される残留分極値Pは、3回の測定によって得られた3つの残留分極値の平均値である。残留分極値Pは、窒化物膜の強誘電性を示す指標である。残留分極値Pが大きいほど、窒化物膜は強誘電性に優れている。
(実施例2~6、及び比較例1~5)
 実施例2~4及び6、並びに比較例2~4其々の窒化物膜を形成するためのスパッタリングターゲットとして、実施例1と同様に、Znからなる金属ターゲット(Znの単体)と、Tiからなる金属ターゲット(Tiの単体)が用いられた。
 実施例5の窒化物膜を形成するためのスパッタリングターゲットとして、Znからなる金属ターゲット(Znの単体)と、Zrからなる金属ターゲット(Zrの単体)が用いられた。
 実施例2~6及び比較例2~4其々の窒化物膜を形成する際に、窒化物における[M]/([Zn]+[M])が下記表1に示される値に一致するように、各スパッタリングターゲットの入力パワー(電力密度)が調整された。
 比較例1の窒化物膜を形成するためのスパッタリングターゲットとして、Znからなる金属ターゲット(Znの単体)のみが用いられた。
 比較例5の窒化物膜を形成するためのスパッタリングターゲットとして、Tiからなる金属ターゲット(Tiの単体)のみが用いられた。
 実施例6の薄膜素子の作製においては、中間層(第一圧電層)が第一電極層の表面全体に形成され、窒化物膜(第二圧電層)が中間層の表面全体に形成された。実施例6の中間層は、以下の方法によって形成された。
 真空チャンバー内でのRFマグネトロンスパッタリングにより、AlNからなる中間層が形成された。スパッタリングターゲットとしては、Alからなる金属ターゲット(Alの単体)のみが用いられた。真空チャンバー内の雰囲気は、Ar及びNの混合ガスであった。中間層の厚みは均一であった。中間層の厚みは、0.03μmに調整された。
 上記の事項を除いて実施例1と同様の方法で、実施例2~6及び比較例1~5其々の2種類の試料が作製された。実施例2~6及び比較例1~5其々の2種類の試料を用いた分析及び測定が、実施例1と同様の方法で実施された。
 XRF法による分析の結果は、以下の通りであった。
 実施例2~4及び6並びに比較例3~4其々の窒化物(窒化物膜)は、Zn、Ti及びNからなっていた。
 実施例5の窒化物(窒化物膜)は、Zn、Zr及びNからなっていた。
 比較例1の窒化物膜は、Znの窒化物とZnの酸化物から構成される混合物であった。
 比較例2の窒化物膜は、Zn及びTiを含む窒化物とZn及びTiを含む酸化物から構成される混合物であった。
 比較例5の窒化物膜は、の窒化物(窒化物膜)は、Ti及びNからなっていた。
 実施例2~6及び比較例1~5其々の[M]/([Zn]+[M])は、下記表1に示される値に一致した。
 実施例2~6及び比較例1~5其々の[Zn]/([Zn]+[M])は、下記表1に示される値に一致した。
 XRD法に基づく分析の結果は、以下の通りであった。
 実施例2~6其々の窒化物膜はウルツ鉱型構造を有していた。
 実施例2~6其々のウルツ鉱型構造の(002)面は、窒化物膜及び基板其々の表面に平行であった。
 実施例2~6及び比較例1~5其々の電気抵抗率ρ、圧電歪定数d33及び残留分極値Pは、下記表1に示される。
 圧電歪定数d33の測定の結果は、実施例2~6其々の窒化物膜が十分な圧電性を有する薄膜(圧電薄膜)であることを示していた。
 残留分極値Pの測定の結果は、実施例2~6其々の窒化物膜が強誘電性を有する薄膜(強誘電薄膜)であることを示していた。
 比較例1及び2の場合、窒化物だけではなく酸化物を含む窒化物膜が形成されたので、窒化物膜の電気抵抗率ρは測定されなかった。比較例1及び2の場合、薄膜素子を構成する窒化物膜が第一電極層から剥離していたので、圧電歪定数d33及び残留分極値Pを測定することはできなかった。
 比較例3~5の場合、窒化物膜の電気抵抗率ρが低過ぎたので、圧電歪定数d33及び残留分極値Pを測定することはできなかった。特に比較例5の場合、窒化物膜の電気抵抗率ρが低過ぎたため、窒化物膜の電気抵抗率ρを正確に測定することができなかった。つまり、比較例3~5其々の窒化膜は、絶縁性、圧電性及び強誘電性を有していなかった。
Figure JPOXMLDOC01-appb-T000001
(実施例7~19及び比較例6)
 下記の実施例7~19其々の窒化物は、第二窒化物の実施例である。
 実施例7~19及び比較例6其々の窒化物膜を形成するためのスパッタリングターゲットとして、Znからなる金属ターゲット(Znの単体)、Tiからなる金属ターゲット(Tiの単体)、及び、Alからなる金属ターゲット(Alの単体)が用いられた。
 実施例7~19及び比較例6其々の窒化物膜を形成する際に、窒化物における[M]/([Zn]+[M])及び[Al]/([Zn]+[M]+[Al])が下記表2に示される値に一致するように、各スパッタリングターゲットの入力パワー(電力密度)が調整された。
 実施例17~19の場合、窒化膜の形成過程において真空チャンバーへ供給されるArの単位時間当たりの流量は、10sccmであった。実施例17~19の場合、窒化膜の形成過程において真空チャンバーへ供給されるNの単位時間当たりの流量は、20sccmであった。
 実施例16の薄膜素子の作製においては、中間層(第一圧電層)が第一電極層の表面全体に形成され、窒化物膜(第二圧電層)が中間層の表面全体に形成された。実施例16の中間層は、上記の実施例6の中間層と同様の方法によって形成された。
 上記の事項を除いて実施例1と同様の方法で、実施例7~19及び比較例6其々の2種類の試料が作製された。実施例7~19及び比較例6其々の2種類の試料を用いた分析及び測定が、実施例1と同様の方法で実施された。
 XRF法による分析の結果は、以下の通りであった。
 実施例7~19及び比較例6其々の(窒化物膜)は、Zn、Ti、Al及びNからなっていた。
 実施例7~19及び比較例6其々の[M]/([Zn]+[M])は、下記表2に示される値に一致した。
 実施例7~19及び比較例6其々の[Al]/([Zn]+[M]+[Al])は、下記表2に示される値に一致した。
 XRD法に基づく分析の結果は、以下の通りであった。
 実施例7~19其々の窒化物膜はウルツ鉱型構造を有していた。
 実施例7~19其々のウルツ鉱型構造の(002)面は、窒化物膜及び基板其々の表面に平行であった。
 実施例7~19其々の圧電歪定数d33及び残留分極値Pは、下記表2に示される。
 圧電歪定数d33の測定の結果は、実施例7~19其々の窒化物膜が十分な圧電性を有する薄膜(圧電薄膜)であることを示していた。
 残留分極値Pの測定の結果は、実施例7~19其々の窒化物膜が強誘電性を有する薄膜(強誘電薄膜)であることを示していた。
 比較例6の窒化膜は、絶縁性、圧電性及び強誘電性を有していなかった。
Figure JPOXMLDOC01-appb-T000002
 例えば、本発明の一側面に係る窒化物は、上述された圧電素子に用いられてよい。
 1…第一圧電層、2…第二圧電層、3…圧電薄膜(強誘電薄膜)、3a…圧電層(強誘電層)、4…第一電極層、5…密着層、6…基板、7…第二電極層、10…圧電薄膜素子(強誘電薄膜素子)、10a…圧電素子(強誘電素子)。

 

Claims (10)

  1.  亜鉛及び第4族元素を含有する窒化物であって、
     前記第4族元素が、チタン及びジルコニウムからなる群より選ばれる少なくとも一種の元素であり、
     前記窒化物中の亜鉛の含有量が、[Zn]原子%と表され、
     前記窒化物中の前記第4族元素の含有量の合計が、[M]原子%と表され、
     [M]/([Zn]+[M])が、20%より大きく50%未満である、
    窒化物。
  2.  亜鉛及び第4族元素を含有する窒化物であって、
     前記第4族元素が、チタン及びジルコニウムからなる群より選ばれる少なくとも一種の元素であり、
     前記窒化物が、アルミニウムを更に含有し、
     前記窒化物中の亜鉛の含有量が、[Zn]原子%と表され、
     前記窒化物中の前記第4族元素の含有量の合計が、[M]原子%と表され、
     前記窒化物中のアルミニウムの含有量が、[Al]原子%と表され、
     [M]/([Zn]+[M])が、20%より大きく70%未満であり、
     [Al]/([Zn]+[M]+[Al])が、10%以上70%未満である、
    窒化物。
  3.  請求項1又は2に記載の窒化物を含む、
    圧電体。
  4.  窒化アルミニウムを含む第一圧電層と、
     前記窒化物を含む第二圧電層と、
    を備え、
     前記第二圧電層が、前記第一圧電層に直接積層されている、
    請求項3に記載の圧電体。
  5.  請求項3に記載の圧電体を備える圧電素子。
  6.  請求項4に記載の圧電体を備える圧電素子。
  7.  請求項1又は2に記載の窒化物を含む、
    強誘電体。
  8.  窒化アルミニウムを含む第一圧電層と、
     前記窒化物を含む第二圧電層と、
    を備え、
     前記第二圧電層が、前記第一圧電層に直接積層されている、
    請求項7に記載の強誘電体。
  9.  請求項7に記載の強誘電体を備える強誘電素子。
  10.  請求項8に記載の強誘電体を備える強誘電素子。

     
PCT/JP2023/013246 2022-04-07 2023-03-30 窒化物、圧電体、圧電素子、強誘電体、及び強誘電素子 WO2023195413A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022063815 2022-04-07
JP2022-063815 2022-04-07

Publications (1)

Publication Number Publication Date
WO2023195413A1 true WO2023195413A1 (ja) 2023-10-12

Family

ID=88242910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013246 WO2023195413A1 (ja) 2022-04-07 2023-03-30 窒化物、圧電体、圧電素子、強誘電体、及び強誘電素子

Country Status (1)

Country Link
WO (1) WO2023195413A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260835A (ja) * 1997-07-11 1999-09-24 Tdk Corp 電子デバイス用基板
WO2017065294A1 (ja) * 2015-10-15 2017-04-20 国立大学法人 東京工業大学 窒化亜鉛系化合物およびその製造方法
JP2019146284A (ja) * 2018-02-15 2019-08-29 大日本印刷株式会社 振動発電デバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260835A (ja) * 1997-07-11 1999-09-24 Tdk Corp 電子デバイス用基板
WO2017065294A1 (ja) * 2015-10-15 2017-04-20 国立大学法人 東京工業大学 窒化亜鉛系化合物およびその製造方法
JP2019146284A (ja) * 2018-02-15 2019-08-29 大日本印刷株式会社 振動発電デバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RACHEL WOODS-ROBINSON; VLADAN STEVANOVI\'C; STEPHAN LANY; KAREN N. HEINSELMAN; MATTHEW K. HORTON; KRISTIN A. PERSSON; ANDRIY ZAKUT: "The role of disorder in the synthesis of metastable zinc zirconium nitrides", ARXIV.ORG, 12 March 2022 (2022-03-12), XP091167856 *

Similar Documents

Publication Publication Date Title
JP5836754B2 (ja) 圧電体素子及びその製造方法
JP5836755B2 (ja) 圧電体素子及び液体吐出ヘッド
JP6154729B2 (ja) 圧電体素子の製造方法
CN101325240B (zh) 压电体薄膜、压电体及其制造方法、以及压电体谐振子
US11411164B2 (en) Piezoelectric thin film device
US8148878B2 (en) Piezoelectric element and gyroscope
CN104078560B (zh) 压电体薄膜层叠基板
JP7425960B2 (ja) 圧電薄膜素子
JP2021086982A (ja) 圧電薄膜素子
JP7215425B2 (ja) 圧電薄膜素子
WO2019235080A1 (ja) 圧電薄膜及び圧電薄膜素子
JP7215426B2 (ja) 圧電薄膜素子
WO2017002341A1 (ja) 積層薄膜構造体の製造方法、積層薄膜構造体及びそれを備えた圧電素子
WO2023195413A1 (ja) 窒化物、圧電体、圧電素子、強誘電体、及び強誘電素子
JP2003212545A (ja) Pzt系膜体及びpzt系膜体の製造方法
WO2022255035A1 (ja) 圧電薄膜素子、微小電気機械システム、及び超音波トランスデューサ
JP2023120668A (ja) 圧電薄膜及び圧電薄膜素子
WO2018042946A1 (ja) 圧電体膜及びそれを備えた圧電素子
JP2022124810A (ja) 圧電薄膜素子
JP7351249B2 (ja) 圧電薄膜、圧電薄膜素子及び圧電トランスデューサ
JP7515113B2 (ja) 誘電性薄膜、誘電性薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
JP2022137784A (ja) 圧電薄膜、圧電薄膜素子及び圧電トランスデューサ
JP2021153074A (ja) 圧電薄膜素子
JP2022071607A (ja) 圧電薄膜、圧電薄膜素子及び圧電トランスデューサ
JP2023023808A (ja) 圧電薄膜、圧電薄膜素子及び圧電トランスデューサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784700

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024514253

Country of ref document: JP

Kind code of ref document: A