WO2023191104A1 - ロータ、モータ、圧縮機、冷凍装置 - Google Patents

ロータ、モータ、圧縮機、冷凍装置 Download PDF

Info

Publication number
WO2023191104A1
WO2023191104A1 PCT/JP2023/013720 JP2023013720W WO2023191104A1 WO 2023191104 A1 WO2023191104 A1 WO 2023191104A1 JP 2023013720 W JP2023013720 W JP 2023013720W WO 2023191104 A1 WO2023191104 A1 WO 2023191104A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
rotor
rotor core
rib
wall surface
Prior art date
Application number
PCT/JP2023/013720
Other languages
English (en)
French (fr)
Inventor
裕 付
裕介 入野
辰也 戸成
拓也 桜木
真紹 竹本
Original Assignee
ダイキン工業株式会社
国立大学法人 岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社, 国立大学法人 岡山大学 filed Critical ダイキン工業株式会社
Publication of WO2023191104A1 publication Critical patent/WO2023191104A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current

Definitions

  • the present disclosure relates to a rotor, a motor, a compressor, and a refrigeration device.
  • Patent Document 1 discloses a synchronous reluctance motor.
  • the rotor core of this motor has a plurality of slits for each magnetic pole of the rotor core.
  • This slit is an arc-shaped opening that is convex toward the cylindrical center of the rotor core and whose apex is located on the q-axis.
  • a first aspect of the present disclosure relates to a rotor, and the rotor includes a rotor core (11) in which a cavity (21) having a plurality of cavities is formed for each magnetic pole, and the rotor core (11) has a plurality of cavities. Between the cavity of (21) and the cavity adjacent to the cavity in the circumferential direction, a first rib ( 61), and the first rib (61) has two wires connected to the center of rotation (Q) of the rotor core (11) and each of the circumferential ends of the plurality of cavities of the cavity (21).
  • the cavity is provided so as to avoid being on a first reference line (L1) that bisects the angle formed by It includes a straight portion extending from the radially inner side of the portion (21) to the radially outer side of the hollow portion (21).
  • first rib (61) by providing the first rib (61), stress concentration at the circumferential end of the cavity (21) when the rotor core (11) is rotating can be alleviated.
  • the first rib (61) is arranged such that the center line of the first rib (61) is aligned with the first rib during rotation of the rotor core (11).
  • the rotor is formed along the direction of the force acting on (61).
  • the first rib (61) is formed such that the center line of the first rib (61) is along the direction of the force acting on the first rib (61) during rotation of the rotor core (11).
  • the first rib (61) can be made thinner than in the case without it. Thereby, leakage magnetic flux passing through the first rib (61) can be reduced.
  • a third aspect of the present disclosure is the rotor according to the first or second aspect, in which the rotor core (11) is arranged between the cavity of the cavity portion (21) and the cavity adjacent to the cavity in the circumferential direction.
  • the rotor has a center rib (50) extending from the inside of the cavity (21) in the radial direction to the outside of the cavity (21) in the radial direction along the first reference line (L1).
  • the rotor core (11) is adjacent to the cavity of the cavity portion (21) in the circumferential direction.
  • a second rib (62) is provided between the cavity and the second rib (62) extends from the inside of the cavity (21) in the radial direction to the outside of the cavity (21) in the radial direction. It is provided so as to avoid being on the first reference line (L1), and is located radially inside the cavity (21) along the direction of the force acting on the second rib (62) during rotation of the rotor core (11).
  • the rotor includes a straight portion extending from the hollow portion (21) to the outside in the radial direction of the hollow portion (21).
  • a fifth aspect of the present disclosure is that in the rotor of the fourth aspect, the second rib (62) is line-symmetrical with the first rib (61) about the first reference line (L1). A rotor is provided.
  • stress concentration at both ends of the cavity (21) in the circumferential direction when the rotor core (11) is rotating can be alleviated in a well-balanced manner.
  • a sixth aspect of the present disclosure is that in the rotor according to any one of the first to fifth aspects, a plurality of cavities (20) arranged in a radial direction are formed in the rotor core (11) for each of the magnetic poles.
  • the cavity (21) in which the first rib (61) is provided is a rotor which is the cavity located radially innermost among the plurality of cavities (20).
  • the cavity (21) located radially innermost among the plurality of cavities (20) arranged in the radial direction is the cavity (21) when the rotor core (11) is rotating. Stress concentration tends to occur at the circumferential ends. Therefore, by providing the first rib (61) in the cavity (21) located radially innermost among the plurality of cavities (20) arranged in the radial direction, the rotor core (11) is rotated. Stress concentration at the circumferential ends of the cavity (21) can be effectively alleviated.
  • a seventh aspect of the present disclosure is that in the rotor according to any one of the first to sixth aspects, the force acting on the first rib (61) during rotation of the rotor core (11) is ) of the centrifugal force, electromagnetic force, and torque acting on the rotor, the force corresponds to at least the centrifugal force.
  • An eighth aspect of the present disclosure is a rotor according to the seventh aspect, in which a first intersection point (A ) from the first reference line (A) to the first reference line ( A first imaginary line (L3), which is a line extending in a direction parallel to L1) and radially outward from the radially inner wall surface (30) of the cavity (21), and the first intersection point (A). and a second imaginary line (L4) extending through a second intersection point (B), which is an intersection point between the first reference line (L1) and the outer peripheral edge of the rotor core (11).
  • the rotor is located within a second range that is inside the range.
  • a ninth aspect of the present disclosure is that in the rotor of the eighth aspect, the second range is a line extending from the first intersection (A), and in the first range, the second range is a line extending from the first virtual line (L3). a third imaginary line (La) located on the inside; and a fourth imaginary line (Lb) extending from the first intersection (A) and located on the inside of the second imaginary line (L4) in the first range. ), the angle between the first virtual line (L3) and the third virtual line (La) is 1.9° ⁇ 4/n, and the second virtual line (L4) and the fourth virtual line (Lb) is 3.2° ⁇ 4/n, where n is the number of rotor poles of the rotor core (11).
  • a tenth aspect of the present disclosure relates to a motor including the rotor according to any one of the first to ninth aspects.
  • An eleventh aspect of the present disclosure relates to a compressor including the motor of the tenth aspect.
  • a twelfth aspect of the present disclosure relates to a refrigeration system including the compressor of the eleventh aspect.
  • FIG. 1 is a cross-sectional view illustrating the configuration of a motor according to an embodiment.
  • FIG. 2 is a cross-sectional view illustrating the configuration of the rotor of the embodiment.
  • FIG. 3 is a cross-sectional view illustrating the configuration of main parts of the rotor of the embodiment.
  • FIG. 4 is a cross-sectional view illustrating the detailed configuration of the rotor of the embodiment.
  • FIG. 5 is a cross-sectional view illustrating the configuration of the rotor of Comparative Example 1.
  • FIG. 6 is a magnetic flux line diagram showing the distribution of magnetic flux in the rotor of the embodiment.
  • FIG. 7 is a magnetic flux line diagram showing the distribution of magnetic flux in the rotor of Comparative Example 1.
  • FIG. 8 is a stress distribution diagram illustrating the stress distribution in the rotor of Comparative Example 2.
  • FIG. 9 is a stress distribution diagram illustrating the stress distribution in the rotor of the embodiment.
  • FIG. 10 is a cross-sectional view illustrating the configuration of main parts of a rotor according to Modification 1 of the embodiment.
  • FIG. 11 is a cross-sectional view illustrating the configuration of main parts of a rotor according to modification 2 of the embodiment.
  • FIG. 12 is a cross-sectional view illustrating the configuration of main parts of a rotor according to modification 3 of the embodiment.
  • FIG. 13 is a cross-sectional view illustrating the configuration of main parts of a rotor according to modification 4 of the embodiment.
  • FIG. 14 is a longitudinal sectional view illustrating the configuration of the compressor.
  • FIG. 15 is a piping system diagram illustrating the configuration of the refrigeration system.
  • FIG. 16 is a cross-sectional view illustrating the direction of force acting on the reinforcing ribs during rotation of the rotor core.
  • FIG. 17 is a graph illustrating the relationship between "the electromagnetic force acting on the rotor core” and “the angle ( ⁇ ) between the line of action and the first virtual line.”
  • FIG. 18 is a graph illustrating the relationship between "torque acting on the rotor core” and “angle ( ⁇ ) between the line of action and the second virtual line.”
  • FIG. 1 illustrates the configuration of a motor (1) according to an embodiment.
  • the motor (1) includes a rotor (10) and a stator (2).
  • the rotor (10) is fixed to the shaft (5).
  • motor (1) constitutes a synchronous reluctance motor.
  • the rotor (10) is not provided with permanent magnets.
  • the direction of the rotational axis of the rotor (10) is referred to as the "axial direction”
  • the direction perpendicular to the rotational axis of the rotor (10) is referred to as the "radial direction”
  • the direction of the rotational axis of the rotor (10) is referred to as the "radial direction”.
  • the direction around the rotation axis is referred to as the "circumferential direction.”
  • a cross section along the axial direction will be referred to as a “longitudinal cross section”
  • a cross section perpendicular to the axial direction will be referred to as a "transverse cross section”.
  • the stator (2) faces the rotor (10) with a predetermined gap in between.
  • the stator (2) has a stator core (3) and a plurality of windings (4).
  • the stator core (3) has a back yoke (3a) and a plurality of teeth (3b).
  • the back yoke (3a) is formed into a substantially cylindrical shape.
  • Each of the plurality of teeth (3b) extends radially inward from the inner peripheral surface of the back yoke (3a).
  • the plurality of windings (4) are wound around the plurality of teeth (3b).
  • FIG. 1 hatching of a stator core (3) and a rotor core (11), which will be described later, is omitted.
  • [Rotor] 2 to 4 illustrate the configuration of the rotor (10).
  • the rotor (10) has a rotor core (11).
  • the cross-sectional shape of the rotor core (11) is the same over the entire length in the axial direction.
  • the outer shape of the cross section of the rotor core (11) is circular.
  • the rotor core (11) is composed of a laminated core. Specifically, the rotor core (11) is constructed by laminating in the axial direction a plurality of disc-shaped members each made of an electromagnetic steel plate. Note that in FIGS. 2 to 4, hatching of the rotor core (11) is omitted.
  • a first reference line (L1) and a second reference line (L2) are defined on the rotor core (11).
  • the first reference line (L1) is a reference line extending in the radial direction from the rotation center (Q) of the rotor core (11), and is a reference line defined for each magnetic pole of the rotor core (11).
  • the number of first reference lines (L1) is the same as the number of poles of the rotor core (11).
  • the first reference lines (L1) are arranged at equal intervals in the circumferential direction.
  • the first reference line (L1) becomes the center line of the magnetic poles of the rotor core (11).
  • One magnetic pole of the rotor core (11) is a portion of the rotor core (11) formed to be line symmetrical about one first reference line (L1).
  • the first reference line (L1) is a line that bisects the angle formed by two lines connecting the rotation center (Q) of the rotor core (11) and each of the circumferential ends of the cavity (21). .
  • the second reference line (L2) is a reference line extending in the radial direction from the rotation center (Q) of the rotor core (11), and the angle between it and the first reference line (L1) is 180°. This is the reference line that is the angle obtained by dividing by the number of poles.
  • the number of second reference lines (L2) is the same as the number of poles of the rotor core (11).
  • the second reference line (L2) becomes a boundary line between the magnetic poles of the rotor core (11).
  • the second reference lines (L2) are arranged at equal intervals in the circumferential direction.
  • One magnetic pole of the rotor core (11) is a portion of the rotor core (11) located between two second reference lines (L2) adjacent to each other in the circumferential direction.
  • the number of poles of the rotor core (11) is "4".
  • the rotor core (11) has four first reference lines (L1) that correspond one-to-one to the four magnetic poles of the rotor core (11), and four first reference lines (L1) that correspond one-to-one to the boundaries of the four magnetic poles of the rotor core (11).
  • a second reference line (L2) is defined.
  • the first reference line (L1) and the second reference line (L2) are alternately arranged at equal intervals in the circumferential direction.
  • the first reference line (L1) becomes the q-axis, which is the axis in which magnetic flux is difficult to pass
  • the second reference line (L2) is the d-axis, which is the axis in which magnetic flux easily passes.
  • the d-axis is the axis in which magnetic resistance is minimized.
  • the q-axis is an axis whose electrical angle phase difference with the d-axis is 90°.
  • the q-axis is an axis magnetically orthogonal to the d-axis.
  • the rotor (10) is rotated by reluctance torque corresponding to the difference in inductance between the salient pole direction (d-axis) and the non-salient pole direction (q-axis).
  • the power factor in the motor (1) increases. Therefore, by reducing the q-axis inductance, the power factor in the motor (1) can be increased.
  • a shaft hole (15) is formed in the rotor core (11).
  • the shaft hole (15) is provided at the center of the rotor core (11) and passes through the rotor core (11) in the axial direction.
  • the cross-sectional shape of the shaft hole (15) is a circular shape centered on the rotation center (Q) of the rotor core (11), and is the same over the entire length of the rotor core (11) in the axial direction.
  • the wall surface of the shaft hole (15) is a cylindrical surface centered on the rotation center (Q) of the rotor core (11).
  • a plurality of cavities (20) arranged in the radial direction are formed in the rotor core (11) for each magnetic pole of the rotor core (11).
  • five cavities (20) are arranged in the radial direction for each magnetic pole of the rotor core (11).
  • the cavity (20) has one or more cavities.
  • Each of the plurality of cavities (20) is provided on the radially outer side of the shaft hole (15) and passes through the rotor core (11) in the axial direction. Each of the plurality of cavities (20) extends to intersect the first reference line (L1). Each of the plurality of cavities (20) is formed so as to be symmetrical about the first reference line (L1). Note that each of the plurality of cavities (20) does not intersect with the second reference line (L2).
  • the remaining cavities (20) excluding the radially innermost cavity (20) are arranged in the rotor core (11). ) is formed in an arc shape convex toward the center of rotation (Q).
  • the radially inner wall surface of the second cavity (20) counted from the radially inner side is formed in an arc shape convex toward the rotation center (Q) of the rotor core (11). .
  • the radially outer wall surface of the second cavity (20) is also formed in an arc shape convex toward the rotation center (Q) of the rotor core (11).
  • the cavity width which is the distance between the radially inner wall surface of the second cavity part (20) and the radially outer wall surface of the second cavity part (20), is the distance between the radially inner wall surface of the second cavity part (20) ) is the same over the entire circumferential length.
  • the configurations of the third and fourth cavity parts (20) counting from the radially inner side are the same as the configuration of the second cavity part (20).
  • Distance between the radially inner wall surface of the third cavity part (20) and the radially outer wall surface of the second cavity part (20) (width of the second partition part (112) described later) ) is the same over the entire circumferential length of the third cavity (20).
  • Distance between the radially inner wall surface of the fourth cavity section (20) and the radially outer wall surface of the third cavity section (20) (width of the third partition section (112) described later) ) is the same over the entire circumferential length of the fourth cavity (20).
  • the fifth cavity (20) counting from the inside in the radial direction is the cavity (20) located most radially outward among the plurality of cavities (20) lined up in the radial direction.
  • the radially inner wall surface of the fifth cavity (20) is formed in an arc shape convex toward the rotation center (Q) of the rotor core (11).
  • the radially outer wall surface of the fifth cavity (20) is formed in an arc shape concave with respect to the rotation center (Q) of the rotor core (11).
  • Distance between the radially inner wall surface of the fifth cavity section (20) and the radially outer wall surface of the fourth cavity section (20) (width of the fourth partition section (112) described later) ) is the same over the entire circumferential length of the fifth cavity (20).
  • the radially innermost cavity (20) among the plurality of cavities (20) provided for each magnetic pole of the rotor core (11) will be described.
  • the radially innermost cavity (20) is the first cavity (20) counting from the radially inner side.
  • the radially innermost cavity (20) will be referred to as a "cavity (21).”
  • the radially inner wall surface (30) of the cavity (21) is referred to as the “inner wall surface (30),”
  • the radially outer wall surface (40) of the cavity portion (21) is referred to as the "outer wall surface (40).” It is written as
  • the inner wall surface (30) of the cavity (21) includes a central surface (31) including a portion near the first reference line (L1), and a central surface (31) that includes a portion near the first reference line (L1), and a wall surface (30) that extends from the central surface (31) to the circumferential end of the cavity (21). It has two extending side parts (32). One of the two side parts (32) extends from one circumferential end of the central surface part (31) to one circumferential end of the hollow part (21), and the other of the two side parts (32) extends from one end of the central surface part (31) in the circumferential direction. ) extends from the other end in the circumferential direction to the other end in the circumferential direction of the cavity (21).
  • the "portion near the first reference line (L1)" of the inner wall surface (30) of the cavity (21) includes “the inner part of the cavity (21)” of the inner wall surface (30) of the cavity (21).
  • the area including the intersection point (Z) between the wall surface (30) and the first reference line (L1) is included.
  • the inner wall surface (30) of the cavity (21) and the first reference line ( The intersection point (Z) with L1) is the intersection of the arc-shaped virtual surface part (the part indicated by the broken line in FIG. 4) of the inner wall surface (30) of the cavity (21) and the first reference line (L1). becomes.
  • the "near the first reference line (L1)" of the inner wall surface (30) of the cavity (21) there is a Includes the closest parts.
  • the center surface (31) of the inner wall surface (30) of the cavity (21) is formed to be concave with respect to the rotation center (Q) of the rotor core (11).
  • the center surface portion (31) of the inner wall surface (30) of the cavity portion (21) includes a portion in which the center of curvature is located radially inward than the inner wall surface (30) of the cavity portion (21).
  • the central surface portion (31) is curved along the wall surface of the shaft hole (15).
  • the distance between the center surface portion (31) and the wall surface of the shaft hole (15) is the same over the entire circumferential length of the center surface portion (31).
  • the side surface (32) of the inner wall surface (30) of the cavity (21) is formed to be convex toward the intersection (X) of the second reference line (L2) and the wall surface of the shaft hole (15). Ru.
  • the side surface portion (32) of the inner wall surface (30) of the cavity portion (21) includes a portion in which the center of curvature is located radially outward than the inner wall surface (30) of the cavity portion (21).
  • the side surface portion (32) has an arcuate surface portion (32a), a flat surface portion (32b), and a connecting surface portion (32c).
  • the arc surface portion (32a) is a portion of the side surface portion (32) that is connected to the center surface portion (31).
  • the plane portion (32b) is a portion of the side surface portion (32) that is connected to the circumferential end of the hollow portion (21).
  • the connecting surface portion (32c) is a portion of the side surface portion (32) that connects the arcuate surface portion (32a) and the flat portion (32b).
  • the arc surface portion (32a) is curved along the wall surface of the shaft hole (15).
  • the distance between the arcuate surface portion (32a) and the wall surface of the shaft hole (15) is the same over the entire length of the arcuate surface portion (32a) in the circumferential direction.
  • the distance between the arc surface portion (32a) and the wall surface of the shaft hole (15) is the same as the distance between the center surface portion (31) and the wall surface of the shaft hole (15).
  • the plane portion (32b) extends along the second reference line (L2).
  • the distance between the plane portion (32b) and the second reference line (L2) becomes gradually shorter toward the outside in the radial direction.
  • the plane portion (32b) is inclined with respect to the second reference line (L2) so as to gradually approach the second reference line (L2) as it goes radially outward.
  • the connecting surface portion (32c) curves convexly toward the intersection (X) of the second reference line (L2) and the wall surface of the shaft hole (15).
  • the center of curvature of the connecting surface portion (32c) is located radially outward from the inner wall surface (30).
  • the outer wall surface (40) of the cavity (21) is formed in an arc shape convex toward the rotation center (Q) of the rotor core (11).
  • the distance between the outer wall surface (40) of the cavity portion (21) and the radially inner wall surface of the second cavity portion (20) is It is the same over the entire circumferential length of the second cavity (20).
  • the inner wall (30) of the cavity (21) has a cavity width (W1) that is the distance between the inner wall (30) and the outer wall (40) of the cavity (21). It includes a portion of the wall surface (30) that is longer than the cavity width (W1) in the vicinity of the first reference line (L1).
  • the cavity width (W1) of the cavity (21) is a distance based on the outer wall surface (40) of the cavity (21). Specifically, the cavity width (W1) of the cavity (21) is defined as the distance in the perpendicular direction between the outer wall (40) of the cavity (21) and the inner wall (30) of the cavity (21) and the outer wall ( 40).
  • the "cavity width (W1)" of the inner wall surface (30) of the cavity (21) is the “cavity width (W1)” in the vicinity of the first reference line (L1) of the inner wall surface (30) of the cavity (21).
  • the portion longer than (W1) is the connection surface portion (32c) of the inner wall surface (30) of the cavity (21).
  • the cavity width (W1) of the inner wall surface (30) of the cavity portion (21) is "the cavity width (W1) in the vicinity of the first reference line (L1) of the inner wall surface (30) of the cavity portion (21)," ) is 1.5 to 5 times the cavity width (W1) at the portion of the inner wall surface (30) of the cavity (21) near the first reference line (L1). It is.
  • the cavity width (W1) in the vicinity of the first reference line (L1) of the inner wall surface (30) of the cavity (21) is This is the cavity width (W1) at the intersection (Z) of the inner wall surface (30) of the cavity (21) and the first reference line (L1).
  • the rotor core (11) has a base (110) and a plurality of salient pole parts (111).
  • the number of salient pole portions (111) is the same as the number of second reference lines (L2) defined on the rotor core (11). In this example, the number of salient pole portions (111) is four.
  • the rotor core (11) includes a plurality of partition walls (112), a plurality of side bridges (113), and a center bridge (114) for each magnetic pole of the rotor core (11).
  • four partitions (112), eight side bridges (113), and one center bridge (114) are provided for each magnetic pole of the rotor core (11).
  • the base (110) is formed into a cylindrical shape.
  • the width (length in the radial direction) of the base (110) is the same over the entire circumference of the base (110).
  • the inner peripheral surface of the base (110) constitutes the wall surface of the shaft hole (15).
  • the plurality of salient pole portions (111) are arranged at equal intervals in the circumferential direction.
  • each of the plurality of salient pole parts (111) extends in the radial direction from the base (110) so that the center line of the salient pole part (111) is along the second reference line (L2). Further, the width (length in the direction perpendicular to the stretching direction) of the salient pole portion (111) gradually becomes shorter toward the tip of the salient pole portion (111).
  • the base end portion of the salient pole portion (111) (the connection portion between the salient pole portion (111) and the base portion (110)) is rounded.
  • Partition wall A plurality of partition wall portions (112) provided for each magnetic pole of the rotor core (11) are arranged in the radial direction. Each of the plurality of partition wall portions (112) extends to intersect with the first reference line (L1), and is formed to be symmetrical about the first reference line (L1). In this example, each of the four partition walls (112) has a similar configuration.
  • the partition wall portion (112) is formed in an arcuate shape that is convex toward the rotation center (Q) of the rotor core (11).
  • the width (length in the direction orthogonal to the circumferential direction) of the partition wall (112) is the same over the entire length of the partition wall (112) in the circumferential direction.
  • the distance between the first partition wall part (112) and the second partition wall part (112) (the cavity width of the second cavity part (20)) counting from the inside in the radial direction is It is the same over the entire circumferential length of the partition wall (112). Distance between the second partition wall part (112) and the third partition wall part (112) counting from the radial inside (cavity width of the third cavity part (20)), counting from the radial inside The same applies to the distance between the third partition wall portion (112) and the fourth partition wall portion (112) (the cavity width of the fourth cavity portion (20)).
  • the plurality of side bridges (113) provided for each magnetic pole of the rotor core (11) include two types of side bridges (113).
  • one type of side bridge (113) will be referred to as a “first side bridge (113),” and the other type of side bridge (113) will be referred to as a “second side bridge (113).”
  • the first side bridge (113) connects the circumferential end of the first partition wall (112) and the tip of the salient pole (111).
  • two first side bridges (113) are provided for each magnetic pole of the rotor core (11).
  • One first side bridge (113) includes one circumferential end of the first partition wall (112) and a salient pole adjacent in the circumferential direction to one circumferential end of the first partition wall (112). (111).
  • Another side bridge (113) includes the other end of the first partition wall (112) in the circumferential direction and a protrusion adjacent in the circumferential direction to the other end of the first partition wall part (112) in the circumferential direction. It is arranged between the tip of the pole part (111) and the tip of the pole part (111).
  • the second side bridge (113) connects circumferential ends of two radially adjacent partition walls (112).
  • six second side bridges (113) are provided for each magnetic pole of the rotor core (11).
  • the three second side bridges (113) are arranged between one ends in the circumferential direction of the four partition walls (112) arranged in the radial direction, and the remaining three second side bridges (113) are arranged in the radial direction. It is arranged between the other ends of the four partition walls (112) in the circumferential direction.
  • the center bridge (114) provided for each magnetic pole of the rotor core (11) is curved in an arc concave with respect to the rotation center (Q) of the rotor core (11), and is the most Both ends in the circumferential direction of the partition wall portion (112) located on the outside in the radial direction are connected.
  • the cavity (21) which is the first cavity (20), is located between the base (110), two circumferentially adjacent salient poles (111), and the two salient poles (111).
  • the inner wall surface (30) of the cavity (21) is defined as “the wall surfaces of the two salient pole portions (111) adjacent in the circumferential direction” and “the wall surfaces of the two salient pole portions (111) on the outer peripheral surface of the base (110)".
  • the central surface portion (31) of the inner wall surface (30) of the cavity portion (21) is defined as a “circular arc located between the wall surfaces of two salient pole portions (111) on the outer circumferential surface of the base portion (110). It consists of a part of the "face part”.
  • the arcuate surface portion (32a) of the side surface (32) of the inner wall surface (30) of the cavity portion (21) is located between the wall surfaces of the two salient pole portions (111) on the outer peripheral surface of the base (110).
  • the planar portion (32b) consists of the remainder of the "wall surface of the salient pole portion (111)” excluding the "portion of the wall surface of the proximal end of the salient pole portion (111)".
  • the connecting surface portion (32c) is constituted by "the wall surface portion of the proximal end portion of the salient pole portion (111)."
  • the outer wall surface (40) of the cavity (21) is constituted by the radially inner wall surface of the first partition wall (112).
  • the end surface of the cavity (21) in the circumferential direction is constituted by the radially inner wall surface of the first side bridge (113).
  • the rotor core (11) has a center rib (50) for each magnetic pole of the rotor core (11).
  • a center rib (50) for each magnetic pole of the rotor core (11).
  • all of the remaining cavities (20) except for the fifth cavity (20) located radially outermost is provided with a central rib (50).
  • the center rib (50) is formed such that the center line of the center rib (50) is along the first reference line (L1).
  • the width (length in the direction orthogonal to the stretching direction) of the base end of the central rib (50) gradually becomes shorter as it moves away from the inner wall surface (30) of the cavity (21).
  • the width of the tip of the central rib (50) gradually increases as it approaches the outer wall surface (40) of the cavity (21).
  • the width of the remaining portion of the central rib (50) other than the proximal end and the distal end is the same (constant).
  • the configuration of the center rib (50) provided in each of the second to fourth cavity portions (20) is similar to the configuration of the center rib (50) provided in the cavity portion (21).
  • the rotor core (11) has reinforcing ribs (60) for each magnetic pole of the rotor core (11).
  • reinforcing ribs (60) are provided in each of the first to third cavities (20) among the plurality of cavities (20) provided for each magnetic pole of the rotor core (11).
  • the direction of the force acting on the reinforcing rib (60) during rotation of the rotor core (11) is the force acting on the intersection (Y) of the reinforcing rib (60) and the outer wall surface (40) of the cavity (21). (the direction of the white arrow shown in FIG. 4).
  • the reinforcing rib (60) is such that the center line of the reinforcing rib (60) (the straight line indicated by the dashed line in the figure) is It is formed along the direction.
  • the width (length in the direction perpendicular to the stretching direction) of the base end of the reinforcing rib (60) gradually becomes shorter as it moves away from the inner wall surface (30) of the cavity (21).
  • the width of the tip of the reinforcing rib (60) gradually increases as it approaches the outer wall surface (40) of the cavity (21).
  • the width of the remaining portion of the reinforcing rib (60) other than the base end and the tip end is the same width (constant).
  • the cavity (21) is provided with two reinforcing ribs (60).
  • one of the two reinforcing ribs (60) will be referred to as a "first rib (61),” and the other of the two reinforcing ribs (60) will be referred to as a "second rib (62)."
  • the second rib (62) is provided so as to be symmetrical with the first rib (61) about the first reference line (L1).
  • the configuration of the reinforcing ribs (60) provided in the second and third cavities (20) is similar to the configuration of the reinforcing ribs (60) provided in the cavity (21).
  • the central rib (50) and reinforcing rib (60) are provided in the cavity (21), thereby dividing the cavity of the cavity (21) into a plurality of cavities. Therefore, the first reference line (L1) bisects the angle formed by two lines connecting the rotation center (Q) of the rotor core (11) and each of the circumferential ends of the plurality of cavities of the cavity (21). It can be said that it is a line that divides the area equally.
  • FIG. 5 illustrates the configuration of the rotor (80) of Comparative Example 1.
  • the rotor (80) of Comparative Example 1 includes a rotor core (81).
  • the rotor core (81) differs from the rotor (10) of the embodiment in the configuration of the cavity (20) located radially innermost.
  • the other configuration of the rotor core (81) is similar to the configuration of the rotor (10) of the embodiment.
  • the cavity (85), which is the cavity (20) located most radially inward, is similar to the remaining cavity ( 20).
  • the cavity (85) is formed in an arcuate shape that is convex toward the rotation center (Q) of the rotor core (81).
  • the cavity (85) is formed in an arc shape that is convex toward the rotation center (Q) of the rotor core (11). It is difficult to reduce the portion of the rotor core (81) that is radially inner than (85).
  • the center surface (31) of the inner wall surface (30) of the cavity (21) is relative to the rotation center (Q) of the rotor core (11). It is formed to be concave.
  • the side surface (32) of the inner wall surface (30) of the cavity (21) is formed to be convex toward the intersection (X) of the second reference line (L2) and the wall surface of the shaft hole (15). Ru.
  • the inner wall surface (30) of the cavity (21) is formed in an arc shape convex toward the rotation center (Q) of the rotor core (11).
  • the inner wall surface (30) of the cavity (21) can be brought closer to the wall surface of the shaft hole (15) and the second reference line (L2) than in the case (rotor (80) of Comparative Example 1).
  • the inner wall surface (30) of the cavity (21) has a "circular arc shape that is convex toward the rotation center (Q) of the rotor core (11), and whose apex passes through the intersection point (Z) shown in FIG. 4."
  • the inner wall surface (30) of the cavity (21) can be brought closer to the wall surface of the shaft hole (15) and the second reference line (L2) than when the hollow portion (21) is formed.
  • the inner wall surface (30) of the cavity (21) can be brought closer to the wall surface of the shaft hole (15) and the second reference line (L2).
  • the rotor core (11) part can be reduced. This makes it difficult for the q-axis magnetic flux to pass through the portion of the rotor core (11) that is radially inner than the cavity (21), thereby reducing the q-axis inductance. As a result, reluctance torque can be increased.
  • FIG. 6 illustrates the magnetic flux distribution in the rotor (10) of the embodiment
  • FIG. 7 illustrates the magnetic flux distribution in the rotor (80) of Comparative Example 1.
  • the amount of leakage magnetic flux in section (85) is smaller than that in section (85).
  • the rotor (90) of Comparative Example 2 includes a rotor core (91).
  • the rotor core (91) differs from the rotor core (11) of the embodiment in the internal structure of the cavity (20).
  • the other configuration of the rotor core (91) is similar to the configuration of the rotor core (11) of the embodiment.
  • the reinforcing rib (60) is not provided in the cavity (20) of the rotor core (91) of Comparative Example 2.
  • the rotor core (91) of Comparative Example 2 does not have reinforcing ribs (60).
  • FIG. 8 illustrates the stress distribution in the rotor core (91) when the rotor (90) of Comparative Example 2 is rotating.
  • the circumferential end side Stress tends to concentrate on the bridge (113).
  • FIG. 9 illustrates the stress distribution in the rotor core (11) when the rotor (10) of the embodiment is rotating.
  • the rotor (10) of the embodiment is provided with reinforcing ribs (60), so stress concentration at the circumferential end (side bridge (113)) of the cavity (20) is alleviated. has been done.
  • the stress distribution in the reinforcing rib (60) is uniform throughout the reinforcing rib (60) (distribution with little variation).
  • the central surface portion (31) of the inner wall surface (30) of the cavity portion (21) is formed to be concave with respect to the rotation center (Q) of the rotor core (11).
  • the side surface (32) of the inner wall surface (30) of the cavity (21) is formed to be convex toward the intersection (X) of the second reference line (L2) and the wall surface of the shaft hole (15). Ru.
  • the inside of the cavity (21) is smaller than the case where the inner wall surface (30) of the cavity (21) is formed in an arc shape convex toward the rotation center (Q) of the rotor core (11). Since the wall surface (30) can be brought closer to the wall surface of the shaft hole (15) and the second reference line (L2), the portion of the rotor core (11) that is radially inner than the cavity portion (21) can be reduced. can. This makes it difficult for the q-axis magnetic flux to pass through the portion of the rotor core (11) that is radially inner than the cavity (21), thereby reducing the q-axis inductance. As a result, reluctance torque can be increased.
  • the salient pole ratio (the ratio obtained by dividing the d-axis inductance by the q-axis inductance) can be increased.
  • the power factor in the motor (1) can be increased.
  • the reluctance torque can be increased, so the motor current (current flowing through the winding (4) of the stator (2)) required to drive the rotation of the rotor (10) can be reduced. can.
  • the copper loss of the motor (1) can be reduced, so the efficiency of the motor (1) can be improved.
  • the outer wall surface (40) of the cavity (21) is formed in an arc shape that is convex toward the rotation center (Q) of the rotor core (11).
  • the inner wall (30) of the cavity (21) has a cavity width (W1), which is the distance between the inner wall (30) of the cavity (21) and the outer wall (40) of the cavity (21). It includes a portion of the inner wall surface (30) of the portion (21) that is longer than the cavity width (W1) in the vicinity of the first reference line (L1).
  • the center surface portion (31) of the inner wall surface (30) of the cavity portion (21) is a portion in which the center of curvature is located radially inward than the inner wall surface (30) of the cavity portion (21).
  • the side surface portion (32) of the inner wall surface (30) of the cavity portion (21) includes a portion in which the center of curvature is located on the outer side in the radial direction than the inner wall surface (30) of the cavity portion (21).
  • the center surface portion (31) of the inner wall surface (30) of the cavity portion (21) can be formed to be concave with respect to the rotation center (Q) of the rotor core (11). Also, the side surface (32) of the inner wall surface (30) of the cavity (21) is convex toward the intersection (X) of the second reference line (L2) and the wall surface of the shaft hole (15). can be formed.
  • the side surface portion (32) of the inner wall surface (30) of the cavity portion (21) includes a flat portion (32b) extending along the second reference line (L2).
  • the side surface (32) of the inner wall surface (30) of the cavity (21) can be brought closer to the second reference line (L2)
  • the side surface of the inner wall surface (30) of the cavity (21) can be brought closer to the second reference line (L2).
  • the portion of the rotor core (11) that is radially inner than the portion (32) can be reduced. This makes it difficult for the q-axis magnetic flux to pass through the portion of the rotor core (11) that is radially inside the cavity (21), thereby reducing the q-axis inductance and increasing the reluctance torque. Can be done.
  • the center surface portion (31) of the inner wall surface (30) of the cavity portion (21) is curved along the wall surface of the shaft hole (15).
  • the center surface (31) of the inner wall (30) of the cavity (21) can be brought closer to the wall of the shaft hole (15), so the center of the inner wall (30) of the cavity (21)
  • the portion of the rotor core (11) that is radially inner than the surface portion (31) can be reduced. This makes it difficult for the q-axis magnetic flux to pass through the portion of the rotor core (11) that is radially inside the cavity (21), thereby reducing the q-axis inductance and increasing the reluctance torque. I can do it.
  • the cavity (21) is formed so as to be symmetrical about the first reference line (L1).
  • the rotor core (11) has a reinforcing rib (60) (first rib (61)) extending from the inner wall surface (30) of the cavity (21) to the outer wall surface (40) of the cavity (21).
  • the reinforcing rib (60) is provided so as not to lie on the first reference line (L1), and is provided in the hollow portion (21) along the direction of the force acting on the reinforcing rib (60) during rotation of the rotor core (11). It includes a straight portion extending from the inner wall surface (30) to the outer wall surface (40) of the cavity (21).
  • the rotor core (11) is arranged between the cavity of the cavity (21) and another cavity adjacent to the cavity in the circumferential direction from the inside of the cavity (21) in the radial direction. It has a reinforcing rib (60) (first rib (61)) extending to the outside in the radial direction.
  • the reinforcing rib (60) is a first reinforcing rib (60) that bisects the angle formed by two lines connecting the center of rotation (Q) of the rotor core (11) and each of the circumferential ends of the plurality of cavities of the cavity (21).
  • the cavity (21) is provided avoiding the reference line (L1) from the radially inner side of the cavity (21) along the direction of the force acting on the first rib (61) during rotation of the rotor core (11). ) includes a straight portion extending radially outward.
  • the reinforcing rib (60) (first rib (61)) is arranged so that the center line of the reinforcing rib (60) is in the direction of the force acting on the reinforcing rib (60) during rotation of the rotor core (11). It is formed along the line.
  • the center line of the reinforcing rib (60) is aligned with the direction of the force acting on the reinforcing rib (60) during rotation of the rotor core (11) than when the reinforcing rib (60) is not formed.
  • the reinforcing rib (60) can be made thinner. Thereby, leakage magnetic flux passing through the reinforcing rib (60) can be reduced.
  • the rotor core (11) has a center rib ( 50).
  • the rotor core (11) has a cavity (21) located between the cavity (21) and another cavity adjacent to the cavity in the circumferential direction along the first reference line (L1).
  • the central rib (50) extends from the radially inner side of the hollow portion (21) to the radially outer side of the cavity (21).
  • the rotor core (11) also includes another reinforcing rib (60) (second rib ( 62)).
  • the second rib (62) is provided so as not to lie on the first reference line (L1), and is arranged in the cavity (21) along the direction of the force acting on the second rib (62) during rotation of the rotor core (11). ) includes a straight portion extending from the inner wall surface (30) of the cavity (21) to the outer wall surface (40) of the cavity (21).
  • the rotor core (11) is arranged between the cavity of the cavity (21) and another cavity adjacent to the cavity in the circumferential direction from the inside of the cavity (21) in the radial direction. It has a second rib (62) extending radially outward.
  • the second rib (62) is provided so as not to lie on the first reference line (L1), and is arranged in the cavity (21) along the direction of the force acting on the second rib (62) during rotation of the rotor core (11).
  • ) includes a straight portion extending from the radially inner side of the hollow portion (21) to the radially outer side of the cavity portion (21).
  • the second rib (62) is provided so as to be line symmetrical with the first rib (61) about the first reference line (L1).
  • a plurality of cavities (20) arranged in the radial direction are formed in the rotor core (11) for each magnetic pole of the rotor core (11).
  • the cavity (21) in which the reinforcing rib (60) (first rib (61)) is provided is the cavity located radially innermost among the plurality of cavities (20).
  • the cavity (21) located radially innermost among the plurality of cavities (20) arranged in the radial direction is located at the periphery of the cavity (21) when the rotor core (11) is rotating. Stress concentration tends to occur at the directional ends. Therefore, by providing the first rib (61) in the cavity (21) located radially innermost among the plurality of cavities (20) arranged in the radial direction, the rotor core (11) is rotated. Stress concentration at the circumferential ends of the cavity (21) can be effectively alleviated.
  • FIG. 10 illustrates the configuration of main parts of the rotor (10) of Modification 1 of the embodiment.
  • the fifth cavity (20) counting from the radially inner side is omitted.
  • the other configuration of the rotor (10) of Modification 1 of the embodiment is the same as the configuration of the rotor (10) of the embodiment.
  • the center bridge (114) is omitted.
  • the radially outer wall surface of the fourth partition wall (112) counting from the radially inner side (the partition wall section (112) located at the radially outermost side) is located at the center of rotation (Q) of the rotor core (11). It is formed in a concave arc shape.
  • FIG. 11 illustrates a configuration of main parts of a rotor (10) according to a second modification of the embodiment.
  • the rotor (10) of Modification 2 of the embodiment differs from the rotor (10) of the embodiment in the configuration of the inner wall surface (30) of the cavity (21). Furthermore, in the rotor (10) of the second modification of the embodiment, the fifth cavity (20) counting from the radially inner side is omitted.
  • the other configuration of the rotor (10) of Modification 2 of the embodiment is the same as the configuration of the rotor (10) of the embodiment. Note that in FIG. 11, illustration of the reinforcing rib (60) is omitted.
  • the side surface (32) of the inner wall surface (30) of the cavity (21) has a plurality of flat portions (32b).
  • two planar portions (32b) are provided on the side surface portion (32).
  • Other configurations of the side surface (32) of the inner wall surface (30) of the cavity (21) are similar to the configuration of the side surface (32) of the inner wall surface (30) of the cavity (21) in the embodiment.
  • the center bridge (114) is omitted.
  • the radially outer wall surface of the partition wall portion (112) located at the radially outermost side becomes a part of the outer circumferential surface of the rotor core (11). Therefore, a portion of the outer circumferential surface of the rotor core (11) is recessed in an arc shape that is convex toward the rotation center (Q) of the rotor core (11).
  • FIG. 12 illustrates the configuration of main parts of a rotor (10) according to modification 3 of the embodiment.
  • the rotor (10) of Modification 3 of the embodiment is different from the rotor (10) of the embodiment in the number of poles of the rotor core (11).
  • the other configuration of the rotor (10) of Modification 3 of the embodiment is the same as the configuration of the rotor (10) of the embodiment.
  • the number of poles of the rotor core (11) is "6".
  • the rotor core (11) has six first reference lines (L1) that correspond one-to-one to the six magnetic poles of the rotor core (11), and six first reference lines (L1) that correspond one-to-one to the boundaries of the six magnetic poles of the rotor core (11).
  • a second reference line (L2) is defined.
  • FIG. 13 illustrates a configuration of main parts of a rotor (10) according to a fourth modification of the embodiment.
  • the rotor (10) of Modification 4 of the embodiment has the number of cavities (20) provided for each magnetic pole of the rotor core (11) and the internal structure of the cavity (21) similar to the rotor (10) of Modification 3 of the embodiment. 10) is different.
  • the other configuration of the rotor (10) of Modification 4 of the embodiment is the same as the configuration of the rotor (10) of Modification 3 of the embodiment.
  • cavities (20) arranged in the radial direction are provided for each magnetic pole of the rotor core (11).
  • three partition wall portions (112) arranged in the radial direction are provided for each magnetic pole of the rotor core (11).
  • a cavity (21), which is a first cavity (20) is formed inside the first partition (112) in the radial direction, and between the first to third partitions (112).
  • Second and third cavity parts (20) are formed between the third partition wall part (112) and the center bridge (114), and a fourth cavity part (20) is formed between the third partition wall part (112) and the center bridge (114). be done.
  • four reinforcing ribs (60) are provided in the cavity (21).
  • one of the remaining two reinforcing ribs (60) excluding the first rib (61) and second rib (62) among the four reinforcing ribs (60) is referred to as "third rib (63)"
  • the remaining reinforcing rib (60) will be referred to as a "fourth rib (64).”
  • the third rib (63) is provided between the first rib (61) and one end of the cavity (21) in the circumferential direction.
  • the fourth rib (64) is provided between the second rib (62) and the other end of the cavity (21) in the circumferential direction.
  • the fourth rib (64) is provided so as to be symmetrical with the third rib (63) about the first reference line (L1).
  • FIG. 14 illustrates the configuration of the compressor (CC).
  • the compressor (CC) includes a motor (1), a casing (CC1), and a compression mechanism (CC2).
  • the casing (CC1) houses the compression mechanism (CC2) and the motor (1).
  • the casing (CC1) is formed into a cylindrical shape that extends in the vertical direction and is closed at both ends.
  • the casing (CC1) is provided with a suction pipe (CC11) and a discharge pipe (CC12).
  • the suction pipe (CC11) passes through the body of the casing (CC1) and is connected to the compression mechanism (CC2).
  • the discharge pipe (CC12) passes through the upper part of the casing (CC1) and communicates with the internal space of the casing (CC1).
  • the compression mechanism (CC2) compresses the fluid.
  • the compression mechanism (CC2) is placed below the motor (1).
  • the compression mechanism (CC2) compresses the fluid sucked through the suction pipe (CC11) and discharges the compressed fluid into the internal space of the casing (CC1).
  • the fluid discharged into the internal space of the casing (CC1) is discharged through the discharge pipe (CC12).
  • the compression mechanism (CC2) is a rotary compression mechanism.
  • the shaft (5) connects the motor (1) and the compression mechanism (CC2).
  • the shaft (5) extends in the vertical direction.
  • the motor (1) rotates the shaft (5).
  • the rotation of the shaft (5) drives the compression mechanism (CC2).
  • the compressor (CC) is not limited to a rotary compressor.
  • the compressor (CC) may be a swing type, scroll type, screw type, turbo type, or other type compressor.
  • FIG. 15 illustrates the configuration of a refrigeration system (RR).
  • the refrigeration system (RR) includes a refrigerant circuit (RR1) in which refrigerant circulates.
  • the refrigerant circuit (RR1) includes a compressor (CC) having a motor (1), a first heat exchanger (RR5), a second heat exchanger (RR6), and a pressure reducing mechanism (RR7). and a four-way switching valve (RR8).
  • the expansion mechanism (RR7) is an electronic expansion valve.
  • the refrigerant circuit (RR1) performs a vapor compression refrigeration cycle.
  • the first heat exchanger (RR5) is a heat source heat exchanger and is provided outdoors.
  • the second heat exchanger (RR6) is a utilization heat exchanger and is provided indoors.
  • the discharge side of the compressor (CC) is connected to the first port (P1) of the four-way switching valve (RR8).
  • the suction side of the compressor (CC) is connected to the second port (P2) of the four-way switching valve (RR8).
  • the gas end of the first heat exchanger (RR5) is connected to the third port (P3) of the four-way switching valve (RR8).
  • the liquid end of the first heat exchanger (RR5) is connected to the liquid end of the second heat exchanger (RR6) via an expansion mechanism (RR7).
  • the gas end of the second heat exchanger (RR6) is connected to the fourth port (P4) of the four-way switching valve (RR8).
  • the four-way switching valve (RR8) is in a first state (see FIG. 15) in which the first port (P1) and the third port (P3) communicate with each other, and the second port (P2) and the fourth port (P4) communicate with each other. the state shown by the solid line), and the second state where the first port (P1) and the fourth port (P4) communicate with each other, and the second port (P2) and the third port (P3) communicate with each other (the state shown by the broken line in FIG. 15). It is possible to switch to the state shown in ).
  • the refrigerant discharged from the compressor (CC) radiates heat in the first heat exchanger (RR5), is depressurized in the expansion mechanism (RR7), and then returns to the first state. 2 Heat is absorbed in the heat exchanger (RR6). The refrigerant flowing out from the second heat exchanger (RR6) is sucked into the compressor (CC).
  • the refrigerant discharged from the compressor (CC) radiates heat in the second heat exchanger (RR6), is depressurized in the expansion mechanism (RR7), and then returns to the second state. 1 Heat is absorbed in the heat exchanger (RR5). The refrigerant flowing out from the first heat exchanger (RR5) is sucked into the compressor (CC).
  • a refrigeration system is an air conditioner that switches between cooling and heating.
  • the refrigeration system (RR) may be a cooling-only machine or a heating-only machine.
  • the four-way switching valve (RR8) may be omitted in the refrigeration system (RR).
  • the refrigeration device (RR) may be a water heater, a chiller unit, a cooling device that cools the air inside the refrigerator, or the like. Cooling devices cool the air inside refrigerators, freezers, containers, etc.
  • the force acting on the reinforcing rib (60) during rotation of the rotor core (11) changes depending on at least one of centrifugal force, electromagnetic force, and torque acting on the rotor core (11).
  • centrifugal force among the centrifugal force, electromagnetic force, and torque that act on the rotor core (11), "centrifugal force” is dominant.
  • the force acting on the reinforcing rib (60) during rotation of the rotor core (11) is "a force corresponding to at least the centrifugal force among the centrifugal force, electromagnetic force, and torque acting on the rotor core (11).” I can say that.
  • the direction of the force acting on the reinforcing rib (60) does not necessarily match the direction of the force (for example, the resultant force of centrifugal force, electromagnetic force, and torque) acting on the rotor core (11).
  • first intersection (A) the intersection between the reinforcing rib (60) and the radially inner wall surface (30) of the cavity (21)
  • first intersection (A) a line extending along the direction of the force acting on the first rib (61) during rotation is referred to as a “line of action (F)”.
  • first imaginary line (L3) the intersection between the first reference line (L1) and the outer peripheral edge of the rotor core (11) is described as the “second intersection (B)", and the intersection from the first intersection (A) to the second intersection (B) is The extending line will be referred to as a "second virtual line (L4).”
  • the line of action (F) is a line indicating the direction of the force acting on the first rib (61) during rotation of the rotor core (11) from the first intersection (A).
  • the straight portion included in the reinforcing rib (60) extends from the radially inner side of the cavity (21) to the radially outer side of the cavity (21) along the line of action (F).
  • the line of action (F) tends to tilt in the direction opposite to the rotational direction of the rotor core (11) (in the example of FIG. 16, counterclockwise). It is in. This tendency becomes more pronounced as the centrifugal force acting on the rotor core (11) becomes smaller.
  • the example in FIG. 17 shows the relationship between the angle ( ⁇ ) and the electromagnetic force when the rotational speed of the rotor (10) is 10% of the maximum value.
  • the angle ( ⁇ ) at which the electromagnetic force acting on the rotor core (11) is at its maximum value changes depending on the number of poles of the rotor core (11). Specifically, if the number of poles of the rotor core (11) is "n", the angle ( ⁇ ) when the electromagnetic force acting on the rotor core (11) is at its maximum value is "1.9° x 4/n". Become.
  • the line of action (F) tends to tilt in the rotation direction of the rotor core (11) (clockwise in the example of FIG. 16) as the torque acting on the rotor core (11) increases. This tendency becomes more pronounced as the centrifugal force acting on the rotor core (11) becomes smaller.
  • the example in FIG. 18 shows the relationship between the angle ( ⁇ ) and torque when the rotational speed of the rotor (10) is 10% of the maximum value.
  • the angle ( ⁇ ) when the torque acting on the rotor core (11) is at its maximum value changes depending on the number of poles of the rotor core (11). Specifically, if the number of poles of the rotor core (11) is "n", the angle ( ⁇ ) when the torque acting on the rotor core (11) is at its maximum value is "3.2° x 4/n". .
  • the line of action (F) is "a line located within the second range that is inside the first range, which is the range between the first virtual line (L3) and the second virtual line (L4)" You can say that.
  • the second range is the range between the third virtual line (La) and the fourth virtual line (Lb).
  • the third imaginary line (La) is a line extending from the first intersection (A) and is located inside the first imaginary line (L3) in the first range.
  • the fourth imaginary line (Lb) is a line extending from the first intersection (A), and is located inside the second imaginary line (L4) in the first range.
  • the angle (a1) between the first imaginary line (L3) and the third imaginary line (La) is 1.9° ⁇ 4/n
  • the angle (b1) with the line (Lb) is 3.2° ⁇ 4/n.
  • n is the number of poles of the rotor core (11).
  • the motor (1) is a synchronous reluctance motor, but the present invention is not limited to this.
  • the motor (1) may be a permanent magnet motor comprising a rotor (10) with permanent magnets.
  • a permanent magnet may be inserted into the cavity (20) of the rotor (10).
  • the shape of the cavity (21) is not limited to the shape described in the above description. Specifically, the shape of the inner wall surface (30) and the shape of the outer wall surface (40) of the cavity (21) are not limited to the shapes described in the above description. The same applies to the remaining cavities (20) other than the cavity (21) among the plurality of cavities (20) arranged in the radial direction.
  • the side surface portion (32) of the inner wall surface (30) of the cavity portion (21) may not have the connecting surface portion (32c).
  • the plane portion (32b) may be connected to the arcuate surface portion (32a) without going through the connection surface portion (32c).
  • the center surface portion (31) of the inner wall surface (30) of the cavity portion (21) may be formed in a V-shape concave with respect to the rotation center (Q) of the rotor core (11).
  • the outer wall surface (40) of the cavity (21) may be formed in a V-shape convex toward the rotation center (Q) of the rotor core (11), or may have another shape.
  • the present disclosure is useful for rotors, motors, compressors, refrigeration equipment, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Synchronous Machinery (AREA)

Abstract

ロータコア(11)は、空洞部(21)の空洞と、その空洞と周方向で隣り合う空洞との間に、空洞部(21)の径方向内側から空洞部(21)の径方向外側まで延びる第1リブ(61)を有する。第1リブ(61)は、ロータコア(11)の回転中心(Q)と空洞部(21)の複数の空洞の集合の周方向両端のそれぞれと結んだ2線が成す角を二等分する第1基準線(L1)上を避けて設けられ、ロータコア(11)の回転中に第1リブ(61)に作用する力の方向に沿うように空洞部(21)の径方向内側から空洞部(21)の径方向外側まで延びる直線部を含む。

Description

ロータ、モータ、圧縮機、冷凍装置
 本開示は、ロータ、モータ、圧縮機、冷凍装置に関する。
 特許文献1には、シンクロナスリラクタンスモータが開示されている。このモータのロータコアは、ロータコアの磁極毎に、複数のスリットを有する。このスリットは、ロータコアの円筒中心に向かって凸となり、頂点がq軸上に位置する円弧状の開口部からなる。
国際公開第2019/082518号
 特許文献1のモータでは、ロータコアが回転してロータコアに遠心力が作用する際に、スリット(空洞部)の周方向端部に応力が集中しやすい。
 本開示の第1の態様は、ロータに関し、このロータは、磁極毎に複数の空洞を有する空洞部(21)が形成されたロータコア(11)を備え、前記ロータコア(11)は、前記空洞部(21)の前記空洞と、当該空洞と周方向で隣り合う前記空洞との間に、前記空洞部(21)の径方向内側から前記空洞部(21)の径方向外側まで延びる第1リブ(61)を有し、前記第1リブ(61)は、前記ロータコア(11)の回転中心(Q)と前記空洞部(21)の複数の空洞の集合の周方向両端のそれぞれと結んだ2線が成す角を二等分する第1基準線(L1)上を避けて設けられ、前記ロータコア(11)の回転中に前記第1リブ(61)に作用する力の方向に沿うように前記空洞部(21)の径方向内側から前記空洞部(21)の径方向外側まで延びる直線部を含む。
 第1の態様では、第1リブ(61)を設けることにより、ロータコア(11)が回転しているときの空洞部(21)の周方向端部における応力集中を緩和することができる。
 本開示の第2の態様は、第1の態様のロータにおいて、前記第1リブ(61)は、前記第1リブ(61)の中心線が前記ロータコア(11)の回転中に前記第1リブ(61)に作用する力の方向に沿うように形成されるロータである。
 第2の態様では、第1リブ(61)の中心線がロータコア(11)の回転中に第1リブ(61)に作用する力の方向に沿うように第1リブ(61)が形成されていない場合よりも、第1リブ(61)を細くすることができる。これにより、第1リブ(61)を通過する漏れ磁束を低減することができる。
 本開示の第3の態様は、第1または第2の態様のロータにおいて、前記ロータコア(11)は、前記空洞部(21)の前記空洞と、当該空洞と周方向で隣り合う前記空洞との間に、前記第1基準線(L1)に沿うように前記空洞部(21)の径方向内側から前記空洞部(21)の径方向外側まで延びるセンタリブ(50)を有するロータである。
 第3の態様では、センタリブ(50)を設けることにより、ロータコア(11)が回転しているときの空洞部(21)の周方向端部における応力集中を緩和することができる。
 本開示の第4の態様は、第1~第3の態様のいずれか1つのロータにおいて、前記ロータコア(11)は、前記空洞部(21)の前記空洞と、当該空洞と周方向で隣り合う前記空洞との間に、前記空洞部(21)の径方向内側から前記空洞部(21)の径方向外側まで延びる第2リブ(62)を有し、前記第2リブ(62)は、前記第1基準線(L1)上を避けて設けられ、前記ロータコア(11)の回転中に前記第2リブ(62)に作用する力の方向に沿うように前記空洞部(21)の径方向内側から前記空洞部(21)の径方向外側まで延びる直線部を含むロータである。
 第4の態様では、第1リブ(61)に加えて第2リブ(62)を設けることにより、ロータコア(11)が回転しているときの空洞部(21)の周方向端部における応力集中をさらに緩和することができる。
 本開示の第5の態様は、第4の態様のロータにおいて、前記第2リブ(62)は、前記第1基準線(L1)を軸として第1リブ(61)と線対称となるように設けられるロータである。
 第5の態様では、ロータコア(11)が回転しているときの空洞部(21)の周方向両端部における応力集中をバランスよく緩和することができる。
 本開示の第6の態様は、第1~第5の態様のいずれか1つのロータにおいて、前記ロータコア(11)には、前記磁極毎に、径方向に並ぶ複数の空洞部(20)が形成され、前記第1リブ(61)が設けられる前記空洞部(21)は、前記複数の空洞部(20)のうち最も径方向内側に位置する空洞部であるロータである。
 第6の態様では、径方向に並ぶ複数の空洞部(20)のうち最も径方向内側に位置する空洞部(21)は、ロータコア(11)が回転しているときの空洞部(21)の周方向端部における応力集中が発生しやすい。したがって、径方向に並ぶ複数の空洞部(20)のうち最も径方向内側に位置する空洞部(21)に第1リブ(61)を設けることにより、ロータコア(11)が回転しているときの空洞部(21)の周方向端部における応力集中を効果的に緩和することができる。
 本開示の第7の態様は、第1~第6の態様のいずれか1つのロータにおいて、前記ロータコア(11)の回転中に前記第1リブ(61)に作用する力は、前記ロータコア(11)に作用する遠心力と電磁力とトルクのうち少なくとも前記遠心力に応じた力であるロータである。
 本開示の第8の態様は、第7の態様のロータにおいて、前記第1リブ(61)と前記空洞部(21)の径方向内側の壁面(30)との交点である第1交点(A)から前記ロータコア(11)の回転中に前記第1リブ(61)に作用する力の方向に沿うように延びる作用線(F)は、前記第1交点(A)から前記第1基準線(L1)と平行となる方向に延びる線であり前記空洞部(21)の径方向内側の壁面(30)よりも径方向外側に延びる第1仮想線(L3)と、前記第1交点(A)から前記第1基準線(L1)と前記ロータコア(11)の外周縁との交点である第2交点(B)を通過して延びる第2仮想線(L4)との間の範囲である第1範囲よりも内側にある第2範囲内に位置するロータである。
 本開示の第9の態様は、第8の態様のロータにおいて、前記第2範囲は、前記第1交点(A)から延びる線であり前記第1範囲において前記第1仮想線(L3)よりも内側に位置する第3仮想線(La)と、前記第1交点(A)から延びる線であり前記第1範囲において前記第2仮想線(L4)よりも内側に位置する第4仮想線(Lb)との間の範囲であり、前記第1仮想線(L3)と前記第3仮想線(La)との間の角度は、1.9°×4/nであり、前記第2仮想線(L4)と前記第4仮想線(Lb)との間の角度は、3.2°×4/nであり、前記nは、前記ロータコア(11)の極数であるロータである。
 本開示の第10の態様は、第1~第9の態様のいずれか1つのロータを備えるモータに関する。
 本開示の第11の態様は、第10の態様のモータを備える圧縮機に関する。
 本開示の第12の態様は、第11の態様の圧縮機を備える冷凍装置に関する。
図1は、実施形態のモータの構成を例示する横断面図である。 図2は、実施形態のロータの構成を例示する横断面図である。 図3は、実施形態のロータの要部の構成を例示する横断面図である。 図4は、実施形態のロータの細部の構成を例示する横断面図である。 図5は、比較例1のロータの構成を例示する横断面図である。 図6は、実施形態のロータにおける磁束の分布を示す磁束線図である。 図7は、比較例1のロータにおける磁束の分布を示す磁束線図である。 図8は、比較例2のロータにおける応力分布を例示する応力分布図である。 図9は、実施形態のロータにおける応力分布を例示する応力分布図である。 図10は、実施形態の変形例1のロータの要部の構成を例示する横断面図である。 図11は、実施形態の変形例2のロータの要部の構成を例示する横断面図である。 図12は、実施形態の変形例3のロータの要部の構成を例示する横断面図である。 図13は、実施形態の変形例4のロータの要部の構成を例示する横断面図である。 図14は、圧縮機の構成を例示する縦断面図である。 図15は、冷凍装置の構成を例示する配管系統図である。 図16は、ロータコアの回転中に補強リブに作用する力の方向を例示する横断面図である。 図17は、「ロータコアに作用する電磁力」と「作用線と第1仮想線との間の角度(α)」との関係を例示するグラフである。 図18は、「ロータコアに作用するトルク」と「作用線と第2仮想線との間の角度(β)」との関係を例示するグラフである。
 以下、図面を参照して実施の形態を詳しく説明する。なお、図中同一または相当部分には同一の符号を付しその説明は繰り返さない。
 (モータ)
 図1は、実施形態のモータ(1)の構成を例示する。モータ(1)は、ロータ(10)と、ステータ(2)とを備える。ロータ(10)は、シャフト(5)に固定される。この例では、モータ(1)は、シンクロナスリラクタンスモータを構成する。ロータ(10)には、永久磁石が設けられない。
 以下の説明では、ロータ(10)の回転軸線の方向を「軸方向」と記載し、ロータ(10)の回転軸線の方向と直交する方向を「径方向」と記載し、ロータ(10)の回転軸線回りの方向を「周方向」と記載する。また、軸方向に沿う断面を「縦断面」と記載し、軸方向と直交する断面を「横断面」と記載する。
  〔ステータ〕
 ステータ(2)は、ロータ(10)と所定のギャップを隔てて対向する。ステータ(2)は、ステータコア(3)と、複数の巻線(4)とを有する。ステータコア(3)は、バックヨーク(3a)と、複数のティース(3b)とを有する。バックヨーク(3a)は、略円筒状に形成される。複数のティース(3b)の各々は、バックヨーク(3a)の内周面から径方向内側へ向けて延びる。複数の巻線(4)は、複数のティース(3b)に巻回される。なお、図1では、ステータコア(3)および後述するロータコア(11)のハッチングを省略している。
  〔ロータ〕
 図2~図4は、ロータ(10)の構成を例示する。ロータ(10)は、ロータコア(11)を有する。ロータコア(11)の横断面形状は、軸方向の全長にわたって同一である。この例では、ロータコア(11)の横断面の外形状は、円形状である。
 また、この例では、ロータコア(11)は、積層コアにより構成される。具体的には、ロータコア(11)は、それぞれが電磁鋼板で構成されて円盤状に形成された複数の部材を軸方向に積層することにより構成される。なお、図2~図4では、ロータコア(11)のハッチングを省略している。
  〔基準線〕
 ロータコア(11)には、第1基準線(L1)と第2基準線(L2)とが定められる。
 第1基準線(L1)は、ロータコア(11)の回転中心(Q)から径方向に延びる基準線であり、ロータコア(11)の磁極毎に定められた基準線である。第1基準線(L1)の数は、ロータコア(11)の極数と同一である。第1基準線(L1)は、周方向において等間隔に配置される。第1基準線(L1)は、ロータコア(11)の磁極の中心線となる。ロータコア(11)の1つの磁極は、1つの第1基準線(L1)を軸として線対称となるように形成されたロータコア(11)の部分である。また、第1基準線(L1)は、ロータコア(11)の回転中心(Q)と空洞部(21)の周方向両端のそれぞれとを結んだ2線がなす角を二等分する線である。
 第2基準線(L2)は、ロータコア(11)の回転中心(Q)から径方向に延びる基準線であり、第1基準線(L1)との間の角度が180°をロータコア(11)の極数で除算して得られる角度となる基準線である。第2基準線(L2)の数は、ロータコア(11)の極数を同一である。第2基準線(L2)は、ロータコア(11)の磁極間の境界線となる。第2基準線(L2)は、周方向において等間隔に配置される。ロータコア(11)の1つの磁極は、周方向において隣り合う2つの第2基準線(L2)の間に位置するロータコア(11)の部分である。
 この例では、ロータコア(11)の極数は「4」である。ロータコア(11)には、ロータコア(11)の4つの磁極に一対一で対応する4つの第1基準線(L1)と、ロータコア(11)の4つの磁極の境界に一対一で対応する4つの第2基準線(L2)とが定められる。第1基準線(L1)と第2基準線(L2)は、周方向において交互に等間隔に配置される。第1基準線(L1)とその第1基準線(L1)と周方向において隣り合う第2基準線(L2)との間の角度は、45°(=180°/4)である。
 なお、ロータコア(11)に後述する空洞部(20)が形成されることにより、第1基準線(L1)は、磁束を通しにくい方向の軸であるq軸となり、第2基準線(L2)は、磁束を通しやすい方向の軸であるd軸となる。d軸は、磁気抵抗が最小となる方向の軸である。q軸は、d軸との電気角での位相差が90°となる軸である。q軸は、d軸と磁気的に直交する軸である。
  〔リラクタンストルクおよび力率〕
 この例では、ロータ(10)は、突極方向(d軸)と非突極方向(q軸)とのインダクタンスの差に応じたリラクタンストルクにより回転する。d軸インダクタンスからq軸インダクタンスを減算して得られる差が大きくなるほど、リラクタンストルクが大きくなる。したがって、q軸インダクタンスを低下させることで、ロータ(10)に作用するリラクタンストルクを増加させることができる。
 また、d軸インダクタンスをq軸インダクタンスで除算して得られる突極比が大きくなるほど、モータ(1)における力率が大きくなる。したがって、q軸インダクタンスを低下させることで、モータ(1)における力率を増加させることができる。
  〔軸孔〕
 ロータコア(11)には、軸孔(15)が形成される。軸孔(15)は、ロータコア(11)の中心部に設けられ、ロータコア(11)を軸方向に貫通する。軸孔(15)の横断面形状は、ロータコア(11)の回転中心(Q)を中心とする円形状であり、ロータコア(11)の軸方向の全長にわたって同一である。軸孔(15)の壁面は、ロータコア(11)の回転中心(Q)を中心とする円筒面である。
  〔空洞部〕
 ロータコア(11)には、ロータコア(11)の磁極毎に、径方向に並ぶ複数の空洞部(20)が形成される。この例では、ロータコア(11)の磁極毎に、5つの空洞部(20)が径方向に並ぶ。空洞部(20)は、1つまたは複数の空洞を有する。
 複数の空洞部(20)の各々は、軸孔(15)の径方向外側に設けられ、ロータコア(11)を軸方向に貫通する。複数の空洞部(20)の各々は、第1基準線(L1)と交差するように延びる。複数の空洞部(20)の各々は、第1基準線(L1)を軸として線対称となるように形成される。なお、複数の空洞部(20)の各々は、第2基準線(L2)と交差しない。
 この例では、ロータコア(11)の磁極毎に設けられた複数の空洞部(20)のうち最も径方向内側に位置する空洞部(20)を除く残りの空洞部(20)は、ロータコア(11)の回転中心(Q)へ向けて凸となる円弧状に形成される。
 具体的には、径方向内側から数えて第2番目の空洞部(20)の径方向内側の壁面は、ロータコア(11)の回転中心(Q)へ向けて凸となる円弧状に形成される。第2番目の空洞部(20)の径方向外側の壁面も、ロータコア(11)の回転中心(Q)へ向けて凸となる円弧状に形成される。第2番目の空洞部(20)の径方向内側の壁面と第2番目の空洞部(20)の径方向外側の壁面との間の距離である空洞幅は、第2番目の空洞部(20)の周方向の全長にわたって同一である。
 径方向内側から数えて第3番目および第4番目の空洞部(20)の構成は、第2番目の空洞部(20)の構成と同様である。第3番目の空洞部(20)の径方向内側の壁面と第2番目の空洞部(20)の径方向外側の壁面との間の距離(後述する第2番目の隔壁部(112)の幅)は、第3番目の空洞部(20)の周方向の全長にわたって同一である。第4番目の空洞部(20)の径方向内側の壁面と第3番目の空洞部(20)の径方向外側の壁面との間の距離(後述する第3番目の隔壁部(112)の幅)は、第4番目の空洞部(20)の周方向の全長にわたって同一である。
 径方向内側から数えて第5番目の空洞部(20)は、径方向に並ぶ複数の空洞部(20)のうち最も径方向外側に位置する空洞部(20)である。第5番目の空洞部(20)の径方向内側の壁面は、ロータコア(11)の回転中心(Q)へ向けて凸となる円弧状に形成される。第5番目の空洞部(20)の径方向外側の壁面は、ロータコア(11)の回転中心(Q)に対して凹となる円弧状に形成される。第5番目の空洞部(20)の径方向内側の壁面と第4番目の空洞部(20)の径方向外側の壁面との間の距離(後述する第4番目の隔壁部(112)の幅)は、第5番目の空洞部(20)の周方向の全長にわたって同一である。
  〔最も径方向内側に位置する空洞部〕
 次に、ロータコア(11)の磁極毎に設けられた複数の空洞部(20)のうち最も径方向内側の空洞部(20)について説明する。最も径方向内側の空洞部(20)は、径方向内側から数えて第1番目の空洞部(20)である。以下では、最も径方向内側の空洞部(20)を「空洞部(21)」と記載する。また、空洞部(21)の径方向内側の壁面(30)を「内側壁面(30)」と記載し、空洞部(21)の径方向外側の壁面(40)を「外側壁面(40)」と記載する。
  〔内側壁面〕
 空洞部(21)の内側壁面(30)は、第1基準線(L1)の近傍部分を含む中央面部(31)と、それぞれが中央面部(31)から空洞部(21)の周方向端まで延びる2つの側面部(32)とを有する。2つの側面部(32)の一方は、中央面部(31)の周方向における一端から空洞部(21)の周方向における一端まで延び、2つの側面部(32)の他方は、中央面部(31)の周方向における他端から空洞部(21)の周方向における他端まで延びる。
 なお、空洞部(21)の内側壁面(30)の「第1基準線(L1)の近傍部分」には、空洞部(21)の内側壁面(30)のうち「空洞部(21)の内側壁面(30)と第1基準線(L1)との交点(Z)を含む部分」が含まれる。この例では、第1基準線(L1)に沿うセンタリブ(50)が空洞部(21)に設けられているので、上記の「空洞部(21)の内側壁面(30)と第1基準線(L1)との交点(Z)」は、空洞部(21)の内側壁面(30)の円弧状の仮想面部分(図4において破線で示した部分)と第1基準線(L1)との交点となる。また、空洞部(21)の内側壁面(30)の「第1基準線(L1)の近傍部分」には、空洞部(21)の内側壁面(30)のうち第1基準線(L1)に最も近接する部分が含まれる。
   〈中央面部〉
 空洞部(21)の内側壁面(30)の中央面部(31)は、ロータコア(11)の回転中心(Q)に対して凹となるように形成される。空洞部(21)の内側壁面(30)の中央面部(31)は、曲率中心が空洞部(21)の内側壁面(30)よりも径方向内側に位置する部分を含む。
 この例では、中央面部(31)は、軸孔(15)の壁面に沿うように湾曲する。中央面部(31)と軸孔(15)の壁面との間の距離は、中央面部(31)の周方向の全長にわたって同一である。
   〈側面部〉
 空洞部(21)の内側壁面(30)の側面部(32)は、第2基準線(L2)と軸孔(15)の壁面との交点(X)へ向けて凸となるように形成される。空洞部(21)の内側壁面(30)の側面部(32)は、曲率中心が空洞部(21)の内側壁面(30)よりも径方向外側に位置する部分を含む。
 この例では、側面部(32)は、円弧面部分(32a)と、平面部分(32b)と、接続面部分(32c)とを有する。円弧面部分(32a)は、側面部(32)のうち中央面部(31)に繋がる部分である。平面部分(32b)は、側面部(32)のうち空洞部(21)の周方向端に繋がる部分である。接続面部分(32c)は、側面部(32)のうち円弧面部分(32a)と平面部分(32b)とを繋ぐ部分である。
 円弧面部分(32a)は、軸孔(15)の壁面に沿うように湾曲する。この例では、円弧面部分(32a)と軸孔(15)の壁面との間の距離は、円弧面部分(32a)の周方向の全長にわたって同一である。また、円弧面部分(32a)と軸孔(15)の壁面との間の距離は、中央面部(31)と軸孔(15)の壁面との間の距離と同一である。
 平面部分(32b)は、第2基準線(L2)に沿うように延びる。この例では、平面部分(32b)と第2基準線(L2)との間の距離は、径方向外側へ向かうに連れて次第に短くなる。言い換えると、平面部分(32b)は、径方向外側へ向かうに連れて第2基準線(L2)に次第に近づくように、第2基準線(L2)に対して傾斜する。
 接続面部分(32c)は、第2基準線(L2)と軸孔(15)の壁面との交点(X)へ向けて凸となるように湾曲する。接続面部分(32c)の曲率中心は、内側壁面(30)よりも径方向外側に位置する。
  〔外側壁面〕
 空洞部(21)の外側壁面(40)は、ロータコア(11)の回転中心(Q)へ向けて凸となる円弧状に形成される。空洞部(21)の外側壁面(40)と第2番目の空洞部(20)の径方向内側の壁面との間の距離(後述する第1番目の隔壁部(112)の幅)は、第2番目の空洞部(20)の周方向の全長にわたって同一である。
  〔空洞幅〕
 空洞部(21)の内側壁面(30)は、空洞部(21)の内側壁面(30)と外側壁面(40)との間の距離である空洞幅(W1)が空洞部(21)の内側壁面(30)のうち第1基準線(L1)の近傍部分における空洞幅(W1)よりも長い部分を含む。
 なお、空洞部(21)の空洞幅(W1)は、空洞部(21)の外側壁面(40)を基準とする距離である。具体的には、空洞部(21)の空洞幅(W1)は、空洞部(21)の外側壁面(40)の垂線方向における距離(空洞部(21)の内側壁面(30)と外側壁面(40)との間の距離)である。
 この例では、空洞部(21)の内側壁面(30)のうち「空洞幅(W1)が空洞部(21)の内側壁面(30)のうち第1基準線(L1)の近傍部分における空洞幅(W1)よりも長い部分」は、空洞部(21)の内側壁面(30)の接続面部分(32c)である。例えば、空洞部(21)の内側壁面(30)のうち「空洞幅(W1)が空洞部(21)の内側壁面(30)のうち第1基準線(L1)の近傍部分における空洞幅(W1)よりも長い部分」における空洞幅(W1)は、空洞部(21)の内側壁面(30)のうち第1基準線(L1)の近傍部分における空洞幅(W1)の1.5~5倍である。
 なお、この例では、空洞部(21)の内側壁面(30)のうち第1基準線(L1)の近傍部分における空洞幅(W1)は、空洞部(21)の内側壁面(30)のうち空洞部(21)の内側壁面(30)と第1基準線(L1)との交点(Z)における空洞幅(W1)である。
  〔ロータコアの構成〕
 ロータコア(11)は、基部(110)と、複数の突極部(111)とを有する。突極部(111)の数は、ロータコア(11)に定められた第2基準線(L2)の数と同一である。この例では、突極部(111)の数は、4つである。
 また、ロータコア(11)は、ロータコア(11)の磁極毎に、複数の隔壁部(112)と、複数のサイドブリッジ(113)と、センタブリッジ(114)とを有する。この例では、ロータコア(11)の磁極毎に、4つの隔壁部(112)と、8つのサイドブリッジ(113)と、1つのセンタブリッジ(114)が設けられる。
  〔基部〕
 基部(110)は、円筒状に形成される。この例では、基部(110)の幅(径方向における長さ)は、基部(110)の全周にわたって同一である。基部(110)の内周面は、軸孔(15)の壁面を構成する。
  〔突極部〕
 複数の突極部(111)は、周方向において等間隔に配置される。この例では、複数の突極部(111)の各々は、その突極部(111)の中心線が第2基準線(L2)に沿うように、基部(110)から径方向に延びる。また、突極部(111)の幅(延伸方向と直交する方向における長さ)は、突極部(111)の先端へ向かうに連れて次第に短くなる。突極部(111)の基端部(突極部(111)と基部(110)との接続部)は、丸み付けされる。
  〔隔壁部〕
 ロータコア(11)の磁極毎に設けられた複数の隔壁部(112)は、径方向に並ぶ。これらの複数の隔壁部(112)の各々は、第1基準線(L1)と交差するように延び、第1基準線(L1)を軸として線対称となるように形成される。この例では、4つの隔壁部(112)の各々は、同様の構成を有する。隔壁部(112)は、ロータコア(11)の回転中心(Q)へ向けて凸となる円弧状に形成される。隔壁部(112)の幅(周方向と直交する方向における長さ)は、隔壁部(112)の周方向の全長にわたって同一である。
 径方向内側から数えて第1番目の隔壁部(112)と第2番目の隔壁部(112)との間の距離(第2番目の空洞部(20)の空洞幅)は、第2番目の隔壁部(112)の周方向の全長にわたって同一である。径方向内側から数えて第2番目の隔壁部(112)と第3番目の隔壁部(112)との間の距離(第3番目の空洞部(20)の空洞幅)、径方向内側から数えて第3番目の隔壁部(112)と第4番目の隔壁部(112)との間の距離(第4番目の空洞部(20)の空洞幅)についても同様である。
  〔サイドブリッジ〕
 ロータコア(11)の磁極毎に設けられた複数のサイドブリッジ(113)には、2種類のサイドブリッジ(113)が含まれる。以下では、一方の種類のサイドブリッジ(113)を「第1サイドブリッジ(113)」と記載し、他方の種類のサイドブリッジ(113)を「第2サイドブリッジ(113)」と記載する。
 第1サイドブリッジ(113)は、第1番目の隔壁部(112)の周方向端と突極部(111)の先端とを繋ぐ。この例では、ロータコア(11)の磁極毎に、2つの第1サイドブリッジ(113)が設けられる。1つの第1サイドブリッジ(113)は、第1番目の隔壁部(112)の周方向における一端と、その第1番目の隔壁部(112)の周方向における一端と周方向において隣り合う突極部(111)の先端との間に配置される。もう1つのサイドブリッジ(113)は、第1番目の隔壁部(112)の周方向における他端と、その第1番目の隔壁部(112)の周方向における他端と周方向において隣り合う突極部(111)の先端との間に配置される。
 第2サイドブリッジ(113)は、径方向において隣り合う2つの隔壁部(112)の周方向端を繋ぐ。この例では、ロータコア(11)の磁極毎に、6つの第2サイドブリッジ(113)が設けられる。3つの第2サイドブリッジ(113)は、径方向に並ぶ4つの隔壁部(112)の周方向における一端の間に配置され、残りの3つの第2サイドブリッジ(113)は、径方向に並ぶ4つの隔壁部(112)の周方向における他端の間に配置される。
  〔センタブリッジ〕
 ロータコア(11)の磁極毎に設けられたセンタブリッジ(114)は、ロータコア(11)の回転中心(Q)に対して凹となる円弧状に湾曲し、複数の隔壁部(112)のうち最も径方向外側に位置する隔壁部(112)の周方向両端を繋ぐ。
  〔ロータコアの構造と空洞部との関係〕
 第1番目の空洞部(20)である空洞部(21)は、基部(110)と、周方向において隣り合う2つの突極部(111)と、2つの突極部(111)の間に位置する第1番目の隔壁部(112)と、2つの突極部(111)の先端と第1番目の隔壁部(112)の周方向における両端とを繋ぐ2つのサイドブリッジ(113)とにより構成される。
 空洞部(21)の内側壁面(30)は、「周方向において隣り合う2つの突極部(111)の壁面」と「基部(110)の外周面のうち2つの突極部(111)の壁面の間に位置する円弧面部分」とにより構成される。
 具体的には、空洞部(21)の内側壁面(30)の中央面部(31)は、「基部(110)の外周面のうち2つの突極部(111)の壁面の間に位置する円弧面部分」の一部により構成される。空洞部(21)の内側壁面(30)の側面部(32)のうち円弧面部分(32a)は、「基部(110)の外周面のうち2つの突極部(111)の壁面の間に位置する円弧面部分」の残部により構成され、平面部分(32b)は、「突極部(111)の壁面」のうち「突極部(111)の基端部の壁面の部分」を除く残りの部分により構成され、接続面部分(32c)は、「突極部(111)の基端部の壁面の部分」により構成される。
 空洞部(21)の外側壁面(40)は、第1番目の隔壁部(112)の径方向内側の壁面により構成される。空洞部(21)の周方向における端面は、第1サイドブリッジ(113)の径方向内側の壁面により構成される。
  〔センタリブ〕
 ロータコア(11)は、ロータコア(11)の磁極毎に、センタリブ(50)を有する。この例では、ロータコア(11)の磁極毎に設けられた複数の空洞部(20)のうち最も径方向外側に位置する第5番目の空洞部(20)を除く残りの空洞部(20)の各々に、センタリブ(50)が設けられる。
 第1番目の空洞部(20)である空洞部(21)に設けられるセンタリブ(50)は、第1基準線(L1)に沿うように、空洞部(21)の内側壁面(30)から空洞部(21)の外側壁面(40)まで延びる。具体的には、空洞部(21)に設けられるセンタリブ(50)は、第1基準線(L1)に沿うように空洞部(21)の内側壁面(30)から空洞部(21)の外側壁面(40)まで延びる直線部を含む。
 この例では、センタリブ(50)は、センタリブ(50)の中心線が第1基準線(L1)に沿うように形成される。センタリブ(50)の基端部の幅(延伸方向と直交する方向における長さ)は、空洞部(21)の内側壁面(30)から遠ざかるに連れて次第に短くなる。センタリブ(50)の先端部の幅は、空洞部(21)の外側壁面(40)に近づくに連れて次第に長くなる。センタリブ(50)の基端部および先端部を除く残りの部分の幅は、同幅(一定)である。
 第2番目~第4番目の空洞部(20)の各々に設けられるセンタリブ(50)の構成は、空洞部(21)に設けられるセンタリブ(50)の構成と同様である。
  〔補強リブ〕
 また、ロータコア(11)は、ロータコア(11)の磁極毎に、補強リブ(60)を有する。この例では、ロータコア(11)の磁極毎に設けられた複数の空洞部(20)のうち第1番目~第3番目の空洞部(20)の各々に、補強リブ(60)が設けられる。
 第1番目の空洞部(20)である空洞部(21)に設けられる補強リブ(60)は、空洞部(21)の内側壁面(30)から空洞部(21)の外側壁面(40)まで延びる。具体的には、補強リブ(60)は、第1基準線(L1)上を避けて設けられ、ロータコア(11)の回転中に補強リブ(60)に作用する力の方向に沿うように空洞部(21)の内側壁面(30)から空洞部(21)の外側壁面(40)まで直線部を含む。なお、ロータコア(11)の回転中に補強リブ(60)に作用する力の方向は、補強リブ(60)と空洞部(21)の外側壁面(40)との交点(Y)に作用する力の方向(図4に示した白抜き矢印の方向)である。
 この例では、補強リブ(60)は、補強リブ(60)の中心線(図中の一点鎖線で示された直線)がロータコア(11)の回転中に補強リブ(60)に作用する力の方向に沿うように形成される。補強リブ(60)の基端部の幅(延伸方向と直交する方向における長さ)は、空洞部(21)の内側壁面(30)から遠ざかるに連れて次第に短くなる。補強リブ(60)の先端部の幅は、空洞部(21)の外側壁面(40)に近づくに連れて次第に長くなる。補強リブ(60)の基端部および先端部を除く残りの部分の幅は、同幅(一定)である。
 なお、この例では、空洞部(21)は、2つの補強リブ(60)が設けられる。以下では、2つの補強リブ(60)の一方を「第1リブ(61)」と記載し、2つの補強リブ(60)の他方を「第2リブ(62)」と記載する。第2リブ(62)は、第1基準線(L1)を軸として第1リブ(61)と線対称となるように設けられる。
 第2番目および第3番目の空洞部(20)に設けられる補強リブ(60)の構成は、空洞部(21)に設けられる補強リブ(60)の構成と同様である。
 以上のように、この例では、空洞部(21)にセンタリブ(50)と補強リブ(60)とが設けられることで、空洞部(21)の空洞が複数の空洞に分割されている。したがって、第1基準線(L1)は、ロータコア(11)の回転中心(Q)と空洞部(21)の複数の空洞の集合の周方向両端のそれぞれとを結んだ2線が成す角を二等分する線であるといえる。
  〔実施形態と比較例1との対比〕
 次に、図2と図5とを参照して、実施形態と比較例1とを対比する。
 図5は、比較例1のロータ(80)の構成を例示する。比較例1のロータ(80)は、ロータコア(81)を備える。ロータコア(81)は、最も径方向内側に位置する空洞部(20)の構成が実施形態のロータ(10)と異なる。ロータコア(81)のその他の構成は、実施形態のロータ(10)の構成と同様である。
 比較例1のロータコア(81)の磁極毎に設けられた複数の空洞部(20)のうち最も径方向内側に位置する空洞部(20)である空洞部(85)は、残りの空洞部(20)の構成と同様である。空洞部(85)は、ロータコア(81)の回転中心(Q)へ向けて凸となる円弧状に形成される。
 図5に示すように、比較例1のロータ(80)では、空洞部(85)がロータコア(11)の回転中心(Q)へ向けて凸となる円弧状に形成されているので、空洞部(85)よりも径方向内側にあるロータコア(81)の部分を削減することが困難である。
 比較例1のロータ(80)では、空洞部(85)よりも径方向内側にあるロータコア(81)の部分においてq軸磁束が通りやすいので、q軸インダクタンスを低下させることが困難である。そのため、ロータ(80)に作用するリラクタンストルクを増加させることが困難である。
 一方、図2に示すように、実施形態のロータ(10)では、空洞部(21)の内側壁面(30)の中央面部(31)は、ロータコア(11)の回転中心(Q)に対して凹となるように形成される。空洞部(21)の内側壁面(30)の側面部(32)は、第2基準線(L2)と軸孔(15)の壁面との交点(X)へ向けて凸となるように形成される。
 実施形態のロータ(10)では、上記のような構成により、空洞部(21)の内側壁面(30)がロータコア(11)の回転中心(Q)へ向けて凸となる円弧状に形成される場合(比較例1のロータ(80))よりも、空洞部(21)の内側壁面(30)を軸孔(15)の壁面および第2基準線(L2)に近づけることができる。例えば、空洞部(21)の内側壁面(30)が「ロータコア(11)の回転中心(Q)へ向けて凸となり、且つ、頂点が図4に示した交点(Z)を通過する円弧状」に形成される場合よりも、空洞部(21)の内側壁面(30)を軸孔(15)の壁面および第2基準線(L2)に近づけることができる。
 このように、空洞部(21)の内側壁面(30)を軸孔(15)の壁面および第2基準線(L2)に近づけることができるので、空洞部(21)よりも径方向内側にあるロータコア(11)の部分を削減することができる。これにより、空洞部(21)よりも径方向内側にあるロータコア(11)の部分においてq軸磁束を通りにくくすることができるので、q軸インダクタンスを低下させることができる。その結果、リラクタンストルクを増加させることができる。
 図6は、実施形態のロータ(10)における磁束の分布を例示し、図7は、比較例1のロータ(80)における磁束の分布を例示する。図6に示した実施形態のロータ(10)のロータコア(11)の空洞部(21)における漏れ磁束の量は、図7に示した比較例1のロータ(80)のロータコア(81)の空洞部(85)における漏れ磁束の量よりも少なくなっている。
  〔実施形態と比較例2との対比〕
 次に、図8と図9とを参照して、実施形態と比較例2とを対比する。
 図8に示すように、比較例2のロータ(90)は、ロータコア(91)を備える。ロータコア(91)は、空洞部(20)の内部構造が実施形態のロータコア(11)と異なる。ロータコア(91)のその他の構成は、実施形態のロータコア(11)の構成と同様である。
 比較例2のロータコア(91)の空洞部(20)には、補強リブ(60)が設けられない。比較例2のロータコア(91)は、補強リブ(60)を有さない。
 図8は、比較例2のロータ(90)が回転しているときのロータコア(91)における応力分布を例示する。図8に示すように、比較例2のロータ(90)では、ロータ(90)が回転してロータコア(91)に遠心力が作用する際に、空洞部(20)の周方向端部(サイドブリッジ(113))に応力が集中しやすい。
 図9は、実施形態のロータ(10)が回転しているときのロータコア(11)における応力分布を例示する。図9に示すように、実施形態のロータ(10)では、補強リブ(60)が設けられているので、空洞部(20)の周方向端部(サイドブリッジ(113))における応力集中が緩和されている。また、補強リブ(60)における応力分布は、補強リブ(60)の全体において均一な分布(ばらつきが少ない分布)となっている。
  〔実施形態の効果〕
 以上のように、実施形態では、空洞部(21)の内側壁面(30)の中央面部(31)は、ロータコア(11)の回転中心(Q)に対して凹となるように形成される。空洞部(21)の内側壁面(30)の側面部(32)は、第2基準線(L2)と軸孔(15)の壁面との交点(X)へ向けて凸となるように形成される。
 上記の構成では、空洞部(21)の内側壁面(30)がロータコア(11)の回転中心(Q)へ向けて凸となる円弧状に形成される場合よりも、空洞部(21)の内側壁面(30)を軸孔(15)の壁面および第2基準線(L2)に近づけることができるので、空洞部(21)よりも径方向内側にあるロータコア(11)の部分を削減することができる。これにより、空洞部(21)よりも径方向内側にあるロータコア(11)の部分においてq軸磁束を通りにくくすることができるので、q軸インダクタンスを低下させることができる。その結果、リラクタンストルクを増加させることができる。
 また、上記の構成では、q軸インダクタンスを低下させることができるので、突極比(d軸インダクタンスをq軸インダクタンスで除算して得られる比)を大きくすることができる。これにより、モータ(1)における力率を増加させることができる。
 また、上記の構成では、リラクタンストルクを増加させることができるので、ロータ(10)の回転駆動に必要となるモータ電流(ステータ(2)の巻線(4)に流れる電流)を低減することができる。これにより、モータ(1)の銅損を低減することができるので、モータ(1)の効率を向上させることができる。
 また、実施形態では、空洞部(21)の外側壁面(40)は、ロータコア(11)の回転中心(Q)へ向けて凸となる円弧状に形成される。空洞部(21)の内側壁面(30)は、空洞部(21)の内側壁面(30)と空洞部(21)の外側壁面(40)との間の距離である空洞幅(W1)が空洞部(21)の内側壁面(30)のうち第1基準線(L1)の近傍部分における空洞幅(W1)よりも長い部分を含む。
 上記の構成では、空洞部(21)の外側壁面(40)をロータコア(11)の回転中心(Q)へ向けて凸となる円弧状に形成することにより、空洞部(21)の径方向外側にあるロータコア(11)の部分においてd軸磁束の磁路を容易に確保することができる。これにより、d軸インダクタンスの低下を抑制することができるので、リラクタンストルクの低下を抑制することができる。
 また、実施形態では、空洞部(21)の内側壁面(30)のうち中央面部(31)は、曲率中心が空洞部(21)の内側壁面(30)よりも径方向内側に位置する部分を含む。空洞部(21)の内側壁面(30)のうち側面部(32)は、曲率中心が空洞部(21)の内側壁面(30)よりも径方向外側に位置する部分を含む。
 上記の構成では、空洞部(21)の内側壁面(30)の中央面部(31)を、ロータコア(11)の回転中心(Q)に対して凹となるように形成することができる。また、空洞部(21)の内側壁面(30)の側面部(32)を、第2基準線(L2)と軸孔(15)の壁面との交点(X)へ向けて凸となるように形成することができる。
 また、実施形態では、空洞部(21)の内側壁面(30)のうち側面部(32)は、第2基準線(L2)に沿うように延びる平面部分(32b)を含む。
 上記の構成では、空洞部(21)の内側壁面(30)の側面部(32)を第2基準線(L2)に近づけることができるので、空洞部(21)の内側壁面(30)の側面部(32)よりも径方向内側にあるロータコア(11)の部分を削減することができる。これにより、空洞部(21)よりも径方向内側にあるロータコア(11)の部分においてq軸磁束を通りにくくすることができるので、q軸インダクタンスを低下させることができ、リラクタンストルクを増加させることができる。
 また、実施形態では、空洞部(21)の内側壁面(30)のうち中央面部(31)は、軸孔(15)の壁面に沿うように湾曲する。
 上記の構成では、空洞部(21)の内側壁面(30)の中央面部(31)を軸孔(15)の壁面に近づけることができるので、空洞部(21)の内側壁面(30)の中央面部(31)よりも径方向内側にあるロータコア(11)の部分を削減することができる。これにより、空洞部(21)よりも径方向内側にあるロータコア(11)の部分においてq軸磁束を通りにくくすることができるので、q軸インダクタンスを低下させることができ、リラクタンストルクを増加させることができる。
 また、実施形態では、空洞部(21)は、第1基準線(L1)を軸として線対称となるように形成される。ロータコア(11)は、空洞部(21)の内側壁面(30)から空洞部(21)の外側壁面(40)まで延びる補強リブ(60)(第1リブ(61))を有する。補強リブ(60)は、第1基準線(L1)上を避けて設けられ、ロータコア(11)の回転中に補強リブ(60)に作用する力の方向に沿うように空洞部(21)の内側壁面(30)から空洞部(21)の外側壁面(40)まで延びる直線部を含む。
 言い換えると、ロータコア(11)は、空洞部(21)の空洞と、その空洞と周方向で隣り合う別の空洞との間に、空洞部(21)の径方向内側から空洞部(21)の径方向外側まで延びる補強リブ(60)(第1リブ(61))を有する。補強リブ(60)は、ロータコア(11)の回転中心(Q)と空洞部(21)の複数の空洞の集合の周方向両端のそれぞれと結んだ2線が成す角を二等分する第1基準線(L1)上を避けて設けられ、ロータコア(11)の回転中に第1リブ(61)に作用する力の方向に沿うように空洞部(21)の径方向内側から空洞部(21)の径方向外側まで延びる直線部を含む。
 上記の構成では、補強リブ(60)を設けることにより、ロータコア(11)が回転しているときの空洞部(21)の周方向端部における応力集中を緩和することができる。
 また、実施形態では、補強リブ(60)(第1リブ(61))は、補強リブ(60)の中心線がロータコア(11)の回転中に補強リブ(60)に作用する力の方向に沿うように形成される。
 上記の構成では、補強リブ(60)の中心線がロータコア(11)の回転中に補強リブ(60)に作用する力の方向に沿うように補強リブ(60)が形成されていない場合よりも、補強リブ(60)を細くすることができる。これにより、補強リブ(60)を通過する漏れ磁束を低減することができる。
 また、実施形態では、ロータコア(11)は、第1基準線(L1)に沿うように空洞部(21)の内側壁面(30)から空洞部(21)の外側壁面(40)まで延びるセンタリブ(50)を有する。言い換えると、ロータコア(11)は、空洞部(21)の空洞と、その空洞と周方向で隣り合う別の空洞との間に、第1基準線(L1)に沿うように空洞部(21)の径方向内側から空洞部(21)の径方向外側まで延びるセンタリブ(50)を有する。
 上記の構成では、センタリブ(50)を設けることにより、ロータコア(11)が回転しているときの空洞部(21)の周方向端部における応力集中を緩和することができる。
 また、実施形態では、ロータコア(11)は、空洞部(21)の内側壁面(30)から空洞部(21)の外側壁面(40)まで延びるもう1つの補強リブ(60)(第2リブ(62))を有する。第2リブ(62)は、第1基準線(L1)上を避けて設けられ、ロータコア(11)の回転中に第2リブ(62)に作用する力の方向に沿うように空洞部(21)の内側壁面(30)から空洞部(21)の外側壁面(40)まで延びる直線部を含む。
 言い換えると、ロータコア(11)は、空洞部(21)の空洞と、その空洞と周方向で隣り合う別の空洞との間に、空洞部(21)の径方向内側から空洞部(21)の径方向外側まで延びる第2リブ(62)を有する。第2リブ(62)は、第1基準線(L1)上を避けて設けられ、ロータコア(11)の回転中に第2リブ(62)に作用する力の方向に沿うように空洞部(21)の径方向内側から空洞部(21)の径方向外側まで延びる直線部を含む。
 上記の構成では、第1リブ(61)に加えて第2リブ(62)を設けることにより、ロータコア(11)が回転しているときの空洞部(21)の周方向端部における応力集中をさらに緩和することができる。
 また、実施形態では、第2リブ(62)は、第1基準線(L1)を軸として第1リブ(61)と線対称となるように設けられる。
 上記の構成では、ロータコア(11)が回転しているときの空洞部(21)の周方向の両端部における応力集中をバランスよく緩和することができる。
 また、実施形態では、ロータコア(11)には、ロータコア(11)の磁極毎に、径方向に並ぶ複数の空洞部(20)が形成される。補強リブ(60)(第1リブ(61))が設けられる空洞部(21)は、複数の空洞部(20)のうち最も径方向内側に位置する空洞部である。
 上記の構成では、径方向に並ぶ複数の空洞部(20)のうち最も径方向内側に位置する空洞部(21)は、ロータコア(11)が回転しているときの空洞部(21)の周方向端部における応力集中が発生しやすい。したがって、径方向に並ぶ複数の空洞部(20)のうち最も径方向内側に位置する空洞部(21)に第1リブ(61)を設けることにより、ロータコア(11)が回転しているときの空洞部(21)の周方向端部における応力集中を効果的に緩和することができる。
 (実施形態の変形例1)
 図10は、実施形態の変形例1のロータ(10)の要部の構成を例示する。実施形態の変形例1のロータ(10)では、径方向内側から数えて第5番目の空洞部(20)が省略されている。実施形態の変形例1のロータ(10)のその他の構成は、実施形態のロータ(10)の構成と同様である。
 実施形態の変形例1では、センタブリッジ(114)が省略されている。径方向内側から数えて第4番目の隔壁部(112)(最も径方向外側に位置する隔壁部(112))の径方向外側の壁面は、ロータコア(11)の回転中心(Q)に対して凹となる円弧状に形成される。
 (実施形態の変形例2)
 図11は、実施形態の変形例2のロータ(10)の要部の構成を例示する。実施形態の変形例2のロータ(10)は、空洞部(21)の内側壁面(30)の構成が実施形態のロータ(10)と異なる。また、実施形態の変形例2のロータ(10)では、径方向内側から数えて第5番目の空洞部(20)が省略されている。実施形態の変形例2のロータ(10)のその他の構成は、実施形態のロータ(10)の構成と同様である。なお、図11では、補強リブ(60)の図示を省略している。
 実施形態の変形例2では、空洞部(21)の内側壁面(30)の側面部(32)は、複数の平面部分(32b)を有する。図11の例では、側面部(32)に2つの平面部分(32b)が設けられる。空洞部(21)の内側壁面(30)の側面部(32)のその他の構成は、実施形態の空洞部(21)の内側壁面(30)の側面部(32)の構成と同様である。
 実施形態の変形例2では、センタブリッジ(114)が省略されている。最も径方向外側に位置する隔壁部(112)の径方向外側の壁面は、ロータコア(11)の外周面の一部となる。したがって、ロータコア(11)の外周面の一部は、ロータコア(11)の回転中心(Q)へ向けて凸となる円弧状に凹んでいる。
 (実施形態の変形例3)
 図12は、実施形態の変形例3のロータ(10)の要部の構成を例示する。実施形態の変形例3のロータ(10)は、ロータコア(11)の極数が実施形態のロータ(10)と異なる。実施形態の変形例3のロータ(10)のその他の構成は、実施形態のロータ(10)の構成と同様である。
 実施形態の変形例3では、ロータコア(11)の極数は「6」である。ロータコア(11)には、ロータコア(11)の6つの磁極に一対一で対応する6つの第1基準線(L1)と、ロータコア(11)の6つの磁極の境界に一対一で対応する6つの第2基準線(L2)とが定められる。第1基準線(L1)とその第1基準線(L1)と周方向において隣り合う第2基準線(L2)との間の角度は、30°(=180°/6)である。
 (実施形態の変形例4)
 図13は、実施形態の変形例4のロータ(10)の要部の構成を例示する。実施形態の変形例4のロータ(10)は、ロータコア(11)の磁極毎に設けられた空洞部(20)の数と空洞部(21)の内部構造が実施形態の変形例3のロータ(10)と異なる。実施形態の変形例4のロータ(10)のその他の構成は、実施形態の変形例3のロータ(10)の構成と同様である。
 実施形態の変形例4では、ロータコア(11)の磁極毎に、径方向に並ぶ4つの空洞部(20)が設けられる。具体的には、ロータコア(11)の磁極毎に、径方向に並ぶ3つの隔壁部(112)が設けられる。第1番目の隔壁部(112)の径方向内側に、第1番目の空洞部(20)である空洞部(21)が形成され、第1番目~第3番目の隔壁部(112)の間に、第2番目および第3番目の空洞部(20)が形成され、第3番目の隔壁部(112)とセンタブリッジ(114)との間に、第4番目の空洞部(20)が形成される。
 また、実施形態の変形例4では、空洞部(21)に4つの補強リブ(60)が設けられる。以下では、4つの補強リブ(60)のうち第1リブ(61)および第2リブ(62)を除く残りの2つの補強リブ(60)の1つを「第3リブ(63)」と記載し、残りの1つの補強リブ(60)を「第4リブ(64)」と記載する。
 第3リブ(63)は、第1リブ(61)と空洞部(21)の周方向における一端部との間に設けられる。第4リブ(64)は、第2リブ(62)と空洞部(21)の周方向における他端部との間に設けられる。第4リブ(64)は、第1基準線(L1)を軸として第3リブ(63)と線対称となるように設けられる。
 (圧縮機)
 図14は、圧縮機(CC)の構成を例示する。圧縮機(CC)は、モータ(1)と、ケーシング(CC1)と、圧縮機構(CC2)とを備える。
 ケーシング(CC1)は、圧縮機構(CC2)とモータ(1)とを収容する。この例では、ケーシング(CC1)は、上下方向に延びて両端が閉塞された円筒状に形成される。ケーシング(CC1)には、吸入管(CC11)と吐出管(CC12)とが設けられる。吸入管(CC11)は、ケーシング(CC1)の胴部を貫通して圧縮機構(CC2)に接続される。吐出管(CC12)は、ケーシング(CC1)の上部を貫通してケーシング(CC1)の内部空間と連通する。
 圧縮機構(CC2)は、流体を圧縮する。この例では、圧縮機構(CC2)は、モータ(1)の下方に配置される。圧縮機構(CC2)は、吸入管(CC11)を通じて吸入した流体を圧縮し、その圧縮された流体をケーシング(CC1)の内部空間に吐出する。ケーシング(CC1)の内部空間に吐出された流体は、吐出管(CC12)を通じて吐出される。この例では、圧縮機構(CC2)は、ロータリ式の圧縮機構である。
 シャフト(5)は、モータ(1)と圧縮機構(CC2)とを連結する。この例では、シャフト(5)は、上下方向に延びる。モータ(1)は、シャフト(5)を回転駆動する。シャフト(5)の回転駆動により、圧縮機構(CC2)が駆動する。
 なお、圧縮機(CC)は、ロータリ式の圧縮機に限定されない。圧縮機(CC)は、スイング式、スクロール式、スクリュー式、ターボ式、その他の方式の圧縮機であってもよい。
 (冷凍装置)
 図15は、冷凍装置(RR)の構成を例示する。冷凍装置(RR)は、冷媒が循環する冷媒回路(RR1)を備える。具体的には、冷媒回路(RR1)は、モータ(1)を有する圧縮機(CC)と、第1熱交換器(RR5)と、第2熱交換器(RR6)と、減圧機構(RR7)と、四方切換弁(RR8)とを有する。この例では、膨張機構(RR7)は、電子膨張弁である。冷媒回路(RR1)は、蒸気圧縮式の冷凍サイクルを行う。例えば、第1熱交換器(RR5)は、熱源熱交換器であり、室外に設けられる。第2熱交換器(RR6)は、利用熱交換器であり、室内に設けられる。
 圧縮機(CC)の吐出側は、四方切換弁(RR8)の第1ポート(P1)に接続される。圧縮機(CC)の吸入側は、四方切換弁(RR8)の第2ポート(P2)に接続される。第1熱交換器(RR5)のガス端は、四方切換弁(RR8)の第3ポート(P3)に接続される。第1熱交換器(RR5)の液端は、膨張機構(RR7)を経由して第2熱交換器(RR6)の液端に接続される。第2熱交換器(RR6)のガス端は、四方切換弁(RR8)の第4ポート(P4)に接続される。
 四方切換弁(RR8)は、第1ポート(P1)と第3ポート(P3)とが連通し且つ第2ポート(P2)と第4ポート(P4)とが連通する第1状態(図15の実線で示す状態)と、第1ポート(P1)と第4ポート(P4)とが連通し且つ第2ポート(P2)と第3ポート(P3)とが連通する第2状態(図15の破線で示す状態)とに切り換え可能である。
 四方切換弁(RR8)が第1状態である場合、圧縮機(CC)から吐出された冷媒は、第1熱交換器(RR5)において放熱し、膨張機構(RR7)において減圧された後に、第2熱交換器(RR6)において吸熱する。第2熱交換器(RR6)から流出した冷媒は、圧縮機(CC)に吸入される。
 四方切換弁(RR8)が第2状態である場合、圧縮機(CC)から吐出された冷媒は、第2熱交換器(RR6)において放熱し、膨張機構(RR7)において減圧された後に、第1熱交換器(RR5)において吸熱する。第1熱交換器(RR5)から流出した冷媒は、圧縮機(CC)に吸入される。
 例えば、冷凍装置(RR)は、冷房と暖房とを切り換える空気調和機である。なお、冷凍装置(RR)は、冷房専用機であってもよいし、暖房専用機であってもよい。この場合、冷凍装置(RR)において、四方切換弁(RR8)が省略されてもよい。また、冷凍装置(RR)は、給湯器、チラーユニット、庫内の空気を冷却する冷却装置などであってもよい。冷却装置は、冷蔵庫、冷凍庫、コンテナなどの内部の空気を冷却する。
 (補強リブに作用する力)
 次に、図16を参照して、ロータコア(11)の回転中に補強リブ(60)に作用する力について説明する。図16の例では、補強リブ(60)として、第1リブ(61)と第2リブ(62)とが設けられている。
 ロータコア(11)の回転中に補強リブ(60)に作用する力は、ロータコア(11)に作用する遠心力と電磁力とトルクのうち少なくとも1つに応じて変化する。なお、本実施形態では、ロータコア(11)に作用する遠心力と電磁力とトルクのうち「遠心力」が支配的である。以上より、ロータコア(11)の回転中に補強リブ(60)に作用する力は、「ロータコア(11)に作用する遠心力と電磁力とトルクのうち少なくとも遠心力に応じた力」であるといえる。なお、補強リブ(60)に作用する力の方向は、ロータコア(11)に作用する力(例えば遠心力と電磁力とトルクの合力)の方向と必ずしも一致しない。
 (補強リブに作用する力の方向)
 次に、図16,図17,図18を参照して、ロータコア(11)の回転中に補強リブ(60)に作用する力の方向について説明する。
 以下の説明では、補強リブ(60)と空洞部(21)の径方向内側の壁面(30)との交点を「第1交点(A)」と記載し、第1交点(A)からロータコア(11)の回転中に第1リブ(61)に作用する力の方向に沿うように延びる線を「作用線(F)」と記載する。
 また、以下の説明では、第1交点(A)から第1基準線(L1)と平行となる方向に延びる線であり、空洞部(21)の径方向内側の壁面(30)よりも径方向外側に延びる線を「第1仮想線(L3)」と記載する。また、第1基準線(L1)とロータコア(11)の外周縁との交点を「第2交点(B)」と記載し、第1交点(A)から第2交点(B)を通過して延びる線を「第2仮想線(L4)」と記載する。
 作用線(F)は、第1交点(A)からロータコア(11)の回転中に第1リブ(61)に作用する力の方向を示す線である。補強リブ(60)に含まれる直線部は、作用線(F)に沿うように空洞部(21)の径方向内側から空洞部(21)の径方向外側まで延びる。
 作用線(F)は、ロータコア(11)に作用する電磁力が大きくなるに連れて、ロータコア(11)の回転方向の逆方向(図16の例では反時計回りの方向)に傾いていく傾向にある。この傾向は、ロータコア(11)に作用する遠心力が小さくなるほど顕著に現れる。
 図17に示すように、ロータコア(11)に作用する電磁力が大きくなるほど、第1仮想線(L3)から作用線(F)までの角度(α)が次第に小さくなり、作用線(F)が第1仮想線(L3)に次第に近づいていく。また、ロータコア(11)が磁気飽和の状態であるときにロータコア(11)に作用する電磁力が最大値となり、そのときの角度(α)は「1.9°」となる。
 なお、図17の例は、ロータ(10)の回転速度が最大値の10%であるときの角度(α)と電磁力との関係を示している。また、ロータコア(11)に作用する電磁力が最大値であるときの角度(α)は、ロータコア(11)の極数に応じて変化する。具体的には、ロータコア(11)の極数を“n”とすると、ロータコア(11)に作用する電磁力が最大値であるときの角度(α)は、「1.9°×4/n」となる。
 また、作用線(F)は、ロータコア(11)に作用するトルクが大きくなるに連れて、ロータコア(11)の回転方向(図16の例では時計回りの方向)に傾いていく傾向にある。この傾向は、ロータコア(11)に作用する遠心力が小さくなるほど顕著に現れる。
 図18に示すように、ロータコア(11)に作用するトルクが大きくなるほど、第2仮想線(L4)から作用線(F)までの角度(β)が次第に小さくなり、作用線(F)が第2仮想線(L4)に次第に近づいていく。また、ロータコア(11)が磁気飽和の状態であるときにロータコア(11)に作用するトルクが最大値となり、そのときの角度(β)は「3.2°」となる。
 なお、図18の例は、ロータ(10)の回転速度が最大値の10%であるときの角度(β)とトルクとの関係を示している。また、ロータコア(11)に作用するトルクが最大値であるときの角度(β)は、ロータコア(11)の極数に応じて変化する。具体的には、ロータコア(11)の極数を“n”とすると、ロータコア(11)に作用するトルクが最大値であるときの角度(β)は、「3.2°×4/n」となる。
 以上より、作用線(F)は、「第1仮想線(L3)と第2仮想線(L4)との間の範囲である第1範囲よりも内側にある第2範囲内に位置する線」であるといえる。
 なお、第2範囲は、第3仮想線(La)と第4仮想線(Lb)との間の範囲である。第3仮想線(La)は、第1交点(A)から延びる線であり、第1範囲において第1仮想線(L3)よりも内側に位置する。第4仮想線(Lb)は、第1交点(A)から延びる線であり、第1範囲において第2仮想線(L4)よりも内側に位置する線である。具体的には、第1仮想線(L3)と第3仮想線(La)との間の角度(a1)は、1.9°×4/nであり、第2仮想線(L4)と第4仮想線(Lb)との間の角度(b1)は、3.2°×4/nである。nは、ロータコア(11)の極数である。
 (その他の実施形態)
 以上の説明では、モータ(1)がシンクロナスリラクタンスモータである場合を例に挙げたが、これに限定されない。例えば、モータ(1)は、永久磁石を有するロータ(10)を備える永久磁石モータであってもよい。具体的には、ロータ(10)の空洞部(20)に永久磁石が挿入されてもよい。
 なお、空洞部(21)の形状は、以上の説明に記載された形状に限定されない。具体的には、空洞部(21)の内側壁面(30)の形状および外側壁面(40)の形状は、以上の説明に記載された形状に限定されない。径方向に並ぶ複数の空洞部(20)のうち空洞部(21)を除く残りの空洞部(20)についても、同様である。
 例えば、空洞部(21)の内側壁面(30)の側面部(32)は、接続面部分(32c)を有さなくてもよい。言い換えると、平面部分(32b)は、接続面部分(32c)を経由せずに円弧面部分(32a)と繋がってもよい。また、空洞部(21)の内側壁面(30)の側面部(32)は、平面部分(32b)の代わりに、径方向外側へ向かうに連れて第2基準線(L2)に次第に近づくように湾曲する湾曲面部分を有してもよい。また、空洞部(21)の内側壁面(30)の中央面部(31)は、ロータコア(11)の回転中心(Q)に対して凹となるV字状に形成されてもよい。空洞部(21)の外側壁面(40)は、ロータコア(11)の回転中心(Q)へ向けて凸となるV字状に形成されてもよいし、その他の形状であってもよい。
 また、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態、変形例、その他の実施形態に係る要素を適宜組み合わせたり、置換したりしてもよい。
 以上説明したように、本開示は、ロータ、モータ、圧縮機、冷凍装置などとして有用である。
1     モータ
10    ロータ
11    ロータコア
20    空洞部
21    空洞部
30    内側壁面(空洞部の径方向内側の壁面)
31    中央面部
32    側面部
32a   円弧面部分
32b   平面部分
32c   接続面部分
40    外側壁面(空洞部の径方向外側の壁面)
50    センタリブ
60    補強リブ
61    第1リブ
62    第2リブ
63    第3リブ
64    第4リブ
110   基部
111   突極部
112   隔壁部
113   サイドブリッジ
114   センタブリッジ
CC    圧縮機
RR    冷凍装置

Claims (12)

  1.  磁極毎に複数の空洞を有する空洞部(21)が形成されたロータコア(11)を備え、
     前記ロータコア(11)は、前記空洞部(21)の前記空洞と、当該空洞と周方向で隣り合う前記空洞との間に、前記空洞部(21)の径方向内側から前記空洞部(21)の径方向外側まで延びる第1リブ(61)を有し、
     前記第1リブ(61)は、前記ロータコア(11)の回転中心(Q)と前記空洞部(21)の複数の空洞の集合の周方向両端のそれぞれと結んだ2線が成す角を二等分する第1基準線(L1)上を避けて設けられ、前記ロータコア(11)の回転中に前記第1リブ(61)に作用する力の方向に沿うように前記空洞部(21)の径方向内側から前記空洞部(21)の径方向外側まで延びる直線部を含む
    ロータ。
  2.  請求項1のロータにおいて、
     前記第1リブ(61)は、前記第1リブ(61)の中心線が前記ロータコア(11)の回転中に前記第1リブ(61)に作用する力の方向に沿うように形成される
    ロータ。
  3.  請求項1または2のロータにおいて、
     前記ロータコア(11)は、前記空洞部(21)の前記空洞と、当該空洞と周方向で隣り合う前記空洞との間に、前記第1基準線(L1)に沿うように前記空洞部(21)の径方向内側から前記空洞部(21)の径方向外側まで延びるセンタリブ(50)を有する
    ロータ。
  4.  請求項1~3のいずれか1つのロータにおいて、
     前記ロータコア(11)は、前記空洞部(21)の前記空洞と、当該空洞と周方向で隣り合う前記空洞との間に、前記空洞部(21)の径方向内側から前記空洞部(21)の径方向外側まで延びる第2リブ(62)を有し、
     前記第2リブ(62)は、前記第1基準線(L1)上を避けて設けられ、前記ロータコア(11)の回転中に前記第2リブ(62)に作用する力の方向に沿うように前記空洞部(21)の径方向内側から前記空洞部(21)の径方向外側まで延びる直線部を含む
    ロータ。
  5.  請求項4のロータにおいて、
     前記第2リブ(62)は、前記第1基準線(L1)を軸として第1リブ(61)と線対称となるように設けられる
    ロータ。
  6.  請求項1~5のいずれか1つのロータにおいて、
     前記ロータコア(11)には、前記磁極毎に、径方向に並ぶ複数の空洞部(20)が形成され、
     前記第1リブ(61)が設けられる前記空洞部(21)は、前記複数の空洞部(20)のうち最も径方向内側に位置する空洞部である
    ロータ。
  7.  請求項1~6のいずれか1つのロータにおいて、
     前記ロータコア(11)の回転中に前記第1リブ(61)に作用する力は、前記ロータコア(11)に作用する遠心力と電磁力とトルクのうち少なくとも前記遠心力に応じた力である
    ロータ。
  8.  請求項7のロータにおいて、
     前記第1リブ(61)と前記空洞部(21)の径方向内側の壁面(30)との交点である第1交点(A)から前記ロータコア(11)の回転中に前記第1リブ(61)に作用する力の方向に沿うように延びる作用線(F)は、前記第1交点(A)から前記第1基準線(L1)と平行となる方向に延びる線であり前記空洞部(21)の径方向内側の壁面(30)よりも径方向外側に延びる第1仮想線(L3)と、前記第1交点(A)から前記第1基準線(L1)と前記ロータコア(11)の外周縁との交点である第2交点(B)を通過して延びる第2仮想線(L4)との間の範囲である第1範囲よりも内側にある第2範囲内に位置する
    ロータ。
  9.  請求項8のロータにおいて、
     前記第2範囲は、前記第1交点(A)から延びる線であり前記第1範囲において前記第1仮想線(L3)よりも内側に位置する第3仮想線(La)と、前記第1交点(A)から延びる線であり前記第1範囲において前記第2仮想線(L4)よりも内側に位置する第4仮想線(Lb)との間の範囲であり、
     前記第1仮想線(L3)と前記第3仮想線(La)との間の角度は、1.9°×4/nであり、
     前記第2仮想線(L4)と前記第4仮想線(Lb)との間の角度は、3.2°×4/nであり、
     前記nは、前記ロータコア(11)の極数である
    ロータ。
  10.  請求項1~9のいずれか1つのロータを備えるモータ。
  11.  請求項10のモータを備える圧縮機。
  12.  請求項11の圧縮機を備える冷凍装置。
PCT/JP2023/013720 2022-03-31 2023-03-31 ロータ、モータ、圧縮機、冷凍装置 WO2023191104A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-060439 2022-03-31
JP2022060439 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023191104A1 true WO2023191104A1 (ja) 2023-10-05

Family

ID=88202405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013720 WO2023191104A1 (ja) 2022-03-31 2023-03-31 ロータ、モータ、圧縮機、冷凍装置

Country Status (1)

Country Link
WO (1) WO2023191104A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10257700A (ja) * 1997-03-13 1998-09-25 Matsushita Electric Ind Co Ltd ロータコア
JP2016135055A (ja) * 2015-01-21 2016-07-25 株式会社デンソー リラクタンスモータ用のロータコア
JP2019517768A (ja) * 2016-06-07 2019-06-24 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft リラクタンス機のための回転子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10257700A (ja) * 1997-03-13 1998-09-25 Matsushita Electric Ind Co Ltd ロータコア
JP2016135055A (ja) * 2015-01-21 2016-07-25 株式会社デンソー リラクタンスモータ用のロータコア
JP2019517768A (ja) * 2016-06-07 2019-06-24 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft リラクタンス機のための回転子

Also Published As

Publication number Publication date
JP2023153080A (ja) 2023-10-17

Similar Documents

Publication Publication Date Title
TWI569560B (zh) A permanent magnet type rotating machine, and a compressor using the same
JP2015122936A (ja) 埋込磁石型モータ及び埋込磁石型モータの使用方法
JP2002315243A (ja) 永久磁石式回転電機
US11863020B2 (en) Motor, compressor, and air conditioner
JP2012080713A (ja) 永久磁石式回転電機及びそれを用いた圧縮機
CN111033947B (zh) 转子、电动机、压缩机及空调装置
JP2001251825A (ja) 永久磁石式同期電動機及びこれを用いた空気調和機
JP6811222B2 (ja) ロータ、モータ、及び圧縮機
KR102237601B1 (ko) 자석 매립형 모터 및 자석 매립형 모터를 가지는 압축기
JP7204897B2 (ja) ロータ、モータ、圧縮機、及び空気調和機
WO2023191104A1 (ja) ロータ、モータ、圧縮機、冷凍装置
JP7410533B2 (ja) ロータ、モータ、圧縮機、冷凍装置
JP6470598B2 (ja) 永久磁石式回転電機、並びにそれを用いる圧縮機
WO2020021693A1 (ja) 電動機、圧縮機、及び空気調和機
JP2006283602A (ja) 圧縮機
JP7362801B2 (ja) 電動機、圧縮機、送風機、及び冷凍空調装置
JP7433420B2 (ja) ロータ、モータ、圧縮機および空気調和装置
KR100964693B1 (ko) 모터 및 이를 포함하는 압축기
WO2020121485A1 (ja) 電動機、圧縮機および冷凍サイクル装置
JP7450805B2 (ja) モータ、圧縮機および冷凍サイクル装置
JPWO2020026431A1 (ja) ステータ、モータ、圧縮機、及び冷凍空調装置
JP7292424B2 (ja) モータ、圧縮機および空気調和装置
WO2022180717A1 (ja) 電動機、圧縮機および冷凍サイクル装置
KR100921468B1 (ko) 모터 및 이를 포함하는 압축기
JP7048917B2 (ja) 電動機、圧縮機、送風機、冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23781112

Country of ref document: EP

Kind code of ref document: A1