WO2023190852A1 - 新型コロナウイルス(SARS-CoV-2)に結合する抗体 - Google Patents

新型コロナウイルス(SARS-CoV-2)に結合する抗体 Download PDF

Info

Publication number
WO2023190852A1
WO2023190852A1 PCT/JP2023/013146 JP2023013146W WO2023190852A1 WO 2023190852 A1 WO2023190852 A1 WO 2023190852A1 JP 2023013146 W JP2023013146 W JP 2023013146W WO 2023190852 A1 WO2023190852 A1 WO 2023190852A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
amino acid
acid sequence
sequence
sars
Prior art date
Application number
PCT/JP2023/013146
Other languages
English (en)
French (fr)
Inventor
慎哉 渡辺
順一 今井
葉月 志賀
慈子 佐藤
進 松倉
裕孝 星
Original Assignee
公立大学法人福島県立医科大学
株式会社メディクローム
福島セルファクトリー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022172698A external-priority patent/JP2023152613A/ja
Application filed by 公立大学法人福島県立医科大学, 株式会社メディクローム, 福島セルファクトリー株式会社 filed Critical 公立大学法人福島県立医科大学
Publication of WO2023190852A1 publication Critical patent/WO2023190852A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/05Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches protecting only a particular body part
    • A41D13/11Protective face masks, e.g. for surgical use, or for use in foul atmospheres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/02Masks
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Virology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Textile Engineering (AREA)
  • Dermatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Birds (AREA)

Abstract

本発明は、COVID-19に対する感染予防および/または治療を可能とする新規抗体の提供を課題とする。 配列番号1のアミノ酸配列からなる重鎖CDR1、配列番号2のアミノ酸配列からなる重鎖CDR2、配列番号3のアミノ酸配列からなる重鎖CDR3、配列番号4のアミノ酸配列からなる軽鎖CDR1、配列番号5のアミノ酸配列からなる軽鎖CDR2、および、配列番号6のアミノ酸配列からなる軽鎖CDR3を有する抗体であって、SARS-CoV-2のS1サブユニットに結合する、抗体またはその抗体フラグメント。

Description

新型コロナウイルス(SARS-CoV-2)に結合する抗体
 本発明は、SARS関連コロナウイルスに対する抗体に関する。本発明は特に、SARS-CoV-2のS1サブユニットに結合する抗体に関する。
 新型コロナウイルス感染症(COVID-19)は2019年12月に初めて報告された新型コロナウイルス(SARS-CoV-2)による新興感染症であり、発熱、咳嗽のような感冒様症状から肺炎を来す。日本における致死率は全体では1~2%と言われているが、高齢者になるほどその致死率は上がり、80代以上では12%以上にもなる。また、世界的な大流行(パンデミック)に至っており、世界最大の疫学的な課題となっている。
 COVID-19の診断は、主に体液中に存在するSARS-CoV-2をPCRで検出する方法が採用されているが、測定に時間がかかること、コストが高いこと、感度が高すぎるために非感染性のウイルスの断片等を検出している可能性があること、等の問題がある。また、抗原検査キットも出てきているが、必ずしも特異性が高くなく、擬陽性や偽陰性の問題がある。
 また、世界中でワクチンの投与が始まっており、ワクチンの効果が期待されているものの、ワクチンの効果は限定的であり長期間持続しないという報告もある。
 さらに、SARS-CoV-2に対して結合能および中和活性能を有する抗体を取得したという報告がある(非特許文献1~5)ものの、有効な治療薬は未だ存在しないのが現状である。
 本発明は、新型コロナウイルス(SARS-CoV-2)に対する感染予防および/またはCOVID-19の治療を可能とする新規抗体の提供を課題とする。
 本発明者らは、SARS-CoV-2に感染して回復した人の血液から、SARS-CoV-2に対する抗体を産生する細胞を分離し、IgG抗体の抗体遺伝子を取得することに成功した。なお本発明らは、局所(目、鼻、腸等)で細菌やウイルスに結合し体内への侵入を防御するIgA抗体の一次防機能に着目し、当該IgG抗体を改変することでIgA抗体の取得にも成功した。本発明は当該知見より完成に至ったものである。すなわち本発明は以下の態様を含む:
 本発明の一態様は、
〔1〕配列番号1のアミノ酸配列からなる重鎖CDR1、配列番号2のアミノ酸配列からなる重鎖CDR2、配列番号3のアミノ酸配列からなる重鎖CDR3、配列番号4のアミノ酸配列からなる軽鎖CDR1、配列番号5のアミノ酸配列からなる軽鎖CDR2、および、配列番号6のアミノ酸配列からなる軽鎖CDR3を有する抗体であって、
 SARS-CoV-2のS1サブユニットの受容体結合ドメイン(RBD)に結合する、抗体またはその抗体フラグメント。
 また本発明の抗体またはその抗体フラグメントは一実施の形態において、
〔2〕上記〔1〕に記載の抗体またはその抗体フラグメントであって、
 前記S1サブユニットの受容体結合ドメイン(RBD)が配列番号7のアミノ酸配列からなるポリペプチドまたは前記ポリペプチドにおいて変異を有するポリペプチドであることを特徴とする。
 また本発明の抗体またはその抗体フラグメントは一実施の形態において、
〔3〕上記〔1〕または〔2〕に記載の抗体またはその抗体フラグメントであって、
(a)配列番号8のアミノ酸配列、
(b)前記(a)の配列において各CDR配列以外のフレームワーク領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
(c)前記(a)の配列における各CDR配列以外のフレームワーク領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列、
からなる群から選択されるアミノ酸配列からなる重鎖可変領域、並びに
(d)配列番号9のアミノ酸配列、
(e)前記(d)の配列において各CDR配列以外のフレームワーク領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
(f)前記(e)の配列における各CDR配列以外のフレームワーク領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列、
からなる群から選択されるアミノ酸配列からなる軽鎖可変領域
を有することを特徴とする。
 また本発明の抗体またはその抗体フラグメントは一実施の形態において、
〔4〕上記〔1〕または〔2〕に記載の抗体またはその抗体フラグメントであって、
(a’’)配列番号29のアミノ酸配列、
(b’’)前記(a’’)の配列において各CDR配列以外のフレームワーク領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
(c’’)前記(a’’)の配列における各CDR配列以外のフレームワーク領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列、
からなる群から選択されるアミノ酸配列からなる重鎖可変領域、並びに
(d’’)配列番号31のアミノ酸配列、
(e’’)前記(d’’)の配列において各CDR配列以外のフレームワーク領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
(f’’)前記(e’’)の配列における各CDR配列以外のフレームワーク領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列、
からなる群から選択されるアミノ酸配列からなる軽鎖可変領域
を有することを特徴とする。
 また本発明の抗体またはその抗体フラグメントは一実施の形態において、
〔5〕ヒトIgA抗体である、上記〔1〕、〔2〕、または、〔4〕のいずれかに記載の抗体またはその抗体フラグメントであることを特徴とする。
 また本発明の抗体またはその抗体フラグメントは一実施の形態において、
〔6〕多量体化しているヒトIgA抗体である、上記〔1〕~〔5〕のいずれかに記載の抗体またはその抗体フラグメントであることを特徴とする。
 また本発明の別の態様は、
〔7〕上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントを含む、組成物に関する。
 また本発明の別の態様は、
〔8〕上記〔7〕に記載の組成物を含む、SARS-CoV-2感染予防用スプレーに関する。
 また本発明の別の態様は、
〔9〕上記〔7〕に記載の組成物を担持する基材を含む、フィルタに関する。
 また本発明の別の態様は、
〔10〕上記〔9〕に記載のフィルタを含む、SARS-CoV-2感染予防または拡散防止用マスクに関する。
 また本発明の別の態様は、
〔11〕上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントを含む、食品用組成物に関する。
 ここで本発明の食品用組成物は一実施の形態において、
〔12〕上記〔11〕に記載の食品用組成物であって、SARS-CoV-2に対する感染予防のための食品用組成物であることを特徴とする。
 また本発明の別の態様は、
〔13〕上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントを含む、SARS-CoV-2検出用試薬に関する。
 また本発明の別の態様は、
〔14〕上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントを含む、COVID-19診断薬に関する。
 また本発明の別の態様は、
〔15〕COVID-19の発症予防および/または治療のために用いられる、上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントを含む医薬組成物に関する。
 また本発明の別の態様は、
〔16〕上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントをコードするポリヌクレオチドに関する。
 また本発明の別の態様は、
〔17〕上記〔16〕に記載のポリヌクレオチドを含有する発現ベクターに関する。
 また本発明の別の態様は、
〔18〕上記〔17〕に記載の発現ベクターにより形質転換された宿主細胞に関する。
 また本発明の別の態様は、
〔19〕上記〔18〕に記載の宿主細胞を培養する工程と
 前記工程で得られた培養物から目的の抗体を採取する工程と
を含む、抗体の製造方法に関する。
 また本発明の別の態様は、
〔20〕上記〔119〕に記載の製造方法により得られる抗体に関する。
 さらに本発明は以下の態様および実施の形態も含む:
 本発明に係る組成物の一実施の形態は、
〔21〕上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントと担体とを含む、組成物であることを特徴とする。
 本発明に係るSARS-CoV-2検出用試薬の一実施の形態は、
〔22〕上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントと担体とを含む、SARS-CoV-2検出用試薬であることを特徴とする。
 本発明に係るCOVID-19診断薬の一実施の形態は、
〔23〕上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントと担体とを含む、COVID-19診断薬であることを特徴とする。
 本発明に係る医薬組成物の一実施の形態は、
〔24〕上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントと薬学的に許容可能な担体とを含む、医薬組成物であることを特徴とする。
 また本発明の別の態様は、
〔25〕上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントの治療有効量を対象に対して投与する工程を含む、COVID-19の発症予防および/または治療方法に関する。
 また本発明に係る抗体またはその抗体フラグメントの一実施の形態は、
〔26〕COVID-19の発症予防および/または治療のために用いられる、上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントである。
 また本発明の別の態様は、
〔27〕COVID-19の発症予防および/または治療のための医薬組成物の製造における、上記〔1〕~〔6〕のいずれかに記載の抗体またはその抗体フラグメントの使用に関する。
 本発明の別の態様は、
〔28〕上記〔7〕に記載の組成物の使用方法であって、
 前記組成物を空気中に徐放、噴霧、または散布する工程を含む、組成物の使用方法に関する。
 ここで本発明の組成物の使用方法の一実施の形態は、
〔29〕上記〔28〕に記載の組成物の使用方法であって、
 前記工程が前記組成物を加湿器を用いて空気中に噴霧する工程であることを特徴とする。 
 本発明に係る抗体は、SARS-CoV-2のS1領域に強く結合する抗体であり、SARS-CoV-2感染防御(予防)に用いることができる。さらに、本発明の抗体は医薬品に加え、抗体入りのスプレー、抗体入りのマスク、抗体入りハンドクリーム、抗体入り化粧品などへの応用も可能である。
図1は下記実施例1において得られたIgG抗体の重鎖アミノ酸配列およびそれをコードする塩基配列を示す。下線は重鎖CDR1の領域を示し、二重線は重鎖CDR2の領域を示し、波線は重鎖CDR3の領域を示す。 図2は下記実施例1において得られたIgG抗体の重鎖可変領域のアミノ酸配列およびそれをコードする塩基配列を示す。下線は重鎖CDR1の領域を示し、二重線は重鎖CDR2の領域を示し、波線は重鎖CDR3の領域を示す。 図3は下記実施例1において得られたIgG抗体の軽鎖アミノ酸配列およびそれをコードする塩基配列を示す。下線は軽鎖CDR1の領域を示し、二重線は軽鎖CDR2の領域を示し、波線は軽鎖CDR3の領域を示す。 図4は下記実施例1において得られたIgG抗体の軽鎖可変領域のアミノ酸配列およびそれをコードする塩基配列を示す。下線は軽鎖CDR1の領域を示し、二重線は軽鎖CDR2の領域を示し、波線は軽鎖CDR3の領域を示す。 図5は下記実施例2において得られたIgA抗体の重鎖アミノ酸配列およびそれをコードする塩基配列を示す。下線は重鎖CDR1の領域を示し、二重線は重鎖CDR2の領域を示し、波線は重鎖CDR3の領域を示す。 図6は下記実施例2において得られたIgA抗体の重鎖可変領域のアミノ酸配列およびそれをコードする塩基配列を示す。下線は重鎖CDR1の領域を示し、二重線は重鎖CDR2の領域を示し、波線は重鎖CDR3の領域を示す。 図7は下記実施例2において得られたIgA抗体の軽鎖アミノ酸配列およびそれをコードする塩基配列を示す。下線は軽鎖CDR1の領域を示し、二重線は軽鎖CDR2の領域を示し、波線は軽鎖CDR3の領域を示す。 図8は下記実施例2において得られたIgA抗体の軽鎖可変領域のアミノ酸配列およびそれをコードする塩基配列を示す。下線は軽鎖CDR1の領域を示し、二重線は軽鎖CDR2の領域を示し、波線は軽鎖CDR3の領域を示す。 図9は下記実施例3で行ったタンパク質マイクロアレイの結果をヒートマップにて示す。本発明に係る抗体、抗体医薬として公知の抗体、および、市販抗体を用いて、各コロナウイルス由来のタンパク質に対する結合能を評価した。「新型」はSARS-CoV-2を示し、「SARS」はSARS-CoVを示し、「MERS」は中東呼吸器症候群(Middle East Respiratory Syndrome)を示し、「OC43」はヒトコロナウイルスOC43(HCoV-OC43)を示し、「HKU1」はヒトコロナウイルスHKU1(HCoV-HKU1)を示し、「229E」はヒトコロナウイルス229E(HCoV-229E)を示し、「NL63」はヒトコロナウイルスNL63(HCoV-NL63)を示す。また、「HIG001697」および「HIG001697A1」は本発明に係る抗体を示す。 図10Aは、下記実施例5で行ったヒトACE2タンパク質、SARS-CoV2のスパイクタンパク質(S1ドメインのRBD領域もしくはS1ドメインおよびS2ドメインを含む三量体(トリマー))、および、各抗体を用いた競合ELISA法による抗体の結合阻害評価の結果より算出したIC50を示す表である。 図10Bは、下記実施例5で行ったヒトACE2タンパク質、SARS-CoV2のスパイクタンパク質(S1ドメインのRBD領域もしくはS1ドメインおよびS2ドメインを含む三量体(トリマー))、および、各抗体を用いた競合ELISA法による抗体の結合阻害評価の結果より算出したIC50を示す表である。 図11は、下記実施例6-1で行ったシュードウイルスを用いた中和活性評価1の結果のうち、ABT#03985抗体のシュードウイルスに対する感染阻害率を示すグラフである。 図12は、下記実施例6-1で行ったシュードウイルスを用いた中和活性評価1の結果のうち、ABT#04348抗体のシュードウイルスに対する感染阻害率を示すグラフである。 図13は、下記実施例6-1で行ったシュードウイルスを用いた中和活性評価1の結果のうち、HIG001697A1抗体のシュードウイルスに対する感染阻害率を示すグラフである。 図14は、下記実施例6-1で行ったシュードウイルスを用いた中和活性評価1の結果のうち、HIG001697抗体のシュードウイルスに対する感染阻害率を示すグラフである。
 本発明の一態様は、配列番号1のアミノ酸配列からなる重鎖CDR1、配列番号2のアミノ酸配列からなる重鎖CDR2、配列番号3のアミノ酸配列からなる重鎖CDR3、配列番号4のアミノ酸配列からなる軽鎖CDR1、配列番号5のアミノ酸配列からなる軽鎖CDR2、および、配列番号6のアミノ酸配列からなる軽鎖CDR3を有する抗体であって、SARS-CoV-2のS1サブユニットの受容体結合ドメイン(RBD)に結合する、抗体またはその抗体フラグメントを提供する。
 本明細書において「SARS-CoV(Severe acute respiratory syndrome coronavirus)」および「SARS-CoV-2(severe acute respiratory syndrome coronavirus 2)」は、SARS関連コロナウイルス(Severe acute respiratory syndrome-related coronavirus)に属するコロナウイルスであり、エンベロープを持つ一本鎖プラス鎖RNAウイルスである。「SARS-CoV」は急性呼吸器症候群 (Severe acute respiratory syndrome = SARS) の病原体ウイルスである。また、「SARS-CoV-2」は新型コロナウイルス感染症であるCOVID-19の病原体ウイルスである。
 SARS-CoV およびSARS-CoV-2はスパイク(S)タンパク質、ヌクレオカプシド(N)タンパク質、膜(M)タンパク質、エンベロープ(E)タンパク質の4つの主要な構造タンパク質を有する。スパイクタンパク質は、2つのサブユニット、S1サブユニットおよびS2サブユニットからなるI型膜貫通型タンパク質であり、S1サブユニットは細胞表面の受容体を認識する受容体結合ドメイン(RBD)を含む。
 本発明に係る抗体またはその抗体フラグメントは、SARS-CoV-2のスパイクタンパク質細胞外ドメインであるS1サブユニットの受容体結合ドメイン(RBD)に結合する。よって、本発明の抗体またはその抗体フラグメントが結合するS1サブユニットの受容体結合ドメイン(RBD)を有する限り、「SARS-CoV」または「SARS-CoV-2」の変異株や野生型(武漢株)または当該変異株から将来的に発生しうる変異株に対しても、本発明に係る抗体またはその抗体フラグメントは特異的に結合することができる。このような変異株としては、以下に限定されないが例えば、B.1.1.7系統の変異株(Alpha株)、B.1.351系統の変異株(Beta株)、P.1系統の変異株(Gammaガンマ株)、B.1.617.2系統の変異株(Delta株)、B.1.427/B.1.429系統の変異株(Epsilon株)、P.3系統の変異株(Theta株)、B.1.617.1系統の変異株(Kappa株)、B.1.1.529系統の変異株(Omicron(オミクロン)株)、BA.2系統の変異株(Omicron(オミクロン)株)、BA.3系統の変異株(Omicron(オミクロン)株)、BA.4/BA.5系統の変異株(Omicron(オミクロン)株)を挙げることができる。SARS-CoV-2の変異株の情報は、例えばWorld Health Organizationのウェブサイト(https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/)やCoVariants(https://covariants.org/)から入手することができる。すなわち、本発明に係る抗体またはその抗体フラグメントは一実施の形態において、武漢株、Alpha株、Beta株、Gamma株、Delta株、Epsilon株、Theta株、Kappa株、および、Omicron株からなる群より選択される少なくとも1つの株由来のスパイクタンパク質細胞外ドメインであるS1サブユニットの受容体結合ドメイン(RBD)に特異的に結合する。なお武漢株、Alpha株、Beta株、Gamma株、Delta株、Epsilon株、Theta株、Kappa株、および、Omicron株からなる群より選択される少なくとも1つの株には、当該群から1~9つの株を選択する場合の全ての組み合わせが含まれる。好ましい実施の形態において、本発明に係る抗体またはその抗体フラグメントは武漢株、Alpha株、Beta株、Gamma株、Delta株、Epsilon株、Theta株、Kappa株、および、Omicron株由来のスパイクタンパク質細胞外ドメインであるS1サブユニットの受容体結合ドメイン(RBD)の全てに特異的に結合する。
 また本発明に係る抗体またはその抗体フラグメントは一実施の形態において、SARS-CoV-2の武漢株、Alpha株、Beta株、Gamma株、Delta株、Epsilon株、Theta株、Kappa株、および、Omicron株からなる群より選択される少なくとも1つの株に特異的に結合する。好ましい実施の形態において、本発明に係る抗体またはその抗体フラグメントは武漢株、Alpha株、Beta株、Gamma株、Delta株、Epsilon株、Theta株、Kappa株、および、Omicron株の全てに特異的に結合する。
 なお一実施の形態において、本発明の抗体またはその抗体フラグメントが結合するS1サブユニットの受容体結合ドメイン(RBD)としては、配列番号7のアミノ酸配列からなるポリペプチド(野生型)、または、当該野生型のポリペプチドにおいて変異を有するポリペプチドを挙げることができる。配列番号7のアミノ酸配列からなるポリペプチドは、アクセッション番号YP_009724390で特定されるアミノ酸配列の319番目のアルギニン残基から541番目のフェニルアラニン残基までを含むポリペプチドである。
 本明細書において、当該野生型RBDのポリペプチドにおいて変異を有するポリペプチドとしては、例えばアクセッション番号YP_009724390で特定されるアミノ酸配列の319番目のアルギニン残基から541番目のフェニルアラニン残基までを含むポリペプチドであって、当該アミノ酸配列における339番目のグリシン残基、352番目のアラニン残基、370番目のアスパラギン残基、371番目のセリン残基、372番目のアラニン残基、373番目のセリン残基、375番目のセリン残基、376番目のスレオニン残基、395番目のバリン残基、405番目のアスパラギン残基、408番目のアルギニン残基、409番目のグルタミン残基、414番目のグルタミン残基、417番目のリシン残基、439番目のアスパラギン残基、440番目のアスパラギン残基、445番目のバリン残基、446番目のグリシン残基、452番目のロイシン残基、453番目のチロシン残基、445番目のロイシン残基、456番目のフェニルアラニン残基、458番目のリシン残基、475番目のアラニン残基、476番目のグリシン残基、477番目のセリン残基、478番目のトレオニン残基、481番目のアスパラギン残基、484番目のグルタミン酸残基、486番目のフェニルアラニン残基、487番目のアスパラギン残基、490番目のフェニルアラニン残基、493番目のグルタミン残基、496番目のグリシン残基、496番目のグルタミン残基、499番目のプロリン残基、501番目のアスパラギン残基、505番目のチロシン残基、520番目のアラニン残基、または、それらの組み合わせにおけるアミノ酸残基に相当するアミノ酸残基における置換変異(好ましくは、保存的置換)を有するポリペプチドを挙げることができる。
 なお本明細書においてアミノ酸の保存的置換とは、アミノ酸側鎖に関連のあるアミノ酸グループ内で生じる置換である。このようなアミノ酸置換としては、例えば、置換前のアミノ酸が非極性アミノ酸(アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)であれば他の非極性アミノ酸への置換、置換前のアミノ酸が非荷電性アミノ酸(グリシン、アスパラギン、グルタミン、システイン、セリン、スレオニン、チロシン)であれば他の非荷電性アミノ酸への置換、置換前のアミノ酸が酸性アミノ酸(アスパギン酸、グルタミン酸)であれば他の酸性アミノ酸への置換、および置換前のアミノ酸が塩基性アミノ酸(リジン、アルギニン、ヒスチジン)であれば他の塩基性アミノ酸への置換が挙げられる。その他の好適なアミノ酸グループ間での置換は次のとおりである:脂肪族ヒドロキシグループ(セリンおよびスレオニン)、アミド含有グループ(アスパラギおよびグルタミン)、脂肪族グループ(アラニン、バリン、ロイシンおよびイソロイシン)、並びに、芳香族グループ(フェニルアラニン、トリプトファンおよびチロシン)。このような酸置換は元のアミノ酸配列を有する物質の特性を低下させない範囲で行うのが好ましい。
 上記に列挙する野生型RBDのポリペプチドにおいて変異を有するポリペプチドのさらなる具体例としては、例えばアクセッション番号YP_009724390で特定されるアミノ酸配列の319番目のアルギニン残基から541番目のフェニルアラニン残基までを含むポリペプチドであって、当該アミノ酸配列におけるG339D、A352S、N370S、S371L、A372T、S373P、S375F、T376A、V395I、D405N、R408S、Q409E、Q414R、K417T、K417N、N439K、N440K、V445F、G446S、G446V、L452R 、Y453F、L455F、F456E、F456L、K458Q、A475V、G476S、S477I、S477N、T478K、N481D、E484K、E484Q、F486S、N487R、F490L、Q493R、G496S、Q498R、P499R、N501Y、Y505C、Y505H、A520V、E484KおよびN501Yの二重変異、L452RおよびE484Qの二重変異、L452RおよびT478Kの二重変異、K417NとE484KとN501Yとの三重変異、K417TとE484KとN501Yとの三重変異、または、それらの組み合わせの変異に相当する変異を有するポリペプチドを挙げることができる。なお、例えばP337Sは、特定のアミノ酸配列における337番目のプロリンがシステインに置換していることを示す。
 しかしながら、本発明に係る抗体またはその抗体フラグメントが結合しうるRBDの野生型ポリペプチドにおいて変異を有するポリペプチドは、上記に列挙するポリペプチドに限定されない。
 抗体の結合評価は、タンパク質マイクロアレイ、ELISAやBiacore(登録商標)アッセイなど公知の技術により測定および評価することができる。より具体的には、下記実施例2に示すように、タンパク質マイクロアレイにより抗体の結合能を評価することができる。
 また抗体の中和活性評価は、例えば、下記実施例6~8に示すように、ACE2発現細胞に対するシュードウイルス(エンベロープタンパク質にコロナウイルスのS糖タンパク質を持つレンチウイルス)またはSARS-CoV-2の感染に対する抗体の感染阻害作用を測定することで評価することができる。
 本明細書において「抗体」とは、主としてヒト抗体、マウス抗体、ヒト化抗体、ヒト抗体と他の哺乳動物の抗体とのキメラ抗体、およびマウス抗体と他の哺乳動物の抗体とのキメラ抗体のことをいう。しかしながら、SARS-CoV-2のスパイクタンパク質細胞外ドメインに特異的に結合する性質を有するものである限り、これらに限定されるものではなく、また、抗体の動物種にも特に制限はない。好ましい実施の形態において、本発明の抗体またはその抗体フラグメントは、ヒト抗体またはその抗体フラグメントである。
 また本明細書において「天然ヒト抗体」とは、新型コロナウイルス感染から回復したヒト個体内から得られた抗体をコードする塩基配列情報を基に、遺伝子工学技術を用いて構築および産生した抗体をいう。
 本明細書における「抗体」には、2本の免疫グロブリン軽鎖と2本の免疫グロブリン重鎖の計4本のポリペプチド鎖からなる基本構造を有するものに加えて、以下の公知の構造を有する抗体も含む:
(1)1本の免疫グロブリン軽鎖と1本の免疫グロブリン重鎖の計2本のポリペプチド鎖からなる抗体、
(2)免疫グロブリン軽鎖のC末端側にリンカー配列を有し、当該リンカー配列のC末端側に免疫グロブリン重鎖を結合させてなる一本鎖抗体、
(3)免疫グロブリン重鎖のC末端側にリンカー配列を有し、当該リンカー配列のC末端側に免疫グロブリン軽鎖を結合させてなる一本鎖抗体、
(4)Fab領域からなるFab抗体およびFab領域とヒンジ部の全部若しくは一部とからなるF(ab’)抗体、および、F(ab’)抗体
(5)Fab,F(ab’)またはF(ab’)を構成する軽鎖と重鎖を、リンカー配列を介して結合させて一本鎖抗体としたscFab,scF(ab’),およびscF(ab’)抗体
 なお一本鎖抗体を作製するためのリンカー配列は、作製された一本鎖抗体がSARS-CoV-2のスパイクタンパク質細胞外ドメインに対する特異的な親和性を有する限り限定されない。このようなリンカー配列としては、以下に限定されないが、例えば2~50個のアミノ酸残基から構成されるペプチド鎖(好ましくは、グリシンのみまたはグリシンとセリンから構成されるペプチド鎖)を挙げることができる。
 「抗体フラグメント」は、SARS-CoV-2のスパイクタンパク質細胞外ドメインに対する特異的な親和性の少なくとも一部を保持している抗原結合性断片のことをいう。結合性断片の例としては,例えば上記(4)および(5)に示されるものを挙げるこができる。またFab,Fab’,F(ab’),可変領域(Fv),重鎖可変領域(V)と軽鎖可変領域(V)とを適当なリンカーで連結させた一本鎖抗体(scFv),重鎖可変領域(V)と軽鎖可変領域(V)を含むポリペプチドの二量体であるダイアボディ、scFvの重鎖(H鎖)に定常領域の一部(C3)が結合したものの二量体であるミニボディ、その他の低分子化抗体等を含む。その他、本発明の抗体を適当な酵素で処理して得たもの、遺伝子工学的に改変された抗体遺伝子を用いて適当な宿主細胞において産生された蛋白質も含む。しかしながら、抗体フラグメントは、SARS-CoV-2のスパイクタンパク質細胞外ドメインに対する特異的な親和性を有する限りこれらの分子に限定されない。
  抗体にはIgG、IgM、IgA、IgDおよびIgEの5つのクラス、ならびに、IgG1、IgG2、IgG3、IgG4、IgA1、IgA2のサブクラスが存在する。本発明に係る抗体またはその抗体フラグメントは、配列番号1~6で表されるCDRのいずれか(いずれかの組み合わせもしくは全て)を有し、かつ、SARS-CoV-2のスパイクタンパク質細胞外ドメインに対する特異的な親和性を有する限り、抗体のクラスおよびサブクラスは限定されない。
 なお本発明に係る抗体またはその抗体フラグメントの好ましい実施の形態は、IgG抗体もしくはIgA抗体、または、それらの抗体フラグメントである。IgG抗体とすることで、抗体の安定性が増強することとなり好ましい。またIgA抗体とすることで、生体の一次防御機能に着目した用途に好適に用いることができる。一次防御機能に着目した用途としては、以下に限定されないが、例えば生体の局所(目または鼻)への投与によるSARS-CoV-2の感染予防、ならびに/または、COVID-19の発症予防および/もしくは治療の用途を挙げることができる。
 また本発明に係る抗体またはその抗体フラグメントがIgA抗体である場合、単量体であってもよく、または、二量体、三量体、四量体などの多量体であってもよい。本明細書においてIgA抗体というときこれらの多量体を含む。好ましい実施の形態において、IgA抗体は二量体である。
 本明細書における「CDR」とは、相補性決定領域(Complemetarity deterring region)を意味する。抗体分子の重鎖および軽鎖にはそれぞれ3箇所のCDRがあることが知られている。CDRは、超可変領域(hypervariable domain)とも呼ばれ、抗体の重鎖および軽鎖の可変領域内にあって、一次構造の変異性が特に高い部位であり、重鎖および軽鎖のポリペプチド鎖の一次構造上において、それぞれ3ヶ所に分離している。本明細書中においては、抗体のCDRについて、重鎖のCDRを重鎖アミノ酸配列のアミノ末端側から重鎖CDR1、重鎖CDR2、重鎖CDR3と表記し、軽鎖のCDRを軽鎖アミノ酸配列のアミノ末端側から軽鎖CDR1、軽鎖CDR2、軽鎖CDR3と表記する。これらの部位は立体構造の上で相互に近接し、結合する抗原に対する特異性を決定している。
 上述するように、本発明に係る抗体またはその抗体フラグメントにおける重鎖CDR1は配列番号1のアミノ酸配列からなり;重鎖CDR2は配列番号2のアミノ酸配列からなり;重鎖CDR3は配列番号3のアミノ酸配列からなる。また、本発明に係る抗体またはその抗体フラグメントにおける軽鎖CDR1は配列番号4のアミノ酸配列からなり;軽鎖CDR2は配列番号5のアミノ酸配列からなり;軽鎖CDR3は配列番号6のアミノ酸配列からなる。
 また本発明の抗体またはその抗体フラグメントにおいて「重鎖」(H鎖:Heavy Chain)は、IgG、IgM、IgA、IgD、IgEのクラスに対応したIgγ、Igμ、Igα、Igδ、Igεの構造、および、またサブクラスに対応するIgγ1、Igγ2、Igγ3、Igγ4、Igα1、Igα2の構造を取りうる。好ましい実施の形態において本発明の抗体はIgG抗体またはIgA抗体であり、重鎖はIgα1、および/または、Igα2である。
 一実施の形態において、本発明に係る抗体またはその抗体フラグメントの重鎖はIgG抗体の構造を取り、下記(a)~(c)からなる群から選択されるいずれかのアミノ酸配列からなる重鎖可変領域を含む:
(a)配列番号8のアミノ酸配列、
(b)前記(a)の配列において各CDR配列以外のフレームワーク領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
(c)前記(a)の配列における各CDR配列以外のフレームワーク領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列
 なお、上記(b)または上記(c)で特定するアミノ酸配列からなる重鎖可変領域は、上記(a)配列番号8のアミノ酸配列からなる重鎖可変領域が有するSARS-CoV-2のS1サブユニットの受容体結合ドメイン(RBD)に対する親和性を維持するものである。
 また好ましい一実施の形態において、本発明に係る抗体またはその抗体フラグメントの重鎖は、IgG抗体の構造を取り、下記(a’)~(c’)からなる群から選択されるいずれかのアミノ酸配列からなる:
(a’)配列番号10のアミノ酸配列、
(b’)前記(a’)の配列において各CDR配列以外のフレームワーク領域および定常領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
(c’)前記(a’)の配列における各CDR配列以外のフレームワーク領域および定常領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列
なお、上記(b’)または上記(c’)で特定するアミノ酸配列からなる重鎖可変領域は、上記(a’)配列番号10のアミノ酸配列からなる重鎖可変領域が有するSARS-CoV-2のS1サブユニットの受容体結合ドメイン(RBD)に対する親和性を維持するものである。
 また一実施の形態において、本発明に係る抗体またはその抗体フラグメントの重鎖はIgA抗体の構造を取り、下記(a’’)~(c’’)からなる群から選択されるいずれかのアミノ酸配列からなる重鎖可変領域を含む:
(a’’)配列番号29のアミノ酸配列、
(b’’)前記(a’’)の配列において各CDR配列以外のフレームワーク領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
(c’’)前記(a’’)の配列における各CDR配列以外のフレームワーク領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列
 なお、上記(b’’)または上記(c’’)で特定するアミノ酸配列からなる重鎖可変領域は、上記(a’’)配列番号29のアミノ酸配列からなる重鎖可変領域が有するSARS-CoV-2のS1サブユニットの受容体結合ドメイン(RBD)に対する親和性を維持するものである。
 また好ましい一実施の形態において、本発明に係る抗体またはその抗体フラグメントの重鎖は、IgA抗体の構造を取り、下記(a’’’)~(c’’’)からなる群から選択されるいずれかのアミノ酸配列からなる:
(a’’’)配列番号30のアミノ酸配列、
(b’’’)前記(a’’’)の配列において各CDR配列以外のフレームワーク領域および定常領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
(c’’’)前記(a’’’)の配列における各CDR配列以外のフレームワーク領域および定常領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列
なお、上記(b’’’)または上記(c’’’)で特定するアミノ酸配列からなる重鎖可変領域は、上記(a’’’)配列番号30のアミノ酸配列からなる重鎖可変領域が有するSARS-CoV-2のS1サブユニットの受容体結合ドメイン(RBD)に対する親和性を維持するものである。  
 本発明の抗体またはその抗体フラグメントにおいて「軽鎖」(L鎖:Light Chain)はIgλ、Igκの構造を取りうる。好ましい実施の形態において本発明の抗体はIgG抗体またはIgA抗体であり、軽鎖はIgκである。
 一実施の形態において、本発明に係る抗体またはその抗体フラグメントの軽鎖はIgG抗体の構造を取り、下記(d)~(f)からなる群から選択されるいずれかのアミノ酸配列からなる重鎖可変領域を含む:
(d)配列番号9のアミノ酸配列、
(e)前記(d)の配列において各CDR配列以外のフレームワーク領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
(f)前記(e)の配列における各CDR配列以外のフレームワーク領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列、
からなる群から選択されるアミノ酸配列からなる軽鎖可変領域
 なお、上記(e)または上記(f)で特定するアミノ酸配列からなる軽鎖可変領域は、上記(d)配列番号9のアミノ酸配列からなる軽鎖可変領域が有するSARS-CoV-2のS1サブユニットの受容体結合ドメイン(RBD)に対する親和性を維持するものである。
 また好ましい一実施の形態において、本発明に係る抗体またはその抗体フラグメントの軽鎖は、IgG抗体の構造を取り、下記(d’)~(f’)からなる群から選択されるいずれかのアミノ酸配列からなる:
(d’)配列番号11のアミノ酸配列、
(e’)前記(d’)の配列において各CDR配列以外のフレームワーク領域および定常領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
(f’)前記(d’)の配列における各CDR配列以外のフレームワーク領域および定常領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列
 なお、上記(e’)または上記(f’)で特定するアミノ酸配列からなる軽鎖可変領域は、上記(d’)配列番号11のアミノ酸配列からなる軽鎖可変領域が有するSARS-CoV-2のS1サブユニットの受容体結合ドメイン(RBD)に対する親和性を維持するものである。
 一実施の形態において、本発明に係る抗体またはその抗体フラグメントの軽鎖はIgA抗体の構造を取り、下記(d’’)~(f’’)からなる群から選択されるいずれかのアミノ酸配列からなる軽鎖可変領域を含む:
(d’’)配列番号31のアミノ酸配列、
(e’’)前記(d’’)の配列において各CDR配列以外のフレームワーク領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
(f’’)前記(e’’)の配列における各CDR配列以外のフレームワーク領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列、
からなる群から選択されるアミノ酸配列からなる軽鎖可変領域
 なお、上記(e’’)または上記(f’’)で特定するアミノ酸配列からなる軽鎖可変領域は、上記(d’’)配列番号31のアミノ酸配列からなる軽鎖可変領域が有するSARS-CoV-2のS1サブユニットの受容体結合ドメイン(RBD)に対する親和性を維持するものである。
 また好ましい一実施の形態において、本発明に係る抗体またはその抗体フラグメントの軽鎖は、IgA抗体の構造を取り、下記(d’’’)~(f’’’)からなる群から選択されるいずれかのアミノ酸配列からなる:
(d’’’)配列番号32のアミノ酸配列、
(e’’’)前記(d’’’)の配列において各CDR配列以外のフレームワーク領域および定常領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
(f’’’)前記(d’’’)の配列における各CDR配列以外のフレームワーク領域および定常領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列
 なお、上記(e’’’)または上記(f’’’)で特定するアミノ酸配列からなる軽鎖可変領域は、上記(d’’’)配列番号32のアミノ酸配列からなる軽鎖可変領域が有するSARS-CoV-2のS1サブユニットの受容体結合ドメイン(RBD)に対する親和性を維持するものである。
 ここで、特定のアミノ酸配列において各CDR配列以外のフレームワーク領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列とは、当該特定のアミノ酸配列と同一のCDRを有し、かつ、当該アミノ酸配列のフレームワーク領域にのみ変異を有するアミノ酸配列を意味する。フレームワーク領域におけるアミノ酸変異は、変異導入前のフレームワーク領域におけるアミノ酸配列に対して90%、91%、92%、93%、94%、95%、96%、97%、98%、または99%以上である。
 本明細書において示した「同一性」の数値はいずれも、当業者に公知の相同性検索プログラムを用いて算出される数値であればよく、例えばFASTA、BLAST等においてデフォルト(初期設定)のパラメータを用いることにより、容易に算出することができる。Blast algorithmは、インターネットでwww.ncbi.nlm.nih.gov/blastにアクセスすることによっても使用することができる。なお、本発明の抗体に係るヌクレオチド配列と他の抗体のヌクレオチド配列との間の相同性についてもBlast algorithmによって決定することができる。
 「数個のアミノ酸が欠失、置換または付加される」というとき、「数個」は1乃至50個、1乃至48個、1乃至40個、1乃至30個、1乃至23個、1乃至20個、1乃至10個、1乃至9個、1乃至8個、1乃至7個、1乃至6個、1乃至5個、1乃至4個、1乃至3個、または1若しくは2個を意味する。
 任意に導入されるアミノ酸の置換は、保存的置換であることが好ましい。
 本発明に係る抗体またはその抗体フラグメントは、SARS-CoV-2のスパイクタンパク質細胞外ドメインであるS1サブユニットの受容体結合ドメイン(RBD)に対して高い親和性を有する。好ましい実施の形態において、本発明に係る抗体またはその抗体フラグメントは、SARS-CoV-2のS1サブユニットの受容体結合ドメイン(RBD)に対する解離定数(KD)が20nM未満、より好ましくは5nM未満、2nM未満、1nM未満、さらに好ましくは0.1nM未満、0.05nM未満である。抗体またはその抗体フラグメントの解離定数は、下記実施例4に記載の方法に準じたBiacoreにより評価することができる。
 本発明の別の態様は、上記の本発明に係る抗体またはその抗体フラグメントを含む組成物を提供する。すなわち、当該組成物の一実施の形態は、配列番号1のアミノ酸配列からなる重鎖CDR1、配列番号2のアミノ酸配列からなる重鎖CDR2、配列番号3のアミノ酸配列からなる重鎖CDR3、配列番号4のアミノ酸配列からなる軽鎖CDR1、配列番号5のアミノ酸配列からなる軽鎖CDR2、および、配列番号6のアミノ酸配列からなる軽鎖CDR3を有する抗体であって、SARS-CoV-2のスパイクタンパク質細胞外ドメインにおけるS1サブユニットに結合する、抗体またはその抗体フラグメントを含む組成物である。好ましい実施の形態において、当該組成物に含まれる抗体またはその抗体フラグメントは、ヒトACE受容体の細胞外ドメインとSARS-CoV-2のスパイクタンパク質の細胞外ドメインとの結合に競合するものである。
 本発明に係る組成物は、SARS-CoV-2の感染を予防するために用いるフィルタ、スプレー、マスクなどを構成する要素(成分)や化粧品の成分として用いることができる。フィルタは以下に限定されないが例えば空気清浄器やエアコンディショナ用のフィルタを挙げることができる。
 また本発明の一態様は、上記の本発明に係る抗体またはその抗体フラグメントを含む組成物を空気中に徐放、噴霧、または散布する方法も含む。すなわち、本発明に係る組成物(液状の組成物であることが好ましい)は空気中(室内などの密閉空間または室外などの開放された空間)に徐放、噴霧、または散布して用いることができる。本発明に係る組成物を徐放、噴霧、または散布できる限り手段は限定されず、公知の手段(マイクロカプセルなど)や装置(加湿器など)や方法を採用することができる。以下に限定されないが、例えば加湿器用の水に本発明に係る組成物を含めることで空気の加湿とともに本発明に係る組成物を空気中に噴霧できる。よって、本発明に係る組成物は採用する手段、装置、方法に応じて、空気中への徐放、噴霧、または散布可能に適した形態で提供することができる(例えば、加湿器用水溶液)。
 さらに、本発明に係る組成物は飲食品用組成物、SARS-CoV-2検出用試薬、COVID-19診断薬、または、COVID-19の発症予防および/または治療のために用いられる医薬組成物として提供することもできる。
 本発明に係る組成物は上記抗体またはその抗体フラグメントに加えて、その用途に適した形態を採用し、好ましい成分を含むことができる。よって、組成物の形態は限定されず、水溶液、懸濁液または乳濁液などの液状であってもよいし、溶解、懸濁または乳濁して使用されるように、担体とともに固形(粉末状、凍結乾燥粉末状など)として提供することもできる。
 抗体またはその抗体フラグメントを溶解する溶剤としては、以下に限定されないが、例えば、生理食塩水、ブドウ糖溶液および等張液(例えば、塩化ナトリウム、塩化カリウム、グリセリン、マンニトール、ソルビトール、ホウ酸、ホウ砂、プロピレングリコール等の溶液)、注射用蒸留水、メタノール、エタノール、プロパノール、イソプロパノールなどの有機溶剤を挙げることができる。
 組成物に用いることができる担体としては、以下に限定されないが、例えば、安定剤、溶解補助剤、懸濁化剤、乳化剤、無痛化剤、緩衝剤、保存剤、防腐剤、pH調整剤および抗酸化剤等が挙げられる。安定剤としては、例えば、各種アミノ酸、アルブミン、グロブリン、ゼラチン、マンニトール、グルコース、デキストラン、エチレングリコール、プロピレングリコール、ポリエチレングリコール、アスコルビン酸、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、エデト酸ナトリウム、クエン酸ナトリウム、ジブチルヒドロキシトルエン等を用いることができる。溶解補助剤としては、例えば、アルコール(例えば、エタノール等)、ポリアルコール(例えば、プロピレングリコール、ポリエチレングリコール等)、非イオン性界面活性剤(例えば、ポリソルベート20(登録商標)、ポリソルベート80(登録商標)、HCO-50等)等を用いることができる。懸濁化剤としては、例えば、モノステアリン酸グリセリン、モノステアリン酸アルミニウム、メチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ラウリル硫酸ナトリウム等を用いることができる。乳化剤としては、例えば、アラビアゴム、アルギン酸ナトリウム、トラガント等を用いることができる。無痛化剤としては、例えば、ベンジルアルコール、クロロブタノール、ソルビトール等を用いることができる。緩衝剤としては、例えば、リン酸緩衝液、酢酸緩衝液、ホウ酸緩衝液、炭酸緩衝液、クエン酸緩衝液、トリス緩衝液、グルタミン酸緩衝液、イプシロンアミノカプロン酸緩衝液等を用いることができる。保存剤としては、例えば、パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、パラオキシ安息香酸プロピル、パラオキシ安息香酸ブチル、クロロブタノール、ベンジルアルコール、塩化ベンザルコニウム、デヒドロ酢酸ナトリウム、エデト酸ナトリウム、ホウ酸、ホウ砂等を用いることができる。防腐剤としては、例えば、塩化ベンザルコニウム、パラオキシ安息香酸、クロロブタノール等を用いることができる。pH調整剤としては、例えば、塩酸、水酸化ナトリウム、リン酸、酢酸等を用いることができる。抗酸化剤として、例えば、(1)アスコルビン酸、システインハイドロクロライド、重硫酸ナトリウム、メタ重亜硫酸ナトリウム、亜硫酸ナトリウム等のような水溶性抗酸化剤、(2)アスコルビルパルミテート、ブチル化ハイドロキシアニソール、ブチル化ハイドロキシトルエン、レシチン、プロピルガレート、α-トコフェロール等のような油溶性抗酸化剤および(3)クエン酸、エチレンジアミン四酢酸、ソルビトール、酒石酸、リン酸等のような金属キレート剤等を用いることができる。
 本発明の組成物を化粧品、飲食品用組成物、および、医薬組成物など直接皮膚に接触させる、または、非経口投与もしくは経口投与される用途として提供する場合には、担体は薬学的に許容できる担体を用いる。薬学的に許容できる担体としては、例えば、上記に列挙する担体を挙げることができる。
 また本発明の組成物における抗体またはその抗体フラグメントの含有量は、用途に応じて所望の効果が得られる範囲とすればよい。以下に限定されないが、例えば、1μg/kg~1,000mg/kgすることができる。
 本発明は一態様として、上記の組成物を含む、SARS-CoV-2感染予防用スプレーを提供する。
 本発明のSARS-CoV-2感染予防用スプレーには、上記抗体またはその抗体フラグメントとそれらの溶剤を含む。よって、SARS-CoV-2感染が疑われる場所(以下に限定されないが、密閉した空間、解放されている空間、マスク、ドアノブ、机、吊革など)に噴霧して使用することができ、また手の消毒用として用いることができる。本発明のSARS-CoV-2感染予防用スプレーには、さらにその他の緩衝剤、塩、糖、添加剤(防腐剤、界面活性剤など)などを含むことができる。スプレーに用いることのできる溶剤や緩衝剤、塩、糖、添加剤などは抗体のSARS-CoV-2に対する親和性を阻害しない限り上記に列挙するものに加え、公知のものを用いることができる。一実施の形態においては、溶剤としてエタノールを用い、メチルパラベンなどの防腐剤、および、ポリソルベート80などの界面活性剤を添加して調製することができる。このようなスプレーは公知のスプレーの製造方法に準じて製造することができる。
 本発明は一態様として、上記の組成物を担持する基材を含む、フィルタを提供する。本発明のフィルタは例えば空気清浄機やマスクの素材など、空気中のSARS-CoV-2を捕捉する用途で用いることができる。
 基材としては、上記の抗体または抗体フラグメントを担持でき、かつ、SARS-CoV-2に対する親和性を阻害しない限り限定されない。例えば基材の素材として、ポリビニルアルコール繊維(例えばビニロン)、ポリエステル繊維(たとえばポリエチレンテレフタラート繊維)、ポリアミド繊維(たとえばナイロン6、ナイロン66などのナイロン、ポリアクリルアミド繊維等)、ポリオレフィン繊維(たとえばポリエチレン繊維、ポリプロピレン繊維等)、アクリル繊維、ポリウレタン繊維、セルロース繊維、セルロースエステル繊維などの合成繊維;綿、絹、ウール、レーヨンなどの天然繊維;および、再生繊維、ならびに、それらの混合材などが挙げられるが、これらに限定されない。また基材の形態は、フィルム、スパンボンド不織布、スパンレース不織布、ニードルパンチ不織布、メルトブロー不織布、フラッシュ紡糸不織布、サーマルボンド不織布、ケミカルボンド不織布、ステッチボンド不織布、および湿式抄紙不織布など不織布、あるいは織物、紙などシートの形態を成すものが挙げられる。また、基材の形態がシート状である場合、その目付は特に限定されないが、例えば1μg/m~200mg/mとすることができる。
 抗体またはその抗体フラグメントを含む組成物を基材に担持させる方法は、基材に抗体を担持できる限りにおいて限定されないが、例えば抗体含有溶液(液状組成物)を基材に噴霧する方法や、基材を適当な濃度の抗体含有溶液(液状組成物)に含浸し、適当な温度および時間で乾燥する方法を挙げることができる。基材を抗体含有溶液に含侵して抗体を担持させる方法は、例えば特開2010-131537などを参照して行うことができる。
 また、基材表面にアルデヒド基などの官能基を導入し、抗体と官能基とを共有結合させる方法や抗体のFc部分に選択的に結合する分子(Fcレセプター、プロテインA/Gなど)を担体表面に導入し抗体を結合させる方法、リンカーを介して抗体を基材に担持させてもよい。これらの方法は例えば特開2009-023985や特開2012-187145などを参照して行うことができる。
 本発明は一態様として、上記のフィルタを含む、SARS-CoV-2感染予防または拡散防止用マスクを提供する。本発明のSARS-CoV-2感染予防または拡散防止用マスクは、上記フィルタを備えることで空気中のSARS-CoV-2を捕捉し体内へ侵入すること、または、SARS関連コロナウイルスに感染した対象からの呼気に含まれるSARS-CoV-2を捕捉し体外(もしくは空気中)へ放出することを防ぐ。
 マスクの形態は限定されず、好ましくは口腔用マスクや鼻腔用マスクとすることができる。よって、本発明のSARS-CoV-2感染予防用マスクは呼気または吸気に含まれるSARS-CoV-2が捕捉できるようにマスク内に上記フィルタを備えていればよい。このようなマスクは公知の方法により製造することができる。
 本発明は一態様として、上記の抗体またはその抗体フラグメントを含む、飲食品用組成物を提供する。本発明の飲食品用組成物はSARS-CoV-2に親和性を有する抗体またはその抗体フラグメントを含むため、体内に取り込まれたSARS-CoV-2が食道や胃、腸などにおいて細胞内へ侵入することを抑制する。よって、本発明の飲食品用組成物は一実施の形態において、SARS-CoV-2に対する感染予防のための食品用組成物として提供することができる。
  飲食品用組成物の形態としては、液状、ペースト状、ゲル状固体、粉末等の形態を問わず、例えば、栄養補助食品(サプリメント)、錠菓;流動食(経管摂取用栄養食);パン、マカロニ、スパゲッティ、めん類、ケーキミックス、から揚げ粉、パン粉等の小麦粉製品;即席めん、カップめん、レトルト・調理食品、調理缶詰め、電子レンジ食品、即席スープ・シチュー、即席みそ汁・吸い物、スープ缶詰め、フリーズ・ドライ食品、その他の即席食品等の即席食品類;農産缶詰め、果実缶詰め、ジャム・マーマレード類、漬物、煮豆類、農産乾物類、シリアル(穀物加工品)等の農産加工品;水産缶詰め、魚肉ハム・ソーセージ、水産練り製品、水産珍味類、つくだ煮類等の水産加工品;畜産缶詰め・ペースト類、畜肉ハム・ソーセージ等の畜産加工品;加工乳、乳飲料、ヨーグルト類、乳酸菌飲料類、チーズ、アイスクリーム類、調製粉乳類、クリーム、その他の乳製品等の乳・乳製品;バター、マーガリン類、植物油等の油脂類;しょうゆ、みそ、ソース類、トマト加工調味料、みりん類、食酢類等の基礎調味料;調理ミックス、カレーの素類、たれ類、ドレッシング類、めんつゆ類、スパイス類、その他の複合調味料等の複合調味料・食品類;素材冷凍食品、半調理冷凍食品、調理済冷凍食品等の冷凍食品;キャラメル、キャンディー、チューインガム、チョコレート、クッキー、ビスケット、ケーキ、パイ、スナック、クラッカー、和菓子、米菓子、豆菓子、デザート菓子、ゼリー、その他の菓子などの菓子類;炭酸飲料、天然果汁、果汁飲料、果汁入り清涼飲料、果肉飲料、果粒入り果実飲料、野菜系飲料、豆乳、豆乳飲料、コーヒー飲料、お茶飲料、粉末飲料、濃縮飲料、スポーツ飲料、栄養飲料、アルコール飲料、その他の嗜好飲料等の嗜好飲料類、ベビーフード、ふりかけ、お茶漬けのり等のその他の市販食品等;育児用調製粉乳;経腸栄養食;機能性食品(特定保健用食品、栄養機能食品)等が挙げられる。その他、飲食品の製造に通常用いられる食品用添加物(増粘安定剤、ゲル化剤、乳化剤、保存料、膨張剤、甘味料、着色料、香料など)を含んでいてもよい。
 また本発明の飲食品用組成物中に含まれる抗体またはその抗体フラグメントの含有量は、その形態に応じた所望の効果が得られる範囲とすればよい。以下に限定されないが、例えば、1μg /kg~1,000mg/kgとすることができる。このような飲食品用組成物は公知の方法に準じて製造することができる。
 本発明は一態様として、上記の抗体またはその抗体フラグメントを含む、化粧品を提供する。本発明の化粧品は化粧品本来の身体を清潔にする、または、見た目を美しくする目的に加えて、皮膚に付着したSARS-CoV-2が粘膜等を介して体内(細胞内)へ侵入することを抑制する。
 化粧品の形態は限定されず、例えば、化粧水、美容液、乳液、クリーム、洗顔料、パック、身体用洗浄料、シャンプー、リンス、トリートメント、コンディショナー、ヘアローション、ヘアトニック、ヘアオイル、ヘアクリーム、ヘアワックス、ヘアフォーム、ジェル、グリース、ポマード、チック、ヘアスプレー、ヘアウォーター、ヘアミスト、染毛剤、着色剤、脱色剤、マスカラ、眉マスカラ、アイブロウ等の形態とすることができる。
 また本発明の化粧品中に含まれる抗体またはその抗体フラグメントの含有量は、その形態に応じた所望の効果が得られる範囲とすればよい。以下に限定されないが、例えば、0.1ng/ml~100mg/mlとすることができる。このような化粧品は公知の方法に準じて製造することができる。
 本発明は一態様として、上記の抗体またはその抗体フラグメントを含む、SARS-CoV-2検出用試薬、および、COVID-19診断薬を提供する。
 本発明の抗体またはその抗体フラグメントを用いてSARS-CoV-2を免疫学的に測定する方法としては、以下に限定されないが例えば、エンザイムイムノアッセイ((以下、EIAまたはELISA)、化学発光酵素免疫測定法(CLEIA)、化学発光免疫測定法(CLIA)、蛍光抗体法(FAT)、蛍光酵素免疫測定法(FEIA)、電気化学発光免疫測定法(ECLIA)、放射免疫測定法(RIA)、イムノクロマト法、凝集法、競合法等など公知の手法を採用することができる。本発明のSARS-CoV-2検出用試薬に用いる抗体またはその抗体フラグメントは、測定方法に準じて標識したものであってもよい。
 SARS-CoV-2の検出対象となる検体は、特に限定されず生体由来の試料であってもよく、環境由来の試料であってもよい。水性の検体が好ましく、例えば、血液(全血、血漿、血清等)、尿、組織液、リンパ液、関節液、乳汁、脳脊髄液、膿、唾液、涙液、粘液、鼻水、痰、腹水、用水、精液などの体液、また、鼻腔、気管支、肺、皮膚、腹腔、各種臓器、関節、骨などを洗浄した後の洗浄液、あるいは、細胞培養上清、またはカラム溶出液、下水試料等が挙げられる。これらの試料は、そのまま、あるいは各種緩衝液等で希釈あるいは抽出後濃縮され、測定に用いることができる。
 また上記のような検体のいずれかを被験者から採取することで、当該被験者がCOVID-19に罹患しているか否かの判断を補助することができる。
 本発明の別の態様は、SARS-CoV-2に対する感染予防のために用いられる、上記の本発明に係る抗体またはその抗体を含む医薬組成物を提供する。
 本発明の抗体またはその抗体フラグメントを含む医薬組成物は、有効成分としての当該抗体またはその抗体フラグメントのみを含むものであってもよいが、通常は上記に列挙するような薬理学的に許容される1以上の担体と一緒に混合し、公知の方法により製造することができる。
 本発明の医薬組成物の投与経路は、治療に際して最も効果的なものを使用するのが望ましく、経口投与;鼻腔内、口腔内、気道内、直腸内などの経粘膜;皮下、筋肉内、静脈内などの非経口投与をあげることができる。投与形態としては、以下に限定されないが、例えば、噴霧剤、カプセル剤、錠剤、顆粒剤、シロップ剤、乳剤、座剤、注射剤、軟膏、テープ剤などがあげられる。
 経口投与に適当な製剤としては、乳剤、シロップ剤、カプセル剤、錠剤、散剤、顆粒剤などがあげられる。また非経口投与に適当な製剤としては、注射剤、座剤、噴霧剤などがあげられる。噴霧剤は抗体またはその抗体フラグメント自体、もしくは、対象者の口腔および気道粘膜を刺激せず、かつ抗体またはその抗体フラグメントを微細な粒子として分散させ吸収を容易にさせる担体などを用いて調製される。担体として具体的には乳糖、グリセリンなどが例示される。抗体またはその抗体フラグメントおよび用いる担体の性質により、エアロゾル、ドライパウダーなどの製剤が可能である。
  投与量または投与回数は、目的とする治療効果、投与方法、治療期間、年齢、体重などにより異なるが、例えば通常成人1日当たり1μg/kg~100mg/kgとすることができる。
 好ましい一実施の形態において、本発明に係る医薬組成物は、スプレー剤として、鼻腔または咽喉の呼吸気道内に投与される。投与に適したスプレー剤としては、特に制限されないが、エアロゾルとして噴霧する吸入エアロゾル型が好ましい。
 また本発明の別の態様は、上記抗体またはその抗体フラグメントの治療有効量を対象に対して投与する工程を含む、COVID-19の発症予防および/または治療方法を提供する。
 「対象」は、ヒト、またはヒトを除く哺乳動物(例えば、マウス、モルモット、ハムスター、ラット、ネズミ、ウサギ、ブタ、ヒツジ、ヤギ、ウシ、ウマ、ネコ、イヌ、マーモセット、サル、またはチンパンジー等の1種以上)を含む。また対象は、COVID-19を発症している、発症していた、または、発症の恐れがあると診断された患者であってもよい。
 本発明の別の態様は、本発明に係る抗体またはその抗体フラグメントをコードするポリヌクレオチドを提供する。また、本発明の別の態様は、上記の本発明に係るポリヌクレオチドを含有する発現ベクターを提供する。
 本発明のポリヌクレオチドは、配列番号1~3として特定する重鎖CDRまたは配列番号4~6として特定する軽鎖CDRを含む抗体またはその抗体フラグメントをコードする。
 本発明のポリヌクレオチドは一実施の形態において、IgG抗体の重鎖または軽鎖をコードするポリヌクレオチドであって重鎖をコードする配列番号12からなるポリヌクレオチド、または、軽鎖をコードする配列番号13からなるポリヌクレオチドである。また本発明のポリヌクレオチドは別の実施の形態において、IgA抗体の重鎖または軽鎖をコードするポリヌクレオチドであって重鎖をコードする配列番号33からなるポリヌクレオチド、または、軽鎖をコードする配列番号34からなるポリヌクレオチドである。
 また本発明のポリヌクレオチドは別の実施の形態において、IgG抗体の重鎖または軽鎖の可変領域をコードするポリヌクレオチドであって重鎖をコードする配列番号35からなるポリヌクレオチド、または、軽鎖をコードする配列番号36からなるポリヌクレオチドである。また本発明のポリヌクレオチドは別の実施の形態において、IgA抗体の重鎖または軽鎖の可変領域をコードするポリヌクレオチドであって重鎖をコードする配列番号37からなるポリヌクレオチド、または、軽鎖をコードする配列番号38からなるポリヌクレオチドである。
 このポリヌクレオチドまたは当該ポリペプチドを含むベクターを細胞に導入することによって、形質転換体を作製できる。上記ポリヌクレオチドまたはベクターは、抗SARS-CoV-2抗体を発現可能に構築されていてもよい。上記ポリヌクレオチドまたはベクターは、例えば、プロモーター、エンハンサー、複製開始点など、蛋白質発現に必要な構成要素、および、または抗生物質耐性遺伝子などのスクリーニング用の遺伝子を含むことができる。また上記ポリヌクレオチドまたはベクターは、異種由来の塩基配列を有していてもよい。異種由来の塩基配列は、例えば、ヒトおよびヒトを除く生物(例えば、細菌、古細菌、酵母、昆虫、鳥類、ウイルス、またはヒトを除く哺乳動物等)からなる群から選ばれる2種以上の生物由来の塩基配列を含んでいてもよい。
  上記のベクターとしては、宿主細胞におけるタンパク質発現を行うことができる限り限定されず、例えば大腸菌由来のプラスミド(例えばpET-Blue)、枯草菌由来のプラスミド(例えばpUB110)、酵母由来プラスミド(例えばpSH19)、動物細胞発現プラスミド(例えばpA1-11、pcDNA3.1-V5/His-TOPO、pcDNA 3.1 (-) Mammalian Expression Vector、pcDNA 3.1/Hygro(-) Mammalian Expression Vector)、λファージなどのバクテリオファージ、ウイルス由来のベクターなどを用いることができる。ベクターは発現ベクターであってもよく、環状であってもよい。
 本発明の別の態様は、上記の本発明に係る発現ベクターにより形質転換された宿主細胞を提供する。
 「宿主細胞」としては、ヒトまたはヒトを除く哺乳動物(例えば、ラット、マウス、モルモット、ウサギ、ウシ、サル等)の細胞であってもよい。哺乳動物細胞としては、例えば、チャイニーズハムスター卵巣細胞(CHO細胞)、サル細胞COS-7、ヒト胎児由来腎臓細胞(例えば、HEK293細胞)、哺乳動物細胞Expi293などが挙げられる。また宿主細胞はEscherichia属菌、酵母等であってもよい。
 上記のポリヌクレオチドまたはベクターを細胞へ導入する方法は公知であり、例えば、リン酸カルシウム法、リポフェクション法、エレクトロポレーション法、アデノウイルスによる方法、レトロウイルスによる方法、またはマイクロインジェクションなどを使用できる。細胞を用いた抗体の生産方法も公知であり、宿主細胞に適した培養条件にて細胞を培養することで抗体を産生させ、これを回収する。
 本発明の別の態様は、上記の本発明に係る宿主細胞を培養する工程と、当該工程で得られた培養物から目的の抗体を採取する工程とを含む、抗体の製造方法を提供する。また一実施の形態において抗体の製造方法は、細胞培養液を調製する工程を含んでいてもよく、また、抗SARS-CoV-2抗体を精製する工程を含むことができる。
 抗体の精製方法は公知であり、例えば、硫酸アンモニウム、エタノール沈殿、プロテインA、プロテインG、プロテインL、ゲルろ過クロマトグラフィー、陰イオン、陽イオン交換クロマトグラフィー、ホスホセルロースクロマトグラフィー、疎水性相互作用クロマトグラフィー、アフィニティークロマトグラフィー、ヒドロキシルアパタイトクロマトグラフィー、またはレクチンクロマトグラフィーなどを用いることができる。
 本明細書中で挙げたすべての特許、特許出願、及び出版物は、参照として本明細書中に組み込まれる。
 以下、本発明について実施例を用いて具体的に説明するが、本発明は以下の実施の形態に限定されない。
(実施例1.IgG抗体の回収およびCDR配列の特定)
1-1.検体収集
 新型コロナウイルスに感染し回復した84名のボランティアから提供された血液を用い、ヒト末梢血単核細胞(PBMC)を分離した。
1-2.ヒト末梢血単核細胞(PBMC)を用いたリンパ芽球様細胞株(LCL)の作製
 検体として収集したヒト末梢血単核細胞(PBMC: peripheral blood mononuclear cell)に含まれるB細胞を基にリンパ芽球様細胞株(LCL)を作製した。本来増殖能を有さないB細胞にヒトエプスタイン・バール・ウイルス(EBウイルス)を感染させ、増殖能を有するリンパ芽球様細胞株(LCL: lymphoblastoid cell line)に形質転換した。
 EBウイルスを感染させるためのEBウイルス溶液を以下のように調製した。B95-8細胞をRPMI培地(10 % FBS)で培養し、一回継代後、4~6 ×104 cells/mlの濃度で播種した。その後は培地交換を行わず、10~14日間培養を継続した。培養終了後、B95-8細胞培養液を400×g、10分間、室温の条件で遠心分離して培養上清を回収した。培養上清を0.45 μmのフィルタでろ過後、10,000 rpm、3時間、4℃の条件で遠心し、ウイルス画分を回収した。RPMI1640 (10%FBS)に再度溶解し、EBウイルス溶液とした。EBウイルス溶液は小分けし、使用するまで-80℃で保存した。
 PBMCを解凍後、細胞数を測定して1×106~107 cellsあたり100μLのEBウイルス溶液を添加し、37℃で30分間培養した。感染終了後、400×g、10分間、室温の条件で遠心分離し、上清を除去し、1回洗浄後、RPMI1640培地(20%FBS)に懸濁して培養を開始した。7~14日間培養後、増殖能を有するリンパ芽球様細胞株(LCL: lymphoblastoid cell line)を取得した。
1-3.抗His-tag抗体のAlexa Fluor 488標識
 Alexa Fluor 488 Antibody Labeling Kit(ThermoFisher Scientific、A20181)の操作手順に従い、抗His-tag抗体(abcam,Cat. ab9108)を標識した。
1-4.コロナウイルス抗原-Alexa Fluor 488の調製
 コロナウイルス抗原にはHis-tagが付与されているため、Alexa Fluor 488標識された抗His-tag抗体と反応させることで、コロナウイルス抗原-Alexa Fluor 488を調製した。具体的には、コロナウイルス抗原をソーティング溶液で100μg/mLに調製後、Alexa Fluor 488標識された抗His-tag抗体を15μg添加し,氷上で30分間インキュベートして調製した。
1-5.LCLのシングルセルソート
 蛍光標識した抗原を用いて目的のLCLをシングルセルソートした。具体的には、培養中のLCLをPBSで洗浄後、ソーティング溶液で2×107 cells/mLに調製した。表1に示す組合せで、1×106 cellsあたり抗原を5μg、抗IgA抗体(Bethyl,Cat. A80-202D5)を1μgずつ添加し、氷上で30分間インキュベートした。インキュベート終了後、PBSで2回洗浄し、ソーティング溶液に懸濁した。セルソーターMA900(SONY)を用いて、あらかじめ5μLの滅菌水を分注しておいたPCRプレートに抗原とIgAの双方が陽性の細胞を目的の細胞としてシングルセルソートした。なお、表1Aで示したコロナウイルス抗原の個別情報は表1B、表1Cに示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
1-7.LCLの抗体プロファイリング
(1)タンパク質マイクロアレイのブロッキング
 タンパク質マイクロアレイを100%エタノールに浸した後、10倍希釈したタンパク質マイクロアレイ専用最終洗浄液(10X) (福島プロテインファクトリー社製、 PA1210)(以下、最終洗浄液)へ浸した。その後、10倍希釈したタンパク質マイクロアレイ専用 solution A (10X) (福島プロテインファクトリー社製、PA1010)(以下「solution A」という。)へ浸した。
 前処理後、各タンパク質マイクロアレイを26℃のBlocking One (ナカライテスク, 03953-95)に浸し1時間振とうした。
(2)抗原・抗体反応
 一次抗体希釈溶液で20倍希釈したLCL由来培養上清を2 ml準備し、適量のヤギレファレンス抗体ミクスチャ(福島プロテインファクトリー、PA5010)を加え、LCL抗体溶液を作製した。2 mlのLCL抗体溶液をタンパク質マイクロアレイ用カセット(福島プロテインファクトリー、HC4-01-DE)(以下「カセット」という。)に全量加え、solution Aで十分に洗浄したタンパク質マイクロアレイをカセットに格納した。カセットを気相恒温器に入れ、37℃で17時間振とうし、1次抗体と反応させた。カセットからタンパク質マイクロアレイを取り出し、solution Aで十分に洗浄した。次に、ヒトイムノグロブリンの検出用抗体としてAlexa Fluor 647で蛍光標識したAlexa647標識抗ヒトIgA抗体と、レファレンス抗体の検出用としてCy3で蛍光標識したCy3標識抗ヤギIgG抗体を、2 mlの二次抗体希釈溶液に加え、撹拌後カセットに加えた。タンパク質マイクロアレイをカセットに格納後、気相恒温器に入れ、26℃で1時間振とうし、2次抗体と反応させた。1時間後、各カセットよりタンパク質マイクロアレイを取り出し、solution Aで洗浄した。その後、solution Aを洗浄するため、10倍希釈したタンパク質マイクロアレイ専用 solution B (10X) (福島プロテインファクトリー、PA1110)(以下、solution B)へ置換した。タンパク質マイクロアレイをsolution Bから最終洗浄液した後、遠心してタンパク質マイクロアレイより水分を除去した。
(3)検出および解析
 タンパク質マイクロアレイに搭載している各タンパク質に相当するスポットの蛍光強度をスキャナGenePix4000B(モレキュラーデバイスジャパン)によって測定し、生データを取得することで、網羅的な抗体の検出を行った。この取得された生データから底を2とした対数比に変換したデータ(以下「一次比」という。)を算出し、コンピュータ上での種々の解析に活用できるデータ集合体の構成要素とした。この作成した構成要素を単一の行列に統合し、データ集合体とした。さらに、このデータ集合体から、LCL由来培養上清中の抗体が結合するタンパク質群を、数学的手法(各種検定およびクラスタ分析等)により抽出した。
 なお、LCLの抗体プロファイリングに用いたタンパク質マイクロアレイは、微生物(アクチノマイセス科、アエロコッカス科、アエロモナス科、アルカリゲネス科、アルカリゲネス科、バシラス科、バクテロイデス科、ビフィドバクテリウム科、カンピロバクター科、クラミジア科、クロストリジウム科、コリネバクテリウム科、腸内細菌科、エンテロコッカス科、エリュシペロトリクス科、フラボバクテリウム科、フソバクテリウム科、ヘリコバクター科、ラクノスピラ科、乳酸桿菌科、レジオネラ科、マイクロコッカス科、モラクセラ科、マイコバクテリウム科、マイコプラスマ科、ナイセリア科、パスツレラ科、プレボテラ科、プロピオニバクテリウム科、シュードモナス科、ルミノコッカス科、スピロヘータ科、スフィンゴバクテリア科、ブドウ球菌科、レンサ球菌科、ビブリオ科、エルシニア科、コウジカビ科、デバリオマイセス科等に属する様々な微生物を含む)、原虫(アカントアメーバ科、エントアメーバ科、プラスモディウム科、トリコモナス科、トリパノソーマ科、ファールカンピア科等に属する様々な原虫を含む)、ウイルス(ヒトコロナウイルス、ブタコロナウイルス、ネココロナウイルス、ラットコロナウイルス、ヒトアデノウイルス、デングウイルス、ジカウイルス、ヒトヘルペスウイルス、インフルエンザウイルス、レスピロウイルス、ムンプスルブラウイルス、エンテロウイルス、ヒトライノウイルス、ロタウイルス、ラウス肉腫ウイルス等の各亜型を含む)アレルゲン(スズメバチ科、アリ科、ゴキブリ科、イエバエ科等の昆虫、ダニ、ミミガイ科、アカイカ科、クルマエビ科、タラバエビ科、カレイ科、サケ科、ケセンガニ科、マダコ科、タラ科、イタヤガイ科、サバ科、イガイ科、アカザエビ科等の魚介類、ウシ科、イノシシ科等の肉類、カモ科、キジ科等の鶏肉類、キジ科の卵、牛科の牛乳および乳製品、イヌ科、ネコ科、ウサギ科、ウシ科、ウマ科、ネズミ科、ハト科等の毛・上皮等、イネ科、アブラナ科、キク科、タデ科、アカザ科(ヒユ科アカザ亜科)、ヒユ科、ヒノキ科、ムクロジ科、ブナ科、カバノキ科、モクセイ科、ヤナギ科、マツ科等の花粉、ヒルガオ科、ナス科、ヤマノイモ科、ウリ科、バラ科、ミカン科、カキノキ科、マタタビ科、パイナップル科、バショウ科、ブドウ科、タマバリタケ科、ヒラタケ科、キクラゲ科、キシメジ科、シメジ科、トンビマイタケ科、イネ科、タデ科、セリ科、クルミ科、マメ科、アブラナ科、ヒガンバナ科等の食品、アオイ科、ウコギ科、イネ科、オオバコ科、キク科、キツネノマゴ科、クスノキ科、クマツヅラ科、ケシ科、シソ科、バラ科、マツ科、マメ科、モクセイ科等の木本・草木を含む)等の全タンパク質または特定のタンパク質の全長もしくは一部のフラグメント、ヒト由来のタンパク質の全長または一部のフラグメントをタンパク質マイクロアレイ搭載用に調製(福島プロテインファクトリー)したものを、カスタムアレイヤーVSA-Print 125T.2(マイクロダイアグノスティック)でスライドガラス上にアレイ化したものを用いた。
1-8.有用な抗体遺伝子のクローニング
(1)シングルセルからのcDNA合成
 「1-6.LCLのシングルセルソート」で分取したシングルセルであって、「1-7.LCLの抗体プロファイリング」にてSARS-CoV-2のS1サブユニットに結合すると判断されたシングルセルに対して、細胞溶解液10X Lysis Buffer(TaKaRa、Cat.635013)およびRNasin Ribonuclease Inhibitors(Promega、Cat.N2515)を加えて、RNAを抽出した。5’末端側に任意の配列を付加したオリゴ(dT)プライマー(5’- GCGGCTGAAGACGGCCTATGTGGCCTTTTTTTTTTTTTTTTT -3’:配列番号14)を用い、SMARTScribe Reverse Transcriptase(TaKaRa、Cat.Z9538N)を用いた逆転写反応に、5’末端側に結合できるようなアダプターオリゴを加えて、cDNA合成を行った。なお、5’末端側に結合できるようなアダプターオリゴは、5’- AAGCAGTGGTATCAACGCAGAGTACGCGGG -3’(配列番号15)という配列でLNA-RNA-DNAキメラオリゴとして合成した。合成したcDNAを鋳型として、5'末端と3'末端にそれぞれ付加した配列を用いて設計したPrimer、すなわち1stPCR_FW primer(5’- AAGCAGTGGTATCAACGCAGAGTAC -3’ :配列番号16)および1stPCR_RV primer(5’- GCGGCTGAAGACGGCCTATGT -3’ :配列番号17)ならびにPrimeSTAR GXL DNA Polymerase (TaKaRa、Cat. R050B )を用いて1st PCRを行い、抗体産生細胞で発現している全てのRNAを増幅させた。
(2)抗体遺伝子の検出
 定常領域を特異的に増幅できるように設計したPrimer、すなわち、Real-time PCR_IgG_FW primer(5’- CCCCATCGAGAAAACCATCTC -3’ :配列番号18)、Real-time PCR_IgG_RV primer(5’- GTCGCTGGGATAGAAGCCTTT -3’ :配列番号19)、Real-time PCR_Ig-K_FW primer(5’- TCTGGAACTGCCTCTGTTGTGT -3’ :配列番号20)、Real-time PCR_Ig-K_RV primer(5’- CTGGGAGTTACCCGATTGGA -3’ :配列番号21)、Real-time PCR_Ig-L_FW primer(5’- CCCTCCAAACAAAGCAACAAC -3’:配列番号22)、Real-time PCR_Ig-L_RV primer(5’- CAGCTGTAGCTTCTGTGGGACTT -3’:配列番号23)を用い、(1)で増幅させた1st PCR産物を鋳型にして、Fast SYBR Green Master Mix(Thermo, Cat.4385614)を用いてリアルタイムPCRで抗体遺伝子の検出を行った。検出結果から、H鎖のアイソタイプとL鎖のタイプを同定した。
(3)全長抗体遺伝子フラグメントの取得
 1st PCR産物を鋳型として、各抗体遺伝子の全長が増幅できるように定常領域の終始コドン付近に設計したPrimerとcDNA合成で5’末端側に結合させたオリゴの配列を使って設計したPrimer、すなわち、2ndPCR_FW primer(5’- ACGGGCCCTCTAGACAAGCAGTGGTATCAACGC -3’ :配列番号24)、2ndPCR_IgG_RV primer(5’- TTACCCGGAGACAGGGAGAGG -3’:配列番号25)、2ndPCR_Ig-K_RV primer(5’- CCTGTTGAAGCTCTTTGTGACG -3’:配列番号26)、2ndPCR_Ig-L_RV primer(5’- GGGGCCACTGTCTTCTCCA -3’:配列番号27)を用いて、H鎖、L鎖それぞれにPrimeSTAR GXL DNA Polymerase (TaKaRa、Cat. R050B )を用いて2nd PCRを行い、全長の抗体遺伝子を増幅した。アガロースゲル電気泳動でサイズ確認を行い、H鎖、L鎖ともに予想されるサイズの全長抗体遺伝子が増幅できている細胞のみを選別した。2nd PCR産物には、残存するオリゴや非特異的な副反応物が含まれるため、PCR産物精製用のビーズやアガロースゲルによる抽出等の処理を行い、2nd PCR産物を精製した。それぞれに取得したH鎖の抗体遺伝子フラグメントおよびL鎖の抗体遺伝子フラグメントを整列化し、抗体遺伝子セットを作製した。
1-9.抗体遺伝子配列の決定
 「1-8.有用な抗体遺伝子のクローニング」で取得したH鎖とL鎖の抗体遺伝子フラグメントからなる抗体遺伝子セットについて、それらを細胞に導入し、抗体を産生させるために必要な発現クローン化を行った。取得した発現クローンの塩基配列解析を行い、導入した抗体遺伝子の配列を決定した。
(1)抗体遺伝子フラグメントから発現クローンの取得
 哺乳動物細胞等で抗体を産生させるための発現クローンを作製した。H鎖とL鎖からそれぞれ発現クローンを作製し、最終的には両者を同時に細胞にトランスフェクションさせることで、抗体を産生させた。H鎖、L鎖それぞれの抗体遺伝子フラグメントを、シームレスクローニングと呼ばれている相同な配列間の組換え反応を使い、発現解析に用いることが可能な細胞発現用カセットベクターにクローニングした。より具体的には、H鎖の遺伝子についてはpcDNA 3.1 (-) Mammalian Expression Vector(Invitrogen (ThermoFisher SCIENTIFIC、V79520)を、L鎖の遺伝子についてはpcDNA 3.1/Hygro(-) Mammalian Expression Vector(Invitrogen (ThermoFisher SCIENTIFIC、V87520)にクローニングした。抗体遺伝子フラグメントを導入したベクターを大腸菌に形質転換した。形質転換体を薬剤入り寒天培地で選択、培養した。抗体遺伝子ごとに4サブクローンを選択し、培養した。大腸菌培養液から、プラスミド自動分離装置を用いてプラスミドDNAを調製した。調製したプラスミドDNAについて、アガロースゲル電気泳動でサイズ確認した。
(2)発現クローン化した抗体遺伝子の配列解析
 調製したプラスミドDNAを鋳型として、DNA配列解析機器(キャピラリー型DNAシーケンサー)を用いて、発現ベクターに導入した抗体遺伝子の配列を解析した。各発現ベクター上の任意の配列と各抗体遺伝子の定常領域配列を利用して得られた配列解析結果をアセンブルし、導入した全長配列を同定した。1つのフラグメントから得られた4サブクローンの配列解析結果を比較し、可変領域だけでなく定常領域の変異や、核酸とアミノ酸の両方の相同性等を評価し、代表とする発現クローンを1つ選出した。H鎖とL鎖の両方の評価の結果、抗体遺伝子配列が決定できた抗体遺伝子発現クローンを、抗体遺伝子発現クローンセットとして整列化した。得られた抗体の重鎖アミノ酸配列およびそれをコードする塩基配列を図1に示す。得られた抗体の重鎖可変領域のアミノ酸配列およびそれをコードする塩基配列を図2に示す。また得られた抗体の軽鎖アミノ酸配列およびそれをコードする塩基配列を図3に示す。得られた抗体の軽鎖可変領域のアミノ酸配列およびそれをコードする塩基配列を図4に示す。得られた抗体はIgG抗体であり、当該抗体の重鎖はIgγ1であり、軽鎖はIgκであった。
(実施例2.天然ヒトIgG抗体のIgA化)
 上記「1-9.抗体遺伝子配列の決定」において得られた抗体の重鎖可変領域および軽鎖可変領域のアミノ酸配列の情報を基に、IgA化ヒトIgG抗体を作製した。
 当該アミノ酸配列のC末端部分を元に、福島県立医科大学で構築した抗体遺伝子データベースから最適だと考えるアイソタイプおよびサブタイプを予測し定常領域配列を付加した。さらに当該可変領域のアミノ酸配列のN末端部分の情報を元に、福島県立医科大学で構築した抗体遺伝子データベースから予測した最適なシグナル配列を付加した。なお、安定したタンパク質発現のために、最適な5’-UTR配列を付加した。予測により構築したアミノ酸配列をコードする塩基配列を細胞発現用カセットベクターにクローニングした。より具体的には、H鎖の塩基配列についてはpcDNA 3.1 (-) Mammalian Expression Vector(Invitrogen (ThermoFisher SCIENTIFIC、V79520)に、L鎖の塩基配列についてはpcDNA 3.1/Hygro(-) Mammalian Expression Vector(Invitrogen (ThermoFisher SCIENTIFIC、V87520)にクローニングした。
 また、IgA型の抗体遺伝子と共発現させるためのJCHAIN (Joining Chain Of Multimeric IgA And IgM)をコードする遺伝子(配列番号28)をベクターpcDNA3.2/V5-DEST(Invitrogen(ThermoFisher SCIENTIFIC))にサブクローニングした。
 構築したIgA化ヒトIgG抗体の重鎖アミノ酸配列およびそれをコードする塩基配列を図5に示す。構築したIgA化ヒトIgG抗体の重鎖可変領域のアミノ酸配列およびそれをコードする塩基配列を図6に示す。また構築したIgA化ヒトIgGの軽鎖アミノ酸配列およびそれをコードする塩基配列を図7に示す。構築したIgA化ヒトIgGの軽鎖可変領域のアミノ酸配列およびそれをコードする塩基配列を図8に示す。
(実施例3.タンパク質マイクロアレイによる抗体評価1)
3-1.抗体作製
 前記「1-9.抗体遺伝子配列の決定」で取得した抗体遺伝子、または、上記実施例2で作製したIgA化ヒトIgG抗体の抗体遺伝子とJCHAINをコードする遺伝子とを、哺乳動物細胞Expi293FにExpiFectamine 293 Transfection Kit(Gibco (ThermoFisher SCIENTIFIC)、A14524)を用いて導入し、一過的に発現させ、抗体を作製した。具体的には、凍結保存していたヒト浮遊細胞を125 mlフラスコにて振とう培養を開始した。最低2回の継代を行い、凍結融解の傷害から細胞を回復させた。125 mlフラスコに細胞を継代し、一晩培養した後、96プレート上に播種し、リポフェクション法により前記「1-9.抗体遺伝子配列の決定」等で調製した発現クローン(プラスミドDNA)を細胞に導入した。なお、重鎖、軽鎖、J鎖等の発現クローンを混合して細胞に導入した。プラスミドDNAの導入後3日目に培養上清を取得した。取得した培養上清を用いて、変性条件下でのポリアクリルアミド電気泳動により展開し、Coomassie Brilliant Blue (CBB) 染色、ウエスタンブロット解析によりIgG抗体およびIgA抗体の発現を確認した。IgA抗体について二量体の抗体の発現を確認した。得られた抗体を天然ヒトIgG抗体(HIG001697)またはIgA化ヒトIgG抗体(HIG001697A1)と名付けた。抗体の発現が確認できた培養上清を用いて、タンパク質マイクロアレイを用いた抗原の特定を行った。
3-2.抗体評価
 各種サンプル抗体としてSARS-CoV-2に対する抗体医薬として公知の7つの抗体((1)AZD1061(アストラゼネカ社製)、(2)AZD8895(アストラゼネカ社製)、(3)LY_CoV16(イーライ・リリー社製)、(4)LY_CoV555(イーライ・リリー社製)、(5)REGN10933(リジェネロン社製)、(6)REGN10987(リジェネロン社製)、(7)S309(グラクソ・スミスクライン社およびVir Biotechnology社製))、3つの市販抗体((1) SARS-CoV-2 Spike Antibody (AM002414)(Active Motif (91349, 10020001))、市販抗体(2) SARS-CoV-2 Spike Antibody (AM015553) Active Motif (91377, 17820001)、市販抗体(3) SARS-CoV-2 Spike Antibody, 414-1 (AM001414) Active Motif (91361, 10020001)、ならびに、上記で得られた2つの天然ヒト抗体((1)天然ヒトIgG抗体(HIG001697)、(2)IgA化ヒトIgG抗体(HIG001697A1))を用いた。
(1)先行抗体の作製
 公開されている各先行抗体の配列情報(可変領域のアミノ酸配列情報)を入手した。当該アミノ酸配列情報から、核酸配列を予測した。次に、当該アミノ酸配列のC末端部分を元に、福島県立医科大学で構築した抗体遺伝子データベースからアイソタイプおよびサブタイプを予測し、最適だと考える定常領域配列を付加した。さらに、当該可変領域のアミノ酸配列のN末端部分の情報を元に、福島県立医科大学で構築した抗体遺伝子データベースから予測した最適なシグナル配列を付加した。なお、安定したタンパク質発現のために、最適な5’-UTR配列を付加した。各先行抗体の重鎖および軽鎖に関し、予測により構築したアミノ酸配列をコードする塩基配列と配列番号との関係を下記表に示す。
Figure JPOXMLDOC01-appb-T000004
 各先行抗体の重鎖および軽鎖に関して予測により構築したアミノ酸配列をコードする塩基配列を細胞発現用カセットベクターにクローニングした。より具体的には、H鎖の塩基配列についてはpcDNA 3.1 (-) Mammalian Expression Vector(Invitrogen (ThermoFisher SCIENTIFIC、V79520)に、L鎖の塩基配列についてはpcDNA 3.1/Hygro(-) Mammalian Expression Vector(Invitrogen (ThermoFisher SCIENTIFIC、V87520)にクローニングした。次いで、当該細胞発現用カセットベクターを哺乳動物細胞Expi293FにExpiFectamine 293 Transfection Kit(Gibco (ThermoFisher SCIENTIFIC)、A14524)を用いて導入し、一過的に発現させ、抗体を作製した。具体的には、凍結保存していたヒト浮遊細胞を125 mlフラスコにて振とう培養を開始した。最低2回の継代を行い、凍結融解の傷害から細胞を回復させた。125 mlフラスコに細胞を継代し、一晩培養した後、96プレート上に播種し、リポフェクション法により細胞発現用カセットベクター(プラスミドDNA)を細胞に導入した。プラスミドDNAの導入後3日目に培養上清を取得した。取得した培養上清を用いて、変性条件下でのポリアクリルアミド電気泳動により展開し、Coomassie Brilliant Blue (CBB) 染色、ウエスタンブロット解析により各先行抗体の発現を確認した。先行抗体の発現が確認できた培養上清を用いて、Protein G Sepharose 4 Fast Flow(cytiva、17061801)の手順書に従って精製した。精製した抗体を使用し、以下のマイクロアレイの試験に用いた。
(2)抗体の調製
 天然ヒト抗体は、上記「2-1.抗体作製」により得られた培養上清10μlに対して1次抗体希釈液を990μl加えて1mlとなるように調製した。市販抗体および先行抗体は、1次抗体希釈液でそれぞれ2μg/mlになるよう1000μlずつ調製した。また、Negative control(以下、ネガコン)として1次抗体希釈液を1000μl準備した。最後に、ヤギレファレンス抗体ミクスチャ(10反応分)(福島プロテインファクトリー、PA5010)を1次抗体希釈液で10 ml調製し(以下、レファレンス抗体)、調製したすべての抗体を37℃で1時間振とうさせた。
(3)抗原タンパク質マイクロアレイのブロッキング
 タンパク質マイクロアレイは上記「1-7.LCLの抗体プロファイリング」において用いたものと同一のものを使用した。タンパク質マイクロアレイを100%エタノールで浸した後に、最終洗浄液に浸した。さらに、その後、solution Aに浸した。前処理後、タンパク質マイクロアレイを26℃のBlocking Oneに浸し1時間振とうした。
(4)1次抗体反応
 ブロッキング処理後、タンパク質マイクロアレイを再びsolution Aへ置換させた。タンパク質マイクロアレイ用カセット(福島プロテインファクトリー、HC4-01-DE)(以下、カセット)へ37℃で1時間振とうさせた各種サンプル抗体またはネガコンとレファレンス抗体とを等量(1mlずつ)加え、solution Aへ置換させたタンパク質マイクロアレイを各カセットに1枚ずつセットした。セットしたタンパク質マイクロアレイは37℃で17時間振とうし、1次抗体と反応させた。
(5)2次抗体反応
 17時間後、各カセットよりタンパク質マイクロアレイを取り出し、solution Aで洗浄した後、各種サンプル抗体検出用のAlexa647標識抗ヒトIgG抗体またはAlexa647標識抗ヒトIgA抗とレファレンス抗体検出用のCy3標識抗ヤギIgG抗体をそれぞれ1 mlをカセットに加え、洗浄したタンパク質マイクロアレイをセットした。セットしたタンパク質マイクロアレイは26℃で1時間振とうし、2次抗体と反応させた。
(6)最終処理
 1時間後、各カセットよりタンパク質マイクロアレイを取り出し、solution Aで洗浄した。その後、solution Aを洗浄するため、10倍希釈したタンパク質マイクロアレイ専用 solution B (10X) (福島プロテインファクトリー、PA1110)(以下、solution B)へ置換した。タンパク質マイクロアレイをsolution Bから最終洗浄液した後、遠心してタンパク質マイクロアレイより水分を除去した。
(7)検出および解析
 タンパク質マイクロアレイに搭載している各タンパク質に相当するスポットの蛍光強度をスキャナGenePix4000B(モレキュラーデバイスジャパン)によって測定し、生データを取得することで、網羅的な抗体の検出を行った。この取得された生データから底を2とした対数比に変換したデータ(以下「一次比」という。)を算出し、コンピュータ上での種々の解析に活用できるデータ集合体の構成要素とした。この作成した構成要素を単一の行列に統合し、データ集合体とした。
3-3.結果
 天然ヒトIgG抗体(HIG001697)およびIgA化ヒトIgG抗体(HIG001697A1)について、タンパク質マイクロアレイを用いて評価した結果を示す。タンパク質マイクロアレイを用いて取得したデータについて、Cy3標識抗ヤギIgG抗体のシグナルに対するAlexa647標識抗ヒトIgA抗体のシグナルの値に変換し、さらに、底を2とする対数比に変換した。次に、タンパク質アレイ間の補正を行った後に、ネガティブコントロール(すなわち、1次抗体を反応させていないタンパク質マイクロアレイのデータ)に対する相対比に変換した(図9)。
 図9に示すように、天然ヒトIgG抗体(HIG001697)およびIgA化ヒトIgG抗体(HIG001697A1)は、SARS-CoV-2に対する公知の抗体(AZD1061、AZD8895、LY_CoV16、LY_CoV555、REGN10933、REGN10987、S309)および市販抗体(ABT#03984(Active Motif社、91349)、ABT#03985(Active Motif社、91361)、ABT#04347(Active Motif社、91377))と比較して、SARS-CoV-2のS1タンパク質に同等かそれ以上の強さで結合を示した。特にIgA化ヒトIgG抗体(HIG001697A1)は、公知の抗体および市販抗体と比較してSARS-CoV-2の S1タンパク質により強く結合した。表3A~Eに図9の解析に用いたタンパク質マイクロアレイ搭載検体を示す。さらに、表4A~Gネガティブコントロールに対する相対比のデータを示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
(実施例4.Biacore(ビアコア)を用いた抗体親和性の決定)
 抗原と抗体の結合親和性は解離定数(KD)によって表すことができ、抗原と抗体との結合が平衡に達する時の解離速度の結合速度に対する比率(Ka/Kd)として計算される。本実施例ではビアコア(Cytiva社)による表面プラズモン共鳴(Surface Plasmon Resonance = SPR)技術を用いて解離定数を測定した。全ての解析は、ビアコアT200機器を使用したシングルサイクル反応速度論により行った。天然ヒト抗体(HIG001697)、IgA化ヒトIgG抗体(HIG001697A1)、市販抗体(ABT#03984、ABT#03985、ABT#04347)および、SARS-CoV-2に対する抗体医薬として公知の5つの先行抗体(LY-CoV16、LY-CoV555、REGN10933、REGN10987、および、S309)を被験抗体として用いた。被験抗体をビアコアセンサーチップ上に固定後、アナライトとしての各種組み換えコロナウイルスタンパク質(スパイクタンパク質のRBD領域)をセンサーチップ上に流し、結合親和性を評価した。
4-1.センサーチップへのIgA化ヒトIgG抗体(HIG001697A1)の固定化
 IgA化ヒトIgG抗体(HIG001697A1)は、上記「3-1.抗体作製」において得られた培養上清からCaptureSelec IgA Affinity Matrix(Thermo Scientific、19428801L (1L))を用いて手順書に従って精製した。精製したIgA化ヒトIgG抗体(HIG001697A1)は、シリーズSセンサーチップCM5(カルボキシメチルデキストラン塗布チップ)に標準的なアミンカップリングで共有結合させた。方法は供給業者(Cytiva社)の説明書に従い、EDC及びNHC試薬で活性化後、抗体(リガンド)をフローセルに20 RUから100 RUの範囲でカップリングした。続いて、1Mのエタノールアミンで未反応の基をブロッキングした。
4-2.センサーチップへのIgG抗体(天然ヒトIgG抗体、市販抗体、および先行抗体)の固定化
 天然ヒトIgG抗体は上記「3-1.抗体作製」において得られた培養上清からProtein G Sepharose 4 Fast Flow(cytiva、17061801)の手順書に従って精製した抗体を用いた。IgG抗体である先行抗体(LY-CoV16、LY-CoV555、REGN10933、REGN10987、および、S309)は、上記「3-2.抗体評価」(1)先行抗体の作製において得られた精製後の抗体を用いた。市販抗体(ABT#03984、ABT#03985、ABT#04347)および先行抗体はシリーズSセンサーチップCM5(カルボキシメチルデキストラン塗布チップ)にHuman Antibody Capture Kit(Cytiva社)の説明書に従い、EDC及びNHC試薬で活性化後、抗IgG抗体を約8000 RUから10,000 RUの範囲でカップリングした。続いて、1Mのエタノールアミンで未反応の基をブロッキングした。その後、IgG抗体(リガンド)を抗IgG抗体で約500 RUから700 RU補足した。
4-3.反応速度測定
 各抗原タンパク質(アナライト)をランニングバッファー(0.01 M HEPES, 0.15 M NaCl, 0.003 M EDTA and 0.05% v/v Surfactant P20)で3倍連続希釈液(27-0.33 nM)を調製し、流速10 μL/分で120秒間フローセルに注入した。アナライト添加終了後、ランニングバッファーを900秒間注入し、アナライトを解離させた。
 測定値からリファレンスフローセルの値を差し引いた後、BIAcore T200用解析ソフトウェア(バージョン2.0)を用いて、結合速度(Ka)及び解離速度(Kd)を算出した。解離定数(KD)は一対一の結合モデルで算出した。ビアコアT200における検出範囲は、結合速度(Ka)が103-107(1/Ms)、解離速度(Kd)が10-5-0.5(1/s)である。
4-4.結果
 各種抗体と各種コロナ抗原(アナライト)との結合速度(Ka)、解離速度(Kd)、及び解離定数(KD)の結果を表5A~Dに示す。表中、「非特異結合あり」は非特異的な結合シグナルが観察され解析不能であったことを示し、「結合なし」は結合したシグナルを検出できなかったことを示す。
 表5A~Dに示すように、天然ヒトIgG抗体(HIG001697)(リガンド)は使用したほとんどの抗原(アナライト)に対しても結合親和性(KD値)が強く、比較的結合親和性の弱いアナライト(南アフリカ変異株(B.1.1.529系統)由来)では1.332 nMの結合親和性(KD値)が見られた。また、インド変異株(B.1.617.1系統およびB.1.617.2系統)およびフィリピン変異株由来のアナライトに対しては、抗体の結合が強く解離がほとんど見られないため、解離速度(Kd)は検出限界以下となった。なお、南アフリカ変異株(BA.4系統)由来に対しては0.282nMの結合親和性であり、南アフリカ変異株(BA.4、BA.5系統)由来に対しては9.960nMの結合親和性であった。
 IgA化ヒトIgG抗体(HIG001697A1)(リガンド)は測定可能であったいずれの抗原(アナライト)に対しても結合親和性(KD値)が強く、最も弱いアナライト(南アフリカ変異株)でも5.78 nMの結合親和性(KD値)が見られた。また、武漢株、E484K変異株、Y453F変異株、イギリス変異株、インド変異株(B.1.617.1系統およびB.1.617.2系統)、カリフォルニア変異株、ペルー変異株由来のアナライトに対しては、抗体の結合が強く解離がほとんど見られないため、解離速度(Kd)は検出限界以下となった。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
(実施例5.競合ELISA法による抗体の結合阻害評価)
 本実施例では競合的ELISA法を用いて天然ヒトIgG抗体(HIG001697)およびIgA化ヒトIgG抗体(HIG001697A1)の結合阻害作用を評価した。具体的には、ヒトACE2タンパク質に対して、SARS-CoV2のスパイクタンパク質(S1ドメインのRBD領域)と天然ヒトIgG抗体またはIgA化ヒトIgG抗体とを競合させ、その結合阻害率を評価した。また天然ヒトIgG抗体およびIgA化ヒトIgG抗体の対照として、公知の先行抗体(AZD1061、AZD8895、LY_CoV16、LY_CoV555、REGN10933、REGN10987、S309、ADG2)および市販抗体(ABT#03984(Active Motif社、91349)、ABT#03985(Active Motif社、91361)、ABT#04347(Active Motif社、91377))を用いた。IgA化ヒトIgG抗体(HIG001697A1)は上記実施例4と同様に培養上清からCaptureSelec IgA Affinity Matrix(Thermo Scientific、19428801L (1L))を用いて精製した抗体を用いた。天然ヒトIgG抗体(HIG001697)および先行抗体は、上記実施例4と同様に培養上清からProtein G Sepharose 4 Fast Flowで精製したものを用いた。またELISA法はSARS-CoV-2 Anti-RBD Antibody Profiling Kit (MBL, Code No. 5370)を用い添付のプロトコルに基づき実施した。先行抗体であるADG2の予測により構築したアミノ酸配列をコードする塩基配列と配列番号との関係を下記表に示す。
Figure JPOXMLDOC01-appb-T000021
5-1.抗体の調製
 各抗体はキットに附属のReaction bufferにて、それぞれ2 μg/ml、1 μg/ml、0.5 μg/ml、0.25 μg/ml、0.125 μg/ml、0.0625 μg/ml、0.03125 μg/ml、0.015625 μg/mlに100 μlずつ調製した。その後、Positive controlをReaction bufferで4倍希釈になるよう100 μl調製し、BlankとしてReaction bufferを100 μl準備した。
5-2.RBDタンパク質の調製
 RBDタンパク質として、下記表の天然型(武漢型)および変異型SARS-CoV2由来のスパイクタンパク質(S1ドメインのRBD領域またはTrimer領域)を用いた。各種RBDタンパク質はそれぞれ最終濃度0.3 pmolとなるようにReaction bufferを用いて調製した。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
5-3.競合的ELISA法
 調製した各種RBDタンパク質をPrimary reaction microplateに100 μl加えた。その後、調製した各抗体、Positive control、または、BlankをRBDタンパク質の入ったPrimary reaction microplateに100 μlずつ混合し、室温(20-25℃)で30分間反応させた。30分の反応後、各wellより抗体-RBD混合液を100 μlずつACE2 coated microplateへ移し、室温(20-25℃)で30分間反応させた。30分の反応後、ACE2 coated microplateより、反応溶液を除き洗浄液(超純水で10倍希釈したWash concentrate)を350 μl加え、洗浄した。洗浄液を交換することで合計4回洗浄を行った。洗浄後、溶液をできる限り除き、Conjugate diluentで101倍希釈したHRP conjugated antibodyを100 μlずつACE2 coated microplateへ移し、室温(20-25℃)で30分間反応させた。反応後、ACE2 coated microplateより、反応溶液を除き洗浄液を350 μl加え、洗浄した。Well内の洗浄液を交換することで合計4回洗浄を行った。洗浄後、溶液をできる限り除き、Substrate solutionを100 μlずつACE2 coated microplateへ移し、室温(20-25℃)で15分間反応させた。15分後、ACE2 coated microplateにStop solutionを100 μlずつ加え反応を停止させ、450 nmの吸光度を測定した。
5-4.結果
 競合ELISAによる試験結果を表8A~Jに示す。表8A~Jに示す表は、各濃度で抗体を添加した際のヒトACE2タンパクとSARS-CoV2由来スパイクタンパク質との結合阻害率を示す。結合阻害率(%)は下記式より算出した。
 結合阻害率(%)=(1-サンプルのO.D. value/BlankのO.D. value)×100
 表8A~Jに示すように、本発明の抗体であるHIG001697およびHIG001697A1は天然型(武漢型)および変異型のいずれのSARS-CoV2由来スパイクタンパク質(S1ドメインのRBD領域)に対しても高い阻害率を示した。HIG001697およびHIG001697A1はオミクロン株(BA.2系統、BA.3系統およびBA.4系統)にも90%以上の阻害率を示した(2μg/ml区)。特に、オミクロン株(BA.3系統)およびオミクロン株(B.1.1.529系統)に対しては、HIG001697およびHIG001697A1は試験した各抗体の中で唯一80%以上の阻害率を示した(2μg/ml区)。一方、対照群である公知の抗体や市販抗体は、変異型により阻害活性を示さない、または、変異株により天然ヒトIgG抗体およびIgA化ヒトIgG抗体と比較して低い阻害率を示した。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
 また得られた阻害率の結果より、各抗体のIC50(ng/ml)を算出した。IC50は以下の式により算出した。
 IC50=10^(LOG(A/B)*(50-C)/(D-C)+LOG(B))
A: 50%結合阻害率を挟む高い濃度, B: 50%結合阻害率を挟む低い濃度, C: Bでの阻害率, D: Aでの阻害率
 図10に示すように、本発明の抗体であるHIG001697およびHIG001697A1は試験に用いた全ての株に対して阻害活性を示し、IC50を算出することができた。特にオミクロン株(BA.1、BA.3、BA.4/BA.5(RBD))に対してはHIG001697およびHIG001697A1のみがIC50を算出することができた。一方で、対照とした公知抗体はいずれかの株に対して阻害活性を有していないか、変異株によりHIG001697およびHIG001697A1よりもIC50の値が大きかった。
(実施例6-1. シュードウイルスを用いた中和活性評価1)
 コロナウイルスの宿主細胞への侵入は、三量体膜貫通スパイク(S)糖タンパク質によって媒介される。S糖タンパク質は表面に露出しており、SARS-CoV-2受容体であるヒトアンジオテンシン変換酵素2(ACE2)と結合して宿主細胞への侵入を媒介している。
 本実施例ではACE2強制発現細胞を用いて、天然ヒトIgG抗体またはIgA化ヒトIgG抗体によるシュードウイルス(エンベロープタンパク質にコロナウイルスのS糖タンパク質を持つレンチウイルス)の感染阻害を評価した。また天然ヒトIgG抗体およびIgA化ヒトIgG抗体の対照として、市販抗体(ABT#03985(Active Motif社、91361)、ABT#04348(Active Motif社、91379))を用いた。被験抗体の情報を下記表に示す。
Figure JPOXMLDOC01-appb-T000034
6-1.Human ACE2安定発現細胞の作製
 Expi293F cell(Thermo Fisher Scientific, cat#A14527)をExpi293 Expression Medium (Thermo Fisher Scientific, cat#A1435102)を用い、8 % CO2存在下37℃で振盪培養を行った。
 トランスフェクション前日にExpi293F cellを2 x 106 cells/mlの濃度で継代し、一晩培養した。Expi Fectamine 293 Transfection kit (Thermo Fisher Scientific, cat#A14524)に含まれるExpiFectamine 293 Reagent 80μlとOpti-MEMI 1420μlを混合し、5分間インキュベート後、タンパク質発現プラスミドベクター 30μgを含むOpti-MEMI 溶液1500μlと混合し、室温で20 分間インキュベートしトランスフェクション溶液とした。125mlフラスコに25.5mlの培地中7.5 x 10cellsになるように当日継代したExpi293F cellへ上記のトランスフェクション溶液を添加し、トランスフェクションを行った。なおHuman ACE2発現プラスミドベクターは、pcDNA3.2 V5-DEST-Hygベクターに組換え反応を利用してHuman ACE2 (angiotensin I converting enzyme 2)タンパク質(NP_068576.1;配列番号39)のORF(配列番号40)をコードする塩基配列を挿入することにより構築したプラスミドベクターである(配列番号41)。トランスフェクション48時間後、ExpiFectamine 293 Transfection kit に含まれるExpiFectamine 293 Transfection enhancer 1, 150μlとExpiFectamine 293 Transfection enhancer 2, 1.5mlの混合溶液を細胞に添加した。使用した発現プラスミドベクターはHygromycin耐性遺伝子を有するため、50 μg/ml hygromycin B(Thermo Fisher Scientific, cat#10687010)を含む培地で培養し、各タンパク質発現プラスミドベクターが導入された細胞の選択を行った。得られた細胞をそれぞれSSC#000364 (human ACE2安定発現細胞)とした。
 次いで、Human ACE2安定発現細胞のクローニングを行った。上記で作製したHuman ACE2安定発現細胞(SSC#000364)群について抗ACE2抗体(R&D systems, cat#MAB9332)による免疫染色を行い、Cell Sorter(SONY, cat#SH800S)により解析した。Human ACE2安定発現細胞(SSC#000364)群のうちACE2の高発現細胞6.8%を含む範囲にゲートを設定後、Cell sortによりACE2高発現細胞群を取得し、SSC#000442とした。さらにSSC#000442について同様の解析を行い、SSC#000442のACE2高発現細胞42.42%を含む範囲にゲートを設定後、Single cell sortにより細胞のクローニングを行った。取得した11クローン (SSC#000465-475) についてフローサイトメトリによる解析およびウエスタンブロット解析によりACE2の発現を確認した。そのうちSSC#000465がACE2の発現量が高く、フローサイトメトリによる解析の波形がシャープであったため以下の試験に用いることとした。
6-2.ACE2強制発現細胞の播種と抗体,ウイルス液添加
 各濃度に調製した被験抗体溶液3μLとシュードウイルス溶液(VectorBuilder社 Cat. No. LVL-S2[VB900088-2549mex])0.75 μLを混和し、氷上で10分間インキュベートした。インキュベート終了後、Polybreneを100分の1容量加え、ACE2強制発現細胞(SSC#000465: Expi293F cellにACE2を強制発現させた細胞)を2 x 103 cells/ 20 μLで播種した384ブラッククリアプレートに10 μLずつ添加した。プレートは測定までCO2インキュベーター(37℃, 5% CO2)で48時間培養した。天然ヒトIgG抗体またはIgA化ヒトIgG抗体の最終的な処理濃度は、1μg/mL、0.5μg/mL、0.25μg/mL、0.1μg/mL、または、0.01μg/mLとした。市販抗体の最終的な処理濃度は、1μg/mL、0.1μg/mL、または、0.01μg/mLとした。
6-2.ACE2強制発現細胞の蛍光値測定
 測定プレートを室温で30分間インキュベート後、ONE-Glo Luciferase Assay System(Promega社Cat. No. PRE6120)を10 μL/ウェルずつ添加した。本実施例に用いたシュードウイルスはルシフェラーゼ遺伝子が導入されており、当該シュードウイルスが感染した細胞は蛍光を発する。室温で3分間インキュベート後、Enspireマルチモードプレートリーダー(Perkin Elmer社)で蛍光値を測定した。感染阻害率は以下の計算式で算出した。
   感染阻害率(%)=100-{(抗体添加群の測定値/抗体非添加群の測定値)x100}
6-3.結果
 各処理濃度における各種抗体のシュードウイルスに対する感染阻害率を表10A、図11~14に示す。市販抗体のポジティブコントロールとして使用したABT#03985の感染阻害率は1 μg/mLで97.9%、0.1 μg/mLで51.0%、0.01 μg/mLで22.0%だった。また、ネガティブコントロールとして使用したABT#04348は1 μg/mLで49.5%、0.1 μg/mLで14.5%、0.01 μg/mLで13.9%であった(表8は小数点以下四捨五入した値を示す)。
 本試験において、天然ヒトIgG抗体およびIgA化ヒトIgG抗体は、ポジティブコントロールの市販抗体とほぼ同程度の感染阻害率を示した。
Figure JPOXMLDOC01-appb-T000035
(実施例6-2. シュードウイルスを用いた中和活性評価2)
 本実施例では、野生株または各変異株のRBD領域を有する異なるシュードウイルスを用いた以外は、実施例6-1と同様の手法および条件にて天然ヒトIgG抗体またはIgA化ヒトIgG抗体によるシュードウイルス(エンベロープタンパク質にコロナウイルスのS糖タンパク質を持つレンチウイルス)の感染阻害を評価した。本実施例に用いたシュードウイルス液(ベクタービルダー・ジャパン株式会社製)の情報を下記表10Bに示す。
Figure JPOXMLDOC01-appb-T000036
 天然ヒトIgG抗体(HIG001697)またはIgA化ヒトIgG抗体(HIG001697A1)のシュードウイルスに対するIC50を表10Cに示す。各処理濃度における各抗体のシュードウイルスに対する感染阻害率を表10Dおよび表10Eに示す。
 本試験において、天然ヒトIgG抗体は武漢型、デルタ型、オミクロン型に対して中和活性を示し、またIgA化ヒトIgG抗体は武漢型、デルタ型、アルファ型、
オミクロン型に対して中和活性を示した。
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
(実施例7. シュードウイルスを用いた中和活性評価3)
 本実施例では、IgA化ヒトIgG抗体(HIG001697A1)によるシュードウイルス(エンベロープタンパク質にコロナウイルスのS糖タンパク質を持つレンチウイルス)の感染阻害を評価した。具体的には、ACE2およびTMPRSS2を過剰発現したHEK293細胞を、GFPおよびSARS-CoV-2スパイク(S)蛋白質(Vector Builder LVL-S2DG(VB200088-2229upx))を発現するシュードレンチウイルスに感染させる系を用いて実施した。なお本試験による中活性評価はCharles River Discovery Research Services UK Ltdに外注した。
 全ての試験は、各条件について3回行った。本実施例ではpositive controlとしてAnti-SARS-CoV-2 S1 antibody(Amsbio;Cat # AMS.SAD-S35、Lot # S35-206RF1-TL)を用い、アイソタイプ対照抗体としてIgA isotype control antibody(Invitrogen;Cat # 31148、Lot # WF3292542)を用いた。
7-1.シュードウイルスを用いた中和活性試験
 ACE2/TMPRSS2を過剰発現するHEK293細胞を96ウェルプレート中に約30%のコンフルエンスで播種した。次いで、2時間インキュベートし細胞を沈降させてプレートに付着させた。試験抗体(HIG001697およびHIG001697A1)およびIgAアイソタイプ対照抗体を、6つの濃度(32、8、2、0.5、0.125、0.03125μg/ml)となるように調製した。各濃度の抗体をGFPおよびSARS-CoV-2スパイク蛋白質を発現しているシュードウイルスと共に1時間インキュベートした。1時間のインキュベート後、抗体とシュードウイルスの混合物を細胞に添加した。シュードウイルスの感染を補助するために、細胞を1000×gで1時間回転させた。抗体は、アッセイの過程を通して培養中に維持した。IncuCyte Zoomを用いて、12時間ごとに位相コントラストおよび緑色蛍光画像を撮影した。
7-2.結果
 中和活性試験の結果を下記表11A~11Lに示す。表11中、Confluence areaは細胞同士が密着して生存している領域を示し、ウェル上の表面積に対する割合として示す。GFP expressing areaはSARS-CoV-2がVero E6細胞に感染した結果、GFPの蛍光を生じている細胞の領域を示し、ウェル上の表面積に対する割合として示す。HIG001697A1は少なくとも0.5μg/mlの濃度で、シュードウイルスの感染を完全に阻害した。また、120時間経過後では、HIG001697A1が0.5μg/mlの濃度で約1.0%のGFPが検出され、0.125μg/mlの濃度で約7%のGFPが検出された。なお、0.032μg/mLの濃度でも、シュードウイルスの感染阻害が非常に強く認められた。
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
(実施例8.SARS-CoV-2を用いた中和活性評価1)
 本実施例では、IgA化ヒトIgG抗体(HIG001697A1)によるSARS-CoV-2の感染阻害を評価した。具体的には、TMPRESS2過剰発現させたVero E6細胞を、SARS-CoV-2/human/Liverpool/REMRQ001/2020に感染させる系を用いて実施した。なお本試験による中活性評価はCharles River Discovery Research Services UK Ltdに外注した。全ての試験は、各条件について3回行った。本実施例では対照としてIgA isotype control antibody(Invitrogen;Cat # 31148、Lot # WF3292542)、WHO standard pooled convalescent plasma from SARS-CoV-2 patients (dilution from neat)を用いた。
8-1.SARS-CoV-2を用いた中和活性試験
 TMPRSS2を過剰発現させたVero E6細胞を標準条件下で培養し、融合するまで96ウェルプレートに播種した。培地を除去し、実験条件に従って各濃度となるように抗体を添加した。次いで、感染前1時間、細胞を抗体と共にインキュベートした。1時間後、SARS-CoV-2を単一濃度で添加した。非感染プレートもセットアップした。感染後、同等の濃度の抗体を含むオーバーレイ培地を添加した。プレートを48時間インキュベートした後、抗SARSヌクレオカプシド(N)抗体で染色した。細胞を画像化することで感染率を測定し、非感染プレートの感染率から各試験区の感染阻害率を算出した。
 またSARS-CoV-2を感染させずに各濃度でHIG001697A1またはIgA isotype control antibodyを処置した群に対してMTTアッセイを行い、細胞生存率を評価した。
8-2.結果
 各抗体を用いた中和活性試験の結果を感染阻害率として表12Aに示す。表12中、WHO standard pooled convalescent plasmaの濃度は希釈倍率を示す(例えば、50.000は、50分の1希釈を意味する)。HIG001697A1は、試験した全濃度でSARS-CoV-2感染を阻害し、EC50値は<0.031μg/mLと推定された。またSARS-CoV-2を感染させずにHIG001697A1またはIgA isotype control antibodyを処置した群の細胞生存率を表12Bに示す。HIG001697A1は32μg/mlとなるように細胞に対して添加しても細胞生存率に影響を与えなかった。
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
(実施例9.SARS-CoV-2を用いた中和活性評価2)
 本実施例では、実施例8と同様の手法を用いて、IgA化ヒトIgG抗体(HIG001697A1)によるSARS-CoV-2の感染阻害を評価した。本実施例ではSARS-CoV-2として武漢(Wuhan)株(野生型)、デルタ(Delta)株、および、オミクロン(Omicron)株を用いた。また本実施例では対照として先行抗体(REGN10987、AZD1061、LY_CoV16、AZD8895、REGN10933、S309)、IgA isotype control antibody(Invitrogen;Cat # 31148、Lot # WF3292542)、Nanobody抗体(Absolute Antibody;Cat # Ab02013-1.159、Lot # Sb#15)、WHO standard pooled convalescent plasma from SARS-CoV-2 patients (dilution from neat)を用いた。本試験による中活性評価はCharles River Discovery Research Services UK Ltdに外注した。中和活性試験は実施例8の「8-1.SARS-CoV-2を用いた中和活性試験」と同じ条件にて実施した。全ての試験は、各条件について3回行った。
9-1.結果
 各抗体の50%効果濃度(EC50)および50%細胞毒性濃度(CC50)を表13に示す。表13が示すように、IgA化ヒトIgG抗体(HIG001697A1)は武漢(Wuhan)株(野生型)、デルタ(Delta)株、および、オミクロン(Omicron)株に対してEC50の値が0.020以下であり、CC50よりも低い濃度であった。特にオミクロン株に対するEC50の値は、他の先行抗体等と比較して二桁低い濃度であった。なおLY_CoV16は濃度を高めてもオミクロン株に対する阻害活性を得ることができずCC50を算出することができなかったことを示す。
Figure JPOXMLDOC01-appb-T000054
(実施例10.ELISA法による抗体-RBD結合評価)
 本実施例ではELISA法を用いて、SARS-CoV-2の変異株であるBA.1系統、BA.2系統、BA.3系統、またはBA.4/BA.5系統のオミクロン株由来のRBDドメインに対する天然ヒトIgG抗体(HIG001697)およびIgA化ヒトIgG抗体(HIG001697A1)の結合能を評価した。また対照として、SARS-CoV-2に対する抗体医薬として公知の8つの先行抗体(AZD1061、AZD8895、LY-CoV16、LY-CoV555、REGN10933、REGN10987、S309、ADG2)を用いた。先行抗体は実施例3および5で調製および精製したものを用いた。
10-1.RBDタンパク質の固相化
 各種RBDタンパク質(オミクロン株(BA.1系統)由来RBD:Acro Biosystems (SPD-C522e, 5716-21C8F1-Z1) SARS-CoV-2 Spike RBD, His Tag (B.1.1.529/Omicron) (MALS verified) (Stock con. 0.6 mg/ml)、オミクロン株(BA.2系統)由来RBD:Acro Biosystems (SPD-C522g, 5911-222DF1-11F) SARS-CoV-2 Spike RBD, His Tag (BA.2/Omicron) (Stock con. 0.6 mg/ml))、オミクロン株(BA.3系統)由来RBD:Acro Biosystems (SPD-C522i, 6063-2238F1-11W) SARS-CoV-2 Spike RBD, His Tag (BA.3/Omicron) (Stock con. 0.2 mg/ml)、オミクロン株(BA.4・BA.5系統)由来RBD:AcroBio (SPD-C522r, 6363-225HF1-133) SARS-CoV-2 Spike RBD, His Tag (BA.4&BA.5/Omicron) (MALS verified) (Stock con. 400μg/ml))をそれぞれ0.6234375 pmolになるよう0.1 mol/L 炭酸-重炭酸バッファー(pH 9.6)で50μl/wellとなるように調製した(以下「RBD溶液」という。)。調製したRBD溶液をCorning(登録商標) 96-well Half Area Clear Flat Bottom Polystyrene High Bind Microplate (Corning 3690)に50μl加え、17時間、4℃に静置した。17時間後、RBD溶液を除き超純水で10倍希釈したsolution B (10X) (福島プロテインファクトリー, PA1110)にTween-20を0.02%加えた溶液(以下、洗浄液)を180μl加え、洗浄した。溶液を交換することで洗浄し、合計2回行った。洗浄工程後に洗浄液を除き、洗浄液で5倍希釈したBlocking One (ナカライテスク, 03953-95) を180μl加え、1時間室温(20-25℃)に静置した。1時間の静置の後、Blocking Oneを除き洗浄液を180μl加え、洗浄した。溶液を交換することで洗浄し、合計2回行った。 上記処理を行ったPlateをRBD coated microplateとし、使用まで洗浄液を180μl加え4℃で保存した。
10-2.抗体の調製
 天然ヒトIgG抗体(HIG001697)、IgA化ヒトIgG抗体(HIG001697A1)、先行抗体(AZD1061、AZD8895、LY-CoV16、LY-CoV555、REGN10933、REGN10987、S309、ADG2)は実施例4および実施例5と同様に、CaptureSelect IgA Affinity MatrixまたはProtein G Sepharose 4 Fast Flowにより精製した抗体を用いた。精製した天然ヒト抗体および先行抗体を洗浄液で20倍希釈したBlocking ONE(以下「抗原・抗体希釈液」という。)にて、それぞれ2μg/ml、1μg/ml、0.5μg/ml、0.25μg/ml、0.125μg/ml、0.0625μg/ml、0.03125μg/ml、0.015625μg/mlに50μlずつ調製した。Blank溶液として抗原・抗体希釈液を50μl準備した。
10-3.抗体とRBDとの反応
 調製した抗体・Blank溶液を50μlずつ室温に戻したRBD coated microplateへ移し、室温(20-25℃)で30分間反応させた。30分の反応後、RBD coated microplateより、反応溶液を除き洗浄液を180μl加え、洗浄した。溶液を交換することで洗浄し、合計4回行った。
10-4.HRP標識二次抗体の反応
 洗浄後、溶液をできる限り除き、抗原・抗体希釈液で10,000倍希釈したPeroxidase Donkey Anti-Human IgG (H+L) (Jackson Immuno Research (709-035-149, 129616)またはPeroxidase Goat Anti-Human Serum IgA, α Chain Specific (Jackson Immuno Research (109-035-011, 130660)を50μlずつRBD coated microplateへ移し、室温(20-25℃)で30分間反応させた。RBD coated microplateより、反応溶液を除き洗浄液を180μl加え、洗浄した。Well内の洗浄液を交換することで洗浄し、合計4回行った。
10-5.検出
 洗浄後、洗浄液をできる限り除き、ELISA POD基質 TMBキット(ナカライ 05298-80)を50μlずつRBD coated microplateへ移し、室温(20-25℃)で5分間反応させた。10分後、RBD coated microplateに2N硫酸を50μlずつ加え反応を停止させ、2030 ARVO X シリーズ マルチラベルリーダー (PerkinElmer)にて450 nm の吸光度を測定した。
10-6.結果
 上記で得られた各抗体の測定値を表14A~表14Dに示す。表14Aはオミクロン株(BA.1系統)由来のRBDに対する各抗体の結合能を示し、表14Bはオミクロン株(BA.2系統)由来のRBDに対する各抗体の結合能を示し、表14Cはオミクロン株(BA.3系統)由来のRBDに対する各抗体の結合能を示し、表14Dはオミクロン株(BA.4系統およびBA.5系統)由来のRBDに対する各抗体の結合能を示す。
 表14Aに示すように、天然ヒトIgG抗体(HIG001697)、IgA化ヒトIgG抗体(HIG001697A1)はオミクロン株(BA.1系統)由来のRBDに対しても結合能を示した。天然ヒトIgG抗体(HIG001697)、IgA化ヒトIgG抗体(HIG001697A1)は、同様に結合能を示した対照抗体(AZD1061、AZD8895、および、S309)と比較しても、低い濃度条件においてもより高い結合能を示した。特にIgA化ヒトIgG抗体(HIG001697A1)はオミクロン株(BA.1系統)由来のRBDに対して高い結合能を示した。
 表14Bおよび表14Cに示すように、天然ヒトIgG抗体(HIG001697)、IgA化ヒトIgG抗体(HIG001697A1)はオミクロン株(BA.2系統)およびオミクロン株(BA.3系統)由来のいずれのRBDに対しても結合能を示した。一方で、対照の先行抗体は、唯一AZD1061がオミクロン株(BA.2系統)由来のRBDに対して結合能を示したが、それ以外はオミクロン株(BA.2系統)およびオミクロン株(BA.3系統)由来のいずれのRBDに対してもほとんど結合能を示さなかった。
 表14Dに示すように、天然ヒトIgG抗体(HIG001697)、IgA化ヒトIgG抗体(HIG001697A1)はオミクロン株(BA.4系統およびBA.5系統)由来のRBDに対しても結合能を示した。特にIgA化ヒトIgG抗体(HIG001697A1)はオミクロン株(BA.4系統およびBA.5系統)由来のRBDに対して高い結合能を示した。一方で、対照の先行抗体はオミクロン株(BA.4系統およびBA.5系統)由来のRBDに対してほとんど結合能を示さなかった。
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058

Claims (21)

  1.  配列番号1のアミノ酸配列からなる重鎖CDR1、配列番号2のアミノ酸配列からなる重鎖CDR2、配列番号3のアミノ酸配列からなる重鎖CDR3、配列番号4のアミノ酸配列からなる軽鎖CDR1、配列番号5のアミノ酸配列からなる軽鎖CDR2、および、配列番号6のアミノ酸配列からなる軽鎖CDR3を有する抗体であって、
     SARS-CoV-2のS1サブユニットの受容体結合ドメイン(RBD)に結合する、抗体またはその抗体フラグメント。
  2.  請求項1に記載の抗体またはその抗体フラグメントであって、
     前記S1サブユニットの受容体結合ドメイン(RBD)が配列番号7のアミノ酸配列からなるポリペプチドまたは前記ポリペプチドにおいて変異を有するポリペプチドである、抗体またはその抗体フラグメント。
  3.  請求項1または2に記載の抗体またはその抗体フラグメントであって、
    (a)配列番号8のアミノ酸配列、
    (b)前記(a)の配列において各CDR配列以外のフレームワーク領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
    (c)前記(a)の配列における各CDR配列以外のフレームワーク領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列、
    からなる群から選択されるアミノ酸配列からなる重鎖可変領域、並びに
    (d)配列番号9のアミノ酸配列、
    (e)前記(d)の配列において各CDR配列以外のフレームワーク領域の配列に対して少なくとも90%以上の同一性を有するアミノ酸配列、および、
    (f)前記(e)の配列における各CDR配列以外のフレームワーク領域の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列、
    からなる群から選択されるアミノ酸配列からなる軽鎖可変領域
    を有する抗体またはその抗体フラグメント。
  4.  ヒトIgA抗体である、請求項1~3のいずれか一項に記載の抗体またはその抗体フラグメント。
  5.  請求項1~4のいずれか一項に記載の抗体またはその抗体フラグメントを含む、組成物。
  6.  請求項5に記載の組成物を含む、SARS-CoV-2感染予防用スプレー。
  7.  請求項5に記載の組成物を担持する基材を含む、フィルタ。
  8.  請求項7に記載のフィルタを含む、SARS-CoV-2感染予防または拡散防止用マスク。
  9.  請求項5に記載の組成物の使用方法であって、
     前記組成物を空気中に徐放、噴霧、または散布する工程を含む
    組成物の使用方法。
  10.  請求項9に記載の組成物の使用方法であって、
     前記工程が前記組成物を加湿器を用いて空気中に噴霧する工程である
    組成物の使用方法。
  11.  請求項1~4のいずれか一項に記載の抗体またはその抗体フラグメントを含む、飲食品用組成物。
  12.  請求項11に記載の食品用組成物であって、SARS-CoV-2に対する感染予防のための飲食品用組成物。
  13.  請求項1~4のいずれか一項に記載の抗体またはその抗体フラグメントを含む、化粧品。
  14.  請求項1~4のいずれか一項に記載の抗体またはその抗体フラグメントを含む、SARS-CoV-2検出用試薬。
  15.  請求項1~4のいずれか一項に記載の抗体またはその抗体フラグメントを含む、COVID-19診断薬。
  16.  COVID-19の発症予防および/または治療のために用いられる、請求項1~4のいずれか一項に記載の抗体またはその抗体フラグメントを含む医薬組成物。
  17.  請求項1~4のいずれか一項に記載の抗体またはその抗体フラグメントをコードするポリヌクレオチド。
  18.  請求項17に記載のポリヌクレオチドを含有する発現ベクター。
  19.  請求項18に記載の発現ベクターにより形質転換された宿主細胞。
  20.  請求項19に記載の宿主細胞を培養する工程と
     前記工程で得られた培養物から目的の抗体を採取する工程と
    を含む、抗体の製造方法。
  21.  請求項20の製造方法により得られる抗体。
PCT/JP2023/013146 2022-03-31 2023-03-30 新型コロナウイルス(SARS-CoV-2)に結合する抗体 WO2023190852A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-059384 2022-03-31
JP2022059384 2022-03-31
JP2022-172698 2022-10-27
JP2022172698A JP2023152613A (ja) 2022-03-31 2022-10-27 新型コロナウイルス(SARS-CoV-2)に結合する抗体

Publications (1)

Publication Number Publication Date
WO2023190852A1 true WO2023190852A1 (ja) 2023-10-05

Family

ID=88202879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013146 WO2023190852A1 (ja) 2022-03-31 2023-03-30 新型コロナウイルス(SARS-CoV-2)に結合する抗体

Country Status (1)

Country Link
WO (1) WO2023190852A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111592594A (zh) * 2020-03-13 2020-08-28 北京大学 一种抗新型冠状病毒的单克隆抗体及其应用
KR102205028B1 (ko) * 2020-03-22 2021-01-20 (주)셀트리온 사스-코로나바이러스-2에 중화 활성을 갖는 결합 분자
WO2021045836A1 (en) * 2020-04-02 2021-03-11 Regeneron Pharmaceuticals, Inc. Anti-sars-cov-2-spike glycoprotein antibodies and antigen-binding fragments
KR102229225B1 (ko) * 2020-09-04 2021-03-19 (주)셀트리온 사스-코로나바이러스-2 표면의 스파이크 단백질에 결합하는 사스-코로나바이러스 감염증의 진단용 결합 분자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111592594A (zh) * 2020-03-13 2020-08-28 北京大学 一种抗新型冠状病毒的单克隆抗体及其应用
KR102205028B1 (ko) * 2020-03-22 2021-01-20 (주)셀트리온 사스-코로나바이러스-2에 중화 활성을 갖는 결합 분자
WO2021045836A1 (en) * 2020-04-02 2021-03-11 Regeneron Pharmaceuticals, Inc. Anti-sars-cov-2-spike glycoprotein antibodies and antigen-binding fragments
KR102229225B1 (ko) * 2020-09-04 2021-03-19 (주)셀트리온 사스-코로나바이러스-2 표면의 스파이크 단백질에 결합하는 사스-코로나바이러스 감염증의 진단용 결합 분자

Similar Documents

Publication Publication Date Title
TWI628190B (zh) 可結合及中和b型流感病毒之人類結合分子及其用途
CN105418757B (zh) 能中和流感病毒h3n2的人结合分子及其应用
CN108350070A (zh) 胸腺基质淋巴细胞生成素(tslp)-结合分子及该分子的使用方法
CN101072795A (zh) 针对流感病毒m2蛋白的人单克隆抗体及其制备和使用方法
KR102122618B1 (ko) 인플루엔자 중화를 위한 작용제
KR20220158053A (ko) 중증 급성 호흡기 증후군 코로나바이러스 2(SARS-CoV-2)에 대한 인간 단클론 항체
TWI746473B (zh) 針對細胞內抗原之單域抗體
KR20190141169A (ko) 항-pd-l1 항체 및 이의 용도
CN115066435A (zh) 针对lilrb2的单域抗体
CN108350053A (zh) 淀粉样蛋白β表位及其抗体
CN108368160A (zh) 淀粉样蛋白β中的C-末端表位及其构象选择性抗体
CN103665155B (zh) 一种抗流感病毒广谱中和性的中和分子1f2
CN107001464A (zh) 抗腱生蛋白c抗体和其用途
CA3174033A1 (en) Monoclonal antibodies and antigen binding fragments thereof for suppressing cd73 immune checkpoint and uses thereof
WO2023190852A1 (ja) 新型コロナウイルス(SARS-CoV-2)に結合する抗体
WO2023190851A1 (ja) 新型コロナウイルス(SARS-CoV-2)に結合する抗体
WO2023002944A1 (ja) 新型コロナウイルス(SARS-CoV-2)およびSARSコロナウイルス(SARS-CoV)に結合する抗体
JP2023152613A (ja) 新型コロナウイルス(SARS-CoV-2)に結合する抗体
CN106749645B (zh) 一种全人源抗丙型肝炎病毒的中和抗体
JP2023061248A (ja) 新型コロナウイルス(SARS-CoV-2)に結合する抗体
JP2023061249A (ja) 新型コロナウイルス(SARS-CoV-2)に結合する抗体
CN105814077B (zh) 能够中和狂犬病毒的结合分子
EP4130035A1 (en) Antibody and fusion protein for treating coronaviruses and use thereof
CN103665153A (zh) 一种抗流感病毒广谱中和性的中和分子1e1
US10888615B2 (en) Neutralizing human monoclonal antibody 8D6 against HCV infection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780860

Country of ref document: EP

Kind code of ref document: A1