WO2023190753A1 - 位置検知システム、センサユニット、磁気センサ、及びセンサブロック - Google Patents

位置検知システム、センサユニット、磁気センサ、及びセンサブロック Download PDF

Info

Publication number
WO2023190753A1
WO2023190753A1 PCT/JP2023/012968 JP2023012968W WO2023190753A1 WO 2023190753 A1 WO2023190753 A1 WO 2023190753A1 JP 2023012968 W JP2023012968 W JP 2023012968W WO 2023190753 A1 WO2023190753 A1 WO 2023190753A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
magnet
relative movement
coil
magnetoresistive elements
Prior art date
Application number
PCT/JP2023/012968
Other languages
English (en)
French (fr)
Inventor
和弘 尾中
琢也 米山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023190753A1 publication Critical patent/WO2023190753A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance

Definitions

  • the present disclosure relates to a position detection system, a sensor unit, a magnetic sensor, and a sensor block, and more specifically, a position detection system that can be used in a motor such as a VCM (Voice Coil Motor) that constitutes a camera module for a mobile device.
  • VCM Vehicle Coil Motor
  • the present invention relates to a system, a sensor unit, a magnetic sensor, and a sensor block.
  • magnetic sensors have been used in portable devices such as mobile phones, smartphones, and tablet terminals to control motors such as VCMs, detect the position of pointing devices, and the like.
  • a Hall element is arranged on a printed circuit board, and the position of a magnet with respect to the printed circuit board is detected based on the output of the Hall element.
  • An object of the present disclosure is to provide a position detection system, a sensor unit, a magnetic sensor, and a sensor block that can obtain a wide detection area.
  • a position detection system includes a coil and a magnet that move relative to each other due to magnetic interaction, and a sensor unit that detects the relative movement position of the coil and the magnet.
  • the sensor unit has four magnetoresistive elements for detecting the relative movement position.
  • the four magnetoresistive elements are arranged at equal intervals in a relative movement direction, which is a direction in which the coil and the magnet move relative to each other.
  • a sensor unit is a sensor unit that detects a relative movement position of a coil and a magnet that move relatively by magnetic interaction, and includes four magnetoresistive elements for detecting the relative movement position. has. The four magnetoresistive elements are arranged at equal intervals in a relative movement direction, which is a direction in which the coil and the magnet move relative to each other.
  • a magnetic sensor according to one embodiment of the present disclosure is used in a sensor unit according to one embodiment of the present disclosure.
  • the magnetic sensor includes two sensor blocks including a base material having electrical insulation properties and the magnetoresistive element disposed on an end surface of the base material, and a connecting portion connecting the two sensor blocks. , is provided.
  • a magnetic sensor according to another aspect of the present disclosure is used in a sensor unit according to one aspect of the present disclosure.
  • the magnetic sensor includes four sensor blocks having an electrically insulating base material and the magnetoresistive element disposed on an end surface of the base material, and the four sensor blocks are connected in series. and three connecting parts.
  • a sensor block is used in a sensor unit for detecting a relative movement position of the coil and the magnet in a position detection system including a coil and a magnet that move relative to each other due to magnetic interaction.
  • the sensor block includes a base material having electrical insulation properties and a magnetoresistive element disposed on an end surface of the base material.
  • FIG. 1A is a front view of a position detection system according to an embodiment
  • FIG. 1B is a side view of the same position detection system
  • FIG. 2 is a front view of a sensor unit included in the position detection system.
  • FIG. 3 is a perspective view of a magnetic sensor included in the sensor unit of one embodiment.
  • FIG. 4A is a front view of a magnetic sensor of one embodiment, and
  • FIG. 4B is a rear view of the same magnetic sensor.
  • FIG. 5 is a block diagram showing a processing unit included in the above position detection system.
  • FIG. 6 is an explanatory diagram showing the magnetic field strength detected when the four magnetoresistive elements included in the above sensor unit are at predetermined relative positions.
  • FIG. 1A is a front view of a position detection system according to an embodiment
  • FIG. 1B is a side view of the same position detection system.
  • FIG. 2 is a front view of a sensor unit included in the position detection system.
  • FIG. 3 is a perspective view of
  • FIG. 7 is an explanatory diagram showing the magnetic field strength detected when the four magnetoresistive elements described above are in different relative positions.
  • FIG. 8 is an explanatory diagram showing the magnetic field strength detected when the four magnetoresistive elements same as the above are in yet another relative position.
  • FIG. 9 is an explanatory diagram showing the relationship between the relative position and signal output of the sensor unit same as above.
  • FIG. 10 is an explanatory diagram showing the output after calculation by the processing section same as above.
  • FIG. 11 is a perspective view of a magnetic sensor according to a modified example.
  • a position detection system 9 of one embodiment includes a coil 1 and a magnet 2.
  • Power is supplied to the coil 1 from a power supply circuit, a power cable, etc.
  • Magnet 2 applies a driving magnetic field to coil 1 .
  • the magnet 2 in one embodiment is a unipolar magnet with one end having an N pole and the other end having an S pole, and has a plate shape that is long in the magnetization direction.
  • the magnetization direction here is a direction along a straight line connecting the north pole and the south pole.
  • the magnet 2 has a magnetized surface 20 that is magnetized in the magnetization direction of the magnet 2.
  • the coil 1 has a coil surface 10 along the windings of the coil 1.
  • the coil surface 10 is a surface perpendicular to the axis of the coil 1.
  • the magnetized surface 20 of the magnet 2 and the coil surface 10 of the coil 1 are opposed to each other.
  • the surface of the magnet 2 that faces the coil 1 is a magnetized surface 20, and the surface of the coil 1 that faces the magnet 2 is a coil surface 10.
  • the coil surface 10 has, for example, a rectangular outer shape in which the magnetization direction of the magnet 2 is the longitudinal direction and the direction orthogonal to the magnetization direction is the transversal direction.
  • the coil surface 10 may have an elliptical outer shape in which the magnetization direction of the magnet 2 is the major axis direction and the direction orthogonal to the magnetization direction is the minor axis direction.
  • orthogonal and perpendicular refer not only to a state in which the angle between the two is strictly 90 degrees, but also to a state in which the angle between the two is within a certain range that includes 90 degrees. include.
  • perpendicular and perpendicular in the present disclosure include cases where the angle between the two is 80 degrees or more and 100 degrees or less.
  • parallel in the present disclosure includes not only a state where the two do not strictly intersect, but also a state where the angle between the two is within a certain range including 0 degrees.
  • parallel as used in the present disclosure includes cases where the angle between the two is -10 degrees or more and 10 degrees or less.
  • the magnetized surface 20 has a rectangular outer shape that is long in the magnetization direction of the magnet 2.
  • the magnetized surface 20 has a larger outer shape than the coil surface 10.
  • the coil surface 10 When viewed in a direction perpendicular to the magnetized surface 20, the coil surface 10 is located inside the magnetized surface 20 regardless of the relative position of the magnet 2.
  • the outer shape of the coil surface 10 is not limited to a rectangle or an oblong shape.
  • the outer shape of the coil surface 10 may be circular or polygonal such as a hexagon.
  • the driving direction of the magnet 2 matches the magnetization direction of the magnet 2.
  • the driving direction of the magnet 2 is shown by an outline arrow.
  • the driving direction here is the direction in which the coil 1 and the magnet 2 move relative to each other. In the following, this direction will be referred to as a "relative movement direction.”
  • the coil 1 is fixedly arranged with respect to the camera body, and the magnet 2 is fixedly arranged with respect to the lens.
  • the lens is displaced with respect to the camera body, and autofocus is executed.
  • the coil 1 may be fixedly arranged with respect to the lens, and the magnet 2 may be fixedly arranged with respect to the camera body. In this case, by displacing the coil 1 with respect to the magnet 2, the lens is displaced with respect to the camera body, and autofocus is performed.
  • the magnet 2 has a longitudinal direction and a transverse direction that are perpendicular to each other, and the relative movement direction coincides with the longitudinal direction of the magnet 2.
  • the position detection system 9 of one embodiment includes a sensor unit 3 that detects the relative movement position of the coil 1 and the magnet 2.
  • the phrase "detect relative movement position” refers to detecting the magnitude of relative movement (that is, distance) between coil 1 and magnet 2, and detecting the relative position of coil 1 and magnet 2. may be included.
  • the sensor unit 3 detects the magnetoresistive effect caused by the magnetic field and outputs an output signal according to the detection result.
  • the magnetoresistive effect is an effect in which the electrical resistance of a material changes due to a magnetic field.
  • the sensor unit 3 includes two magnetic sensors 30.
  • the two magnetic sensors 30 are each placed near the magnetized surface 20 of the magnet 2.
  • the sensor unit 3 (that is, the two magnetic sensors 30) is fixedly provided to the coil 1. Therefore, as the magnet 2 moves relative to the coil 1, the magnet 2 moves relative to the two magnetic sensors 30.
  • the sensor unit 3 may be directly fixed to the coil 1 or may be fixed indirectly via another member.
  • Each magnetic sensor 30 includes two sensor blocks 8 described below, and further includes a connecting portion 7 that connects the two sensor blocks 8.
  • the two sensor blocks 8 and one connecting portion 7 are alternately located in the relative movement direction.
  • the connecting portion 7 is made of resin such as epoxy resin, but may be made of other non-magnetic material such as ceramic.
  • the two sensor blocks 8 are arranged on the base material 5 having electrical insulation properties and on the end surface 50 of the base material 5, respectively. and a magnetoresistive element 4.
  • the end surface 50 of the base material 5 is a surface facing the direction of relative movement.
  • the base material 5 is an insulating block having electrical insulation properties.
  • a pair of electrodes 511 and 512 are arranged on the base material 5 (see FIG. 4B). A pair of electrodes 511 and 512 are located apart from each other. A pair of electrodes 511 and 512 are electrically connected to the magnetoresistive element 4.
  • the magnetoresistive element 4 has a main surface 40 through which a magnetic field passes.
  • the magnetoresistive element 4 is arranged on the end surface 50 of the base material 5 so that the main surface 40 faces the direction of relative movement.
  • the end surface 50 of the base material 5 is the main surface of the base material 5 provided for arranging the magnetoresistive element 4.
  • the base material 5 is arranged so that the end surface 50, which is the main surface, faces the direction of relative movement.
  • the magnetoresistive elements 4 of each of the two sensor blocks 8 are located at both ends of the magnetic sensor 30 in the relative movement direction.
  • the position detection system 9 of one embodiment includes two magnetic sensors 30 described above, and thus has a total of four magnetoresistive elements 4.
  • the four magnetoresistive elements 4 are arranged at equal intervals in the direction of relative movement.
  • the term "equally spaced” herein is not limited to “equally spaced” in the full sense. For example, if the distance is within ⁇ % of a perfectly equal interval, it may be considered to be an equal interval. ⁇ % is, for example, 5%, 2%, etc., but is not limited thereto.
  • the four magnetoresistive elements 4 are all arranged perpendicular to the magnetized surface 20.
  • the main surfaces 40 of the four magnetoresistive elements 4 are arranged perpendicularly to the magnetized surface 20, and the base material 5 on which each of the four magnetoresistive elements 4 is arranged
  • the end face 50 of is arranged perpendicular to the magnetized surface 20.
  • the direction of the main surface 40 of the magnetoresistive element 4 and the direction of the end surface 50 of the base material 5 on which the magnetoresistive element 4 is arranged coincide with each other.
  • the position detection system 9 of one embodiment includes four magnetoresistive elements 4 and four base materials 5 on which the four magnetoresistive elements 4 are respectively arranged. Each has an end face 50 facing the direction of relative movement, and a corresponding one of the four magnetoresistive elements 4 is arranged on the end face 50 .
  • the magnetoresistive element 4 disposed on the end surface 50 of the base material 5 is one magnetoresistive element 4 included in the four magnetoresistive elements 4.
  • each of the four magnetoresistive elements 4 is referred to as the first magnetoresistive element 41, the second magnetoresistive element 42, the third magnetoresistive element 43, and the fourth magnetoresistive element 4. It is called a magnetoresistive element 44.
  • the two magnetic sensors 30 when distinguishing between the two magnetic sensors 30, the two magnetic sensors 30 are referred to as a first magnetic sensor 301 and a second magnetic sensor 302, respectively.
  • each of the four sensor blocks 8 is referred to as a first sensor block 81, a second sensor block 82, a third sensor block 83, and a fourth sensor block 84.
  • the two connecting portions 7 When distinguishing between the two connecting portions 7, they are referred to as a first connecting portion 71 and a second connecting portion 72.
  • the four base materials 5 When distinguishing the four base materials 5, they are referred to as a first base material 51, a second base material 52, a third base material 53, and a fourth base material 54.
  • the first magnetic sensor 301 has a first magnetoresistive element 41 and a second magnetoresistive element 42.
  • the first magnetoresistive element 41 and the second magnetoresistive element 42 are arranged at both ends of the first magnetic sensor 301 in the relative movement direction.
  • a first sensor block 81 having a first magnetoresistive element 41 and a first base material 51 and a second magnetoresistive element 42 and a second base material 52 are connected via a first connection part 71.
  • the second sensor block 82 having the second sensor block 81 and the second sensor block 82 are mechanically connected to each other so as to be located on opposite sides.
  • the second magnetic sensor 302 has a third magnetoresistive element 43 and a fourth magnetoresistive element 44.
  • the third magnetoresistive element 43 and the fourth magnetoresistive element 44 are arranged at both ends of the second magnetic sensor 302 in the relative movement direction.
  • the third sensor block 83 having the third magnetoresistive element 43 and the third base material 53 and the fourth magnetoresistive element 44 and the fourth base material 54 are connected via the second connection part 72.
  • the fourth sensor block 84 having the fourth sensor block 84 is mechanically connected to the fourth sensor block 84 so as to be located on opposite sides.
  • the first magnetoresistive element 41, the second magnetoresistive element 42, the third magnetoresistive element 43, and the fourth magnetoresistive element 44 are arranged in the direction of relative movement. They are arranged in order.
  • the distance d2 and the distance d3 between the third magnetoresistive element 43 and the fourth magnetoresistive element 44 in the relative movement direction are both 1/4 of the relative movement distance of the coil 1 and the magnet 2.
  • the relative movement distance between the coil 1 and the magnet 2 is the distance by which the coil 1 and the magnet 2 move relatively in the relative movement direction.
  • the distance d1 between the first magnetoresistive element 41 and the second magnetoresistive element 42, the distance d2 between the second magnetoresistive element 42 and the third magnetoresistive element 43, and the third magnetoresistive element are the same.
  • the distances d1, d2, and d3 between two magnetoresistive elements 4 adjacent to each other in the relative movement direction are all equal to the relative movement distance of the coil 1 and the magnet 2. It is 1/4.
  • the distances d1, d2, and d3 here are the distances between the centers of two adjacent magnetoresistive elements 4.
  • the distances d1, d2, and d3 between two mutually adjacent magnetoresistive elements 4 are all 1.25 mm.
  • the distances d1, d2, and d3 between two adjacent magnetoresistive elements 4 are preferably set within a range of 0.75 to 1.25 mm.
  • the distances d4 and d5 between two adjacent magnetoresistive elements 4 with one magnetoresistive element 4 in between are both relative to the coil 1 and magnet 2. This is 1/2 of the moving distance.
  • the distance d4 between the first magnetoresistive element 41 and the third magnetoresistive element 43 and the distance d5 between the second magnetoresistive element 42 and the fourth magnetoresistive element 44 are both This is 1/2 of the relative moving distance between the coil 1 and the magnet 2.
  • the distance d4 between the first magnetoresistive element 41 and the third magnetoresistive element 43 and the distance between the second magnetoresistive element 42 and the fourth magnetoresistive element 44 45 is 2.5 mm.
  • each of the four magnetoresistive elements 4 is a semiconductor element.
  • the four magnetoresistive elements 4 are giant magnetoresistive elements (GMR elements). That is, the magnetoresistive effect detected by the sensor unit 3 is the giant magnetoresistive effect (GMR effect).
  • TMR elements tunnel magnetoresistive elements
  • AMR elements anisotropic magnetoresistive elements
  • the position detection system 9 of one embodiment further includes a processing unit 6 that processes the output signal of the sensor unit 3 (see FIG. 5).
  • the processing unit 6 includes a computer system having one or more processors and memory.
  • the functions of the processing unit 6 are realized by the processor of the computer system executing a program recorded in the memory of the computer system.
  • the program may be recorded in a memory, provided through a telecommunications line such as the Internet, or provided recorded on a non-temporary recording medium such as a memory card.
  • the processing unit 6 detects the relative movement position of the magnet 2 by processing the output signals from the four magnetoresistive elements 4.
  • the processing section 6 includes a microcomputer 60 as a main component, and further includes an amplifier circuit 65.
  • the fluctuation in the intermediate potential of two of the four magnetoresistive elements 4 is amplified by the amplifier circuit 65 and outputted to the processing unit 6 as a first output signal.
  • the two magnetoresistive elements 4 here are two magnetoresistive elements 4 located apart by 1/2 of the relative movement distance of the coil 1 and the magnet 2 in the relative movement direction, and specifically, the first They are a magnetoresistive element 41 and a third magnetoresistive element 43.
  • the first magnetoresistive element 41 and the third magnetoresistive element 43 are half-bridge connected.
  • the microcomputer 60 of the processing unit 6 receives fluctuations in the intermediate potential of two other magnetoresistive elements 4 among the four magnetoresistive elements 4 through amplification by an amplifier circuit 65 and outputs it as a second signal output. be done.
  • the other two magnetoresistive elements 4 are two magnetoresistive elements 4 located apart from each other by 1/2 of the relative movement distance of the coil 1 and the magnet 2 in the relative movement direction. They are a resistance element 42 and a fourth magnetoresistive element 44.
  • the second magnetoresistive element 42 and the fourth magnetoresistive element 44 are half-bridge connected.
  • the processing unit 6 does not include the amplifier circuit 65.
  • fluctuations in the intermediate potential between the first magnetoresistive element 41 and the third magnetoresistive element 43 are output to the microcomputer 60 as a first output signal without being amplified.
  • Fluctuations in the intermediate potential between the second magnetoresistive element 42 and the fourth magnetoresistive element 44 are output to the microcomputer 60 as a second output signal without being amplified.
  • the graphs in FIGS. 6 to 8 show the relationship between the relative positions of the four magnetoresistive elements 4 and the magnetic field strength detected by each magnetoresistive element 4.
  • the magnetic field measured here is a magnetic field in a direction perpendicular to the magnetized surface 20 of the magnet 2 (that is, the z direction shown in FIG. 1B).
  • the y direction shown in FIGS. 1A and 1B is the relative movement direction of the magnet 2.
  • the x direction is a direction orthogonal to the y direction and the z direction, in other words, it is parallel to the magnetized surface 20 and orthogonal to the relative movement direction.
  • the magnetic field of the magnet 2 in the z direction is detected.
  • each magnetoresistive element 4 which is a giant magnetoresistive element, is arranged perpendicular to the magnetized surface 20 of the magnet 2 in order to detect changes in magnetic field strength in the z direction.
  • Each magnetoresistive element 4 is configured such that its electrical resistance value changes at least in accordance with the magnetic field strength in the z direction (in other words, in accordance with changes in the magnetic field strength).
  • each magnetoresistive element 4 which is a giant magnetoresistive element, detects only the absolute value of the magnetic field. Therefore, the graphs in FIGS. 6 to 8 have a mountain-like shape on both sides of the reference point at the 0 mm position.
  • FIG. 6 shows the magnetic field strength in the z direction of the magnet 2 detected by the four magnetoresistive elements 4 when the magnet 2 is located at the first end of the relative movement area.
  • the values of the first output signal and the second output signal output at this time correspond to the values of the part marked with a circled number 1 in FIG.
  • FIG. 7 shows the magnetic field strength in the z direction of the magnet 2 detected by the four magnetoresistive elements 4 when the magnet 2 is located in the middle of the relative movement area.
  • the values of the first output signal and the second output signal output at this time correspond to the values of the part marked with a circled number 2 in FIG.
  • FIG. 8 shows the magnetic field strength in the z direction of the magnet 2 detected by the four magnetoresistive elements 4 when the magnet 2 is located at the second end of the relative movement area.
  • the values of the first output signal and the second output signal output at this time correspond to the values of the part marked with a circled number 3 in FIG.
  • the magnet 2 is capable of linear reciprocating relative movement between the first end and the second end of the relative movement area.
  • the middle between the first end and the second end of the relative movement area corresponds to the middle of the relative movement area.
  • the waveform of the first output signal obtained with the relative movement of the magnet 2 has a shape similar to a cosine wave.
  • the waveform of the second output signal obtained when the magnet 2 relatively moves has a shape similar to a sine wave.
  • the microcomputer 60 of the processing unit 6 corrects the first output signal so that its waveform approaches that of a cosine wave. There is a certain regularity in the deviation between the waveform of the first output signal and the waveform of the cosine wave. Therefore, by correction, it is possible to bring the waveform of the first output signal closer to the waveform of an ideal cosine wave.
  • the microcomputer 60 corrects the second output signal so that its waveform approaches that of a sine wave. There is a certain regularity in the deviation between the waveform of the second output signal and the waveform of the sine wave. Therefore, by correction, it is possible to bring the waveform of the second output signal closer to the waveform of an ideal sine wave.
  • the microcomputer 60 can realize highly accurate position detection by performing appropriate arithmetic processing on the corrected values of the first output signal and the second output signal.
  • the calculation process includes, as an example, arctangent calculation processing. It is also preferable that the arithmetic processing further includes multiplication processing.
  • the first output signal after correction is shown by a one-dot broken line 61
  • the second output signal after correction is shown by a two-dot broken line 62.
  • the waveform indicated by the dashed line 61 is a cosine wave.
  • the waveform of the two-dot broken line 62 is a sine wave.
  • the relative movement area of the magnet 2 is an area in which the magnet 2 moves relatively from the reference point in the relative movement direction within a range of "-2.5 mm" to "+2.5 mm".
  • a solid line 63 indicates the position detection result of the magnet 2 obtained using the first output signal (cosine wave) and the second output signal (sine wave).
  • the solid line 63 is a straight line. That is, according to the position detection system 9 of one embodiment, a linear output change can be obtained based on a change in the position of the magnet 2 within the relative movement area of the magnet 2.
  • the position detection system 9 of one embodiment within a wide area where the magnet 2 moves relatively in the relative movement direction from the reference point in the range of "-2.5 mm" to "+2.5 mm” (5 mm in total), It is possible to perform accurate position detection.
  • the position detection system 9 of one embodiment it is possible to perform highly accurate position detection within a wide area where the magnet 2 moves relative to the reference point in the relative movement direction within a total range of 3 to 5 mm. be.
  • a broken line 64 shows the detection result of the magnet position when using a Hall element similar to the conventional technology.
  • the magnet position can only be detected within a narrow area of "-0.5 mm" to "+0.5 mm” (1 mm in total) with respect to the reference point.
  • the position detection system 9 of one embodiment can detect the relative positions of the coil 1 and the magnet 2 within a wider area than the conventional technology (for example, an area 3 to 5 times larger than the conventional technology). , can be detected with high precision.
  • the relative position detected thereby corresponds to, for example, the relative position of the camera body and lens of a camera module built into a mobile device such as a smartphone.
  • high precision detection of the relative position of the coil 1 and the magnet 2 can be realized with a simple configuration in which two sensor blocks 8 are fixedly arranged by adhesive or the like. .
  • the size of the sensor unit 3 is comparable to that of a conventional sensor unit using a Hall element.
  • the method of attaching the sensor unit 3 can follow the method of attaching a sensor unit of the prior art using a Hall element.
  • FIG. 11 shows a sensor unit 3 of a modified example.
  • the sensor unit 3 of the first modified example includes one magnetic sensor 30.
  • a magnetic sensor 30 in a modified example includes four magnetoresistive elements 4.
  • the sensor unit 3 (that is, the magnetic sensor 30) of a modified example is arranged near the magnetized surface 20 of the magnet 2 so that the four magnetoresistive elements 4 are arranged at equal intervals in the direction of relative movement of the magnet 2. . At this time, all four magnetoresistive elements 4 are arranged perpendicularly to the magnetized surface 20 of the magnet 2.
  • a magnetic sensor 30 in a modified example includes four sensor blocks 8 and three connection parts 7 that connect the four sensor blocks 8 in series.
  • the four sensor blocks 8 and the three connection parts 7 are alternately located in the relative movement direction.
  • Each of the four sensor blocks 8 includes a base material 5 and a magnetoresistive element 4 disposed on an end surface 50 of the base material 5.
  • the end surface 50 of the base material 5 is a surface facing the direction of relative movement.
  • the three connecting portions 7 are a first connecting portion 73, a second connecting portion 74, and a third connecting portion 75.
  • the first magnetoresistive element 41 and the second magnetoresistive element 42 are mechanically connected via the first connection part 73.
  • the second magnetoresistive element 42 and the third magnetoresistive element 43 are mechanically connected via a second connection part 74.
  • the third magnetoresistive element 43 and the fourth magnetoresistive element 44 are mechanically connected via a third connection part 75.
  • the sensor unit 3 includes two connection portions 7, and in one modification, the sensor unit 3 includes three connection portions 7, but the connection portion 7
  • the number of connection parts 7 is not limited to this, and the sensor unit 3 may not include the connection part 7.
  • the sensor unit 3 includes one connection part 7, for example, two sensor blocks 8 are integrated via one connection part 7, and another two sensor blocks 8 are not integrated. are arranged so that four magnetoresistive elements 4 are lined up at equal intervals.
  • connection part 7 In the case where the magnetic sensor 30 does not include the connection part 7, for example, four sensor blocks 8 provided separately from each other are individually arranged so that the four magnetoresistive elements 4 are lined up at equal intervals.
  • the sensor unit 3 includes two connecting parts 7, for example, three sensor blocks 8 integrated via the two connecting parts 7 and one sensor block separate from these three sensor blocks 8 are provided. It is also possible to arrange the magnetoresistive elements 8 so that the four magnetoresistive elements 4 are arranged at equal intervals.
  • the two sensor blocks 8 are arranged in a straight line in the relative movement direction (that is, the y direction shown in FIG. 1A etc.), but the invention is not limited thereto.
  • the two sensor blocks 8 may be arranged offset in a direction perpendicular to the relative movement direction and parallel to the magnetized surface 20 (that is, the x direction shown in FIG. 1B).
  • the four magnetoresistive elements 4 are arranged in a straight line in the relative movement direction (that is, the y direction), but the present invention is not limited thereto.
  • the four magnetoresistive elements 4 may be arranged offset from each other in a direction perpendicular to the relative movement direction and parallel to the magnetized surface 20 (that is, the x direction).
  • the position detection system (9) includes a coil (1) and a magnet (2) that move relative to each other due to magnetic interaction, and a relative movement position between the coil (1) and the magnet (2).
  • the sensor unit (3) has four magnetoresistive elements (4) for detecting the relative movement position of the coil (1) and the magnet (2).
  • the four magnetoresistive elements (4) are arranged at equal intervals in a relative movement direction, which is a direction in which the coil (1) and the magnet (2) move relative to each other.
  • the relative positions of the coil (1) and the magnet (2) can be detected with high precision within a wide area based on the outputs from the four magnetoresistive elements (4). .
  • the position detection system (9) further includes a first connection part (71) and a second connection part (72) that are arranged apart in the relative movement direction.
  • the first connection portion (71) connects two of the four magnetoresistive elements (4).
  • the second connection portion (72) connects two other magnetoresistive elements (4) among the four magnetoresistive elements (4).
  • two magnetoresistive elements (4) are integrated via the first connection part (71), and another two magnetoresistive elements (4) are integrated via the second connection part (72). can be integrated via
  • the distance ( d1, d2, d3) is 1/4 of the relative movement distance between the coil (1) and the magnet (2).
  • the first output signal having a waveform close to a cosine wave can be obtained as a fluctuation in the intermediate potential of two of the four magnetoresistive elements (4), and the first output signal has a waveform close to a cosine wave.
  • a second output signal having a waveform close to a sine wave can be obtained as a change in the intermediate potential of two other magnetoresistive elements (4) among the two magnetoresistive elements (4).
  • highly accurate position detection is achieved by performing calculations based on the first output signal and the second output signal.
  • the magnetoresistive element (4) is a giant magnetoresistive element.
  • the relative positions of the coil (1) and the magnet (2) can be detected with high precision by utilizing the giant magnetoresistive effect.
  • the position detection system (9) includes a processing unit ( 6).
  • the relative positions of the coil (1) and the magnet (2) can be determined within a wide area by processing the outputs from the four magnetoresistive elements (4) in the processing unit (6). can be detected with high precision.
  • the sensor unit (3) is fixedly provided to the coil (1).
  • the relative positions of the coil (1) and the magnet (2) are determined based on the outputs from the four magnetoresistive elements (4) fixedly provided to the coil (1). , can be detected with high precision within a wide area.
  • a sensor unit (3) is a sensor unit (3) that detects a relative movement position of a coil (1) and a magnet (2) that move relatively by magnetic interaction, and detects the relative movement position. It has four magnetoresistive elements (4) for sensing. The four magnetoresistive elements (4) are arranged at equal intervals in a relative movement direction, which is a direction in which the coil (1) and the magnet (2) move relative to each other.
  • the relative positions of the coil (1) and the magnet (2) can be detected with high precision within a wide area based on the outputs from the four magnetoresistive elements (4). .
  • the magnetic sensor (30) according to the eighth aspect is used in the sensor unit (3) according to the seventh aspect.
  • the magnetic sensor (30) includes two sensor blocks (8) each having a base material (5) having electrical insulation properties and a magnetoresistive element (4) disposed on an end surface (50) of the base material (5). ), and a connecting portion (7) for connecting the two sensor blocks (8).
  • the relative positions of the coil (1) and the magnet (2) can be detected with high precision within a wide area based on the outputs from the two magnetic sensors (30). .
  • the magnetic resistance elements (4) of each of the two sensor blocks (8) are arranged at both ends of the magnetic sensor (30) in the relative movement direction. To position.
  • the distance between two adjacent magnetoresistive elements (4) is ensured via the connection portion (7) and the two base materials (5).
  • the magnetic sensor (30) according to the tenth aspect is used in the sensor unit (3) according to the seventh aspect.
  • the magnetic sensor (30) includes four sensor blocks (8) each having a base material (5) having electrical insulation properties and a magnetoresistive element (4) disposed on an end surface (50) of the base material (5). ), and three connection parts (7) that connect four sensor blocks (8) in series.
  • the relative positions of the coil (1) and the magnet (2) can be detected with high precision within a wide area based on the output from one magnetic sensor (30). .
  • the four sensor blocks (8) and the three connection parts (7) are alternately located in the relative movement direction.
  • the distance between two adjacent magnetoresistive elements (4) included in the four magnetoresistive elements (4) is ensured via the connection part (7).
  • a sensor block (8) is a position detection system (9) including a coil (1) and a magnet (2) that move relative to each other due to magnetic interaction. It is used in a sensor unit (3) for detecting a relative movement position.
  • the sensor block (8) includes a base material (5) having electrical insulation properties and a magnetoresistive element (4) arranged on an end surface (50) of the base material (5).
  • the relative positions of the coil (1) and the magnet (2) can be detected with high precision within a wide area based on the output from the magnetoresistive element (4).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

広い検知エリアを得ることができる位置検知システムを提供する。位置検知システム(9)は、磁気的相互作用により相対移動するコイル(1)及び磁石(2)と、コイル(1)及び磁石(2)の相対移動位置を検知するセンサユニット(3)とを備える。センサユニット(3)は、相対移動位置を検知するための4個の磁気抵抗素子(4)を有する。4個の磁気抵抗素子(4)は、コイル(1)及び磁石(2)が相対移動する方向である相対移動方向に、等間隔で並んで配されている。

Description

位置検知システム、センサユニット、磁気センサ、及びセンサブロック
 本開示は、位置検知システム、センサユニット、磁気センサ、及びセンサブロックに関し、より詳細には、携帯機器用のカメラモジュールを構成するVCM(Voice Coil Motor)等のモータに用いることが可能な位置検知システム、センサユニット、磁気センサ、及びセンサブロックに関する。
 従来、携帯電話機やスマートフォン、タブレット端末等の携帯機器では、VCM等のモータの制御やポインティングデバイスの位置検知等のために、磁気センサが用いられている。
 例えば、特許文献1に記載されたポインティングデバイスでは、プリント基板にホール素子を配置し、プリント基板に対する磁石の位置を、ホール素子の出力に基づいて検知している。
特開2003-318459号公報
 上記した従来の技術では、スマートフォン等の携帯機器に搭載したときに、広い検知エリアを確保することが困難である。特に、近年のスマートフォン等を備えるカメラモジュールでは、多眼化に伴って、より焦点距離の長いレンズが採用される傾向にある。レンズの焦点距離が長くなれば、オートフォーカスのためのレンズの移動エリアも広がり、一層広い検知エリアを確保することが要求される。
 本開示の目的は、広い検知エリアを得ることができる位置検知システム、センサユニット、磁気センサ、及びセンサブロックを提供することにある。
 本開示の一態様に係る位置検知システムは、磁気的相互作用により相対移動するコイル及び磁石と、前記コイル及び前記磁石の相対移動位置を検知するセンサユニットと、を備える。前記センサユニットは、前記相対移動位置を検知するための4個の磁気抵抗素子を有する。前記4個の磁気抵抗素子は、前記コイル及び前記磁石が相対移動する方向である相対移動方向に、等間隔で並んで配置されている。
 本開示の一態様に係るセンサユニットは、磁気的相互作用により相対移動するコイル及び磁石の相対移動位置を検知するセンサユニットであって、前記相対移動位置を検知するための4個の磁気抵抗素子を有する。前記4個の磁気抵抗素子は、前記コイル及び前記磁石が相対移動する方向である相対移動方向に、等間隔で並んで配置されている。
 本開示の一態様に係る磁気センサは、本開示の一態様に係るセンサユニットに用いられる。前記磁気センサは、電気絶縁性を有する基材と、前記基材の端面に配置された前記磁気抵抗素子と、を有する2個のセンサブロックと、前記2個のセンサブロックを接続する接続部と、を備える。
 本開示の別態様に係る磁気センサは、本開示の一態様に係るセンサユニットに用いられる。前記磁気センサは、電気絶縁性を有する基材と、前記基材の端面に配置された前記磁気抵抗素子と、を有する4個のセンサブロックと、前記4個のセンサブロックを直列状に接続する3個の接続部と、を備える。
 本開示の一態様に係るセンサブロックは、磁気的相互作用により相対移動するコイル及び磁石を備える位置検知システムにおいて、前記コイル及び前記磁石の相対移動位置を検知するためのセンサユニットに用いられる。前記センサブロックは、電気絶縁性を有する基材と、前記基材の端面に配置された磁気抵抗素子と、を備える。
図1Aは、一実施形態の位置検知システムの正面図であり、図1Bは、同上の位置検知システムの側面図である。 図2は、同上の位置検知システムが備えるセンサユニットの正面図である。 図3は、一実施形態のセンサユニットが備える磁気センサの斜視図である。 図4Aは、一実施形態の磁気センサの正面図であり、図4Bは、同上の磁気センサの背面図である。 図5は、同上の位置検知システムが備える処理部を示すブロック図である。 図6は、同上のセンサユニットが備える4個の磁気抵抗素子が所定の相対位置にあるときに検知する磁界強度を示す説明図である。 図7は、同上の4個の磁気抵抗素子が別の相対位置にあるときに検知する磁界強度を示す説明図である。 図8は、同上の4個の磁気抵抗素子が更に別の相対位置にあるときに検知する磁界強度を示す説明図である。 図9は、同上のセンサユニットの相対位置と信号出力との関係を示す説明図である。 図10は、同上の処理部による演算後の出力を示す説明図である。 図11は、一変形例の磁気センサの斜視図である。
 下記の実施形態において説明する各図は模式的な図であり、各構成要素の大きさ及び厚さのそれぞれの比が実際の寸法比を反映しているとは限らない。なお、以下の実施形態で説明する構成は本開示の一例に過ぎない。本開示は、以下の実施形態に限定されず、本開示の効果を奏することができれば、設計等に応じて種々の変更が可能である。
 (1)一実施形態
 (1-1)概要
 図1A及び図1Bに示されるように、一実施形態の位置検知システム9は、コイル1と磁石2とを備える。
 コイル1には、電源回路や電源ケーブル等から電力が供給される。磁石2は、コイル1に駆動磁界を印加する。
 磁石2からの駆動磁界が印加されたコイル1に電力が供給されることで、磁石2とコイル1のうち一方が、他方に対して変位する。つまり、コイル1に電力が供給されることで、磁気的相互作用により、磁石2がコイル1に対して相対移動する。
 一実施形態における磁石2は、一端がN極、他端がS極である単極着磁の磁石であり、磁化方向に長い板形状を有する。ここでの磁化方向とは、図1A等に示すような単極着磁の磁石2の場合は、N極とS極とを結ぶ直線に沿った方向である。
 磁石2は、磁石2の磁化方向に着磁された着磁面20を有する。コイル1は、コイル1の巻線に沿ったコイル面10を有する。コイル面10は、コイル1の軸と垂直な面である。磁石2の着磁面20と、コイル1のコイル面10とは、互いに対向している。磁石2のうちコイル1に対向する面が着磁面20であり、コイル1のうち磁石2に対向する面がコイル面10である。
 コイル面10は、例えば、磁石2の磁化方向を長手方向とし、磁化方向と直交する方向を短手方向とした、矩形状の外形を有する。コイル面10は、磁石2の磁化方向を長径方向とし、磁化方向と直交する方向を短径方向とした、楕円形状の外形を有してもよい。
 本開示における「直交」及び「垂直」は、二者間の角度が厳密に90度である状態だけでなく、二者間の角度が、90度を含んだある程度の範囲内にある状態をも含む。例えば、本開示における「直交」及び「垂直」には、二者間の角度が80度以上100度以下である場合を含む。
 同様に、本開示における「平行」は、二者が厳密に交わらない状態だけでなく、二者のなす角度が0度を含んだある程度の範囲内にある状態をも含む。例えば、本開示でいう「平行」は、二者のなす角度が-10度以上10度以下である場合を含む。
 着磁面20は、磁石2の磁化方向に長い矩形状の外形を有する。着磁面20は、コイル面10よりも大きな外形を有する。着磁面20に直交する方向に見たとき、コイル面10は、磁石2の相対位置に関わらず、着磁面20の内側に位置する。
 コイル面10の外形は、矩形や偏円形に限定されない。コイル面10の外形が円形でもよいし、六角形等の多角形でもよい。
 磁石2の駆動方向は、磁石2の磁化方向と一致する。図1A及び図1Bでは、磁石2の駆動方向を白抜き矢印で示している。ここでの駆動方向は、コイル1及び磁石2が相対移動する方向である。以下においては、この方向を「相対移動方向」という。
 一実施形態の位置検知システム9では、コイル1がカメラ本体に対して固定的に配置され、磁石2がレンズに対して固定的に配置される。コイル1に対して磁石2が変位することで、カメラ本体に対してレンズが変位し、オートフォーカスが実行される。
 なお、コイル1がレンズに対して固定的に配置され、磁石2がカメラ本体に対して固定的に配置されてもよい。この場合には、磁石2に対してコイル1が変位することで、カメラ本体に対してレンズが変位し、オートフォーカスが実行される。
 一実施形態では、磁石2が互いに直交する長手方向と短手方向とを有しており、相対移動方向は、磁石2の長手方向と一致する。
 (1-2)センサユニット
 一実施形態の位置検知システム9は、コイル1及び磁石2の相対移動位置を検知するセンサユニット3を、備えている。本開示における「相対移動位置を検知する」の文言は、コイル1及び磁石2の相対移動の大きさ(つまり距離)を検知すること、及び、コイル1及び磁石2の相対位置を検知することを含み得る。センサユニット3は、磁界による磁気抵抗効果を検知し、検知結果に応じた出力信号を出力する。磁気抵抗効果は、磁場により物質の電気抵抗が変化する効果である。
 センサユニット3は、磁気センサ30を2個備えている。2個の磁気センサ30は、それぞれ磁石2の着磁面20の近傍に配置されている。
 一実施形態の位置検知システム9において、センサユニット3(つまり2個の磁気センサ30)は、コイル1に対して固定的に設けられている。そのため、磁石2がコイル1に対して相対移動することに伴って、磁石2は、2個の磁気センサ30に対して相対移動する。センサユニット3は、コイル1に対して直接的に固定されてもよいし、他の部材を介して間接的に固定されてもよい。
 各磁気センサ30は、下記のセンサブロック8を2個備え、更に、2個のセンサブロック8を接続する接続部7を備えている。2個のセンサブロック8と、1個の接続部7とは、相対移動方向において交互に位置する。接続部7は、例えばエポキシ樹脂等の樹脂で成形されるが、セラミック等の他の非磁性材料で成形されてもよい。
 (1-2-1)センサブロック
 図2~図4B等に示されるように、2個のセンサブロック8はそれぞれ、電気絶縁性を有する基材5と、基材5の端面50に配置された磁気抵抗素子4とを備える。基材5の端面50は、相対移動方向を向く面である。基材5は、言い換えれば、電気的絶縁性を有する絶縁ブロックである。
 基材5には、一対の電極511,512が配置されている(図4B参照)。一対の電極511,512は、互いに距離をあけて位置している。一対の電極511,512は、磁気抵抗素子4に対して電気的に接続されている。
 磁気抵抗素子4は、磁界が通過する主面40を有する。磁気抵抗素子4は、主面40が相対移動方向を向くように、基材5の端面50に配置されている。基材5の端面50は、言い換えれば、磁気抵抗素子4を配置するために設けられた基材5の主面である。基材5は、主面である端面50が相対移動方向を向くように、配置されている。
 2個のセンサブロック8が接続部7を介して一体に接続された状態で、2個のセンサブロック8の各々の磁気抵抗素子4は、磁気センサ30の相対移動方向の両端に位置する。
 (1-2-2)磁気センサの詳細
 一実施形態の位置検知システム9は、上記の磁気センサ30を2個備えるので、磁気抵抗素子4を合計で4個有する。
 4個の磁気抵抗素子4は、相対移動方向において等間隔に並んで配置されている。ここでの等間隔の文言は、完全な意味での等間隔に限定されない。例えば、完全な等間隔に対して±α%の範囲内にある場合は、等間隔とみなしてもよい。α%は、例えば5%、2%等であるが、これに限定されない。
 4個の磁気抵抗素子4は、いずれも着磁面20に対して垂直な姿勢で配置されている。言い換えれば、4個の磁気抵抗素子4の主面40が、いずれも着磁面20に対して垂直な姿勢で配置されており、4個の磁気抵抗素子4のそれぞれが配置される基材5の端面50が、着磁面20に対して垂直な姿勢で配置されている。磁気センサ30において、磁気抵抗素子4の主面40の向きと、この磁気抵抗素子4が配置される基材5の端面50の向きとは、互いに一致する。
 つまり、一実施形態の位置検知システム9は、4個の磁気抵抗素子4と、4個の磁気抵抗素子4がそれぞれ配置される4個の基材5とを備え、4個の基材5の各々は、相対移動方向を向く端面50を有し、該端面50に、4個の磁気抵抗素子4のうち対応する磁気抵抗素子4が配置されている。基材5の端面50に配置された磁気抵抗素子4は、4個の磁気抵抗素子4に含まれる1個の磁気抵抗素子4である。
 以下において、4個の磁気抵抗素子4を区別するときには、4個の磁気抵抗素子4のそれぞれを、第1磁気抵抗素子41、第2磁気抵抗素子42、第3磁気抵抗素子43、及び第4磁気抵抗素子44と称する。
 また、以下において、2個の磁気センサ30を区別するときには、2個の磁気センサ30のそれぞれを、第1磁気センサ301及び第2磁気センサ302と称する。都合4個のセンサブロック8を区別するときには、4個のセンサブロック8のそれぞれを、第1センサブロック81、第2センサブロック82、第3センサブロック83、及び第4センサブロック84と称する。都合2個の接続部7を区別するときは、第1接続部71及び第2接続部72と称する。都合4個の基材5を区別するときは、第1基材51、第2基材52、第3基材53及び第4基材54と称する。
 第1磁気センサ301は、第1磁気抵抗素子41と、第2磁気抵抗素子42とを有する。第1磁気抵抗素子41と第2磁気抵抗素子42とは、第1磁気センサ301の相対移動方向の両端に配置されている。
 第1磁気センサ301では、第1接続部71を介して、第1磁気抵抗素子41及び第1基材51を有する第1センサブロック81と、第2磁気抵抗素子42及び第2基材52を有する第2センサブロック82とが、互いに反対側に位置するように機械的に接続されている。
 第2磁気センサ302は、第3磁気抵抗素子43と、第4磁気抵抗素子44とを有する。第3磁気抵抗素子43と第4磁気抵抗素子44とは、第2磁気センサ302の相対移動方向の両端に配置されている。
 第2磁気センサ302では、第2接続部72を介して、第3磁気抵抗素子43及び第3基材53を有する第3センサブロック83と、第4磁気抵抗素子44及び第4基材54を有する第4センサブロック84とが、互いに反対側に位置するように機械的に接続されている。
 (1-2-3)4個の磁気抵抗素子の配置
 第1磁気抵抗素子41、第2磁気抵抗素子42、第3磁気抵抗素子43及び第4磁気抵抗素子44は、相対移動方向において、この順に並んで配置されている。
 一実施形態において、相対移動方向における第1磁気抵抗素子41と第2磁気抵抗素子42との間の距離d1と、相対移動方向における第2磁気抵抗素子42と第3磁気抵抗素子43との間の距離d2と、相対移動方向における第3磁気抵抗素子43と第4磁気抵抗素子44との間の距離d3とは、いずれもコイル1及び磁石2の相対移動距離の1/4である。コイル1及び磁石2の相対移動距離は、コイル1及び磁石2が、相対移動方向において相対的に移動する距離である。
 相対移動方向において、第1磁気抵抗素子41と第2磁気抵抗素子42との間の距離d1と、第2磁気抵抗素子42と第3磁気抵抗素子43との間の距離d2と、第3磁気抵抗素子43と第4磁気抵抗素子44との間の距離d3とは、互いに一致している。
 以上のように、4個の磁気抵抗素子4のうち、相対移動方向において互いに隣接する2つの磁気抵抗素子4同士の距離d1,d2,d3は、いずれもコイル1及び磁石2の相対移動距離の1/4である。ここでの距離d1,d2,d3は、隣接する2つの磁気抵抗素子4の互いの中心間の距離である。
 例えば、相対移動距離が5mmであるとき、互いに隣接する2つの磁気抵抗素子4同士の距離d1,d2,d3は、いずれも1.25mmである。互いに隣接する2つの磁気抵抗素子4同士の距離d1,d2,d3は、0.75~1.25mmの範囲内で設定されることが好ましい。
 また、4個の磁気抵抗素子4のうち、1つの磁気抵抗素子4を間に挟んで隣接する別の2つの磁気抵抗素子4同士の距離d4,d5は、いずれもコイル1及び磁石2の相対移動距離の1/2である。
 具体的には、第1磁気抵抗素子41と第3磁気抵抗素子43との間の距離d4と、第2磁気抵抗素子42と第4磁気抵抗素子44との間の距離d5とが、いずれもコイル1及び磁石2の相対移動距離の1/2である。
 例えば、相対移動距離が5mmであるとき、第1磁気抵抗素子41と第3磁気抵抗素子43との間の距離d4と、第2磁気抵抗素子42と第4磁気抵抗素子44との間の距離45とは、いずれも2.5mmである。
 相対移動方向において、4個の磁気抵抗素子4の中心と、磁石2の相対移動エリアの中心A0とは、一致している(図1B参照)。
 一実施形態において、4個の磁気抵抗素子4は、それぞれ半導体素子である。4個の磁気抵抗素子4は、詳細には、巨大磁気抵抗効果素子(GMR素子)である。つまり、センサユニット3が検知する磁気抵抗効果は、巨大磁気抵抗効果(GMR効果)である。
 4個の磁気抵抗素子4として、例えばトンネル磁気抵抗効果素子(TMR素子)、異方性磁気抵抗効果素子(AMR素子)等の、他の種類の磁気抵抗効果素子を用いることも可能である。
 (1-3)処理部
 一実施形態の位置検知システム9は、センサユニット3の出力信号を処理する処理部6を、更に備える(図5参照)。
 処理部6は、1以上のプロセッサ及びメモリを有するコンピュータシステムを含んでいる。コンピュータシステムのメモリに記録されたプログラムを、コンピュータシステムのプロセッサが実行することにより、処理部6の機能が実現される。プログラムは、メモリに記録されていてもよいし、インターネット等の電気通信回線を通して提供されてもよく、メモリカード等の非一時的記録媒体に記録されて提供されてもよい。
 処理部6は、4個の磁気抵抗素子4からの出力信号を処理することで、磁石2の相対移動位置を検知する。処理部6は、マイクロコンピュータ60を主構成として備え、増幅回路65を更に備えている。
 処理部6には、4つの磁気抵抗素子4のうち2つの磁気抵抗素子4の中間電位の変動が、増幅回路65による増幅を経て、第1出力信号として出力される。ここでの2つの磁気抵抗素子4は、相対移動方向において、コイル1及び磁石2の相対移動距離の1/2だけ離れて位置する2つの磁気抵抗素子4であり、具体的には、第1磁気抵抗素子41と第3磁気抵抗素子43である。第1磁気抵抗素子41と第3磁気抵抗素子43とは、ハーフブリッジ接続されている。
 加えて、処理部6のマイクロコンピュータ60には、4つの磁気抵抗素子4のうち別の2つの磁気抵抗素子4の中間電位の変動が、増幅回路65による増幅を経て、第2信号出力として出力される。別の2つの磁気抵抗素子4は、相対移動方向において、コイル1及び磁石2の相対移動距離の1/2だけ離れて位置する2つの磁気抵抗素子4であり、具体的には、第2磁気抵抗素子42と第4磁気抵抗素子44である。第2磁気抵抗素子42と第4磁気抵抗素子44とは、ハーフブリッジ接続されている。
 処理部6が増幅回路65を備えないことも有り得る。この場合、第1磁気抵抗素子41と第3磁気抵抗素子43の中間電位の変動が、増幅を経ずに、第1出力信号としてマイクロコンピュータ60に出力される。第2磁気抵抗素子42と第4磁気抵抗素子44の中間電位の変動が、増幅を経ずに、第2出力信号としてマイクロコンピュータ60に出力される。
 図6~図8のグラフでは、4個の磁気抵抗素子4の相対位置と、各磁気抵抗素子4が検知する磁界強度との関係を示している。ここで計測した磁界は、磁石2の着磁面20と直交する方向(つまり図1Bに示すz方向)の磁界である。
 図1A及び図1Bに示すy方向は、磁石2の相対移動方向である。x方向は、y方向及びz方向と直交する方向であり、言い換えれば、着磁面20と平行でありかつ相対移動方向と直交する方向である。
 x方向において、磁石2の磁界はほとんど存在しない。そのため、x方向の磁界は無視することができる。y方向においては磁石2の磁界が存在するが、y方向の磁界は、磁石2の相対移動方向の中心付近では、ほとんど変化しない。そのため、一実施形態の位置検知システム9では、磁石2のz方向の磁界を検知している。
 一実施形態では、z方向の磁界強度の変化を検知するために、巨大磁気抵抗効果素子である各磁気抵抗素子4を、磁石2の着磁面20に対して垂直な姿勢で配置している。各磁気抵抗素子4は、少なくともz方向の磁界強度に応じて(言い換えれば磁界強度の変化に応じて)電気抵抗値が変化するように構成されている。
 なお、巨大磁気抵抗効果素子である各磁気抵抗素子4は、磁界の絶対値だけを検知する。そのため、図6~図8のグラフは、位置が0mmである基準点を挟んだ両側が山状に隆起した形状を、有している。
 図6には、磁石2が相対移動エリアの第1端に位置するときに、4個の磁気抵抗素子4が検知する磁石2のz方向の磁界強度を示している。このとき出力される第1出力信号及び第2出力信号の値は、図9において丸付き数字1を付した部分の値に対応する。
 図7には、磁石2が相対移動エリアの中間に位置するときに、4個の磁気抵抗素子4が検知する磁石2のz方向の磁界強度を示している。このとき出力される第1出力信号及び第2出力信号の値は、図9において丸付き数字2を付した部分の値に対応する。
 図8には、磁石2が相対移動エリアの第2端に位置するときに、4個の磁気抵抗素子4が検知する磁石2のz方向の磁界強度を示している。このとき出力される第1出力信号及び第2出力信号の値は、図9において丸付き数字3を付した部分の値に対応する。
 磁石2は、相対移動エリアの第1端と第2端との間で、直線的に往復相対移動可能である。相対移動エリアの第1端と第2端との中間が、相対移動エリアの中間に相当する。
 図9に示されるように、磁石2の相対移動に伴って得られる第1出力信号の波形は、余弦波に類似した形状である。磁石2が相対移動したときに得られる第2出力信号の波形は、正弦波に類似した形状である。
 処理部6のマイクロコンピュータ60は、第1出力信号を、その波形が余弦波の波形に近づくように補正する。第1出力信号の波形と余弦波の波形とのずれには、一定の規則性が存在する。そのため、補正によって、第1出力信号の波形を、理想的な余弦波の波形に近づけることが可能である。
 また、マイクロコンピュータ60は、第2出力信号を、その波形が正弦波の波形に近づくように補正する。第2出力信号の波形と正弦波の波形とのずれには、一定の規則性が存在する。そのため、補正によって、第2出力信号の波形を、理想的な正弦波の波形に近づけることが可能である。
 その後、マイクロコンピュータ60は、補正後の第1出力信号及び第2出力信号の値に対して適宜の演算処理を行うことによって、高精度の位置検知を実現することができる。該演算処理は、一例として、逆正接演算の処理を含む。該演算処理が、逓倍処理を更に含むことも好ましい。
 図10には、補正後の第1出力信号を一点破線61で示し、補正後の第2出力信号を二点破線62で示している。一点破線61の波形は、余弦波である。二点破線62の波形は、正弦波である。
 磁石2の相対移動エリアは、磁石2が基準点から相対移動方向に“-2.5mm”~“+2.5mm”の範囲で相対移動するエリアである。
 図10には、第1出力信号(余弦波)と第2出力信号(正弦波)とを用いて得られた、磁石2の位置検知結果を、実線63で示している。実線63は直線である。つまり、一実施形態の位置検知システム9によれば、磁石2の相対移動エリア内における磁石2の位置変化に基づいて、直線的な出力変化が得られる。
 一実施形態の位置検知システム9によれば、磁石2が基準点から相対移動方向に“-2.5mm”~“+2.5mm”(計5mm)の範囲で相対移動する広いエリア内で、高精度の位置検知を行うことが可能である。
 更に言えば、一実施形態の位置検知システム9では、磁石2が基準点から相対移動方向に計3~5mmの範囲で相対移動する広いエリア内で、高精度の位置検知を行うことが可能である。
 図10には、比較用として、従来技術と同様のホール素子を用いた場合の磁石位置の検知結果を、破線64で示している。ホール素子を用いた場合には、基準点に対して“-0.5mm”~“+0.5mm”(計1mm)の狭いエリア内でしか、磁石位置の検知を行うことができない。
 (1-4)作用効果
 一実施形態の位置検知システム9は、コイル1及び磁石2の相対的な位置を、従来技術よりも広いエリア(例えば、従来技術の3~5倍のエリア)内で、高精度に検知することができる。これによって検知される相対位置は、例えば、スマートフォン等の携帯機器に内蔵されるカメラモジュールのカメラ本体及びレンズの相対位置に、相当する。
 加えて、一実施形態の位置検知システム9では、2つのセンサブロック8を接着等で固定的に配置した簡易な構成で、コイル1及び磁石2の相対位置の高精度検知を実現することができる。
 センサユニット3の大きさは、ホール素子を用いた従来技術のセンサユニットと同程度である。センサユニット3の取り付け方法は、ホール素子を用いた従来技術のセンサユニットの取り付け方法を、踏襲することが可能である。
 (2)変形例
 上記の実施形態は、本開示の様々な実施形態の一つに過ぎない。上記の実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。以下、上記の実施形態の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用することが可能である。以下の変形例の説明において、上記した実施形態と同様の構成についいては、同一符号を付して詳しい説明を省略する。
 (2-1)一変形例
 図11には、一変形例のセンサユニット3を示している。一変形例のセンサユニット3は、磁気センサ30を1個備えている。一変形例の磁気センサ30は、4個の磁気抵抗素子4を有している。
 一変形例のセンサユニット3(つまり磁気センサ30)は、磁石2の相対移動方向において4個の磁気抵抗素子4が等間隔で並ぶように、磁石2の着磁面20の近傍に配置される。このとき、4個の磁気抵抗素子4は、いずれも磁石2の着磁面20に対して垂直な姿勢で配置される。
 一変形例の磁気センサ30は、4個のセンサブロック8と、4個のセンサブロック8を直列状に接続する3個の接続部7とを備える。4個のセンサブロック8と、3個の接続部7とは、相対移動方向において交互に位置する。4個のセンサブロック8はそれぞれ、基材5と、基材5の端面50に配置された磁気抵抗素子4とを備える。基材5の端面50は、相対移動方向を向く面である。
 3個の接続部7は、第1接続部73、第2接続部74及び第3接続部75である。第1磁気抵抗素子41及び第2磁気抵抗素子42は、第1接続部73を介して機械的に接続されている。第2磁気抵抗素子42及び第3磁気抵抗素子43は、第2接続部74を介して機械的に接続されている。第3磁気抵抗素子43及び第4磁気抵抗素子44は、第3接続部75を介して機械的に接続されている。
 (2-2)他の変形例
 上記の一実施形態では、センサユニット3が接続部7を2個備え、一変形例ではセンサユニット3が接続部7を3個備えているが、接続部7の数はこれに限定されず、センサユニット3が接続部7を備えないことも有り得る。
 センサユニット3が接続部7を1個備える場合では、例えば、1個の接続部7を介して一体化された2個のセンサブロック8と、一体化されていない別の2個のセンサブロック8とを、4個の磁気抵抗素子4が等間隔で並ぶように配置する。
 磁気センサ30が接続部7を備えない場合では、例えば、互いに別体で設けられた4個のセンサブロック8を、4個の磁気抵抗素子4が等間隔で並ぶように個別に配置する。
 また、センサユニット3が接続部7を2個備える場合に、例えば、2個の接続部7を介して一体化された3個のセンサブロック8と、これとは別体の1個のセンサブロック8とを、4個の磁気抵抗素子4が等間隔で並ぶように配置することも可能である。
 また、上記の一実施形態では、2個のセンサブロック8が、相対移動方向(つまり図1A等に示すy方向)に一直線状に配置されているが、これに限定されない。2個のセンサブロック8が、相対移動方向と直交しかつ着磁面20と平行な方向(つまり図1Bに示すx方向)に、ずれて配置されてもよい。
 言い換えれば、上記の一実施形態では、4個の磁気抵抗素子4が、相対移動方向(つまりy方向)に一直線状に配置されているが、これに限定されない。4個の磁気抵抗素子4が、相対移動方向と直交しかつ着磁面20と平行な方向(つまりx方向)に、互いにずれて配置されてもよい。
 (3)まとめ
 第1の態様に係る位置検知システム(9)は、磁気的相互作用により相対移動するコイル(1)及び磁石(2)と、コイル(1)及び磁石(2)の相対移動位置を検知するセンサユニット(3)と、を備える。センサユニット(3)は、コイル(1)及び磁石(2)の相対移動位置を検知するための4個の磁気抵抗素子(4)を有する。4個の磁気抵抗素子(4)は、コイル(1)及び磁石(2)が相対移動する方向である相対移動方向に、等間隔で並んで配置されている。
 この態様によれば、4個の磁気抵抗素子(4)からの出力に基づいて、コイル(1)及び磁石(2)の相対的な位置を、広いエリア内で高精度に検知することができる。
 第2の態様に係る位置検知システム(9)は、第1の態様において、相対移動方向に離れて配置された第1接続部(71)及び第2接続部(72)を更に備える。第1接続部(71)は、4個の磁気抵抗素子(4)のうち2個の磁気抵抗素子(4)を接続させている。第2接続部(72)は、4個の磁気抵抗素子(4)のうち別の2個の磁気抵抗素子(4)を接続させている。
 この態様によれば、2個の磁気抵抗素子(4)を、第1接続部(71)を介して一体化し、別の2個の磁気抵抗素子(4)を、第2接続部(72)を介して一体化することができる。
 第3の態様に係る位置検知システム(9)は、第1又は第2の態様において、4個の磁気抵抗素子(4)のうち相対移動方向に隣接する磁気抵抗素子(4)同士の距離(d1,d2,d3)は、コイル(1)及び磁石(2)の相対移動距離の1/4である。
 この態様によれば、4個の磁気抵抗素子(4)のうち2個の磁気抵抗素子(4)の中間電位の変動として、余弦波に近い波形の第1出力信号を得ることができ、4個の磁気抵抗素子(4)のうち別の2個の磁気抵抗素子(4)の中間電位の変動として、正弦波に近い波形の第2出力信号を得ることができる。この態様によれば、第1出力信号と第2出力信号とを基に演算を行うことで、高精度の位置検知が実現される。
 第4の態様に係る位置検知システム(9)は、第1~第3の態様のいずれか1つにおいて、磁気抵抗素子(4)は、巨大磁気抵抗効果素子である。
 この態様によれば、巨大磁気抵抗効果を利用して、コイル(1)及び磁石(2)の相対的な位置を、高精度に検知することができる。
 第5の態様に係る位置検知システム(9)は、第1~第4の態様のいずれか1つにおいて、センサユニット(3)の出力信号を処理することで相対移動位置を検知する処理部(6)を、更に備える。
 この態様によれば、4個の磁気抵抗素子(4)からの出力を処理部(6)で演算処理することで、コイル(1)及び磁石(2)の相対的な位置を、広いエリア内で高精度に検知することができる。
 第6の態様に係る位置検知システム(9)は、第1~第5の態様のいずれか1つにおいて、センサユニット(3)は、コイル(1)に対して固定的に設けられている。
 この態様によれば、コイル(1)に対して固定的に設けられた4個の磁気抵抗素子(4)からの出力に基づいて、コイル(1)及び磁石(2)の相対的な位置を、広いエリア内で高精度に検知することができる。
 第7の態様に係るセンサユニット(3)は、磁気的相互作用により相対移動するコイル(1)及び磁石(2)の相対移動位置を検知するセンサユニット(3)であって、相対移動位置を検知するための4個の磁気抵抗素子(4)を有する。4個の磁気抵抗素子(4)は、コイル(1)及び磁石(2)が相対移動する方向である相対移動方向に、等間隔で並んで配置されている。
 この態様によれば、4個の磁気抵抗素子(4)からの出力に基づいて、コイル(1)及び磁石(2)の相対的な位置を、広いエリア内で高精度に検知することができる。
 第8の態様に係る磁気センサ(30)は、第7の態様に係るセンサユニット(3)に用いられる。磁気センサ(30)は、電気絶縁性を有する基材(5)と、基材(5)の端面(50)に配置された磁気抵抗素子(4)と、を有する2個のセンサブロック(8)と、2個のセンサブロック(8)を接続する接続部(7)と、を備える。
 この態様によれば、2個の磁気センサ(30)からの出力を基にして、コイル(1)及び磁石(2)の相対的な位置を、広いエリア内で高精度に検知することができる。
 第9の態様に係る磁気センサ(30)は、第8の態様において、2個のセンサブロック(8)の各々の磁気抵抗素子(4)は、磁気センサ(30)の相対移動方向の両端に位置する。
 この態様によれば、隣接する2つの磁気抵抗素子(4)の間の距離が、接続部(7)と2つの基材(5)とを介して確保される。
 第10の態様に係る磁気センサ(30)は、第7の態様に係るセンサユニット(3)に用いられる。磁気センサ(30)は、電気絶縁性を有する基材(5)と、基材(5)の端面(50)に配置された磁気抵抗素子(4)と、を有する4個のセンサブロック(8)と、4個のセンサブロック(8)を直列状に接続する3個の接続部(7)と、を備える。
 この態様によれば、1個の磁気センサ(30)からの出力を基にして、コイル(1)及び磁石(2)の相対的な位置を、広いエリア内で高精度に検知することができる。
 第11の態様に係る磁気センサ(30)は、第10の態様において、4個のセンサブロック(8)と、3個の接続部(7)とは、相対移動方向において交互に位置する。
 この態様によれば、4個の磁気抵抗素子(4)に含まれる隣接する2つの磁気抵抗素子(4)の間の距離が、接続部(7)を介して確保される。
 第12の態様に係るセンサブロック(8)は、磁気的相互作用により相対移動するコイル(1)及び磁石(2)を備える位置検知システム(9)において、コイル(1)及び磁石(2)の相対移動位置を検知するためのセンサユニット(3)に用いられる。センサブロック(8)は、電気絶縁性を有する基材(5)と、基材(5)の端面(50)に配置された磁気抵抗素子(4)と、を備える。
 この態様によれば、磁気抵抗素子(4)からの出力を基にして、コイル(1)及び磁石(2)の相対的な位置を、広いエリア内で高精度に検知することができる。
 1 コイル
 2 磁石
 3 センサユニット
 30 磁気センサ
 4 磁気抵抗素子
 5 基材
 50 端面
 7 接続部
 71 第1接続部
 72 第2接続部
 8 センサブロック
 9 位置検知システム
 d1 距離
 d2 距離
 d3 距離

Claims (12)

  1.  磁気的相互作用により相対移動するコイル及び磁石と、
     前記コイル及び前記磁石の相対移動位置を検知するセンサユニットと、
    を備え、
     前記センサユニットは、前記相対移動位置を検知するための4個の磁気抵抗素子を有し、
     前記4個の磁気抵抗素子は、前記コイル及び前記磁石が相対移動する方向である相対移動方向に、等間隔で並んで配置されている、
     位置検知システム。
  2.  前記相対移動方向に離れて配置された第1接続部及び第2接続部を更に備え、
     前記第1接続部は、前記4個の磁気抵抗素子のうち2個の磁気抵抗素子を接続させており、
     前記第2接続部は、前記4個の磁気抵抗素子のうち別の2個の磁気抵抗素子を接続させている、
     請求項1に記載の位置検知システム。
  3.  前記4個の磁気抵抗素子のうち前記相対移動方向に隣接する磁気抵抗素子同士の距離は、前記コイル及び前記磁石の相対移動距離の1/4である、
     請求項1又は2に記載の位置検知システム。
  4.  前記磁気抵抗素子は、巨大磁気抵抗効果素子である、
     請求項1~3のいずれか1項に記載の位置検知システム。
  5.  前記センサユニットの出力信号を処理することで前記相対移動位置を検知する処理部を、更に備える、
     請求項1~4のいずれか1項に記載の位置検知システム。
  6.  前記センサユニットは、前記コイルに対して固定的に設けられている、
     請求項1~5のいずれか1項に記載の位置検知システム。
  7.  磁気的相互作用により相対移動するコイル及び磁石の相対移動位置を検知するセンサユニットであって、
     前記相対移動位置を検知するための4個の磁気抵抗素子を有し、
     前記4個の磁気抵抗素子は、前記コイル及び前記磁石が相対移動する方向である相対移動方向に、等間隔で並んで配置されている、
     センサユニット。
  8.  請求項7に記載のセンサユニットに用いられる磁気センサであって、
     電気絶縁性を有する基材と、前記基材の端面に配置された磁気抵抗素子と、を有する2個のセンサブロックと、
     前記2個のセンサブロックを接続する接続部と、を備える、
     磁気センサ。
  9.  前記2個のセンサブロックの各々の前記磁気抵抗素子は、前記磁気センサの前記相対移動方向の両端に位置する、
     請求項8の磁気センサ。
  10.  請求項7に記載のセンサユニットに用いられる磁気センサであって、
     電気絶縁性を有する基材と、前記基材の端面に配置された磁気抵抗素子と、を有する4個のセンサブロックと、
     前記4個のセンサブロックを直列状に接続する3個の接続部と、を備える、
     磁気センサ。
  11.  前記4個のセンサブロックと、前記3個の接続部とは、前記相対移動方向において交互に位置する、
     請求項10の磁気センサ。
  12.  磁気的相互作用により相対移動するコイル及び磁石を備える位置検知システムにおいて、前記コイル及び前記磁石の相対移動位置を検知するためのセンサユニットに用いられるセンサブロックであって、
     電気絶縁性を有する基材と、
     前記基材の端面に配置された磁気抵抗素子と、を備える、
     センサブロック。
PCT/JP2023/012968 2022-03-31 2023-03-29 位置検知システム、センサユニット、磁気センサ、及びセンサブロック WO2023190753A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022061209A JP2023151543A (ja) 2022-03-31 2022-03-31 位置検知システム、センサユニット、磁気センサ及びセンサブロック
JP2022-061209 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023190753A1 true WO2023190753A1 (ja) 2023-10-05

Family

ID=88202679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012968 WO2023190753A1 (ja) 2022-03-31 2023-03-29 位置検知システム、センサユニット、磁気センサ、及びセンサブロック

Country Status (2)

Country Link
JP (1) JP2023151543A (ja)
WO (1) WO2023190753A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249574A (ja) * 1999-03-01 2000-09-14 Yazaki Corp ハンドル舵角検出装置
JP2007127456A (ja) * 2005-11-01 2007-05-24 Denso Corp 回転検出装置
JP2013083597A (ja) * 2011-10-12 2013-05-09 Asahi Kasei Electronics Co Ltd 位置検出装置及び位置検出方法並びにそれを用いた電子機器
JP2016070672A (ja) * 2014-09-26 2016-05-09 オリンパス株式会社 位置検出装置及びそれを備えた駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249574A (ja) * 1999-03-01 2000-09-14 Yazaki Corp ハンドル舵角検出装置
JP2007127456A (ja) * 2005-11-01 2007-05-24 Denso Corp 回転検出装置
JP2013083597A (ja) * 2011-10-12 2013-05-09 Asahi Kasei Electronics Co Ltd 位置検出装置及び位置検出方法並びにそれを用いた電子機器
JP2016070672A (ja) * 2014-09-26 2016-05-09 オリンパス株式会社 位置検出装置及びそれを備えた駆動装置

Also Published As

Publication number Publication date
JP2023151543A (ja) 2023-10-16

Similar Documents

Publication Publication Date Title
US11204263B2 (en) Position detection device for detecting position of an object moving in a predetermined direction, and a magnetic sensor for use with the position detection device
CN108627944B (zh) 位置检测装置
US10955443B2 (en) Current sensor and current sensor module
JP5408508B2 (ja) 位置検出装置
WO2014141767A1 (ja) 磁気式の位置センサ及び位置検出方法
US7071681B1 (en) Magnetic position detecting apparatus
JP5206962B2 (ja) 回転角度センサ
WO2023190753A1 (ja) 位置検知システム、センサユニット、磁気センサ、及びセンサブロック
JP7463593B2 (ja) 磁気センサシステムおよびレンズ位置検出装置
US7196511B2 (en) Magnetic position detecting apparatus having a plurality of magnetic resistance circuits arranged in a comblike shape
JP3400641B2 (ja) 直線変位検出装置
US11553132B2 (en) Method of correcting position detecting signal and position detecting device
JP7156249B2 (ja) 位置検出装置
WO2023190752A1 (ja) 位置検知システム、磁気センサ及びセンサブロック
WO2024009983A1 (ja) 位置検知システム及び磁気センサ
WO2023058697A1 (ja) モータ用位置検知システム
WO2024009984A1 (ja) 位置検知システム、磁気センサ及びセンサブロック
WO2023058356A1 (ja) 位置検出装置
CN112068048B (zh) 位置检测装置
US20230280419A1 (en) Magnetic sensor, magnetic encoder, lens position detection device, distance measuring device, and manufacturing method for magnetic sensor
JP6824484B1 (ja) 磁気式リニア位置検出器
WO2022244735A1 (ja) 磁気センサ及び磁気検知システム
CN112050722B (zh) 位置检测装置
JP2009121858A (ja) 増幅回路
US20220128345A1 (en) Magnetic sensor assembly and camera module having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780761

Country of ref document: EP

Kind code of ref document: A1