WO2023058356A1 - 位置検出装置 - Google Patents

位置検出装置 Download PDF

Info

Publication number
WO2023058356A1
WO2023058356A1 PCT/JP2022/032032 JP2022032032W WO2023058356A1 WO 2023058356 A1 WO2023058356 A1 WO 2023058356A1 JP 2022032032 W JP2022032032 W JP 2022032032W WO 2023058356 A1 WO2023058356 A1 WO 2023058356A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic sensor
magnet
detection device
position detection
displacement
Prior art date
Application number
PCT/JP2022/032032
Other languages
English (en)
French (fr)
Inventor
大佐 中村
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023058356A1 publication Critical patent/WO2023058356A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train

Definitions

  • the present invention relates to a position detection device.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2010-197373 (Patent Document 1) is a prior art document that discloses the configuration of a stroke sensor.
  • a stroke sensor described in Patent Document 1 detects a linear displacement amount of a linearly displaced object.
  • the stroke sensor includes a magnet and two magnetic sensitive parts.
  • the magnet is magnetized in a direction perpendicular to its own longitudinal direction.
  • the two magneto-sensitive parts are arranged in parallel with the longitudinal direction, are magneto-sensitive to the magnetic flux formed by the magnets, and generate electric outputs, respectively.
  • the two magnetically sensitive parts are arranged such that their magnetically sensitive surfaces are oriented in the same plane direction.
  • the magnet is relatively displaced in the longitudinal direction with respect to the two magnetically sensitive parts in accordance with the linear displacement of the object to be detected, and faces the arrangement axis along which the two magnetically sensitive parts are aligned in the magnetization direction. It has a perimeter facing the part.
  • the periphery facing the magnetic field sensing portion is provided in a curved shape so that the correlation between the magnetic flux density on the array axis and the coordinates of the array axis substantially coincides with a sine curve.
  • the present invention has been made in view of the above problems, and is capable of improving the linearity of the correlation between the linear displacement amount of a magnet that moves relative to a magnetic sensor and the output value of the magnetic sensor. It is an object of the present invention to provide a position detection device capable of
  • a position detection device based on the present invention includes a magnetic sensor and a magnet.
  • the magnetic sensor has a sensitivity axis direction along the first direction.
  • the magnet is positioned side by side with the magnetic sensor in a second direction perpendicular to the first direction, is provided displaceable in the first direction relative to the magnetic sensor, and is magnetized along the first direction. It is
  • the output value of the magnetic sensor changes with a sine function of the crossing angle between the direction of application of the magnetic field of the magnet to the magnetic sensor and the direction of the sensitivity axis.
  • the crossing angle is proportional to the amount of displacement when the magnet is displaced in the first direction relative to the magnetic sensor, and changes by approximating an inverse sine function of the amount of displacement.
  • FIG. 3 is a perspective view showing the configuration of a position detection device according to a comparative example
  • 7 is a graph showing the correlation between the displacement amount of the magnet relative to the magnetic sensor and the crossing angle between the direction of application of the magnetic field of the magnet to the magnetic sensor and the direction of the sensitivity axis of the magnetic sensor in the position detection device according to the comparative example.
  • . 5 is a graph showing the correlation between the intersection angle between the direction of application of the magnetic field of the magnet to the magnetic sensor and the direction of the sensitivity axis of the magnetic sensor, and the output value of the magnetic sensor.
  • 7 is a graph showing the correlation between the amount of displacement of the magnet relative to the magnetic sensor and the output value of the magnetic sensor in the position detection device according to the comparative example.
  • FIG. 1 is a perspective view showing the configuration of a position detection device according to Embodiment 1 of the present invention
  • FIG. 1 In the position detection device according to the first embodiment of the present invention, the correlation between the amount of displacement of the magnet relative to the magnetic sensor and the crossing angle between the direction of application of the magnetic field of the magnet to the magnetic sensor and the direction of the sensitivity axis of the magnetic sensor is calculated. It is a graph showing. 4 is a graph showing the correlation between the displacement amount of the magnet relative to the magnetic sensor and the output value of the magnetic sensor in the position detection device according to Embodiment 1 of the present invention.
  • FIG. 7 is a perspective view showing the configuration of a position detection device according to Embodiment 2 of the present invention.
  • the correlation between the displacement amount of the magnet relative to the magnetic sensor and the crossing angle between the direction of application of the magnetic field of the magnet to the magnetic sensor and the direction of the sensitivity axis of the magnetic sensor is calculated. It is a graph showing. 9 is a graph showing the correlation between the displacement amount of the magnet relative to the magnetic sensor and the output value of the magnetic sensor in the position detection device according to Embodiment 2 of the present invention.
  • FIG. 11 is a plan view showing the shape of a magnet included in a position detection device according to Embodiment 3 of the present invention
  • FIG. 11 is a plan view showing the shape of a magnet included in a position detection device according to Embodiment 4 of the present invention
  • FIG. 11 is a plan view showing the shape of a magnet included in a position detection device according to Embodiment 4 of the present invention
  • FIG. 11 is a plan view showing the shape of a magnet included in a position detection device according to Embodiment 5 of the present invention
  • FIG. 11 is a plan view showing the shape of a magnet included in a position detection device according to Embodiment 6 of the present invention
  • FIG. 1 is a perspective view showing the configuration of a position detection device according to a comparative example.
  • the first direction is the X-axis direction
  • the second direction is the Y-axis direction
  • the third direction is the Z-axis direction.
  • a position detection device 900 includes a magnetic sensor 110 and a magnet 920.
  • the magnetic sensor 110 has a sensitivity axis direction D1 along the first direction (X-axis direction).
  • the sensitivity axis direction D1 faces one of the first directions (X-axis direction).
  • the magnetic sensor 110 has a Wheatstone bridge type bridge circuit consisting of four TMR (Tunnel Magneto Resistance) elements.
  • the magnetic sensor 110 may have a bridge circuit made up of magnetoresistive elements such as GMR (Giant Magneto Resistance) elements or AMR (Anisotropic Magneto Resistance) elements instead of the TMR elements.
  • the magnetic sensor 110 may have a half-bridge circuit composed of two magnetoresistive elements.
  • the magnet 920 is positioned side by side with the magnetic sensor 110 in a second direction (Y-axis direction) perpendicular to the first direction (X-axis direction), and is positioned relatively to the magnetic sensor 110 in the first direction (X-axis direction). and is magnetized along the first direction (X-axis direction).
  • the magnetization direction D2 of the magnet 920 faces the other of the first directions (X-axis direction).
  • a displacement direction D3 of the magnet 920 relative to the magnetic sensor 110 is parallel to the first direction (X-axis direction).
  • the magnet 920 has a rectangular parallelepiped shape.
  • the magnet 920 has a first side surface S1 facing the magnetic sensor 110 in the second direction (Y-axis direction) and a second side surface S2 opposite to the first side surface S1 in the second direction (Y-axis direction). , and end faces S3 in the first direction (X-axis direction).
  • FIG. 2 shows the correlation between the amount of displacement of the magnet relative to the magnetic sensor and the crossing angle between the direction of the magnetic field applied to the magnetic sensor and the direction of the sensitivity axis of the magnetic sensor in the position detection device according to the comparative example. It is a graph showing.
  • the horizontal axis represents the displacement (mm) of the magnet relative to the magnetic sensor
  • the vertical axis represents the intersection angle (deg) between the direction of the magnetic field applied to the magnetic sensor and the direction of the sensitivity axis of the magnetic sensor. is shown.
  • the intersection angle between the direction of application of the magnetic field B9 of the magnet 920 to the magnetic sensor 110 and the sensitivity axis direction D1 of the magnetic sensor 110 is It has a proportional relationship with 920 relative displacement amounts.
  • FIG. 3 is a graph showing the correlation between the intersection angle between the direction of application of the magnetic field of the magnet to the magnetic sensor and the sensitivity axis direction of the magnetic sensor, and the output value of the magnetic sensor.
  • the horizontal axis indicates the intersection angle (deg) between the direction of the magnetic field applied to the magnetic sensor and the sensitivity axis direction of the magnetic sensor
  • the vertical axis indicates the output value (mV/V) of the magnetic sensor.
  • the output value of the magnetic sensor 110 changes with the sine function of the intersection angle between the application direction of the magnetic field B9 of the magnet 920 to the magnetic sensor 110 and the sensitivity axis direction D1 of the magnetic sensor 110. That is, the magnetic sensor 110 functions as an angle sensor whose output value changes according to the sine function of the intersection angle between the direction of the magnetic field of the magnet applied to the magnetic sensor 110 and the sensitivity axis direction D1 of the magnetic sensor 110 .
  • FIG. 4 is a graph showing the correlation between the displacement amount of the magnet relative to the magnetic sensor and the output value of the magnetic sensor in the position detection device according to the comparative example.
  • the horizontal axis indicates the amount of displacement (mm) of the magnet relative to the magnetic sensor
  • the vertical axis indicates the output value (mV/V) of the magnetic sensor.
  • the output value of the magnetic sensor 110 changes by approximating a sine function of the amount of displacement of the magnet 920 relative to the magnetic sensor 110 . Therefore, the linearity of the correlation between the displacement of magnet 920 relative to magnetic sensor 110 and the output value of magnetic sensor 110 is not good in a portion where the absolute value of the displacement is 0.7 or more. That is, in the position detection device 900 according to the comparative example, the range in which the correlation between the displacement amount of the magnet 920 relative to the magnetic sensor 110 and the output value of the magnetic sensor 110 has linearity is narrow, and the position detectable range is narrow. .
  • Embodiment 1 A position detection device according to Embodiment 1 of the present invention will be described below with reference to the drawings. Since the position detection device according to the first embodiment of the present invention differs from the position detection device 900 according to the comparative example in the shape of the magnet, the description of the configuration similar to that of the position detection device 900 according to the comparative example will not be repeated.
  • FIG. 5 is a perspective view showing the configuration of the position detection device according to Embodiment 1 of the present invention.
  • the position detection device 100 according to Embodiment 1 of the present invention includes a magnetic sensor 110 and a magnet 120.
  • FIG. 5 shows that the position detection device 100 according to Embodiment 1 of the present invention includes a magnetic sensor 110 and a magnet 120.
  • the magnet 120 is positioned side by side with the magnetic sensor 110 in the second direction (Y-axis direction), is displaceable in the first direction (X-axis direction) relative to the magnetic sensor 110, and is movable in the first direction (Y-axis direction). X-axis direction).
  • the magnetization direction D2 of the magnet 120 faces the other of the first directions (X-axis direction).
  • a displacement direction D3 of the magnet 120 relative to the magnetic sensor 110 is parallel to the first direction (X-axis direction).
  • the magnet 120 has a substantially rectangular parallelepiped shape.
  • the magnet 120 has a first side surface S1 facing the magnetic sensor 110 in the second direction (Y-axis direction) and a second side surface S2 opposite to the first side surface S1 in the second direction (Y-axis direction). , and end faces S3 in the first direction (X-axis direction).
  • a first chamfered portion S4 is formed at a corner between a first side surface S1 facing the magnetic sensor 110 in the second direction (Y-axis direction) and both end surfaces S3 in the first direction (X-axis direction). It is The first chamfered portion S4 is chamfered linearly. The length of the first chamfered portion S4 in the first direction (X-axis direction) is L1, and the chamfered angle is ⁇ 1.
  • FIG. 6 shows the relative displacement amount of the magnet with respect to the magnetic sensor, and the intersection angle between the direction of application of the magnetic field of the magnet to the magnetic sensor and the direction of the sensitivity axis of the magnetic sensor, in the position detecting device according to the first embodiment of the present invention.
  • the abscissa indicates the displacement amount (mm) of the magnet relative to the magnetic sensor
  • the ordinate indicates the intersection angle (deg) between the direction in which the magnetic field of the magnet is applied to the magnetic sensor and the direction of the sensitivity axis of the magnetic sensor. is shown.
  • the intersection angle between the direction of application of the magnetic field B1 of the magnet 120 to the magnetic sensor 110 and the sensitivity axis direction D1 of the magnetic sensor 110 is From the proportional relationship with the amount of displacement of the magnet 120 relative to the sensor 110, it approximates to the arc sine function of the amount of displacement.
  • the first chamfered portion S4 is formed on the magnet 120, so that the direction of application of the magnetic field B1 of the magnet 120 to the magnetic sensor 110 and the direction of the magnetic field B1 of the magnetic sensor 110
  • the crossing angle with the sensitivity axis direction D1 changes by approximating an inverse sine function of the amount of displacement due to a proportional relationship with the amount of displacement of the magnet 120 relative to the magnetic sensor 110 .
  • FIG. 7 is a graph showing the correlation between the amount of displacement of the magnet relative to the magnetic sensor and the output value of the magnetic sensor in the position detection device according to Embodiment 1 of the present invention.
  • the horizontal axis indicates the amount of displacement (mm) of the magnet relative to the magnetic sensor
  • the vertical axis indicates the output value (mV/V) of the magnetic sensor.
  • the output value of the magnetic sensor 110 is calculated as a sine function of the relative displacement of the magnet 120 with respect to the magnetic sensor 110 . It changes by approximating a proportional relationship. Therefore, the position detection device 100 according to the first embodiment of the present invention has a greater difference between the displacement amount of the magnet 120 relative to the magnetic sensor 110 and the output value of the magnetic sensor 110 than the position detection device 900 according to the comparative example. Linearity of correlation can be improved.
  • the position detection device 100 has a relative displacement amount of the magnet 120 with respect to the magnetic sensor 110 and the output value of the magnetic sensor 110 compared to the position detection device 900 according to the comparative example.
  • the range in which the correlation has linearity is wide, and the position detectable range is wide.
  • the output value of the magnetic sensor 110 is the sine of the intersection angle between the direction of application of the magnetic field B1 of the magnet 120 to the magnetic sensor 110 and the sensitivity axis direction D1 of the magnetic sensor 110.
  • the intersection angle between the direction of application of the magnetic field B1 of the magnet 120 to the magnetic sensor 110 and the sensitivity axis direction D1 of the magnetic sensor 110 is determined by the proportional relationship between the displacement amount of the magnet 120 relative to the magnetic sensor 110 and the above It changes by approximating the arc sine function of the displacement amount.
  • the position detection device 100 can be applied to devices such as non-contact linear transducers, non-contact rotary sensors, potentiometers, etc., in which the amount of displacement is analog-output.
  • position detection device 100 may be applied to a compact camera module to detect the position of a lens for autofocus and camera shake correction.
  • Embodiment 2 A position detection device according to Embodiment 2 of the present invention will be described below with reference to the drawings.
  • the position detection device according to Embodiment 2 of the present invention has a configuration similar to that of the position detection device 100 according to Embodiment 1 of the present invention because the shape of the magnet is different from that of the position detection device 100 according to Embodiment 1 of the present invention. will not be repeated.
  • FIG. 8 is a perspective view showing the configuration of the position detection device according to Embodiment 2 of the present invention.
  • a position detection device 200 according to Embodiment 2 of the present invention includes a magnetic sensor 110 and a magnet 220.
  • FIG. 8 is a perspective view showing the configuration of the position detection device according to Embodiment 2 of the present invention.
  • a position detection device 200 according to Embodiment 2 of the present invention includes a magnetic sensor 110 and a magnet 220.
  • FIG. 1 is a perspective view showing the configuration of the position detection device according to Embodiment 2 of the present invention.
  • the magnet 220 is positioned side by side with the magnetic sensor 110 in the second direction (Y-axis direction), is displaceable in the first direction (X-axis direction) relative to the magnetic sensor 110, and is movable in the first direction (Y-axis direction). X-axis direction).
  • the magnetization direction D2 of the magnet 220 faces the other of the first directions (X-axis direction).
  • a displacement direction D3 of the magnet 220 relative to the magnetic sensor 110 is parallel to the first direction (X-axis direction).
  • the magnet 220 has a substantially rectangular parallelepiped shape.
  • the magnet 220 has a first side surface S1 facing the magnetic sensor 110 in the second direction (Y-axis direction) and a second side surface S2 opposite to the first side surface S1 in the second direction (Y-axis direction). , and end faces S3 in the first direction (X-axis direction).
  • a first chamfered portion S4 is formed at a corner between a first side surface S1 facing the magnetic sensor 110 in the second direction (Y-axis direction) and both end surfaces S3 in the first direction (X-axis direction). It is The first chamfered portion S4 is chamfered linearly.
  • the length of the first chamfered portion S4 in the first direction (X-axis direction) is L2, and the chamfered angle is ⁇ 2. It satisfies the relationship of L2 ⁇ L1 and satisfies the relationship of ⁇ 2 ⁇ 1.
  • FIG. 9 shows, in the position detection device according to Embodiment 2 of the present invention, the amount of relative displacement of the magnet with respect to the magnetic sensor, and the intersection angle between the direction of application of the magnetic field of the magnet to the magnetic sensor and the direction of the sensitivity axis of the magnetic sensor.
  • the horizontal axis represents the displacement (mm) of the magnet relative to the magnetic sensor
  • the vertical axis represents the intersection angle (deg) between the direction of the magnetic field applied to the magnetic sensor and the direction of the sensitivity axis of the magnetic sensor. is shown.
  • the intersection angle between the direction of application of the magnetic field B2 of the magnet 220 to the magnetic sensor 110 and the sensitivity axis direction D1 of the magnetic sensor 110 is From the proportional relationship with the amount of displacement of the magnet 220 relative to the sensor 110, it changes by approximating the arc sine function of the amount of displacement.
  • the crossing angle of the sensor 110 with respect to the sensitivity axis direction D1 changes by approximating the arc sine function of the displacement due to the proportional relationship with the relative displacement of the magnet 220 with respect to the magnetic sensor 110 .
  • FIG. 10 is a graph showing the correlation between the displacement amount of the magnet relative to the magnetic sensor and the output value of the magnetic sensor in the position detection device according to Embodiment 2 of the present invention.
  • the horizontal axis indicates the displacement amount (mm) of the magnet relative to the magnetic sensor
  • the vertical axis indicates the output value (mV/V) of the magnetic sensor.
  • the output value of the magnetic sensor 110 is calculated as a sine function of the relative displacement of the magnet 220 with respect to the magnetic sensor 110 . It changes by approximating a proportional relationship.
  • the position detection device 200 according to the second embodiment of the present invention compared to the position detection device 100 according to the first embodiment of the present invention shown in FIG. , more approximates to the proportional relationship of the above-mentioned displacement amount than the sinusoidal function of the relative displacement amount of .
  • the position detection device 200 according to the second embodiment of the present invention has a relative displacement amount of the magnet 220 with respect to the magnetic sensor 110 and a displacement of the magnetic sensor 110 compared to the position detection device 100 according to the first embodiment of the present invention.
  • Linearity of correlation with output values can be improved. That is, the position detection device 200 according to the second embodiment of the present invention has a relative displacement amount of the magnet 220 with respect to the magnetic sensor 110 and a displacement of the magnetic sensor 110 compared to the position detection device 100 according to the first embodiment of the present invention.
  • the range in which the correlation with the output value has linearity is wide, and the position detectable range is wide.
  • the output value of the magnetic sensor 110 is the sine of the intersection angle between the direction of application of the magnetic field B2 of the magnet 220 to the magnetic sensor 110 and the sensitivity axis direction D1 of the magnetic sensor 110.
  • the intersection angle between the direction of application of the magnetic field B2 of the magnet 220 to the magnetic sensor 110 and the sensitivity axis direction D1 of the magnetic sensor 110 is determined by the proportional relationship between the displacement amount of the magnet 220 relative to the magnetic sensor 110 and the above It changes by approximating the arc sine function of the displacement amount.
  • the crossing angle between the direction of application of the magnetic field of the magnet to the magnetic sensor 110 and the sensitivity axis direction D1 of the magnetic sensor 110 changes with the correlation of the arcsine function of the displacement amount of the magnet relative to the magnetic sensor 110. Then, the optimum form will be explained.
  • FIG. 11 shows the correlation between the amount of relative displacement of the magnet with respect to the magnetic sensor and the crossing angle between the direction of application of the magnetic field of the magnet to the magnetic sensor and the direction of the sensitivity axis of the magnetic sensor in the position detection device according to the optimum embodiment. It is a graph showing.
  • the abscissa indicates the displacement amount (mm) of the magnet relative to the magnetic sensor
  • the ordinate indicates the intersection angle (deg) between the direction of application of the magnetic field of the magnet to the magnetic sensor and the direction of the sensitivity axis of the magnetic sensor. is shown.
  • the intersection angle between the direction of the magnetic field of the magnet applied to the magnetic sensor 110 and the sensitivity axis direction D1 of the magnetic sensor 110 is the relative angle of the magnet to the magnetic sensor 110. changes with the correlation of the arc sine function of the amount of displacement. Therefore, the curve surrounded by the dotted line in FIG. 11 curves in the opposite direction to the correlation curve of the sinusoidal function of the displacement amount.
  • FIG. 12 is a graph showing the correlation between the displacement amount of the magnet relative to the magnetic sensor and the output value of the magnetic sensor in the position detection device according to the optimum form.
  • the horizontal axis indicates the displacement amount (mm) of the magnet relative to the magnetic sensor
  • the vertical axis indicates the output value (mV/V) of the magnetic sensor.
  • the output value of the magnetic sensor 110 changes in proportion to the displacement amount of the magnet relative to the magnetic sensor 110 . Therefore, in the position detecting device according to the optimum mode, the correlation between the displacement amount of the magnet relative to the magnetic sensor 110 and the output value of the magnetic sensor 110 has complete linearity.
  • the intersection angle between the direction of application of the magnetic field of the magnet to the magnetic sensor 110 and the sensitivity axis direction D1 of the magnetic sensor 110 is the relative displacement amount of the magnet with respect to the magnetic sensor 110.
  • Embodiment 3 A position detection device according to Embodiment 3 of the present invention will be described below with reference to the drawings.
  • the position detection device according to Embodiment 3 of the present invention has a configuration similar to that of the position detection device 100 according to Embodiment 1 of the present invention because the shape of the magnet is different from that of the position detection device 100 according to Embodiment 1 of the present invention. will not be repeated.
  • FIG. 13 is a plan view showing the shape of a magnet included in the position detection device according to Embodiment 3 of the present invention.
  • a magnet 320 included in the position detection device according to Embodiment 3 of the present invention is displaceable in a first direction (X-axis direction) relative to the magnetic sensor 110. It is magnetized along the direction (X-axis direction).
  • the magnetization direction D2 of the magnet 320 faces the other of the first directions (X-axis direction).
  • a displacement direction D3 of the magnet 320 relative to the magnetic sensor 110 is parallel to the first direction (X-axis direction).
  • the magnet 320 has a substantially rectangular parallelepiped shape.
  • the magnet 320 has a first side surface S1 facing the magnetic sensor 110 in the second direction (Y-axis direction) and a second side surface S2 opposite to the first side surface S1 in the second direction (Y-axis direction). , and end faces S3 in the first direction (X-axis direction).
  • a first chamfered portion S4 is formed at a corner between a first side surface S1 facing the magnetic sensor 110 in the second direction (Y-axis direction) and both end surfaces S3 in the first direction (X-axis direction). It is The first chamfered portion S4 is chamfered linearly. The length of the first chamfered portion S4 in the first direction (X-axis direction) is L3, and the chamfered angle is ⁇ 3.
  • a second chamfered portion S5 is formed at the corner between the second side surface S2 and both end surfaces S3 in the second direction (Y-axis direction).
  • the second chamfered portion S5 is chamfered linearly.
  • the length of the second chamfered portion S5 in the first direction (X-axis direction) is L4, and the chamfering angle is ⁇ 4.
  • the first chamfered portion S4 and the second chamfered portion S5 have different lengths in the first direction (X-axis direction).
  • the relationship of L4 ⁇ L3 is satisfied.
  • the relationship ⁇ 4 ⁇ 3 is satisfied.
  • the first chamfered portion S4 is formed on the magnet 320, so that the magnetic field application direction of the magnet 320 to the magnetic sensor 110 and the sensitivity axis direction D1 of the magnetic sensor 110 , changes by approximating an inverse sine function of the displacement due to a proportional relationship with the relative displacement of the magnet 320 with respect to the magnetic sensor 110 .
  • the output value of the magnetic sensor 110 approximates the proportional relationship of the above-described displacement amount from the sine function of the relative displacement amount of the magnet 320 with respect to the magnetic sensor 110. change by Therefore, in the position detection device according to the third embodiment of the present invention, the correlation between the displacement amount of the magnet 320 relative to the magnetic sensor 110 and the output value of the magnetic sensor 110 is higher than that of the position detection device 900 according to the comparative example. can improve the linearity of
  • Embodiment 4 of the present invention A position detection device according to Embodiment 4 of the present invention will be described below with reference to the drawings.
  • the position detection device according to Embodiment 4 of the present invention differs from the position detection device according to Embodiment 3 of the present invention in the shape of the magnet. Don't repeat the description.
  • FIG. 14 is a plan view showing the shape of a magnet included in the position detection device according to Embodiment 4 of the present invention.
  • a magnet 420 included in the position detection device according to Embodiment 4 of the present invention is displaceable in a first direction (X-axis direction) relative to the magnetic sensor 110. It is magnetized along the direction (X-axis direction).
  • the magnetization direction D2 of the magnet 420 faces the other of the first directions (X-axis direction).
  • a displacement direction D3 of the magnet 420 relative to the magnetic sensor 110 is parallel to the first direction (X-axis direction).
  • the magnet 420 has a substantially rectangular parallelepiped shape.
  • the magnet 420 has a first side surface S1 facing the magnetic sensor 110 in the second direction (Y-axis direction) and a second side surface S2 opposite to the first side surface S1 in the second direction (Y-axis direction). , and end faces S3 in the first direction (X-axis direction).
  • a first chamfered portion S4 is formed at a corner between a first side surface S1 facing the magnetic sensor 110 in the second direction (Y-axis direction) and both end surfaces S3 in the first direction (X-axis direction). It is The first chamfered portion S4 is chamfered in an arc shape. The length of the first chamfered portion S4 in the first direction (X-axis direction) is L5.
  • a second chamfered portion S5 is formed at the corner between the second side surface S2 and both end surfaces S3 in the second direction (Y-axis direction).
  • the second chamfered portion S5 is chamfered in an arc shape.
  • the length of the second chamfered portion S5 in the first direction (X-axis direction) is L6.
  • the first chamfered portion S4 and the second chamfered portion S5 have different lengths in the first direction (X-axis direction). In this embodiment, the relationship of L6 ⁇ L5 is satisfied.
  • the first chamfered portion S4 is formed on the magnet 420, so that the magnetic field application direction of the magnet 420 to the magnetic sensor 110 and the sensitivity axis direction D1 of the magnetic sensor 110 , changes by approximating an inverse sine function of the amount of displacement due to a proportional relationship with the amount of displacement of the magnet 420 relative to the magnetic sensor 110 .
  • the output value of the magnetic sensor 110 approximates the proportional relationship of the above-described displacement amount from the sine function of the relative displacement amount of the magnet 420 with respect to the magnetic sensor 110. change by Therefore, in the position detection device according to the fourth embodiment of the present invention, the correlation between the displacement amount of the magnet 420 relative to the magnetic sensor 110 and the output value of the magnetic sensor 110 is higher than that of the position detection device 900 according to the comparative example. can improve the linearity of
  • Embodiment 5 A position detection device according to Embodiment 5 of the present invention will be described below with reference to the drawings.
  • the position detection device according to Embodiment 5 of the present invention has the same configuration as the position detection device 100 according to Embodiment 1 of the present invention because the shape of the magnet is different from that of the position detection device 100 according to Embodiment 1 of the present invention. will not be repeated.
  • FIG. 15 is a plan view showing the shape of a magnet included in a position detection device according to Embodiment 5 of the present invention.
  • the magnet 520 included in the position detection device according to the fifth embodiment of the present invention is displaceable in the first direction (X-axis direction) relative to the magnetic sensor 110. It is magnetized along the direction (X-axis direction).
  • the magnetization direction D2 of the magnet 520 faces the other of the first directions (X-axis direction).
  • a displacement direction D3 of the magnet 520 relative to the magnetic sensor 110 is parallel to the first direction (X-axis direction).
  • the magnet 520 has a substantially rectangular parallelepiped shape.
  • the magnet 520 has a first side surface S1 facing the magnetic sensor 110 in the second direction (Y-axis direction) and a second side surface S2 opposite to the first side surface S1 in the second direction (Y-axis direction). , and end faces S3 in the first direction (X-axis direction).
  • a recess S6 recessed in the second direction (Y-axis direction) is formed at the end of the first side surface S1 in the first direction (X-axis direction) in the second direction (Y-axis direction).
  • the recess S6 on one end side in the first direction (X-axis direction) is recessed in a curved shape that approximates a tangent function, and is recessed in the first direction (X-axis direction).
  • the recess S6 on the end side is recessed in a curved shape that approximates a cotangent function.
  • the length of the recess S6 in the first direction (X-axis direction) is L7.
  • the concave portion S6 is formed in the magnet 520 so that the direction of application of the magnetic field of the magnet 520 to the magnetic sensor 110 and the sensitivity axis direction D1 of the magnetic sensor 110 intersect each other.
  • the angle changes by approximating an inverse sine function of the displacement due to the proportional relationship with the relative displacement of the magnet 520 with respect to the magnetic sensor 110 .
  • the output value of the magnetic sensor 110 approximates the proportional relationship of the above-described displacement amount from the sine function of the relative displacement amount of the magnet 520 with respect to the magnetic sensor 110. change by Therefore, in the position detection device according to the fifth embodiment of the present invention, the correlation between the displacement amount of the magnet 520 relative to the magnetic sensor 110 and the output value of the magnetic sensor 110 is higher than that of the position detection device 900 according to the comparative example. can improve the linearity of
  • Embodiment 6 A position detection device according to Embodiment 6 of the present invention will be described below with reference to the drawings.
  • the position detection device according to Embodiment 6 of the present invention has a configuration similar to that of the position detection device 100 according to Embodiment 1 of the present invention because the shape of the magnet is different from that of the position detection device 100 according to Embodiment 1 of the present invention. will not be repeated.
  • FIG. 16 is a plan view showing the shape of a magnet included in a position detection device according to Embodiment 6 of the present invention.
  • a magnet 620 included in the position detection device according to the sixth embodiment of the present invention is displaceable in a first direction (X-axis direction) relative to the magnetic sensor 110. It is magnetized along the direction (X-axis direction).
  • the magnetization direction D2 of the magnet 620 faces the other of the first directions (X-axis direction).
  • a displacement direction D3 of the magnet 620 relative to the magnetic sensor 110 is parallel to the first direction (X-axis direction).
  • the magnet 620 has a substantially rectangular parallelepiped shape.
  • the magnet 620 has a first side surface S1 facing the magnetic sensor 110 in the second direction (Y-axis direction) and a second side surface S2 opposite to the first side surface S1 in the second direction (Y-axis direction). , and end faces S3 in the first direction (X-axis direction).
  • a recess S6 recessed in the second direction (Y-axis direction) is formed at the end of the first side surface S1 in the first direction (X-axis direction) in the second direction (Y-axis direction).
  • the concave portion S6 has a rectangular shape when viewed from the third direction (Z-axis direction).
  • the concave portion S6 is formed in the magnet 620 so that the direction of application of the magnetic field of the magnet 620 to the magnetic sensor 110 and the sensitivity axis direction D1 of the magnetic sensor 110 intersect each other.
  • the angle changes by approximating the arc sine function of the displacement amount from the proportional relationship with the displacement amount of the magnet 620 relative to the magnetic sensor 110 .
  • the output value of the magnetic sensor 110 approximates the proportional relationship of the above-mentioned displacement amount from the sine function of the relative displacement amount of the magnet 620 with respect to the magnetic sensor 110. change by Therefore, in the position detection device according to the sixth embodiment of the present invention, the correlation between the displacement amount of the magnet 620 relative to the magnetic sensor 110 and the output value of the magnetic sensor 110 is higher than that of the position detection device 900 according to the comparative example. can improve the linearity of
  • 100, 200, 900 position detector 110 magnetic sensor, 120, 220, 320, 420, 520, 620, 920 magnet, B1, B2, B9 magnetic field, D1 sensitivity axis direction, D2 magnetization direction, D3 displacement direction, S1 First side surface, S2 Second side surface, S3 End surface, S4 First chamfered portion, S5 Second chamfered portion, S6 Concave portion.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

磁気センサ(110)は、第1方向に沿う感度軸方向(D1)を有する。磁石(120)は、第1方向と直交する第2方向において磁気センサ(110)と並んで位置し、磁気センサ(110)に対して相対的に第1方向に変位可能に設けられ、第1方向に沿って着磁されている。磁気センサ(110)の出力値は、磁気センサ(110)に対する磁石(120)の磁界(B1)の印加方向と感度軸方向(D1)との交差角度の正弦関数で変化する。上記交差角度は、磁石(120)が磁気センサ(110)に対して相対的に第1方向に変位した際の変位量との比例関係より上記変位量の逆正弦関数に近似して変化する。

Description

位置検出装置
 本発明は、位置検出装置に関する。
 ストロークセンサの構成を開示した先行技術文献として、特開2010-197373号公報(特許文献1)がある。特許文献1に記載されたストロークセンサは、直線的に変位する被検出体の直線的な変位量を検出する。ストロークセンサは、磁石と2つの感磁部とを備える。磁石は、自身の長手方向と垂直な方向に着磁されている。2つの感磁部は、上記長手方向と平行に配列され、磁石により形成される磁束に感磁して、それぞれ電気的出力を発生する。2つの感磁部は、それぞれの感磁面が互いに同一の面方向となるように配置されている。磁石は、被検出体の直線的な変位に応じて、2つの感磁部に対し上記長手方向に相対的に変位するとともに、2つの感磁部が並ぶ配列軸と着磁方向に向かい合う感磁部対向周縁を有する。感磁部対向周縁は、上記配列軸上の磁束密度と上記配列軸の座標との相関が正弦曲線に略一致するように曲線状に設けられている。
特開2010-197373号公報
 特許文献1に記載されたストロークセンサにおいては、磁気センサに対して相対的に移動する磁石の直線的な変位量と磁気センサの出力値との相関の線形性を向上できる余地がある。
 本発明は上記の課題に鑑みてなされたものであって、磁気センサに対して相対的に移動する磁石の直線的な変位量と磁気センサの出力値との相関の線形性を向上することができる、位置検出装置を提供することを目的とする。
 本発明に基づく位置検出装置は、磁気センサと磁石とを備える。磁気センサは、第1方向に沿う感度軸方向を有する。磁石は、上記第1方向と直交する第2方向において磁気センサと並んで位置し、磁気センサに対して相対的に上記第1方向に変位可能に設けられ、上記第1方向に沿って着磁されている。磁気センサの出力値は、磁気センサに対する磁石の磁界の印加方向と上記感度軸方向との交差角度の正弦関数で変化する。上記交差角度は、磁石が磁気センサに対して相対的に上記第1方向に変位した際の変位量との比例関係より上記変位量の逆正弦関数に近似して変化する。
 本発明によれば、磁気センサに対して相対的に移動する磁石の直線的な変位量と磁気センサの出力値との相関の線形性を向上することができる。
比較例に係る位置検出装置の構成を示す斜視図である。 比較例に係る位置検出装置において、磁気センサに対する磁石の相対的な変位量と、磁気センサに対する磁石の磁界の印加方向と磁気センサの感度軸方向との交差角度との相関関係を示すグラフである。 磁気センサに対する磁石の磁界の印加方向と磁気センサの感度軸方向との交差角度と、磁気センサの出力値との相関関係を示すグラフである。 比較例に係る位置検出装置において、磁気センサに対する磁石の相対的な変位量と、磁気センサの出力値との相関関係を示すグラフである。 本発明の実施形態1に係る位置検出装置の構成を示す斜視図である。 本発明の実施形態1に係る位置検出装置において、磁気センサに対する磁石の相対的な変位量と、磁気センサに対する磁石の磁界の印加方向と磁気センサの感度軸方向との交差角度との相関関係を示すグラフである。 本発明の実施形態1に係る位置検出装置において、磁気センサに対する磁石の相対的な変位量と、磁気センサの出力値との相関関係を示すグラフである。 本発明の実施形態2に係る位置検出装置の構成を示す斜視図である。 本発明の実施形態2に係る位置検出装置において、磁気センサに対する磁石の相対的な変位量と、磁気センサに対する磁石の磁界の印加方向と磁気センサの感度軸方向との交差角度との相関関係を示すグラフである。 本発明の実施形態2に係る位置検出装置において、磁気センサに対する磁石の相対的な変位量と、磁気センサの出力値との相関関係を示すグラフである。 最適形態に係る位置検出装置において、磁気センサに対する磁石の相対的な変位量と、磁気センサに対する磁石の磁界の印加方向と磁気センサの感度軸方向との交差角度との相関関係を示すグラフである。 最適形態に係る位置検出装置において、磁気センサに対する磁石の相対的な変位量と、磁気センサの出力値との相関関係を示すグラフである。 本発明の実施形態3に係る位置検出装置が備える磁石の形状を示す平面図である。 本発明の実施形態4に係る位置検出装置が備える磁石の形状を示す平面図である。 本発明の実施形態5に係る位置検出装置が備える磁石の形状を示す平面図である。 本発明の実施形態6に係る位置検出装置が備える磁石の形状を示す平面図である。
 以下、本発明の各実施形態および比較例に係る位置検出装置について図を参照して説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。
 (比較例)
 まず、比較例に係る位置検出装置について説明する。図1は、比較例に係る位置検出装置の構成を示す斜視図である。図1においては、第1方向をX軸方向、第2方向をY軸方向、第3方向をZ軸方向として示している。
 図1に示すように、比較例に係る位置検出装置900は、磁気センサ110と磁石920とを備える。磁気センサ110は、第1方向(X軸方向)に沿う感度軸方向D1を有する。感度軸方向D1は、第1方向(X軸方向)の一方に向いている。
 磁気センサ110は、4つのTMR(Tunnel Magneto Resistance)素子からなるホイートストンブリッジ型のブリッジ回路を有する。なお、磁気センサ110は、TMR素子に代えて、GMR(Giant Magneto Resistance)素子若しくはAMR(Anisotropic Magneto Resistance)素子などの磁気抵抗素子からなるブリッジ回路を有していてもよい。また、磁気センサ110は、2つの磁気抵抗素子からなるハーフブリッジ回路を有していてもよい。
 磁石920は、第1方向(X軸方向)と直交する第2方向(Y軸方向)において磁気センサ110と並んで位置し、磁気センサ110に対して相対的に第1方向(X軸方向)に変位可能に設けられ、第1方向(X軸方向)に沿って着磁されている。
 磁石920の着磁方向D2は、第1方向(X軸方向)の他方に向いている。磁石920の磁気センサ110に対する相対的な変位方向D3は、第1方向(X軸方向)と平行である。
 磁石920は、直方体状の形状を有している。磁石920は、第2方向(Y軸方向)において磁気センサ110と面する側の第1側面S1と、第2方向(Y軸方向)において第1側面S1とは反対側の第2側面S2と、第1方向(X軸方向)の両端面S3とを有している。
 図1に示すように、磁気センサ110に対する磁石920の相対的な変位量が0のとき、磁気センサ110に対する磁石920の磁界B9の印加方向は、第1方向(X軸方向)と平行である。よって、磁気センサ110に対する磁石920の相対的な変位量が0のとき、磁気センサ110に対する磁石920の磁界B9の印加方向と、磁気センサ110の感度軸方向D1との交差角度は、0°である。
 図2は、比較例に係る位置検出装置において、磁気センサに対する磁石の相対的な変位量と、磁気センサに対する磁石の磁界の印加方向と磁気センサの感度軸方向との交差角度との相関関係を示すグラフである。図2においては、横軸に、磁気センサに対する磁石の相対的な変位量(mm)、縦軸に、磁気センサに対する磁石の磁界の印加方向と磁気センサの感度軸方向との交差角度(deg)を示している。
 図2に示すように、比較例に係る位置検出装置900においては、磁気センサ110に対する磁石920の磁界B9の印加方向と磁気センサ110の感度軸方向D1との交差角度は、磁気センサ110に対する磁石920の相対的な変位量と比例関係を有している。
 図3は、磁気センサに対する磁石の磁界の印加方向と磁気センサの感度軸方向との交差角度と、磁気センサの出力値との相関関係を示すグラフである。図3においては、横軸に、磁気センサに対する磁石の磁界の印加方向と磁気センサの感度軸方向との交差角度(deg)、縦軸に、磁気センサの出力値(mV/V)を示している。
 図3に示すように、磁気センサ110の出力値は、磁気センサ110に対する磁石920の磁界B9の印加方向と磁気センサ110の感度軸方向D1との交差角度の正弦関数で変化する。すなわち、磁気センサ110は、磁気センサ110に対する磁石の磁界の印加方向と磁気センサ110の感度軸方向D1との交差角度の正弦関数で出力値が変化する、角度センサとして機能する。
 図4は、比較例に係る位置検出装置において、磁気センサに対する磁石の相対的な変位量と、磁気センサの出力値との相関関係を示すグラフである。図4においては、横軸に、磁気センサに対する磁石の相対的な変位量(mm)、縦軸に、磁気センサの出力値(mV/V)を示している。
 図4に示すように、比較例に係る位置検出装置900においては、磁気センサ110の出力値は、磁気センサ110に対する磁石920の相対的な変位量の正弦関数に近似して変化する。そのため、変位量の絶対値が0.7以上の部分では、磁気センサ110に対する磁石920の相対的な変位量と磁気センサ110の出力値との相関の線形性がよくない。すなわち、比較例に係る位置検出装置900においては、磁気センサ110に対する磁石920の相対的な変位量と磁気センサ110の出力値との相関が線形性を有する範囲が狭く、位置検出可能範囲が狭い。
 (実施形態1)
 以下、本発明の実施形態1に係る位置検出装置について図を参照して説明する。本発明の実施形態1に係る位置検出装置は、磁石の形状が比較例に係る位置検出装置900と異なるため、比較例に係る位置検出装置900と同様である構成については説明を繰り返さない。
 図5は、本発明の実施形態1に係る位置検出装置の構成を示す斜視図である。図5に示すように、本発明の実施形態1に係る位置検出装置100は、磁気センサ110と磁石120とを備える。
 磁石120は、第2方向(Y軸方向)において磁気センサ110と並んで位置し、磁気センサ110に対して相対的に第1方向(X軸方向)に変位可能に設けられ、第1方向(X軸方向)に沿って着磁されている。
 磁石120の着磁方向D2は、第1方向(X軸方向)の他方に向いている。磁石120の磁気センサ110に対する相対的な変位方向D3は、第1方向(X軸方向)と平行である。
 磁石120は、略直方体状の形状を有している。磁石120は、第2方向(Y軸方向)において磁気センサ110と面する側の第1側面S1と、第2方向(Y軸方向)において第1側面S1とは反対側の第2側面S2と、第1方向(X軸方向)の両端面S3とを有している。
 磁石120において、第2方向(Y軸方向)において磁気センサ110と面する側の第1側面S1と第1方向(X軸方向)の両端面S3との角部に第1面取り部S4が形成されている。第1面取り部S4は、直線状に面取りされている。第1面取り部S4の第1方向(X軸方向)における長さはL1であり、面取り角度はα1である。磁石120に第1面取り部S4を形成することにより、磁気センサ110に対する磁石120の磁界B1の印加方向を調整することができる。
 図5に示すように、磁気センサ110に対する磁石120の相対的な変位量が0のとき、磁気センサ110に対する磁石120の磁界B1の印加方向は、第1方向(X軸方向)と平行である。よって、磁気センサ110に対する磁石120の相対的な変位量が0のとき、磁気センサ110に対する磁石120の磁界B1の印加方向と、磁気センサ110の感度軸方向D1との交差角度は、0°である。
 図6は、本発明の実施形態1に係る位置検出装置において、磁気センサに対する磁石の相対的な変位量と、磁気センサに対する磁石の磁界の印加方向と磁気センサの感度軸方向との交差角度との相関関係を示すグラフである。図6においては、横軸に、磁気センサに対する磁石の相対的な変位量(mm)、縦軸に、磁気センサに対する磁石の磁界の印加方向と磁気センサの感度軸方向との交差角度(deg)を示している。
 図6に示すように、本発明の実施形態1に係る位置検出装置100においては、磁気センサ110に対する磁石120の磁界B1の印加方向と磁気センサ110の感度軸方向D1との交差角度は、磁気センサ110に対する磁石120の相対的な変位量との比例関係より上記変位量の逆正弦関数に近似して変化する。
 すなわち、本発明の実施形態1に係る位置検出装置100においては、磁石120に第1面取り部S4が形成されていることにより、磁気センサ110に対する磁石120の磁界B1の印加方向と磁気センサ110の感度軸方向D1との交差角度は、磁気センサ110に対する磁石120の相対的な変位量との比例関係より上記変位量の逆正弦関数に近似して変化する。
 図7は、本発明の実施形態1に係る位置検出装置において、磁気センサに対する磁石の相対的な変位量と、磁気センサの出力値との相関関係を示すグラフである。図7においては、横軸に、磁気センサに対する磁石の相対的な変位量(mm)、縦軸に、磁気センサの出力値(mV/V)を示している。
 図7に示すように、本発明の実施形態1に係る位置検出装置100においては、磁気センサ110の出力値は、磁気センサ110に対する磁石120の相対的な変位量の正弦関数より上記変位量の比例関係に近似して変化する。よって、本発明の実施形態1に係る位置検出装置100は、比較例に係る位置検出装置900に比較して、磁気センサ110に対する磁石120の相対的な変位量と磁気センサ110の出力値との相関の線形性を向上することができる。すなわち、本発明の実施形態1に係る位置検出装置100は、比較例に係る位置検出装置900に比較して、磁気センサ110に対する磁石120の相対的な変位量と磁気センサ110の出力値との相関が線形性を有する範囲が広く、位置検出可能範囲が広い。
 本発明の実施形態1に係る位置検出装置100においては、磁気センサ110の出力値は、磁気センサ110に対する磁石120の磁界B1の印加方向と磁気センサ110の感度軸方向D1との交差角度の正弦関数で変化し、磁気センサ110に対する磁石120の磁界B1の印加方向と磁気センサ110の感度軸方向D1との交差角度は、磁気センサ110に対する磁石120の相対的な変位量との比例関係より上記変位量の逆正弦関数に近似して変化する。これにより、磁気センサ110に対する磁石120の相対的な変位量と磁気センサ110の出力値との相関の線形性を向上することができる。
 位置検出装置100は、非接触リニアトランスデューサ、非接触ロータリセンサ、または、ポテンショメータなどの、変位量がアナログ出力されるデバイスに適用可能である。たとえば、位置検出装置100をコンパクトカメラモジュールに適用して、オートフォーカスおよび手ぶれ補正するためのレンズの位置検出を行なってもよい。
 (実施形態2)
 以下、本発明の実施形態2に係る位置検出装置について図を参照して説明する。本発明の実施形態2に係る位置検出装置は、磁石の形状が本発明の実施形態1に係る位置検出装置100と異なるため、本発明の実施形態1に係る位置検出装置100と同様である構成については説明を繰り返さない。
 図8は、本発明の実施形態2に係る位置検出装置の構成を示す斜視図である。図8に示すように、本発明の実施形態2に係る位置検出装置200は、磁気センサ110と磁石220とを備える。
 磁石220は、第2方向(Y軸方向)において磁気センサ110と並んで位置し、磁気センサ110に対して相対的に第1方向(X軸方向)に変位可能に設けられ、第1方向(X軸方向)に沿って着磁されている。
 磁石220の着磁方向D2は、第1方向(X軸方向)の他方に向いている。磁石220の磁気センサ110に対する相対的な変位方向D3は、第1方向(X軸方向)と平行である。
 磁石220は、略直方体状の形状を有している。磁石220は、第2方向(Y軸方向)において磁気センサ110と面する側の第1側面S1と、第2方向(Y軸方向)において第1側面S1とは反対側の第2側面S2と、第1方向(X軸方向)の両端面S3とを有している。
 磁石220において、第2方向(Y軸方向)において磁気センサ110と面する側の第1側面S1と第1方向(X軸方向)の両端面S3との角部に第1面取り部S4が形成されている。第1面取り部S4は、直線状に面取りされている。第1面取り部S4の第1方向(X軸方向)における長さはL2であり、面取り角度はα2である。L2<L1の関係を満たし、α2<α1の関係を満たしている。磁石220に第1面取り部S4を形成することにより、磁気センサ110に対する磁石220の磁界B2の印加方向を調整することができる。
 図8に示すように、磁気センサ110に対する磁石220の相対的な変位量が0のとき、磁気センサ110に対する磁石220の磁界B2の印加方向は、第1方向(X軸方向)と平行である。よって、磁気センサ110に対する磁石220の相対的な変位量が0のとき、磁気センサ110に対する磁石220の磁界B2の印加方向と、磁気センサ110の感度軸方向D1との交差角度は、0°である。
 図9は、本発明の実施形態2に係る位置検出装置において、磁気センサに対する磁石の相対的な変位量と、磁気センサに対する磁石の磁界の印加方向と磁気センサの感度軸方向との交差角度との相関関係を示すグラフである。図9においては、横軸に、磁気センサに対する磁石の相対的な変位量(mm)、縦軸に、磁気センサに対する磁石の磁界の印加方向と磁気センサの感度軸方向との交差角度(deg)を示している。
 図9に示すように、本発明の実施形態2に係る位置検出装置200においては、磁気センサ110に対する磁石220の磁界B2の印加方向と磁気センサ110の感度軸方向D1との交差角度は、磁気センサ110に対する磁石220の相対的な変位量との比例関係より上記変位量の逆正弦関数に近似して変化する。
 本発明の実施形態2に係る位置検出装置200においては、図6に示す本発明の実施形態1に係る位置検出装置100に比較して、磁気センサ110に対する磁石220の磁界B2の印加方向と磁気センサ110の感度軸方向D1との交差角度は、磁気センサ110に対する磁石220の相対的な変位量との比例関係より上記変位量の逆正弦関数にさらに近似して変化する。
 図10は、本発明の実施形態2に係る位置検出装置において、磁気センサに対する磁石の相対的な変位量と、磁気センサの出力値との相関関係を示すグラフである。図10においては、横軸に、磁気センサに対する磁石の相対的な変位量(mm)、縦軸に、磁気センサの出力値(mV/V)を示している。
 図10に示すように、本発明の実施形態2に係る位置検出装置200においては、磁気センサ110の出力値は、磁気センサ110に対する磁石220の相対的な変位量の正弦関数より上記変位量の比例関係に近似して変化する。本発明の実施形態2に係る位置検出装置200においては、図7に示す本発明の実施形態1に係る位置検出装置100に比較して、磁気センサ110の出力値は、磁気センサ110に対する磁石220の相対的な変位量の正弦関数より上記変位量の比例関係にさらに近似して変化する。
 よって、本発明の実施形態2に係る位置検出装置200は、本発明の実施形態1に係る位置検出装置100に比較して、磁気センサ110に対する磁石220の相対的な変位量と磁気センサ110の出力値との相関の線形性を向上することができる。すなわち、本発明の実施形態2に係る位置検出装置200は、本発明の実施形態1に係る位置検出装置100に比較して、磁気センサ110に対する磁石220の相対的な変位量と磁気センサ110の出力値との相関が線形性を有する範囲が広く、位置検出可能範囲が広い。
 本発明の実施形態2に係る位置検出装置200においては、磁気センサ110の出力値は、磁気センサ110に対する磁石220の磁界B2の印加方向と磁気センサ110の感度軸方向D1との交差角度の正弦関数で変化し、磁気センサ110に対する磁石220の磁界B2の印加方向と磁気センサ110の感度軸方向D1との交差角度は、磁気センサ110に対する磁石220の相対的な変位量との比例関係より上記変位量の逆正弦関数に近似して変化する。これにより、磁気センサ110に対する磁石220の相対的な変位量と磁気センサ110の出力値との相関の線形性を向上することができる。
 ここで、磁気センサ110に対する磁石の磁界の印加方向と磁気センサ110の感度軸方向D1との交差角度が、磁気センサ110に対する磁石の相対的な変位量の逆正弦関数の相関を有して変化する、最適形態について説明する。
 図11は、最適形態に係る位置検出装置において、磁気センサに対する磁石の相対的な変位量と、磁気センサに対する磁石の磁界の印加方向と磁気センサの感度軸方向との交差角度との相関関係を示すグラフである。図11においては、横軸に、磁気センサに対する磁石の相対的な変位量(mm)、縦軸に、磁気センサに対する磁石の磁界の印加方向と磁気センサの感度軸方向との交差角度(deg)を示している。
 図11に示すように、最適形態に係る位置検出装置においては、磁気センサ110に対する磁石の磁界の印加方向と磁気センサ110の感度軸方向D1との交差角度は、磁気センサ110に対する磁石の相対的な変位量の逆正弦関数の相関を有して変化する。そのため、図11中の点線で囲んだ部分の曲線は、上記変位量の正弦関数の相関曲線とは逆向きに湾曲している。
 図12は、最適形態に係る位置検出装置において、磁気センサに対する磁石の相対的な変位量と、磁気センサの出力値との相関関係を示すグラフである。図12においては、横軸に、磁気センサに対する磁石の相対的な変位量(mm)、縦軸に、磁気センサの出力値(mV/V)を示している。
 図12に示すように、最適形態に係る位置検出装置においては、磁気センサ110の出力値は、磁気センサ110に対する磁石の相対的な変位量と比例関係を有して変化する。よって、最適形態に係る位置検出装置においては、磁気センサ110に対する磁石の相対的な変位量と磁気センサ110の出力値との相関が、完全な線形性を有する。
 上記の最適形態に係る位置検出装置のように、磁気センサ110に対する磁石の磁界の印加方向と磁気センサ110の感度軸方向D1との交差角度が、磁気センサ110に対する磁石の相対的な変位量の逆正弦関数に、より近似して変化するように磁石の形状を決定することによって、磁気センサ110に対して相対的に移動する磁石の直線的な変位量と磁気センサ110の出力値との相関の線形性を向上することができる。
 (実施形態3)
 以下、本発明の実施形態3に係る位置検出装置について図を参照して説明する。本発明の実施形態3に係る位置検出装置は、磁石の形状が本発明の実施形態1に係る位置検出装置100と異なるため、本発明の実施形態1に係る位置検出装置100と同様である構成については説明を繰り返さない。
 図13は、本発明の実施形態3に係る位置検出装置が備える磁石の形状を示す平面図である。図13に示すように、本発明の実施形態3に係る位置検出装置が備える磁石320は、磁気センサ110に対して相対的に第1方向(X軸方向)に変位可能に設けられ、第1方向(X軸方向)に沿って着磁されている。磁石320の着磁方向D2は、第1方向(X軸方向)の他方に向いている。磁石320の磁気センサ110に対する相対的な変位方向D3は、第1方向(X軸方向)と平行である。
 磁石320は、略直方体状の形状を有している。磁石320は、第2方向(Y軸方向)において磁気センサ110と面する側の第1側面S1と、第2方向(Y軸方向)において第1側面S1とは反対側の第2側面S2と、第1方向(X軸方向)の両端面S3とを有している。
 磁石320において、第2方向(Y軸方向)において磁気センサ110と面する側の第1側面S1と第1方向(X軸方向)の両端面S3との角部に第1面取り部S4が形成されている。第1面取り部S4は、直線状に面取りされている。第1面取り部S4の第1方向(X軸方向)における長さはL3であり、面取り角度はα3である。
 磁石320において、第2方向(Y軸方向)において第2側面S2と両端面S3との角部に第2面取り部S5が形成されている。第2面取り部S5は、直線状に面取りされている。第2面取り部S5の第1方向(X軸方向)における長さはL4であり、面取り角度はα4である。第1面取り部S4と第2面取り部S5とは、第1方向(X軸方向)における長さが互いに異なる。本実施形態においては、L4<L3の関係を満たしている。また、α4≦α3の関係を満たしている。磁石220に第1面取り部S4を形成することにより、磁気センサ110に対する磁石320の磁界の印加方向を調整することができる。
 本発明の実施形態3に係る位置検出装置においては、磁石320に第1面取り部S4が形成されていることにより、磁気センサ110に対する磁石320の磁界の印加方向と磁気センサ110の感度軸方向D1との交差角度は、磁気センサ110に対する磁石320の相対的な変位量との比例関係より上記変位量の逆正弦関数に近似して変化する。
 その結果、本発明の実施形態3に係る位置検出装置においては、磁気センサ110の出力値は、磁気センサ110に対する磁石320の相対的な変位量の正弦関数より上記変位量の比例関係に近似して変化する。よって、本発明の実施形態3に係る位置検出装置は、比較例に係る位置検出装置900に比較して、磁気センサ110に対する磁石320の相対的な変位量と磁気センサ110の出力値との相関の線形性を向上することができる。
 (実施形態4)
 以下、本発明の実施形態4に係る位置検出装置について図を参照して説明する。本発明の実施形態4に係る位置検出装置は、磁石の形状が本発明の実施形態3に係る位置検出装置と異なるため、本発明の実施形態3に係る位置検出装置と同様である構成については説明を繰り返さない。
 図14は、本発明の実施形態4に係る位置検出装置が備える磁石の形状を示す平面図である。図14に示すように、本発明の実施形態4に係る位置検出装置が備える磁石420は、磁気センサ110に対して相対的に第1方向(X軸方向)に変位可能に設けられ、第1方向(X軸方向)に沿って着磁されている。磁石420の着磁方向D2は、第1方向(X軸方向)の他方に向いている。磁石420の磁気センサ110に対する相対的な変位方向D3は、第1方向(X軸方向)と平行である。
 磁石420は、略直方体状の形状を有している。磁石420は、第2方向(Y軸方向)において磁気センサ110と面する側の第1側面S1と、第2方向(Y軸方向)において第1側面S1とは反対側の第2側面S2と、第1方向(X軸方向)の両端面S3とを有している。
 磁石420において、第2方向(Y軸方向)において磁気センサ110と面する側の第1側面S1と第1方向(X軸方向)の両端面S3との角部に第1面取り部S4が形成されている。第1面取り部S4は、円弧状に面取りされている。第1面取り部S4の第1方向(X軸方向)における長さはL5である。
 磁石420において、第2方向(Y軸方向)において第2側面S2と両端面S3との角部に第2面取り部S5が形成されている。第2面取り部S5は、円弧状に面取りされている。第2面取り部S5の第1方向(X軸方向)における長さはL6である。第1面取り部S4と第2面取り部S5とは、第1方向(X軸方向)における長さが互いに異なる。本実施形態においては、L6<L5の関係を満たしている。磁石420に第1面取り部S4を形成することにより、磁気センサ110に対する磁石420の磁界の印加方向を調整することができる。
 本発明の実施形態4に係る位置検出装置においては、磁石420に第1面取り部S4が形成されていることにより、磁気センサ110に対する磁石420の磁界の印加方向と磁気センサ110の感度軸方向D1との交差角度は、磁気センサ110に対する磁石420の相対的な変位量との比例関係より上記変位量の逆正弦関数に近似して変化する。
 その結果、本発明の実施形態4に係る位置検出装置においては、磁気センサ110の出力値は、磁気センサ110に対する磁石420の相対的な変位量の正弦関数より上記変位量の比例関係に近似して変化する。よって、本発明の実施形態4に係る位置検出装置は、比較例に係る位置検出装置900に比較して、磁気センサ110に対する磁石420の相対的な変位量と磁気センサ110の出力値との相関の線形性を向上することができる。
 (実施形態5)
 以下、本発明の実施形態5に係る位置検出装置について図を参照して説明する。本発明の実施形態5に係る位置検出装置は、磁石の形状が本発明の実施形態1に係る位置検出装置100と異なるため、本発明の実施形態1に係る位置検出装置100と同様である構成については説明を繰り返さない。
 図15は、本発明の実施形態5に係る位置検出装置が備える磁石の形状を示す平面図である。図15に示すように、本発明の実施形態5に係る位置検出装置が備える磁石520は、磁気センサ110に対して相対的に第1方向(X軸方向)に変位可能に設けられ、第1方向(X軸方向)に沿って着磁されている。磁石520の着磁方向D2は、第1方向(X軸方向)の他方に向いている。磁石520の磁気センサ110に対する相対的な変位方向D3は、第1方向(X軸方向)と平行である。
 磁石520は、略直方体状の形状を有している。磁石520は、第2方向(Y軸方向)において磁気センサ110と面する側の第1側面S1と、第2方向(Y軸方向)において第1側面S1とは反対側の第2側面S2と、第1方向(X軸方向)の両端面S3とを有している。
 磁石520において、第2方向(Y軸方向)において第1側面S1の第1方向(X軸方向)の端部に第2方向(Y軸方向)に凹んだ凹部S6が形成されている。第3方向(Z軸方向)から見て、第1方向(X軸方向)の一端側の凹部S6は、正接関数に近似した曲線状に凹んでおり、第1方向(X軸方向)の他端側の凹部S6は、余接関数に近似した曲線状に凹んでいる。凹部S6の第1方向(X軸方向)における長さはL7である。磁石520に凹部S6を形成することにより、磁気センサ110に対する磁石520の磁界の印加方向を調整することができる。
 本発明の実施形態5に係る位置検出装置においては、磁石520に凹部S6が形成されていることにより、磁気センサ110に対する磁石520の磁界の印加方向と磁気センサ110の感度軸方向D1との交差角度は、磁気センサ110に対する磁石520の相対的な変位量との比例関係より上記変位量の逆正弦関数に近似して変化する。
 その結果、本発明の実施形態5に係る位置検出装置においては、磁気センサ110の出力値は、磁気センサ110に対する磁石520の相対的な変位量の正弦関数より上記変位量の比例関係に近似して変化する。よって、本発明の実施形態5に係る位置検出装置は、比較例に係る位置検出装置900に比較して、磁気センサ110に対する磁石520の相対的な変位量と磁気センサ110の出力値との相関の線形性を向上することができる。
 (実施形態6)
 以下、本発明の実施形態6に係る位置検出装置について図を参照して説明する。本発明の実施形態6に係る位置検出装置は、磁石の形状が本発明の実施形態1に係る位置検出装置100と異なるため、本発明の実施形態1に係る位置検出装置100と同様である構成については説明を繰り返さない。
 図16は、本発明の実施形態6に係る位置検出装置が備える磁石の形状を示す平面図である。図16に示すように、本発明の実施形態6に係る位置検出装置が備える磁石620は、磁気センサ110に対して相対的に第1方向(X軸方向)に変位可能に設けられ、第1方向(X軸方向)に沿って着磁されている。磁石620の着磁方向D2は、第1方向(X軸方向)の他方に向いている。磁石620の磁気センサ110に対する相対的な変位方向D3は、第1方向(X軸方向)と平行である。
 磁石620は、略直方体状の形状を有している。磁石620は、第2方向(Y軸方向)において磁気センサ110と面する側の第1側面S1と、第2方向(Y軸方向)において第1側面S1とは反対側の第2側面S2と、第1方向(X軸方向)の両端面S3とを有している。
 磁石620において、第2方向(Y軸方向)において第1側面S1の第1方向(X軸方向)の端部に第2方向(Y軸方向)に凹んだ凹部S6が形成されている。第3方向(Z軸方向)から見て、凹部S6は、矩形状である。磁石620に凹部S6を形成することにより、磁気センサ110に対する磁石620の磁界の印加方向を調整することができる。
 本発明の実施形態6に係る位置検出装置においては、磁石620に凹部S6が形成されていることにより、磁気センサ110に対する磁石620の磁界の印加方向と磁気センサ110の感度軸方向D1との交差角度は、磁気センサ110に対する磁石620の相対的な変位量との比例関係より上記変位量の逆正弦関数に近似して変化する。
 その結果、本発明の実施形態6に係る位置検出装置においては、磁気センサ110の出力値は、磁気センサ110に対する磁石620の相対的な変位量の正弦関数より上記変位量の比例関係に近似して変化する。よって、本発明の実施形態6に係る位置検出装置は、比較例に係る位置検出装置900に比較して、磁気センサ110に対する磁石620の相対的な変位量と磁気センサ110の出力値との相関の線形性を向上することができる。
 上述した実施形態の説明において、組み合わせ可能な構成を相互に組み合わせてもよい。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 100,200,900 位置検出装置、110 磁気センサ、120,220,320,420,520,620,920 磁石、B1,B2,B9 磁界、D1 感度軸方向、D2 着磁方向、D3 変位方向、S1 第1側面、S2 第2側面、S3 端面、S4 第1面取り部、S5 第2面取り部、S6 凹部。

Claims (6)

  1.  第1方向に沿う感度軸方向を有する磁気センサと、
     前記第1方向と直交する第2方向において前記磁気センサと並んで位置し、前記磁気センサに対して相対的に前記第1方向に変位可能に設けられ、前記第1方向に沿って着磁された磁石とを備え、
     前記磁気センサの出力値は、前記磁気センサに対する前記磁石の磁界の印加方向と前記感度軸方向との交差角度の正弦関数で変化し、
     前記交差角度は、前記磁石が前記磁気センサに対して相対的に前記第1方向に変位した際の変位量との比例関係より前記変位量の逆正弦関数に近似して変化する、位置検出装置。
  2.  前記磁石において、前記第2方向において前記磁気センサと面する側の第1側面と前記第1方向の端面との角部に第1面取り部が形成されていることにより、前記交差角度は、前記変位量との比例関係より前記変位量の逆正弦関数に近似して変化する、請求項1に記載の位置検出装置。
  3.  前記磁石において、前記第2方向において前記第1側面とは反対側の第2側面と前記端面との角部に第2面取り部が形成されており、
     前記第1面取り部と前記第2面取り部とは、前記第1方向における長さが互いに異なる、請求項2に記載の位置検出装置。
  4.  前記磁石において、前記第2方向において前記磁気センサと面する側の第1側面の前記第1方向の端部に前記第2方向に凹んだ凹部が形成されていることにより、前記交差角度は、前記変位量との比例関係より前記変位量の逆正弦関数に近似して変化する、請求項1に記載の位置検出装置。
  5.  前記第1方向および前記第2方向の各々に直交する第3方向から見て、前記凹部は、矩形状である、請求項4に記載の位置検出装置。
  6.  前記第1方向および前記第2方向の各々に直交する第3方向から見て、前記第1方向の一端側の前記凹部は、正接関数に近似した曲線状に凹んでおり、前記第1方向の他端側の前記凹部は、余接関数に近似した曲線状に凹んでいる、請求項4に記載の位置検出装置。
PCT/JP2022/032032 2021-10-04 2022-08-25 位置検出装置 WO2023058356A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-163435 2021-10-04
JP2021163435 2021-10-04

Publications (1)

Publication Number Publication Date
WO2023058356A1 true WO2023058356A1 (ja) 2023-04-13

Family

ID=85803361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032032 WO2023058356A1 (ja) 2021-10-04 2022-08-25 位置検出装置

Country Status (1)

Country Link
WO (1) WO2023058356A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6496003B1 (en) * 1999-08-09 2002-12-17 Hirofumi Okumura Magnetic displacement detecting device having linear changing magnetic field over the length of the service
US7088095B1 (en) * 2004-02-04 2006-08-08 Honeywell International Inc. Balanced magnetic linear displacement sensor
JP2007132710A (ja) * 2005-11-08 2007-05-31 Tokai Rika Co Ltd 位置検出装置
JP2016072463A (ja) * 2014-09-30 2016-05-09 日立金属株式会社 永久磁石、位置センサ、永久磁石の製造方法及び着磁装置
JP2021047030A (ja) * 2019-09-17 2021-03-25 内山工業株式会社 磁気エンコーダ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6496003B1 (en) * 1999-08-09 2002-12-17 Hirofumi Okumura Magnetic displacement detecting device having linear changing magnetic field over the length of the service
US7088095B1 (en) * 2004-02-04 2006-08-08 Honeywell International Inc. Balanced magnetic linear displacement sensor
JP2007132710A (ja) * 2005-11-08 2007-05-31 Tokai Rika Co Ltd 位置検出装置
JP2016072463A (ja) * 2014-09-30 2016-05-09 日立金属株式会社 永久磁石、位置センサ、永久磁石の製造方法及び着磁装置
JP2021047030A (ja) * 2019-09-17 2021-03-25 内山工業株式会社 磁気エンコーダ

Similar Documents

Publication Publication Date Title
JP5079816B2 (ja) 好ましくは擬似正弦的に変化する磁石外形を有する磁気式位置センサ
JP4589410B2 (ja) 位置検出装置
US9347799B2 (en) Magnetic field sensor system with a magnetic wheel rotatable around a wheel axis and with magnetic sensor elements being arranged within a plane perpendicular to the wheel axis
US7521922B2 (en) Linear position sensor
EP3171126B1 (en) Temperature tolerant magnetic linear displacement sensor
JP5801566B2 (ja) 回転角度検出装置
US11609284B2 (en) Magnetic sensor
CN108351222B (zh) 位置检测装置
JP7215454B2 (ja) 磁気センサ、磁気式エンコーダおよびレンズ位置検出装置
JP3487452B2 (ja) 磁気検出装置
JP2022016641A (ja) 磁気センサ装置
JP4973869B2 (ja) 移動体検出装置
CN111198341A (zh) 磁传感器及位置检测装置
WO2023058356A1 (ja) 位置検出装置
US9574906B2 (en) Magnetic medium for magnetic encoder, magnetic encoder and method for manufacturing magnetic medium
JP5103158B2 (ja) 磁気式座標位置検出装置
US10247790B2 (en) Magnetic sensor
US11561079B2 (en) Magnetic sensor assembly and camera module having the same
WO2023058697A1 (ja) モータ用位置検知システム
CN112068048B (zh) 位置检测装置
JP2023099639A (ja) 磁気センサの設計方法と製造方法、及び磁気センサ
JP2021071334A (ja) 磁気式位置検出装置
JP2020165940A (ja) 磁性体検出センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878227

Country of ref document: EP

Kind code of ref document: A1