WO2023190350A1 - 接合構造 - Google Patents

接合構造 Download PDF

Info

Publication number
WO2023190350A1
WO2023190350A1 PCT/JP2023/012218 JP2023012218W WO2023190350A1 WO 2023190350 A1 WO2023190350 A1 WO 2023190350A1 JP 2023012218 W JP2023012218 W JP 2023012218W WO 2023190350 A1 WO2023190350 A1 WO 2023190350A1
Authority
WO
WIPO (PCT)
Prior art keywords
web
gusset plate
small beam
bolts
plate
Prior art date
Application number
PCT/JP2023/012218
Other languages
English (en)
French (fr)
Inventor
政樹 有田
哲 廣嶋
裕一 西田
信孝 清水
悠介 鈴木
智 青柳
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2023536570A priority Critical patent/JP7328610B1/ja
Publication of WO2023190350A1 publication Critical patent/WO2023190350A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/32Floor structures wholly cast in situ with or without form units or reinforcements

Definitions

  • the present invention relates to a joining structure.
  • the joint between the large beam and the small beam in a small beam end joint structure in which the end of the small beam (beam) is connected to the large beam (support member) is generally designed as a rigid connection or pin connection (
  • rigid and pin connections e.g. as defined in the European Design Code (Eurocode3-Part 1-8).
  • the flange of the small beam is welded or bolted to the main beam, and the web of the small beam is welded to the main beam. It is bolted to a gusset plate (also called a fin plate).
  • the web of the beam is bolted to a gusset plate welded to the girder, but the flanges of the beam are not joined to the girder.
  • the vertical loads acting on the beams through the floor slab such as the weight of the concrete floor slab, the live load, and the weight of finishing materials, cause the bolted joints of the webs of the beams to slip, causing the joints to bend. Demonstrates the behavior of a pin joint that does not transmit moments.
  • Patent Document 1 discloses a technique in which a large beam and a small beam are pin-joined using a gusset plate and a high-strength bolt, and a splice plate welded to the large beam.
  • a technique is described in which the floor slabs are joined with high-strength bolts to the lower surfaces of the girders and a continuous floor slab is placed on the upper surfaces of the girders and the girders. This makes it possible to improve workability while maintaining the load capacity of the beam.
  • a vertical gusset (stiffener) having an inverted L-shaped side surface shape is welded between the upper and lower flanges of the main beam and to the web, and a C-shaped horizontal stiffener is attached at the lower flange position of the small beam with the vertical gusset in between.
  • Techniques are described for welding vertical gussets and girder webs, welding horizontal stiffener ends to beam end bottom flanges, and welding girder top flanges to beam end top flanges. This makes it possible to streamline the construction of continuous beam joints and reduce the size of the beams.
  • Patent Document 1 and Patent Document 2 mentioned above are a pin joint by forming a semi-rigid joint or a rigid joint between a large beam and a small beam.
  • the cross section of the small beam can be made smaller and the weight can be reduced.
  • the lower flange of the small beam is joined to a gusset plate or stiffener that is welded to the large beam in advance, so it is necessary to match the installation heights of the large beam and small beam, resulting in construction errors in the height direction. It was not easy to use in that it was difficult to tolerate.
  • the flanges of the small beams may be welded directly to the large beams, but in this case an additional welding process will be required on site, and the spacing between the large beams and small beams must be kept within a predetermined range. , horizontal erection errors are difficult to tolerate.
  • out-of-plane deformation of the gusset plate occurs due to additional bending due to eccentricity between the gusset plate and the beam web, resulting in an early decrease in rigidity and yield strength. could not be taken into account in the design.
  • an object of the present invention is to provide a joint structure that can suppress out-of-plane deformation of the gusset plate and effectively reinforce the joint while simplifying the construction process.
  • a joint structure that connects a girder having an H-shaped cross section and an end in the axial direction of a small beam having an H-shaped cross section and extending in a direction intersecting the girder, the joint structure comprising at least the web of the girder and a gusset plate that is joined to the upper flange and bolted to the web of the small beam; and a gusset plate that is arranged to intersect with the plate-shaped main body of the gusset plate and also intersect with the web of the girder;
  • a joining structure comprising reinforcing ribs joined to the plate.
  • the number of bolts arranged below the height center line of the web of the small beam is below the height center line.
  • the gusset plate is formed with a protruding portion that protrudes toward the center of the small beam below the height center line, and the projecting portion is attached to the web of the small beam with an additional bolt.
  • [5] Further comprising at least one reinforcing plate disposed in contact with a side end surface of the gusset plate below the height center line, the reinforcing plate being bolted to the web of the small beam. , [2] or [3].
  • [6] The joining structure according to [5], wherein the reinforcing plate is friction-welded with high-strength bolts to the web of the small beam.
  • [7] The joining structure according to any one of [1] to [6], wherein the gusset plate is friction-welded with high-strength bolts to the web of the small beam.
  • FIG. 1 is a perspective view showing a joining structure according to a first embodiment of the present invention.
  • 2 is a view taken along the line II-II in FIG. 1.
  • FIG. 7 is a diagram showing a joining structure according to a second embodiment of the present invention. It is a figure which shows the joining structure based on the 3rd Embodiment of this invention. It is a figure which shows the joining structure based on the 3rd Embodiment of this invention. It is a figure showing the dimensions of an example. It is a figure showing the dimensions of an example. It is a figure showing the dimensions of an example. It is a figure showing the dimensions of an example. It is a figure showing the dimensions of an example. It is a figure showing the dimensions of an example.
  • FIG. 7 is a diagram showing dimensions of a comparative example. It is a graph showing the analysis results of Examples and Comparative Examples. It is a graph showing the analysis results of Examples and Comparative Examples. It is a graph showing the analysis results of Examples and Comparative Examples. It is a graph showing the analysis results of Examples and Comparative Examples. It is a graph showing the analysis results of Examples and Comparative Examples. It is a graph showing the analysis results of Examples and Comparative Examples. It is a graph showing the analysis results of Examples and Comparative Examples. It is a graph showing the analysis results of Examples and Comparative Examples. It is a graph showing the analysis results of Examples and Comparative Examples. It is a figure which shows the contour of the equivalent plastic strain in an Example. It is a figure which shows the contour of the equivalent plastic strain in an Example.
  • FIG. 1 is a perspective view showing a joining structure according to a first embodiment of the present invention
  • FIG. 2 is a view taken along the line II-II in FIG. 1.
  • the joint structure according to the present embodiment is formed between a gusset plate 2 joined to a large beam 1 and a small beam 3 extending in a direction intersecting the large beam 1.
  • the large beam 1 and the small beam 3 are each made of H-beam steel
  • the large beam 1 has a web 11, an upper flange 12, and a lower flange 13
  • the small beam 3 has a web 31, an upper flange 32, and a lower flange. It has 33.
  • the gusset plate 2 is welded to the web 11 of the main beam 1 and the upper flange 12, and the gusset plate 2 and the web 31 of the small beam 3 are bolted together using bolts 41.
  • the large beam 1 and the small beam 3 are not limited to H-shaped steel as long as they have an H-shaped cross section, and may be made of, for example, welded members having an H-shaped cross section.
  • a concrete floor slab 5 is constructed above the girders 1 and small beams 3.
  • the concrete floor slab 5 is a deck composite slab and includes concrete 51, reinforcing bars 52, and a deck plate 53. Studs 6 are erected on the upper flanges 12 and 32 of the main beam 1 and the small beam 3, penetrating the deck plate 53, and the studs 6 are fixed to the concrete 51. That is, in the example shown, the beam 3 is connected to the concrete floor slab 5, so that the tensile forces acting on the upper flange of the beam 3 are transmitted to the concrete floor slab 5. Note that the lower flange 33 of the small beam 3 is not directly joined to the large beam 1 and the gusset plate 2.
  • reinforcing ribs 21 are joined to the gusset plate 2.
  • the reinforcing rib 21 is a plate-shaped portion, and is arranged so as to intersect with the plate-shaped main body of the gusset plate 2 disposed along the web 31 of the small beam 3, and also to intersect with the web 11 of the girder 1. Ru.
  • Such reinforcing ribs 21 may be formed, for example, by fillet welding a plate-shaped member different from the gusset plate 2 to the gusset plate 2, or by forming the gusset plate 2 into an L-shaped cross section in advance. It's okay. Further, the reinforcing rib 21 may also be joined to the web 11 of the girder 1 by fillet welding or the like.
  • the reinforcing ribs 21 By arranging the reinforcing ribs 21, out-of-plane deformation of the gusset plate 2 due to additional bending caused, for example, by eccentricity between the web 31 of the small beam 3 and the thickness center of the gusset plate 2 is suppressed. Since the gusset plate 2 is joined to only one side of the web 31 of the beam 3 (one-sided friction), the reinforcing rib 21 is also formed only on one side with respect to the web 31. Accordingly, in this embodiment, the compressive force generated by bending the small beam 3 is reliably transmitted from the web 31 to the large beam 1 via the gusset plate 2.
  • the gusset plate 2 is arranged below the height center line C of the web 31 of the small beam 3, and the reinforcing rib 21 is arranged below the height center line C of the web 31 of the small beam 3. placed in the area.
  • the reinforcing rib 21 is different from a rib arranged to abut the end surfaces with the lower flange 33 of the small beam 3, for example, and has a height different from that of the lower flange 33 of the small beam 3, more specifically. is located above the lower flange 33 of the small beam 3.
  • the reinforcing ribs 21 are formed to suppress out-of-plane deformation of the gusset plate 2 as described above, the reinforcing ribs 21 cover almost the entire length of the gusset plate 2 when viewed in the axial direction of the small beam 3.
  • the lower flange 33 of the small beam 3 overlaps with the lower flange 33 of the small beam 3.
  • the reinforcing rib 21 is arranged at the lower end of the gusset plate 2, but as in the modified example shown in FIG. 12 and also to the lower flange 13, and the reinforcing rib 21A may be attached to the middle part of the gusset plate 2A.
  • a notch 211A may be formed in a portion of the reinforcing rib 21A in contact with the web 11 of the girder 1 in order to avoid interference with the welded portion between the gusset plate 2 and the web 11.
  • the reinforcing rib 21A is arranged in a region below the height center of the web 31. Note that the example shown in FIG. 3 is also applicable to other embodiments described later.
  • the out-of-plane deformation of the gusset plate 2 is suppressed by arranging the reinforcing ribs 21, so that the lower flange 33 of the small beam 3 Deformation in which horizontal movement occurs in a direction perpendicular to the material axis and torsional behavior in which the small beam 3 rotates and deforms around the material axis are suppressed.
  • the compressive force is stably transmitted from the lower flange 33 of the small beam 3 to the large beam 1 via the gusset plate 2, so that the resistance strength until the joint structure starts to exhibit nonlinear behavior can be greatly improved.
  • FIG. 4 is a diagram showing a joining structure according to the second embodiment of the present invention.
  • the gusset plate 2B which is welded to the web 11 and upper flange 12 of the large beam 1 and bolted to the web 31 of the small beam 3, is attached to the small beam 3 below the height center line C of the web 31. It has an overhanging portion 22B that overhangs toward the center side. The overhang 22B is bolted to the web 31 of the beam 3 with an additional bolt 42.
  • the reinforcing rib 21B is joined to the entire length of the lower side of the gusset plate 2B including the overhanging portion 22B, but the length of the reinforcing rib 21B may be shorter than the protruding length of the gusset plate 2B including the overhanging portion 22B. Note that the configuration of this embodiment other than the above is the same as that of the first embodiment, so a redundant detailed explanation will be omitted.
  • the number of bolts arranged below the height center line C of the web 31 is greater than the number of bolts arranged above the height center line C.
  • the overhanging portion 22B may be formed above the height center line C of the web 31, but in this case as well, the number of bolts including the additional bolts 42 is greater below the height center line C. Become.
  • the number of bolts may be increased below the height center line C by changing the distance between the bolts on both sides of the height center line C without forming the overhanging portion 22B.
  • the concrete floor slab is mainly The compressive force, which becomes a couple with the tensile force borne by the reinforcing bars 52 of No. 5, can be borne more at the lower side of the joint between the gusset plate 2B and the web 31 of the small beam 3, which is a rational method. Design becomes possible.
  • the additional bolt 42 may also be a high-strength bolt like the bolt 41, and in that case, the behavior of the joined structure can be further stabilized by high-strength bolt friction welding.
  • FIG. 5 and 6 are diagrams showing a joining structure according to a third embodiment of the present invention.
  • the reinforcing plate 7 is arranged below the height center line C of the web 31 and in contact with the side end surface of the gusset plate 2 .
  • the reinforcing plate 7 is bolted to the web 31 of the beam 3 with bolts 71.
  • One reinforcing plate 7 may be arranged as in the example of FIG. 5, or a plurality of reinforcing plates 7A and 7B may be arranged so that their side end surfaces touch each other as in the example of FIG. good.
  • the side end surfaces of the gusset plate 2 and the reinforcing plates 7, 7A, and 7B are end surfaces facing the axial direction of the small beam 3.
  • the number of bolts arranged below the height center line C of the web 31 is arranged above the height center line C.
  • the number of bolts is greater than the number of bolts, and the lower side of the joint can bear more of the compressive force that becomes a couple with the tensile force borne by the reinforcing bars 52 of the concrete floor slab 5.
  • the bolt 71 may also be a high-strength bolt like the bolt 41, and in that case, the behavior of the joined structure can be further stabilized by high-strength bolt friction welding.
  • the reinforcing plates 7, 7A, 7B are friction-bonded to the web 31 with high-strength bolts 71, by attaching the reinforcing plates 7, 7A, 7B after constructing the concrete floor slab 5, the reinforcing plates 7, 7A, 7B, 7B is not involved in the bending moment caused by the dead weight of the concrete floor slab 5, and the number of bolts 71 for maintaining the frictional connection between the reinforcing plates 7, 7A, 7B and the web 31 can be reduced.
  • the number of bolts arranged below the height center line C of the web 31 does not necessarily have to be greater than the number of bolts arranged above the height center line C.
  • the girder has a beam length of 800 mm, a flange width of 300 mm, a web plate thickness of 12 mm, and a flange plate thickness of 25 mm.
  • the small beam has a beam length of 700 mm, a flange width of 200 mm, a web plate thickness of 9 mm, and a flange plate thickness of 16 mm.
  • Both the gusset plate and the reinforcing rib have a plate thickness of 12 mm, and the length of the reinforcing rib overhanging the small beam web is approximately the same as the small beam flange, which is 95.5 mm. It was assumed that it would be joined to.
  • a high-strength bolt friction joint is used between the gusset plate and the beam web using F10T M20 high-strength bolts, and the friction coefficient between the gusset plate and the beam web is set to 0 based on the value obtained in the experiment. It was set at .6.
  • 6 x 1 means that 6 bolts are arranged in one row
  • 6 x 1 + 2 x 1 (or 2 x 2) means that the overhang of the gusset plate or the reinforcement plate is When arranged, it means that in addition to the normal row of bolts, one row (or two rows) of two bolts are arranged on the underside of the beam web.
  • FIG. 12 to 15 are graphs showing the analysis results of Examples 1 and 2 and Comparative Examples 1 and 2. Moreover, FIG. 16 and FIG. 17 are diagrams showing contours of equivalent plastic strain in Example 2 and Comparative Example 2.
  • Figure 12A shows an example (Example 1 and Comparative Example 1) in which horizontal movement of the upper flange of a small beam is not restrained
  • Figure 12B shows an example in which the horizontal movement of the upper flange of a small beam is restrained on the premise that a concrete floor slab is added to the joint structure. Examples (Example 2 and Comparative Example 2) are shown below. The same applies to FIGS. 13A, 13B, 14A, 14B, and 15A, 15B.
  • FIG. 13A, 13B, 14A, 14B, and 15A, 15B are shown below. The same applies to FIGS. 13A, 13B, 14A, 14B, and 15A, 15B.
  • FIG. 12 shows the relationship between the moment M j of the small beam and the rotation angle ⁇ j (M j ⁇ j relationship)
  • FIG. 13 shows the relationship between the equivalent plastic strain of the gusset plate and the rotation angle ⁇ j
  • FIG. shows the relationship between the equivalent plastic strain of the beam web and the rotation angle ⁇ j
  • FIG. 15 shows the relationship between the amount of horizontal movement of the beam lower flange in the direction perpendicular to the beam axis and the rotation angle ⁇ j
  • FIG. 16 shows contours of equivalent plastic strain in Comparative Example 2 when viewed in the perspective direction (FIG. 16A), the cross-sectional direction of the beam (FIG. 16B), and the side direction of the beam (FIG. 16C), and FIG. 17 (FIG. 17A). 17C) show similar equivalent plastic strain contours for Example 2.
  • Table 2 shows the rigidity, yield strength, and deformation performance of the joints in Examples and Comparative Examples.
  • the initial stiffness S j,ini is the secant stiffness when the proof stress is 1/3 of the maximum proof stress
  • the yield strength M j,y is the proof strength when the tangential stiffness is 1/3 of the initial stiffness
  • M j , pl were defined as M j when the tangent intersects the intersection of the initial stiffness and the yield strength.
  • ⁇ cd is the beam rotation angle at the maximum strength point M j,max (at the end of the analysis in the case where no strength deterioration occurs)
  • Max ⁇ pl is the maximum equivalent plastic strain of the gusset plate and web.
  • FIG. 18 to 23 are graphs showing the analysis results of Examples 2 to 5 and Comparative Examples 2 and 3.
  • Figure 18 shows the relationship between the moment M j of the small beam and the rotation angle ⁇ j (M j ⁇ j relationship) together with the experimental results under the same conditions as Comparative Example 2, and
  • Figure 19 shows the relationship between the moment M j of the small beam and the rotation angle ⁇
  • Figure 20 shows the relationship between the equivalent plastic strain ⁇ pl and the rotation angle ⁇ j
  • Figure 20 shows the relationship between the equivalent plastic strain ⁇ pl of the beam web and the rotation angle ⁇ j
  • Figure 21 shows the horizontal displacement of the lower flange of the beam. and rotation angle ⁇ j .
  • FIG. 18 shows the relationship between the moment M j of the small beam and the rotation angle ⁇ j (M j ⁇ j relationship) together with the experimental results under the same conditions as Comparative Example 2
  • Figure 19 shows the relationship between the moment M j of the small beam and the rotation angle ⁇
  • Figure 20 shows the relationship
  • FIG. 24 is a graph showing the relationship between the live load and the deflection reduction effect in each example.
  • the horizontal axis in FIG. 24 is the value obtained by dividing the amount of deflection reduction ( ⁇ pin ⁇ ) in Examples 2 to 5 and Comparative Examples 2 and 3 by the amount of deflection of the conventional pin joint structure (Comparative Example 1; ⁇ pin ). The larger the value, the greater the deflection reduction effect.
  • the vertical axis in Fig. 24 indicates that when the joint moment when the equivalent plastic strain of the joint is 0.5% is the elastic limit strength, the moment generated in the joint due to the live load is equal to the elastic limit strength. This is the live load per unit floor area.
  • the span of the beam was 15 m
  • the width of the floor supported by the beam was 3 m
  • the concrete floor slab was an RC slab using normal concrete with a thickness of 180 mm. From the graph in FIG. 24, it can be seen that in Examples 2 to 5 and Comparative Examples 2 and 3, the deflection is reduced to about half compared to the conventional pin joint structure, but the load capacity is lower than that of the comparative example in Examples 2 to 5. It can be seen that the number is more than double that of 2 and 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

施工工程を簡略化しつつ、ガセットプレートの面外変形を抑制して接合部を効果的に補強する。H形断面を有する大梁と、H形断面を有し上記大梁に交差する方向に延びる小梁の材軸方向の端部とを連結する接合構造であって、少なくとも上記大梁のウェブおよび上フランジに接合され、上記小梁のウェブにボルト接合されるガセットプレートと、上記ガセットプレートの板状の本体部に交差し、かつ上記大梁のウェブにも交差するように配置され、少なくとも上記ガセットプレートに接合される補強リブとを備える接合構造が提供される。

Description

接合構造
 本発明は、接合構造に関する。
 従来、大梁(支持部材)に小梁(梁)の端部を接合した小梁端接合構造における大梁と小梁との間の接合部は、一般的に剛接合またはピン接合として設計される(剛接合およびピン接合については、例えば欧州設計基準(Eurocode3-Part 1-8)に定義されている)。例えば、いずれもH形鋼で構成される大梁と小梁との間の剛接合の接合部では、小梁のフランジが大梁に溶接またはボルト接合されるとともに、小梁のウェブが大梁に溶接されたガセットプレート(フィンプレートともいう)にボルト接合される。一方、ピン接合の接合部では、小梁のウェブが大梁に溶接したガセットプレートにボルト接合されるが、小梁のフランジは大梁に接合されない。この場合、コンクリート床スラブの重量や積載荷重、仕上げ材の重量など、床スラブを介して小梁に作用する鉛直荷重によって、小梁のウェブのボルト接合部にはすべりが生じ、接合部は曲げモーメントを伝達しないピン接合部の挙動を示す。
 このような大梁と小梁との間の接合部に関する技術として、例えば、特許文献1には、大梁と小梁とをガセットプレートおよび高力ボルトによってピン接合するとともに、大梁に溶接されたスプライスプレートを小梁の下面に高力ボルト接合し、大梁および小梁の上面に連続する床スラブを配置する技術が記載されている。これによって、梁の耐荷重を維持しながら施工性を向上することができる。また、特許文献2には、逆L字形の側面形状を有する垂直ガセット(スティフナー)を大梁の上下フランジ間とウェブに溶接し、垂直ガセットを挟んで小梁下フランジ位置にC字形の水平スティフナーを垂直ガセットおよび大梁ウェブに溶接し、水平スティフナー端部と小梁端部下フランジとを溶接し、さらに大梁上フランジと小梁端部上フランジとを溶接する技術が記載されている。これによって、連続小梁接合の施工を効率化し、小梁サイズを低減することができる。
特開2017-53102号公報 特開2015-68005号公報
 上記の特許文献1および特許文献2に記載された技術は、大梁と小梁との間を半剛接合(セミリジッド接合)または剛接合(リジッド接合)の接合部とすることによって、ピン接合の接合部とする場合に比べて小梁の変形を低減することで小梁の断面を小さくして軽量化することを可能にする。しかしながら、これらの技術では、大梁に予め溶接されたガセットプレートまたはスティフナーに小梁の下フランジを接合するため、大梁と小梁との設置高さを合わせる必要があり、高さ方向の建方誤差が許容されにくいという点で使いやすいものではなかった。また、大梁に小梁のフランジを直接溶接してもよいが、この場合は現場での溶接工程が追加的に発生し、また大梁と小梁との間隔を所定の範囲に収める必要があるため、水平方向の建方誤差が許容されにくい。その一方で、ピン接合の接合部では、ガセットプレートと小梁ウェブとの偏心による付加曲げのためにガセットプレートの面外変形が生じて早期に剛性および耐力が低下するため、接合部の固定度を設計上考慮することができなかった。
 そこで、本発明は、施工工程を簡略化しつつ、ガセットプレートの面外変形を抑制して接合部を効果的に補強することが可能な接合構造を提供することを目的とする。
[1]H形断面を有する大梁と、H形断面を有し上記大梁に交差する方向に延びる小梁の材軸方向の端部とを連結する接合構造であって、少なくとも上記大梁のウェブおよび上フランジに接合され、上記小梁のウェブにボルト接合されるガセットプレートと、上記ガセットプレートの板状の本体部に交差し、かつ上記大梁のウェブにも交差するように配置され、少なくとも上記ガセットプレートに接合される補強リブとを備える接合構造。
[2]上記大梁および上記小梁の上方に構築されるコンクリート床スラブをさらに備え、上記小梁の上フランジは上記コンクリート床スラブに接合される、[1]に記載の接合構造。
[3]上記ガセットプレートを上記小梁のウェブにボルト接合するボルトのうち、上記小梁のウェブの高さ中心線よりも下側に配置されるボルトの数は、上記高さ中心線よりも上側に配置されるボルトの数よりも多い、[2]に記載の接合構造。
[4]上記ガセットプレートには、上記高さ中心線よりも下側で上記小梁の中央側に向かって張り出した張り出し部が形成され、上記張り出し部は追加のボルトで上記小梁のウェブにボルト接合される、[3]に記載の接合構造。
[5]上記高さ中心線よりも下側で上記ガセットプレートの側端面に接して配置される少なくとも1枚の補強プレートをさらに備え、上記補強プレートは、上記小梁のウェブにボルト接合される、[2]または[3]に記載の接合構造。
[6]上記補強プレートは、上記小梁のウェブに高力ボルト摩擦接合される、[5]に記載の接合構造。
[7]上記ガセットプレートは、上記小梁のウェブに高力ボルト摩擦接合される、[1]から[6]のいずれか1項に記載の接合構造。
 上記の構成によれば、小梁の下フランジを大梁やガセットプレートに直接的に接合しなくてよいため、高さ方向および水平方向の建方誤差が許容でき、追加の溶接工程も発生しないため、施工工程が簡略化される。その一方で、小梁のウェブにボルト接合されるガセットプレートに補強リブが接合されるため、ガセットプレートの面外変形を抑制して接合部を効果的に補強することができる。
本発明の第1の実施形態に係る接合構造を示す斜視図である。 図1のII-II線矢視図である。 本発明の第1の実施形態の変形例を示す図である。 本発明の第2の実施形態に係る接合構造を示す図である。 本発明の第3の実施形態に係る接合構造を示す図である。 本発明の第3の実施形態に係る接合構造を示す図である。 実施例の寸法を示す図である。 実施例の寸法を示す図である。 実施例の寸法を示す図である。 実施例の寸法を示す図である。 比較例の寸法を示す図である。 実施例および比較例の解析結果を示すグラフである。 実施例および比較例の解析結果を示すグラフである。 実施例および比較例の解析結果を示すグラフである。 実施例および比較例の解析結果を示すグラフである。 実施例および比較例の解析結果を示すグラフである。 実施例および比較例の解析結果を示すグラフである。 実施例および比較例の解析結果を示すグラフである。 実施例および比較例の解析結果を示すグラフである。 実施例における相当塑性ひずみのコンターを示す図である。 実施例における相当塑性ひずみのコンターを示す図である。 実施例における相当塑性ひずみのコンターを示す図である。 比較例における相当塑性ひずみのコンターを示す図である。 比較例における相当塑性ひずみのコンターを示す図である。 比較例における相当塑性ひずみのコンターを示す図である。 実施例および比較例の解析結果を示すグラフである。 実施例および比較例の解析結果を示すグラフである。 実施例および比較例の解析結果を示すグラフである。 実施例および比較例の解析結果を示すグラフである。 実施例および比較例の解析結果を示すグラフである。 実施例および比較例の解析結果を示すグラフである。 実施例および比較例における積載荷重とたわみ低減効果との関係を示すグラフである。
 以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複した説明を省略する。
 図1は本発明の第1の実施形態に係る接合構造を示す斜視図であり、図2は図1のII-II線矢視図である。図示されるように、本実施形態に係る接合構造は、大梁1に接合されたガセットプレート2と、大梁1に交差する方向に延びる小梁3との間に形成される。具体的には、大梁1および小梁3はそれぞれH形鋼で構成され、大梁1はウェブ11、上フランジ12および下フランジ13を有し、小梁3はウェブ31、上フランジ32および下フランジ33を有する。ガセットプレート2は大梁1のウェブ11および上フランジ12に溶接され、ガセットプレート2と小梁3のウェブ31との間がボルト41を用いてボルト接合される。なお、大梁1および小梁3は、H形断面を有するものであればH形鋼には限られず、例えばH形断面を有する溶接部材で構成されてもよい。
 さらに、図2に示すように、大梁1および小梁3の上方にはコンクリート床スラブ5が構築される。図示された例においてコンクリート床スラブ5はデッキ合成スラブであり、コンクリート51と、鉄筋52と、デッキプレート53とを含む。大梁1および小梁3の上フランジ12,32にはデッキプレート53を貫通してスタッド6が立設されており、スタッド6はコンクリート51に定着させられる。つまり、図示された例において小梁3はコンクリート床スラブ5に接合されており、これによって小梁3の上フランジに作用する引張力がコンクリート床スラブ5に伝達される。なお、小梁3の下フランジ33は、大梁1およびガセットプレート2に直接的には接合されていない。
 本実施形態において、ガセットプレート2に補強リブ21が接合される。補強リブ21は板状の部分であり、小梁3のウェブ31に沿って配置されたガセットプレート2の板状の本体部に交差し、かつ大梁1のウェブ11にも交差するように配置される。このような補強リブ21は、例えばガセットプレート2とは別の板状部材がガセットプレート2に隅肉溶接されることによって形成されてもよいし、ガセットプレート2が予めL字形断面に成形されていてもよい。また、補強リブ21は、大梁1のウェブ11にも隅肉溶接などによって接合されてもよい。補強リブ21が配置されることによって、例えば小梁3のウェブ31とガセットプレート2の板厚中心が偏心していることで生じる付加曲げによるガセットプレート2の面外変形が抑制される。ガセットプレート2は小梁3のウェブ31の片面にのみ接合される(一面摩擦の)ため、補強リブ21もウェブ31に対して片側にのみ形成される。これによって、本実施形態では、小梁3の曲げによって発生する圧縮力が、ウェブ31からガセットプレート2を介して大梁1に確実に伝達される。このような圧縮力の伝達のために、ガセットプレート2は小梁3のウェブ31の高さ中心線Cよりも下側まで配置され、補強リブ21はウェブ31の高さ中心よりも下側の領域に配置される。なお、補強リブ21は例えば小梁3の下フランジ33との間で端面同士を突き合わせるために配置されるリブとは異なり、小梁3の下フランジ33とは異なる高さ、より具体的には小梁3の下フランジ33よりも上に位置する。また、補強リブ21は上記のようにガセットプレート2の面外変形を抑制するために形成されるため、小梁3の材軸方向で見た場合に補強リブ21はガセットプレート2のほぼ全長にわたって形成されており、小梁3の下フランジ33と重複している。
 なお、図1および図2に示された例では補強リブ21がガセットプレート2の下端に配置されているが、図3に示す変形例のようにガセットプレート2Aが大梁1のウェブ11および上フランジ12に加えて下フランジ13にも溶接され、補強リブ21Aはガセットプレート2Aの中間部に取り付けられてもよい。補強リブ21Aの大梁1のウェブ11に接する部分には、ガセットプレート2とウェブ11との間の溶接部との干渉を避けるために切り欠き211Aが形成されてもよい。この場合も、補強リブ21Aはウェブ31の高さ中心よりも下側の領域に配置される。なお、図3に示された例は後述する他の実施形態でも適用可能である。
 上記のような本発明の第1の実施形態によれば、補強リブ21が配置されることによってガセットプレート2の面外変形が抑制されるため、小梁3の下フランジ33が小梁3の材軸直交方向に水平移動する変形、および小梁3が材軸回りに回転変形するねじれ挙動が抑制される。これによって、小梁3の下フランジ33から圧縮力が安定的にガセットプレート2を介して大梁1に伝達されるため、接合構造が非線形挙動を示すようになるまでの耐力を大幅に向上させることができ、設計上、接合部の固定度を考慮した、たわみ低減効果を得ることができる。ボルト41を高力ボルトとし、ガセットプレート2と小梁3のウェブ31との間に高力ボルト摩擦接合を形成することで、接合構造の挙動をさらに安定させることができる。また、コンクリート床スラブ5は必須ではないが、小梁3がスタッド6を介してコンクリート床スラブ5に接合されることによって上フランジ32の水平移動が拘束され、小梁3が材軸回りに回転変形するねじれ挙動がより効果的に抑制される。また、本発明の第1の実施形態は、ガセットプレート2とウェブ31の接合が一面摩擦であっても十分な剛性と耐力が得られるため、二面摩擦の接合部と比較して接合部のスプライスプレート及びボルトの数を少なくでき、施工性や経済性もよい。
 図4は、本発明の第2の実施形態に係る接合構造を示す図である。本実施形態では、大梁1のウェブ11および上フランジ12に溶接され、小梁3のウェブ31にボルト接合されるガセットプレート2Bが、ウェブ31の高さ中心線Cよりも下側で小梁3の中央側に向かって張り出した張り出し部22Bを有する。張り出し部22Bは、追加のボルト42で小梁3のウェブ31にボルト接合される。補強リブ21Bは、張り出し部22Bを含むガセットプレート2Bの下辺の全長に接合されるが、補強リブ21Bの長さが張り出し部22Bを含むガセットプレート2Bの突出長さより短くてもよい。なお、上記以外について本実施形態の構成は上記の第1の実施形態と同様であるため、重複した詳細な説明は省略する。
 上記の構成によって、ウェブ31の高さ中心線Cよりも下側に配置されるボルトの数は、高さ中心線Cよりも上側に配置されるボルトの数よりも多くなる。張り出し部22Bはウェブ31の高さ中心線Cよりも上側まで形成されてもよいが、この場合も追加のボルト42を含めたボルトの数は高さ中心線Cよりも下側の方が多くなる。また、張り出し部22Bを形成せずに、高さ中心線Cの両側でボルトの間隔を変更することによって、ボルトの数を高さ中心線Cよりも下側でより多くしてもよい。
 本実施形態では、小梁3のウェブ31の高さ中心線Cよりも下側により多くのボルトを配置することによって、接合構造の上側にコンクリート床スラブ5を配置した場合に、主としてコンクリート床スラブ5の鉄筋52が負担する引張力に対して偶力になる圧縮力をガセットプレート2Bと小梁3のウェブ31との間の接合部の下側でより多く負担させることができ、合理的な設計が可能になる。追加のボルト42についてもボルト41と同様に高力ボルトとしてもよく、その場合は高力ボルト摩擦接合によって接合構造の挙動をさらに安定させることができる。
 図5および図6は、本発明の第3の実施形態に係る接合構造を示す図である。本実施形態では、ウェブ31の高さ中心線Cよりも下側でガセットプレート2の側端面に接して補強プレート7が配置される。補強プレート7は、ボルト71で小梁3のウェブ31にボルト接合される。図5の例のように1枚の補強プレート7が配置されてもよいし、図6の例のように複数の補強プレート7A,7Bが、それぞれの側端面が接するように配置されていてもよい。ここで、ガセットプレート2および補強プレート7,7A,7Bの側端面は、小梁3の材軸方向に面した端面である。補強プレート7,7A,7Bには、ガセットプレート2とは異なり補強リブは形成されない。なお、上記以外について本実施形態の構成は上記の第1の実施形態と同様であるため、重複した詳細な説明は省略する。
 上記の構成によって、本実施形態でも第2の実施形態と同様に、ウェブ31の高さ中心線Cよりも下側に配置されるボルトの数が高さ中心線Cよりも上側に配置されるボルトの数よりも多くなり、コンクリート床スラブ5の鉄筋52が負担する引張力に対して偶力になる圧縮力を接合部の下側でより多く負担させることができる。ボルト71についてもボルト41と同様に高力ボルトとしてもよく、その場合は高力ボルト摩擦接合によって接合構造の挙動をさらに安定させることができる。
 さらに、ボルト71で補強プレート7,7A,7Bをウェブ31に高力ボルト摩擦接合する場合は、補強プレート7,7A,7Bをコンクリート床スラブ5の構築後に取り付けることによって、補強プレート7,7A,7Bをコンクリート床スラブ5の自重によって生じる曲げモーメントに関与させず、補強プレート7,7A,7Bとウェブ31との間の摩擦接合を維持するためのボルト71の数を少なくすることができる。この場合、ウェブ31の高さ中心線Cよりも下側に配置されるボルトの数は、必ずしも高さ中心線Cよりも上側に配置されるボルトの数よりも多くなくてもよい。
 以下では、上述したような本発明の実施形態の効果を検証するためのFEM解析の結果について説明する。表1に、実施例および比較例の条件を示す。大梁は梁せい800mm、フランジ幅300mm、ウェブ板厚12mm、フランジ板厚25mm、小梁は梁せい700mm、フランジ幅200mm、ウェブ板厚9mm、フランジ板厚16mmである。ガセットプレートおよび補強リブはいずれも板厚12mmであり、補強リブの小梁ウェブからの張り出し長さは小梁フランジとほぼ同じで95.5mmとし、補強リブはガセットプレートの下辺の全長と大梁ウェブとに接合されるものとした。ガセットプレートと小梁ウェブとの間はF10T M20の高力ボルトを用いた高力ボルト摩擦接合とし、ガセットプレートと小梁ウェブとの間の摩擦係数は、実験で得られた値を基に0.6とした。表1の「ボルト本数」で、6×1は6本のボルトが1列で配列されることを意味し、6×1+2×1(または2×2)はガセットプレートの張り出し部や補強プレートが配置される場合に通常のボルト列に加えて小梁ウェブの下側に2本のボルトが1列(または2列)配置されることを意味する。その他の部分の寸法については、図7から図11に示す。図7は実施例1および実施例2の寸法を示し、図8は実施例3の寸法を示し、図9は実施例4の寸法を示し、図10は実施例5の寸法を示し、図11は比較例1~3の寸法を示す(比較例1,2は、比較例3から補強プレートを除いたもの)。
Figure JPOXMLDOC01-appb-T000001
 図12から図15は、実施例1,2および比較例1,2の解析結果を示すグラフである。また、図16および図17は、実施例2および比較例2における相当塑性ひずみのコンターを示す図である。図12Aは小梁上フランジの水平移動が拘束されない例(実施例1および比較例1)を示し、図12Bは接合構造にコンクリート床スラブが追加された前提で小梁上フランジの水平移動を拘束した例(実施例2および比較例2)を示す。図13A,図13B、図14A,図14B、および図15A,図15Bについても同様である。図12は小梁のモーメントMと回転角φとの関係(M-φ関係)を示し、図13はガセットプレートの相当塑性ひずみと回転角φとの関係を示し、図14は小梁ウェブの相当塑性ひずみと回転角φとの関係を示し、図15は小梁下フランジの小梁材軸直交方向への水平移動量と回転角φとの関係を示す。図16は比較例2における斜視方向(図16A)、小梁断面方向(図16B)、および小梁側面方向(図16C)で見た場合の相当塑性ひずみのコンターを示し、図17(図17Aから図17C)は実施例2における同様の相当塑性ひずみのコンターを示す。
 図12から図15のグラフに示されるように、M-φ関係における弾塑性の遷移域(Mj,y;実施例1および比較例1ではφ≦0.004rad付近、実施例2および比較例2ではφ≦0.002rad付近)までの範囲で、実施例1,2では、比較例1,2に比べてガセットプレートや小梁ウェブの相当塑性ひずみの増加が抑制され、部材が概ね弾性範囲に留まる、すなわち可逆的な変形状態になることが確認された(図13および図14)。さらに、接合構造にコンクリート床スラブが追加された前提で小梁上フランジの水平移動を拘束した場合、比較例1,2では小梁下フランジの水平変位が大きくなって小梁下フランジから大梁への圧縮力伝達が不安定になる結果荷重が低下したのに対して、実施例1,2では小梁下フランジの水平変位が抑制され、接合構造において小梁の回転角が増大しても荷重を保持する性能が喪失されにくいことが確認された(図12および図15)。補強リブが小梁ウェブの変形を抑制して下フランジの水平変位を抑制する効果は、図16および図17に示される相当塑性ひずみのコンターからも明らかである。上記の結果から、ガセットプレートに補強リブが取り付けられた接合構造は、従来のピン接合構造と比較して、弾性限界耐力や耐変形性能の向上という点で有利であることが確認された。
 表2に、実施例および比較例における接合部の剛性、耐力および変形性能を示す。M-φ関係において、初期剛性Sj,iniは最大耐力の1/3耐力時の割線剛性、降伏耐力Mj,yは接線剛性が初期剛性の1/3の時の耐力、Mj,plは接線が初期剛性と降伏耐力との交点に交わる時のMで定義した。φcdは最大耐力点Mj,max(耐力劣化が生じないケースは解析終了時)での小梁回転角、Maxεplはガセットプレートおよびウェブの最大相当塑性ひずみである。
Figure JPOXMLDOC01-appb-T000002
 図18から図23は、実施例2~5および比較例2,3の解析結果を示すグラフである。図18は小梁のモーメントMと回転角φとの関係(M-φ関係)を比較例2と同条件での実験結果とともに示し、図19はガセットプレート(Fin-plate)の相当塑性ひずみεplと回転角φとの関係を示し、図20は小梁ウェブの相当塑性ひずみεplと回転角φとの関係を示し、図21は小梁下フランジの水平移動量と回転角φとの関係を示す。また、図22は各例における初期剛性Sj,iniと降伏耐力Mj,y(S=Sj,ini/3の時)との関係を示し、図23は各例における相当塑性ひずみ0.5%での耐力Mと最大耐力時変形性能φcdとの関係を示す。
 図18から図23のグラフに示されるように、実施例2~5では、比較例2,3に比べてガセットプレートや小梁ウェブの相当塑性ひずみの増加が抑制され、部材が概ね弾性範囲に留まる、すなわち可逆的な変形状態になる限界の耐力が向上することが確認された(図18、図22および図23)。なお、マクロな接合部の弾性限界の耐力は、相当塑性ひずみ(永久ひずみ)が0.5%に達する点として定義した。比較例2,3の場合、ガセットプレートや小梁ウェブの面外変形が生じやすいため、接合部の回転の増加に伴って小梁の下フランジやウェブが小梁長手方向と直交する方向に移動し(図16)、小梁下フランジから大梁への圧縮力の伝達効率が低下する。実施例2~5ではガセットプレートに取り付けられた補強リブがガセットプレートの面外変位を抑制するため(図17)、比較例2,3に比べて小梁の下フランジやウェブが小梁長手方向と直交する方向に移動する変形が生じにくく、ガセットプレートや小梁ウェブの塑性ひずみの増加が抑制されることによって(図19、図20および図21)、弾性限界耐力が向上している(図22)。図19や図20では、小梁の回転角φが0.002rad~0.004radの範囲で、実施例のガセットプレートや小梁ウェブの相当塑性ひずみが比較例に比べて顕著に抑制されており、これは小梁の回転における弾性域が拡大されていることを表している。
 図24は、各例における積載荷重とたわみ低減効果との関係を示すグラフである。図24の横軸は、実施例2~5および比較例2,3におけるたわみ低減量(δpin-δ)を従来のピン接合構造(比較例1;δpin)のたわみ量で除した値であり、値が大きいほどたわみの低減効果が大きいことを表す。一方、図24の縦軸は、接合部の相当塑性ひずみが0.5%の時の接合部モーメントを弾性限界耐力とした場合に、積載荷重によって接合部に生じるモーメントが弾性限界耐力と等しくなる時の、単位床面積当たりの積載荷重である。なお、これらの計算において、梁のスパンは15m、梁が支える床の幅は3m、コンクリート床スラブは180mm厚の普通コンクリートを用いたRCスラブとした。図24のグラフから、実施例2~5および比較例2,3ではいずれも従来のピン接合構造に比べてたわみが半分程度に低減されるが、耐荷重は、実施例2~5において比較例2,3の2倍以上になっていることがわかる。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範囲内において、各種の変形例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 1…大梁、11…ウェブ、12…上フランジ、13…下フランジ、2,2A,2B…ガセットプレート、21,21A,21B…補強リブ、211A…切り欠き、22B…張り出し部、3…小梁、31…ウェブ、32…上フランジ、33…下フランジ、41,42…ボルト、5…コンクリート床スラブ、51…コンクリート、52…鉄筋、53…デッキプレート、6…スタッド、7,7A,7B…補強プレート、71…ボルト。

Claims (7)

  1.  H形断面を有する大梁と、H形断面を有し前記大梁に交差する方向に延びる小梁の材軸方向の端部とを連結する接合構造であって、
     少なくとも前記大梁のウェブおよび上フランジに接合され、前記小梁のウェブにボルト接合されるガセットプレートと、
     前記ガセットプレートの板状の本体部に交差し、かつ前記大梁のウェブにも交差するように配置され、少なくとも前記ガセットプレートに接合される補強リブと
     を備える接合構造。
  2.  前記大梁および前記小梁の上方に構築されるコンクリート床スラブをさらに備え、
     前記小梁の上フランジは前記コンクリート床スラブに接合される、請求項1に記載の接合構造。
  3.  前記ガセットプレートを前記小梁のウェブにボルト接合するボルトのうち、前記小梁のウェブの高さ中心線よりも下側に配置されるボルトの数は、前記高さ中心線よりも上側に配置されるボルトの数よりも多い、請求項2に記載の接合構造。
  4.  前記ガセットプレートには、前記高さ中心線よりも下側で前記小梁の中央側に向かって張り出した張り出し部が形成され、
     前記張り出し部は追加のボルトで前記小梁のウェブにボルト接合される、請求項3に記載の接合構造。
  5.  前記小梁のウェブの高さ中心線よりも下側で前記ガセットプレートの側端面に接して配置される少なくとも1枚の補強プレートをさらに備え、
     前記補強プレートは、前記小梁のウェブにボルト接合される、請求項2または3に記載の接合構造。
  6.  前記補強プレートは、前記小梁のウェブに高力ボルト摩擦接合される、請求項5に記載の接合構造。
  7.  前記ガセットプレートは、前記小梁のウェブに高力ボルト摩擦接合される、請求項1から請求項6のいずれか1項に記載の接合構造。
PCT/JP2023/012218 2022-03-28 2023-03-27 接合構造 WO2023190350A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023536570A JP7328610B1 (ja) 2022-03-28 2023-03-27 接合構造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022051264 2022-03-28
JP2022-051264 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023190350A1 true WO2023190350A1 (ja) 2023-10-05

Family

ID=88201744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012218 WO2023190350A1 (ja) 2022-03-28 2023-03-27 接合構造

Country Status (1)

Country Link
WO (1) WO2023190350A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052302A (ja) * 2007-08-28 2009-03-12 Takenaka Komuten Co Ltd 鉄骨小梁の剛接構造
JP2019190137A (ja) * 2018-04-25 2019-10-31 日本製鉄株式会社 小梁端接合構造、および小梁端接合構造の施工方法
JP2022025804A (ja) * 2020-07-30 2022-02-10 Jfeシビル株式会社 梁接合構造、建築物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052302A (ja) * 2007-08-28 2009-03-12 Takenaka Komuten Co Ltd 鉄骨小梁の剛接構造
JP2019190137A (ja) * 2018-04-25 2019-10-31 日本製鉄株式会社 小梁端接合構造、および小梁端接合構造の施工方法
JP2022025804A (ja) * 2020-07-30 2022-02-10 Jfeシビル株式会社 梁接合構造、建築物

Similar Documents

Publication Publication Date Title
US8397445B2 (en) Joint connection in which a beam end or column base of a structure, or a peripheral members rigidly joined to the beam end or column base, are joined to another structure via supporting means
JP2003119718A (ja) 橋 梁
JP7453084B2 (ja) 梁接合構造、建築物
WO2023190350A1 (ja) 接合構造
JP5422891B2 (ja) 折板パネル構造
JP7335540B1 (ja) 接合構造
JP7116400B2 (ja) トラス梁
JP6954222B2 (ja) 小梁端接合構造、および小梁端接合構造の施工方法
JP2010216153A (ja) 仕口補強構造
JP7328610B1 (ja) 接合構造
JP2023070292A (ja) 回転剛性の評価方法、合成梁端部の設計方法、及び合成梁端部の接合構造
JP7390993B2 (ja) 梁接合構造、及び建築物
KR101912376B1 (ko) 판형 트러스 거더 및 이를 이용한 합성형교
JP7425951B2 (ja) 梁接合構造
JP4091870B2 (ja) 床スラブ合成機能を有する柱・梁の接合構造
JP2008038464A (ja) スチールハウスの制震壁構造
JP2004156291A (ja) 橋桁構造及び橋桁の架設方法
JP7502710B2 (ja) 接合構造および接合構造の構築方法
JP7425950B2 (ja) 梁接合構造
JP2019085803A (ja) 鉄骨梁スラブ施工方法、及び鉄骨梁
JP7426253B2 (ja) トラス梁
JP3232630U (ja) 山留材の接合構造
KR102597270B1 (ko) 건축물용 프리스트레스트 복합 철골보 및 이를 이용한 건축물의 시공방법
WO2023163213A1 (ja) 接合構造
JP5185183B2 (ja) 梁構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023536570

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780360

Country of ref document: EP

Kind code of ref document: A1