WO2023190038A1 - 第三級ブチルアルコールの製造方法 - Google Patents

第三級ブチルアルコールの製造方法 Download PDF

Info

Publication number
WO2023190038A1
WO2023190038A1 PCT/JP2023/011523 JP2023011523W WO2023190038A1 WO 2023190038 A1 WO2023190038 A1 WO 2023190038A1 JP 2023011523 W JP2023011523 W JP 2023011523W WO 2023190038 A1 WO2023190038 A1 WO 2023190038A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
tertiary butyl
butyl alcohol
isobutylene
raw material
Prior art date
Application number
PCT/JP2023/011523
Other languages
English (en)
French (fr)
Inventor
隼輔 橋本
貴史 豊田
祐吾 溝越
篤史 柳楽
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2023190038A1 publication Critical patent/WO2023190038A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/03Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2
    • C07C29/04Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2 by hydration of carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/12Monohydroxylic acyclic alcohols containing four carbon atoms

Definitions

  • the present invention relates to a method for producing tertiary butyl alcohol (hereinafter also referred to as TBA).
  • Tertiary butyl alcohol is used as a raw material for the production of methyl methacrylate by gas phase catalytic oxidation.
  • a method for producing tertiary butyl alcohol a method is known in which isobutylene (2-methylpropene) and water are subjected to a hydration reaction using a catalyst. In this reaction, since the mutual solubility of raw materials isobutylene and water is low, the reaction generally occurs in a heterogeneous liquid phase in which isobutylene and water are phase separated.
  • Patent Document 1 and Patent Document 2 disclose a method in which isobutylene and water are brought into contact with each other on the surface of strongly acidic cation exchange resin catalyst particles using a predetermined method. The method is described.
  • Patent Document 1 and Patent Document 2 have a low reaction rate, and a large reactor is required to ensure production volume, which increases equipment costs. Therefore, from an industrial perspective, a method that can realize a higher reaction rate is desired.
  • Patent Document 3 describes a method of reacting in a homogeneous liquid phase using an aqueous solution of aliphatic carboxylic acid having 1 to 6 carbon atoms.
  • this method requires a step of separating the carboxylic acid ester of tertiary butyl alcohol from the reaction solution in order to obtain tertiary butyl alcohol, which increases equipment costs.
  • Patent Document 4 describes a method in which the reaction is carried out in a homogeneous liquid phase and includes a tertiary butyl alcohol separation step in the middle.
  • an aqueous tertiary butyl alcohol solution is added to the reactor to form a homogeneous liquid phase, so the conversion rate is limited by equilibrium.
  • Japanese Unexamined Patent Publication No. 54-030104 Japanese Unexamined Patent Publication No. 54-30105 Special Publication No. 60-051451 Japanese Unexamined Patent Publication No. 60-233024
  • the present invention has been made to solve the above problems, and its purpose is to provide a method for producing tertiary butyl alcohol with a high isobutylene conversion rate while reducing equipment costs and manufacturing costs. .
  • the present inventors have conducted extensive studies to solve the above problems. As a result, surprisingly, even in a reaction in a heterogeneous liquid phase separated into an isobutylene phase and an aqueous phase, the linear velocity of the raw material liquid and the volume of the aqueous phase in the fluid during the hydration reaction can be kept within a specific range. It was discovered that a sufficient reaction rate could be obtained, and the present invention was completed. That is, the present invention includes the following.
  • a method for producing tertiary butyl alcohol comprising: (i) supplying a raw material liquid containing isobutylene and water to a reactor having a cation exchange resin; (ii) producing a reaction product containing tertiary butyl alcohol by a hydration reaction of isobutylene in the reactor;
  • a method for producing tertiary butyl alcohol wherein the volume (Vw) of the aqueous phase in the fluid A is 4 to 12% by volume with respect to the total volume of the fluid (fluid A) in the reactor.
  • [2] The method for producing tertiary butyl alcohol according to [1], wherein in the step (ii), the average linear velocity of the raw material liquid on a sky column basis is 5 to 29 m/hr.
  • [3] The method for producing tertiary butyl alcohol according to [1] or [2], wherein in the step (ii), the average linear velocity of the raw material liquid on a sky column basis is 7 to 13 m/hr. .
  • [4] The method for producing tertiary butyl alcohol according to any one of [1] to [3], wherein in the step (ii), the Vw is 5 to 10% by volume.
  • [5] The method for producing tertiary butyl alcohol according to any one of [1] to [4], wherein in the step (ii), the outlet temperature of the reactor is 75° C. or lower.
  • a numerical range expressed using " ⁇ ” means a range that includes the numerical values written before and after " ⁇ " as the lower limit and upper limit, and "A to B” means A This means that it is greater than or equal to B and less than or equal to B.
  • the method for producing tertiary butyl alcohol according to the present embodiment includes the following steps (i) and (ii).
  • (i) A step of supplying a raw material solution containing isobutylene and water to a reactor having a cation exchange resin.
  • (ii) In the reactor, a reaction product containing tertiary butyl alcohol is produced by a hydration reaction of isobutylene.
  • the average linear velocity of the raw material liquid on the empty column basis calculated by the following formula (I) is 5 m/hr. That's all.
  • Average linear velocity of raw material liquid (m/hr) Volumetric flow rate of raw material liquid (m 3 /hr) / Cross-sectional area of reactor (m 2 ) (I) Further, the volume (Vw) of the aqueous phase in the fluid A is 4 to 12% by volume with respect to the total volume of the fluid (fluid A) in the reactor.
  • the method for producing tertiary butyl alcohol according to the present embodiment further includes the following step (iii).
  • step (iii) Step of separating unreacted isobutylene from the reaction product containing tertiary butyl alcohol produced in step (ii) to produce tertiary butyl alcohol.
  • step (i) a raw material liquid containing isobutylene and water is supplied to a reactor having a cation exchange resin.
  • any form such as a stirred tank type reactor, fixed bed type reactor, or column type reactor can be used.
  • the reaction mode may be a batch type, a semi-batch type, or a continuous flow type.
  • the reactors may be provided in series or in parallel, preferably a plurality of reactors are provided in series as shown in Figure 1, and 2 to 5 reactors are provided in series. is more preferable.
  • the effects of the present invention can be obtained as long as the average linear velocity of the raw material liquid and the Vw satisfy specified conditions in at least one reactor.
  • the term "reactor" in this specification means the reactor to which the raw material liquid is first supplied, unless otherwise specified.
  • the cation exchange resin a strongly acidic cation exchange resin is preferable. Examples include Revachit (trade name) manufactured by Bayer and Amberlyst (trade name) manufactured by DuPont.
  • the position of the cation exchange resin in the reactor, the proportion of the cation exchange resin in the reactor, etc. are not particularly limited, and commonly used forms can be applied.
  • the reactor shown in FIG. 1 supplies raw materials, isobutylene and water, from an isobutylene supply port 1 and a water supply port 2, respectively, and transfers the raw materials to a first reactor 5 using a pump 3.
  • the raw material is cooled to a predetermined temperature by the raw material cooler 4.
  • the reactant in the first reactor 5 is transferred to the second reactor 7, and a portion thereof is supplied again as a raw material.
  • the reactant in the first reactor 5 is cooled to a predetermined temperature by the raw material cooler 6.
  • the reactants in the second reactor 7 are cooled by a raw material cooler 8 and transferred to a third reactor 9.
  • the reactant in the third reactor 9 is transferred to the TBA separation column 10.
  • unreacted isobutylene in the reactant in the third reactor 9 is cooled by a condenser 11 and discharged from an unreacted isobutylene outlet 13 . Further, the TBA in the reactant in the third reactor 9 is heated by the reboiler 12 and discharged from the TBA outlet 14, and a part of it is returned to the first reactor 5 from the TBA circulation line 15 as a raw material. Supplied.
  • the raw material liquid contains isobutylene and water.
  • the concentration of isobutylene in the raw material liquid is preferably 4 to 35 mol%.
  • the reaction rate of the hydration reaction is improved in step (ii) described below.
  • the isobutylene concentration is 35 mol % or less, isobutylene can be obtained at a low cost, so manufacturing costs can be suppressed.
  • the lower limit of the isobutylene concentration is more preferably 8 mol% or more, and the upper limit is more preferably 18 mol% or less.
  • Water is not particularly limited, but deionized water, distilled water, etc. are preferred, and deionized water is more preferred. Impurities in water can deactivate the catalyst and adversely affect product quality, so it is preferable to remove them as much as possible.
  • the raw material liquid may contain tertiary butyl alcohol.
  • the amount of tertiary butyl alcohol supplied per unit time to the reactor in step (i) is Mi (mol/hr)
  • the amount of tertiary butyl alcohol produced per unit time in step (iii) described below is Mi (mol/hr).
  • the amount of butyl alcohol is Miii (mol/hr)
  • it is preferable that Mi/Miiii is 1 to 7. This improves the isobutylene conversion rate in the step (ii) described later, so that the manufacturing cost can be suppressed in the step (iii) described later.
  • the upper limit of Mi/Miii is more preferably 5 or less, even more preferably 4.5 or less, and particularly preferably 4 or less.
  • the tertiary butyl alcohol contained in the raw material liquid may include recycled TBA using tertiary butyl alcohol produced in step (iii) described below.
  • Mi/Miii can be adjusted, for example, by changing the feed rate of the raw material liquid supplied to the reactor or the tertiary butyl alcohol concentration of the raw material liquid.
  • the raw material liquid may also contain hydrocarbons and the like in addition to the above.
  • the hydrocarbon is one or more types selected from hydrocarbons having 4 carbon atoms, such as butenes other than isobutylene (1-butene and/or 2-butene) and butanes (n-butane, isobutane, etc.). It is preferable.
  • Such isobutylene-containing hydrocarbons are by-products obtained when ethylene is obtained by thermally cracking naphtha in the presence of steam, by-products obtained during catalytic cracking of heavy oil, or from these by-products. It can be obtained by removing butadiene.
  • step (ii) described below so that the average linear velocity based on the empty column calculated by the formula (I) is 5 m/hr or more. This improves the reaction rate of the hydration reaction when Vw is within the specified range in step (ii).
  • the reason for this is thought to be as follows.
  • step (ii) described below when Vw is within a specified range, a portion of the aqueous phase is dispersed in the isobutylene phase to form water droplets. At this time, if the raw material liquid is supplied at a specified rate, the diameter of the water droplets will decrease and the number of water droplets will increase.
  • the lower limit of the average linear velocity of the raw material liquid is preferably 7 m/hr or more, more preferably 8 m/hr or more.
  • the upper limit is preferably 29 m/hr, more preferably 15 m/hr, even more preferably 14 m/hr, particularly preferably 13 m/hr, and most preferably 12 m/hr. preferable.
  • step (ii) a reaction product containing tertiary butyl alcohol is produced by a hydration reaction of isobutylene in the reactor.
  • step (ii) the average linear velocity of the raw material liquid based on the empty column calculated by the following formula (I) is 5 m/hr or more.
  • Average linear velocity of raw material liquid (m/hr) Volumetric flow rate of raw material liquid (m 3 /hr) / Cross-sectional area of reactor (m 2 ) (I)
  • the volumetric flow rate of the raw material liquid is the volumetric flow rate of the raw material liquid supplied to the reactor in the step (i).
  • the cross-sectional area of the reactor is the cross-sectional area using an interpolated portion in the reactor.
  • the cross-sectional area of the reactor is not uniform, the cross-sectional area of the part of the reactor with the largest cross-sectional area is taken as the cross-sectional area.
  • the average linear velocity of the raw material liquid based on the sky column can be adjusted, for example, by changing the volumetric flow rate of the raw material liquid supplied to the reactor in step (i).
  • the volume (Vw) of the aqueous phase in the fluid A is 4 to 12% by volume with respect to the total volume of the fluid (fluid A) in the reactor.
  • the aqueous phase herein means a phase containing 90 mol% or more of water.
  • the fact that fluid A has an aqueous phase means that the reaction takes place in a heterogeneous liquid phase separated into an aqueous phase and an isobutylene phase within the reactor.
  • Vw is within the specified range, the reaction rate of the isobutylene hydration reaction is improved.
  • Vw can be adjusted, for example, by adjusting the concentration of tertiary butyl alcohol contained in the raw material liquid.
  • Vw can be set to 4 to 12% by volume.
  • Vw can be set to 5 to 10% by volume.
  • Vw is 4 to 12 volume %. Based on the composition of hydrocarbons, water, and TBA in the raw material liquid containing tertiary butyl alcohol, if the composition of fluid A is within the range shown by the shaded area in Figure 2, it is determined that Vw is 4 to 12% by volume. can. Similarly, if the composition of fluid A is within the range shown by the shaded area in FIG. 3, it can be determined that Vw is 5 to 10% by volume. Further, Vw can also be determined by the following method.
  • the outlet temperature of the reactor during the hydration reaction is preferably 75°C or lower. Thereby, the amount of by-products produced in the hydration reaction can be suppressed. This is thought to be because by setting the reaction temperature to 75° C. or lower, the relative reaction rate of side reactions such as the dimerization reaction of isobutylene to the hydration reaction rate of isobutylene can be kept small. More preferably, the lower limit of the reactor outlet temperature is 40°C or higher, and the upper limit is 65°C or lower.
  • the pressure inside the reactor during the hydration reaction is preferably 0.2 to 2.0 MPa (G). However, (G) indicates gauge pressure. This sufficiently liquefies the raw material isobutylene.
  • the lower limit of the pressure in the reactor is more preferably 0.4 MPa (G), and the upper limit is more preferably 1.6 MPa (G).
  • an inert gas that does not participate in the hydration reaction may be introduced into the reactor. Examples of the inert gas include nitrogen, argon, and the like.
  • step (iii) In step (iii), unreacted isobutylene is separated from the reaction product containing tertiary butyl alcohol produced in step (ii) to produce tertiary butyl alcohol.
  • a separation device such as a distillation device, an extraction device, a membrane separation device, etc. can be used to separate unreacted isobutylene, and it is preferable to use a distillation device.
  • the distillation apparatus it is preferable to use a distillation column or a flash drum.
  • the distillation column a plate column or a packed column is used, and a plate column is preferable.
  • the temperature and pressure are generally such that unreacted isobutylene is vaporized and tertiary butyl alcohol is liquefied.
  • the tower top temperature is preferably 20 to 70°C, and the tower bottom temperature is preferably 100 to 160°C. Further, the tower top pressure is preferably 0.25 to 0.9 MPa (G). As described above, tertiary butyl alcohol can be produced at a high isobutylene conversion rate while reducing equipment costs and manufacturing costs.
  • Average linear velocity of raw material liquid volumetric flow rate of raw material liquid (m 3 /hr) / Cross-sectional area of reactor (m 2 ) (I) Note that the cross-sectional area of the reactor was the cross-sectional area excluding the interpolated material in the reactor.
  • Vw Vw was determined by the following procedure. Using Aspen Plus manufactured by Aspen Technology, from the composition, temperature and pressure of fluid A, the density D (mol/m 3 ) of fluid A, the density Dw (mol/m 3 ) of the aqueous phase of fluid A, and the isobutylene of fluid A The density Do (mol/m 3 ) of the phase was calculated. Note that the outlet temperature and pressure of the first reactor 5 were used as the temperature and pressure of the fluid A.
  • the amount of steam heated by the reboiler was determined by measuring the amount of steam supplied to the reboiler 12 with a flow meter.
  • Example 1 Using the reaction apparatus shown in FIG. 1, DuPont's Amberlyst 15 was filled as a cation exchange resin. Note that fixed bed reactors are used as the first reactor 5, the second reactor 7, and the third reactor 9, and the amount of cation exchange resin charged is 100 parts in the first reactor 5 and 100 parts in the second reactor 7. and 50 parts in the third reactor 9. A raw material liquid having an isobutylene concentration of 12.0 mol%, a water concentration of 33.6 mol%, and a TBA concentration of 29.8 mol% is supplied so that the average linear velocity in the first reactor 5 becomes the value shown in Table 1. did. Note that the raw material liquid contained recycled TBA, and Mi/Miii was 4.15.
  • Isobutylene is hydrated under the following conditions: the reactor inlet temperature of the first reactor 5 is adjusted to 52.2°C, the reactor outlet temperature is 65.0°C, the pressure is 0.876 MPa (G), and the average residence time is 0.634 hours. The reaction was carried out. Next, 30.3% by mass of the reaction product obtained in the first reactor 5 was supplied to the second reactor 7. In the second reactor 7, isobutylene is hydrated under the following conditions: the reactor inlet temperature is adjusted to 50.0°C, the reactor outlet temperature is 53.8°C, the pressure is 0.804 MPa (G), and the average residence time is 1.05 hours. The reaction was carried out. Then, the entire amount of the reaction product obtained in the second reactor 7 was supplied to the third reactor 9.
  • the reactor inlet temperature was adjusted to 53.1°C
  • the reactor outlet temperature was 56.3°C
  • the pressure was 0.800 MPa (G)
  • the average residence time was 1.04 hours to hydrate isobutylene.
  • the reaction was carried out.
  • the Vw in the first reactor 5 and the total isobutylene conversion in all reactors are shown in Table 1.
  • the reaction product containing TBA obtained from the third reactor 9 was supplied to the TBA separation column 10, and unreacted isobutylene was separated by distillation to obtain a TBA aqueous solution with a TBA concentration of 61.1 mol%. .
  • Table 1 shows the amount of reboiler heating steam required to produce 1000 parts of the TBA aqueous solution.
  • Example 2 The reactor, cation exchange resin, and its filling amount were the same as in Example 1.
  • a raw material liquid having an isobutylene concentration of 11.7 mol%, a water concentration of 31.4 mol%, and a TBA concentration of 30.0 mol% is supplied so that the average linear velocity in the first reactor 5 becomes the value shown in Table 1. did.
  • Isobutylene is hydrated under the following conditions: the reactor inlet temperature of the first reactor 5 is adjusted to 52.7°C, the reactor outlet temperature is 64.9°C, the pressure is 0.875 MPa (G), and the average residence time is 0.618 hours. The reaction was carried out.
  • the second reactor 7 was used for hydration of isobutylene under the following conditions: the reactor inlet temperature was adjusted to 50.0°C, the reactor outlet temperature was 53.3°C, the pressure was 0.805 MPa (G), and the average residence time was 1.04 hours. The reaction was carried out. Then, the entire amount of the reaction product obtained in the second reactor 7 was supplied to the third reactor 9. In the third reactor 9, the reactor inlet temperature was adjusted to 52.9°C, the reactor outlet temperature was 55.5°C, the pressure was 0.800 MPa (G), and the average residence time was 1.03 hours to hydrate isobutylene. The reaction was carried out.
  • the Vw in the first reactor 5 and the total isobutylene conversion in all reactors are shown in Table 1.
  • the reaction product containing TBA obtained from the third reactor 9 was supplied to the TBA separation column 10, and unreacted isobutylene was separated by distillation to obtain a TBA aqueous solution with a TBA concentration of 63.9 mol%.
  • Table 1 shows the amount of reboiler heating steam required to produce 1000 parts of the TBA aqueous solution.
  • Example 3 The reactor, cation exchange resin, and its filling amount were the same as in Example 1.
  • a raw material liquid having an isobutylene concentration of 16.8 mol%, a water concentration of 31.2 mol%, and a TBA concentration of 18.8 mol% is supplied so that the average linear velocity in the first reactor 5 becomes the value shown in Table 1. did. Note that the raw material liquid did not contain recycled TBA, and Mi/Miii was 2.22.
  • Isobutylene is hydrated under the following conditions: the reactor inlet temperature of the first reactor 5 is adjusted to 49.2°C, the reactor outlet temperature is 65.0°C, the pressure is 0.860 MPa (G), and the average residence time is 0.642 hours. The reaction was carried out.
  • the second reactor 7 was used for hydration of isobutylene under the following conditions: the reactor inlet temperature was adjusted to 50.0°C, the reactor outlet temperature was 58.8°C, the pressure was 0.797 MPa (G), and the average residence time was 1.18 hours. The reaction was carried out. Then, the entire amount of the reaction product obtained in the second reactor 7 was supplied to the third reactor 9. In the third reactor 9, the reactor inlet temperature was adjusted to 50.0°C, the reactor outlet temperature was 54.0°C, the pressure was 0.800 MPa (G), and the average residence time was 1.18 hours to hydrate isobutylene. The reaction was carried out.
  • the Vw in the first reactor 5 and the total isobutylene conversion in all reactors are shown in Table 1.
  • the reaction product containing TBA obtained from the third reactor 9 was supplied to the TBA separation column 10, and unreacted isobutylene was separated by distillation to obtain a TBA aqueous solution with a TBA concentration of 64.6 mol%.
  • Table 1 shows the amount of reboiler heating steam required to produce 1000 parts of the TBA aqueous solution.
  • Example 4 The reactor, cation exchange resin, and its filling amount were the same as in Example 1.
  • a raw material liquid having an isobutylene concentration of 16.0 mol%, a water concentration of 32.4 mol%, and a TBA concentration of 22.7 mol% is supplied so that the average linear velocity in the first reactor 5 becomes the value shown in Table 1. did. Note that the raw material liquid contained recycled TBA, and Mi/Miii was 3.50.
  • Isobutylene is hydrated under the following conditions: the reactor inlet temperature of the first reactor 5 is adjusted to 54.6°C, the reactor outlet temperature is 64.9°C, the pressure is 0.903 MPa (G), and the average residence time is 0.482 hours. The reaction was carried out.
  • the second reactor 7 was used for hydration of isobutylene under the following conditions: the reactor inlet temperature was adjusted to 50.0°C, the reactor outlet temperature was 61.2°C, the pressure was 0.807 MPa (G), and the average residence time was 1.05 hours. The reaction was carried out. Then, the entire amount of the reaction product obtained in the second reactor 7 was supplied to the third reactor 9. In the third reactor 9, the reactor inlet temperature was adjusted to 53.0°C, the reactor outlet temperature was 58.3°C, the pressure was 0.800 MPa (G), and the average residence time was 1.04 hours to hydrate isobutylene. The reaction was carried out.
  • the Vw in the first reactor 5 and the total isobutylene conversion in all reactors are shown in Table 1.
  • the reaction product containing TBA obtained from the third reactor 9 was supplied to the TBA separation column 10, and unreacted isobutylene was separated by distillation to obtain a TBA aqueous solution with a TBA concentration of 63.5 mol%.
  • Table 1 shows the amount of reboiler heating steam required to produce 1000 parts of the TBA aqueous solution.
  • Example 5 The reactor, cation exchange resin, and its filling amount were the same as in Example 1.
  • a raw material liquid having an isobutylene concentration of 14.6 mol%, a water concentration of 28.0 mol%, and a TBA concentration of 20.6 mol% is supplied so that the average linear velocity in the first reactor 5 becomes the value shown in Table 1. did. Note that the raw material liquid did not contain recycled TBA, and Mi/Miii was 4.71.
  • Isobutylene is hydrated under the following conditions: the reactor inlet temperature of the first reactor 5 is adjusted to 58.6°C, the reactor outlet temperature is 65.0°C, the pressure is 1.06 MPa (G), and the average residence time is 0.425 hours. The reaction was carried out.
  • the second reactor 7 was used for hydration of isobutylene under the following conditions: the reactor inlet temperature was adjusted to 50.0°C, the reactor outlet temperature was 62.0°C, the pressure was 0.870 MPa (G), and the average residence time was 1.52 hours. The reaction was carried out. Then, the entire amount of the reaction product obtained in the second reactor 7 was supplied to the third reactor 9. In the third reactor 9, the reactor inlet temperature was adjusted to 52.0°C, the reactor outlet temperature was 56.2°C, the pressure was 0.841 MPa (G), and the average residence time was 1.52 hours to hydrate isobutylene. The reaction was carried out.
  • the Vw in the first reactor 5 and the total isobutylene conversion in all reactors are shown in Table 1.
  • the reaction product containing TBA obtained from the third reactor 9 was supplied to the TBA separation column 10, and unreacted isobutylene was separated by distillation to obtain a TBA aqueous solution with a TBA concentration of 62.6 mol%. .
  • Table 1 shows the amount of reboiler heating steam required to produce 1000 parts of the TBA aqueous solution.
  • the second reactor 7 was used for hydration of isobutylene under the following conditions: the reactor inlet temperature was adjusted to 50.0°C, the reactor outlet temperature was 54.1°C, the pressure was 0.812 MPa (G), and the average residence time was 0.999 hours. The reaction was carried out. Then, the entire amount of the reaction product obtained in the second reactor 7 was supplied to the third reactor 9. In the third reactor 9, the reactor inlet temperature was adjusted to 50.0°C, the reactor outlet temperature was 53.2°C, the pressure was 0.800 MPa (G), and the average residence time was 0.999 hours to hydrate isobutylene. The reaction was carried out.
  • fluid A was a homogeneous phase and did not have an isobutylene phase and an aqueous phase.
  • the total isobutylene conversion in all reactors is shown in Table 1.
  • the reaction product containing TBA obtained from the third reactor 9 was supplied to the TBA separation column 10, and unreacted isobutylene was separated by distillation to obtain a TBA aqueous solution with a TBA concentration of 62.5 mol%. .
  • Table 1 shows the amount of reboiler heating steam required to produce 1000 parts of the TBA aqueous solution.
  • the second reactor 7 hydrates isobutylene under the following conditions: the reactor inlet temperature is adjusted to 50.0°C, the reactor outlet temperature is 53.4°C, the pressure is 0.815 MPa (G), and the average residence time is 0.978 hours. The reaction was carried out. Then, the entire amount of the reaction product obtained in the second reactor 7 was supplied to the third reactor 9. In the third reactor 9, the reactor inlet temperature was adjusted to 50.0°C, the reactor outlet temperature was 53.1°C, the pressure was 0.800 MPa (G), and the average residence time was 0.978 hours to hydrate isobutylene. The reaction was carried out.
  • fluid A was a homogeneous phase and did not have an isobutylene phase and an aqueous phase.
  • the total isobutylene conversion in all reactors is shown in Table 1.
  • the reaction product containing TBA obtained from the third reactor 9 was supplied to the TBA separation column 10, and unreacted isobutylene was separated by distillation to obtain a TBA aqueous solution with a TBA concentration of 61.9 mol%. .
  • Table 1 shows the amount of reboiler heating steam required to produce 1000 parts of the TBA aqueous solution.
  • a raw material liquid having an isobutylene concentration of 13.7 mol%, a water concentration of 34.1 mol%, and a TBA concentration of 29.4 mol% is supplied so that the average linear velocity in the first reactor 5 becomes the value shown in Table 1. did. Note that the raw material liquid contained recycled TBA, and Mi/Miii was 3.79.
  • Isobutylene is hydrated under the following conditions: the reactor inlet temperature of the first reactor 5 is adjusted to 51.1°C, the reactor outlet temperature is 65.1°C, the pressure is 0.902 MPa (G), and the average residence time is 0.610 hours. The reaction was carried out. Next, 35.0% by mass of the reaction product obtained in the first reactor 5 was supplied to the second reactor 7.
  • the second reactor 7 was used for hydration of isobutylene under the following conditions: the reactor inlet temperature was adjusted to 50.0°C, the reactor outlet temperature was 54.0°C, the pressure was 0.828 MPa (G), and the average residence time was 0.873 hours. The reaction was carried out. Then, the entire amount of the reaction product obtained in the second reactor 7 was supplied to the third reactor 9. In the third reactor 9, the reactor inlet temperature was adjusted to 50.0°C, the reactor outlet temperature was 53.3°C, the pressure was 0.800 MPa (G), and the average residence time was 0.873 hours to hydrate isobutylene. The reaction was carried out.
  • the Vw in the first reactor 5 and the total isobutylene conversion in all reactors are shown in Table 1.
  • the reaction product containing TBA obtained from the third reactor 9 was supplied to the TBA separation column 10, and unreacted isobutylene was separated by distillation to obtain a TBA aqueous solution with a TBA concentration of 61.4 mol%. .
  • Table 1 shows the amount of reboiler heating steam required to produce 1000 parts of the TBA aqueous solution.
  • Examples 1 to 5 in which the average linear velocity and Vw of the raw material liquid met the specified conditions, were able to produce TBA with a higher isobutylene conversion than the comparative example. Furthermore, the amount of reboiler heating steam in the TBA separation tower was smaller than that of the comparative example, indicating that manufacturing costs could be suppressed. Furthermore, unlike the conventional method, there is no need for the step of separating carboxylic acid ester of TBA, so equipment costs can be reduced.
  • tertiary butyl alcohol can be obtained at a high conversion rate while reducing equipment costs and manufacturing costs.
  • Isobutylene supply port 2 Water supply port 3: Pump 4: Raw material cooler 5: First reactor 6: Raw material cooler 7: Second reactor 8: Raw material cooler 9: Third reactor 10: TBA separation Column 11: Condenser 12: Reboiler 13: Unreacted isobutylene outlet 14: TBA outlet 15: TBA circulation line

Abstract

第三級ブチルアルコールの製造方法であって、 (i)陽イオン交換樹脂を有する反応器に、イソブチレンおよび水を含む原料液を供給する工程と、 (ii)前記反応器において、イソブチレンの水和反応により第三級ブチルアルコールを含む反応生成物を製造する工程と、を有し、 前記工程(ii)において、下記式(I)で算出される空塔基準での前記原料液の平均線速度が5m/hr以上であり、 原料液の平均線速度(m/hr)=原料液の体積流量(m/hr)/反応器の断面積(m) (I) 前記反応器内の流体(流体A)の全体積に対する前記流体A中の水相の体積(Vw)が4~12体積%である、第三級ブチルアルコールの製造方法。

Description

第三級ブチルアルコールの製造方法
 本発明は、第三級ブチルアルコール(以下、TBAとも称する。)の製造方法に関する。
 第三級ブチルアルコールは、気相接触酸化法によるメタクリル酸メチル製造の原料として使用される。
 第三級ブチルアルコールの製造方法としては、触媒を使用してイソブチレン(2-メチルプロペン)と水とを水和反応させる方法が知られている。この反応においては、原料であるイソブチレンと水の相互溶解性が低いため、一般にイソブチレンと水が相分離した不均一液相での反応となる。
 不均一液相で第三級ブチルアルコールを製造する方法として、例えば特許文献1および特許文献2には、イソブチレンと水とを強酸型陽イオン交換樹脂触媒粒子の表面で、所定の方法で接触させる方法が記載されている。
 しかし特許文献1および特許文献2に記載の不均一液相における方法は反応速度が低く、生産量を確保するためには大きな反応器が必要になり、設備費が増加する。そのため工業的には、より高い反応速度を実現できる手法が望まれている。
 一方特許文献3には、炭素数1~6の脂肪族カルボン酸水溶液を用いて均一液相で反応する方法が記載されている。しかしこの方法では、第三級ブチルアルコールを得るために、反応液から第三級ブチルアルコールのカルボン酸エステルを分離する工程が必要であり、設備費が増加する。
 また特許文献4には均一液相で反応を行い、途中で第三級ブチルアルコール分離工程を含む方法が記載されている。しかしこの方法では、反応器に第三級ブチルアルコール水溶液を添加して均一液相とするため、平衡により転化率が制限される。
特開昭54-030104号公報 特開昭54-30105号公報 特公昭60-051451号公報 特開昭60-233024号公報
 本発明は上記の課題を解決するためになされたものであって、その目的は設備費や製造コストを抑え、かつ高いイソブチレン転化率で第三級ブチルアルコールを製造する方法を提供することである。
 本発明者らは上記課題を解決するために鋭意検討を進めた。その結果驚くべきことに、イソブチレン相と水相に分離した不均一液相での反応においても、原料液の線速度、および水和反応中の流体における水相の体積を特定の範囲とすることで、十分な反応速度が得られることを見出し、本発明を完成させた。
 すなわち本発明は、以下のものを含む。
 [1]:第三級ブチルアルコールの製造方法であって、
 (i)陽イオン交換樹脂を有する反応器に、イソブチレンおよび水を含む原料液を供給する工程と、
 (ii)前記反応器において、イソブチレンの水和反応により第三級ブチルアルコールを含む反応生成物を製造する工程と、を有し、
 前記工程(ii)において、下記式(I)で算出される空塔基準での前記原料液の平均線速度が5m/hr以上であり、
  原料液の平均線速度(m/hr)=原料液の体積流量(m/hr)/反応器の断面積(m)   (I)
 前記反応器内の流体(流体A)の全体積に対する前記流体A中の水相の体積(Vw)が4~12体積%である、第三級ブチルアルコールの製造方法。
 [2]:前記工程(ii)において、空塔基準での前記原料液の平均線速度が5~29m/hrである、[1]に記載の第三級ブチルアルコールの製造方法。
 [3]:前記工程(ii)において、空塔基準での前記原料液の平均線速度が7~13m/hrである、[1]または[2]に記載の第三級ブチルアルコールの製造方法。
 [4]:前記工程(ii)において、前記Vwが5~10体積%である、[1]から[3]のいずれかに記載の第三級ブチルアルコールの製造方法。
 [5]:前記工程(ii)において、前記反応器の出口温度が75℃以下である、[1]から[4]のいずれかに記載の第三級ブチルアルコールの製造方法。
 [6]:(iii)前記工程(ii)において製造された第三級ブチルアルコールを含む反応生成物から、未反応のイソブチレンを分離して第三級ブチルアルコールを製造する工程をさらに有する、
[1]から[5]のいずれかに記載の第三級ブチルアルコールの製造方法。
 [7]:前記工程(i)において前記反応器に単位時間あたりに供給される第三級ブチルアルコールの量をMi(モル/hr)、前記工程(iii)において、単位時間あたりに製造される第三級ブチルアルコールの量をMiii(モル/hr)としたとき、Mi/Miiiが1~7である、[6]に記載の第三級ブチルアルコールの製造方法。
 [8]:前記Mi/Miiiが1~5である、[7]に記載の第三級ブチルアルコールの製造方法。
 本発明によれば、設備費や製造コストを抑え、かつ高いイソブチレン転化率で第三級ブチルアルコールを製造する方法を提供することができる。
本発明を実施するための反応装置の一例である。 流体Aにおける炭化水素、水およびTBAの合計を100モル%とした場合の、各成分の割合を示す三相図である。斜線部は、流体Aにおいて、流体Aの全体積に対する流体A中の水相の体積(Vw)が4~12体積%である領域を示す。 流体Aにおける炭化水素、水およびTBAの合計を100モル%とした場合の、各成分の割合を示す三相図である。斜線部は、流体Aにおいて、流体Aの全体積に対する流体A中の水相の体積(Vw)が5~10体積%である領域を示す。
 以下、本発明に係る実施形態について説明するが、本発明は以下に限定されるものではない。なお本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載された数値を下限値および上限値として含む範囲を意味し、「A~B」は、A以上B以下であることを意味する。
 本実施形態に係る第三級ブチルアルコールの製造方法は、下記工程(i)および(ii)を有する。
 (i)陽イオン交換樹脂を有する反応器に、イソブチレンおよび水を含む原料液を供給する工程
 (ii)前記反応器において、イソブチレンの水和反応により第三級ブチルアルコールを含む反応生成物を製造する工程
 また本実施形態に係る第三級ブチルアルコールの製造方法は、前記工程(ii)において、下記式(I)で算出される空塔基準での前記原料液の平均線速度が5m/hr以上である。
  原料液の平均線速度(m/hr)=原料液の体積流量(m/hr)/反応器の断面積(m)   (I)
 また前記反応器内の流体(流体A)の全体積に対する前記流体A中の水相の体積(Vw)が4~12体積%である。
 このような方法を用いることにより、設備費や製造コストを抑え、かつ高いイソブチレン転化率で第三級ブチルアルコールを製造することができる。
 また本実施形態に係る第三級ブチルアルコールの製造方法は、更に下記工程(iii)を有することが好ましい。
 (iii)前記工程(ii)において製造された第三級ブチルアルコールを含む反応生成物から、未反応のイソブチレンを分離して第三級ブチルアルコールを製造する工程
 以下、各工程について詳細に説明する。
 [工程(i)]
 工程(i)では、陽イオン交換樹脂を有する反応器に、イソブチレンおよび水を含む原料液を供給する。
 <反応器>
 本実施形態において用いられる反応器としては、攪拌槽型反応器、固定床型反応器、塔型反応器等いずれの形態も用いることができる。また反応形態は、回分式、半回分式、連続流通式のいずれでもよい。反応器は直列または並列に設けられていてもよく、図1に示すように複数の反応器が直列に設けられていることが好ましく、2~5個の反応器が直列に設けられていることがより好ましい。
 なお反応器が複数存在する場合は、少なくとも1つの反応器において前記原料液の平均線速度、および前記Vwが規定の条件を満たしていれば、本発明の効果を得ることができる。イソブチレン転化率の観点から、原料液を最初に供給する反応器、すなわち図1に示す第一反応器5において前記条件を満たしていることが好ましい。以下、反応器が複数存在する場合において、本明細書における「反応器」は特に言及が無い限り原料液を最初に供給する反応器を意味するものとする。
 陽イオン交換樹脂としては、強酸性陽イオン交換樹脂が好ましい。例えばバイエル社製のレバチット(商品名)やデュポン社のアンバーリスト(商品名)等が挙げられる。
 反応器中の陽イオン交換樹脂の位置、反応器における陽イオン交換樹脂の占める割合などは特に限定されず、通常用いられる形態を適用できる。
 図1の反応装置は、イソブチレン供給口1及び、水供給口2から、それぞれ原料であるイソブチレンと水とを供給し、ポンプ3により原料を第一反応器5に移送する。第一反応器5への移送の際、原料は原料冷却器4により所定の温度に冷却される。
 第一反応器5の反応物は、第二反応器7へ移送されるとともに、その一部は原料として再度供給される。第二反応器7への移送の際、第一反応器5の反応物は原料冷却器6により所定の温度に冷却される。
 第二反応器7の反応物は、原料冷却器8により冷却され、第三反応器9へ移送される。
 第三反応器9の反応物は、TBA分離塔10へ移送される。TBA分離塔10において、第三反応器9の反応物中の未反応イソブチレンはコンデンサー11により冷却され、未反応イソブチレン排出口13から排出される。また、第三反応器9の反応物中のTBAは、リボイラー12により加熱され、TBA排出口14から排出されるとともに、その一部は原料として、TBA循環ライン15から第一反応器5へ再度供給される。
 <原料液>
 本実施形態において、原料液にはイソブチレンおよび水が含まれる。原料液中のイソブチレン濃度は4~35モル%が好ましい。イソブチレン濃度が4モル%以上であると、後述する工程(ii)において、水和反応の反応速度が向上する。またイソブチレン濃度が35モル%以下であると、イソブチレンを安価で得られるため、製造コストを抑えられる。イソブチレン濃度の下限は8モル%以上、上限は18モル%以下がより好ましい。
 水としては特に限定されないが、脱イオン水、蒸留水等が好ましく、脱イオン水がより好ましい。水中の不純物は、触媒の失活や製品品質に悪影響を与える可能性があり、できるだけ取り除くことが好ましい。
 原料液は、第三級ブチルアルコールを含んでもよい。このとき、工程(i)において反応器に単位時間あたりに供給される第三級ブチルアルコールの量をMi(モル/hr)、後述する工程(iii)において、単位時間あたりに製造される第三級ブチルアルコールの量をMiii(モル/hr)としたとき、Mi/Miiiが1~7であることが好ましい。これにより、後述する工程(ii)においてイソブチレン転化率が向上するため、後述する工程(iii)において製造コストが抑制できる。Mi/Miiiの上限は5以下であることがより好ましく、4.5以下であることがさらに好ましく、4以下であることが特に好ましい。なお原料液に含まれる第三級ブチルアルコールは、後述する工程(iii)において製造された第三級ブチルアルコールを使用したリサイクルTBAを含んでもよい。
 Mi/Miiiは、例えば反応器に供給する原料液の供給速度や、原料液の第三級ブチルアルコール濃度を変えることで調整できる。
 また原料液は、上記以外に炭化水素等を含んでもよい。炭化水素としては、イソブチレン以外のブテン類(1-ブテンおよび/または2-ブテン)およびブタン類(n-ブタン、イソブタン等)等の炭素数が4である炭化水素から選ばれる1種以上であることが好ましい。このようなイソブチレン含有炭化水素は、ナフサを水蒸気存在下で熱分解してエチレンを得る際の副生成物や、重質油を触媒接触分解した際の副生成物、またはこれらの副生成物からブタジエンを除去したものとして得ることができる。
 原料液は、後述する工程(ii)において、前記式(I)で算出される空塔基準での平均線速度が5m/hr以上となるように供給する。これにより、工程(ii)においてVwが規定範囲内である場合に、水和反応の反応速度が向上する。この理由としては、以下のように考えられる。
 後述する工程(ii)において、Vwが規定範囲内である場合、水相の一部がイソブチレン相中に分散して水滴となる。このとき、原料液を規定の速度で供給していると、水滴径が減少し、水滴の個数が増加する。これにより流体A中のイソブチレン相と水相の接触界面積が増加し、相間物質移動が促進される。原料液の平均線速度の下限は7m/hr以上が好ましく、8m/hr以上がより好ましい。また上限は29m/hrであることが好ましく、15m/hrであることがより好ましく、14m/hrであることがさらに好ましく、13m/hrであることが特に好ましく、12m/hrであることが最も好ましい。
 [工程(ii)]
 工程(ii)では、前記反応器において、イソブチレンの水和反応により第三級ブチルアルコールを含む反応生成物を製造する。
 <水和反応中の反応器内の流体>
 工程(ii)において、下記式(I)で算出される空塔基準での前記原料液の平均線速度は5m/hr以上である。
 原料液の平均線速度(m/hr)=原料液の体積流量(m/hr)/反応器の断面積(m)   (I)
 ここで原料液の体積流量は、前記工程(i)において反応器に供給した原料液の体積流量を用いる。また反応器の断面積は、反応器における内挿物部分を用いた断面積である。なお反応器の断面積が均一でない場合は、反応器において最も断面積が大きい部位の断面積とする。
 空塔基準での原料液の平均線速度は、例えば前記工程(i)において、反応器に供給する原料液の体積流量を変えることにより調整できる。
 また工程(ii)において、前記反応器内の流体(流体A)の全体積に対する前記流体A中の水相の体積(Vw)は4~12体積%である。ここで水相とは、水を90モル%以上含む相を意味する。また流体Aが水相を有することは、反応器内で水相とイソブチレン相に分離した不均一液相での反応となっていることを意味する。
 Vwが規定範囲内であることにより、イソブチレン水和反応の反応速度が向上する。これは、水相の一部がイソブチレン相に分散して水滴として存在することにより、イソブチレン相との相間物質移動が促進されるためと考えられる。Vwの下限は4体積%以上が好ましく、5体積%以上がより好ましい。また上限は10体積%以下が好ましく、9体積%以下がより好ましい。Vwは、例えば原料液に含まれる第三級ブチルアルコールの濃度により調整できる。流体Aの組成が図2の斜線部分で示した範囲となるように、第三級ブチルアルコールを含む原料液を供給することで、Vwを4~12体積%とすることができる。同様に、流体Aの組成が図3の斜線部分で示した範囲となるように、第三級ブチルアルコールを含む原料液を供給することで、Vwを5~10体積%とすることができる。
 Vwが4~12体積%であることは、図2を用いて確認することができる。第三級ブチルアルコールを含む原料液の炭化水素、水およびTBAの組成から、流体Aの組成が図2の斜線部分で示した範囲内であれば、Vwが4~12体積%であると判断できる。同様に、流体Aの組成が図3の斜線部分で示した範囲内であれば、Vwが5~10体積%であると判断できる。
 またVwは、以下の方法にて求めることもできる。
 プロセスシミュレータを用い、流体Aの組成、温度および圧力から、流体Aの密度D(モル/m)、流体Aの水相の密度Dw(モル/m)および流体Aのイソブチレン相の密度Do(モル/m)を算出する。なおプロセスシミュレータとしては、例えばAspen Technology社製Aspen Plus等を用いることができる。次いで、得られたD、DwおよびDoの値を用い、下記式(II)および(III)からなる連立方程式を解くことで、流体Aの全体積に対する流体A中の水相の体積Vw(体積%)、および流体Aの全体積に対する流体A中のイソブチレン相の体積Vi(体積%)を算出することができる。
  D=Dw×Vw/100+Do×Vo/100   (II)
  Vw+Vi=100   (III)
 <その他の水和反応条件>
 水和反応中の反応器の出口温度は、75℃以下が好ましい。これにより、水和反応における副生成物の生成量を抑制することができる。これは、反応温度を75℃以下とすることで、イソブチレンの水和反応速度に対する、イソブチレンの二量化反応等の副反応の相対的な反応速度を、小さく維持できるためと考えられる。反応器の出口温度の下限は40℃以上、上限は65℃以下がより好ましい。
 水和反応中の反応器内の圧力は、0.2~2.0MPa(G)が好ましい。ただし、(G)はゲージ圧であることを示す。これにより原料のイソブチレンが十分に液化する。反応器内の圧力の下限は0.4MPa(G)、上限は1.6MPa(G)がより好ましい。水和反応中の反応器内の圧力を維持するために、水和反応に関与しない不活性ガスを反応器内に導入してもよい。不活性ガスとしては窒素、アルゴン等が挙げられる。
 [工程(iii)]
 工程(iii)では、前記工程(ii)において製造された第三級ブチルアルコールを含む反応生成物から、未反応のイソブチレンを分離して第三級ブチルアルコールを製造する。前記工程(ii)においてイソブチレンの転化率が高いと、工程(iii)における製造コストが抑制される。
 未反応のイソブチレンの分離には、蒸留装置、抽出装置、膜分離装置等の分離装置を用いることができ、蒸留装置を用いることが好ましい。蒸留装置としては、蒸留塔またはフラッシュドラムを用いることが好ましい。蒸留塔としては棚段塔や充填塔が用いられ、棚段塔が好ましい。
 分離装置として蒸留塔を用いる場合は、通常、未反応イソブチレンが気化し、第三級ブチルアルコールが液化する温度および圧力とする。塔頂温度は20~70℃、塔底温度は100~160℃が好ましい。また塔頂圧力は0.25~0.9MPa(G)が好ましい。
 以上のようにして、設備費や製造コストを抑え、かつ高いイソブチレン転化率で第三級ブチルアルコールを製造することができる。
 以下、実施例及び比較例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例及び比較例中の「部」は質量部を意味する。反応装置としては図1に示すものを用いた。また各反応器は断熱型の固定床式反応器である。
 (原料液の平均線速度)
 空塔基準での原料液の平均線速度は、反応器に供給した原料液の体積流量から、下記式(I)にて求めた。
 原料液の平均線速度(m/hr)=原料液の体積流量(m/hr)/反応器の断面積(m)   (I)
 なお反応器の断面積は、反応器における内挿物を除いた断面積とした。
 (Vw)
 Vwは、以下の手順で求めた。
 Aspen Technology社製Aspen Plusを用い、流体Aの組成、温度および圧力から、流体Aの密度D(モル/m)、流体Aの水相の密度Dw(モル/m)および流体Aのイソブチレン相の密度Do(モル/m)を算出した。なお、流体のAの温度および圧力として、第一反応器5の出口温度および圧力を用いた。次いで、得られたD、DwおよびDoの値を用い、下記式(II)および(III)からなる連立方程式を解くことで、流体Aの全体積に対する流体A中の水相の体積Vw(体積%)、および流体Aの全体積に対する流体A中のイソブチレン相の体積Vi(体積%)を算出した。
  D=Dw×Vw/100+Do×Vo/100   (II)
  Vw+Vi=100   (III)
 (リボイラー加熱蒸気量)
 リボイラー加熱蒸気量は、リボイラー12に供給した蒸気量を流量計で測定して求めた。
 (イソブチレン転化率の算出)
 実施例及び比較例における生成物の分析は、ガスクロマトグラフィー(島津製作所GC―2014、カラム:ULBON HR-20M 50m、直径:0.32mm、膜厚:0.25μm)を用いた。ガスクロマトグラフィーの結果から、イソブチレン転化率を下記式にて求めた。
  イソブチレン転化率(%)=M2/M1×100
 上記式中、M1は単位時間に供給したイソブチレンのモル数、M2は単位時間に反応したイソブチレンのモル数である。
 <実施例1>
 図1に示す反応装置を用い、陽イオン交換樹脂としてデュポン社製アンバーリスト15を充填した。なお、第一反応器5、第二反応器7および第三反応器9として固定床式反応器を用い、陽イオン交換樹脂の充填量は第一反応器5に100部、第二反応器7および第三反応器9に50部とした。
 イソブチレン濃度12.0モル%、水濃度33.6モル%、TBA濃度29.8モル%である原料液を、第一反応器内5における平均線速度が表1に示す値となるように供給した。なお、原料液にはリサイクルTBAが含まれており、Mi/Miiiは4.15であった。
 第一反応器5の反応器入口温度を52.2℃に調整し、反応器出口温度65.0℃、圧力0.876MPa(G)、平均滞留時間0.634時間の条件でイソブチレンの水和反応を行った。次いで、第一反応器5で得られた反応生成物の30.3質量%を第二反応器7に供給した。第二反応器7は反応器入口温度を50.0℃に調整し、反応器出口温度53.8℃、圧力0.804MPa(G)、平均滞留時間1.05時間の条件でイソブチレンの水和反応を行った。次いで、第二反応器7で得られた反応生成物の全量を第三反応器9に供給した。第三反応器9は反応器入口温度を53.1℃に調整し、反応器出口温度56.3℃、圧力0.800MPa(G)、平均滞留時間1.04時間の条件でイソブチレンの水和反応を行った。第一反応器5におけるVw、および全ての反応器における合計のイソブチレン転化率を表1に示す。
 第三反応器9から得られたTBAを含む反応生成物をTBA分離塔10に供給し、蒸留により未反応のイソブチレンを分離して、TBA濃度が61.1モル%であるTBA水溶液を得た。該TBA水溶液1000部の生産に要したリボイラー加熱蒸気量を表1に示す。
 <実施例2>
 反応装置、陽イオン交換樹脂およびその充填量は、実施例1と同様とした。
 イソブチレン濃度11.7モル%、水濃度31.4モル%、TBA濃度30.0モル%である原料液を、第一反応器5内における平均線速度が表1に示す値となるように供給した。なお、原料液にはリサイクルTBAが含まれており、Mi/Miiiは4.34であった。
 第一反応器5の反応器入口温度を52.7℃に調整し、反応器出口温度64.9℃、圧力0.875MPa(G)、平均滞留時間0.618時間の条件でイソブチレンの水和反応を行った。次いで、第一反応器5で得られた反応生成物の30.0質量%を第二反応器7に供給した。第二反応器7は反応器入口温度を50.0℃に調整し、反応器出口温度53.3℃、圧力0.805MPa(G)、平均滞留時間1.04時間の条件でイソブチレンの水和反応を行った。次いで、第二反応器7で得られた反応生成物の全量を第三反応器9に供給した。第三反応器9は反応器入口温度を52.9℃に調整し、反応器出口温度55.5℃、圧力0.800MPa(G)、平均滞留時間1.03時間の条件でイソブチレンの水和反応を行った。第一反応器5におけるVw、および全ての反応器における合計のイソブチレン転化率を表1に示す。
 第三反応器9から得られたTBAを含む反応生成物をTBA分離塔10に供給し、蒸留により未反応のイソブチレンを分離して、TBA濃度が63.9モル%であるTBA水溶液を得た。該TBA水溶液1000部の生産に要したリボイラー加熱蒸気量を表1に示す。
 <実施例3>
 反応装置、陽イオン交換樹脂およびその充填量は、実施例1と同様とした。
 イソブチレン濃度16.8モル%、水濃度31.2モル%、TBA濃度18.8モル%である原料液を、第一反応器5内における平均線速度が表1に示す値となるように供給した。なお、原料液にはリサイクルTBAが含まれておらず、Mi/Miiiは2.22であった。
 第一反応器5の反応器入口温度を49.2℃に調整し、反応器出口温度65.0℃、圧力0.860MPa(G)、平均滞留時間0.642時間の条件でイソブチレンの水和反応を行った。次いで、第一反応器5で得られた反応生成物の27.1質量%を第二反応器7に供給した。第二反応器7は反応器入口温度を50.0℃に調整し、反応器出口温度58.8℃、圧力0.797MPa(G)、平均滞留時間1.18時間の条件でイソブチレンの水和反応を行った。次いで、第二反応器7で得られた反応生成物の全量を第三反応器9に供給した。第三反応器9は反応器入口温度を50.0℃に調整し、反応器出口温度54.0℃、圧力0.800MPa(G)、平均滞留時間1.18時間の条件でイソブチレンの水和反応を行った。第一反応器5におけるVw、および全ての反応器における合計のイソブチレン転化率を表1に示す。
 第三反応器9から得られたTBAを含む反応生成物をTBA分離塔10に供給し、蒸留により未反応のイソブチレンを分離して、TBA濃度が64.6モル%であるTBA水溶液を得た。該TBA水溶液1000部の生産に要したリボイラー加熱蒸気量を表1に示す。
 <実施例4>
 反応装置、陽イオン交換樹脂およびその充填量は、実施例1と同様とした。
 イソブチレン濃度16.0モル%、水濃度32.4モル%、TBA濃度22.7モル%である原料液を、第一反応器5内における平均線速度が表1に示す値となるように供給した。なお、原料液にはリサイクルTBAが含まれており、Mi/Miiiは3.50であった。
 第一反応器5の反応器入口温度を54.6℃に調整し、反応器出口温度64.9℃、圧力0.903MPa(G)、平均滞留時間0.482時間の条件でイソブチレンの水和反応を行った。次いで、第一反応器5で得られた反応生成物の23.3質量%を第二反応器7に供給した。第二反応器7は反応器入口温度を50.0℃に調整し、反応器出口温度61.2℃、圧力0.807MPa(G)、平均滞留時間1.05時間の条件でイソブチレンの水和反応を行った。次いで、第二反応器7で得られた反応生成物の全量を第三反応器9に供給した。第三反応器9は反応器入口温度を53.0℃に調整し、反応器出口温度58.3℃、圧力0.800MPa(G)、平均滞留時間1.04時間の条件でイソブチレンの水和反応を行った。第一反応器5におけるVw、および全ての反応器における合計のイソブチレン転化率を表1に示す。
 第三反応器9から得られたTBAを含む反応生成物をTBA分離塔10に供給し、蒸留により未反応のイソブチレンを分離して、TBA濃度が63.5モル%であるTBA水溶液を得た。該TBA水溶液1000部の生産に要したリボイラー加熱蒸気量を表1に示す。
 <実施例5>
 反応装置、陽イオン交換樹脂およびその充填量は、実施例1と同様とした。
 イソブチレン濃度14.6モル%、水濃度28.0モル%、TBA濃度20.6モル%である原料液を、第一反応器5内における平均線速度が表1に示す値となるように供給した。なお、原料液にはリサイクルTBAが含まれておらず、Mi/Miiiは4.71であった。
 第一反応器5の反応器入口温度を58.6℃に調整し、反応器出口温度65.0℃、圧力1.06MPa(G)、平均滞留時間0.425時間の条件でイソブチレンの水和反応を行った。次いで、第一反応器5で得られた反応生成物の14.2質量%を第二反応器7に供給した。第二反応器7は反応器入口温度を50.0℃に調整し、反応器出口温度62.0℃、圧力0.870MPa(G)、平均滞留時間1.52時間の条件でイソブチレンの水和反応を行った。次いで、第二反応器7で得られた反応生成物の全量を第三反応器9に供給した。第三反応器9は反応器入口温度を52.0℃に調整し、反応器出口温度56.2℃、圧力0.841MPa(G)、平均滞留時間1.52時間の条件でイソブチレンの水和反応を行った。第一反応器5におけるVw、および全ての反応器における合計のイソブチレン転化率を表1に示す。
 第三反応器9から得られたTBAを含む反応生成物をTBA分離塔10に供給し、蒸留により未反応のイソブチレンを分離して、TBA濃度が62.6モル%であるTBA水溶液を得た。該TBA水溶液1000部の生産に要したリボイラー加熱蒸気量を表1に示す。
 <比較例1>
 反応装置、陽イオン交換樹脂およびその充填量は、実施例1と同様とした。
 イソブチレン濃度12.2モル%、水濃度33.8モル%、TBA濃度32.6モル%である原料液を、第一反応器5内における平均線速度が表1に示す値となるように供給した。なお、原料液にはリサイクルTBAが含まれており、Mi/Miiiは4.92であった。
 第一反応器5の反応器入口温度を52.4℃に調整し、反応器出口温度64.8℃、圧力0.885MPa(G)、平均滞留時間0.617時間の条件でイソブチレンの水和反応を行った。次いで、第一反応器5で得られた反応生成物の31.0質量%を第二反応器7に供給した。第二反応器7は反応器入口温度を50.0℃に調整し、反応器出口温度54.1℃、圧力0.812MPa(G)、平均滞留時間0.999時間の条件でイソブチレンの水和反応を行った。次いで、第二反応器7で得られた反応生成物の全量を第三反応器9に供給した。第三反応器9は反応器入口温度を50.0℃に調整し、反応器出口温度53.2℃、圧力0.800MPa(G)、平均滞留時間0.999時間の条件でイソブチレンの水和反応を行った。第一反応器5において、流体Aは均一相となっており、イソブチレン相および水相を有していなかった。全ての反応器における合計のイソブチレン転化率を表1に示す。
 第三反応器9から得られたTBAを含む反応生成物をTBA分離塔10に供給し、蒸留により未反応のイソブチレンを分離して、TBA濃度が62.5モル%であるTBA水溶液を得た。該TBA水溶液1000部の生産に要したリボイラー加熱蒸気量を表1に示す。
 <比較例2>
 反応装置、陽イオン交換樹脂およびその充填量は、実施例1と同様とした。
 イソブチレン濃度12.0モル%、水濃度35.4モル%、TBA濃度31.9モル%である原料液を、第一反応器5内における平均線速度が表1に示す値となるように供給した。なお、原料液にはリサイクルTBAが含まれており、Mi/Miiiは4.71であった。
 第一反応器5の反応器入口温度を52.6℃に調整し、反応器出口温度65.3℃、圧力0.889MPa(G)、平均滞留時間0.617時間の条件でイソブチレンの水和反応を行った。次いで、第一反応器5で得られた反応生成物の31.7質量%を第二反応器7に供給した。第二反応器7は反応器入口温度を50.0℃に調整し、反応器出口温度53.4℃、圧力0.815MPa(G)、平均滞留時間0.978時間の条件でイソブチレンの水和反応を行った。次いで、第二反応器7で得られた反応生成物の全量を第三反応器9に供給した。第三反応器9は反応器入口温度を50.0℃に調整し、反応器出口温度53.1℃、圧力0.800MPa(G)、平均滞留時間0.978時間の条件でイソブチレンの水和反応を行った。第一反応器5において、流体Aは均一相となっており、イソブチレン相および水相を有していなかった。全ての反応器における合計のイソブチレン転化率を表1に示す。
 第三反応器9から得られたTBAを含む反応生成物をTBA分離塔10に供給し、蒸留により未反応のイソブチレンを分離して、TBA濃度が61.9モル%であるTBA水溶液を得た。該TBA水溶液1000部の生産に要したリボイラー加熱蒸気量を表1に示す。
 <比較例3>
 反応装置、陽イオン交換樹脂およびその充填量は、実施例1と同様とした。
 イソブチレン濃度13.7モル%、水濃度34.1モル%、TBA濃度29.4モル%である原料液を、第一反応器5内における平均線速度が表1に示す値となるように供給した。なお、原料液にはリサイクルTBAが含まれており、Mi/Miiiは3.79であった。
 第一反応器5の反応器入口温度を51.1℃に調整し、反応器出口温度65.1℃、圧力0.902MPa(G)、平均滞留時間0.610時間の条件でイソブチレンの水和反応を行った。次いで、第一反応器5で得られた反応生成物の35.0質量%を第二反応器7に供給した。第二反応器7は反応器入口温度を50.0℃に調整し、反応器出口温度54.0℃、圧力0.828MPa(G)、平均滞留時間0.873時間の条件でイソブチレンの水和反応を行った。次いで、第二反応器7で得られた反応生成物の全量を第三反応器9に供給した。第三反応器9は反応器入口温度を50.0℃に調整し、反応器出口温度53.3℃、圧力0.800MPa(G)、平均滞留時間0.873時間の条件でイソブチレンの水和反応を行った。第一反応器5におけるVw、および全ての反応器における合計のイソブチレン転化率を表1に示す。
 第三反応器9から得られたTBAを含む反応生成物をTBA分離塔10に供給し、蒸留により未反応のイソブチレンを分離して、TBA濃度が61.4モル%であるTBA水溶液を得た。該TBA水溶液1000部の生産に要したリボイラー加熱蒸気量を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、原料液の平均線速度およびVwが規定の条件を満たしている実施例1~5は、比較例よりも高いイソブチレン転化率でTBAを製造することができた。また、TBA分離塔におけるリボイラー加熱蒸気量が比較例よりも少なく、製造コストを抑制できることが示された。さらに、従来のようにTBAのカルボン酸エステルを分離する工程を必要としないため、設備費を抑えられる。
 本発明によれば、設備費や製造コストを抑え、かつ高い転化率で第三級ブチルアルコールを得ることができる。
1:イソブチレン供給口
2:水供給口
3:ポンプ
4:原料冷却器
5:第一反応器
6:原料冷却器
7:第二反応器
8:原料冷却器
9:第三反応器
10:TBA分離塔
11:コンデンサー
12:リボイラー
13:未反応イソブチレン排出口
14:TBA排出口
15:TBA循環ライン

Claims (8)

  1.  第三級ブチルアルコールの製造方法であって、
     (i)陽イオン交換樹脂を有する反応器に、イソブチレンおよび水を含む原料液を供給する工程と、
     (ii)前記反応器において、イソブチレンの水和反応により第三級ブチルアルコールを含む反応生成物を製造する工程と、を有し、
     前記工程(ii)において、下記式(I)で算出される空塔基準での前記原料液の平均線速度が5m/hr以上であり、
      原料液の平均線速度(m/hr)=原料液の体積流量(m/hr)/反応器の断面積(m)   (I)
     前記反応器内の流体(流体A)の全体積に対する前記流体A中の水相の体積(Vw)が4~12体積%である、第三級ブチルアルコールの製造方法。
  2.  前記工程(ii)において、空塔基準での前記原料液の平均線速度が5~29m/hrである、請求項1に記載の第三級ブチルアルコールの製造方法。
  3.  前記工程(ii)において、空塔基準での前記原料液の平均線速度が7~13m/hrである、請求項1または2に記載の第三級ブチルアルコールの製造方法。
  4.  前記工程(ii)において、前記Vwが5~10体積%である、請求項1から3のいずれか1項に記載の第三級ブチルアルコールの製造方法。
  5.  前記工程(ii)において、前記反応器の出口温度が75℃以下である、請求項1から4のいずれか1項に記載の第三級ブチルアルコールの製造方法。
  6.  (iii)前記工程(ii)において製造された第三級ブチルアルコールを含む反応生成物から、未反応のイソブチレンを分離して第三級ブチルアルコールを製造する工程をさらに有する、
    請求項1から5のいずれか1項に記載の第三級ブチルアルコールの製造方法。
  7.  前記工程(i)において前記反応器に単位時間あたりに供給される第三級ブチルアルコールの量をMi(モル/hr)、前記工程(iii)において単位時間あたりに製造される第三級ブチルアルコールの量をMiii(モル/hr)としたとき、Mi/Miiiが1~7である、請求項6に記載の第三級ブチルアルコールの製造方法。
  8.  前記Mi/Miiiが1~5である、請求項7に記載の第三級ブチルアルコールの製造方法。
PCT/JP2023/011523 2022-03-28 2023-03-23 第三級ブチルアルコールの製造方法 WO2023190038A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-052369 2022-03-28
JP2022052369 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023190038A1 true WO2023190038A1 (ja) 2023-10-05

Family

ID=88202059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011523 WO2023190038A1 (ja) 2022-03-28 2023-03-23 第三級ブチルアルコールの製造方法

Country Status (1)

Country Link
WO (1) WO2023190038A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430104A (en) * 1977-08-08 1979-03-06 Nippon Oil Co Ltd Continuous production of tertiary butyl alcohol
JPS5585529A (en) * 1978-12-22 1980-06-27 Nippon Oil Co Ltd Separation and recovery of isobutene
JPS60233024A (ja) * 1984-05-02 1985-11-19 Mitsui Toatsu Chem Inc 第3級ブチルアルコ−ルの製造方法
WO2006064874A1 (ja) * 2004-12-17 2006-06-22 Mitsubishi Rayon Co., Ltd. 第三級ブチルアルコールの製造法
CN101423454A (zh) * 2007-11-01 2009-05-06 中国石油天然气股份有限公司 一种由含异丁烯的碳四烃反应萃取制叔丁醇的方法
JP2012219042A (ja) * 2011-04-06 2012-11-12 Mitsubishi Rayon Co Ltd 不均一液相反応方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430104A (en) * 1977-08-08 1979-03-06 Nippon Oil Co Ltd Continuous production of tertiary butyl alcohol
JPS5585529A (en) * 1978-12-22 1980-06-27 Nippon Oil Co Ltd Separation and recovery of isobutene
JPS60233024A (ja) * 1984-05-02 1985-11-19 Mitsui Toatsu Chem Inc 第3級ブチルアルコ−ルの製造方法
WO2006064874A1 (ja) * 2004-12-17 2006-06-22 Mitsubishi Rayon Co., Ltd. 第三級ブチルアルコールの製造法
CN101423454A (zh) * 2007-11-01 2009-05-06 中国石油天然气股份有限公司 一种由含异丁烯的碳四烃反应萃取制叔丁醇的方法
JP2012219042A (ja) * 2011-04-06 2012-11-12 Mitsubishi Rayon Co Ltd 不均一液相反応方法

Similar Documents

Publication Publication Date Title
US7026519B2 (en) Obtaining tert-butanol
KR101157813B1 (ko) 이소부텐 함유 탄화수소 혼합물로부터 3급 부탄올을제조하는 방법
RU2673668C2 (ru) Способ совместного получения уксусной кислоты и диметилового эфира
JPH0118061B2 (ja)
US6111148A (en) Process for producing tertiary butyl alcohol
JP2014513049A (ja) グリコールエーテルを利用した高純度のイソブテンの製造方法
US7179948B2 (en) Process for preparing tert-butanol
WO2023190038A1 (ja) 第三級ブチルアルコールの製造方法
EP2516050B1 (en) Reactor
WO2010071011A1 (ja) 酢酸エステルの製造方法
CN110172013B (zh) 一种基于催化蒸馏溶剂法合成叔戊醇的工艺
CN110452083B (zh) 二异丁烯的生产方法及装置
US7709690B2 (en) Method for producing tertiary butyl alcohol
EP0717022B1 (en) Process for producing isopropyl alcohol by hydrating propylene
JP2002241327A (ja) 構造化多目的パッキングを用いる反応性精留における第三級オレフィンの水和による第三級アルコールの製造方法
JPS60204730A (ja) オレフインとパラフインとからアルキレートを連続的に製造する方法及び装置
JPH0342250B2 (ja)
JP5290937B2 (ja) アルコールの製造方法
JPS59212438A (ja) 高純度ブテン−1の分離回収方法
JPS60149536A (ja) 第2級ブタノ−ルの製造方法
WO2023126350A1 (en) Systems and methods for carrying out a metathesis reaction
JP4048549B1 (ja) 第3級ブタノールの製造方法
JPH0257525B2 (ja)
RU2338735C1 (ru) Способ выделения изобутилена полимеризационной чистоты
TW200418769A (en) Process for preparing tert-butanol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780049

Country of ref document: EP

Kind code of ref document: A1