TW200418769A - Process for preparing tert-butanol - Google Patents

Process for preparing tert-butanol Download PDF

Info

Publication number
TW200418769A
TW200418769A TW092135452A TW92135452A TW200418769A TW 200418769 A TW200418769 A TW 200418769A TW 092135452 A TW092135452 A TW 092135452A TW 92135452 A TW92135452 A TW 92135452A TW 200418769 A TW200418769 A TW 200418769A
Authority
TW
Taiwan
Prior art keywords
water
reactor
isobutene
butanol
reaction
Prior art date
Application number
TW092135452A
Other languages
Chinese (zh)
Inventor
Silvia Santiago Fernandez
Bernhard Scholz
Franz Nierlich
Alfred Kaizik
Wilfried Buschken
Dieter Reusch
Andreas Beckmann
Original Assignee
Oxeno Olefinchemie Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oxeno Olefinchemie Gmbh filed Critical Oxeno Olefinchemie Gmbh
Publication of TW200418769A publication Critical patent/TW200418769A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/03Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2
    • C07C29/04Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2 by hydration of carbon-to-carbon double bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The invention relates to a process for preparing tert-butanol by reaction of a homogeneous mixture comprising water; tert-butanol and an isobutene-containing hydrocarbon mixture over an acidic ion-exchange resin at from 30 to 120 DEG C, wherein the homogeneous mixture contains, at a proportion by mass of isobutene of above 10%, from 30 to 80% of the maximum amount of water made possible by the solubility of water in the mixture of tert-butanol and the isobutene-containing hydrocarbon mixture.

Description

200418769 ⑴ 玖、發明說明 【發明所屬之技術領域】 本發明係關於一種藉在酸性離子交換器存在下將水添 加到異丁烯上以製備第三一 丁醇之方法。 【先前技術】 第三一丁醇(TBA )是一大型工業規模的重要產物, 可用作爲溶劑及製備甲基丙烯酸甲酯的中間物,也是製備 具有至少一個第三丁基之過氧化物,如過氧縮酮、過酸酯 或二烷基過氧化物的前驅物。這些化合物可用作爲氧化劑 及自由基反應(例如烯烴聚合反應或聚合物交聯反應)的 引發劑。在離析異丁烯混合物中之純異丁烯時,第三-丁 醇可充當爲中間物。再者,彼也是導入第三丁基之試劑。 彼之鹼金屬鹽是一強驗,可用於許多合成中。 第三-丁醇可藉由將水添加至異丁烯上使之進行酸催 化而製得。工業用異丁烯通常會進一步包含其他烯烴如2 -丁烯。若使用這些起始物質時,工業方法所用之條件是 除了唯一的異丁烯外,並沒有其他烯烴會被水合,且這些 烯烴的二級反應如均相寡聚化或多相寡聚化將實質地完成 被抑制。此類方法通常係在液相中進行,並可區分成兩個 組群:a )反應係在觸媒水溶液中進行之方法,及b )其 中是使用不溶於反應相之固體觸媒的多相催化法。 均相催化過程使用硫酸、雜多酸、對一甲苯磺酸或其 他強酸做觸媒。通常這些高活性均相觸媒將與反應產物形 -5- (2) (2)200418769 成均相,以致於觸媒無法經由機械方式除去。在某些方法 中’可額外地使用溶劑。假若第三- 丁醇欲藉由蒸餾從反 應溶液中離析,其產量將因逆向反應及副產物之生成而減 低。 多相催化法經常係利用酸性離子交換器做爲觸媒而進 行。 歐洲專利EP 0 5 7 9 1 5 3案號係揭示一使用磺化聚合物 (具有克分子量1 0 0 0至1 0 0 0 0 0公克/莫耳之聚苯乙烯 磺酸或聚乙烯基磺酸)之水溶液做爲觸媒的方法。異丁烯 或含異丁烯之起始物質及觸媒相係與逆流方式通過反應器 。來自反應器之輸出物係由兩個相組成,彼是分離成含第 三一 丁醇之有機相上層及觸媒相。該有機相可經由蒸餾處 理而離析出第三-丁醇。水將加進觸媒相中置換該已消耗 之水,然後該觸媒相便可再循環至反應器內。 利用不溶於起始物質也不溶於產物之固體酸性觸媒使 異丁烯水合形成第三一丁醇具有一優勢,即反應混合物是 不含酸的,且可經處理後離析出第三-丁醇,不會因再解 離作用或其他二級反應而有所損失。此反應係在觸媒表面 進行。爲了讓反應發生,此二個反應物必須同時地在觸媒 的活性位置上。此舉對水及不互溶之異丁烯或含異丁烯之 烴類混合物而言相當困難。爲了得到合意之轉化率,經常 需使用溶劑以使獲得水與異丁烯進料混合物之均相混合物 變得可行。 爲了此一目的,德國專利D E 3 0 3 ] 7 0 2案號係揭示 -6 - (3) 200418769 使用甲醇做爲水及異丁烯或含異丁烯之烴類 。結果可一起獲得第三-丁醇及甲基第三- 〇 在歐洲專利EP 0 〇 1 〇 99 3案號係使用具 原子之脂族羧酸做爲兩個起始物質的溶劑。 丁醋將以副產物方式形成,所以必需水解爲 羧酸。 德國專利D E 0 3 0 3 1 7 0 2案號係使用環 專利 4 3 2 7 2 3 1案號是使用新一形式之多元 。這些溶劑必須與第三-丁醇分離。再者, 設備中長時間的操作也會有分解的危險。 國際公告申請案WO 9 9 / 3 3 7 7 5號係揭 段系列之反應器內藉使一含有水、第三一丁 含異丁烯之烴類混合物的混合物在陽離子交 以製備第三一丁醇的方法。各別反應器中的 於 6 5 °C。來自第一個反應器之部份中間產 相同反應器的入口。循環速率(再循環至第 中間產物混合物除以進料混合物之量)係1 . 第一個反應器入口處第三-丁醇於該含第三 混合物(異丁烯和任何其他烴類之總合)之 的重量比係0.5至3 · 5。來自第一個反應器 部份混合物在沒有水之中間導入下將以單一 兩個反應器。來自最後反應器之粗產物將經 若需要時,所得之部份第三- 丁醇可再循環 混合物的溶劑 丁基醚之產物 有1至6 .個碳 這些酸的第三 第三- 丁醇及 丁颯,而美國 醇如新戊二醇 所用之溶劑在 示一種在多階 醇及異丁烯或 換樹脂上反應 反應溫度係低 物將再循環至 一個反應器之 8至10,且在 -丁醇及烴類 進料混合物中 之尙未循環的 路徑流經另外 由蒸餾收集。 到第一個反應 (4) (4)200418769 器中。 此方法的缺點是較低的時空產量。根據實際例1 一 6 ,第一個反應器(帶有產物再循環之操作)的第三一丁醇 生成率是0.07 8至0.085公斤每小時每公升觸媒(出口處 之異丁烯濃度是8.3至16·2%質量比,轉化率爲60.2至 66.1% ) 〇 德國專利DE 3 0 2 5 2 6 2案號係揭示利用水/異丁條 / ΤΒΑ此三組份混合物以製備ΤΒΑ之方法。 該方法較佳地係在此系統的互溶性通道中進行,但也 可在互溶性通道外的多相及均相區進行。此方法的操作範 圍係以三角形圖表說明,由於三重混合物之故,混合物之 組成份在多相與均相中有寬廣的可變化。、 此混合物在均相,亦即單相區中之組成份係以具有最 大値水量(水在混合物中之溶解度限制,可藉由水分離器 達成)的組成物開始,而以具有低水含量(相對於溶解度 限制是小於約5 % )的混合物結束。 所以,藉助於德國專利D Ε 3 0 2 5 2 6 2案號時,此在 烴類混合物中具有可變化之異丁烯比率的含異丁烯烴類/ 水/第三-丁醇三重混合物在均相觸媒存在下就留下了很 大的可能結合空間’而可高選擇性地獲得第三一丁醇及令 人滿意的反應速率。然而,爲了得到高反應速率及選擇率 ,較佳地是使用在德國專利D Ε 3 0 2 5 2 6 2案號中水含量 接近於溶解度限制的混合物。 (5) (5)200418769 【發明內容】 由於使用酸性陽離子交換樹脂做爲觸媒之已知方法可 提供簡單的操作處理,但在時空產量及/或選擇率上卻不 令人滿意,所以,本發明之目標係提供一可在高異丁烯轉 化率下以良好時空產量及選擇率從異丁烯或含異丁烯之混 合物中製得第三- 丁醇的方法。 令人驚訝地頃發現,使一含有水、第三-丁醇及異丁 烯或含異丁烯之烴類混合物的均相混合物於酸性離子交換 樹脂上反應形成第三- 丁醇時,若此進料混合物含有比以 該三重混合物中水溶解度爲基礎上之可行水量還少的水, 則反應速率、選擇率及時空產量將會增加。 據此,本發明係提供一種藉在3 0至1 2 0。(:下並於酸 性離子交換樹脂上使一含有水、第三-丁醇及含異丁烯之 烴類混合物的均相反應混合物反應以製備第三一丁醇之方 法,其中,該均相反應混合物在反應初始時具有超過1 0 %質量比之異丁烯及以皮應混合物之水溶解度爲基礎時可 行水量之3 0至8 0 %比率的水。 反應混合物之水比率較佳地應更低,如5 0 - 8 0 %、 60 - 30%或70—80%。在每一情況中5這些數字係立基於 由均相反應混合物中水溶解度所界定之主要數量的最大値 〇 根據異丁烯與水反應生成TBA之反應的質量作用定 律,方程式1係適用: CB = K*Cj*Cw (方程式 1 ) -9- (6) 200418769 CB :反應混合物中第三-丁醇之莫耳 C !:反應混合物中異丁烯之莫耳濃度 Cw :反應混合物中水之莫耳濃度 K :平衡常數 下列方程式係應用於第三一丁醇/水 液之反應中第三-丁醇生成的速率 Puigjaner 、 F. Recase ns Inhibition by Liquid — Phase — Hydration of Isobutene alcohol: Kinetic and Equilibrium Studies, Res. 1 99 8 年,27 期,2224 -2231 Μ): r = k(C]*Cw - CB/K):(1+ c*CB)n n=l ^ 2 r :反應速率 k和c在定溫、特定觸媒及觸媒定量 根據此一方程式,生成第三- 丁醇之 水濃度之增加而增高。據此,國際公告申 W0 99/33775號及德國專利DE 030 25 均相溶液時,便是使用最大可能之水量。 所以,更令人驚奇地頃發現到,在一 三一丁醇比率下不管是使用以水飽和之溶 有較低水含量之混合物皆可能使第三-丁 大的反應速率。 使一含異丁烯之烴類混合物(即提餘 丁醇及水的之均相混合物於酸性離子交換 若參數都固定,則生成第三-丁醇的反應 濃度 /異丁燒均相溶 (E · V e 1 〇、L · Product in the to tert - Butyl Ing · Eng . Chem . ......(方程式2) 下是常數。 反應速率將隨著 請案 262案號在使用 定之異丁烯/第 液,還是使用具 醇之生成達到最 液I )、第三一 樹脂上反應時, 速率是視時間而 -10- (7) (7)200418769 定。若欲視所用之離子交換樹脂的水含量而定時,則生成 TB A之起初速率可降低或增高。當以具有低水含量之樹脂 爲起點時,生成第三-丁醇之速率最初會降低,但只在2 - 6日後就變成常數。在此時期觸媒會吸收水,此可輕易 地由水平衡中測得。由觸媒所吸收之水量係視反應混合物 的水濃度及此水濃度離溶解度限制之距離而定。當水濃度 愈接近溶解度限制時,觸媒吸收的水量愈大。當被觸媒吸 收的水增加時,在別方面相同的條件下生成第三- 丁醇之 反應速率就會減少。此一原因可能是因水合及/或受觸媒 之含水溶漲層抑制了質量傳遞(特別是異丁烯)而致活性 中心的酸強度減弱之故。因此,在長期操作中起始混合物 之水含量會以兩個方式影響第三-丁醇生成之反應速率, 也就是說,藉由可增加速率之濃縮效應(參考方程式2 ) 及藉由可減少速率之觸媒吸收水的作用。 工業方法的經濟效率不僅可由初速率決定,還可由穩 定狀態(即設備的長期運作)的速率來決定。 本發明方法之均相混合物的組成份係利用相圖來解說 。圖1係以三角形座標系統 (0至1 00質量%之座標) 顯示水、第三-丁醇及含異丁烯之烴類混合物的相圖。該 烴類混合物(提餘液I )包含4 5 %異丁烯及5 5 %飽和及 單一不飽和C4 —烴類。相圖可應用在20至8 0°C之溫度範 圍及高於烴類混合物之飽和壓的壓力。在此一區域中實質 上是沒有任何的壓力及溫度依屬性。在其他組成份之含異 丁烯之烴類混合物中此圖只有些微的改變,所以可適用於 -11 > (8) 200418769 解說本發明。從三角形的頂點W經最大値]v! 另一頂點K的曲線代表均相區域與多相區域 線。在曲線下方時’混合物是多相,而曲線上 爲均相溶液的區域。此曲線也可顯示出欲獲得 此三組份系統中水的最大比率。 在本發明方法中,反應器進料較佳地係具 由KM段曲線、MD線段及DK線段所界限出 份。因爲本發明所指定之低水含量,所以反應 合物的精確組成份係在此一面積內。MD係注 KB垂直。在一定之烴類/第三一丁醇比率下 從Μ點減少時,即可表示該混合物之組成份。 溫度範圍在4 〇至9 0 °C時,對感興趣之 K Μ )而S ’該二組份混合物(第二一丁醇/ ;; 異丁烯之提餘液I )之最大水含量可藉由下列 算而得。若含異丁烯之烴類混合物具有不同組 些等式也有效。 lnXw = 〇·〇5 7 0 ΧΒ - 0.8215 ......(等式 3 或200418769 ⑴ 发明, Description of the invention [Technical field to which the invention belongs] The present invention relates to a method for preparing tertiary butanol by adding water to isobutene in the presence of an acidic ion exchanger. [Previous technology] Tertiary butanol (TBA) is an important product on a large industrial scale. It can be used as a solvent and an intermediate for the preparation of methyl methacrylate. It is also used to prepare peroxides with at least one third butyl group, such as Precursor of peroxyketal, perester or dialkyl peroxide. These compounds can be used as oxidants and initiators for radical reactions such as olefin polymerization or polymer cross-linking. When isolating pure isobutene in the isobutene mixture, tertiary-butanol can act as an intermediate. Furthermore, it is a reagent for introducing a third butyl group. The alkali metal salt is a strong test and can be used in many synthesises. Tertiary-butanol can be prepared by adding water to isobutene and acid-catalyzing it. Industrial isobutene will usually further contain other olefins such as 2-butene. If these starting materials are used, the conditions used in the industrial process are that no olefins other than the only isobutylene will be hydrated, and the secondary reactions of these olefins such as homogeneous oligomerization or heterogeneous oligomerization will be substantially Completion is suppressed. Such methods are usually performed in the liquid phase and can be divided into two groups: a) the method in which the reaction is performed in an aqueous catalyst solution, and b) in which a multiphase using a solid catalyst insoluble in the reaction phase Catalytic method. Homogeneous catalysis uses sulfuric acid, heteropolyacid, p-toluenesulfonic acid or other strong acids as catalysts. Usually these highly active homogeneous catalysts will become homogeneous with the reaction product form -5- (2) (2) 200418769, so that the catalyst cannot be removed mechanically. In some methods ' additional solvents may be used. If the third-butanol is to be isolated from the reaction solution by distillation, its yield will be reduced due to the reverse reaction and the formation of by-products. Heterogeneous catalysis is often performed using an acidic ion exchanger as a catalyst. European patent EP 0 5 7 9 1 5 3 discloses a use of a sulfonated polymer (polystyrene sulfonic acid or polyvinyl sulfonic acid having a gram molecular weight of 100 to 1 0 0 0 0 g / mole Acid) solution as catalyst. Isobutylene or isobutene-containing starting materials and catalysts pass through the reactor countercurrently. The output from the reactor consists of two phases, which are separated into the upper organic phase containing the tributanol and the catalyst phase. This organic phase can be isolated by distillation to separate the third-butanol. Water will be added to the catalyst phase to replace the consumed water, and then the catalyst phase can be recycled to the reactor. The use of a solid acidic catalyst that is insoluble in the starting material and the product to hydrate isobutene to form tertiary butanol has the advantage that the reaction mixture is acid-free and can be separated into tertiary butanol after treatment. No loss due to re-dissociation or other secondary reactions. This reaction takes place on the surface of the catalyst. In order for the reaction to occur, the two reactants must be simultaneously on the active site of the catalyst. This is quite difficult for water and immiscible isobutylene or isobutene-containing hydrocarbon mixtures. To obtain the desired conversion, it is often necessary to use a solvent to make it feasible to obtain a homogeneous mixture of water and isobutylene feed mixture. For this purpose, the German patent DE E 3 0 3] 7 02 discloses that -6-(3) 200418769 uses methanol as water and isobutene or isobutene-containing hydrocarbons. As a result, tertiary-butanol and methyl tertiary-o can be obtained together. In European Patent EP 0 010 99 3, the atomic aliphatic carboxylic acid is used as a solvent for the two starting materials. Butyl vinegar is formed as a by-product, so it must be hydrolyzed to a carboxylic acid. German patent DE 0 3 0 3 1 7 0 2 is the use of ring Patent 4 3 2 7 2 31 1 is the use of a new form of diversity. These solvents must be separated from tertiary-butanol. Furthermore, there is a danger of decomposition during prolonged operation in the equipment. International Publication Application No. WO 9 9/3 3 7 7 5 In the reactor of the unveiling series, a mixture of a hydrocarbon mixture containing water and a third isobutene containing isobutylene is cation-crosslinked to prepare a third monobutanol. Methods. In separate reactor at 65 ° C. Part of the middle reactor from the first reactor produces the same reactor inlet. The circulation rate (recycled to the first intermediate product divided by the amount of the feed mixture) is 1. The third-butanol at the inlet of the first reactor in the third mixture (the sum of isobutene and any other hydrocarbons) Its weight ratio is 0.5 to 3.5. A portion of the mixture from the first reactor will be introduced into a single two reactor without intermediate introduction of water. The crude product from the final reactor will be passed through if necessary, with a portion of the tertiary-butanol recyclable solvent obtained from the butyl ether product ranging from 1 to 6. The carbons of these acids are the tertiary tertiary-butanol And butanidine, and the solvents used in American alcohols such as neopentyl glycol show a reaction on a multi-stage alcohol and isobutylene or resin change. The reaction temperature is low and will be recycled to a reactor of 8 to 10, and The unrecirculated path in the alcohol and hydrocarbon feed mixture flows through another collection by distillation. Go to the first reaction (4) (4) 200418769 vessel. The disadvantage of this method is the lower space-time yield. According to Practical Examples 1 to 6, the first monobutanol production rate of the first reactor (with product recycling operation) is 0.07 8 to 0.085 kg per liter of catalyst per hour (isobutene concentration at the outlet is 8.3 to 16.2% mass ratio, conversion rate 60.2 to 66.1%) 〇 German patent DE 3 0 2 5 2 6 2 is disclosed by the use of water / isobutan / TBA three-component mixture to prepare TBA. This method is preferably performed in the miscible channels of this system, but it can also be performed in multiphase and homogeneous regions outside the miscible channels. The operating range of this method is illustrated by a triangle diagram. Due to the triple mixture, the composition of the mixture is widely variable in multiphase and homogeneous phases. 1. The composition of this mixture in the homogeneous phase, that is, in the single-phase region, starts with the composition having the largest amount of water (the solubility of water in the mixture can be limited by the water separator), and has a low water content. The mixture ends (less than about 5% relative to the solubility limit). Therefore, with the help of German patent D Ε 3 0 2 5 2 6 2, this isobutene-containing / water / third-butanol triple mixture with a variable isobutene ratio in the hydrocarbon mixture is in homogeneous contact. In the presence of the vehicle, a large space for possible binding is left, and tertiary butanol can be obtained with high selectivity and a satisfactory reaction rate. However, in order to obtain a high reaction rate and selectivity, it is preferable to use a mixture whose water content is close to the solubility limit in the German patent DE E 3 2 5 2 6 2. (5) (5) 200418769 [Summary of the Invention] Since the known method using an acidic cation exchange resin as a catalyst can provide simple operations, but is not satisfactory in terms of space-time yield and / or selectivity, An object of the present invention is to provide a method for preparing tertiary-butanol from isobutene or an isobutene-containing mixture with good space-time yield and selectivity at high isobutene conversion. It was surprisingly found that when a homogeneous mixture containing water, third-butanol and isobutene or an isobutene-containing hydrocarbon mixture was reacted on an acidic ion exchange resin to form a third-butanol, Containing less water than is feasible based on the water solubility of the triple mixture, the reaction rate, selectivity and space-time yield will increase. Accordingly, the present invention provides a loan from 30 to 120. (: A method for reacting a homogeneous reaction mixture containing water, a third-butanol and an isobutene-containing hydrocarbon mixture on an acidic ion exchange resin to prepare a third monobutanol, wherein the homogeneous reaction mixture At the beginning of the reaction, the isobutene has a mass ratio of more than 10% and a water ratio of 30 to 80% based on the water solubility of the skin mixture. The water ratio of the reaction mixture should preferably be lower, such as 50 to 80%, 60 to 30%, or 70 to 80%. In each case these numbers are based on the maximum number of major quantities defined by the solubility of water in the homogeneous reaction mixture. According to the reaction of isobutene with water The law of mass action of the reaction to form TBA, Equation 1 is applicable: CB = K * Cj * Cw (Equation 1) -9- (6) 200418769 CB: Mole C of the third-butanol in the reaction mixture !: Reaction mixture Molar concentration Cw in isobutene: Molar concentration in water in the reaction mixture K: Equilibrium constant The following equation applies to the rate of tertiary-butanol formation in the reaction of tertiary monobutanol / water. Puigjaner, F. Recase ns Inhibition by Liquid — Phas e — Hydration of Isobutene alcohol: Kinetic and Equilibrium Studies, Res. 1 998, Issue 27, 2224 -2231 Μ): r = k (C) * Cw-CB / K) :( 1+ c * CB) nn = l ^ 2 r: The reaction rates k and c are increased at a constant temperature, specific catalyst and catalyst quantity according to this formula, and the concentration of water that generates the third-butanol is increased. According to this, the international publication application No. WO 99/33775 and the German patent DE 030 25 homogeneous solution are to use the largest possible amount of water. Therefore, it was even more surprising to find that the use of a water-saturated mixture with a lower water content at a tri-butanol ratio may result in a large tertiary-butane reaction rate. If a homogeneous mixture of isobutene-containing hydrocarbons (ie, a homogeneous mixture of radon butanol and water is exchanged for acidic ions, if the parameters are fixed, the reaction concentration of tertiary-butanol / isobutane is homogeneous (E V e 1 〇, L · Product in the tot-Butyl Ing · Eng. Chem. ...... (Equation 2) is a constant. The reaction rate will follow the application No. 262 Case No. Liquid, or using alcohol to achieve the most liquid I), the reaction on the third resin, the rate is determined by time and -10- (7) (7) 200418769. If you want to depend on the water content of the ion exchange resin used At the timing, the initial rate of TBA formation can be reduced or increased. When starting with a resin with a low water content, the rate of tertiary-butanol formation will initially decrease, but will become constant only after 2-6 days. During this period, the catalyst will absorb water, which can be easily measured from the water balance. The amount of water absorbed by the catalyst depends on the water concentration of the reaction mixture and the distance of this water concentration from the solubility limit. As the solubility limit is approached, the more water the catalyst absorbs. As the water absorbed by the catalyst increases, the rate of reaction to form tertiary-butanol decreases under the same conditions elsewhere. This may be due to hydration and / or the water-swelling layer of the catalyst inhibiting the quality The transfer of (especially isobutylene) causes the acid strength of the active site to decrease. Therefore, the water content of the starting mixture in a long-term operation can affect the reaction rate of tertiary-butanol formation in two ways, that is, by The concentration effect that can increase the rate (refer to Equation 2) and the effect of absorbing water by the catalyst that can reduce the rate. The economic efficiency of industrial methods can be determined not only by the initial rate, but also by the steady state (that is, the long-term operation of the equipment) The composition of the homogeneous mixture of the method of the present invention is explained using a phase diagram. Figure 1 shows water, third-butanol, and isobutene-containing hydrocarbons in a triangular coordinate system (coordinates from 0 to 100% by mass). Phase diagram of a hydrocarbon mixture. The hydrocarbon mixture (raffinate I) contains 45% isobutene and 55% saturated and monounsaturated C4-hydrocarbons. The phase diagram can be applied in the temperature range of 20 to 80 ° C And the pressure higher than the saturation pressure of the hydrocarbon mixture. In this area, there is essentially no pressure and temperature dependent properties. In other components of the isobutylene-containing hydrocarbon mixture, the figure only slightly changes, so it can be changed slightly. Applicable to -11 > (8) 200418769 to explain the present invention. From the vertex W of the triangle through the maximum 値] v! The curve of the other vertex K represents the line of the homogeneous region and the polyphase region. Below the curve, the 'mixture is polyphase The curve is the area of a homogeneous solution. This curve can also show the maximum ratio of water in the three-component system. In the method of the present invention, the reactor feed is preferably based on the KM section curve, The MD line segment and the DK line segment are bounded. Because of the low water content specified by the present invention, the precise composition of the reactants is within this area. MD means KB is vertical. When it decreases from the M point under a certain hydrocarbon / tertiary-butanol ratio, the composition of the mixture can be expressed. When the temperature range is from 40 to 90 ° C, the maximum water content of the two-component mixture (second monobutanol /; isobutylene raffinate I) can be determined for K Μ) of interest by The following is calculated. It is also valid if isobutene-containing hydrocarbon mixtures have different sets of equations. lnXw = 〇〇〇 5 7 0 ΧΒ-0.8215 ... (Equation 3 or

Xw = EXP [ 0.05 7 0 XB ~ 0.8215 ] ·····.( 其中Xw = EXP [0.05 7 0 XB ~ 0.8215] · ...

Xw :水含量,以質量%表示 Xb:第二一丁醇含量,以質量%表示 在本發明方法中,均相反應器進料榕液之 將比可能之最大値(線段KM )還低。其量係 到三角形的 之間的分界 方的面積是 均相溶液時 有如圖1中 面積的組成 開始時之混 Μ與底線 ,當水濃度 區域(線段 k / 含 45% 實驗等式計 成份時,這 等式3b ) 水含量據此 第三-丁醇 -12 - (9) (9)200418769 與含異丁烯之烴類混合物的混合物中之水溶解度所算得可 能水量的 3 0 - 8 0 %,特別地是 5 0至 8 0 %、6 0 — 8 0 %或 7 0 — 8 0 %,並可藉由簡易實驗測量或利用等式3a/ b算得 〇 根據本發明,反應器進料中之異丁烯濃度是高於10 %質量比,特別地高於】5 %質量比。所以,反應器進料 係那些在3 5 °C至7 0 °C之較佳溫。C度範圍內其組成份絲毫 不會從異丁烯、水及TBA之熱力平衡中移動的混合物。 至於起始物質,可行的是使用含異丁烯之烴類混合物 或其他純異丁烯。而該含異丁烯之烴類混合物較佳地係不 包括任何乙炔衍生物、小於5 000Ppm之二烯類,同時也 不可含有任何在烯屬雙鍵上具有一或多個支鏈之另外烯烴 〇 _例之,工業用之含異丁烯混合物有來自精煉廠之輕 質石油醇餾份、來自FCC裝置或蒸汽裂化器之C4餾份、 費一托:合成法之混合物、丁烷脫氫反應之混合物、直鏈丁 烯之骨架性異構化反應的混合物、烯烴複分解反應或其他 工業方法所形成之混合物。 這些混合物在除去數個不飽和化合物後就可用於本發 明方法中。例如,合適之異丁烯混合物可從蒸汽裂化器之 Ο I留份中經由萃取丁二烯或使之選擇性氫化爲直鏈丁烯 而獲得。此一進料(提餘液I或選擇性氫化之C4裂解餾 份)包含正-丁烷、異丁烷、三個直鏈丁烯及異丁烯,並 且是本發明方法之較佳起始物質。 -13- (10) 200418769 提餘液I、氫化之c4裂解餾份或具有相似 類混合物可選擇性地在反應塔內進行氫化異構 式即可獲得異丁烯(可能是1 -丁烯)與異丁 〇 異丁烯在烴類混合物中之濃度可於寬廣範 然而爲了方法的經濟效益,較適當的是使用異 於3 0 %質量比,較佳地大於40 %質量比之 〇 至於觸媒,可使用一不溶於起始物質混合 產物混合物的酸性離子交換器。在反應條件下 不能因水解或其他反應而將酸性物質導入產物 爲在反應混合物的處理過程中此舉將導致產量 合適之觸媒必需能催化異丁烯之水合反應 能催化無支鏈之烯烴。再者,彼等也必須全然 烯烴之寡聚合反應。 合適的觸媒係由具有磺酸基之固體離子交 成。舉例之,更有效用之離子交換樹脂包括那 醛縮合物或芳族乙烯基化合物之聚合用寡聚物 的樹脂。可供製備聚合用寡聚物之芳族乙烯基 例有:苯乙烯、乙烯基甲苯、乙烯基萘、乙烯 甲基苯乙烯、乙烯基氯苯、乙烯基二甲苯及二 特定言之,該等藉使苯乙烯與二乙烯基苯反應 合用寡聚物可用做爲製備具磺酸基之離子交換 物。這些樹脂可製備成凝膠形態、大孔性或似 組成份之烴 化。依此方 烷之混合物 圍內變化。 丁烯濃度大 烴類混合物 物也不溶於 此觸媒必須 混合物,因 的損失。 ,但幾乎不 都不能催化 換樹脂所組 些藉使酚/ 磺化而製得 化合物的實 基乙基苯、 乙烯基苯。 所形成之聚 樹脂的前驅 海棉形態。 -14 - (11) (11)200418769 尤爲特別地,苯乙燃一二乙條基苯形式之合適樹脂可以下 列商品名購得:D u 〇 ] i t e C 2 0、D u ο 1 i t C 2 6、A m b e r 1 y s t 1 5 、A m b e l· 1 y s t 3 5、A m b e r 1 i t e I R — 1 2 0、a m b e r 1 i t e 2 0 0、 Dowex 50、Lewatit SPC 118、LewatitSPC 108、Lewatit K2611 (取自 Bayer 公司)、Lewatit K2631、OC 1501 ( 取自 Bayer 公司)、Lewatit K2621、Lewatit K2629、 Le watit K24 3 1。 這些樹脂之特性,特別是比面積、孔率、安定性、溶 漲率或收縮率以及交換容量可藉由所用之製備方法而有變 化。 在本發明中,此離子交換樹脂較佳地係以彼等之Η 形式來使用。且較佳地其離子交換容量是2至7當量/公 斤,特別地是3至6當量/公斤(相對於濕型商品化樹脂 )° 較佳地係使用大孔性樹脂,例如Lewatit S PC 1 1 8、 Lewatit SPC 108 或 Lewatit K2631。 工業用樹脂之粒子大小通常係在0.5至2毫米範圍內 。粒子大小分布可選擇窄或寬。舉例之,可使用具有非常 均一粒子大小之離子交換樹脂(單分散性樹脂)。 使用數個反應器時’可裝塡具有相同或不同粒子大小 (粒子大小分布)或之樹脂。 此離子交換樹脂也可視需要地使用成形物體,如圓柱 體、環狀物或球狀物。 若是在高線性速率通過反應器的情況,則較有利地使 -15- (12) (12)200418769 用較大粒子尺寸以減低壓降,若是以低線性速率通過反應 器時,則較有利地使用較小粒子尺寸以便達到最適當的轉 化率。 爲了避免操作期間酸性基從樹脂中消去(此舉會使方 法中的處理過程不正常運作),也爲了在一段長時間操作 後還能維持高觸媒活性,此離子交換樹脂可預處理,例如 可先以40至120°C溫度範圍內的水、TBA或TBA /水混 合物淸洗。 由於水會經由異丁烯之水合作用而消耗,因此反應混 合物中的水含量會減少。爲了獲得最高可能性的產量及反 應速率,就必需進一步將水送入。 ,當僅使用一個反應器時,此舉可經由沿著管狀反應器 在各個點送入水而達成。然而,在實務上欲精確地導入所 需水量並使均相溶液立即形成是很困難的。所以,在技術 上較簡易且有利的是連續地接連數個反應器,並在反應器 之間導入所需水量。 反應後因第三-丁醇濃度提升,反應器輸出物中的水 溶解度也會增加。所以,在反應器之間可加入比前一個反 應器已反應者還多的水。根據本發明,已消耗的水可被置 換,再者,也只需加入比達到溶解度限制還少的水。在最 後一個反應器的情況中’此舉可視情況需要而有所偏離, 因此最後之反應器可供應有以水飽和之溶液或是提供一含 有比相對應之溶解度多一些水的混合物。此做法之好處是 ,當反應器容積充分大時,在低異丁烯濃度下異丁烯轉化 - 16- (13) (13)200418769 率將些微增加;但也缺點,即在蒸餾處理過程對第三一丁 醇/水之比率較沒有助益,特別是欲獲得高比例之無水第 三一丁醇時。 起始物質混合物中之水量係源自於第三一丁醇/水溶 液(但除外的是起動階段),其可在烴類已分離後,亦即 使來自反應器之部份輸出物再循環後於本身的過程中獲得 。若此水量不足時,就需送入額外的水。純水或水和第三 一丁醇之混合物可在各反應器之間導入。同時也可行的是 ,將反應後所得之部份TBA再循環以製備與水及含異丁 烯之烴類混合物一起的均相混合物。水可在各反應器之間 導入,進而改變反應平衡。 根據本發明,只有均相溶液可送進反應內。所以,水 或水/第三-丁醇溶液必須與起始之烴類混合物或反應器 輸出物混合,如此才能在進入第一個反應器或隨後的一個 反應器之則,就先形成均相溶液。舉例之,此舉可利用固 定混合器進行。反應器進料中所需之水濃度可在測量各別 股流之水含量後,藉由調節其股流之量而設定。 本發明之方法可在慣常用於固體/液體接觸反應之反 應器內以批次或連續操作方式進行。當使用連續操作流動 反應器時’通常會使用固定床,但並非必須使用。若是使 用固定床流動反應器,則液體可往上或往下流動。而一般 係以液體往下流動較佳。 再者,反應器可依產物再循環或單一通路方式操作。 使用管狀反應器時,觸媒床的長度對直徑之比可依反 -17- (14) (14)200418769 應器的幾何空間或其裝塡程度而變化。所以,在一定量的 觸媒及空間速度(L H S V )下會達到不同的排空管速度。 在部份的反應混合物將再循環的反應器中,典型地係在排 空管速度13至26公尺/小時下運轉。若反應器是以單一 通路操作時,其排空管速度典型地係在1至1 3公尺/小 時範圍內。 據此,當反應器是依產物再循環方式來操作時’其觸 媒空間速度(LH S V )係0.3至1 0 h _ 1,特別地爲1至5 h — 1。若反應器是以單一通路操作時,其空間速度係在 〇·1至5.0 h— 1,特別地是〇.4至;3 h_】範圍內。 本發明方法可在一個反應器或多個連續接連之反應器 ,特別是2、3或4個反應器(彼等係依流動方向中而具 有遞減的溫度)內進行。 假使第一個或數個反應器是以產物再循環方式進行時 ,可設定再循環因子(整個巡迴所泵出之量對新鮮進料的 比)在〇 · 1至1 0。第一個反應器的再循環因子較佳地是1 至4,特別地爲2至3 .5。 在一較佳之方法變數中,第一個反應器是以產物再循 環方式進行,而另外的反應器則以單一通路來操作。所用 之反應器數目係視所需轉化率而定’典型地爲2至1 0個 ,特別地是2至4個。 每一反應器可以絕熱或實質上等溫(亦即溫度的升高 小於1 〇 °c )的方式進行。過高的溫度上升應避免,因爲 對平衡會有不利效應(再解離作用)。 -18- (15) (15)200418769 本發明方法進行時之溫度係在3 0至1 2 0 °C範圍內。 溫度較低時反應速率太慢,在較高溫度下則會使二級反應 ’如_烴之寡聚化作用的發生率增加。所以,反應器較佳 地係在3 5至7 〇它下操作。不同反應器的溫度在指定範圍 內可相同或不同。在一方法變數中,溫度是隨著流動方向 從一個反應器到另一反應器依序減低。此乃因爲溫度降低 時平衡的位置就變得較爲有利,依此方式便可達到較高的 轉化率。然而,若使溫度降低至3 5它以下就不適當,因 爲那時之反應對工業過程而言就顯得太慢。 舉例說明之,在有四個反應器連續接連的情況下,較 可行的是使第一個在平均溫度6 7至7 0 °C下反應,第二個 在平均溫度53至561下,第三個在平均溫度42至46 °C 下,而第四個在平均溫度42至38 °C下。 在各別的反應溫度下,本發明之反應可在等於或高於 起始烴類混合物的蒸氣壓下進行,較佳地係在低於4 〇巴 之壓力下。爲了避免反應器內的汽化問題,此壓力應比反 應混合物之蒸氣壓高2至4巴。 異丁烯之總轉化率是視所用之觸媒形式及數量、設定 之反應條件及反應階段的數目而定。基於經濟效益’異丁 稀轉化率係維持在5 0至9 5 %,較佳地7 0至9 0 %範KI內 。同時,爲了維持高時空產量,較適當的是使用具有異丁 烯含量不小於2 0 % ’較佳地不小於4 0 %之烴類。 離開最後一個反應器之反應混合物將通過一蒸餾塔, 其是在該最後反應器之壓力或低於該壓力下,但壓力至少 -19- (16) 200418769 在1巴下運作。蒸餾頂部所得之產物係一含有未反 及”惰性”烴類(彼將與起始物質一起導入)的烴類 。底部所得之產物則是第三- 丁醇水溶液。 已分離之烴類混合物可經處理而獲得更多的產 。舉例之,若是使用提餘液I或選擇性氫化之c4 爲起始物質時,頂部產物將包含未反應異丁烯連同 烯以及異丁烷和正-丁烷。殘留之異丁烯可藉由與 應形成甲基第三-丁基醚而與此混合物分離。在殘 餘液中,直鏈丁烯也可視需要地在分離出1 一丁烯 成二一正-丁烯及彼等之高碳寡聚物。不含異丁烯 物的另一用途是再處理以產生純1 - 丁烯。 所獲得之第三-丁醇水溶液的一部份可再循環 程序中。其他部份則照樣地使用或經處理而產生純 丁醇及水與第三一丁醇之共沸混合物。同時,也可 含有水及第三-丁醇之股流(其是在處理粗第三-所獲得者)再循環至第一個反應器內。 依此方式循環之第三- 丁醇的再循環因子較 0.1 至 1.7 。 可使本發明方法連續進行之具有四個反應器的 圖係顯示於圖3。一含異丁烯之烴類混合物!(如 Ϊ)、來自第一個反應器3之輸出物20及含有再循 ]8之第三-丁醇/水混合物2,以及適當的話,水 达進第一個反應器3內。部份的反應器輸出物4會 至第一個反應器3,而其他部份則與水5 一起通過 應丁烯 混合物 物價値 餾份做 直鏈丁 甲醇反 留之提 後轉化 之混合 至方法 第三一 將另一 丁醇時 佳地是 設備簡 提餘液 環股流 19將 再循環 第二個 -20- (17) (17)200418769 反應器6。反應器輸出物7將與水8 —起通過反應器9。 反應溶液1 0連同水1 1係在反應器1 2內反應。該反應器 輸出物將在塔1 4中分餾。頂部所得之產物1 5係一含有在 反應條件下呈惰性之烴類及小量未反應之異丁烯的烴類混 合物。基本上,底部產物1 6則是由第三- 丁醇及水所組 成。此產物的一部份(1 8 )將再循環至第一個反應器3內 ,而其他部份(1 7 )則照樣地使用或者在蒸餾區(未顯現 )中處理以產生第三-丁醇/水共沸混合物及/或第三-丁醇。 下列實施例係解說本發明,但並不限制其範圍,本發 明範圍係由發明說明及申請專利範圍所界定。 【實施方式】 實施例: 用於實施例1至6之提餘液股流具有如下組成份: 正—丁烷: 8.2% 異丁烷: 2 · 3 % 1 一 丁!)¾. j 0 . j % 2-丁烯(順式+反式)·· 14.2% 異丁烯: 45·〇% 提餘液中之異丁烯含量典型地係在30至60%範圍內 〇 此提餘液股流將在現存之生產設備中與水及做爲增溶 劑之再循環ΤΒΑ反應。該送入生產設備之反應器內的進 -21 - (18) 200418769Xw: water content, expressed in mass% Xb: second monobutanol content, expressed in mass% In the process of the present invention, the fibrous liquid fed to the homogeneous reactor will be lower than the largest possible 値 (line segment KM). The area of the boundary between the amount and the triangle is the homogeneous solution. When the composition of the area is as shown in Figure 1, the mixture and the bottom line are started. When the water concentration region (the line segment k / contains 45% of the experimental equation) , This equation 3b) the water content is based on the water solubility of the third-butanol-12-(9) (9) 200418769 and the isobutylene-containing hydrocarbon mixture to calculate the possible water amount of 3 0-80%, Especially 50 to 80%, 60 to 80% or 70 to 80%, which can be measured by simple experiments or calculated using equation 3a / b. According to the present invention, the The isobutene concentration is higher than 10% by mass, particularly higher than 5% by mass. Therefore, the reactor feeds are those which are preferably at a temperature of 35 ° C to 70 ° C. A mixture whose components in the range of C degrees do not move at all from the thermal equilibrium of isobutylene, water, and TBA. As for the starting material, it is feasible to use isobutene-containing hydrocarbon mixtures or other pure isobutene. The isobutene-containing hydrocarbon mixture preferably does not include any acetylene derivatives, diene less than 5,000 Ppm, and may not contain any other olefins having one or more branches on the olefinic double bond. For example, the isobutene-containing mixtures for industrial use include light petroleum alcohol fractions from refineries, C4 fractions from FCC units or steam crackers, Fischer-Tropsch: mixtures for synthesis, butane dehydrogenation reaction mixtures, Mixtures of skeletal isomerization reactions of linear butenes, olefin metathesis reactions or other industrial processes. These mixtures can be used in the method of the invention after removing several unsaturated compounds. For example, a suitable isobutene mixture can be obtained from the 01 residue of a steam cracker by extracting butadiene or selectively hydrogenating it to linear butene. This feed (the raffinate I or the selectively hydrogenated C4 cracked fraction) contains n-butane, isobutane, three linear butenes, and isobutene, and is the preferred starting material for the process of the present invention. -13- (10) 200418769 Raffinate I, hydrogenated c4 cracked fractions or similar mixtures can be selectively hydroisomerized in the reaction tower to obtain isobutene (probably 1-butene) and isobutene The concentration of buto isobutene in the hydrocarbon mixture can be in a wide range. However, for the economic benefit of the method, it is more appropriate to use a mass ratio different from 30%, preferably greater than 40%. As for the catalyst, it can be used. An acidic ion exchanger that is insoluble in the starting product mixture. Under reaction conditions, it is not possible to introduce acidic products into the product due to hydrolysis or other reactions. This will result in a yield in the processing of the reaction mixture. A suitable catalyst must be able to catalyze the hydration reaction of isobutene. It must be able to catalyze unbranched olefins. Furthermore, they must also be completely oligomerized with olefins. A suitable catalyst is a solid ion having a sulfonic acid group. For example, ion exchange resins which are more effectively used include resins of aldehyde condensates or polymerized oligomers of aromatic vinyl compounds. Examples of aromatic vinyls that can be used for the preparation of oligomers for polymerization are: styrene, vinyltoluene, vinylnaphthalene, vinylmethylstyrene, vinylchlorobenzene, vinylxylene and, in particular, these The oligomer combined with styrene and divinylbenzene can be used as an ion exchanger with sulfonic acid group. These resins can be prepared in the form of gels, macroporosity, or hydrocarbon-like components. In this way, the mixture of the alkane varies within the range. Hydrocarbon mixtures with high butene concentrations are also insoluble. This catalyst must be mixed because of the loss. However, it is almost impossible to catalyze the exchange of resins by using phenol / sulfonation to obtain compounds such as real ethylbenzene and vinylbenzene. The precursor of the formed polyresin sponge. -14-(11) (11) 200418769 In particular, suitable resins in the form of styrene-diethylbenzenebenzene can be purchased under the following trade names: D u 〇] ite C 2 0, D u ο 1 it C 2 6, A mber 1 yst 1 5, A mbel · 1 yst 3 5, A mber 1 ite IR — 1 2 0, amber 1 ite 2 0 0, Dowex 50, Lewatit SPC 118, LewatitSPC 108, Lewatit K2611 (taken from Bayer), Lewatit K2631, OC 1501 (taken from Bayer), Lewatit K2621, Lewatit K2629, Le watit K24 31. The characteristics of these resins, in particular, specific area, porosity, stability, swelling or shrinkage, and exchange capacity can be changed by the preparation method used. In the present invention, the ion exchange resin is preferably used in the form of their fluorene. And its ion exchange capacity is preferably 2 to 7 equivalents / kg, especially 3 to 6 equivalents / kg (relative to wet commercial resins). It is preferable to use macroporous resins, such as Lewatit S PC 1 1 8. Lewatit SPC 108 or Lewatit K2631. The particle size of industrial resins is usually in the range of 0.5 to 2 mm. The particle size distribution can be narrow or wide. For example, an ion exchange resin (monodisperse resin) having a very uniform particle size can be used. When several reactors are used, resins with the same or different particle sizes (particle size distribution) or can be installed. This ion exchange resin may also use a shaped object, such as a cylinder, a ring, or a ball, as needed. If it is through the reactor at a high linear rate, it is more advantageous to use -15- (12) (12) 200418769 with a larger particle size to reduce the low pressure drop. If it is passed through the reactor at a low linear rate, it is more advantageous. Use smaller particle sizes to achieve the most appropriate conversion. In order to avoid the elimination of acidic groups from the resin during operation (this will make the processing process in the method not operate normally), and to maintain high catalyst activity after a long period of operation, this ion exchange resin can be pretreated, for example Rinse first with water, TBA or TBA / water mixture in the temperature range of 40 to 120 ° C. Since water is consumed through the hydration of isobutylene, the water content in the reaction mixture is reduced. In order to obtain the highest possible yields and reaction rates, further water infeed is necessary. When using only one reactor, this can be achieved by feeding water at various points along the tubular reactor. However, in practice, it is difficult to accurately introduce the required amount of water and immediately form a homogeneous solution. Therefore, it is technically simple and advantageous to continuously connect several reactors and introduce the required amount of water between the reactors. As the tertiary-butanol concentration increases after the reaction, the water solubility in the reactor output will also increase. Therefore, more water can be added between the reactors than has been reacted by the previous reactor. According to the present invention, the water that has been consumed can be replaced, and furthermore, only less water is needed than the solubility limit is reached. In the case of the last reactor, this may deviate depending on the needs, so the final reactor can be supplied with a water-saturated solution or a mixture containing more water than the corresponding solubility. The advantage of this method is that when the reactor volume is sufficiently large, the isobutene conversion will increase slightly at low isobutene concentrations-16- (13) (13) 200418769; but it also has the disadvantage that the third one The alcohol / water ratio is less helpful, especially when a high proportion of anhydrous tertiary butanol is desired. The amount of water in the starting material mixture is derived from the tertiary butanol / water solution (except the start-up phase), which can Obtained during the process itself. If this amount of water is insufficient, additional water must be fed. Pure water or a mixture of water and tertiary butanol can be introduced between the reactors. It is also feasible to recycle a portion of the TBA obtained after the reaction to prepare a homogeneous mixture with water and an isobutylene-containing hydrocarbon mixture. Water can be introduced between the reactors to change the reaction equilibrium. According to the invention, only a homogeneous solution can be fed into the reaction. Therefore, the water or water / tertiary-butanol solution must be mixed with the initial hydrocarbon mixture or reactor output so that it can form a homogeneous phase before entering the first or subsequent reactor Solution. This can be done, for example, with a fixed mixer. The required water concentration in the reactor feed can be set by measuring the amount of the individual streams after measuring the water content of the individual streams. The process of the present invention can be carried out in a batch or continuous operation in a reactor conventionally used for solid / liquid contact reactions. When using a continuously operating flow reactor ' a fixed bed is usually used, but it is not necessary. If a fixed-bed flow reactor is used, the liquid can flow up or down. Generally, it is better to flow down. Furthermore, the reactor can be operated in a product recycle or single path manner. When using a tubular reactor, the ratio of the length of the catalyst bed to the diameter can vary depending on the geometric space of the reactor or the degree of its decoration. Therefore, under a certain amount of catalyst and space velocity (L H S V), different evacuation tube speeds will be reached. In a reactor where a portion of the reaction mixture is to be recycled, it is typically operated at an exhaust tube speed of 13 to 26 meters / hour. If the reactor is operated in a single path, the evacuation tube speed is typically in the range of 1 to 13 meters per hour. Accordingly, when the reactor is operated in a product recycling manner, its catalyst space velocity (LH S V) is 0.3 to 10 h -1, particularly 1 to 5 h -1. If the reactor is operated in a single path, its space velocity is in the range of 0.1 to 5.0 h-1, especially 0.4 to 3 h_]. The process according to the invention can be carried out in one reactor or in a series of successive reactors, in particular two, three or four reactors (they have decreasing temperatures depending on the direction of flow). If the first or several reactors are carried out in a product recycling mode, the recycling factor (the ratio of the pumped amount of the entire tour to the fresh feed) can be set between 0.1 · 10. The recycling factor of the first reactor is preferably 1 to 4, especially 2 to 3.5. In a preferred method variant, the first reactor is operated in a product recirculation mode, while the other reactor is operated in a single pass. The number of reactors used depends on the required conversion, typically 2 to 10, especially 2 to 4. Each reactor can be performed in an adiabatic or substantially isothermal manner (i.e., the temperature rise is less than 10 ° C). Excessive temperature rises should be avoided because they have an adverse effect on the equilibrium (redissociation). -18- (15) (15) 200418769 The temperature at which the method of the present invention is performed is in the range of 30 to 120 ° C. The reaction rate is too slow at lower temperatures, and the incidence of secondary reactions such as hydrocarbon oligomerization increases at higher temperatures. Therefore, the reactor is preferably operated at 35 to 70 ° C. The temperature of different reactors may be the same or different within the specified range. In a process variable, the temperature decreases sequentially from one reactor to the other with the flow direction. This is because the equilibrium position becomes more favorable when the temperature decreases, and a higher conversion rate can be achieved in this way. However, it is not appropriate to lower the temperature below 35 ° C because the reaction at that time appears too slow for industrial processes. For example, in the case of four consecutive reactors, it is more feasible to make the first one react at an average temperature of 67 to 70 ° C, the second one at an average temperature of 53 to 561, and the third One was at an average temperature of 42 to 46 ° C, while the fourth was at an average temperature of 42 to 38 ° C. At the respective reaction temperatures, the reaction of the present invention can be carried out at a pressure equal to or higher than the vapor pressure of the starting hydrocarbon mixture, preferably at a pressure lower than 40 bar. To avoid vaporization problems in the reactor, this pressure should be 2 to 4 bar higher than the vapor pressure of the reaction mixture. The total conversion of isobutene depends on the form and quantity of catalyst used, the reaction conditions set and the number of reaction stages. Based on economic benefits, the isobutene conversion rate is maintained within the range of 50 to 95%, preferably within the range of 70 to 90% KI. Meanwhile, in order to maintain high space-time production, it is more appropriate to use hydrocarbons having an isobutene content of not less than 20% ', preferably not less than 40%. The reaction mixture leaving the last reactor will pass through a distillation column which is at or below the pressure of the last reactor, but with a pressure of at least -19- (16) 200418769 operating at 1 bar. The product from the top of the distillation is a hydrocarbon containing unreacted "inert" hydrocarbons which will be introduced with the starting material. The product obtained at the bottom is a tertiary-butanol aqueous solution. The separated hydrocarbon mixture can be processed to obtain more production. For example, if raffinate I or selectively hydrogenated c4 is used as the starting material, the top product will contain unreacted isobutene along with olefins as well as isobutane and n-butane. Residual isobutylene can be separated from this mixture by reacting with methyl tertiary-butyl ether. In the residual liquid, linear butene can also be used to separate 1-butene into di-n-butene and their high-carbon oligomers if necessary. Another use free of isobutylene is reprocessing to produce pure 1-butene. Part of the obtained third-butanol aqueous solution can be recycled in the process. The other parts are used as such or processed to produce an azeotropic mixture of pure butanol and water and tertiary butanol. At the same time, a stream containing water and tertiary-butanol (which is processing the crude tertiary-obtained) may also be recycled to the first reactor. The recycling factor of the third-butanol recycled in this manner is from 0.1 to 1.7. A diagram of four reactors which can carry out the process of the present invention continuously is shown in FIG. A hydrocarbon mixture containing isobutene! (E.g., Ϊ), the output 20 from the first reactor 3 and the third-butanol / water mixture 2 containing recirculation] 8 and, if appropriate, water reaches the first reactor 3. Part of the reactor output 4 will go to the first reactor 3, and the other part will be mixed with water 5 through the butene mixture to make the linear butyl methanol reverse retention and conversion. The third one will be another butanol. The best way is to briefly recycle the residual liquid in the loop 19. The second -20- (17) (17) 200418769 reactor 6 will be recycled. The reactor output 7 will pass through the reactor 9 together with the water 8. The reaction solution 10 and water 11 react in a reactor 12. The reactor output will be fractionated in column 14. The product 15 obtained at the top is a hydrocarbon mixture containing hydrocarbons which are inert under the reaction conditions and a small amount of unreacted isobutylene. Basically, the bottom product 16 is composed of tertiary-butanol and water. A part (1 8) of this product will be recycled to the first reactor 3, while the other part (1 7) is used as such or processed in a distillation zone (not shown) to produce a third-butadiene Alcohol / water azeotrope and / or tertiary-butanol. The following examples illustrate the invention, but do not limit its scope. The scope of the invention is defined by the invention description and the scope of patent application. [Embodiment] Examples: The raffinate streams used in Examples 1 to 6 have the following components: n-butane: 8.2% isobutane: 2 · 3% 1-butane! ) ¾. J 0. J% 2-butene (cis + trans) 14.2% isobutene: 45.0% The isobutene content in the raffinate is typically in the range of 30 to 60%. The liquid stream will react with water and recycled TBA as a solubilizer in existing production equipment. The feed into the reactor of the production equipment -21-(18) 200418769

料是用做爲實驗室實施例之進料。圖2係示意性地顯示出 所用之實驗室設備。將進料(1 )預加熱至所需溫度,再 送進在6 0 °c下以等溫方式操作之實驗室反應器(2 )內, 但實施例3及4除外,彼等是在5 5 °C下操作。此反應器 包括一具有1公分直徑及20公分長之觸媒固定床,但實 施例3及4例外’其中之長度是25公分。所用之觸媒係 H +形態的 Amberlyst 35。爲了更精密地檢視水含量之效 應,觸媒量將故意地維持很少。產物股流(3 )係藉由氣 相色層分析法來分析。各組份如正-丁烷、異丁烷、1 -丁烯、2 —丁烯(順式+反式)將與其他C4 一起表列。所 報告之組成份是立基於2 0至3 0小時後所達到之假穩定狀 態平衡下的產物輸出物。設備中之壓力是1 2巴絕對壓。 實施例 1 (根據本發明)The feed was used as feed for the laboratory example. Figure 2 shows schematically the laboratory equipment used. The feed (1) is preheated to the required temperature, and then sent to a laboratory reactor (2) which is operated isothermally at 60 ° C, except for Examples 3 and 4, which are at 5 5 Operate at ° C. This reactor includes a fixed catalyst bed having a diameter of 1 cm and a length of 20 cm, with the exception of Examples 3 and 4, where the length is 25 cm. The catalyst used was Amberlyst 35 in H + form. In order to examine the effect of water content more precisely, the amount of catalyst will be intentionally kept low. The product stream (3) was analyzed by gas chromatography analysis. Each component such as n-butane, isobutane, 1-butene, 2-butene (cis + trans) will be listed together with other C4. The reported composition is based on the output of the product at a pseudo-steady state equilibrium reached after 20 to 30 hours. The pressure in the device is 12 bar absolute. Example 1 (according to the present invention)

下表之股流數子係和圖2相同。百分比爲質量比。以 異丁烯含量來看’進料(1 )係相當於送入生產設備之第 一個反應器的進料。進料速率是〇 . 3公斤/小時。 -22- (19) 200418769 股流數字 股流名稱 質量比 2 1.87% 異丁烯 1.00% 水 1 反應器輸入物 3 3.40 % TB A 43.4 9 % 其他c4 0.23% 其他組份 20.72 % 異丁烯 0.63 % 水 3 反應器輸出物 3 4.9 2 % TBA 43.4 9 % 其他c4 0.24% 其他組份The number of streams in the following table is the same as in Figure 2. Percentages are mass ratios. In terms of isobutene content, the feed (1) is equivalent to the feed to the first reactor of the production facility. The feed rate was 0.3 kg / hour. -22- (19) 200418769 stream digital stream name mass ratio 2 1.87% isobutylene 1.00% water 1 reactor input 3 3.40% TB A 43.4 9% other c4 0.23% other components 20.72% isobutylene 0.63% water 3 reaction Device output 3 4.9 2% TBA 43.4 9% Other c4 0.24% Other components

可達成之轉化率是:5 . 3 0 %The achievable conversion rate is: 5. 30%

反應器進料中之水對互溶性通道處之以質量比爲基之 水的比例是3 5.3 9 %。 實施例 2 (比較組) 下表之股流數字係和圖2相同。百分比爲質量比。進 料(1 )係相當於送入生產設備之第一個反應器的進料。 進料速率是〇 . 3公斤/小時。 -23- (20) 200418769 股流數字 股流名稱 質量比_ 2 1.58% 2.3 1 % 1 反應器輸入物 3 2.9 6 % 42.92 % 0,23% 20.6 1 % 2.00% 3 反應器輸出物 3 4.2 5 % 42.92% 0.23% 異丁烯 水The ratio of water in the reactor feed to water based on the mass ratio in the miscible channels was 3 5.3 9%. Example 2 (comparative group) The flow numbers in the following table are the same as those in FIG. 2. Percentages are mass ratios. The feed (1) is equivalent to the feed to the first reactor of the production facility. The feed rate was 0.3 kg / hour. -23- (20) 200418769 Stream digital stream name quality ratio_ 2 1.58% 2.3 1% 1 reactor input 3 2.9 6% 42.92% 0,23% 20.6 1% 2.00% 3 reactor output 3 4.2 5 % 42.92% 0.23% isobutylene water

TB A 其他C4 他組份 異丁烯 水TB A other C4 other components isobutylene water

TB A 其他C4 組份 可達成之轉化率是:4.53% Μ舊量比爲基之 反應器進料中之水對互溶性通道處之以〃 水的比例是8 3 . 6 6 %。 實施例 3 (根據本發明) 下表之股流數字係和圖2相同。百分比爲邊里比以 其異丁烯含量來看,進料(1 )係相當於透入生產設備之 第一個反應器的進料。進料速率是〇 · 3公斤/小和。不像 其他實施例,該反應器的溫度(在生產設備之情況下)係 在5 5 °C °與其他實施例相比較時,另一不同處是觸媒床 的直徑是1公分而長度爲25公分。 -24- (21) 200418769 股流數字 股流名稱 反應器輸入物 反應器輸出物 比 15.42% 異丁烯 2.〇0% 水 4〇*21 % ΤΒ A 42·〇6% 其他c4 其他組份 1 4.54% 異丁烯 K?2% 水 41·38% ΤΒ A 42·〇5% 其他c4 0 * 3 1 % 其他組份 § 可達成之轉化率是:5.73%The conversion rate of TB A and other C4 components is: 4.53% The ratio of water to reactor-based water in the miscible channel based on the old ratio of 4.53% is 83.6%. Embodiment 3 (according to the present invention) The flow numbers in the following table are the same as those in FIG. 2. The percentage is the ratio of the side to the side. In view of its isobutene content, the feed (1) is equivalent to the feed that is penetrated into the first reactor of the production equipment. The feed rate was 0.3 kg / small sum. Unlike the other examples, the temperature of the reactor (in the case of production equipment) is 5 5 ° C. Compared with other examples, another difference is that the diameter of the catalyst bed is 1 cm and the length is 25 cm. -24- (21) 200418769 stream digital stream name reactor input reactor output ratio 15.42% isobutylene 2.00% water 4〇 * 21% TB A 42 · 〇6% other c4 other components 1 4.54 % Isobutene K? 2% water 41 · 38% TB A 42 · 〇5% other c4 0 * 3 1% other components § The conversion rate that can be achieved is: 5.73%

反應器進料中之水對互溶1生通道處之以質量比爲基之 水的比例是4 9.3 8 %。 實施例 4 (比較組) 下表之股流數字係和圖2相同。百分比爲質量比。進 料(1 )係相當於送入生產設備之第一個反應器的進料。 進料速率是0.3公斤/小時。不像其他實施例,該反應器 的溫度(在生產設備之情況下)係在5 5 t:。與其他實施 例相比較時,另一不同處是觸媒床的直徑是1公分而長度 爲25公分。 -25- (22) 200418769 股流數字 股流名稱 質量比 1 反應器輸入物 15.21% 異丁烯 3.31% 水 3 9.6 8 % TBA 41.49% 其他 C4 0.30% 其他組份 〇 反應器輸出物 14.38% 異丁烯 3.04% 水 40.77 % TBA 41.49% 其他 C 4 0.31% 其他組份The ratio of the water in the reactor feed to the water based on the mass ratio in the miscible primary channel was 4 9.3 8%. Example 4 (comparative group) The flow numbers in the following table are the same as in Figure 2. Percentages are mass ratios. The feed (1) is equivalent to the feed to the first reactor of the production facility. The feed rate was 0.3 kg / hour. Unlike the other examples, the temperature of the reactor (in the case of production equipment) is at 5 5 t :. Compared with other embodiments, another difference is that the catalyst bed has a diameter of 1 cm and a length of 25 cm. -25- (22) 200418769 stream digital stream name mass ratio 1 reactor input 15.21% isobutylene 3.31% water 3 9.6 8% TBA 41.49% other C4 0.30% other components 0 reactor output 14.38% isobutylene 3.04% Water 40.77% TBA 41.49% Other C 4 0.31% Other components

可達成之轉化率是:5.47%Achievable conversion rate is: 5.47%

反應器進料中之水對互溶性通道處之以質量比爲基之 水的比例是8 4.0 7 %。 實施例 5 (根據本發明) 下表之股流數字係和圖2相同。百分比爲質量比。以 其異丁烯含量來看,進料(1 )係相當於送入生產設備之 第一個反應器的進料,但在提餘液I中異丁烯含量是50 %質量比。進料速率是0.3公斤/小時。 -26- (23) (23)200418769 股流數字 股流名稱 質量比 2 5.3 8 % 異丁烯 1.00% 水 1 反應器輸入物 3 3.3 8 % TB A 3 9.26 % 其他c4 0.97% 其他組份 23.90 % 異丁烯 0.53% 水 3 反應器輸出物 3 5.3 2 % TB A 3 9.26 % 其他c4 0.98% 其他組份 可達成之轉化率是:5 . 8 2 % 送入反應器之進料中之水對互溶性通道處之水的比例 是 3 5 . 5 6 %。 實施例 6 (比較組) 下表之股流數字係和圖2相同。百分比爲質量比。進 料(1 )係相當於送入生產設備之第一個反應器的進料, 但在提餘液I中異丁烯含量是5 0 %質量比。進料速率是 0.3公斤/小時。 -27- (24) 200418769 股流數字 股流名稱 質量比 2 5.0 0 % 異丁烯 2.50% 水 1 反應器輸入物 3 2.8 8 % TB A 3 8.6 7 % 其他c4 0.96% 其他組份 2 3.8 3 % 異丁烯 2.13% 水 3 反應器輸出物 3 4.42 % TB A 3 8.6 7 % 其他c4 0.96% 其他組份The ratio of water in the reactor feed to water based on the mass ratio in the miscible channels was 8 4.0 7%. Embodiment 5 (according to the present invention) The flow numbers in the following table are the same as those in FIG. 2. Percentages are mass ratios. In terms of its isobutene content, the feed (1) is equivalent to the feed to the first reactor of the production facility, but the isobutene content in the raffinate I is 50% by mass. The feed rate was 0.3 kg / hour. -26- (23) (23) 200418769 stream digital stream stream name mass ratio 2 5.3 8% isobutene 1.00% water 1 reactor input 3 3.3 8% TB A 3 9.26% other c4 0.97% other components 23.90% isobutene 0.53% water 3 reactor output 3 5.3 2% TB A 3 9.26% other c4 0.98% The conversion rate achievable by other components is: 5. 8 2% water-to-miscible channels in the feed to the reactor The proportion of water in the place is 35.56%. Example 6 (comparative group) The flow numbers in the following table are the same as those in FIG. 2. Percentages are mass ratios. The feed (1) is equivalent to the feed to the first reactor of the production facility, but the isobutene content in the raffinate I is 50% by mass. The feed rate was 0.3 kg / hour. -27- (24) 200418769 stream digital stream name mass ratio 2 5.0 0% isobutene 2.50% water 1 reactor input 3 2.8 8% TB A 3 8.6 7% other c4 0.96% other components 2 3.8 3% isobutene 2.13% water 3 reactor output 3 4.42% TB A 3 8.6 7% other c4 0.96% other components

可達成之轉化率是:4.67%Achievable conversion rate is: 4.67%

反應器進料中之水對互溶性通道處之以質量比爲基之 水的比例是91 .09%。 實施例 7 (根據本發明) 下表之股流數字係和圖2相同。百分比爲質量比。以 其異丁烯含量來看,進料(1 )係相當於送入生產設備之 第一個反應器的進料,但在提餘液I中異丁烯含量是60 %質量比。進料速率是0.3公斤/小時。 -28- (25) 200418769 股流數字 股流名稱 質量比 3 2.67 % 異丁烯 1.21% 水 1 反應器輸入物 3 3.3 2 % TB A 3 1.50% 其他c4 1.30% 其他組份 3 0.5 2 % 異丁烯 0.52% 水 3 反應器輸出物 36.14% TB A 3 1.50% 其他c4 1.32% 其他組份The ratio of water in the reactor feed to water based on the mass ratio in the miscible channels was 91.09%. Embodiment 7 (according to the present invention) The flow numbers in the following table are the same as those in FIG. 2. Percentages are mass ratios. In terms of its isobutene content, the feed (1) is equivalent to the feed to the first reactor of the production facility, but the isobutene content in the raffinate I is 60% by mass. The feed rate was 0.3 kg / hour. -28- (25) 200418769 Stream digital stream name quality ratio 3 2.67% isobutylene 1.21% water 1 reactor input 3 3.3 2% TB A 3 1.50% other c4 1.30% other components 3 0.5 2% isobutylene 0.52% Water 3 reactor output 36.14% TB A 3 1.50% other c4 1.32% other components

可達成之轉化率是:6.58%Achievable conversion rate is: 6.58%

反應器進料中之水對互溶性通道處之以質量比爲基之 水的比例是4 2.8 8 %。 實施例 8 (根據本發明) 下表之股流數字係和圖2相同。百分比爲質量比。進 料(1 )係相當於送入生產設備之第一個反應器的進料, 但在提餘液I中異丁烯含量是60 %質量比。進料速率是 0.3公斤/小時。 -29- (26) 200418769 股流數字 股流名稱 質量比 3 2.3 4 % 異丁烯 2.20% 水 1 反應器輸入物 3 2.99 % TB A 3 1.18% 其他c4 1.29% 其他組份 3 0.63 % 異丁烯 1.66% 水 3 反應器輸出物 3 5.24 % TB A 3 1.18% 其他c4 1.29% 其他組份The ratio of water in the reactor feed to water based on the mass ratio in the miscible channels was 4 2.88%. Embodiment 8 (according to the present invention) The flow numbers in the following table are the same as those in FIG. 2. Percentages are mass ratios. The feed (1) is equivalent to the feed to the first reactor of the production facility, but the isobutene content in the raffinate I is 60% by mass. The feed rate was 0.3 kg / hour. -29- (26) 200418769 Stream digital stream name quality ratio 3 2.3 4% isobutylene 2.20% water 1 reactor input 3 2.99% TB A 3 1.18% other c4 1.29% other components 3 0.63% isobutylene 1.66% water 3 Reactor output 3 5.24% TB A 3 1.18% other c4 1.29% other components

可達成之轉化率是:5.28%Achievable conversion rate is: 5.28%

反應器進料中之水對互溶性通道處之以質量比爲基之 水的比例是7 9.7 2 %。 實施例 9 (比較組) 下表之股流數字係和圖2相同。百分比爲質量比。進 料(1 )係相當於送入生產設備之第一個反應器的進料, 但在提餘液I中異丁烯含量是60%質量比。進料速率是 0.3公斤/小時。 -30- (27) 200418769 股流數字 股流名稱 質量比 3 2.17% 異丁烯 2.71 % 水 1 反應器輸入物 3 2.8 2 % TB A 3 1.02% 其他c4 1.28% 其他組份 30.6 1 % 異丁烯 2.21 % 水 3 反應器輸出物 3 4.8 8 % TB A 3 1.02% 其他c4 1 1.29% 其他組份The ratio of water in the reactor feed to water based on the mass ratio in the miscible channels was 7 9.7 2%. Example 9 (comparative group) The flow numbers in the following table are the same as those in FIG. 2. Percentages are mass ratios. The feed (1) is equivalent to the feed to the first reactor of the production facility, but the isobutene content in the raffinate I is 60% by mass. The feed rate was 0.3 kg / hour. -30- (27) 200418769 Stream digital stream name mass ratio 3 2.17% isobutylene 2.71% water 1 reactor input 3 2.8 2% TB A 3 1.02% other c4 1.28% other components 30.6 1% isobutylene 2.21% water 3 Reactor output 3 4.8 8% TB A 3 1.02% other c4 1 1.29% other components

可達成之轉化率是:4.8 7 %Achievable conversion rate: 4.8 7%

反應器進料中之水對互溶性通道處之以質量比爲基之 水的比例是9 8 . 8 3 %。 實施例 1 〇 (比較組) 下表之股流數字係和圖2相同。百分比爲質量比。進 料(1 )係相當於送入生產設備之第一個反應器的進料, 但在提餘液I中異丁烯含量是60%質量比。進料速率是 0.3公斤/小時。 -31 _ (28) 200418769 股流數字 股流名稱 質量比 32.84 % 異丁烯 0.70% 水 1 反應器輸入物 3 3.4 9 % TBA 3 1.66% 其他c4 1.31% 其他組份 3 1.17% 異丁烯 0.20% 水 3 反應器輸出物 3 5.5 7 % TBA 3 1.66% 其他c4 1.40% 其他組份The ratio of the water in the reactor feed to the water based on the mass ratio in the miscible channels was 98.83%. Example 10 (comparative group) The flow numbers in the following table are the same as those in FIG. 2. Percentages are mass ratios. The feed (1) is equivalent to the feed to the first reactor of the production facility, but the isobutene content in the raffinate I is 60% by mass. The feed rate was 0.3 kg / hour. -31 _ (28) 200418769 Stream digital stream name quality ratio 32.84% isobutene 0.70% water 1 reactor input 3 3.4 9% TBA 3 1.66% other c4 1.31% other components 3 1.17% isobutylene 0.20% water 3 reaction Output 3 5.5 7% TBA 3 1.66% other c4 1.40% other components

可達成之轉化率是:5.06% 反應器進料中之水對互溶性通道處之的比例是24.79The achievable conversion rate is: 5.06% The ratio of water in the reactor feed to the miscible channels is 24.79

各別比較實施例1與2、實施例3與4、實施例5與 6以及比較實施例7、8和9可顯示出,利用最低水含量 之實施例可使異丁烯生成T B A之反應有最高的轉化率。 比較實施例7、8及10則顯示,當水含量低至互溶性 通道處之水質量比率的至少30%此一要求限度時,可達 到之轉化率會再次地降低。 【圖式簡單說明】 -32- (29) 200418769 圖1係以三角形座標系統 (〇至100質量%之座標 )顯示水、第三-丁醇及含異丁烯之烴類混合物的相圖。 圖2示意性地顯示本案實施例中所用實驗宝設備。 圖3爲可使本發明方法連續進行之具有四個反應器的 設備簡圖。 主要: 元件 對 照 表 1 進 料 2 實 驗 室 反 應 器 3 產 物 股 流 1 含 異 丁 烯 之 烴 類 混 合 物 2 第 二 — 丁 醇 / 水 混 合 物 3 第 一 個 反 應 器 4 反 應 器 輸 出 物 5 水 6 第 二 個 反 應 器 7 反 應 器 輸 出 物 8 水 9 反 應 器 10 反 應 溶 液 11 水 12 反 應 器 13 反 應 器 輸 出 物 14 塔Comparing Examples 1 and 2, Examples 3 and 4, Examples 5 and 6, and Comparative Examples 7, 8 and 9, respectively, shows that the example with the lowest water content allows the highest reaction of isobutylene to TBA. Conversion rate. Comparative Examples 7, 8 and 10 show that when the water content is as low as the required limit of at least 30% of the water mass ratio at the miscible channels, the attainable conversion rate decreases again. [Schematic description] -32- (29) 200418769 Figure 1 is a phase diagram showing water, tertiary-butanol, and isobutene-containing hydrocarbon mixtures in a triangular coordinate system (coordinates of 0 to 100% by mass). Fig. 2 schematically shows the experimental treasure equipment used in the embodiment of the present case. Fig. 3 is a simplified diagram of an apparatus having four reactors which enables the process of the present invention to be carried out continuously. Main: Component comparison table 1 feed 2 laboratory reactor 3 product stream 1 isobutene-containing hydrocarbon mixture 2 second-butanol / water mixture 3 first reactor 4 reactor output 5 water 6 second Reactor 7 Reactor output 8 Water 9 Reactor 10 Reaction solution 11 Water 12 Reactor 13 Reactor output 14 Tower

-33- (30) 200418769 15 頂部產 16 底部產 17 另一部 18 再循環 19 水 20 輸出物 物 物 份之底部產物 股流 -34-33- (30) 200418769 15 Top product 16 Bottom product 17 Another part 18 Recycling 19 Water 20 Output product Content Bottom product Stream -34

Claims (1)

200418769 ⑴ 拾、申請專利範圍 1 . 一種供製備第三-丁醇之方法,彼係藉在3 0至 1 20 °C下於一酸性離子交換樹脂上使一含有水、第三—丁 醇及含異丁烯之烴類混合物的均相反應混合物反應,其中 ’該均相反應混合物在反應初始時含有高於1 G %質量比 之異丁烯’及3 0至8 0 %以反應混合物之水溶解度爲基礎 時可行水量的水。 2 ·如申請專利範圍第1項之方法,其中該經由反應 所得之第三-丁醇的一部份將再循環以製備該均相反應混 合物。 3 .如申請專利範圍第2項之方法,其中用於使該經 由反應所得之第三- 丁醇再循環的再循環因子係0 · 1至 1.7° 4 ·如申請專利範圍第1項之方法,其中該反應係在 多個連續接連之反應器內進行。 5 ·如申請專利軺圍第1項之方法,其中水係在該等 反應器之間導入。 6.如申請專利範圍第1至5項中任〜項之方法,其 中該均相反應混合物之水含量係最大量的5 〇至8 0 %。 7 ·如申請專利範圍第1至5項中任一項之方法,其中 該等連續接連之反應器係依流動方向使溫度遞減。200418769 拾 Application, patent application scope 1. A method for preparing tertiary-butanol, which is prepared by using an acidic ion-exchange resin containing water, tertiary-butanol and Homogeneous reaction mixture reaction of isobutylene-containing hydrocarbon mixtures, where 'the homogeneous reaction mixture contains more than 1 G% isobutene by mass at the beginning of the reaction' and 30 to 80% based on the water solubility of the reaction mixture The amount of water available. 2. The method according to item 1 of the patent application scope, wherein a part of the third-butanol obtained through the reaction is recycled to prepare the homogeneous reaction mixture. 3. The method according to item 2 of the patent application, wherein the recycling factor used to recycle the third-butanol obtained by the reaction is 0 · 1 to 1.7 ° 4 · The method according to item 1 of the patent application In which, the reaction is performed in a plurality of successively connected reactors. 5. The method according to item 1 of the patent application, wherein the water system is introduced between the reactors. 6. The method according to any one of items 1 to 5 of the scope of patent application, wherein the water content of the homogeneous reaction mixture is 50 to 80% of the maximum amount. 7. The method according to any one of claims 1 to 5, wherein the successively connected reactors decrease the temperature in accordance with the flow direction.
TW092135452A 2002-12-19 2003-12-15 Process for preparing tert-butanol TW200418769A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10259413 2002-12-19
DE10330710A DE10330710A1 (en) 2002-12-19 2003-07-08 Process for the preparation of tert-butanol

Publications (1)

Publication Number Publication Date
TW200418769A true TW200418769A (en) 2004-10-01

Family

ID=32403935

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092135452A TW200418769A (en) 2002-12-19 2003-12-15 Process for preparing tert-butanol

Country Status (3)

Country Link
AT (1) ATE455744T1 (en)
DE (2) DE10330710A1 (en)
TW (1) TW200418769A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10338581A1 (en) 2003-08-22 2005-03-17 Oxeno Olefinchemie Gmbh Process for producing tert-butanol
DE102004030943B4 (en) * 2004-06-26 2013-10-02 Evonik Oxeno Gmbh Process for the preparation of tert-butanol from isobutene-containing hydrocarbon mixtures
DE102011005608A1 (en) 2011-03-16 2012-09-20 Evonik Oxeno Gmbh Mixed oxide compositions and processes for the preparation of isoolefins

Also Published As

Publication number Publication date
DE50312354D1 (en) 2010-03-11
DE10330710A1 (en) 2004-07-01
ATE455744T1 (en) 2010-02-15

Similar Documents

Publication Publication Date Title
KR101157813B1 (en) Process for preparing tert-butanol from isobutene-containing hydrocarbon mixtures
CA2436329C (en) Oligomerization of isobutene in n-butenic hydrocarbon streams
US7026519B2 (en) Obtaining tert-butanol
JP4251770B2 (en) Method for oligomerizing isobutylene
US8143468B2 (en) Process for preparing 3-methylbut-1-ene
JPS5857411B2 (en) Method for producing pure methyl tert-butyl ether
JP2007176942A (en) Method for producing 1-butene from industrial mixture of 4c hydrocarbons
JPH01213248A (en) Production of ether
PL206182B1 (en) Method for the production of isobutene from commercial methyl tert-butyl ether
JP4292072B2 (en) Production of t-butanol
EP2684858B1 (en) Method for preparing high purity isobutene using glycolether
KR100513915B1 (en) Process for the preparation of tert-butyl alcohol
CN103785482A (en) Olefin isomerization catalyst passivation treatment method
JP2020066631A (en) Method for oligomerizing olefins at stream where olefin content decreases
TW200418769A (en) Process for preparing tert-butanol
KR101088407B1 (en) Method for producing tert-butanol by means of reactive rectification
JPH0342250B2 (en)
RU2177930C1 (en) Alkene oligomers production process
JPS6058893B2 (en) Method for producing tertiary alcohol
KR102211625B1 (en) Method for preparing isobutene oligomer
KR0127863B1 (en) Process for diisobutene with high purity
JP3757969B2 (en) Production method of tertiary alcohol