WO2023189992A1 - 作業機 - Google Patents

作業機 Download PDF

Info

Publication number
WO2023189992A1
WO2023189992A1 PCT/JP2023/011388 JP2023011388W WO2023189992A1 WO 2023189992 A1 WO2023189992 A1 WO 2023189992A1 JP 2023011388 W JP2023011388 W JP 2023011388W WO 2023189992 A1 WO2023189992 A1 WO 2023189992A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
fan
rotation speed
cooling
cooled
Prior art date
Application number
PCT/JP2023/011388
Other languages
English (en)
French (fr)
Inventor
準起 伊藤
大樹 丹波
拓真 佐井
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Publication of WO2023189992A1 publication Critical patent/WO2023189992A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio

Definitions

  • the present invention relates to working machines such as excavating machines (backhoes).
  • a working machine such as a swing-type excavating machine (backhoe) disclosed in Patent Document 1 has a radiator having an electric radiator fan for cooling cooling water for cooling an electric motor, etc., and a radiator for cooling hydraulic oil.
  • the oil cooler is equipped with an electric oil cooler fan.
  • Patent Document 1 does not consider a specific method of controlling the radiator fan and oil cooler fan.
  • the present invention has been made to solve the problems of the prior art described above, and aims to reduce noise, reduce power consumption, and prevent overcooling in a working machine equipped with an electric fan. do.
  • a working machine includes an electric motor, a working device driven using power of the electric motor, an operating device for operating the working device, and an operating device for operating the working device by the operating device.
  • an operation lock device that can be switched between a permission position that permits operation and a prohibition position that prohibits operation of the work device by the operation position; a cooler having an electric cooling fan; and a cooling object cooled by the cooler.
  • a temperature detection device that detects a cooling target temperature that is a temperature of
  • a control device that controls a fan rotation speed that is a rotation speed of the cooling fan according to the cooling target temperature detected by the temperature detection device
  • the control device changes the characteristic of the fan rotation speed with respect to the cooling target temperature depending on whether the operation lock device is in the permission position or the prohibition position.
  • the work machine includes a storage device that stores a plurality of fan control maps showing characteristics of the fan rotation speed with respect to the cooling target temperature, and the plurality of fan control maps include a first map and a second map that are different from each other.
  • the control device controls the rotational drive of the cooling fan based on the first map when the operation lock device is in the prohibited position, and controls the rotational drive of the cooling fan based on the first map when the operation lock device is in the permitted position.
  • the rotational drive of the cooling fan may be controlled based on two maps.
  • the first map may be configured to switch the fan rotation speed between 0 and a predetermined first fan rotation speed depending on the cooling target temperature.
  • the first map determines the fan rotation speed when the temperature of the object to be cooled increases from a value lower than a predetermined first rotation start-up temperature to the first rotation start-up temperature when the fan rotation speed is 0. is switched to the first fan rotation speed, and while the fan rotation speed is at the first fan rotation speed, the value of the cooling target temperature is reduced to a predetermined first rotation fall temperature that is lower than the first rotation start-up temperature.
  • the fan rotation speed may be configured to be switched to 0 when the fan rotates.
  • the second map determines the fan rotation speed when the temperature of the object to be cooled rises from a value lower than a predetermined second rotation start-up temperature to the second rotation start-up temperature when the fan rotation speed is 0. is set to a value larger than 0, and if the value of the temperature to be cooled is equal to or higher than the first specified temperature, which is set higher than the second rotation start-up temperature, the fan rotation speed is set to a predetermined value. If the temperature to be cooled is equal to or higher than the second rotation start-up temperature and lower than the first specified temperature, the fan rotation speed is set to a value lower than the second fan rotation speed.
  • the fan rotation speed may be lowered to zero at times.
  • the second map is configured to change the fan rotation speed to the second temperature when the value of the temperature to be cooled is lower than the second specified temperature, which is set to a value higher than or equal to the second rotation start-up temperature and lower than the first specified temperature.
  • the fan rotation speed is set to a constant value lower than the second fan rotation speed, and when the value of the temperature to be cooled is equal to or higher than the second specified temperature and lower than the first specified temperature, the fan rotation speed is set to the second fan rotation speed. It may be configured such that the higher the temperature to be cooled, the higher the temperature is set within a range of less than or equal to 0.
  • the plurality of fan control maps include a third map, and the control device controls the rotation of the electric motor when the operation lock device is in the permission position and the operation device is not operated for a predetermined period of time.
  • the cooling fan is controlled based on the third map, and the third map is such that the temperature of the object to be cooled is set to a predetermined third stand when the fan rotation speed is 0.
  • the fan rotation speed is switched to a predetermined auto-idling rotation speed, and while the fan rotation speed is at the auto-idling rotation speed, the cooling target is cooled.
  • the fan rotation speed may be configured to be switched to 0 when the temperature value decreases to a predetermined third rotation fall temperature that is lower than the third rotation start-up temperature.
  • the third map may be the same as the first map.
  • the object to be cooled by the cooler is a refrigerant for cooling the equipment to be cooled mounted on the working machine, and the working equipment is equipped with an abnormal high temperature detection device for detecting an abnormally high temperature of the equipment to be cooled,
  • the control device controls the cooling fan to The fan may be rotated at a third fan rotation speed that is higher than the second fan rotation speed.
  • the control device controls the cooling fan when the value of the temperature to be cooled decreases to a fourth specified temperature that is lower than the third specified temperature while the cooling fan is rotating at the third fan rotation speed. Control of the rotation speed may be returned to control based on the second map.
  • the second map shows the fan rotation speed when the value of the temperature to be cooled increases to a fourth rotation start-up temperature higher than the first specified temperature while the fan rotation speed is the second fan rotation speed. is set to a fourth fan rotation speed that is higher than the second fan rotation speed, and when the fan rotation speed is the fourth fan rotation speed, the value of the cooling target temperature is lower than the fourth rotation start-up temperature.
  • the fan rotation speed may be configured to be reduced to the second fan rotation speed when the fan rotation speed decreases to a predetermined fourth rotation drop temperature higher than the first specified temperature.
  • the plurality of fan control maps include a fourth map, and the fourth map ranges from a value where the temperature of the object to be cooled is less than the second rotation start-up temperature when the fan rotation speed is 0 to the second rotation start-up temperature.
  • the fan rotation speed is set to a value larger than 0, and when the value of the temperature to be cooled is equal to or higher than the first specified temperature, the fan rotation speed is set to the second fan rotation speed.
  • the fan rotation speed is set to a predetermined fifth fan rotation speed.
  • the controller is configured to control the cooling fan based on the second map when the rotation speed of the electric motor is set to a high value, and to reduce the rotation speed of the electric motor to The cooling fan may be controlled based on the fourth map when the map is set to a low value.
  • the fourth map shows the fan rotation speed when the value of the temperature to be cooled rises to a fourth rotation start-up temperature higher than the first specified temperature while the fan rotation speed is the fifth fan rotation speed. is set to a sixth fan rotation speed that is higher than the fifth fan rotation speed, and when the fan rotation speed is the sixth fan rotation speed, the value of the cooling target temperature is lower than the fourth rotation start-up temperature.
  • the fan rotation speed may be configured to be reduced to the fifth fan rotation speed when the fan rotation speed decreases to a predetermined fourth rotation drop temperature higher than the first specified temperature.
  • the cooler is a radiator for cooling cooling water that cools equipment including the electric motor
  • the cooling fan is a radiator fan provided in the radiator
  • the temperature detection device is configured to detect the temperature of the object to be cooled.
  • the temperature of the cooling water may be detected as follows.
  • the cooler is a radiator for cooling cooling water that cools equipment including the electric motor
  • the cooling fan is a radiator fan provided in the radiator
  • the temperature detection device is configured to detect the temperature of the object to be cooled.
  • the temperature of the cooling water may be detected as follows.
  • the work machine includes a hydraulic pump driven by the electric motor, and a hydraulic actuator driven by the hydraulic pressure of hydraulic oil discharged by the hydraulic pump, and the cooler is configured to cool the hydraulic oil.
  • the cooling fan may be an oil cooler fan provided in the oil cooler, and the temperature detection device may detect the temperature of the hydraulic oil as the temperature to be cooled.
  • the work machine includes a hydraulic pump driven by the electric motor, and a hydraulic actuator driven by the hydraulic pressure of hydraulic oil discharged by the hydraulic pump, and the cooler is configured to cool the hydraulic oil.
  • the cooling fan may be an oil cooler fan provided in the oil cooler, and the temperature detection device may detect the temperature of the hydraulic oil as the temperature to be cooled.
  • the work machine includes a hydraulic pump driven by the electric motor and a hydraulic actuator driven by hydraulic pressure of hydraulic oil discharged by the hydraulic pump, and the cooler includes equipment including the electric motor. a radiator for cooling cooling water that cools the hydraulic fluid; and an oil cooler for cooling the hydraulic oil; a radiator fan provided in the radiator as the cooling fan; and an oil cooler fan provided in the oil cooler.
  • the temperature detection device detects the temperature of the cooling water and the temperature of the hydraulic oil as the temperature to be cooled, and the storage device stores characteristics of the rotation speed of the radiator fan with respect to the temperature of the cooling water.
  • the control device stores a plurality of fan control maps for the radiator fan indicating characteristics of the rotation speed of the oil cooler fan with respect to the temperature of the hydraulic oil; controls the rotation speed of the radiator fan based on a plurality of fan control maps for the radiator fan, and controls the rotation speed of the oil cooler fan based on a plurality of fan control maps for the oil cooler fan. Good too.
  • the rotation of the cooling fan can be controlled according to the switching position of the operation locking device, so it is possible to reduce noise, reduce power consumption, and prevent overcooling.
  • FIG. 3 is a diagram showing a first map group.
  • 5 is a flowchart for controlling a cooling fan based on a first map group.
  • 5 is a flowchart for controlling a cooling fan based on a first map group.
  • It is a figure showing a 2nd map group.
  • 7 is a flowchart for controlling a cooling fan based on a second map group.
  • 7 is a flowchart for controlling a cooling fan based on a second map group.
  • 7 is a flowchart for controlling a cooling fan based on a second map group.
  • FIG. 3 is an overall side view of the work machine.
  • FIG. 2 is a perspective view showing the right rear portion of the working machine excluding the traveling device and the working device.
  • FIG. 2 is a perspective view showing the structure inside the hood of the working machine.
  • the working machine 1 is a swing-type excavating working machine called a backhoe.
  • the work machine 1 includes a machine body (swivel base) 2, a traveling device 10, a work device 20, and the like.
  • the body 2 is mounted on the upper part of the traveling device 10 via a vertical pivot shaft (not shown). As shown in FIG. 7, it is mounted so as to be rotatable relative to the traveling device 10 in the horizontal direction about the vertical axis X of this pivot shaft.
  • the longitudinal direction refers to the longitudinal direction of the machine body 2, regardless of the relative rotational position of the traveling device 10 with respect to the machine body 2.
  • an arrow F extends toward the front of the fuselage 2.
  • This direction corresponds to the direction of the horizontal line of sight when the operator seated in the driver's seat 4 shown in FIG. 7 faces forward.
  • the rear is in the horizontal direction exactly opposite to the arrow F.
  • the left-right direction refers to the left-right direction of the machine body 2 (width direction of the machine body 2), regardless of the relative rotational position of the traveling device 10 with respect to the machine body 2.
  • an arrow L extends to the left of the aircraft body 2.
  • the arrow L extends from the starting point of the arrow F in a direction to the left of the arrow F.
  • the direction of this arrow L corresponds to the horizontal left direction for the operator sitting in the driver's seat 4.
  • the right side is the horizontal direction directly opposite to the arrow L.
  • a driver's seat 4 on which an operator (worker) is seated, and a protective structure 6 that protects the driver's seat 4 from the front, back, left and right, and above are provided on the body 2 of the work machine 1.
  • the protective structure 6 is a cabin.
  • the protective structure 6 is a canopy.
  • a transparent portion (so-called window) is provided on each side of the protective structure 6 so that the surroundings can be viewed from the driver's seat 4.
  • the protective structure 6 partitions an interior space in which the driver's seat 4 is provided from the outside.
  • An operating device 5 for operating the working machine 1 is provided around the driver's seat 4 inside the protective structure 6. The operator can operate the operating device 5 while seated in the driver's seat 4.
  • the traveling device 10 will be described assuming that the traveling device 10 and the aircraft body 2 are in the same longitudinal direction.
  • the traveling device 10 includes a traveling frame (truck frame) 11 and a pair of left and right traveling mechanisms 12.
  • the body 2 is supported on the upper part of the traveling frame 11.
  • the illustrated traveling mechanism 12 is a crawler type traveling mechanism, it may be a tire (wheel) type traveling mechanism, for example.
  • Each traveling mechanism 12 is provided on the left side and right side of the traveling frame 11, respectively.
  • Each traveling mechanism 12 includes an idler 13, a drive wheel (drive sprocket) 14, a plurality of rolling wheels 15, an endless crawler belt 16, and each traveling motor ML, MR.
  • the idler 13 is arranged at the front of the traveling frame 11.
  • a drive wheel (drive sprocket) 14 is arranged at the rear of the traveling frame 11.
  • the plurality of rolling wheels 15 are provided between the idler 13 and the drive wheel 14.
  • the crawler belt 16 is wound around the idler 13, the drive wheel 14, and the wheel 15.
  • the left travel motor ML is included in the travel mechanism 12 provided on the left side of the travel frame 11.
  • the right travel motor MR is included in a travel mechanism 12 provided on the right side of the travel frame 11.
  • Travel motors ML and MR are hydraulic motors.
  • respective traveling motors ML and MR are provided on the same axis as each drive wheel 14, and their output shafts are directly connected to the rotation center axis of the drive wheels 14.
  • a transmission mechanism such as a reduction gear train may be interposed between each traveling motor ML, MR and each driving wheel 14, and does not necessarily have to be arranged on the same axis as the driving wheel 14.
  • the crawler belt 16 is driven by the rotation of the drive wheels 14 driven by the respective travel motors ML and MR, and the idler 13 and the rollers 15 are driven.
  • the traveling device 10 travels by driving the left and right crawler belts 16.
  • the output rotation speed and output rotation direction of the left and right travel motors ML and MR can be driven and controlled independently of each other.
  • the travel device 10 that is, the work implement 1 moves straight forward or backward.
  • the work machine 1 turns by providing a difference in rotational speed or a different rotational direction between the ML and MR of the left and right travel motors.
  • a dozer 18 is attached to the front of the traveling frame 11 and extends toward the front of the traveling device 10.
  • the dozer 18 swings up and down by the expansion and contraction of the dozer cylinder C5.
  • the dozer cylinder C5 is attached to the traveling frame 11.
  • Dozer cylinder C5 is a hydraulic cylinder.
  • the body 2 is rotatably supported around an axis X on a traveling frame 11 via a swing bearing 3.
  • a swing motor MT is provided inside the fuselage 2.
  • the swing motor MT is a hydraulic motor that is one type of hydraulic actuator.
  • the aircraft body 2 turns around the axis X by the power of the turning motor MT.
  • a swing bracket 24 is provided at the front of the fuselage 2 so as to be rotatable relative to the fuselage 2 in the left-right direction about a vertical axis (an axis in the vertical direction).
  • the working device 20 is supported at the front of the machine body 2 via a swing bracket 24.
  • the working device 20 will be described assuming a state in which the front-rear direction of the working device 20 coincides with the front-back direction of the machine body 2.
  • the work device 20 has a boom 21, an arm 22, and a bucket (hydraulic attachment) 23.
  • a base end portion of the boom 21 is pivotally attached to a swing bracket 24 so as to be rotatable around a horizontal axis. For this reason, the boom 21 can swing vertically and longitudinally relative to the fuselage 2.
  • the horizontal axis is an axis having a horizontal axis along the left-right direction of the aircraft body 2.
  • the arm 22 is pivotally attached to the tip of the boom 21 so as to be rotatable around a horizontal axis. Therefore, the arm 22 can swing in the front-back direction or the up-down direction.
  • the bucket 23 is provided at the tip of the arm 22 so as to be capable of scooping and dumping operations.
  • the rake operation and the dump operation are relative rotations of the bucket 23 with respect to the arm 22, the rake operation is a rotation toward the boom 21 and the arm 22, and the dump operation is a rotation away from the boom 21 and the arm 22. It is.
  • the working device 20 has a boom cylinder C2, an arm cylinder C3, and a bucket cylinder C4 as hydraulic actuators (hydraulic cylinders) for operating the boom 21, arm 22, and bucket 23. Further, a swing cylinder C1, which is a hydraulic actuator (hydraulic cylinder) for rotating the swing bracket 24, is provided in the body 2.
  • the swing bracket 24 swings left and right with respect to the fuselage 2 due to the expansion and contraction of the swing cylinder C1.
  • the boom 21 swings up and down or back and forth with respect to the swing bracket 24 by expansion and contraction of the boom cylinder C2.
  • the arm 22 swings up and down or back and forth with respect to the boom 21 by expansion and contraction of the arm cylinder C3.
  • the bucket 23 performs a scooping operation and a dumping operation by expanding and contracting a bucket cylinder (work implement cylinder) C4.
  • the work machine 1 drives a travel device 10 with travel motors ML and MR, drives a work device 20 and a dozer 18 with hydraulic cylinders C1 to C5, and rotates the machine body 2 with a swing motor MT to perform work such as excavation. conduct.
  • the work machine 1 includes travel motors ML and MR, a swing motor MT, and hydraulic cylinders C1 to C5 as hydraulic actuators for hydraulically operating each part.
  • hydraulic actuators for hydraulically operating each part.
  • all of these hydraulic actuators will be simply referred to as “hydraulic actuators” unless otherwise specified.
  • the work machine 1 is equipped with a hydraulic system (hydraulic circuit K) as shown in FIG. 2 in order to operate these hydraulic actuators. This will be explained in detail later.
  • a plurality of battery packs 31 and 32 are combined in the bonnet 2a formed in the rear part of the protective structure (cabin) 6 of the aircraft body 2, as shown in FIG. 9, a plurality of battery packs 31 and 32 are combined.
  • the battery unit 30 is supported by a support frame 90 and installed on the base 2c that constitutes the bottom plate of the aircraft (swivel base) 2, with the battery packs 31 and 32 juxtaposed left and right with respect to the aircraft 2. There is.
  • the bonnet 2a of the fuselage 2 bulges to the right beyond the right end of the protective structure 6. Utilizing the space within the right bulge of the bonnet 2a, as shown in FIG. An assembly 91 is installed on the base 2c.
  • a radiator 35 and an oil cooler 37 are arranged in parallel in front and back on the right side of the battery unit 30. (In this embodiment, the radiator 35 is placed in front of the oil cooler 37).
  • the radiator fan 35a of the radiator 35 and the oil cooler fan 37a of the oil cooler 37 are arranged side by side in the front and back, and both face the right side surface of the bonnet 2a.
  • An air outlet (not shown) is provided on the right side cover 2b of the bonnet 2a, and the exhaust hot air from the radiator fan 35a and oil cooler fan 37a flows through the air passage defined by the shroud 96 and the air outlet to the fuselage 2. released outside.
  • This right side cover 2b can be opened and closed as shown in FIG. 8, and by opening the right side cover 2b, it is possible to access the radiator fan 35a, oil cooler fan 37a, etc. for maintenance and the like.
  • a low-voltage battery 33 shown in FIG. 1 is arranged on the left side of the battery unit 30 inside the bonnet 2a.
  • a fan motor 35b that drives the radiator fan 35a, a fan motor 37b that drives the oil cooler fan 37a, and the like receive electric power from the low-voltage battery 33.
  • the low-voltage battery 33 can be charged with power supplemented from the battery packs 31 and 32 of the battery unit 30.
  • converters 97 including an inverter 38, a converter 40, etc., which will be described later, are provided for supplying power from the battery packs 31 and 32 to the electric motor 9 and to the low-voltage battery 33. It is being
  • electrical equipment such as the electric motor 9 that operates by receiving high voltage power from the battery packs 31 and 32 will be referred to as strong electrical equipment, and electrical equipment that operates by receiving low voltage power from the low voltage battery 33. (Electrical equipment) may be referred to as light electrical equipment.
  • FIG. 1 is a block diagram showing the electrical system of the working machine 1.
  • the work machine 1 includes a control device 7, and the control device 7 includes a CPU 7a and a storage section 7b.
  • the CPU 7a controls the operation of each part included in the working machine 1 shown in FIG.
  • the storage section 7b is composed of volatile memory, nonvolatile memory, and the like. Information, data, programs, etc. for the CPU 7a to control the operations of each section are stored in the storage section 7b in a readable and writable manner.
  • the work machine 1 is equipped with a storage device that stores such data, programs, etc. as a storage section 7b incorporated in the control device 7, but such a storage device is provided separately from the control device 7.
  • a storage device that stores such data, programs, etc.
  • it may be provided in the form of an external memory.
  • the operating device 5 has operating members such as a work operating lever 5a, a traveling operating lever 5b, an unloading lever 5c, an accelerator dial 5d, and a mode selection SW (switch) 5e.
  • the operating device 5 also includes a potentiometer, a switch, a sensor, or the like (not shown) for detecting whether or not each of the operating members 5a to 5e is operated, the operating position, or the operating amount.
  • the work operation lever 5a is a member that operates the operation of the work device 20.
  • the traveling operation lever 5b is a member that operates the traveling device 10.
  • the work operation lever 5a and the travel operation lever 5b are each shown as one block, but in reality, a plurality of levers corresponding to the work operation lever 5a may be provided, or the travel operation lever A plurality of levers corresponding to 5b may be provided.
  • these operating members may be configured other than levers, such as dials and switches.
  • the unload lever 5c has either a load position (first position, permission position) in which the operation of the hydraulic actuator is permitted or an unload position (second position, prohibition position) in which the operation of the working device 20 is not permitted (prohibited). This is a member that can be switched and operated.
  • the unload lever 5c is installed, for example, on the side of the driver's seat 4 (FIG. 1) so as to be able to swing vertically, and the lower limit position of the vertical swing range is the load position, and the upper limit position is the unload position.
  • the accelerator dial 5d is rotated to set the target rotation speed of the electric motor 9.
  • the target rotation speed of the electric motor 9 can be changed by changing the operating position, that is, the rotation angle, of the accelerator dial 5d.
  • the control device 7 calculates an instruction value for the rotation speed of the electric motor 9 according to the operation position (operation amount) of the accelerator dial 5d, and instructs the electric motor 9 to rotate at the rotation speed of the instruction value.
  • the mode selection SW 5e selects either a normal mode (first mode) for controlling the drive of the electric motor 9 or an ECO mode (ecology mode, second mode) that reduces power consumption more than the normal mode. This is a switch operated to make a selection.
  • the motor rotation speed MS of the electric motor 9 is set to the high idle rotation speed MS1 (see FIG. 5), which is the motor rotation speed for high-speed rotation.
  • the value of the high idle rotation speed MS1 may be, for example, 2200 rpm.
  • the motor rotation speed MS of the electric motor 9 is set to the low idle rotation speed MS2 (see FIG. 5), which is the motor rotation speed for low speed rotation.
  • the value of the low idle rotation speed MS2 may be, for example, 1000 rpm.
  • the electric motor 9 is driven at an idle rotation speed MS3 (see FIG. 5) that is lower than the low idle rotation speed MS2.
  • the value of the idle rotation speed MS3 may be, for example, 250 rpm.
  • a starter SW (switch) 8 is provided inside the protective structure 6 and can be operated by an operator seated in the driver's seat 4. Starter SW8 is operated to start or stop work machine 1.
  • the control device 7 By turning on the starter SW8, the control device 7 starts the electric motor 9, which is the prime mover, and starts each part of the working machine 1. Further, by turning off the starter SW 8, the control device 7 stops the electric motor 9 and stops each part of the working machine 1.
  • the electric motor 9, which is the prime mover of the working machine 1, is composed of, for example, a three-phase AC synchronous motor with an embedded permanent magnet.
  • the inverter 38 is a motor drive device that drives the electric motor 9. Inverter 38 is connected to electric motor 9 and junction box 39.
  • junction box 39 is connected to the battery unit 30, the DC-DC converter 40, and the charging port 41.
  • Junction box 39 outputs the power output from battery unit 30 to inverter 38 and DC-DC converter 40.
  • the inverter 38 converts the DC power input from the battery unit 30 via the junction box 39 into three-phase AC power, and supplies the three-phase AC power to the electric motor 9. As a result, the electric motor 9 is driven. Further, the inverter 38 can arbitrarily adjust the current and voltage of the electric power supplied to the electric motor 9.
  • the control device 7 controls the operation of the inverter 38 to drive or stop the electric motor 9.
  • the motor rotation speed detection device 42 includes a sensor, an encoder, a pulse generator, etc. that detects the rotation speed (actual rotation speed) of the electric motor 9.
  • the control device 7 controls the drive of the electric motor 9 by the inverter 38 based on the rotation speed (actual rotation speed) of the electric motor 9 detected by the motor rotation speed detection device 42 .
  • control device 7 determines that the actual rotation speed of the electric motor 9 detected by the motor rotation speed detection device 42 matches a target rotation speed (a value set by the accelerator dial 5d or a predetermined rotation speed R1 to R3 described later). As such, the drive of the electric motor 9 is controlled by the inverter 38.
  • a target rotation speed a value set by the accelerator dial 5d or a predetermined rotation speed R1 to R3 described later.
  • the DC-DC converter 40 is a voltage converter that converts the voltage of the direct current input from the battery unit 30 via the junction box 39 into a different voltage.
  • the DC-DC converter 40 is a step-down converter that converts the high voltage of the battery unit 30 to a predetermined low voltage according to the above-mentioned light electrical equipment (electrical components) included in the working machine 1.
  • the DC-DC converter 40 supplies power to the low voltage battery 33 after voltage conversion.
  • the work machine 1 is equipped with the aforementioned light electrical devices (electrical components) such as lighting and a heater, and these light electrical devices (electrical components) are operated by power from the low-voltage battery 33. do.
  • the charging port 41 includes a connector (not shown) into which a charging cable (not shown) is fitted, and a connection detection device 41a.
  • the charging port 41 is connected to an external power source (such as a commercial power source) via a charging cable.
  • the connection detection device 41a includes a sensor and the like that detects that the charging cable is fitted into the charging port 41 and an external power source is connected.
  • the junction box 39 outputs power input from the external power source through the charging port 41 via the charging cable to the battery unit 30.
  • the battery unit 30 is charged with power input from the charging port 41 via the junction box 39 .
  • the battery unit 30 has a plurality of battery packs 31 and 32.
  • Each of the battery packs 31 and 32 is a secondary battery (storage battery) such as a lithium ion battery that includes at least one battery.
  • each battery pack 31, 32 is composed of a plurality of batteries
  • the plurality of batteries are electrically connected in series and/or in parallel.
  • the batteries constituting each of the battery packs 31 and 32 have a plurality of cells inside, and the plurality of cells are electrically connected in series and/or in parallel.
  • Each of the battery packs 31 and 32 has an electrical capacity that allows each part of the working machine 1 to operate for a predetermined period of time.
  • the battery packs 31 and 32 are connected in parallel.
  • the battery unit 30 is provided with two battery packs 31 and 32, but the number of battery packs that the battery unit 30 has is not limited to two, and may be one or three or more. good.
  • Each battery pack 31, 32 is provided with a connection switching section 31a, 32a.
  • Each of the connection switching units 31a and 32a is composed of, for example, a relay or a switch, and can be switched between a connected state and a disconnected state.
  • the control device 7 switches one of the connection switching units 31a and 32a to the connected state and the other connection switching unit to the disconnected state, thereby switching one of the plurality of battery packs 31 and 32. Power is output from one battery pack to the junction box 39, and power output from the other battery pack is stopped. That is, the control device 7 controls the output and stop of the power output of each battery pack 31, 32.
  • control device 7 switches the connection state inside the junction box 39 to connect or disconnect the inverter 38, DC-DC converter 40, or charging port 41 to each battery pack 31, 32.
  • Junction box 39 and connection switching units 31a and 32a are connection switching devices that switch connection and disconnection of inverter 38, DC-DC converter 40, and charging port 41 to each battery pack 31 and 32.
  • each battery pack 31, 32 is provided with a BMU (battery management unit) 31b, 32b.
  • BMU battery management unit
  • the BMUs 31b and 32b are provided in the corresponding battery packs 31 and 32, but the BMUs 31b and 32b may be built in the corresponding battery packs 31 and 32, or It may be installed outside.
  • the BMU 31b monitors and controls the corresponding battery pack 31.
  • BMU 32b monitors and controls the corresponding battery pack 32.
  • the BMUs 31b and 32b control opening and closing of relays provided inside the battery packs 31 and 32 to control start and stop of power supply from the battery packs 31 and 32.
  • the BMUs 31b and 32b detect the temperature, voltage, and current of the battery packs 31 and 32, or the terminal voltages of internal cells.
  • the BMUs 31b and 32b detect the remaining capacity (remaining power amount) of the battery packs 31 and 32 using a voltage measurement method, for example, based on the terminal voltage of the cells inside the battery packs 31 and 32.
  • the method for detecting the remaining capacity of the battery packs 31 and 32 is not limited to the voltage measurement method, and may be other methods such as a coulomb counter method, a battery cell modeling method, an impedance track method, etc. . Further, a capacity detection section for detecting the remaining capacity of the battery packs 31 and 32 may be provided separately from the BMUs 31b and 32b.
  • the low voltage battery 33 is a storage battery with a lower voltage than the battery unit 30.
  • the low voltage battery 33 is charged by power supplied from the DC-DC converter 40.
  • the low-voltage battery 33 supplies power to the above-mentioned electrical components included in the working machine 1.
  • the radiator 35 cools high heat generation electric devices such as the electric motor 9, the inverter 38, the DC-DC converter 40, and the battery unit 30, and cools the cooling water for cooling these devices.
  • the cooling water is not just water, but is made up of a liquid that does not freeze even in cold regions, for example.
  • the high heat generating electrical equipment that is the equipment to be cooled by the radiator 35 refers to electrical equipment that generates higher heat than other electrical equipment installed in the work equipment 1 by operating on electric power, and is Applies to equipment.
  • These heavy electrical appliances are each equipped with a temperature sensor, and these function as an abnormal high temperature detection device 49 for detecting the abnormal high temperature of each heavy electric appliance.
  • the abnormal high temperature detected by the abnormal high temperature detection device 49 is a temperature at a stage that promotes this delaying until reaching the upper limit value.
  • the radiator 35 includes a heat exchanger (not shown), a radiator fan 35a, and a fan motor 35b.
  • the radiator fan 35a rotates in response to the output of the fan motor 35b, and releases heat recovered from the cooling water by the heat exchanger to the outside of the aircraft body 2, etc.
  • the fan motor 35b is driven by power from the low voltage battery 33.
  • Fan rotation speed detection device 43 detects the rotation speed of radiator fan 35a.
  • the cooling pump 36 is provided along with the radiator 35 and the above-mentioned high heat generating electric equipment on a cooling water path (not shown) disposed within the aircraft body 2.
  • the cooling pump 36 discharges cooling water to the cooling waterway.
  • the oil cooler 37 collects hydraulic oil that has passed through hydraulic devices such as the aforementioned hydraulic actuators ML, MR, MT, C1 to C5, the later-described hydraulic pumps P1 and P2, and the later-described control valve unit CV (shown in FIG. 2, etc.). Cooling. That is, the object to be cooled by the oil cooler 37 is hydraulic oil.
  • the oil cooler 37 includes a heat exchanger (not shown), an oil cooler fan 37a, and a fan motor 37b.
  • the oil cooler fan 37a rotates in response to the output of the fan motor 37b, and releases heat recovered from the hydraulic oil by the heat exchanger to the outside of the aircraft body 2, etc.
  • the fan motor 37a is driven by power from the low voltage battery 33.
  • Fan rotation speed detection device 44 detects the rotation speed of oil cooler fan 37a.
  • the display device 45 is composed of a liquid crystal display or a touch panel, and displays various information.
  • the water temperature detection device 46 detects the temperature of the cooling water circulating in the cooling water channel.
  • the oil temperature detection device 47 detects the temperature of the hydraulic oil, particularly the temperature of the hydraulic oil at the stage of being returned to a hydraulic oil tank 59, which will be described later, after being used to operate a hydraulic actuator.
  • the AI (auto idling)-SW (switch) 48 is a pressure sensor operated by the hydraulic pressure of the hydraulic oil supplied to the aforementioned hydraulic actuators C1 to C5, ML, MR, and MT.
  • the AI-SW 48 is in an on state when at least one of the hydraulic actuators C1 to C5, ML, MR, and MT is operating, and is in an off state when none of these hydraulic actuators is operating.
  • the AI-SW 48 detects whether any one of the work equipment 20, traveling equipment 10, etc. that is driven by the hydraulic actuators C1 to C5, ML, MR, and MT is operating.
  • FIG. 2 is a diagram showing a hydraulic circuit K provided in the working machine 1.
  • the hydraulic circuit K includes hydraulic actuators C1 to C5, ML, MR, MT, a control valve unit CV, hydraulic pumps P1 and P2, a hydraulic oil tank 59, an oil cooler 37, operation valves PV1 to PV6, an unload valve 58, and Hydraulic equipment such as an oil passage 50 is provided.
  • These hydraulic pumps P1 and P2 are driven by the power of an electric motor 9.
  • a motor/pump assembly 91 installed inside the bonnet 2a includes an electric motor 9 and hydraulic pumps P1 and P2.
  • the output shaft of the electric motor 9 is extended and functions as an input shaft (pump shaft) of the hydraulic pumps P1 and P2.
  • the hydraulic pump P1 for operation sucks the hydraulic oil stored in the hydraulic oil tank 59, and then discharges the hydraulic oil toward the control valve unit CV.
  • one hydraulic pump P1 for operation is illustrated for convenience, but the hydraulic pump P1 for operation is not limited to this, and can supply hydraulic oil to each of the hydraulic actuators C1 to C5, ML, MR, and MT. An appropriate number may be provided.
  • the control hydraulic pump P2 outputs hydraulic pressure for signals, control, etc. by suctioning and discharging hydraulic oil stored in the hydraulic oil tank 59. That is, the control hydraulic pump P2 supplies (discharges) pilot oil for position (switching) control of each of the control valves V1 to V8. An appropriate number of control hydraulic pumps P2 may also be provided.
  • the control valve unit CV is formed by combining a plurality of control valves V1 to V8.
  • Each of the control valves V1 to V8 controls (adjusts) the flow rate of hydraulic oil output from the hydraulic pumps P1 and P2 to each of the hydraulic actuators C1 to C5, ML, MR, and MT.
  • control valves V1 to V4 are for controlling the working device 20.
  • Swing control valve V1 controls the flow rate and flow direction of hydraulic oil supplied to swing cylinder C1.
  • Boom control valve V2 controls the flow rate and flow direction of hydraulic oil supplied to boom cylinder C2.
  • Arm control valve V3 controls the flow rate and flow direction of hydraulic oil supplied to arm cylinder C3.
  • Bucket control valve V4 controls the flow rate and flow direction of hydraulic oil supplied to bucket cylinder C4.
  • the dozer control valve V5 controls the flow rate of hydraulic oil supplied to the dozer cylinder C5.
  • Left travel control valve V6 controls the flow rate of hydraulic oil supplied to left travel motor ML.
  • Right travel control valve V7 controls the flow rate of hydraulic oil supplied to right travel motor MR.
  • Swing control valve V8 controls the flow rate of hydraulic oil supplied to swing motor MT.
  • left travel motor ML right travel motor MR
  • left travel control valve V6, and right travel control valve V7 is for the left travel mechanism 12
  • right travel control valve V7 is for the right travel mechanism 12.
  • left travel control valve V6 left travel control valve
  • right travel control valve V7 is for the left travel mechanism 12
  • right travel control valve V7 is for the right travel mechanism 12.
  • left and right do not necessarily refer to the actual left-right arrangement relationship.
  • the operation valves (remote control valves) PV1 to PV6 are electromagnetic valves, and are activated in response to operation of operation levers 5a and 5b (FIG. 1) provided on the operation device 5.
  • the pilot oil acts on each of the control valves V1 to V8 in proportion to the operating amount (operated amount) of each of the control valves PV1 to PV6, so that the spool of each of the control valves V1 to V8 moves straight.
  • each hydraulic actuator C1-C5, ML, MR, MT is driven according to the amount of hydraulic fluid supplied from each control valve V1-V8.
  • the hydraulic oil acting as pilot oil acting on the control valves V1 to V8 is adjusted, and the control valves V1 to V8 are controlled. Then, the flow rate and flow direction of the hydraulic oil supplied from the control valves V1 to V8 to the hydraulic actuators C1 to C5, ML, MR, and MT are adjusted to drive and stop the hydraulic actuators C1 to C5, ML, MR, and MT. is controlled.
  • the oil passage 50 is composed of, for example, a hose or a pipe made of a material such as metal.
  • the oil passage 50 is a flow passage that connects each part provided in the hydraulic circuit K and allows hydraulic oil or pilot oil to flow to each part.
  • the oil passage 50 includes a first oil passage 51 , a second oil passage 52 , a first suction oil passage 54 , a second suction oil passage 55 , and a restriction oil passage 57 .
  • the first suction oil passage 54 is a passage through which the hydraulic oil sucked from the hydraulic oil tank 48 by the hydraulic pump P1 for operation flows.
  • the second suction oil passage 55 is a passage through which hydraulic oil sucked from the hydraulic oil tank 59 by the control hydraulic pump P2 flows.
  • the first oil passage 51 is a flow passage through which the hydraulic oil discharged by the operating hydraulic pump P1 flows toward the control valves V1 to V8 of the control valve unit CV.
  • the first oil passage 51 branches into a plurality of parts within the control valve unit CV and is connected to each of the control valves V1 to V8.
  • the second oil passage 52 is a passage through which the hydraulic oil that has passed through the control valves V1 to V8 flows toward the hydraulic oil tank 48.
  • the hydraulic oil tank 59 stores hydraulic oil.
  • the second oil passage 52 includes a reciprocating oil passage 52a and a discharge oil passage 52b.
  • the reciprocating oil passages 52a are a pair of oil passages interposed between each of the control valves V1 to V8 and the respective controlled hydraulic actuators C1 to C5, ML, MR, and MT.
  • the reciprocating oil passage 52a supplies hydraulic oil from the connected control valves V1 to V8 to the hydraulic actuators C1 to C5, ML, MR, and MT, and supplies hydraulic oil from the hydraulic actuators C1 to C5, ML, MR, and MT to the control valves V1 to V8. This is a flow path that returns hydraulic oil to the V8.
  • One end of the discharge oil passage 52b branches into a plurality of branches and is connected to each of the control valves V1 to V8.
  • the other end of the discharge oil path 52b is connected to a hydraulic oil tank 59.
  • a part of the hydraulic oil that has flowed to any of the control valves V1 to V8 through the first oil passage 51 passes through the control valves V1 to V8 and flows into one of the pair of oil passages as the reciprocating oil passage 52a. and is supplied to the hydraulic actuators C1 to C5, ML, MR, and MT to be controlled.
  • the hydraulic oil discharged from the hydraulic actuators C1 to C5, ML, MR, and MT returns to the control valves V1 to V8 connected through the other of the pair of oil passages as the reciprocating oil passage 52a, It passes through the control valves V1 to V8 and flows to the discharge oil path 52b.
  • the hydraulic oil that has flowed to any of the control valves V1 to V8 through the first oil passage 51 is not supplied to the hydraulic actuators C1 to C5, ML, MR, and MT, but instead flows through the control valves V1 to V8.
  • the oil passes through and flows into the discharge oil path 52b.
  • An oil cooler 37 is provided in the discharge oil path 52b.
  • the oil cooler 37 cools the hydraulic oil flowing from any of the control valves V1 to V8 through the discharge oil path 52b.
  • the hydraulic oil cooled by the oil cooler 37 returns to the hydraulic oil tank 59 through the discharge oil path 52b.
  • the oil passages 54, 51, and 52 supply hydraulic oil to the hydraulic oil tank 59, the hydraulic pump P1, and the control valves V1 to V8 of the control valve unit CV (some of the hydraulic oil is supplied to the hydraulic actuators C1 to C5, ML, MR, and MT).
  • the restricted oil passage 57 is a passage through which the hydraulic oil discharged by the control hydraulic pump P2 flows to the operation valves PV1 to PV6.
  • One end of the restriction oil passage 57 is connected to the control hydraulic pump P2, and the other end branches into a plurality of ports and is connected to the primary side ports (primary ports) of each of the operating valves PV1 to PV6.
  • valves PV1 to PV6 are electromagnetic valves, and their opening degrees are adjusted based on a command signal output from the control device 7. By adjusting the opening degree, the flow rate of pilot pressure oil to the control valves V1 to V8 is adjusted.
  • the restriction oil passage 57 is provided with an unload valve 58 consisting of a two-position switching valve.
  • the unload valve 58 is a two-position switching valve having an oil supply position 58a and an oil cutoff position 58b as switching positions, and is linked to the operation of the unload lever 5c (FIG. 1) to switch between the oil supply position 58a and the oil cutoff position. It switches to either position 58b.
  • the unload valve 58 is switched to the oil cutoff position 58b (unload position), and the control hydraulic pump P2 is connected to the restriction oil passage 57. Since the discharged hydraulic oil is not supplied to the operating valves PV1 to PV6 but is discharged to the hydraulic oil tank 48, the control valves V1 to V8 become inoperable.
  • the operating device 5 controls the working device 20 and the traveling device by switching the unloading valve 58 in response to the operation of the unloading lever 5c and switching the state of supplying and discharging hydraulic oil to the operating valves PV1 to PV6.
  • the configuration for switching between ten operations has been described, the present invention is not limited to this.
  • a solenoid valve that switches the operation of some or all of the control valves V1 to V8 is provided, and a control device that controls the operation of the solenoid valve controls the operation of the solenoid valve according to the switching position of the unload lever 5c.
  • the working device 20 and the traveling device 10 may be switched between an operable state and an operation prohibited state.
  • part or all of the working device 20 and the traveling device 10 are configured to be operated by an electric actuator, and a control device that controls the operation of the electric actuator controls the operation of the electric actuator according to the switching position of the unload lever 5c.
  • the working device 20 and the traveling device 10 may be switched between an operable state and an operation prohibited state.
  • the working device 20, the traveling device 10, and the dozer 17 will be operated by the work operating lever 5a and the traveling operating lever 5b (hereinafter referred to as "operating levers 5a, 5b" or simply the operating device) of the operating device 5.
  • operating levers 5a, 5b or simply the operating device
  • working equipment regardless of whether it is hydraulic or electric.
  • the unlock lever 5c has two positions: a permission position where the operation device (operation levers 5a, 5b) is allowed to operate the work device, and a prohibition position where the operation device (operation levers 5a, 5b) is prohibited from operating the work device. It is a switchable operation lock device.
  • the hydraulic circuit K is provided with an operation detection oil passage (not shown) for detecting the operation state of the control valves V1 to V8.
  • the operation detection oil path is an oil path that returns pilot oil discharged from the control hydraulic pump P2 to the hydraulic oil tank 59 through sequentially a plurality of switching valves for respectively switching the positions of the control valves V1 to V8. be.
  • An AI-SW 48 (FIG. 1) is connected to this operation detection oil path.
  • the AI-SW 48 When any of the control valves V1 to V8 is operated from the neutral position to the switching position, a part of the operation detection oil passage is shut off, and the pressure of the pilot oil in the operation detection oil passage increases to a certain degree ( (so-called pressurized state), the AI-SW 48 is turned on. That is, the AI-SW 48 detects that at least one of the hydraulic actuators C1 to C5, ML, MR, and MT is operating.
  • the operation detection oil passage is opened, so the pressure of the pilot oil in the operation detection oil passage does not rise to a certain value (so-called pressure (not standing), the AI-SW 48 is turned off. That is, the AI-SW 48 detects that none of the hydraulic actuators C1 to C5, ML, MR, and MT are operating.
  • the unload lever 5c When the unload lever 5c is in the load position (lowered position), that is, when the unload valve 58 is in the oil supply position 58a, at least one of the hydraulic actuators C1 to C5, ML, MR, and MT is activated. As long as it is in operation, the AI-SW 48 remains in the on state.
  • the control device 7 issues a command to set the motor rotation speed MS of the electric motor 9 to the idle rotation speed MS3 (see FIG. 5). This control of the electric motor 9 is referred to as auto idle control.
  • the work machine 1 is equipped with an electrical system and a hydraulic system having the above-described structure, and the above-mentioned cooler is used as a cooler that cools the cooling water and hydraulic oil circulating around the equipment belonging to these electrical systems and hydraulic systems.
  • a radiator 35 and an oil cooler 37 are provided.
  • this cooler is equipped with an electric cooling fan. That is, the radiator 35 includes a radiator fan 35a that is rotationally driven by the output of an electric fan motor 35b, and the oil cooler 37 includes an oil cooler fan 37a that is rotationally driven by the output of an electric fan motor 37b.
  • the radiator fan of the radiator attached to the engine is configured to rotate synchronously with the engine output shaft via a fan belt, etc.
  • the radiator fan is constantly rotating. Further, the rotation speed of the radiator fan also changes in synchronization with the change in the engine rotation speed.
  • the working machine 1 is equipped with an electric motor 9 as a prime mover, and the rotational drive of the electric cooling fans in the aforementioned cooler, such as the radiator fan 35a, is independent from the rotational drive of the electric motor 9.
  • the control device 7 controls the rotational drive of the radiator fan 35a and the oil cooler fan 37a, which are such electric cooling fans, according to the temperature condition of the object to be cooled.
  • the electric cooling fan can be controlled to stop its rotation or to rotate at a low speed depending on the situation, for example, in order to reduce noise.
  • the working machine 1 as shown in FIG. 8, since a radiator fan 35a and an oil cooler fan 37a as cooling fans are arranged in parallel, it is particularly desirable to reduce noise.
  • the working machine 1 employs an electric cooling fan control system as shown in FIGS. 3, 4A, 4B, 5, 6A, 6B, and 6C. This structure will be explained below.
  • the working machine 1 stores a cooling fan rotation characteristic diagram indicating a control pattern for at least one cooling fan in a storage device such as the storage unit 7b described above.
  • the cooling fan rotation characteristic diagram is a combination of multiple fan control maps created according to individual situations. That is, the cooling fan rotation characteristic diagram is one map group.
  • the working machine 1 stores a first map group MG1 shown in FIG. 3 and a second map group MG2 shown in FIG. 5 as such map groups in the storage device.
  • Each map group MG1, MG2 is composed of a plurality of fan control maps that indicate the rotation speed characteristics of the cooling fan with respect to the temperature of the object to be cooled (cooling water, hydraulic oil, etc.).
  • a fan control map has the temperature T of the cooling target as described above (hereinafter referred to as “cooling target temperature T”) on the horizontal axis, and the rotation speed FS of the cooling fan (hereinafter referred to as "fan rotation speed FS”) on the vertical axis. This is the created graph.
  • the first map group MG1 shown in FIG. 3 will be explained.
  • the first map group MG1 includes a plurality of fan control maps M11, M12, and M13.
  • the fan control map M11 is used when the unload valve 58 is in the oil cutoff position 58b or when the unload lever 5c is pulled up to the unload position (raised position) (hereinafter simply referred to as "during unload”). selected.
  • the fan control map M12 is used when the unload valve 58 is in the oil supply position 58a or when the unload lever 5c is lowered to the load position (lowered position) (hereinafter simply referred to as "loading"). selected.
  • the fan control map M13 indicates whether one of the abnormal high temperature detection devices 49 of each of the plurality of heavy-duty electric devices (including the electric motor 9) detects an abnormal high temperature, regardless of whether it is during loading or unloading. Selected when detected.
  • the fan control map M11 selected during unloading or when auto-idling control is executed indicates that the fan rotation speed FS is the fan rotation speed FS11 when the cooling target temperature T is higher than the temperature T11a.
  • the temperature T11a is set as a threshold value for determining whether to increase the fan rotation speed FS from 0 to the rotation speed FS11.
  • the cooling target temperature T rises from a state below the temperature T11a and reaches the temperature T11a while the cooling fan is not rotating, the cooling fan starts rotating at the rotation speed FS11, and while the temperature continues to rise. , the fan rotation speed FS is maintained at the rotation speed FS11.
  • the fan control map M11 maintains the cooling fan at the rotation speed FS11 even if the cooling target temperature T decreases from below the temperature T11a and reaches the temperature T11a, with the cooling fan rotating at the rotation speed FS11.
  • the temperature T to be cooled further decreases to temperature T11b, the rotation of the cooling fan is stopped.
  • the temperature T11b is a threshold value for determining whether to stop the rotation of the cooling fan at the rotation speed FS11 (to set the rotation speed to 0), and is a value lower than the temperature T11a.
  • the cooling fan can adjust to the temperature T to be cooled. It is possible to prevent frequent ON/OFF switching due to overreacting to changes in the temperature.
  • the motor rotation speed MS of the electric motor 9 during auto-idling control is the idle rotation speed MS3 (see FIG. 5).
  • the rotation speed FS11 is determined corresponding to the rotational drive of the electric motor 9 at the idle rotation speed MS3.
  • the fan control map M12 selected at the time of loading, except when auto idling control is executed, is such that when the temperature T to be cooled is equal to or higher than the temperature T12, the fan rotation speed FS is the rotation speed FS12, and the temperature T is the rotation speed FS12. It is shown that as the temperature rises from temperature T13a lower than T12 to temperature T12, fan rotation speed FS increases from rotation speed FS11 to rotation speed FS12.
  • the rotation speed FS12 is determined as the rotation speed of the cooling fan that can cool the object to be cooled when the hydraulic actuator is normally operated to drive the working device 20 and the traveling device 10. be.
  • the temperature T13a is set as a threshold value for determining whether to increase the fan rotation speed FS from 0 to the rotation speed FS11. That is, when the cooling target temperature T increases from a state below the temperature T13a and reaches the temperature T13a while the cooling fan is not rotating, the cooling fan starts rotating at the rotation speed FS11.
  • the fan rotation speed FS increases from the rotation speed FS11 to the rotation speed FS12, and while the cooling target temperature T is higher than the temperature T12, the rotation speed FS12 is maintained. Ru.
  • the temperature T13b is a threshold value for determining whether to stop the rotation of the cooling fan at the rotation speed FS11 (to set the rotation speed to 0).
  • the cooling fan can control the change in temperature T. It is possible to prevent frequent ON/OFF switching due to overreacting.
  • the temperature T12 corresponding to the timing when the fan rotation speed FS increases in accordance with the increase in the cooling target temperature T and reaches the rotation speed FS12 is determined as the temperature T12 corresponding to the timing when the cooling target temperature T increases on the fan control map M11.
  • the temperature T11a is set to be approximately equal to the temperature T11a corresponding to the timing at which the fan rotation speed FS rises from 0 to the rotation speed FS11.
  • the fan control map M13 is set so that the fan rotation speed FS is set to the rotation speed FS13 when the abnormal high temperature detection device 49 of any of the heavy-duty electric devices detects an abnormal high temperature and the cooling target temperature T is higher than the temperature T14a.
  • the rotational speed FS13 is a rotational speed suitable for cooling a heavy-duty electrical device that is in an abnormally high temperature state to recover it from an abnormally high temperature state to a normal temperature state, and is a rotational speed larger than the rotational speed FS12.
  • the fan control map M13 indicates that the fan rotation speed FS is the rotation speed on the fan control map M11 or M12 when the cooling target temperature T is less than the temperature T14a. That is, the temperature T14a is set as a threshold value for determining whether to switch the fan control map selected for controlling the rotational drive of the cooling fan from the previously used fan control map M11 or M12 to the fan control map 13. has been done.
  • a temperature T14b lower than the temperature T14a is set as a threshold value for determining whether the fan rotation speed FS is lowered from the fan rotation speed FS3 to the rotation speed on the fan control map M11 or M12. There is.
  • the fan rotation speed FS is maintained at the rotation speed FS13 until the cooling target temperature T decreases to a temperature T14b lower than the temperature T14a. This avoids the situation where the temperature T to be cooled drops as soon as the fan rotation speed FS rises to the fan rotation speed FS, and then immediately returns to the original rotation speed, making it possible to appropriately cool heavy-duty electrical equipment. .
  • the temperature T14a is set to a value higher than the temperature T13a and lower than the temperature T12, and the temperature T14b is set to a value substantially equal to the temperature T13a, but the present invention is not limited to this, and the characteristics and cooling performance of each heavy-duty electrical device may be used. It may be set as appropriate depending on the situation.
  • step S01 it is determined whether the unloading valve 58 is at the oil supply position (loading position) 58a (loading) or at the oil cutoff position (unloading position) 58b (unloading).
  • a determination is made (step S01). This determination may be replaced with a determination as to whether the unload lever 5c is in the load position (lower position) or in the unload position (raised position) based on the detection of the operating position of the unload lever 5c.
  • step S01, NO When it is determined that the unload valve 58 is in the oil cutoff position (unload position) 58b (during unloading) (step S01, NO), the control device 7 Fan control map M11 is selected from group MG1 (step S03).
  • the fan rotation The number FS is set to 0 (step S05), and if the temperature is equal to or higher than the temperature T11a (step S04, YES), the fan rotation speed FS is set to the rotation speed FS11. (Step S06).
  • the control device 7 issues a command signal to the electric actuator for driving the cooling fan (fan motors 35b, 37b, etc.) to control its output, and detects the fan rotation speed. This is done by adjusting the fan rotation speed FS detected by the device (fan rotation speed detection devices 43, 44, etc.) to the target value.
  • the fan rotation speed FS is set to rotation speed FS11, it is maintained as long as the temperature T to be cooled is equal to or higher than temperature T11b (step S07, YES), and the temperature T becomes less than temperature T11b (step S07, NO). Then, the fan rotation speed FS is set to 0 (step S05).
  • the AI-SW 48 is further turned on (in which auto idling control is not performed). ) or an off state (a state in which automatic idling control is being implemented; a state in which no operation is performed on the operating device 5 for a predetermined period of time or more) (step S02).
  • the control device 7 selects the fan control map M11 from the first map group MG1 (step S03), and the unload valve 58 shuts off the oil.
  • the rotation of the cooling fan is controlled in the same way as in the case at position 58b.
  • the control device 7 selects the fan control map M12 from the first map group MG1 (step S08).
  • step S10 if the cooling target temperature T detected by the temperature detection device is less than the temperature T13a (step S09, NO), the fan rotation speed FS is set to 0 (step S10).
  • step S11a the cooling target temperature T reaches the temperature T11a (step S09, YES)
  • step S11 the fan rotation speed FS is increased to the rotation speed FS11 (step S11).
  • step S10 the fan rotation speed FS is set to the rotation speed FS11 when the cooling target temperature T reaches the temperature T11a, even if the cooling target temperature T subsequently falls below the temperature 13a (step S12, YES).
  • step S13b the temperature of the cooling target temperature T
  • step S13, NO the fan rotation speed FS is set to 0.
  • the value of the fan rotation speed FS which rises to the rotation speed FS11 when the cooling target temperature T increases and reaches the temperature T13a, is determined based on the cooling target temperature T detected each time.
  • cooling target temperature T is a value within the range of temperature T13a or higher and lower than temperature T12 (step S12, NO, step S14, NO)
  • cooling is performed at the rotation speed FS determined according to the value of temperature T.
  • the fan spins.
  • Equation 1 By substituting the actual detected temperature T into the following mathematical expression "Equation 1", it is possible to obtain a fan rotation speed FS of a value greater than or equal to rotation speed FS11 and less than rotation speed FS12 (step S15).
  • the fan rotation speed FS is the rotation speed FS12 (step S16), and as long as the temperature T is maintained at the temperature T12 or higher, this rotation speed FS12 remains constant. Retained.
  • the abnormal high temperature detection device 49 of each heavy-duty electrical device constantly checks whether there is an abnormal high temperature (step S21).
  • step S21, YES If the abnormal high temperature detection device 49 of one of the heavy electrical appliances detects an abnormal high temperature (step S21, YES), and the cooling target temperature T detected by the temperature detection device at that time is equal to or higher than the temperature T14a (step S22, YES) , the fan control map M13 is selected (step S23), and the cooling fan is rotated at a high rotational speed of rotational speed FS13 in order to escape from the abnormally high temperature of the heavy electrical equipment.
  • Step S25, YES While the cooling target temperature T detected by the temperature detection device is equal to or higher than the temperature T14b (step S25, YES), the fan continues to rotate at the rotation speed FS13, and the cooling target temperature T detected falls below the temperature T14b. (Step S25, NO), it is recognized that the heavy electrical equipment has escaped from the abnormally high temperature state, and the process returns to controlling the cooling fan by selecting the fan control map M11 or M12 depending on the situation at that time (B).
  • the rotation of the cooling fan can be stopped or the rotation speed can be kept low.
  • the object to be cooled when the temperature of the object to be cooled is high due to actuation of a hydraulic actuator, etc., the object to be cooled can be cooled by rotating the cooling fan at a high rotation speed.
  • the rotation speed of the cooling fan can be particularly increased to quickly bring the heavy-duty electrical device out of the abnormally high temperature state.
  • the radiator fan 35a as a cooling fan whose rotational drive is controlled using the first map group MG1 as described above. That is, the cooler to which the rotation drive control of the cooling fan is applied is the radiator 35, the object to be cooled is cooling water for cooling heavy electrical equipment, etc. including the electric motor 9, and the temperature T of the object to be cooled is determined by the water temperature detection device. It is conceivable that the cooling water temperature T detected by No. 46 is used.
  • the cooling water temperature T11 as a threshold value when increasing the rotation speed FS of the radiator fan 35a from 0 to the rotation speed FS11 in the fan control map M11 is set to 70°C
  • the rotation speed FS of the radiator fan 35a in the fan control map M12 is set to 0.
  • the cooling water temperature T13a as a threshold value when increasing the rotation speed from FS11 to FS11 is 60° C.
  • the cooling water temperature corresponds to the timing when the rotation speed FS of the radiator fan 35a, which has increased from the rotation speed FS11, reaches the rotation speed FS12 in the fan control map M12. It is conceivable to set T12 to 70° C. and set the cooling water temperature T14a to 65° C., which corresponds to the timing of raising the rotational speed FS of the radiator fan 35a to the rotational speed FS13 in the fan control map M13.
  • the second map group MG2 includes a plurality of fan control maps M21, M22, M23, and M24.
  • the fan control map M21 is selected.
  • either the fan control map M23 or the fan control map M24 is selected depending on which value the motor rotation speed MS of the electric motor 9 is set to.
  • the fan control map M23 is selected.
  • the fan control map M24 is selected.
  • the fan control map M21 selected at the time of unloading maintains the fan rotation speed FS at 0 when the cooling target temperature T is less than the temperature T21a with the fan rotation speed FS being 0, and from this state, the cooling target temperature T is
  • the fan rotation speed FS is set to be the rotation speed FS21 when the temperature rises to T21a.
  • the fan control map M21 shows that even if the cooling target temperature T decreases after the cooling target temperature T increases to the temperature T21a and the cooling fan starts rotating, the cooling fan operates at the rotation speed FS21 until the cooling target temperature T decreases to the temperature T21b. The rotation is maintained.
  • the fan control map M22 selected during loading and auto idling control maintains the fan rotation speed FS at 0 when the fan rotation speed FS is 0 and the cooling target temperature T is less than the temperature T22a, and from this state
  • the fan rotation speed FS is set to be the rotation speed FS21 when the cooling target temperature T rises to the temperature T22a.
  • the fan control map M22 shows that even if the cooling target temperature T decreases after the cooling target temperature T increases to the temperature T22a and the cooling fan starts rotating, the cooling fan operates at the rotation speed FS21 until the cooling target temperature T decreases to the temperature T22b. The rotation is maintained.
  • the fan control map M23 selected when the electric motor 9 is rotating at a high idle rotation speed MS1 during loading (hereinafter simply referred to as "high idle rotation") is used to control the cooling target while the cooling fan is stopped rotating.
  • high idle rotation a high idle rotation speed MS1 during loading
  • the cooling fan starts rotating at the rotation speed FS21, and is rotated at the rotation speed FS21 until the temperature T to be cooled reaches T24 or decreases to the temperature T25b. It is set as follows.
  • the fan control map M23 shows that even if the cooling target temperature T decreases after the cooling target temperature T rises to the temperature T25a and the cooling fan starts rotating, the rotation speed FS21 remains until the cooling target temperature T decreases to the temperature T25b. The rotation of the cooling fan is maintained, and the fan rotation speed is set to 0 when the temperature T to be cooled drops to temperature T25b.
  • the fan control map M23 increases the fan rotation speed according to the rise in the cooling target temperature T when the cooling target temperature T is higher than or equal to the temperature T24 and lower than the temperature T23, and when the cooling target temperature T is the temperature T23, the fan rotation speed is increased.
  • the rotation speed FS is set to be the rotation speed FS22.
  • the fan control map M23 is set so that when the temperature T to be cooled reaches or exceeds the temperature T23, the fan rotation speed FS is maintained at the rotation speed FS22 until it further increases and reaches the temperature T26a.
  • the fan control map M23 raises the fan rotation speed FS to a rotation speed FS23 that is larger than the rotation speed FS22 when the cooling target temperature T reaches the temperature T26a in the state of the rotation speed FS22, and the cooling target temperature T increases beyond that. Even if the rotation speed increases, it is set to be maintained at this rotation speed FS23.
  • the fan control map M23 is configured to increase the fan rotation speed FS when the temperature T to be cooled decreases to a temperature T26b lower than the temperature T26a and higher than the temperature T23 after raising the fan rotation speed FS to the rotation speed FS22. It is set to lower the number FS to 22.
  • the temperatures T22a and T22b which are the threshold values for determining whether to set the fan rotation speed FS to 0 or to the rotation speed FS21, in the fan control map M22 selected during auto-idling control, are set to the fan control map M23.
  • the temperature is set between the temperature T23 and the temperature T24. That is, the temperature T22a is set lower than the temperature T23, and the temperature T22b is set higher than the temperature T24.
  • temperature T21a which is a threshold value for determining whether to raise fan rotation speed FS from 0 to rotation speed FS21 in fan control map M21 selected at the time of unloading, is set higher than temperature T23 on fan control map M23.
  • the temperature T21b which is the threshold value for reducing the fan rotation speed FS from the rotation speed FS21 to 0, may be set to a value substantially equal to the temperature T23 on the fan control map M23.
  • the relationship between the temperature T23 on the fan control map M23 and the temperatures T21a, T21b on the fan control map M21 or the temperatures T22a, T22b on the fan control map M22 is not particularly limited.
  • the temperature T21a or the temperature T22a may be made substantially equal to the temperature T23 on the fan control map M23.
  • the fan control map M24 which is selected when the electric motor 9 is rotating at a low idle rotation speed MS2 during loading (hereinafter simply referred to as "low idle rotation"), is used to control the cooling target while the cooling fan is stopped rotating.
  • low idle rotation a low idle rotation speed MS2 during loading
  • the cooling fan starts rotating at the rotation speed FS21, and is rotated at the rotation speed FS21 until the temperature T to be cooled reaches T24 or decreases to the temperature T25b. It is set as follows.
  • the fan control map M24 shows that even if the cooling target temperature T decreases after the cooling target temperature T rises to the temperature T25a and the cooling fan starts rotating, the rotation speed remains at the rotation speed FS21 until the cooling target temperature T decreases to the temperature T25b. The rotation of the cooling fan is maintained, and the fan rotation speed is set to 0 when the temperature T to be cooled falls to the temperature T25b.
  • the fan control map M24 increases the fan rotation speed in accordance with the rise in the cooling target temperature T when the cooling target temperature T is higher than or equal to the temperature T24 and lower than the temperature T23, and when the cooling target temperature T is the temperature T23, the fan rotation speed is increased.
  • the rotation speed FS is set to be the rotation speed FS24.
  • the rotation speed FS24 is set to a lower value than the rotation speed FS22 described above.
  • the fan control map M24 is set to maintain the fan rotation speed FS at the rotation speed FS21 while the temperature T to be cooled increases from the temperature T25a to the temperature T24. Further, the fan control map M24 increases the fan rotation speed FS in accordance with the rise in the temperature T to be cooled when the temperature T to be cooled is within the range from temperature T24 to temperature T23.
  • the fan control map M24 is set so that when the temperature T to be cooled reaches or exceeds the temperature T23, the fan rotation speed FS is maintained at the rotation speed FS24 until it further increases and reaches the temperature T26a. Further, the fan control map M24 is set so that when the cooling target temperature T rises to the temperature T26a, the fan rotation speed FS is raised from the rotation speed FS24 to a higher rotation speed FS25. Even if the temperature T to be cooled rises beyond that, the fan rotation speed FS is maintained at the rotation speed FS25.
  • the fan control map M24 maintains the fan rotation speed FS raised to the rotation speed FS25 until the cooling target temperature T decreases to a temperature T26b lower than the temperature T26a, and when the fan rotation speed decreases to the temperature T26b. It is set to lower the FS to the rotation speed FS24.
  • the relationship between the temperatures T23 and T24 on the fan control map 24 and the temperatures T21a and 21b on the fan control map M21 and the temperatures T22a and T22b on the fan control map M22 is as follows: This is the same as the relationship between T24 and temperatures T21a, 21b, 22a, and 22b.
  • step S31 it is determined whether the unloading valve 58 is at the oil supply position 58a (during loading) or at the oil cutoff position 58b (during unloading) (step S31). This determination may be replaced with a determination as to whether the unload lever 5c is in the load position (lower position) or in the unload position (raised position) based on the detection of the operating position of the unload lever 5c.
  • step S31, NO If it is determined that the unload valve 58 is in the oil cutoff position 58b (during unloading) (step S31, NO), as shown in FIG. 6B, the control device 7 The fan control map M21 is selected from the two map group MG2 (step S51).
  • the fan rotation The number FS is set to 0 (step S53), and if the temperature is equal to or higher than the temperature T21a (step S52, YES), the fan rotation speed FS is set to the rotation speed FS21. (Step S54).
  • the fan rotation speed FS is set to the rotation speed FS21, it is maintained as long as the cooling target temperature T is equal to or higher than the temperature T21b (step S55, YES), and when the cooling target temperature T becomes lower than the temperature T21b (step S55, NO), the fan rotation speed FS is set to 0 (step S53).
  • step S31 if it is determined that the unload valve 58 is in the oil supply position 58a (loading) (step S31, YES), the AI-SW 48 is further turned on (auto idling control is executed). It is determined whether the engine is in an off state (a state in which automatic idling control is being performed; a state in which no operation is performed on the operating device 5 (operating levers 5a, 5b) for a predetermined period of time or more) (step S32).
  • an off state a state in which automatic idling control is being performed; a state in which no operation is performed on the operating device 5 (operating levers 5a, 5b) for a predetermined period of time or more
  • the control device 7 selects the fan control map M22 from the second map group MG1 (step S61). , the rotational drive of the cooling fan is controlled based on the fan control map M22.
  • step S62 if the cooling target temperature T detected by the temperature detection device is less than the temperature T22a (step S62, NO), the fan rotation speed FS is set to 0 (step S63), and if it is equal to or higher than the temperature T21a (step S62, YES), fan rotation speed FS is set to rotation speed FS21. (Step S64).
  • the fan rotation speed FS is set to 0 (step S63).
  • the mode selection SW 5e selects between the normal mode (the electric motor 9 is rotated at a high idle rotation speed MS1) and the ECO mode (the electric motor 9 is rotated at a low idle rotation speed MS1). It is determined which one is selected (rotated by the number MS2) (step S33).
  • step S33 it is determined whether the motor rotation speed MS of the electric motor 9 actually detected by the motor rotation speed detection device 42 is the high idle rotation speed MS1 or the low idle rotation speed MS2. It may also be used to determine whether the
  • step S33 When the normal mode is selected (motor rotation speed MS is high idle rotation speed MS1) (step S33, YES), the control device 7 selects the fan control map M23 from the second map group MG2. (Step S34).
  • step S35 if the cooling target temperature T detected by the temperature detection device is less than the temperature T25a (step S35, NO), the fan rotation speed FS is set to 0 (step S36).
  • step S35 YES
  • the fan rotation speed FS is increased to the rotation speed FS21, and the fan rotation is continued until the cooling target temperature T rises to the temperature T24 (step S37, NO).
  • the number FS be the rotational speed FS21. (Step S38).
  • the fan rotation speed FS is set to the rotation speed FS21 when the cooling target temperature T reaches the temperature T25a, even if the cooling target temperature T decreases thereafter, as long as the fan rotation speed FS is equal to or higher than the temperature T25b (step S39, YES). ) and is maintained at the fan rotation speed FS21 (step S38), and when the temperature T becomes less than the temperature T25b (step S39, NO), the fan rotation speed FS is set to 0 (step S36).
  • the cooling fan rotates at the rotation speed FS determined according to the value of temperature T. do.
  • the fan rotation speed FS can be obtained by substituting the actual detected temperature T into the following formula "Equation 2" (step S41).
  • the fan rotation speed FS is set to the rotation speed FS22 (step S44).
  • step S43 When the cooling target temperature T becomes equal to or higher than the temperature T26a (step S43, YES), the fan rotation speed FS is raised to the rotation speed FS23 (step S44).
  • the fan rotation speed FS is raised to the rotation speed FS23 when the cooling target temperature T reaches the temperature T26a, even if the cooling target temperature T decreases thereafter, as long as the fan rotation speed FS is equal to or higher than the temperature T26b (step S45, YES).
  • the fan rotation speed FS is maintained at the rotation speed FS23 (step S44), and when the temperature T becomes less than the temperature T26b (step S45, YES), the fan rotation speed FS is set to the rotation speed FS22 (step S42).
  • step S31, YES When loading (step S31, YES), AI-SW 48 is on (step S32, YES), and the ECO mode is selected by operating the mode selection SW 7e, that is, the motor rotation speed MS of the electric motor 9 is the low idle rotation speed MS2 (step S33, NO), as shown in FIG. 6C, the control device 7 selects the fan control map M24 from the second map group MG2 (step S71).
  • the fan rotation speed FS is set to 0 (step S73).
  • the fan rotation speed FS is increased to the rotation speed FS21, and the fan rotation is continued until the cooling target temperature T rises to the temperature T24 (step S74, NO).
  • the number FS be the rotational speed FS21.
  • the fan rotation speed FS is set to the rotation speed FS21 when the cooling target temperature T reaches the temperature T25a, even if the cooling target temperature T decreases thereafter, as long as the fan rotation speed FS is equal to or higher than the temperature T25b (step S76, YES).
  • the fan rotation speed FS is maintained at the rotation speed FS21 (step S75), and when the temperature T becomes less than the temperature T25b (step S76, NO), the fan rotation speed FS is set to 0 (step S73).
  • the cooling fan rotates at the rotation speed FS determined according to the value of temperature T. do.
  • the fan rotation speed FS can be obtained by substituting the actual detected temperature T into the following mathematical expression "Equation 3" (step S78).
  • the fan rotation speed FS is the rotation speed FS24 (step S79).
  • step S80 When the cooling target temperature T becomes equal to or higher than the temperature T26a (step S80, YES), the fan rotation speed FS is raised to the rotation speed FS25 (step S81).
  • step S82 YES
  • the fan rotation speed FS is maintained at the rotation speed FS25 (step S81), and when the cooling target temperature T becomes less than the temperature T26b (step S82, YES), the fan rotation speed FS is set to the rotation speed FS24 (step S79).
  • cooling You can stop the fan or run it at the minimum speed.
  • the rotation of the cooling fan can be stopped or the rotation speed can be kept low. Furthermore, even if the temperature of the object to be cooled is high, the rotational speed of the cooling fan can be kept low during low idle rotation.
  • the object to be cooled when the temperature of the object to be cooled is high due to actuation of a hydraulic actuator, etc., the object to be cooled can be cooled by rotating the cooling fan at a high rotation speed.
  • the rotation speed of the cooling fan can be increased during both high and low idle speeds to quickly bring the object to be cooled out of the abnormally high temperature state, ensuring reliable operation. It can have a cooling effect.
  • the oil cooler fan 37a as a cooling fan whose rotational drive is controlled using the second map group MG1 as described above. That is, the oil cooler 37 is used as a cooler to which this rotational drive control of the cooling fan is applied, and the object to be cooled is the hydraulic oil discharged toward the hydraulic actuator from the hydraulic pumps P1 and P2 driven by the electric motor 9. , it is conceivable to set the cooling target temperature T to the hydraulic oil temperature T detected by the oil temperature detection device 47.
  • the rotational speed FS21 is set to 1000rpm
  • the rotational speed FS22 is set to 3000rpm
  • the rotational speed FS23 is set to 3500rpm
  • the rotational speed FS24 is set to 1500rpm.
  • the hydraulic oil temperature T21a as a threshold value when increasing the rotation speed FS of the oil cooler fan 37a from 0 to the rotation speed FS21 in the fan control map M21 is set to 90° C.
  • the rotation speed of the oil cooler fan 37a in the fan control map M22 is set to 90° C.
  • Hydraulic oil temperature T22a as a threshold value when starting FS from 0 to rotation speed FS21 is set to 80° C., and when starting rotation speed FS of oil cooler fan 37a from 0 to rotation speed FS21 in fan control maps M23 and M24.
  • the operating oil temperature T25a as a threshold value is set to 60°C, and the temperature T23 corresponding to the timing when the rotational speed FS of the oil cooler fan 37a, which has increased from the rotational speed FS21 in the fan control maps M23 and M24, reaches the rotational speed FS22 and FS24 is set to 85°C. It is conceivable to set the temperature T26a corresponding to the timing of raising the rotational speed FS of the oil cooler fan 37a from the rotational speed FS22, FS24 to the rotational speed FS23, FS25 to 100° C. in the fan control maps M23, M24.
  • the absorption torque of the hydraulic pumps P1 and P2 is constant regardless of the change in the rotation speed of the electric motor 9, the amount of heat generated by the electric motor 9 itself does not change much whether it is rotating at low speed or rotating at high speed. Therefore, for the radiator 35 that cools the cooling water that cools electric equipment such as the electric motor 9, the cooling water temperature T is not affected as much by changes in the rotational speed of the electric motor 9 as the hydraulic pumps P1 and P2. . Therefore, in the present embodiment, for controlling the radiator fan 35a, the first map group MG1 that provides the fan control map M12 created without considering the difference in the rotation speed of the electric motor 9 is adopted. .
  • the second map group MG2 may be As shown in FIG. In a case where only one rotation speed is set, a map that provides a uniform fan control map without considering changes in the motor rotation speed MS, such as the first map group MG1, may be adopted.
  • control device 7 in the work machine 1 selects one of the plurality of fan control maps indicating the characteristics of the fan rotation speed FS with respect to the temperature T to be cooled, depending on whether it is during loading or unloading. is selected, and the characteristic of the fan rotation speed that appears by controlling the cooling fan is made different in each case. It is a control, and there are no other limitations.
  • the cooling fan to be controlled may be other than the radiator fan 35a or the oil cooler fan 37a.
  • the second map group MG2 may be provided with a map different from the fan control map M11 during unloading, for example, during auto idling control. You may adopt some of the features found in Some of the features found in the first map group MG1 may be adopted, such as adding one map.
  • the work machine 1 includes an electric motor 9, a work device driven using the power of the electric motor 9, an operating device 5 (control levers 5a, 5b) for operating the work device, and an operation lock device (unload lever 5c), a cooler (radiator 35, oil cooler 37) having an electric cooling fan (radiator fan 35a, oil cooler fan 37a), and a cooler (radiator 35, oil cooler 37).
  • a temperature detection device (water temperature detection device 46, oil temperature detection device 47) that detects the cooling target temperature T, which is the temperature of the cooling target (cooling water, hydraulic oil), and a temperature detection device (water temperature detection device 46, oil temperature detection device) 47), and a control device 7 that controls the fan rotation speed FS, which is the rotation speed of the cooling fan (radiator fan 35a, oil cooler fan 37a), according to the temperature of the cooling object (cooling water, hydraulic oil) detected by .
  • the operation locking device (unloading lever 5c) has two positions: a permission position (loading position) where the operating device 5 (operating levers 5a, 5b) is allowed to operate the working device; It is possible to switch to a prohibition position (unloading position) that prohibits the operation.
  • the control device 7 changes the characteristics of the fan rotation speed FS with respect to the cooling target temperature T depending on whether the operation lock device (unload lever 5c) is in the permitted position (load position) or the prohibited position (unload position). do.
  • the cooling fan (radiator fan) is activated depending on the cooling target temperature T. 35a and oil cooler fan 37a) can be controlled differently, and a suitable rotational state of the cooling fan (radiator fan 35a, oil cooler fan 37a) can be created in accordance with each case. . Therefore, if the operation lock device (unload lever 5c) is set to the permission position (load position), the cooling target temperature T is such that the cooling fans (radiator fan 35a, oil cooler fan 37a) need to be rotated at high speed.
  • the operation lock device (unload lever 5c) is set to the prohibited position (unload position)
  • the rotation of the cooling fans may be stopped or rotated at low speed. This makes it possible to achieve suitable noise reduction, power consumption reduction, and prevention of overcooling.
  • the work machine 1 also includes a storage device (storage unit 7b) that stores a plurality of fan control maps M11, M12, M13, M21, M22, M23, and M24 that indicate the characteristics of the fan rotation speed FS with respect to the temperature T to be cooled. ing.
  • the plurality of fan control maps include first maps M11 and M21 and second maps M12 and M23, which are different from each other.
  • the control device 7 rotates the cooling fans (radiator fan 35a, oil cooler fan 37a) based on first maps M11 and M21 when the operation lock device (unload lever 5c) is in the prohibited position (unload position). and controls the rotational drive of the cooling fans (radiator fan 35a, oil cooler fan 37a) based on the second maps M12 and M23 when the operation lock device (unload lever 5c) is in the permission position (load position). do.
  • the first maps M11, M21 and the second maps M12, M23 which are different from each other, are stored depending on whether the operation lock device (unload lever 5c) is in the permission position (load position) or the prohibition position (unload position). By controlling the rotational drive of the cooling fan using these, it is possible to exhibit different fan rotation speed characteristics in each case.
  • the first maps M11 and M21 are set to switch the fan rotation speed FS between 0 and a predetermined first fan rotation speed FS11 and FS21 according to the temperature T of the object to be cooled.
  • the operation lock device (unload lever 5c) is in the prohibited position (unload position) (during unloading)
  • the rotation of the cooling fans (radiator fan 35a, oil cooler fan 37a) can be stopped. Noise generation due to fan rotation can be prevented, and overcooling can be suppressed.
  • the cooling fan is rotated only when the temperature T to be cooled reaches a high temperature equal to or higher than the first temperature T11a, T21a and cooling becomes necessary, but even in that case, the first fan rotation speed FS11, By setting FS21 to a low value, the cooling fan rotates at a low speed, so noise can be reduced.
  • the first maps M11 and M21 are arranged so that when the fan rotation speed FS is 0, the value of the cooling target temperature T is less than the predetermined first rotation start-up temperature T11a, T21a, and the first rotation start-up temperature T11a, T21a. , the fan rotation speed FS is switched to the first fan rotation speed FS11, and when the fan rotation speed FS is the first fan rotation speed FS11, the value of the cooling target temperature T is lower than the first rotation start-up temperature T11a, T21a.
  • the fan rotation speed FS is configured to be switched to 0 when the first rotational drop temperature T11b, T21b is lower than the predetermined low first rotational temperature drop temperature T11b, T21b.
  • the first rotation drop temperature T11b, T21b for stopping the rotation of the cooling fan (OFF) is set lower than the first rotation start-up temperature T11a, T21a for starting the rotation (ON) of the cooling fan. This can prevent the cooling fan from reacting too sensitively to changes in the temperature T of the object to be cooled and frequently being turned on and off.
  • the second maps M12, M23, and M25 are mapped from values where the cooling target temperature T is less than the predetermined second rotation start-up temperatures T13a and T25a when the fan rotation speed FS is 0 to the second rotation start-up temperatures.
  • the fan rotation speed FS is set to a predetermined second fan rotation speed FS12, FS22, FS24, and the value of the cooling target temperature T is higher than or equal to the second rotation start-up temperature T13a, T25a. 1. If the value is less than the specified temperature T12, T23, the fan rotation speed FS is set higher as the cooling target temperature T is higher within the range of the second fan rotation speed FS12, less than FS23, and the fan rotation speed FS is not 0. It is configured to reduce the fan rotation speed FS to 0 when the value of the cooling target temperature T decreases to a predetermined second rotation fall temperature T13b, T25b lower than the second rotation start-up temperature T13a, T25a in the state. .
  • the cooling fan is activated in the range of the cooling target temperature T that is assumed during normal operation of the work equipment.
  • a reliable cooling effect can be obtained by setting the rotation speed to the second fan rotation speeds FS12, FS22, and FS24.
  • the rotation speed can be lowered to reduce noise.
  • the fan rotation speed FS is (gradually) increased to the second fan rotation speed FS12, FS22, and FS24. While ensuring a cooling effect commensurate with the temperature situation, it is possible to prevent sudden changes in the fan rotation speed FS, and to eliminate situations where the noise situation suddenly changes (such as sudden loud noises).
  • the second maps M12, M23, and M25 indicate a second specified temperature T13a where the value of the cooling target temperature T is set to a value that is equal to or higher than the second rotation start-up temperature T13a, T25a and lower than the first specified temperature T12, T23.
  • the fan rotation speed FS is set to a constant value FS11, FS21 lower than the second fan rotation speed FS12, FS22, FS24, and the value of the cooling target temperature T is equal to or higher than the second specified temperature T13a, T24 and In the case of a value less than the first specified temperature T12, T23, the fan rotation speed FS is set higher as the temperature T to be cooled is higher within a range less than the second fan rotation speed FS12, FS22, FS24.
  • the cooling fan can be stopped to prevent noise and overcooling from occurring until the temperature T to be cooled rises to the second specified temperature T13a, T24.
  • the fan rotation speed remains at a constant value until the cooling target temperature T falls to the third specified temperature T13b, T25b.
  • the cooling target temperature T becomes the second specified temperature T13a.
  • the cooling fan remains stopped until the temperature rises to . Therefore, it is possible to prevent the cooling fan from reacting too sensitively to changes in the temperature T of the object to be cooled and frequently being turned on and off.
  • the plurality of fan control maps include third maps M11 and M22.
  • the control device 7 maintains a state in which the operation lock device (unlock lever 7c) is in the permission position (loading position) and the operation device 5 (work operation lever 5a, traveling operation lever 5b) is not operated for a predetermined period of time.
  • the rotation speed MS of the electric motor 9 is set to the idle rotation speed MS3, and the cooling fan is controlled based on the third maps M11 and M22.
  • the third maps M11 and M22 show that when the fan rotation speed FS is 0, the value of the cooling target temperature T increases from a value less than the predetermined third rotation start-up temperature T11a, T22a to the third rotation start-up temperature T11a, T22a.
  • the fan rotation speed FS is switched to the predetermined auto-idling rotation speed FS11, FS21, and the fan rotation speed FS is at the auto-idling rotation speed FS11, FS21, the value of the cooling target temperature T becomes the third rotation start-up temperature T11a. , T22a, the fan rotation speed FS is switched to 0 when the temperature decreases to a predetermined third rotational drop temperature T11b, T22b lower than T22a.
  • the third map M11 is common to the first map M11.
  • the object to be cooled by the cooler is a refrigerant for cooling the equipment to be cooled (electric motor 9, etc.) mounted on the work machine 1.
  • the electric motor 9 is equipped with an abnormal high temperature detection device 49 that detects an abnormal high temperature of the electric motor 9, etc.).
  • the control device 7 operates the cooling fan when the abnormal high temperature detection device 49 detects an abnormal high temperature and the temperature T to be cooled is equal to or higher than a third specified temperature T14a which is set to a value equal to or higher than the second rotation start-up temperature T13a.
  • the fan is rotated at a third fan rotation speed FS13 that is higher than the second fan rotation speed FS12.
  • the rotation speed of the cooling fan is controlled according to the temperature situation at the time of loading, if an abnormally high temperature is detected in the equipment to be cooled, such as the electric motor 9, which is a heavy-duty electrical equipment, the To prevent failure of equipment to be cooled by giving priority to cooling and rotating the cooling fan at a third fan rotation speed FS13 which is larger than the second fan rotation speed FS12 to quickly and powerfully cool the refrigerant. I can do it.
  • control device 7 controls the cooling fan when the value of the cooling target temperature T decreases to a fourth specified temperature T14b which is less than the third specified temperature T14a while the cooling fan is rotating at the third fan rotation speed FS13. control of the rotation speed is returned to control based on the second map M12.
  • the value of the cooling target temperature T increases to the fourth rotation start-up temperature T26a which is higher than the first specified temperature T23.
  • the cooling target is When the fan rotation speed FS is set to the fourth fan rotation speed FS23, FS25 which is larger than the second fan rotation speed FS22, FS24, and the fan rotation speed FS is the fourth fan rotation speed FS23, FS25, the cooling target is When the value of temperature T decreases to a predetermined fourth rotation fall temperature T26b that is lower than the fourth rotation start-up temperature T26a and higher than the first specified temperature T23, the fan rotation speed FS is changed to the second fan rotation speed FS22, FS24. is configured to lower the
  • the fan rotation speed FS is immediately increased to the 4th fan rotation speed F23, F25, that is, the cooling fan rotation
  • the object to be cooled can quickly escape from such a high temperature state.
  • the plurality of fan control maps include a fourth map M24.
  • the fourth map M24 determines the fan rotation speed FS when the cooling target temperature T increases from a value lower than the second rotation start-up temperature T25a to the second rotation start-up temperature T25a in a state where the fan rotation speed FS is 0. If the value of the cooling target temperature T is equal to or higher than the first specified temperature T23, the fan rotation speed FS is set to a predetermined fifth fan rotation speed FS24 that is lower than the second fan rotation speed FS22.
  • the fan rotation speed FS is increased as the cooling target temperature T is higher within a range of less than the fifth fan rotation speed FS24.
  • the fan rotation speed FS is set so that the fan rotation speed FS is reduced to 0 when the value of the cooling target temperature T decreases to the second rotational drop temperature T25b while the fan rotation speed FS is not 0.
  • the control device 7 controls the cooling fan based on the second map M23 when the rotation speed MS of the electric motor 9 is set to a high value MS1, and sets the rotation speed MS of the electric motor 9 to a low value MS2. the cooling fan is controlled based on the fourth map M24.
  • the characteristics of the fan rotation speed FS with respect to the temperature T to be cooled are determined when the electric motor 9 rotates at a high rotation speed MS1 (hereinafter simply referred to as "motor rotation") and when the motor rotates at a low rotation speed MS2.
  • motor rotation a high rotation speed
  • MS2 low rotation speed
  • the fourth map M24 is set such that the fan rotation speed FS changes to a small value as the temperature T of the object to be cooled increases. characteristics are adopted. Thereby, it is also possible to keep the fan rotation speed FS low, and effects such as reduction in noise and power consumption can be achieved.
  • the fourth map M24 shows that when the fan rotation speed FS is the fifth fan rotation speed FS24 and the value of the cooling target temperature T rises to the fourth rotation startup temperature T26a which is higher than the first specified temperature T23, the fan rotation speed FS is the fifth fan rotation speed FS24.
  • the rotation speed FS is set to the sixth fan rotation speed FS25, which is higher than the fifth fan rotation speed FS24, and the value of the cooling target temperature T rises to the fourth rotation while the fan rotation speed FS is the sixth fan rotation speed FS25.
  • the fan rotation speed FS is configured to be lowered to the fifth fan rotation speed FS24 when the temperature drops to a predetermined fourth rotation drop temperature T26b that is lower than the temperature T26a and higher than the first specified temperature T23.
  • the cooler is a radiator 35 for cooling cooling water that cools equipment including the electric motor 9, the cooling fan is a radiator fan 35a provided in the radiator 35, and the temperature detection device is a cooling target temperature The temperature of the cooling water is detected as T.
  • the radiator fan 35a of the radiator 35 which cools the cooling water that cools the equipment including the electric motor 9, takes advantage of the fact that it is an electric fan to control the situation such as loading or unloading.
  • the characteristics of the fan rotation speed FS of the radiator fan 35a with respect to the cooling water temperature T which is the target of control, can be optimized. Therefore, for example, when unloading, the rotation of the radiator fan 35a is stopped or rotated at the first fan rotation speed FS11 (low speed), thereby reducing the noise generated by the high-speed rotation of the radiator fan 35a and reducing the power consumption. , and prevention of overcooling.
  • the radiator fan 35a controls the rotation speed of the radiator fan 35a based on the detection of abnormal high temperature by the abnormal high temperature detection device 49, even if the rotation speed of the radiator fan 35a is controlled according to the temperature condition at the time of loading. If an abnormally high temperature of a device to be cooled, such as the electric motor 9, which is a powerful electrical device, is detected, priority is given to cooling the device, and the radiator fan 35a is set to a third fan rotation speed FS13 higher than the second fan rotation speed FS12. By rotating the refrigerant and rapidly and powerfully cooling the cooling water, it is possible to prevent failures of equipment to be cooled, including the electric motor 9.
  • the electric motor 9 which is a powerful electrical device
  • the work equipment 1 also includes hydraulic pumps P1 and P2 driven by an electric motor 9, and hydraulic actuators C1 to C5, ML, MR, and MT driven by the hydraulic pressure of hydraulic oil discharged by the hydraulic pumps P1 and P2. It is equipped with
  • the cooler is an oil cooler 37 for cooling hydraulic oil
  • the cooling fan is an oil cooler fan 37a provided in the oil cooler 37
  • the temperature detection device detects the temperature of the hydraulic oil as the temperature T to be cooled.
  • the oil cooler fan 37a of the oil cooler 37 for cooling the hydraulic oil discharged from the hydraulic pumps P1 and P2 and supplied to the hydraulic actuators C1 to C5, ML, MR, and MT is an electric fan.
  • the characteristics of the fan rotation speed FS of the oil cooler fan 37a are optimized for the hydraulic oil temperature T, which is the control target, depending on the difference in the situation such as loading or unloading. can do. Therefore, for example, when unloading, the rotation of the oil cooler fan 37a is stopped or rotated at the first fan rotation speed FS11 (low speed) to reduce noise caused by high-speed rotation of the oil cooler fan 37a and to reduce power consumption. This has the effect of reducing the amount of water and preventing overcooling.
  • the rotation speed of the oil cooler fan 37a is controlled. It is possible to develop rotational characteristics of the oil cooler fan 37a that match the temperature condition of the hydraulic oil produced by the rotation of the motor.
  • the fourth map M24 is set such that the fan rotation speed FS changes to a small value as the temperature T of the object to be cooled increases. characteristics are adopted. Thereby, it is also possible to keep the fan rotation speed FS low, and effects such as reduction in noise and power consumption can be achieved.
  • the work equipment 1 also includes hydraulic pumps P1 and P2 driven by an electric motor 9, and hydraulic actuators C1 to C5, ML, MR, and MT driven by the hydraulic pressure of hydraulic oil discharged by the hydraulic pumps P1 and P2.
  • a radiator 35 serves as a cooler for cooling cooling water for cooling equipment including the electric motor 9, and an oil cooler 37 serves as a cooling fan.
  • a radiator fan 35a provided in the oil cooler 37 and an oil cooler fan 37a provided in the oil cooler 37 are provided.
  • the temperature detection device water temperature detection device 46, oil temperature detection device 47 detects the temperature of the cooling water and the temperature of the hydraulic oil as the temperature T to be cooled.
  • the storage device stores a plurality of fan control maps M11, M12, and M13 for the radiator fan 35a that indicate the characteristics of the rotation speed FS of the radiator fan 35a with respect to the temperature T of the cooling water, and the oil map with respect to the temperature T of the hydraulic oil.
  • a plurality of fan control maps M21, M22, M23, and M24 for the oil cooler fan 37a indicating characteristics of the rotation speed FS of the cooler fan 37a are stored.
  • the control device 7 controls the rotation speed FS of the radiator fan 35a based on the plurality of fan control maps M11, M12, M13 for the radiator fan 35a, and the plurality of fan control maps M21, M22, M23 for the oil cooler fan 37a. , M24 to control the rotation speed FS of the oil cooler fan 37a.
  • the present invention is not limited to this, and for example, a wheel loader, a compact track loader, a skid steer loader, etc.
  • the present invention may be applied to other construction machinery, or may be applied to agricultural machinery such as tractors, combines, rice transplanters, lawn mowers, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

作業機(1)は、電動モータ(9)と、前記電動モータ(9)の動力を用いて駆動される作業装置と、前記作業装置を操作する操作装置(5)と、前記操作装置(5)による前記作業装置の操作を許可する許可位置と、前記操作を禁止する禁止位置とに切り換え可能な操作ロック装置(5c)と、電動の冷却ファン(35a、37a)を有する冷却器(35、37)と、前記冷却器(35、37)にて冷却される冷却対象の温度である冷却対象温度(T)を検出する温度検出装置(46、47)と、前記温度検出装置(46、47)の検出する前記冷却対象温度(T)に応じて前記冷却ファン(35a、37a)の回転数であるファン回転数(FS)を制御する制御装置(7)と、を備え、前記制御装置(7)は、前記冷却対象温度(T)に対する前記ファン回転数(FS)の特性を、前記操作ロック装置(5c)が前記許可位置及び前記禁止位置のうちいずれにあるかによって変更する。

Description

作業機
 本発明は、掘削作業機(バックホー)等の作業機に関する。
 例えば特許文献1に開示された旋回式掘削作業機(バックホー)等の作業機は、電動モータ等を冷却する冷却水を冷却するための電動のラジエータファンを有するラジエータと、作動油を冷却するための電動のオイルクーラファンを有するオイルクーラとを備えている。
日本国公開特許公報「特開2021-80709号公報」
 しかしながら、特許文献1の技術では、ラジエータファン及びオイルクーラファンの具体的な制御方法については考慮されていない。
 本発明は、上記従来技術の問題点を解決すべくなされたものであって、電動ファンを備えた作業機において、騒音低減、電力消費量低減、及び過冷却の防止を実現することを目的とする。
 本発明の一態様に係る作業機は、電動モータと、前記電動モータの動力を用いて駆動される作業装置と、前記作業装置を操作する操作装置と、前記操作装置による前記作業装置の操作を許可する許可位置と、前記操作位置による前記作業装置の操作を禁止する禁止位置とに切り換え可能な操作ロック装置と、電動の冷却ファンを有する冷却器と、前記冷却器にて冷却される冷却対象の温度である冷却対象温度を検出する温度検出装置と、前記温度検出装置の検出する前記冷却対象温度に応じて前記冷却ファンの回転数であるファン回転数を制御する制御装置と、を備え、前記制御装置は、前記冷却対象温度に対する前記ファン回転数の特性を、前記操作ロック装置が前記許可位置及び前記禁止位置のうちいずれにあるかによって変更する。
 前記作業機は、前記冷却対象温度に対する前記ファン回転数の特性を示す複数のファン制御マップを記憶する記憶装置を備え、前記複数のファン制御マップは、互いに異なる第1マップ及び第2マップを含み、前記制御装置は、前記操作ロック装置が前記禁止位置にある場合に、前記第1マップに基づき前記冷却ファンの回転駆動を制御し、前記操作ロック装置が前記許可位置にある場合に、前記第2マップに基づき前記冷却ファンの回転駆動を制御してもよい。
 前記第1マップは、前記冷却対象温度に応じて前記ファン回転数を0と所定の第1ファン回転数とのいずれかに切り換えるよう構成されていてもよい。
 前記第1マップは、前記ファン回転数が0の状態で前記冷却対象温度の値が所定の第1回転立上温度未満の値から前記第1回転立上温度に上昇したときに前記ファン回転数を前記第1ファン回転数に切り換え、前記ファン回転数が前記第1ファン回転数の状態で前記冷却対象温度の値が前記第1回転立上温度よりも低い所定の第1回転降下温度に低下したときに前記ファン回転数を0に切り換えるよう構成されていてもよい。
 前記第2マップは、前記ファン回転数が0の状態で前記冷却対象温度の値が所定の第2回転立上温度未満の値から前記第2回転立上温度に上昇したときに前記ファン回転数を0よりも大きい値に設定し、前記冷却対象温度の値が前記第2回転立上温度よりも高い温度に設定される第1規定温度以上の値である場合は前記ファン回転数を所定の第2ファン回転数に設定し、前記冷却対象温度の値が前記第2回転立上温度以上、前記第1規定温度未満の値である場合は前記ファン回転数を前記第2ファン回転数未満の範囲内で前記冷却対象温度が高いほど高く設定し、前記ファン回転数が0ではない状態で前記冷却対象温度の値が第2回転立上温度よりも低い所定の第2回転降下温度に低下したときに前記ファン回転数を0に低下させるように構成されていてもよい。
 前記第2マップは、前記冷却対象温度の値が前記第2回転立上温度以上且つ前記第1規定温度よりも低い値に設定される第2規定温度未満である場合は前記ファン回転数を前記第2ファン回転数よりも低い一定値に設定し、前記冷却対象温度の値が前記第2規定温度以上且つ前記第1規定温度未満の値の場合は前記ファン回転数を前記第2ファン回転数未満の範囲内で前記冷却対象温度が高いほど高く設定するよう構成されていてもよい。
 前記複数のファン制御マップは第3マップを含み、前記制御装置は、前記操作ロック装置が前記許可位置にあり、且つ前記操作装置が操作されていない状態が所定時間継続すると、前記電動モータの回転数をアイドル回転数にするとともに、前記冷却ファンを前記第3マップに基づいて制御し、前記第3マップは、前記ファン回転数が0の状態で前記冷却対象温度の値が所定の第3立上温度未満の値から前記第3回転立上温度に上昇したときに前記ファン回転数を所定のオートアイドル用回転数に切り換え、前記ファン回転数が前記オートアイドル用回転数の状態で前記冷却対象温度の値が前記第3回転立上温度よりも低い所定の第3回転降下温度に低下したときに前記ファン回転数を0に切り換えるよう構成されていてもよい。
 前記第3マップは前記第1マップと共通であってもよい。
 前記冷却器の前記冷却対象は前記作業機に搭載された冷却対象機器を冷却するための冷媒であり、前記作業機は、前記冷却対象機器の異常高温を検出する異常高温検出装置を備え、前記制御装置は、前記異常高温検出装置が異常高温を検出し、且つ前記冷却対象温度が前記第2回転立上温度以上の値に設定される第3規定温度以上の時は、前記冷却ファンを前記第2ファン回転数よりも大きな第3ファン回転数で回転させてもよい。
 前記制御装置は、前記冷却ファンを前記第3ファン回転数で回転させている状態で前記冷却対象温度の値が前記第3規定温度未満の第4規定温度に低下したときに、前記冷却ファンの回転数の制御を前記第2マップに基づく制御に戻してもよい。
 前記第2マップは、前記ファン回転数が前記第2ファン回転数の状態で前記冷却対象温度の値が前記第1規定温度よりも高い第4回転立上温度に上昇したときに前記ファン回転数を前記第2ファン回転数よりも大きい第4ファン回転数に設定し、前記ファン回転数が前記第4ファン回転数である状態で前記冷却対象温度の値が第4回転立上温度よりも低く前記第1規定温度よりも高い所定の第4回転降下温度に低下したときに前記ファン回転数を前記第2ファン回転数に低下させるよう構成されていてもよい。
 前記複数のファン制御マップは、第4マップを含み、前記第4マップは、前記ファン回転数が0の状態で前記冷却対象温度の値が前記第2回転立上温度未満の値から前記第2回転立上温度に上昇したときに前記ファン回転数を0よりも大きい値に設定し、前記冷却対象温度の値が前記第1規定温度以上の場合は前記ファン回転数を前記第2ファン回転数よりも低い所定の第5ファン回転数に設定し、前記冷却対象温度の値が前記第2回転立上温度以上、前記第1規定温度未満の場合は前記ファン回転数を前記第5ファン回転数未満の範囲内で前記冷却対象温度が高いほど高く設定し、前記ファン回転数が0ではない状態で前記冷却対象温度の値が前記第2回転降下温度に低下したときに前記ファン回転数を0に低下させるよう構成されており、前記制御装置は、前記電動モータの回転数が、高い値に設定されている時に前記第2マップに基づいて前記冷却ファンを制御し、前記電動モータの回転数が、低い値に設定されている時に前記第4マップに基づいて前記冷却ファンを制御してもよい。
 前記第4マップは、前記ファン回転数が前記第5ファン回転数の状態で前記冷却対象温度の値が前記第1規定温度よりも高い第4回転立上温度に上昇したときに前記ファン回転数を前記第5ファン回転数よりも大きい第6ファン回転数に設定し、前記ファン回転数が前記第6ファン回転数である状態で前記冷却対象温度の値が第4回転立上温度よりも低く前記第1規定温度よりも高い所定の第4回転降下温度に低下したときに前記ファン回転数を前記第5ファン回転数に低下させるよう構成されていてもよい。
 前記冷却器は、前記電動モータを含む機器類を冷却する冷却水を冷却するためのラジエータであり、前記冷却ファンは前記ラジエータに備えられるラジエータファンであり、前記温度検出装置は、前記冷却対象温度として前記冷却水の温度を検出してもよい。
 前記冷却器は、前記電動モータを含む機器類を冷却する冷却水を冷却するためのラジエータであり、前記冷却ファンは前記ラジエータに備えられるラジエータファンであり、前記温度検出装置は、前記冷却対象温度として前記冷却水の温度を検出してもよい。
 前記作業機は、前記電動モータにて駆動される油圧ポンプと、前記油圧ポンプが吐出する作動油の油圧にて駆動される油圧アクチュエータとを備え、前記冷却器は前記作動油を冷却するためのオイルクーラであり、前記冷却ファンは前記オイルクーラに備えられるオイルクーラファンであり、前記温度検出装置は、前記冷却対象温度として前記作動油の温度を検出してもよい。
 前記作業機は、前記電動モータにて駆動される油圧ポンプと、前記油圧ポンプが吐出する作動油の油圧にて駆動される油圧アクチュエータとを備え、前記冷却器は前記作動油を冷却するためのオイルクーラであり、前記冷却ファンは前記オイルクーラに備えられるオイルクーラファンであり、前記温度検出装置は、前記冷却対象温度として前記作動油の温度を検出してもよい。
 前記作業機は、前記電動モータにて駆動される油圧ポンプと、前記油圧ポンプが吐出する作動油の油圧にて駆動される油圧アクチュエータとを備え、前記冷却器として、前記電動モータを含む機器類を冷却する冷却水を冷却するためのラジエータと、前記作動油を冷却するためのオイルクーラとを備え、前記冷却ファンとして、前記ラジエータに備えられるラジエータファンと、前記オイルクーラに備えられるオイルクーラファンとを備え、前記温度検出装置は、前記冷却対象温度として前記冷却水の温度と前記作動油の温度とを検出し、前記記憶装置は、前記冷却水の温度に対する前記ラジエータファンの回転数の特性を示すラジエータファン用の複数のファン制御マップと、前記作動油の温度に対する前記オイルクーラファンの回転数の特性を示すオイルクーラファン用の複数のファン制御マップとを記憶しており、前記制御装置は、前記ラジエータファン用の複数のファン制御マップに基づいて前記ラジエータファンの回転数を制御し、前記オイルクーラファン用の複数のファン制御マップに基づいて前記オイルクーラファンの回転数を制御してもよい。
 上記構成により、操作ロック装置の切換位置に応じて、冷却ファンの回転を制御することができるので騒音低減、電力消費量低減、及び過冷却の防止を実現できる。
作業機の電気系統図である。 作業機の油圧系統図である。 第1マップ群を示す図である。 第1マップ群に基づく冷却ファン制御用フローチャートである。 第1マップ群に基づく冷却ファン制御用フローチャートである。 第2マップ群を示す図である。 第2マップ群を基づく冷却ファン制御用フローチャートである。 第2マップ群を基づく冷却ファン制御用フローチャートである。 第2マップ群を基づく冷却ファン制御用フローチャートである。 作業機の全体側面図である。 走行装置及び作業装置を除いた作業機の右後部分を示す斜視図である。 作業機のボンネット内の構造を示す斜視図である。
 以下、本発明の一実施形態について、図面を参照しながら説明する。
 先ず、本実施形態の作業機1の全体構成について、図7~図9等より説明する。本実施形態では、作業機1は、バックホーと呼ばれる旋回式掘削作業機である。作業機1は、機体(旋回台)2、走行装置10、作業装置20などを備えている。
 機体2は、走行装置10の上部に、図示されない上下方向の旋回軸を介して搭載されている。図7にて示すように、この旋回軸の上下方向の軸芯Xを中心に走行装置10に対して水平方向に相対回転可能に搭載されている。
 以下の作業機1の説明において、前後方向は、走行装置10の機体2に対する相対回転位置に拘らず、機体2の前後方向を指すものである。図7~図9において、矢印Fが、機体2にとっての前方を向いて延伸している。この向きは、図7に示す運転席4に着座したオペレータが前向きに正対した場合の水平方向の視線の向きと一致する。機体20にとって、後方は矢印Fに対して正反対の水平方向である。
 また、以下の作業機1の説明において、左右方向は、走行装置10の機体2に対する相対回転位置に拘らず、機体2の左右方向(機体2の幅方向)を指すものである。図8、図9において、矢印Lが機体2にとっての左方を指して延伸している。
 図8、図9のように、矢印Lが矢印Fとともに図示されている場合は、矢印Fの起点から、矢印Fにとっては左方向きに矢印Lが延伸している。この矢印Lの向きは、運転席4に座ったオペレータにとっての水平の左方向に一致する。機体2にとって、右方は矢印Lに対して正反対の水平方向である。
 以下、作業機1の各構成要素や各部の前後左右の位置又は方向について述べるときは、上記の如き機体2にとっての前後左右方向を前提として述べるものとする。
 作業機1の機体2の上には、オペレータ(作業者)が着座する運転席4と、運転席4を前後、左右、及び上から保護する保護構造体6が設けられている。本実施形態では、保護構造体6は、キャビンである。別実施形態として、保護構造体6をキャノピーとすること等も考えられる。
 保護構造体6の各側面には、運転席4から周囲を目視可能な透明部分(いわゆる窓)が設けられている。保護構造体6は、運転席4が設けられた内部空間と外部とを仕切っている。
 保護構造体6の内部の運転席4の周囲には、作業機1を操作するための操作装置5が設けられている。オペレータは、運転席4に着座した状態で、操作装置5を操作可能である。
 走行装置10と機体2とで前後方向が一致している場合を想定して、走行装置10について説明する。走行装置10は、走行フレーム(トラックフレーム)11と左右1対の走行機構12とを有している。走行フレーム11の上部に機体2が支持される。図示される走行機構12は、クローラ式の走行機構であるが、例えばタイヤ(車輪)式の走行機構でもよい。
 各走行機構12は、走行フレーム11の左側部と右側部とにそれぞれ設けられている。各走行機構12は、アイドラ13と、駆動輪(駆動スプロケット)14と、複数の転輪15と、無端状のクローラベルト16と、各走行モータML、MRとを有している。
 アイドラ13は、走行フレーム11の前部に配置されている。駆動輪(駆動スプロケット)14は、走行フレーム11の後部に配置されている。複数の転輪15は、アイドラ13と駆動輪14との間に設けられている。クローラベルト16は、アイドラ13、駆動輪14、及び転輪15に亘って巻掛けられている。
 左走行モータMLは、走行フレーム11の左側部に設けた走行機構12に含まれている。右走行モータMRは、走行フレーム11の右側部に設けた走行機構12に含まれている。走行モータML、MRは、油圧モータである。
 左右の走行機構12では、それぞれ、各走行モータML、MRが各駆動輪14と同一軸芯上に設けられ、その出力軸を駆動輪14の回転中心軸に直接接続している。なお、各走行モータML、MRと各駆動輪14との間に減速ギア列等の伝動機構を介設してもよく、必ずしも駆動輪14と同一軸芯上に配置しなくてもよい。
 各走行モータML、MRにて駆動される駆動輪14の回転により、クローラベルト16が駆動し、アイドラ13及び転輪15が従動する。左右のクローラベルト16の駆動にて走行装置10が走行する。
 左右走行モータML、MRの出力回転速度及び出力回転方向は、互いに独立して駆動制御可能である。出力回転速度及び出力回転方向を、左右走行モータのML、MR同士で同じにすることで、走行装置10、即ち作業機1は、前方又は後方に直進する。左右走行モータのML、MR同士で、回転速度に差を設けたり、回転方向を異ならせたりすることで、作業機1は旋回する。
 走行フレーム11の前部には、ドーザ18が装着され、走行装置10の前方へと延出している。ドーザ18は、ドーザシリンダC5の伸縮によって上下に揺動する。ドーザシリンダC5は、走行フレーム11に取り付けられている。ドーザシリンダC5は、油圧シリンダである。
 機体2は、走行フレーム11上に旋回ベアリング3を介して、軸芯X回りに回転可能に支持されている。機体2の内部には、旋回モータMTが設けられている。旋回モータMTは、油圧アクチュエータの一つである油圧モータである。機体2は、旋回モータMTの動力により軸芯X回りに旋回する。
 機体2の前部に、スイングブラケット24が、縦軸(上下方向の軸)を中心に機体2に対し左右方向に相対回動自在に設けられている。作業装置20は、スイングブラケット24を介して、機体2の前部に支持されている。以後、作業装置20の前後方向が機体2の前後方向と一致している状態を想定して、作業装置20について説明する。
 作業装置20は、ブーム21と、アーム22と、バケット(油圧アタッチメント)23を有する。ブーム21の基端部は、スイングブラケット24に横軸廻りに回動可能に枢着されている。このため、ブーム21は機体2に対して上下方向及び前後方向に揺動可能になっている。なお、横軸は、機体2の左右方向沿いの水平軸芯を有する軸であるものとする。
 アーム22は、ブーム21の先端部に横軸廻りに回動可能に枢着されている。このため、アーム22は、前後方向或いは上下方向に揺動可能になっている。バケット23は、アーム22の先端部に、スクイ動作及びダンプ動作が可能に設けられている。
 なお、スクイ動作及びダンプ動作は、アーム22に対するバケット23の相対回動であり、スクイ動作はブーム21及びアーム22に近づく向きの回動、ダンプ動作はブーム21及びアーム22から遠ざかる向きの回動である。
 作業装置20は、ブーム21、アーム22、バケット23を動作させるための油圧アクチュエータ(油圧シリンダ)として、ブームシリンダC2、アームシリンダC3、バケットシリンダC4を有している。また、スイングブラケット24を回動させるための油圧アクチュエータ(油圧シリンダ)であるスイングシリンダC1が機体2に設けられている。
 スイングブラケット24は、スイングシリンダC1の伸縮によって、機体2に対し左右に揺動する。ブーム21は、ブームシリンダC2の伸縮によってスイングブラケット24に対し上下又は前後に揺動する。アーム22は、アームシリンダC3の伸縮によってブーム21に対し上下又は前後に揺動する。バケット23は、バケットシリンダ(作業具シリンダ)C4の伸縮によってスクイ動作及びダンプ動作を行う。
 なお、バケット23に代えて、或いはバケット23に加えて、油圧アクチュエータにより駆動可能な他の作業具(油圧アタッチメント)をアーム22の先端部に装着することが可能である。他の作業具として、油圧ブレーカ、油圧圧砕機、アングルブルーム、アースオーガ、パレットフォーク、スイーパー、モア、スノーブロアなどを例示することができる。
 作業機1は、走行モータML、MRにより走行装置10を駆動し、油圧シリンダC1~C5により作業装置20及びドーザ18を駆動し、旋回モータMTにより機体2を旋回させて、掘削などの作業を行う。
 即ち、作業機1は、各部を油圧で動作させるための油圧アクチュエータとして、走行モータML、MR、旋回モータMT、及び油圧シリンダC1~C5を備えている。以後、特別に述べない限り、これら油圧アクチュエータの全てを指して、単に「油圧アクチュエータ」というものとする。
 作業機1には、これら油圧アクチュエータを作動させるため、図2に示すような油圧系統(油圧回路K)が備えられている。これについては後に詳述する。
 図7に示すように、機体2の、保護構造体(キャビン)6の後方の部分に形成されたボンネット2a内においては、図9に示すように、複数のバッテリパック31、32を組み合わせてなるバッテリユニット30が、バッテリパック31、32を機体2に対して左右に並置した状態で、支持フレーム90に支持されて、機体(旋回台)2の底板を構成する基台2c上に設置されている。
 図8にてわかるように、機体2のボンネット2aは保護構造体6の右側端よりも右方に膨出している。このボンネット2aの右方膨出部内のスペースを利用して、図9に示すように、バッテリユニット30の右側に、原動機としての電動モータ9と油圧ポンプP1、P2とを組み合わせてなるモータ・ポンプアセンブリ91が、基台2cに設置されている。
 同じくボンネット2aの右方膨張部内の、モータ・ポンプアセンブリ91の上方のスペースには、図8に示すように、ラジエータ35及びオイルクーラ37が、バッテリユニット30の右側にて、前後に並列された(本実施形態ではラジエータ35がオイルクーラ37の前側に配置された)状態で設けられている。
 こうして、ラジエータ35のラジエータファン35aと、オイルクーラ37のオイルクーラファン37aとが、前後に並設されて、いずれもボンネット2aの右側面に臨んでいる。
 ボンネット2aの右側カバー2bには図略の空気吹出し口が設けられており、ラジエータファン35a及びオイルクーラファン37aからの排熱風がシュラウド96により画された空気通路及び空気吹出し口を介して機体2の外に放出される。
 この右側カバー2bは図8に示すように開閉可能であり、右側カバー2bを開くことで、メンテナンス等のためラジエータファン35a、オイルクーラファン37a等にアクセス可能である。
 なお、ボンネット2a内の、バッテリユニット30の左側には、図1に示す低圧バッテリ33が配置されている。ラジエータファン35aを駆動するファンモータ35b、オイルクーラファン37aを駆動するファンモータ37b等は、この低圧バッテリ33より電力を受ける。なお、低圧バッテリ33は、バッテリユニット30のバッテリパック31、32より補充される電力を充電可能となっている。
 支持フレーム90の頂部には、バッテリパック31、32の電力を電動モータ9に供給し、また、低圧バッテリ33に供給するための、後述のインバータ38やコンバータ40等を含む変換器類97が設けられている。
 本実施形態では、以後、特に、電動モータ9等、バッテリパック31、32から高電圧の電力を受けて作動する電機機器を強電機器、低圧バッテリ33から低電圧の電力を受けて稼動する電機機器(電装品)を弱電機器と称する場合があるものとする。
 次に、図1に示す作業機1の電気系統の各構成要素について説明する。図1は、作業機1の電気系統を示すブロック図である。作業機1は、制御装置7を備えており、制御装置7は、CPU7aと記憶部7bとを有している。
 CPU7aは、図1に示す作業機1に備わる各部の動作を制御する。記憶部7bは揮発性メモリ及び不揮発性メモリなどから構成されている。CPU7aが各部の動作を制御するための情報、データ、及びプログラムなどは、記憶部7bに読み書き可能に記憶されている。
 なお、作業機1は、このようなデータやプログラム等を記憶する記憶装置を、制御装置7に組み込まれる記憶部7bとして備えているが、このような記憶装置は、制御装置7とは別に、例えば外部メモリの形で備えられるものとしてもよい。
 操作装置5は、作業用操作レバー5a、走行用操作レバー5b、アンロードレバー5c、アクセルダイヤル5d、及びモード選択SW(スイッチ)5eなどの操作部材を有している。また、操作装置5は、各操作部材5a~5eの操作の有無、操作位置、若しくは操作量を検出するための、ポテンションメータ、スイッチ、又はセンサなど(図示省略)も有している。
 作業用操作レバー5aは、作業装置20の作動を操作する部材である。走行用操作レバー5bは、走行装置10の作動を操作する部材である。図1では、便宜上、作業用操作レバー5aと走行用操作レバー5bをそれぞれ1つのブロックで示しているが、実際には、作業用操作レバー5aに該当するレバーを複数設けたり、走行用操作レバー5bに該当するレバーを複数設けたりしてもよい。なお、これらの操作部材は、ダイヤルやスイッチ等、レバー以外の構成であってもよい。
 アンロードレバー5cは、油圧アクチュエータの作動を許可するロード位置(第1位置、許可位置)と、作業装置20の作動を許可しない(禁止する)アンロード位置(第2位置、禁止位置)のいずれかに切り換え操作可能な部材である。アンロードレバー5cは、例えば運転席4(図1)の側方に、上下揺動可能に設置されており、上下揺動域の下限位置をロード位置、上限位置をアンロード位置としている。
 アンロードレバー5cを下方へ揺動させて、ロード位置(第1位置、下げ位置)に位置させることで、オペレータが運転室4Rに対して乗降する通路が閉鎖される。アンロードレバー5cを上方へ揺動させて、アンロード位置(第2位置、上げ位置)に位置させることで、上記通路が開放される。
 アクセルダイヤル5dは、電動モータ9の目標回転数を設定するために回転操作される。アクセルダイヤル5dの操作位置、即ち回動角度を変更することで、電動モータ9の目標回転数を変更することができる。制御装置7は、アクセルダイヤル5dの操作位置(操作量)に応じて、電動モータ9の回転数の指示値を演算し、電動モータ9に、指示値の回転数で回転するよう指示する。
 モード選択SW5eは、電動モータ9の駆動を制御するための、通常モード(第1モード)と、当該通常モードよりも消費電力を低減するECOモード(エコロジーモード、第2モード)とのいずれかを選択するために操作されるスイッチである。
 モード選択SW5eにて通常モードを選択すると、電動モータ9のモータ回転数MSとして高速回転用のモータ回転数であるハイアイドル回転数MS1(図5参照)が設定される。なお、ハイアイドル回転数MS1の値としては、例えば2200rpmという数値が考えられる。
 一方、モード選択SW5eにてECOモードを選択すると、電動モータ9のモータ回転数MSとして、低速回転用のモータ回転数であるローアイドル回転数MS2(図5参照)が設定される。なお、ローアイドル回転数MS2の値としては、例えば1000rpmという数値が考えられる。
 さらに、後述の如くオートアイドリング制御を実行する場合等においては、電動モータ9は、ローアイドル回転数MS2よりも低いアイドル回転数MS3(図5参照)にて駆動される。なお、アイドル回転数MS3の値としては、例えば250rpmとすることが考えられる。
 スタータSW(スイッチ)8は、保護構造体6の内部に設けられ、運転席4に着座したオペレータが操作可能になっている。スタータSW8は、作業機1を始動させたり停止させたりするために操作される。
 スタータSW8をオン操作することで、制御装置7が原動機である電動モータ9を始動し、作業機1に備わる各部を始動させる。また、スタータSW8をオフ操作することで、制御装置7が電動モータ9を停止し、作業機1に備わる各部を停止させる。
 作業機1の原動機である電動モータ9は、例えば永久磁石埋込式の三相交流同期モータから構成されている。インバータ38は、電動モータ9を駆動させるモータ駆動装置である。インバータ38は、電動モータ9及びジャンクションボックス39と接続されている。
 ジャンクションボックス39は、インバータ38の他に、バッテリユニット30とDC-DCコンバータ40と充電口41とに接続されている。ジャンクションボックス39は、バッテリユニット30から出力された電力をインバータ38やDC-DCコンバータ40に出力する。
 インバータ38は、バッテリユニット30からジャンクションボックス39を経由して入力された直流電力を三相交流電力に変換し、当該三相交流電力を電動モータ9に供給する。これにより、電動モータ9が駆動する。また、インバータ38は、電動モータ9に供給する電力の電流や電圧を任意に調整可能である。制御装置7は、インバータ38の動作を制御して、電動モータ9を駆動させたり停止させたりする。
 モータ回転数検出装置42は、電動モータ9の回転数(実回転数)を検出するセンサ、エンコーダ、又はパルス発生器などから構成されている。制御装置7は、モータ回転数検出装置42により検出された電動モータ9の回転数(実回転数)に基づいて、インバータ38により電動モータ9の駆動を制御する。
 制御装置7は、例えば、モータ回転数検出装置42により検出された電動モータ9の実回転数が、目標回転数(アクセルダイヤル5dによる設定値又は後述する所定の回転数R1~R3)に一致するように、インバータ38により電動モータ9の駆動を制御する。
 DC-DCコンバータ40は、バッテリユニット30からジャンクションボックス39を経由して入力された直流電流の電圧を、異なる電圧に変換する電圧変換装置である。本実施形態では、DC-DCコンバータ40は、バッテリユニット30の高電圧を、作業機1に備わる前述の弱電機器(電装品)に応じた所定の低電圧に変換する降圧コンバータである。
 DC-DCコンバータ40は、電圧変換後に低圧バッテリ33へ電力を供給する。作業機1には、図1に示す各部以外に、照明やヒータ等、前述の弱電機器(電装品)が備えられており、これらの弱電機器(電装品)が低圧バッテリ33からの電力で作動する。
 充電口41は、充電ケーブル(図示省略)が嵌合されるコネクタ(図示省略)と、接続検出装置41aとを有している。充電口41には、充電ケーブルを経由して外部電源(商用電源等)に接続される。接続検出装置41aは、充電口41に充電ケーブルが嵌合されて、外部電源が接続されたことを検出するセンサ等から成る。
 ジャンクションボックス39は、外部電源から充電ケーブルを経由して充電口41より入力された電力を、バッテリユニット30に出力する。バッテリユニット30は、充電口41からジャンクションボックス39を経由して入力された電力で充電される。
 バッテリユニット30は、複数のバッテリパック31、32を有している。各バッテリパック31、32は、少なくとも1つのバッテリから構成されたリチウムイオン電池等の二次電池(蓄電池)である。
 各バッテリパック31、32を複数のバッテリから構成した場合、当該複数のバッテリは電気的に直列及び/又は並列に接続される。また、各バッテリパック31、32を構成するバッテリは、内部に複数のセルを有しており、当該複数のセルが電気的に直列及び/又は並列に接続されて構成されている。
 各バッテリパック31、32は、作業機1の各部を所定時間稼働可能な電気容量を有している。バッテリパック31、32同士は、並列に接続されている。
 本実施形態では、バッテリユニット30に2つのバッテリパック31、32を設けているが、バッテリユニット30が有するバッテリパックの数は2つに限定されず、1つでもよいし、又は3つ以上でもよい。
 各バッテリパック31、32には、接続切替部31a、32aが設けられている。各接続切替部31a、32aは、例えばリレー又はスイッチ等から構成されていて、接続状態と遮断状態とに切替可能である。
 制御装置7は、接続切替部31a、32aのうち、一方の接続切替部を接続状態に切り替えて、他方の接続切替部を遮断状態に切り替えることにより、複数のバッテリパック31、32のうち、一方のバッテリパックからジャンクションボックス39に電力を出力し、他方のバッテリパックからの電力の出力を停止する。つまり、制御装置7は、各バッテリパック31、32の電力の出力と出力停止とを制御する。
 また、制御装置7は、ジャンクションボックス39の内部の接続状態を切り替えて、各バッテリパック31、32に対してインバータ38、DC-DCコンバータ40、又は充電口41を接続したり切断したりする。ジャンクションボックス39及び接続切替部31a、32aは、各バッテリパック31、32に対するインバータ38、DC-DCコンバータ40、及び充電口41の接続と切断とを切り替える接続切替装置である。
 また、各バッテリパック31、32には、BMU(battery management unit;バッテリ監視装置)31b、32bが設けられている。図1では、BMU31b、32bは対応するバッテリパック31、32内に設けられているが、BMU31b、32bは対応するバッテリパック31、32に内蔵されていてもよいし、又はバッテリパック31、32の外側に設置されていてもよい。
 BMU31bは、対応するバッテリパック31を監視及び制御する。BMU32bは、対応するバッテリパック32を監視及び制御する。具体的には、BMU31b、32bは、バッテリパック31、32の内部に備わるリレーの開閉を制御して、バッテリパック31、32からの電力供給の開始及び停止を制御する。また、BMU31b、32bは、バッテリパック31、32の温度、電圧、電流、又は内部のセルの端子電圧等を検出する。
 さらに、BMU31b、32bは、例えばバッテリパック31、32の内部のセルの端子電圧に基づいて、電圧測定方式によりバッテリパック31、32の残容量(残電力量)を検出する。
 なお、バッテリパック31、32の残容量の検出方法は、電圧測定方式に限定されず、クーロン・カウンタ方式、電池セル・モデリング方式、インピーダンス・トラック方式などのような他の方式であってもよい。また、バッテリパック31、32の残容量を検出する容量検出部を、BMU31b、32bとは別に設けてもよい。
 低圧バッテリ33は、バッテリユニット30より低電圧の蓄電池である。低圧バッテリ33は、DC-DCコンバータ40から供給される電力により充電される。低圧バッテリ33は、作業機1に備わる上述の如き電装品に電力を供給する。
 ラジエータ35は、電動モータ9、インバータ38、DC-DCコンバータ40、及びバッテリユニット30等の高発熱型の電気機器を冷却対象機器とし、これら冷却対象機器を冷却するための冷却水を冷却する。なお、冷却水は、単なる水ではなく、例えば寒冷地でも凍らないような液体から構成されている。
 なお、ラジエータ35の冷却対象機器である高発熱型の電気機器とは、電力で動作することにより、作業機1に備わる他の電気機器より高い熱を発する電気機器のことであり、前述の強電機器に該当する。これらの強電機器は、それぞれに、温度センサを備えており、これらが各強電機器の異常高温を検出するための異常高温検出装置49として機能する。
 なお、各強電機器については、温度の上限値が定められており、実際温度が上限値に達すると、当該強電機器の保護のため、動作を停止する。この上限値に達するまでの高温状態のときに、強電機器の出力低減(ディレーディング)が行われる。異常高温検出装置49にて検出される異常高温は、上限値に達するまでの、このディレーディングを促す段階の温度である。
 ラジエータ35は、図略の熱交換器、ラジエータファン35a、及びファンモータ35bを有する。ラジエータファン35aは、ファンモータ35bの出力を受けて回転し、熱交換器にて冷却水より回収した熱を機体2の外部等に放出する。ファンモータ35bは、低圧バッテリ33の電力で駆動する。ファン回転数検出装置43は、ラジエータファン35aの回転数を検出する。
 冷却用ポンプ36は、ラジエータ35及び上記の高発熱型の電気機器と共に、機体2内に配設された図略の冷却水路上に設けられている。冷却用ポンプ36は、その冷却水路に対して冷却水を吐出する。
 オイルクーラ37は、前述した油圧アクチュエータML、MR、MT、C1~C5や、後述する油圧ポンプP1、P2及び後述の制御弁ユニットCV(図2等に図示)といった油圧機器を通過した作動油を冷却する。即ち、オイルクーラ37の冷却対象は作動油である。
 オイルクーラ37は、図略の熱交換器、オイルクーラファン37a、及びファンモータ37bを有する。オイルクーラファン37aは、ファンモータ37bの出力を受けて回転し、熱交換器にて作動油より回収した熱を機体2の外部等に放出する。ファンモータ37aは、低圧バッテリ33の電力で駆動する。ファン回転数検出装置44は、オイルクーラファン37aの回転数を検出する。
 表示装置45は、液晶ディスプレイ又はタッチパネルなどから構成されていて、各種の情報を表示する。水温検出装置46は、冷却水路内を循環する冷却水の温度を検出する。油温検出装置47は、作動油の温度、特には、油圧アクチュエータの作動に使用される等してから後述の作動油タンク59に戻される段階の作動油の温度を検出する。
 AI(オートアイドリング)-SW(スイッチ)48は、前述の油圧アクチュエータC1~C5、ML、MR、MTに供給される作動油の油圧により作動する圧力センサである。AI-SW48は、油圧アクチュエータC1~C5、ML、MR、MTうちの少なくともいずれか一つが作動している時にオン状態になり、これら油圧アクチュエータがいずれも作動していない時にオフ状態になる。
 言い換えれば、AI-SW48は、油圧アクチュエータC1~C5、ML、MR、MTの駆動対象である作業装置20や走行装置10等のうちのいずれか一つでも作動しているか否かを検出する。
 次に、作業機1に備わる油圧回路(油圧系統)について説明する。図2は、作業機1に備わる油圧回路Kを示した図である。油圧回路Kには、油圧アクチュエータC1~C5、ML、MR、MT、制御弁ユニットCV、油圧ポンプP1、P2、作動油タンク59、オイルクーラ37、操作弁PV1~PV6、アンロード弁58、及び油路50などの油圧機器が設けられている。
 複数設けられた油圧ポンプP1、P2のうち、一方は作動用油圧ポンプP1であり、他方はコントロール用油圧ポンプP2である。これらの油圧ポンプP1、P2は、電動モータ9の動力により駆動する。
 具体的には、図9に示すように、ボンネット2a内に設置されるモータ・ポンプアセンブリ91が電動モータ9及び油圧ポンプP1、P2を有している。電動モータ9の出力軸が延長されて、油圧ポンプP1・P2の入力軸(ポンプ軸)として機能している。
 作動用油圧ポンプP1は、作動油タンク59に貯留された作動油を吸引した後、制御弁ユニットCVに向かって作動油を吐出する。図2では、便宜上、作動用油圧ポンプP1を1つ図示しているが、これに限らず、各油圧アクチュエータC1~C5、ML、MR、MTへ作動油を供給可能に、作動用油圧ポンプP1を適宜数設ければよい。
 コントロール用油圧ポンプP2は、作動油タンク59に貯留された作動油を吸引した後吐出することにより、信号用又は制御用等の油圧を出力する。即ち、コントロール用油圧ポンプP2は、各制御弁V1~V8の位置(切換)制御用のパイロット油を供給(吐出)する。コントロール用油圧ポンプP2も適宜数設ければよい。
 制御弁ユニットCVは、複数の制御弁V1~V8を組み合わせてなる。各制御弁V1~V8は、油圧ポンプP1、P2から各油圧アクチュエータC1~C5、ML、MR、MTに出力する作動油の流量の制御(調整)を調整する。
 制御弁V1~V8のうち、制御弁V1~V4は、作業装置20を制御するためのものである。スイング制御弁V1は、スイングシリンダC1に供給する作動油の流量及び流方向を制御する。ブーム制御弁V2は、ブームシリンダC2に供給する作動油の流量及び流方向を制御する。アーム制御弁V3は、アームシリンダC3に供給する作動油の流量及び流方向を制御する。バケット制御弁V4は、バケットシリンダC4に供給する作動油の流量及び流方向を制御する。
 ドーザ制御弁V5は、ドーザシリンダC5に供給する作動油の流量を制御する。左走行制御弁V6は、左走行モータMLに供給する作動油の流量を制御する。右走行制御弁V7は、右走行モータMRに供給する作動油の流量を制御する。旋回制御弁V8は、旋回モータMTに供給する作動油の流量を制御する。
 なお、左走行モータML、右走行モータMR、左走行制御弁V6、右走行制御弁V7の「左」は左の走行機構12用のもの、「右」は右の走行機構12用のものという意味であって、「左」「右」は、必ずしも実際の左右配置関係をいうものでなくてもよい。
 操作弁(リモコン弁)PV1~PV6は、電磁弁であり、操作装置5に備わる操作レバー5a、5b(図1)の操作に応じて作動する。各操作弁PV1~PV6の作動量(操作量)に比例して、パイロット油が各制御弁V1~V8に作用することで、各制御弁V1~V8のスプールが直進移動する。
 そして、各制御弁V1~V8のスプールの移動量に比例する流量の作動油が、制御対象の油圧アクチュエータC1~C5、ML、MR、MTに供給される。こうして、各油圧アクチュエータC1~C5、ML、MR、MTが、各制御弁V1~V8からの作動油の供給量に応じて駆動する。
 すなわち、操作レバー5a、5bが操作されることで、制御弁V1~V8に作用するパイロット油としての作動油が調整され、制御弁V1~V8が制御される。そして、制御弁V1~V8から油圧アクチュエータC1~C5、ML、MR、MTに供給される作動油の流量及び流方向が調整されて、油圧アクチュエータC1~C5、ML、MR、MTの駆動と停止とが制御される。
 油路50は、例えばホース又は金属等の材料で形成された管から構成されている。油路50は、油圧回路Kに設けられた各部を接続し、各部に対して作動油又はパイロット油を流す流路である。油路50には、第1油路51、第2油路52、第1吸引油路54、第2吸引油路55、及び制限油路57が含まれている。
 第1吸引油路54は、作動用油圧ポンプP1が作動油タンク48から吸引した作動油を流す流路である。第2吸引油路55は、コントロール用油圧ポンプP2が作動油タンク59から吸引した作動油を流す流路である。
 第1油路51は、作動用油圧ポンプP1が吐出した作動油を制御弁ユニットCVの制御弁V1~V8に向かって流す流路である。第1油路51は、制御弁ユニットCV内で複数に分岐して、各制御弁V1~V8に接続されている。
 第2油路52は、制御弁V1~V8を通過した作動油を作動油タンク48に向かって流す流路である。作動油タンク59は作動油を貯留する。第2油路52には、往復油路52aと排出油路52bとが含まれている。
 往復油路52aは、各制御弁V1~V8と、それぞれの制御対象の油圧アクチュエータC1~C5、ML、MR、MTとの間に介設される1対の油路である。往復油路52aは、接続された制御弁V1~V8から油圧アクチュエータC1~C5、ML、MR、MTに作動油を供給したり、油圧アクチュエータC1~C5、ML、MR、MTから制御弁V1~V8に作動油を戻したりする流路である。
 排出油路52bの一端側は複数に分岐して、各制御弁V1~V8に接続されている。排出油路52bの他端部は、作動油タンク59に接続されている。
 第1油路51を通っていずれかの制御弁V1~V8に流れた作動油の一部は、当該制御弁V1~V8を通過して往復油路52aとしての一対の油路のうちの一方を通り、制御対象の油圧アクチュエータC1~C5、ML、MR、MTに供給される。
 そして、その油圧アクチュエータC1~C5、ML、MR、MTから排出された作動油は、往復油路52aとしての一対の油路のうちの他方を通って接続された制御弁V1~V8に戻り、当該制御弁V1~V8を通過して、排出油路52bへと流れる。
 また、第1油路51を通っていずれかの制御弁V1~V8に流れた作動油は、油圧アクチュエータC1~C5、ML、MR、MTへ供給されることなく、当該制御弁V1~V8を通過して排出油路52bに流れる。
 排出油路52bには、オイルクーラ37が設けられている。オイルクーラ37は、いずれかの制御弁V1~V8から排出油路52bを通って流れて来た作動油を冷却する。オイルクーラ37で冷却された作動油は、排出油路52bを通って作動油タンク59に戻る。
 以上のように、油路54、51、52は、作動油を作動油タンク59と油圧ポンプP1と制御弁ユニットCVの制御弁V1~V8と(一部の作動油は油圧アクチュエータC1~C5、ML、MR、MTも)に対して循環させるように配設されている。
 制限油路57は、コントロール用油圧ポンプP2が吐出した作動油を操作弁PV1~PV6に流す流路である。制限油路57の一端部は、コントロール用油圧ポンプP2に接続され、他端側は複数に分岐して、各操作弁PV1~PV6の一次側のポート(一次ポート)に接続されている。
 なお、操作弁PV1~PV6は電磁弁であって、制御装置7の出力する指令信号に基づき開度が調整される。その開度調整により制御弁V1~V8へのパイロット圧油の流量調整がなされる。
 制限油路57には、2位置切換弁から成るアンロード弁58が設けられている。アンロード弁58は、切換位置として油供給位置58a及び油遮断位置58bを有する2位置切換弁であって、アンロードレバー5c(図1)の操作に連動して、油供給位置58aと油遮断位置58bのいずれかに切り換わる。
 アンロードレバー5cがロード位置(下げ位置)に操作されることで、アンロード弁58が油供給位置58a(ロード位置)に切り換えられ、コントロール用油圧ポンプP2から制限油路57に吐出された作動油が操作弁PV1~PV6に供給されて、制御弁V1~V8が操作可能になる。
 これにより、油圧アクチュエータC1~C5、ML、MR、MTへの作動用油圧ポンプP1からの作動油の供給が許容され、これらの油圧アクチュエータの作動が許可される。なお、操作弁PV1~PV6から排出された作動油は、別の排出油路(図示省略)を通って作動油タンク59に戻る。
 また、アンロードレバー5cがアンロード位置(上げ位置)に操作されることで、アンロード弁58が油遮断位置58b(アンロード位置)に切り換えられ、コントロール用油圧ポンプP2から制限油路57に吐出された作動油が操作弁PV1~PV6に供給されずに作動油タンク48に排出されるので、制御弁V1~V8が操作不可能になる。
 これにより、油圧アクチュエータC1~C5、ML、MR、MTへの作動用油圧ポンプP1からの作動油の供給が禁止(遮断)され、いずれの油圧アクチュエータの作動も許可されなくなる。
 なお、本実施形態では、アンロードレバー5cの操作に応じてアンロード弁58を切り換えて操作弁PV1~PV6への作動油の給排状態を切り換えることで操作装置5による作業装置20及び走行装置10の操作の可否を切り換える構成について説明したが、これに限るものではない。
 例えば、制御弁V1~V8の一部または全部の動作を切り換える電磁弁を設け、この電磁弁の動作を制御する制御装置がアンロードレバー5cの切換位置に応じて電磁弁の動作を制御することで作業装置20及び走行装置10を操作可能状態と操作禁止状態とに切り換えるようにしてもよい。
 また、作業装置20及び走行装置10の一部または全部を電動アクチュエータにより動作させる構成とし、電動アクチュエータの動作を制御する制御装置がアンロードレバー5cの切換位置に応じて電動アクチュエータの動作を制御することで作業装置20及び走行装置10を操作可能状態と操作禁止状態とに切り換えるようにしてもよい。
 なお、以後、操作装置5の作業用操作レバー5a及び走行用操作レバー5b(以後、「操作レバー5a、5b」、或いは単に操作装置)にて操作される作業装置20、走行装置10、ドーザ17等を総称して作業装置(油圧か電動か等に拘らない)というものとする。
 即ち、アンロックレバー5cは、操作装置(操作レバー5a、5b)による作業装置の操作を許可する許可位置と、操作装置(操作レバー5a、5b)による作業装置の操作を禁止する禁止位置とに切り換え可能な操作ロック装置である。
 油圧回路Kには、上記以外にも、制御弁V1~V8の操作状態を検知するための操作検知油路(図示省略)が設けられている。操作検知油路は、コントロール用油圧ポンプP2から吐出されたパイロット油を、制御弁V1~V8の位置をそれぞれ切り換えるための複数の切換弁を順次経由させて、作動油タンク59に戻す油路である。この操作検知油路にAI-SW48(図1)が接続されている。
 制御弁V1~V8のいずれかが中立位置から切換位置に操作されることで、上記操作検知油路の一部が遮断されて、当該操作検知油路内のパイロット油の圧力がある程度高くなり(いわゆる圧が立った状態)、AI-SW48がオン状態になる。即ち、油圧アクチュエータC1~C5、ML、MR、MTのうち少なくともいずれかの一つが作動していることが、AI-SW48により検出される。
 また、制御弁V1~V8がいずれも中立位置にあるときは、上記操作検知油路が開通するため、当該操作検知油路内のパイロット油の圧力がある程度の値まで高くならず(いわゆる圧が立っていない状態)、AI-SW48がオフ状態になる。即ち、油圧アクチュエータC1~C5、ML、MR、MTのいずれもが作動していないことが、AI-SW48により検出される。
 アンロードレバー5cがロード位置(下げ位置)にある時、すなわち、アンロード弁58が油供給位置58aにある時は、油圧アクチュエータC1~C5、ML、MR、MTのうち少なくともいずれかの一つが作動している限り、AI-SW48はオン状態になっている。
 しかし、アンロードレバー5cがロード位置(下げ位置)にあるにもかかわらず、油圧アクチュエータのいずれも作動しない状態が生じ、この状態が一定時間続くと、AI-SW48がオフ状態に切り換わる。このAI-SW48のオフ状態への切換に基づき、制御装置7は、電動モータ9のモータ回転数MSをアイドル回転数MS3(図5参照)にするように指令を発する。この電動モータ9の制御を、オートアイドル制御と称する。
 作業機1は、以上のような構造の電気系統及び油圧系統を備えており、これら電気系統及び油圧系統に属する機器を巡る冷却水及び作動油を冷却対象としてこれらを冷却する冷却器として、前述のラジエータ35及びオイルクーラ37が備えられている。
 さらにこの冷却器は、電動の冷却ファンを備えている。すなわち、ラジエータ35は電動のファンモータ35bの出力にて回転駆動されるラジエータファン35aを備え、オイルクーラ37は電動のファンモータ37bの出力にて回転駆動されるオイルクーラファン37aを備えている。
 原動機としてエンジン(内燃機関)を備える作業機の場合、エンジンに付設されるラジエータのラジエータファンはファンベルト等を介してエンジン出力軸と同期回転するように構成されているので、原則的に、エンジン回転中は常時、ラジエータファンが回転している。また、ラジエータファンの回転数もエンジン回転数の変化と同期して変化することとなる。
 これに対し、作業機1は、原動機として電動モータ9を備えており、ラジエータファン35a等、前述の冷却器における電動の冷却ファンの回転駆動は電動モータ9の回転駆動とは独立している。制御装置7は、このような電動の冷却ファンであるラジエータファン35aやオイルクーラファン37aの回転駆動を、冷却対象の温度状況等に応じて制御する。
 このように電動の冷却ファンの制御については、例えば低騒音化を図るために状況に応じて回転を停止したり、低速で回転させたりということも可能である。作業機1については、図8に示すように冷却ファンとしてのラジエータファン35a及びオイルクーラファン37aを並設しているので、低騒音化は特に望まれる点である。
 そこで、本実施形態に係る作業機1は、図3、図4A、図4B、図5、図6A、図6B、図6Cに示すような電動冷却ファンの制御システムを採用するものである。この構造について、以下に説明する。
 まず、作業機1は、前述の記憶部7b等の記憶装置において、少なくとも一つの冷却ファンの制御パターンを示す冷却ファン回転特性図を記憶している。冷却ファン回転特性図は、個々の状況に応じて作成されたファン制御マップを複数個組み合わせてなるものである。すなわち、冷却ファン回転特性図とは、一つのマップ群である。
 本実施形態に係る作業機1は、このようなマップ群として、図3に示す第1マップ群MG1と、図5に示す第2マップ群MG2とを記憶装置にて記憶している。
 各マップ群MG1、MG2は、冷却対象(冷却水、作動油等)の温度に対しての冷却ファンの回転数特性を示す複数のファン制御マップよりなる。すなわち、ファン制御マップとは、横軸を前述の如き冷却対象の温度T(以下、「冷却対象温度T」)、縦軸を冷却ファンの回転数FS(以下、「ファン回転数FS」)として作成されたグラフである。
 図3に示す第1マップ群MG1について説明する。第1マップ群MG1は、複数のファン制御マップM11、M12、M13を含む。
 ファン制御マップM11は、アンロード弁58が油遮断位置58bにある時、或いは、アンロードレバー5cをアンロード位置(上げ位置)に引き上げている時(以下、単に「アンロード時」とする)に選択される。
 ファン制御マップM12は、アンロード弁58が油供給位置58aにある時、或いは、アンロードレバー5cをロード位置(下げ位置)に下げている時(以下、単に「ロード時」とする。)に選択される。
 なお、ロード時であっても、AI-SW48がオフ状態になると、すなわち、オートアイドリング制御が実行されると、ファン制御マップM11が選択される。
 ファン制御マップM13は、ロード時かアンロード時かにかかわらず、前述のように複数の強電機器(電動モータ9を含む)が個々に有する異常高温検出装置49のうちのいずれかが異常高温を検出した時に選択される。
 アンロード時、或いは、オートアイドリング制御が実行されている時に選択されるファン制御マップM11は、冷却対象温度Tが温度T11a以上の時はファン回転数FSがファン回転数FS11であることを示す。
 なお、温度T11aは、ファン回転数FSを0から回転数FS11へと立ち上げる判断のための閾値として設定されている。つまり、冷却ファンの回転停止中に、冷却対象温度Tが温度T11a未満の状態から上昇して温度T11aに達すると、冷却ファンが回転数FS11で回転を開始するものであり、さらに温度が上がる間、ファン回転数FSは回転数FS11で維持される。
 一方で、ファン制御マップM11は、冷却ファンを回転数FS11で回転させている状態で、冷却対象温度Tが温度T11a未満の状態から低下して温度T11aに達しても回転数FS11に維持し、冷却対象温度Tがさらに低下して温度T11bまで低下すると冷却ファンの回転を停止させる。
 温度T11bは、回転数FS11での冷却ファンの回転を停止する(回転数を0にする)判断のための閾値であり、温度T11aよりも低い値となっている。
 このように、冷却ファンの回転立ち上げ(ON)用の閾値としての温度T11aと冷却ファンの回転停止(OFF)用の閾値としての温度T11bとを異ならせることで、冷却ファンが冷却対象温度Tの変化に過敏に反応して頻繁にON・OFF切換するのを防止できる。
 なお、オートアイドリング制御時の電動モータ9のモータ回転数MSは、アイドル回転数MS3(図5参照)である。つまり、回転数FS11は、アイドル回転数MS3での電動モータ9の回転駆動に対応して定められるものである。
 一方、アンロード時には、電動モータ9のモータ回転数MSをアイドル回転数MS3とすること、或いは、モータ回転数MSを0にする(すなわち、電動モータ9の回転を停止する)ことが考えられる。
 オートアイドリング制御が実行されている場合を除いてロード時に選択されるファン制御マップM12は、冷却対象温度Tが温度T12以上の時はファン回転数FSが回転数FS12であり、温度Tが、温度T12よりも低い温度T13aから温度T12まで上がるにつれ、ファン回転数FSが回転数FS11から回転数FS12へと増加することを示す。
 なお、回転数FS12は、通常に油圧アクチュエータを作動させて作業装置20や走行装置10を駆動させている場合に冷却対象を冷却することが可能な冷却ファンの回転数として定められているものである。
 ファン制御マップM12において、温度T13aは、ファン回転数FSを0から回転数FS11へと立ち上げる判断のための閾値として設定されている。つまり、冷却ファンの回転停止中に、冷却対象温度Tが温度T13a未満の状態から増加して温度T13aに達すると、冷却ファンが回転数FS11で回転を開始する。
 温度Tが温度T13aから温度T12まで上がるにつれ、ファン回転数FSが回転数FS11から回転数FS12へと増加し、冷却対象温度Tが温度T12よりも高温である間は、回転数FS12が維持される。
 温度T13bは、回転数FS11での冷却ファンの回転を停止する(回転数を0にする)判断のための閾値である。
 つまり、冷却対象温度Tが温度T13aまで増加して冷却ファンが回転開始した後、冷却対象温度Tが温度T13aまで下がっても、温度T13aよりも低い温度T13bまで下がるまでは、回転数FS21での冷却ファンの回転が維持される。
 このように、冷却ファンの回転立ち上げ(ON)用の閾値としての温度T13aと冷却ファンの回転停止(OFF)用の閾値としての温度T13bとを異ならせることで、冷却ファンが温度Tの変化に過敏に反応して頻繁にON・OFF切換するのを防止できる。
 なお、本実施形態では、ファン回転数FSが冷却対象温度Tの上昇に応じて増加して回転数FS12に到達するタイミングに対応する温度T12を、ファン制御マップM11上で冷却対象温度Tが上昇してファン回転数FSが0から回転数FS11に立ち上がるタイミングに対応する温度T11aと略等しくしている。
 これは一例であって、ファン制御マップM12上の温度T12とファン制御マップM11上の温度T11a、T11bとの関係は特に限定されない。
 ファン制御マップM13は、いずれかの強電機器の異常高温検出装置49が異常高温を検出し、且つ冷却対象温度Tが温度T14a以上の時はファン回転数FSを回転数FS13にするように設定されている。回転数FS13は、異常高温状態になっている強電機器を冷却して異常高温状態から通常温度状態に回復させるのに適した回転数であって、回転数FS12よりも大きな回転数である。
 ファン制御マップM13は、冷却対象温度Tが温度T14a未満の段階では、ファン回転数FSが、ファン制御マップM11またはM12上の回転数であることを示している。すなわち、温度T14aは、冷却ファンの回転駆動制御用に選択されるファン制御マップを、それまでに用いられていたファン制御マップM11またはM12からファン制御マップ13へと切り換える判断のための閾値として設定されている。
 また、ファン制御マップM13において、温度T14aよりも低い温度T14bが、ファン回転数FSをファン回転数FS3からファン制御マップM11またはM12上の回転数へと低下する判断のための閾値として設定されている。
 すなわち、一旦、回転数FS13に立ち上がったファン回転数FSは、冷却対象温度Tが温度T14aよりも低い温度T14bまで低下するまでは、回転数FS13で維持される。これにより、ファン回転数FSがファン回転数FSに立ち上がった途端に冷却対象温度Tが下がって、すぐに元の回転数へと下がってしまうという事態を回避し、強電機器を適切に冷却できる。
 なお、本実施形態では、温度T14aを、温度T13aより高く、温度T12より低い値とし、温度T14bを、温度T13aと略等しい値としているが、これに限らず、各強電機器の特性や冷却性能等に応じて適宜設定すればよい。
 次に、第1マップ群MG1を用いての冷却ファンの制御フローについて、図4A及び図4Bより説明する。
 まず、図4Aにて示すように、アンロード弁58が油供給位置(ロード位置)58aにあるか(ロード中か)油遮断位置(アンロード位置)58bにあるか(アンロード中か)が判断される(ステップS01)。この判断は、アンロードレバー5cの操作位置の検出に基づいての、アンロードレバー5cがロード位置(下げ位置)にあるかアンロード位置(上げ位置)にあるかの判断に置き換えてもよい。
 アンロード弁58が油遮断位置(アンロード位置)58bにある(アンロード中)と判断された場合(ステップS01、NO)は、制御装置7は、記憶部7bに記憶されている第1マップ群MG1の中から、ファン制御マップM11を選択する(ステップS03)。
 ここで、(図1の水温検出装置46や油温検出装置47に該当する)温度検出装置にて検出される冷却対象温度Tが、温度T11a未満であれば(ステップS04、NO)、ファン回転数FSを0とし(ステップS05)、温度T11a以上であれば(ステップS04、YES)、ファン回転数FSを回転数FS11とする。(ステップS06)。
 なお、ファン回転数FSをある値にするのは、制御装置7が、冷却ファン駆動用の電動アクチュエータ(ファンモータ35b、37b等)に指令信号を発してその出力を制御し、ファン回転数検出装置(ファン回転数検出装置43、44等)の検出するファン回転数FSが目標値となるように調整することによるものである。
 一旦、回転数FS11に立ち上げたファン回転数FSについては、冷却対象温度Tが温度T11b以上である限り維持され(ステップS07、YES)、温度Tが温度T11b未満になる(ステップS07、NO)と、ファン回転数FSを0にする(ステップS05)。
 アンロード弁58が油供給位置(ロード位置)58aにある(ロード中)と判断された場合(ステップS01、YES)は、さらに、AI-SW48がオン状態(オートアイドリング制御が実施されていない状態)かオフ状態(オートアイドリング制御が実施されている状態。操作装置5に対する操作が所定時間以上行われていない状態)かが判断される(ステップS02)。
 AI-SW48がオフ状態である時(ステップS02、NO)は、制御装置7は、第1マップ群MG1の中から、ファン制御マップM11を選択し(ステップS03)、アンロード弁58が油遮断位置58bにある場合と同様に冷却ファンの回転制御がなされる。
 AI-SW48がオン状態である時(ステップS02、YES)は、制御装置7は、第1マップ群MG1の中から、ファン制御マップM12を選択する(ステップS08)。
 ここで、前記温度検出装置にて検出される冷却対象温度Tが、温度T13a未満であれば(ステップS09、NO)、ファン回転数FSを0とする(ステップS10)。冷却対象温度Tが温度T11aに達すると(ステップS09、YES)、ファン回転数FSを回転数FS11に立ち上げる(ステップS11)。
 一旦、冷却対象温度Tが温度T11aとなった時点で回転数FS11に立ち上げたファン回転数FSについては、その後に冷却対象温度Tが温度13aよりも低く下がっても(ステップS12、YES)、温度T13b以上である限り(ステップS13、YES)、回転数FS11で維持され(ステップS11)、冷却対象温度Tが温度T13b未満になる(ステップS13、NO)と、ファン回転数FSを0にする(ステップS10)。
 そして、冷却対象温度Tが増加して温度T13aに達した時点で回転数FS11に立ち上がったファン回転数FSの値については、その都度検出される冷却対象温度Tに基づき決定される。
 ここで、冷却対象温度Tが、温度T13a以上、温度T12未満の範囲内の値である場合(ステップS12、NO、ステップS14、NO)、温度Tの値に応じて決まる回転数FSにて冷却ファンが回転する。例えば、以下の数式「数1」に実際の検出温度Tを代入することで、回転数FS11以上、回転数FS12未満の値のファン回転数FSを得られる(ステップS15)。
Figure JPOXMLDOC01-appb-M000001
 冷却対象温度Tが温度T12以上の場合(ステップS14、YES)、ファン回転数FSは回転数FS12であり(ステップS16)、温度Tが温度T12以上に保たれている限り、この回転数FS12が保持される。
 このように、ファン制御マップM11又はM12が選択されて、冷却ファンの回転が停止されているか、又はマップに基づき決定されたファン回転数FSで回転している状況において(A)、図4Bに示すように、各強電機器の異常高温検出装置49は常時、異常高温の有無を確認している(ステップS21)。
 いずれかの強電機器の異常高温検出装置49が異常高温を検出し(ステップS21、YES)、その時に温度検出装置で検出される冷却対象温度Tが温度T14a以上であれば(ステップS22、YES)、ファン制御マップM13が選択され(ステップS23)、冷却ファンを回転数FS13という大きな回転数で回転し、強電機器の異常高温からの脱却を図る。
 温度検出装置に検出される冷却対象温度Tが温度T14b以上の間(ステップS25、YES)は、回転数FS13でのファン回転が継続され、検出される冷却対象温度Tが温度T14b未満にまで下がると(ステップS25、NO)、強電機器が異常高温状態から脱却したものと認識し、その時の状況に応じてのファン制御マップM11又はM12の選択による冷却ファンの制御に戻る(B)。
 以上の如く、第1マップ群MG1を用いて電動の冷却ファンの回転駆動を制御することで、アンロード時やオートアイドリング制御時等、冷却対象の温度上昇をさほど考えなくてもよい場合、冷却ファンの回転を停止するか最小の回転数で回転させることができる。
 また、ロード時でも、冷却対象温度Tが低ければ冷却ファンの回転を停止するか回転数を小さく抑えることができる。
 これらのことにより、冷却ファンの回転による騒音の発生を抑えることができ、また、電力の消費量を抑えることができる。さらに、冷却対象の過冷却を抑止することができる。
 一方で、油圧アクチュエータを作動させる等により冷却対象温度が高い状態の時は、大きな回転数の冷却ファンの回転で冷却対象を冷却できる。特に、強電機器の異常高温が生じた場合には、冷却ファンの回転数を特に大きくして、迅速に強電機器を異常高温状態から脱却させることができる。これにより、冷却対象に対する冷却の必要性が高い場合に確実な冷却効果を奏することができる。
 作業機1においては、以上のような第1マップ群MG1を用いて回転駆動制御される冷却ファンとして、ラジエータファン35aを適用することが考えられる。すなわち、この冷却ファンの回転駆動制御を適用する冷却器をラジエータ35とし、その冷却対象を、電動モータ9を含む強電機器等を冷却するための冷却水とし、冷却対象温度Tを、水温検出装置46の検出する冷却水温Tとすることが考えられる。
 このように、図3の第1マップ群MG1をラジエータファン35aの回転駆動制御に用いる場合、例えば、回転数FS11を1000rpm、回転数FS12を2500rpm、回転数FS13を3000rpmとすることが考えられる。
 また、ファン制御マップM11におけるラジエータファン35aの回転数FSを0から回転数FS11に立ち上げる場合の閾値としての冷却水温T11を70℃とし、ファン制御マップM12におけるラジエータファン35aの回転数FSを0から回転数FS11に立ち上げる場合の閾値としての冷却水温T13aを60℃とし、ファン制御マップM12において回転数FS11より増加したラジエータファン35aの回転数FSが回転数FS12に達するタイミングに対応する冷却水温T12を70℃とし、ファン制御マップM13においてラジエータファン35aの回転数FSを回転数FS13に引き上げるタイミングに対応する冷却水温T14aを65℃とすること等が考えられる。
 次に、図5に示す第2マップ群MG2について説明する。第2マップ群MG2は、複数のファン制御マップM21、M22、M23、M24を含む。
 アンロード時(アンロード弁58を油遮断位置58bにした時)は、ファン制御マップM21が選択される。
 また、ロード時(アンロード弁58を油供給位置58aにした時)であっても、AI-SW48がオフ状態になると、すなわち、オートアイドリング制御が実行されると、ファン制御マップM22が選択される。
 オートアイドリング制御時を除いて、ロード時には、電動モータ9のモータ回転数MSがどの値に設定されているかに応じて、ファン制御マップM23及びファン制御マップM24のうちいずれか一方が選択される。
 電動モータ9がハイアイドル回転数MS1で回転している場合は、ファン制御マップM23が選択される。一方、電動モータ9がローアイドル回転数MS2で回転している場合は、ファン制御マップM24が選択される。
 アンロード時に選択されるファン制御マップM21は、ファン回転数FSが0の状態で冷却対象温度Tが温度T21a未満の時はファン回転数FSを0に維持し、この状態から冷却対象温度Tが温度T21aまで上昇したときにファン回転数FSを回転数FS21にするように設定されている。
 また、ファン制御マップM21は、冷却対象温度Tが温度T21aまで増加して冷却ファンが回転開始した後、冷却対象温度Tが下がっても、温度T21bまで下がるまでは、回転数FS21での冷却ファンの回転が維持されるように設定されている。
 ロード時で且つオートアイドリング制御時に選択されるファン制御マップM22は、ファン回転数FSが0の状態で冷却対象温度Tが温度T22a未満の時はファン回転数FSを0に維持し、この状態から冷却対象温度Tが温度T22aまで上昇したときにファン回転数FSを回転数FS21にするように設定されている。
 また、ファン制御マップM22は、冷却対象温度Tが温度T22aまで増加して冷却ファンが回転開始した後、冷却対象温度Tが下がっても、温度T22bまで下がるまでは、回転数FS21での冷却ファンの回転が維持されるように設定されている。
 ロード時で電動モータ9がハイアイドル回転数MS1で回転している時(以後、単に「ハイアイドル回転時」という)に選択されるファン制御マップM23は、冷却ファンの回転停止中に、冷却対象温度Tが温度T25a未満の状態から上昇して温度T25aに達すると、冷却ファンを回転数FS21で回転開始させ、冷却対象温度TがT24に達するか温度T25bに低下するまで回転数FS21で回転させるように設定されている。
 ファン制御マップM23は、冷却対象温度Tが温度T25aまで上昇して冷却ファンが回転開始した後、冷却対象温度Tが下がっても、冷却対象温度Tが温度T25bまで下がるまでは、回転数FS21での冷却ファンの回転を維持し、冷却対象温度Tが温度T25bまで下がるとファン回転数を0にするように設定されている。
 また、ファン制御マップM23は、冷却対象温度Tが温度T24以上温度T23未満の場合は、冷却対象温度Tの上昇に応じてファン回転数を増加させ、冷却対象温度Tが温度T23のときにファン回転数FSが回転数FS22になるように設定されている。
 また、ファン制御マップM23は、冷却対象温度Tが温度T23以上になると、さらに上昇して温度T26aに達するまでは、ファン回転数FSを回転数FS22で維持するように設定されている。
 そして、ファン制御マップM23は、回転数FS22の状態で冷却対象温度Tが温度T26aになると、ファン回転数FSを回転数FS22よりも大きな回転数FS23へと引き上げ、それ以上に冷却対象温度Tが増加しても、この回転数FS23で維持するように設定されている。
 また、ファン制御マップM23は、ファン回転数FSを回転数FS22に引き上げた後、冷却対象温度Tが、温度T26aよりも低く温度T23よりも高い温度T26bに低下したときにファン回転数FSを回転数FS22に引き下げるように設定されている。
 なお、本実施形態では、オートアイドリング制御時に選択されるファン制御マップM22においてファン回転数FSを0とするか回転数FS21とするかの判断の閾値となる温度T22a、T22bを、ファン制御マップM23における温度T23と温度T24との間に設定している。つまり、温度T22aを温度T23より低く設定し、温度T22bを温度T24よりも高く設定している。
 また、アンロード時に選択されるファン制御マップM21においてファン回転数FSを0から回転数FS21へと立ち上げる判断のための閾値である温度T21aを、ファン制御マップM23上の温度T23よりも高く設定している。この場合、ファン回転数FSを回転数FS21から0にするための閾値である温度T21bについては、ファン制御マップM23上の温度T23と略等しい値に設定することが考えられる。
 以上は一例であって、ファン制御マップM23上の温度T23とファン制御マップM21上の温度T21a、T21b又はファン制御マップM22上の温度T22a、T22bとの関係は特に限定されない。例えば、温度T21a又は温度T22aを、ファン制御マップM23上の温度T23と略等しくしてもよい。
 ロード時で電動モータ9がローアイドル回転数MS2で回転している時(以後、単に「ローアイドル回転時」という)に選択されるファン制御マップM24は、冷却ファンの回転停止中に、冷却対象温度Tが温度T25a未満の状態から上昇して温度T25aに達すると、冷却ファンを回転数FS21で回転開始させ、冷却対象温度TがT24に達するか温度T25bに低下するまで回転数FS21で回転させるように設定されている。
 ファン制御マップM24は、冷却対象温度Tが温度T25aまで上昇して冷却ファンが回転開始した後、冷却対象温度Tが下がっても、冷却対象温度Tが温度T25bまで下がるまでは回転数FS21での冷却ファンの回転を維持し、冷却対象温度Tが温度T25bまで下がるとファン回転数を0にするように設定されている。
 また、ファン制御マップM24は、冷却対象温度Tが温度T24以上温度T23未満の場合は、冷却対象温度Tの上昇に応じてファン回転数を増加させ、冷却対象温度Tが温度T23のときにファン回転数FSが回転数FS24になるように設定されている。回転数FS24は上述した回転数FS22よりも低い値に設定されている。
 ファン制御マップM24は、冷却対象温度Tが温度T25aから温度T24まで上がる間、ファン回転数FSを回転数FS21のままで維持するように設定されている。また、ファン制御マップM24は、冷却対象温度Tが温度T24から温度T23までの範囲内のとき、ファン回転数FSを冷却対象温度Tの上昇に応じて増加させる。
 また、ファン制御マップM24は、冷却対象温度Tが温度T23以上になると、さらに増加して温度T26aに達するまでは、ファン回転数FSを回転数FS24で維持するように設定されている。また、ファン制御マップM24は、冷却対象温度Tが上昇して温度T26aになると、ファン回転数FSを回転数FS24からそれよりも大きな回転数FS25へと引き上げるように設定されている。それ以上に冷却対象温度Tが上昇しても、ファン回転数FSは回転数FS25で維持される。
 また、ファン制御マップM24は、回転数FS25に引き上げられたファン回転数FSを、冷却対象温度Tが温度T26aよりも低い温度T26bまで低下するまで維持し、温度T26bまで低下したときにファン回転数FSを回転数FS24に引き下げるように設定されている。
 なお、ファン制御マップ24上の温度T23、T24についての、ファン制御マップM21上の温度T21a、21b及びファン制御マップM22上の温度T22a、T22bとの関係は、ファン制御マップ23上の温度T23、T24と温度T21a、21b、22a、22bとの関係と同様である。
 次に、第2マップ群MG1を用いての冷却ファンの制御フローについて、図6A、図6B、図6Cより説明する。
 まず、図6Aに示すように、アンロード弁58が油供給位置58aにあるか(ロード中か)油遮断位置58bにあるか(アンロード中か)が判断される(ステップS31)。この判断は、アンロードレバー5cの操作位置の検出に基づいての、アンロードレバー5cがロード位置(下げ位置)にあるかアンロード位置(上げ位置)にあるかの判断に置き換えてもよい。
 アンロード弁58が油遮断位置58bにある(アンロード中)と判断された場合(ステップS31、NO)は、図6Bに示すように、制御装置7は、記憶部7bに記憶されている第2マップ群MG2の中から、ファン制御マップM21を選択する(ステップS51)。
 ここで、(図1の水温検出装置46や油温検出装置47に該当する)温度検出装置にて検出される冷却対象温度Tが、温度T21a未満であれば(ステップS52、NO)、ファン回転数FSを0とし(ステップS53)、温度T21a以上であれば(ステップS52、YES)、ファン回転数FSを回転数FS21とする。(ステップS54)。
 一旦、回転数FS21に立ち上げたファン回転数FSについては、冷却対象温度Tが温度T21b以上である限り維持され(ステップS55、YES)、冷却対象温度Tが温度T21b未満になると(ステップS55、NO)、ファン回転数FSを0にする(ステップS53)。
 図6Aに示すように、アンロード弁58が油供給位置58aにある(ロード中)と判断された場合(ステップS31、YES)は、さらに、AI-SW48がオン状態(オートアイドリング制御が実施されていない状態)かオフ状態(オートアイドリング制御が実施されている状態。操作装置5(操作レバー5a、5b)に対する操作が所定時間以上行われていない状態)かが判断される(ステップS32)。
 AI-SW48がオフ状態である時(ステップS32、NO)は、図6Bにて示すように、制御装置7は、第2マップ群MG1の中から、ファン制御マップM22を選択し(ステップS61)、ファン制御マップM22に基づいて冷却ファンの回転駆動を制御する。
 ここで、温度検出装置にて検出される冷却対象温度Tが、温度T22a未満であれば(ステップS62、NO)、ファン回転数FSを0とし(ステップS63)、温度T21a以上であれば(ステップS62、YES)、ファン回転数FSを回転数FS21とする。(ステップS64)。
 一旦、回転数FS21に立ち上げたファン回転数FSについては、冷却対象温度Tが温度T22b以上である限り維持され(ステップS65、NO)、冷却対象温度Tが温度T22b未満になる(ステップS65、YES)と、ファン回転数FSを0にする(ステップS63)。
 AI-SW48がオン状態である時(ステップS32、YES)は、モード選択SW5eにて通常モード(電動モータ9がハイアイドル回転数MS1で回転される)とECOモード(電動モータ9がローアイドル回転数MS2で回転される)とのうちいずれが選択されているのかを判断する(ステップS33)。
 なお、このモード選択の判断(ステップS33)に代えて、実際にモータ回転数検出装置42の検出する電動モータ9のモータ回転数MSがハイアイドル回転数MS1となっているか、ローアイドル回転数MS2となっているかを判断するものとしてもよい。
 通常モードが選択されている(モータ回転数MSがハイアイドル回転数MS1である)場合(ステップS33、YES)、制御装置7は、第2マップ群MG2の中から、ファン制御マップM23を選択する(ステップS34)。
 ここで、前記温度検出装置にて検出される冷却対象温度Tが、温度T25a未満であれば(ステップS35、NO)、ファン回転数FSを0とする(ステップS36)。冷却対象温度Tが温度T25aに達すると(ステップS35、YES)、ファン回転数FSを回転数FS21に立ち上げ、冷却対象温度Tが温度T24まで上昇するまでは(ステップS37、NO)、ファン回転数FSを回転数FS21とする。(ステップS38)。
 一旦、冷却対象温度Tが温度T25aとなった時点で回転数FS21に立ち上げたファン回転数FSについては、その後に冷却対象温度Tが下がっても、温度T25b以上である限り(ステップS39、YES)、回転数FS21で維持され(ステップS38)、温度Tが温度T25b未満になる(ステップS39、NO)と、ファン回転数FSを0にする(ステップS36)。
 冷却対象温度Tが、温度T24以上、温度T23未満の範囲内の値である場合(ステップS37、YES、ステップS40、NO)、温度Tの値に応じて決まる回転数FSにて冷却ファンが回転する。例えば、以下の数式「数2」に実際の検出温度Tを代入することで、ファン回転数FSを得られる(ステップS41)。
Figure JPOXMLDOC01-appb-M000002
 冷却対象温度Tが温度T23以上(ステップS40、YES)、温度T26a未満の場合(ステップS43、NO)、ファン回転数FSを回転数FS22に設定する(ステップS44)。
 冷却対象温度Tが温度T26a以上になると(ステップS43、YES)、ファン回転数FSが回転数FS23に引き上げられる(ステップS44)。
 一旦、冷却対象温度Tが温度T26aとなった時点で回転数FS23に引き上げられたファン回転数FSについては、その後に冷却対象温度Tが下がっても、温度T26b以上である限り(ステップS45、YES)、回転数FS23で維持され(ステップS44)、温度Tが温度T26b未満になる(ステップS45、YES)と、ファン回転数FSを回転数FS22にする(ステップS42)。
 ロード時であり(ステップS31、YES)、AI-SW48がオン状態であり(ステップS32、YES)、モード選択SW7eの操作でECOモードが選択される場合、即ち、電動モータ9のモータ回転数MSがローアイドル回転数MS2である場合(ステップS33、NO)、図6Cにて示すように、制御装置7は、第2マップ群MG2の中から、ファン制御マップM24を選択する(ステップS71)。
 ここで、前記温度検出装置にて検出される冷却対象温度Tが、温度T25a未満であれば(ステップS72、NO)、ファン回転数FSを0とする(ステップS73)。冷却対象温度Tが温度T25aに達すると(ステップS72、YES)、ファン回転数FSを回転数FS21に立ち上げ、冷却対象温度Tが温度T24まで上昇するまでは(ステップS74、NO)、ファン回転数FSを回転数FS21とする。(ステップS75)。
 一旦、冷却対象温度Tが温度T25aとなった時点で回転数FS21に立ち上げたファン回転数FSについては、その後に冷却対象温度Tが下がっても、温度T25b以上である限り(ステップS76、YES)、回転数FS21で維持され(ステップS75)、温度Tが温度T25b未満になる(ステップS76、NO)と、ファン回転数FSを0にする(ステップS73)。
 冷却対象温度Tが、温度T24以上、温度T23未満の範囲内の値である場合(ステップS74、YES、ステップS77、NO)、温度Tの値に応じて決まる回転数FSにて冷却ファンが回転する。例えば、以下の数式「数3」に実際の検出温度Tを代入することで、ファン回転数FSを得られる(ステップS78)。
Figure JPOXMLDOC01-appb-M000003
 冷却対象温度Tが温度T23以上(ステップS77、YES)、温度T26a未満の場合(ステップS77、NO)、ファン回転数FSは回転数FS24である(ステップS79)。
 冷却対象温度Tが温度T26a以上になると(ステップS80、YES)、ファン回転数FSが回転数FS25に引き上げられる(ステップS81)。
 一旦、冷却対象温度Tが温度T26aとなった時点で回転数FS25に引き上げられたファン回転数FSについては、その後に冷却対象温度Tが下がっても、冷却対象温度T26b以上である限り(ステップS82、YES)、回転数FS25で維持され(ステップS81)、冷却対象温度Tが温度T26b未満になる(ステップS82、YES)と、ファン回転数FSを回転数FS24にする(ステップS79)。
 以上の如く、第2マップ群MG2を用いて電動の冷却ファンの回転駆動を制御することで、アンロード時、オートアイドリング制御時等、冷却対象の温度上昇をさほど考えなくてもよい場合、冷却ファンの回転を停止するか最小の回転数で回転させることができる。
 また、ロード時でも、冷却対象温度が低ければ冷却ファンの回転を停止するか回転数を小さく抑えることができる。さらに、冷却対象温度が高くても、ローアイドル回転時には、冷却ファンの回転数を小さく抑えることができる。
 これらのことにより、冷却ファンの回転による騒音の発生を抑えることができ、また、電力の消費量を抑えることができる。さらに、冷却対象の過冷却を抑止することができる。
 一方で、油圧アクチュエータを作動させる等により冷却対象温度が高い状態の時は、大きな回転数の冷却ファンの回転で冷却対象を冷却できる。特に、冷却対象温度が非常に高い場合には、ハイアイドル回転時にもローアイドル回転時にも、冷却ファンの回転数を引き上げて、迅速に冷却対象を異常高温状態から脱却させることができ、確実な冷却効果を奏することができる。
 作業機1においては、以上のような第2マップ群MG1を用いて回転駆動制御される冷却ファンとして、オイルクーラファン37aを適用することが考えられる。すなわち、この冷却ファンの回転駆動制御を適用する冷却器をオイルクーラ37とし、その冷却対象を、電動モータ9にて駆動される油圧ポンプP1、P2より油圧アクチュエータに向けて吐出される作動油とし、冷却対象温度Tを、油温検出装置47の検出する作動油温Tとすることが考えられる。
 このように、図5の第2マップ群MG1をオイルクーラファン37aの回転駆動制御に用いる場合、例えば、回転数FS21を1000rpm、回転数FS22を3000rpm、回転数FS23を3500rpm、回転数FS24を1500rpm、回転数FS25を2000rpmとすることが考えられる。
 また、ファン制御マップM21におけるオイルクーラファン37aの回転数FSを0から回転数FS21に立ち上げる場合の閾値としての作動油温T21aを90℃とし、ファン制御マップM22におけるオイルクーラファン37aの回転数FSを0から回転数FS21に立ち上げる場合の閾値としての作動油温T22aを80℃とし、ファン制御マップM23、M24におけるオイルクーラファン37aの回転数FSを0から回転数FS21に立ち上げる場合の閾値としての作動油温T25aを60℃とし、ファン制御マップM23、M24において回転数FS21より増加したオイルクーラファン37aの回転数FSが回転数FS22、FS24に達するタイミングに対応する温度T23を85℃とし、ファン制御マップM23、M24においてオイルクーラファン37aの回転数FSを回転数FS22、FS24より回転数FS23、FS25へと引き上げるタイミングに対応する温度T26aを100℃とすること等が考えられる。
 なお、電動モータ9の回転数の変化は、油圧ポンプP1、P2の吐出流量の変化に繋がり、その結果は、作動油の温度変化となって現れるので、オイルクーラファン37aの制御については、電動モータ9の回転数の違いに応じて複数のファン制御マップM22、M24を提供する第2マップ群MG2を採用するのが有効である。
 これに対し、電動モータ9の回転数の変化にかかわらず油圧ポンプP1、P2の吸収トルクは一定なので、電動モータ9自体の発熱量は、低速回転時も高速回転時もさほど変わりがない。したがって、電動モータ9等の電気機器を冷却する冷却水を冷却対象とするラジエータ35については、冷却水温Tが、電動モータ9の回転数の変化の影響を油圧ポンプP1,P2ほど大きくは受けない。このため、本実施形態では、ラジエータファン35aの制御については、電動モータ9の回転数の違いを考慮せずに作成されたファン制御マップM12を提供する第1マップ群MG1を採用するものである。
 しかし、以上のことは冷却ファンの適用例であって、ラジエータファン35aの制御であっても、電動モータ9の回転数の変化を考慮しなければならない状況があれば、第2マップ群MG2のようにモータ回転数MSの違いに応じて複数のファン制御マップを提供するものを採用してもよいし、或いは、オイルクーラファン37aの制御であっても、電動モータ9の回転数として、一つの回転数しか設定されていないような場合には、第1マップ群MG1のようにモータ回転数MSの変化を考慮せずに一律のファン制御マップを提供するものを採用してもよい。
 このように、本実施形態に係る作業機1における制御装置7は、ロード時かアンロード時かによって、冷却対象温度Tに対するファン回転数FSの特性を示す複数のファン制御マップのうちのいずれかを選択して、それぞれの場合で、冷却ファンの制御により現出するファン回転数の特性を異ならせるものであるが、このことは、本実施形態に係る制御装置7のすべき必要最小限の制御であって、それ以外のことについては限定されない。
 例えば、制御対象の冷却ファンは、ラジエータファン35aやオイルクーラファン37a以外のものであってもよい。また、基本的に第1マップ群MG1を採用するものであっても、例えば、オートアイドリング制御時にはアンロード時のファン制御マップM11とは異なるマップを提供するものとする等、第2マップ群MG2の中に見られる特徴を一部採用してもよく、或いは、逆に、基本的に第2マップ群MG2を採用するものであっても、緊急時の冷却用として、ファン制御マップM13のようなマップを一つ加えておく等、第1マップ群MG1の中に見られる特徴を一部採用してもよい。
 以上の如く、作業機1は、電動モータ9と、電動モータ9の動力を用いて駆動される作業装置と、作業装置を操作する操作装置5(操作レバー5a、5b)と、操作ロック装置(アンロードレバー5c)と、電動の冷却ファン(ラジエータファン35a、オイルクーラファン37a)を有する冷却器(ラジエータ35、オイルクーラ37)と、冷却器(ラジエータ35、オイルクーラ37)にて冷却される冷却対象(冷却水、作動油)の温度である冷却対象温度Tを検出する温度検出装置(水温検出装置46、油温検出装置47)と、温度検出装置(水温検出装置46、油温検出装置47)の検出する冷却対象温度(冷却水、作動油)に応じて冷却ファン(ラジエータファン35a、オイルクーラファン37a)の回転数であるファン回転数FSを制御する制御装置7とを備えている。操作ロック装置(アンロードレバー5c)は、操作装置5(操作レバー5a、5b)による作業装置の操作を許可する許可位置(ロード位置)と、操作装置5(操作レバー5a、5b)による作業装置の操作を禁止する禁止位置(アンロード位置)とに切り換え可能である。制御装置7は、冷却対象温度Tに対するファン回転数FSの特性を、操作ロック装置(アンロードレバー5c)が許可位置(ロード位置)及び禁止位置(アンロード位置)のうちいずれにあるかによって変更する。
 上記構成により、操作ロック装置(アンロードレバー5c)が許可位置(ロード位置)にある時と禁止位置(アンロード位置)にある時とで、冷却対象温度Tに応じての冷却ファン(ラジエータファン35a、オイルクーラファン37a)の回転駆動の制御を異ならせることができ、それぞれの場合に対応して好適な冷却ファン(ラジエータファン35a、オイルクーラファン37a)の回転状態を現出することができる。したがって、操作ロック装置(アンロードレバー5c)を許可位置(ロード位置)にした場合ならば冷却ファン(ラジエータファン35a、オイルクーラファン37a)を高速回転させる必要があるような冷却対象温度Tの状況でも、操作ロック装置(アンロードレバー5c)を禁止位置(アンロード位置)にした場合は、冷却ファン(ラジエータファン35a、オイルクーラファン37a)の回転を停止したり、低速で回転させたりということが可能となり、好適な騒音低減、電力消費量低減、及び過冷却の防止を実現できる。
 また、作業機1は、冷却対象温度Tに対するファン回転数FSの特性を示す複数のファン制御マップM11、M12、M13、M21、M22、M23、M24を記憶する記憶装置(記憶部7b)を備えている。複数のファン制御マップは、互いに異なる第1マップM11、M21及び第2マップM12、M23を含む。制御装置7は、操作ロック装置(アンロードレバー5c)が禁止位置(アンロード位置)にある場合に、第1マップM11、M21に基づき冷却ファン(ラジエータファン35a、オイルクーラファン37a)の回転駆動を制御し、操作ロック装置(アンロードレバー5c)が許可位置(ロード位置)にある場合に、第2マップM12、M23に基づき冷却ファン(ラジエータファン35a、オイルクーラファン37a)の回転駆動を制御する。
 このように、複数のファン制御マップを記憶することで、そのマップの数だけの様々なファン回転数特性を現出可能であり、冷却対象の温度状況等に応じたきめ細かい冷却ファンの回転駆動の制御が可能となる。操作ロック装置(アンロードレバー5c)が許可位置(ロード位置)にあるか禁止位置(アンロード位置)にあるかによっても、互いに異なる第1マップM11、M21及び第2マップM12、M23を記憶し、これらを用いて冷却ファンの回転駆動を制御することで、それぞれのケースで、異なったファン回転数特性を現出することが可能である。
 また、第1マップM11、M21は、冷却対象温度Tに応じてファン回転数FSを0と所定の第1ファン回転数FS11、FS21とのいずれかに切り換えるよう設定されている。
 これにより、操作ロック装置(アンロードレバー5c)が禁止位置(アンロード位置)にある時(アンロード時)においては、冷却ファン(ラジエータファン35a、オイルクーラファン37a)の回転を停止することでファン回転による騒音の発生を防ぐことができ、また、過冷却を抑止できる。また、冷却対象温度Tが第1温度T11a、T21a以上という高温になって冷却が必要になった時のみ、冷却ファンを回転させることとなるが、その場合にも、第1ファン回転数FS11、FS21を低い値に設定することで、冷却ファンは低速で回転するので、騒音を低減することができる。
 また、第1マップM11、M21は、ファン回転数FSが0の状態で冷却対象温度Tの値が所定の第1回転立上温度T11a、T21a未満の値から第1回転立上温度T11a、T21aに上昇したときにファン回転数FSを第1ファン回転数FS11に切り換え、ファン回転数FSが第1ファン回転数FS11の状態で冷却対象温度Tの値が第1回転立上温度T11a、T21aよりも低い所定の第1回転降下温度T11b、T21bに低下したときにファン回転数FSを0に切り換えるよう構成されている。
 このように、冷却ファンの回転停止(OFF)用の第1回転降下温度T11b、T21bを、冷却ファンの回転立ち上げ(ON)用の第1回転立上温度T11a、T21aよりも低く設定することで、冷却ファンが冷却対象温度Tの変化に過敏に反応して頻繁にON・OFF切換するのを防止できる。
 また、第2マップM12、M23、M25は、ファン回転数FSが0の状態で冷却対象温度Tの値が所定の第2回転立上温度T13a、T25a未満の値から前記第2回転立上温度T13a、T25aに上昇したときにファン回転数FSを0よりも大きい値に設定し、冷却対象温度Tの値が第2回転立上温度T13a、T25aよりも高い温度に設定される第1規定温度T12、T23以上の値である場合はファン回転数FSを所定の第2ファン回転数FS12、FS22、FS24に設定し、冷却対象温度Tの値が第2回転立上温度T13a、T25a以上、第1規定温度T12、T23未満の値である場合はファン回転数FSを第2ファン回転数FS12、FS23未満の範囲内で冷却対象温度Tが高いほど高く設定し、ファン回転数FSが0ではない状態で冷却対象温度Tの値が第2回転立上温度T13a、T25aよりも低い所定の第2回転降下温度T13b、T25bに低下したときにファン回転数FSを0に低下させるよう構成されている。
 これにより、操作ロック装置(アンロードレバー5c)が許可位置(ロード位置)にある時(ロード時)において、通常の作業装置の操作時において想定される冷却対象温度Tの領域では、冷却ファンの回転数を第2ファン回転数FS12、FS22、FS24とすることで確実な冷却効果を得ることができる。その一方で、冷却対象温度Tが低い段階では回転数を落として騒音を低減することができる。また、冷却対象温度Tの低い段階から高い段階への過渡的な領域では、温度が高まるにつれてファン回転数FSを第2ファン回転数FS12、FS22、FS24へと(徐々に)増加するので、その温度状況に見合う冷却効果を確保する一方で、急激なファン回転数FSの変化を防止し、騒音状況が急に変化する(急に大きな騒音が生じる等)という事態をなくすことができる。
 また、第2マップM12、M23、M25は、冷却対象温度Tの値が第2回転立上温度T13a、T25a以上且つ第1規定温度T12、T23よりも低い値に設定される第2規定温度T13a、T24未満である場合はファン回転数FSを第2ファン回転数FS12、FS22、FS24よりも低い一定値FS11、FS21に設定し、冷却対象温度Tの値が第2規定温度T13a、T24以上且つ第1規定温度T12、T23未満の値の場合はファン回転数FSを第2ファン回転数FS12、FS22、FS24未満の範囲内で冷却対象温度Tが高いほど高く設定するよう構成されている。
 これにより、冷却対象温度Tが第2規定温度T13a、T24まで上がるまでは、冷却ファンを停止して騒音や過冷却の発生を防止することができる。一方、冷却対象温度Tが第2規定温度T13a、T24に達して、冷却ファンが回転開始した後は、冷却対象温度Tが第3規定温度T13b、T25bまで下がるまでは、一定値のファン回転数FS11、FS21での冷却ファンの回転が維持され、冷却対象温度Tが第3規定温度T13b、T25b、T25b未満になって冷却ファンが回転停止した後は、冷却対象温度Tが第2規定温度T13aまで上がるまでは、冷却ファンの停止状態が維持される。したがって、冷却ファンが冷却対象温度Tの変化に過敏に反応して頻繁にON・OFF切換するのを防止できる。
 また、前記複数のファン制御マップは第3マップM11、M22を含む。制御装置7は、操作ロック装置(アンロックレバー7c)が許可位置(ロード位置)にあり、且つ操作装置5(作業用操作レバー5a、走行用操作レバー5b)が操作されていない状態が所定時間継続すると、電動モータ9の回転数MSをアイドル回転数MS3にするとともに、冷却ファンを第3マップM11、M22に基づいて制御する。第3マップM11、M22は、ファン回転数FSが0の状態で冷却対象温度Tの値が所定の第3立上温度T11a、T22a未満の値から第3回転立上温度T11a、T22aに上昇したときにファン回転数FSを所定のオートアイドル用回転数FS11、FS21に切り換え、ファン回転数FSがオートアイドル用回転数FS11、FS21の状態で冷却対象温度Tの値が第3回転立上温度T11a、T22aよりも低い所定の第3回転降下温度T11b、T22bに低下したときにファン回転数FSを0に切り換えるよう構成されている。
 これにより、少なくとも、第2ファン回転数FS12、FS23、FS24という大きな回転数を念頭においた第2マップのものとは異なった冷却ファン回転特性を現出することができ、したがって、オートアイドリング制御の実行中において作業装置が作動しないことで冷却対象体の冷却をさほど必要としない状況に適応した冷却ファン回転特性を現出することも可能となる。
 また、第3マップM11は第1マップM11と共通である。
 これにより、操作ロック装置(アンロックレバー7c)が許可位置(ロード位置)にある状態(ロード時)であっても、オートアイドリング制御時には、操作ロック装置(アンロックレバー7c)が禁止位置(アンロード位置)にある時(アンロード時)に現出されるものと同じ冷却ファン回転特性を現出することができ、アンロード時と同様に、低騒音化や過冷却防止等の効果を得ることができる。
 また、冷却器(ラジエータ35,オイルクーラ37)の冷却対象は作業機1に搭載された冷却対象機器(電動モータ9等)を冷却するための冷媒であり、作業機1は、冷却対象機器(電動モータ9等)の異常高温を検出する異常高温検出装置49を備えている。制御装置7は、異常高温検出装置49が異常高温を検出し、且つ冷却対象温度Tが第2回転立上温度T13a以上の値に設定される第3規定温度T14a以上の時は、冷却ファンを第2ファン回転数FS12よりも大きな第3ファン回転数FS13で回転させる。
 これにより、ロード時の温度状況に応じて冷却ファンの回転数が制御されている状態であっても、強電機器である電動モータ9等の冷却対象機器の異常高温が検出された場合は、その冷却を優先して、冷却ファンを、第2ファン回転数FS12よりも大きな第3ファン回転数FS13で回転して、冷媒を迅速かつ強力に冷却することにより、冷却対象機器の故障を防止することができる。
 また、制御装置7は、冷却ファンを第3ファン回転数FS13で回転させている状態で冷却対象温度Tの値が第3規定温度T14a未満の第4規定温度T14bに低下したときに、冷却ファンの回転数の制御を第2マップM12に基づく制御に戻す。
 これにより、ファン回転数FSが第3ファン回転数FS13に立ち上がった途端に冷却対象温度Tが下がって、すぐに元の回転数へと下がってしまうという事態を回避し、冷却ファンの第3ファン回転数FS13での回転による充分で確実な冷却対象機器(電動モータ9等)の冷却効果を確保するものである。
 また、第2マップM23、M24は、ファン回転数FSが第2ファン回転数FS22、FS24の状態で冷却対象温度Tの値が第1規定温度T23よりも高い第4回転立上温度T26aに上昇したときにファン回転数FSを第2ファン回転数FS22、FS24よりも大きい第4ファン回転数FS23、FS25に設定し、ファン回転数FSが第4ファン回転数FS23、FS25である状態で冷却対象温度Tの値が第4回転立上温度T26aよりも低く第1規定温度T23よりも高い所定の第4回転降下温度T26bに低下したときにファン回転数FSを第2ファン回転数FS22、FS24に低下させるよう構成されている。
 これにより、冷却対象温度Tが第4回転立上温度T26a以上という非常に高い状態になると、直ちに、ファン回転数FSを第4ファン回転数F23、F25へと増加し、すなわち、冷却ファンの回転速度を上げることで、迅速に、このような高温状態から冷却対象を脱却させることができる。また、ファン回転数FSが第4ファン回転数FSに立ち上がった途端に冷却対象温度Tが下がって、すぐに元の回転数へと下がってしまうという事態を回避し、高温状態にある冷却対象に対する充分で確実な冷却効果を確保するものである。
 また、前記複数のファン制御マップは、第4マップM24を含む。第4マップM24は、ファン回転数FSが0の状態で冷却対象温度Tの値が第2回転立上温度T25a未満の値から第2回転立上温度T25aに上昇したときにファン回転数FSを0よりも大きい値に設定し、冷却対象温度Tの値が第1規定温度T23以上の場合はファン回転数FSを第2ファン回転数FS22よりも低い所定の第5ファン回転数FS24に設定し、冷却対象温度Tの値が第2回転立上温度T25a以上、第1規定温度未満T23の場合はファン回転数FSを第5ファン回転数FS24未満の範囲内で冷却対象温度Tが高いほど高く設定し、 ファン回転数FSが0ではない状態で冷却対象温度Tの値が第2回転降下温度T25bに低下したときにファン回転数FSを0に低下させるよう構成されている。制御装置7は、電動モータ9の回転数MSが、高い値MS1に設定されている時に第2マップM23に基づいて冷却ファンを制御し、電動モータ9の回転数MSが、低い値MS2に設定されている時に第4マップM24に基づいて冷却ファンを制御する。
 これにより、高い回転数MS1での電動モータ9の回転時(以下、単に「モータ回転時」という)と低い回転数MS2でのモータ回転時とで、冷却対象温度Tに対するファン回転数FSの特性を異ならせることで、それぞれのモータ回転数でのモータ回転により現出される冷却対象体の温度状況に見合う冷却ファン回転特性を現出できる。すなわち、低い回転数MS2でのモータ回転時における冷却対象の温度状況に合わせて、第4マップM24については、ファン回転数FSが冷却対象温度Tの増加に応じて小さな値で推移するような回転特性を採用している。これにより、ファン回転数FSを低く抑えることも可能となり、騒音の減少や消費電力の低減等の効果を奏することができる。
 また、第4マップM24は、ファン回転数FSが第5ファン回転数FS24の状態で冷却対象温度Tの値が第1規定温度T23よりも高い第4回転立上温度T26aに上昇したときにファン回転数FSを第5ファン回転数FS24よりも大きい第6ファン回転数FS25に設定し、ファン回転数FSが第6ファン回転数FS25である状態で冷却対象温度Tの値が第4回転立上温度T26aよりも低く第1規定温度T23よりも高い所定の第4回転降下温度T26bに低下したときにファン回転数FSを第5ファン回転数FS24に低下させるよう構成されている。
 これにより、第4回転立上温度T26a以上という非常に高い温度領域にまで冷却対象温度Tが上昇すると、直ちに、冷却ファンの回転数が第6ファン回転数FS25に立ち上がり、迅速に、このような高温状態から冷却対象体を脱却させることができる。また、第6ファン回転数FS25に立ち上がった途端に冷却対象温度Tが下がって、すぐに元の第5ファン回転数FS24へと下がってしまうという事態を回避し、冷却ファンの第6ファン回転数FS25での回転による充分で確実な強電機器の冷却効果を確保するものである。
 また、冷却器は、電動モータ9を含む機器類を冷却する冷却水を冷却するためのラジエータ35であり、冷却ファンはラジエータ35に備えられるラジエータファン35aであり、温度検出装置は、冷却対象温度Tとして冷却水の温度を検出する。
 これにより、電動モータ9を含む機器等を冷却する冷却水を冷却するためのラジエータ35のラジエータファン35aについて、電動のファンであるという利点を活かして、ロード時かアンロード時か等の状況の違いに応じて、制御の目標とするところの冷却水温Tに対するラジエータファン35aのファン回転数FSの特性を最適のものにすることができる。したがって、例えばアンロード時にはラジエータファン35aの回転を停止するか第1ファン回転数FS11で(低速で)回転させるものとして、ラジエータファン35aの高速の回転により生じる騒音の低減化、消費電力の低減化、及び過冷却の防止等の効果を奏するものである。
 さらに、異常高温検出装置49の異常高温の検出に基づきラジエータファン35aの回転数を制御することで、ロード時の温度状況に応じてラジエータファン35aの回転数が制御されている状態であっても、強電機器である電動モータ9等の冷却対象機器の異常高温が検出された場合は、その冷却を優先して、ラジエータファン35aを、第2ファン回転数FS12よりも大きな第3ファン回転数FS13で回転して、冷媒である冷却水を迅速かつ強力に冷却することにより、電動モータ9を含む冷却対象機器の故障を防止することができる。
 また、作業機1は、電動モータ9にて駆動される油圧ポンプP1、P2と、油圧ポンプP1、P2が吐出する作動油の油圧にて駆動される油圧アクチュエータC1~C5、ML、MR、MTとを備えている。冷却器は作動油を冷却するためのオイルクーラ37であり、冷却ファンはオイルクーラ37に備えられるオイルクーラファン37aであり、温度検出装置は、冷却対象温度Tとして作動油の温度を検出する。
 これにより、油圧ポンプP1、P2より吐出されて油圧アクチュエータC1~C5、ML、MR、MTへと供給される作動油を冷却するためのオイルクーラ37のオイルクーラファン37aについて、電動のファンであるという利点を活かして、ロード時かアンロード時か等の状況の違いに応じて、制御の目標とするところの作動油温Tに対するオイルクーラファン37aのファン回転数FSの特性を最適のものにすることができる。したがって、例えばアンロード時にはオイルクーラファン37aの回転を停止するか第1ファン回転数FS11で(低速で)回転させるものとして、オイルクーラファン37aの高速の回転により生じる騒音の低減化、消費電力の低減化、及び過冷却の防止等の効果を奏するものである。
 さらに、電動モータ9の回転数MSの設定に応じて第2マップM23及び第4マップM24のうちいずれかを選択してオイルクーラファン37aの回転数を制御することで、それぞれのモータ回転数でのモータ回転により現出される作動油の温度状況に見合うオイルクーラファン37aの回転特性を現出できる。すなわち、低い回転数MS2でのモータ回転時における冷却対象の温度状況に合わせて、第4マップM24については、ファン回転数FSが冷却対象温度Tの増加に応じて小さな値で推移するような回転特性を採用している。これにより、ファン回転数FSを低く抑えることも可能となり、騒音の減少や消費電力の低減等の効果を奏することができる。
 また、作業機1は、電動モータ9にて駆動される油圧ポンプP1、P2と、油圧ポンプP1、P2が吐出する作動油の油圧にて駆動される油圧アクチュエータC1~C5、ML、MR、MTとを備え、冷却器として、電動モータ9を含む機器類を冷却する冷却水を冷却するためのラジエータ35と、作動油を冷却するためのオイルクーラ37とを備え、冷却ファンとして、ラジエータ35に備えられるラジエータファン35aと、オイルクーラ37に備えられるオイルクーラファン37aとを備えている。温度検出装置(水温検出装置46、油温検出装置47)は、冷却対象温度Tとして冷却水の温度と作動油の温度とを検出する。記憶装置(記憶部7b)は、冷却水の温度Tに対するラジエータファン35aの回転数FSの特性を示すラジエータファン35a用の複数のファン制御マップM11、M12、M13と、作動油の温度Tに対するオイルクーラファン37aの回転数FSの特性を示すオイルクーラファン37a用の複数のファン制御マップM21、M22、M23、M24とを記憶している。制御装置7は、ラジエータファン35a用の複数のファン制御マップM11、M12、M13に基づいてラジエータファン35aの回転数FSを制御し、オイルクーラファン37a用の複数のファン制御マップM21、M22、M23、M24に基づいてオイルクーラファン37aの回転数FSを制御する。
 これにより、ラジエータファン35a及びオイルクーラファン37aという二つの冷却ファンを備える作業機1において、それぞれの冷却ファンの機能と想定される温度状況に応じた最適の回転制御を実現することができる。特に、これら二つの冷却ファンを並置した構造においては、騒音の問題は、冷却ファンが一つの場合に比べて、より深刻であり、このような構造に対し確実な騒音低減効果をもたらすことができる。
 以上の実施形態では、本発明をバックホー等の作業機1に適用する場合の例について説明したが、本発明の適用対象はこれに限らず、例えば、ホイールローダ、コンパクトトラックローダ、スキッドステアローダ等の他の建設機械に適用してもよく、トラクター、コンバイン、田植機、芝刈機等の農業機械に適用してもよい。
 以上、本発明について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
  1   作業機
  5   操作装置
 5c   アンロードレバー(操作ロック装置)
 5e   モード選択SW(モード選択スイッチ)
  7   制御装置
  9   電動モータ
 10   走行装置(作業装置)
 17   ドーザ(作業装置)
 20   作業装置
 30   バッテリユニット
 35   ラジエータ(冷却器)
 35a  ラジエータファン(冷却ファン)
 37   オイルクーラ(冷却器)
 37a  オイルクーラファン(冷却ファン)
 42   モータ回転数検出装置
 43   ファン回転数検出装置
 44   ファン回転数検出装置
 46   水温検出装置(温度検出装置)
 47   油温検出装置(温度検出装置)
 48   AI-SW(アイドリングスイッチ)
 49   異常高温検出装置
 58   アンロード弁
 58a  油供給位置(ロード位置)(許可位置)
 58b  油遮断位置(アンロード位置)(禁止位置)
 C1~C5  油圧シリンダ(油圧アクチュエータ)
 ML、MR、MT  油圧モータ(油圧アクチュエータ)
 P1、P2  油圧ポンプ
 MG1  第1マップ群
 M11  ファン制御マップ(第1マップ)
 M12  ファン制御マップ(第2マップ)
 M13  ファン制御マップ
 MG2  第2マップ群
 M21  ファン制御マップ(第1マップ)
 M22  ファン制御マップ(第3マップ)
 M23  ファン制御マップ(第2マップ)
 M24  ファン制御マップ(第4マップ)
 FS   ファン回転数
 FS11 第1ファン回転数
 FS12 第2ファン回転数
 FS13 第3ファン回転数
 FS21 第1ファン回転数
 FS22 第2ファン回転数
 FS23 第4ファン回転数
 FS24 第5ファン回転数
 FS25 第6ファン回転数
 MS   モータ回転数
 MS1  ハイアイドル回転数(第1モータ回転数)
 MS2  ローアイドル回転数(第2モータ回転数)
 MS3  アイドル回転数
  T   冷却対象温度(水温、油温)
 T11a 第1回転立上温度
 T11b 第1回転降下温度
 T12  第1規定温度
 T13a 第2回転立上温度(第2規定温度)
 T13b 第2回転降下温度
 T14a 第3規定温度
 T14b 第4規定温度
 T21a 第1回転立上温度
 T21b 第1回転降下温度
 T22a 第3回転立上温度
 T22b 第3回転降下温度
 T23  第1規定温度
 T24  第2規定温度
 T25a 第2回転立上温度
 T25b 第2回転降下温度
 T26a 第4回転立上温度
 T26b 第4回転降下温度

Claims (18)

  1.  電動モータと、
     前記電動モータの動力を用いて駆動される作業装置と、
     前記作業装置を操作する操作装置と、
     前記操作装置による前記作業装置の操作を許可する許可位置と、前記操作位置による前記作業装置の操作を禁止する禁止位置とに切り換え可能な操作ロック装置と、
     電動の冷却ファンを有する冷却器と、
     前記冷却器にて冷却される冷却対象の温度である冷却対象温度を検出する温度検出装置と、
     前記温度検出装置の検出する前記冷却対象温度に応じて前記冷却ファンの回転数であるファン回転数を制御する制御装置と、
     を備え、
     前記制御装置は、前記冷却対象温度に対する前記ファン回転数の特性を、前記操作ロック装置が前記許可位置及び前記禁止位置のうちいずれにあるかによって変更する作業機。
  2.  前記冷却対象温度に対する前記ファン回転数の特性を示す複数のファン制御マップを記憶する記憶装置を備え、
     前記複数のファン制御マップは、互いに異なる第1マップ及び第2マップを含み、
     前記制御装置は、前記操作ロック装置が前記禁止位置にある場合に、前記第1マップに基づき前記冷却ファンの回転駆動を制御し、前記操作ロック装置が前記許可位置にある場合に、前記第2マップに基づき前記冷却ファンの回転駆動を制御する請求項1に記載の作業機。
  3.  前記第1マップは、前記冷却対象温度に応じて前記ファン回転数を0と所定の第1ファン回転数とのいずれかに切り換えるよう構成されている請求項2に記載の作業機。
  4.  前記第1マップは、前記ファン回転数が0の状態で前記冷却対象温度の値が所定の第1回転立上温度未満の値から前記第1回転立上温度に上昇したときに前記ファン回転数を前記第1ファン回転数に切り換え、前記ファン回転数が前記第1ファン回転数の状態で前記冷却対象温度の値が前記第1回転立上温度よりも低い所定の第1回転降下温度に低下したときに前記ファン回転数を0に切り換えるよう構成されている請求項3に記載の作業機。
  5.  前記第2マップは、
     前記ファン回転数が0の状態で前記冷却対象温度の値が所定の第2回転立上温度未満の値から前記第2回転立上温度に上昇したときに前記ファン回転数を0よりも大きい値に設定し、
     前記冷却対象温度の値が前記第2回転立上温度よりも高い温度に設定される第1規定温度以上の値である場合は前記ファン回転数を所定の第2ファン回転数に設定し、
     前記冷却対象温度の値が前記第2回転立上温度以上、前記第1規定温度未満の値である場合は前記ファン回転数を前記第2ファン回転数未満の範囲内で前記冷却対象温度が高いほど高く設定し、
     前記ファン回転数が0ではない状態で前記冷却対象温度の値が第2回転立上温度よりも低い所定の第2回転降下温度に低下したときに前記ファン回転数を0に低下させるように構成されている請求項2~4のいずれか1項に記載の作業機。
  6.  前記第2マップは、
     前記冷却対象温度の値が前記第2回転立上温度以上且つ前記第1規定温度よりも低い値に設定される第2規定温度未満である場合は前記ファン回転数を前記第2ファン回転数よりも低い一定値に設定し、
     前記冷却対象温度の値が前記第2規定温度以上且つ前記第1規定温度未満の値の場合は前記ファン回転数を前記第2ファン回転数未満の範囲内で前記冷却対象温度が高いほど高く設定するよう構成されている請求項5に記載の作業機。
  7.  前記複数のファン制御マップは第3マップを含み、
     前記制御装置は、前記操作ロック装置が前記許可位置にあり、且つ前記操作装置が操作されていない状態が所定時間継続すると、前記電動モータの回転数をアイドル回転数にするとともに、前記冷却ファンを前記第3マップに基づいて制御し、
     前記第3マップは、前記ファン回転数が0の状態で前記冷却対象温度の値が所定の第3立上温度未満の値から前記第3回転立上温度に上昇したときに前記ファン回転数を所定のオートアイドル用回転数に切り換え、前記ファン回転数が前記オートアイドル用回転数の状態で前記冷却対象温度の値が前記第3回転立上温度よりも低い所定の第3回転降下温度に低下したときに前記ファン回転数を0に切り換えるよう構成されている請求項2~4のいずれか1項に記載の作業機。
  8.  前記第3マップは前記第1マップと共通である請求項7に記載の作業機。
  9.  前記冷却器の前記冷却対象は前記作業機に搭載された冷却対象機器を冷却するための冷媒であり、
     前記冷却対象機器の異常高温を検出する異常高温検出装置を備え、
     前記制御装置は、前記異常高温検出装置が異常高温を検出し、且つ前記冷却対象温度が前記第2回転立上温度以上の値に設定される第3規定温度以上の時は、前記冷却ファンを前記第2ファン回転数よりも大きな第3ファン回転数で回転させる請求項5に記載の作業機。
  10.  前記制御装置は、前記冷却ファンを前記第3ファン回転数で回転させている状態で前記冷却対象温度の値が前記第3規定温度未満の第4規定温度に低下したときに、前記冷却ファンの回転数の制御を前記第2マップに基づく制御に戻す請求項9に記載の作業機。
  11.  前記第2マップは、
     前記ファン回転数が前記第2ファン回転数の状態で前記冷却対象温度の値が前記第1規定温度よりも高い第4回転立上温度に上昇したときに前記ファン回転数を前記第2ファン回転数よりも大きい第4ファン回転数に設定し、
     前記ファン回転数が前記第4ファン回転数である状態で前記冷却対象温度の値が第4回転立上温度よりも低く前記第1規定温度よりも高い所定の第4回転降下温度に低下したときに前記ファン回転数を前記第2ファン回転数に低下させるよう構成されている請求項5に記載の作業機。
  12.  前記複数のファン制御マップは、第4マップを含み、
     前記第4マップは、
     前記ファン回転数が0の状態で前記冷却対象温度の値が前記第2回転立上温度未満の値から前記第2回転立上温度に上昇したときに前記ファン回転数を0よりも大きい値に設定し、
     前記冷却対象温度の値が前記第1規定温度以上の場合は前記ファン回転数を前記第2ファン回転数よりも低い所定の第5ファン回転数に設定し、
     前記冷却対象温度の値が前記第2回転立上温度以上、前記第1規定温度未満の場合は前記ファン回転数を前記第5ファン回転数未満の範囲内で前記冷却対象温度が高いほど高く設定し、
     前記ファン回転数が0ではない状態で前記冷却対象温度の値が前記第2回転降下温度に低下したときに前記ファン回転数を0に低下させるよう構成されており、
     前記制御装置は、前記電動モータの回転数が、高い値に設定されている時に前記第2マップに基づいて前記冷却ファンを制御し、前記電動モータの回転数が、低い値に設定されている時に前記第4マップに基づいて前記冷却ファンを制御する請求項5に記載の作業機。
  13.  前記第4マップは、
     前記ファン回転数が前記第5ファン回転数の状態で前記冷却対象温度の値が前記第1規定温度よりも高い第4回転立上温度に上昇したときに前記ファン回転数を前記第5ファン回転数よりも大きい第6ファン回転数に設定し、
     前記ファン回転数が前記第6ファン回転数である状態で前記冷却対象温度の値が第4回転立上温度よりも低く前記第1規定温度よりも高い所定の第4回転降下温度に低下したときに前記ファン回転数を前記第5ファン回転数に低下させるよう構成されている請求項12に記載の作業機。
  14.  前記冷却器は、前記電動モータを含む機器類を冷却する冷却水を冷却するためのラジエータであり、
     前記冷却ファンは前記ラジエータに備えられるラジエータファンであり、
     前記温度検出装置は、前記冷却対象温度として前記冷却水の温度を検出する請求項1に記載の作業機。
  15.  前記冷却器は、前記電動モータを含む機器類を冷却する冷却水を冷却するためのラジエータであり、
     前記冷却ファンは前記ラジエータに備えられるラジエータファンであり、
     前記温度検出装置は、前記冷却対象温度として前記冷却水の温度を検出する請求項9に記載の作業機。
  16.  前記電動モータにて駆動される油圧ポンプと、
     前記油圧ポンプが吐出する作動油の油圧にて駆動される油圧アクチュエータとを備え、
     前記冷却器は前記作動油を冷却するためのオイルクーラであり、前記冷却ファンは前記オイルクーラに備えられるオイルクーラファンであり、
     前記温度検出装置は、前記冷却対象温度として前記作動油の温度を検出する請求項1に記載の作業機。
  17.  前記電動モータにて駆動される油圧ポンプと、
     前記油圧ポンプが吐出する作動油の油圧にて駆動される油圧アクチュエータとを備え、
     前記冷却器は前記作動油を冷却するためのオイルクーラであり、前記冷却ファンは前記オイルクーラに備えられるオイルクーラファンであり、
     前記温度検出装置は、前記冷却対象温度として前記作動油の温度を検出する請求項12に記載の作業機。
  18.  前記電動モータにて駆動される油圧ポンプと、
     前記油圧ポンプが吐出する作動油の油圧にて駆動される油圧アクチュエータとを備え、
     前記冷却器として、前記電動モータを含む機器類を冷却する冷却水を冷却するためのラジエータと、前記作動油を冷却するためのオイルクーラとを備え、
     前記冷却ファンとして、前記ラジエータに備えられるラジエータファンと、前記オイルクーラに備えられるオイルクーラファンとを備え、
     前記温度検出装置は、前記冷却対象温度として前記冷却水の温度と前記作動油の温度とを検出し、
     前記記憶装置は、前記冷却水の温度に対する前記ラジエータファンの回転数の特性を示すラジエータファン用の複数のファン制御マップと、前記作動油の温度に対する前記オイルクーラファンの回転数の特性を示すオイルクーラファン用の複数のファン制御マップとを記憶しており、
     前記制御装置は、前記ラジエータファン用の複数のファン制御マップに基づいて前記ラジエータファンの回転数を制御し、前記オイルクーラファン用の複数のファン制御マップに基づいて前記オイルクーラファンの回転数を制御する請求項2に記載の作業機。
PCT/JP2023/011388 2022-04-01 2023-03-23 作業機 WO2023189992A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022061893 2022-04-01
JP2022-061893 2022-04-01

Publications (1)

Publication Number Publication Date
WO2023189992A1 true WO2023189992A1 (ja) 2023-10-05

Family

ID=88201914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011388 WO2023189992A1 (ja) 2022-04-01 2023-03-23 作業機

Country Status (1)

Country Link
WO (1) WO2023189992A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021080709A (ja) 2019-11-18 2021-05-27 株式会社クボタ 旋回作業機
WO2021246110A1 (ja) * 2020-06-02 2021-12-09 ヤンマーホールディングス株式会社 電動式建設機械

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021080709A (ja) 2019-11-18 2021-05-27 株式会社クボタ 旋回作業機
WO2021246110A1 (ja) * 2020-06-02 2021-12-09 ヤンマーホールディングス株式会社 電動式建設機械

Similar Documents

Publication Publication Date Title
JP5527896B2 (ja) ハイブリッド式作業機の冷却システム
US8959918B2 (en) Hybrid construction machine
US9945396B2 (en) Fluid systems for machines with integrated energy recovery circuit
JP6944426B2 (ja) 電動式建設機械
WO2019208370A1 (ja) 電動式作業機械
JP2021080708A (ja) 旋回作業機
JP2021080709A (ja) 旋回作業機
WO2017022866A1 (ja) 制御システム、作業機械、及び制御方法
WO2021100663A1 (ja) 旋回作業機
JP2021080703A (ja) 電動作業機
US20240083265A1 (en) Electric working machine and charging system for electric working machine
WO2023189992A1 (ja) 作業機
JP6817244B2 (ja) 建設機械
JP2013245457A (ja) ハイブリッド式建設機械
JP6023391B2 (ja) 建設機械の駆動装置
JP6258886B2 (ja) ハイブリッド式作業機械
JP5596583B2 (ja) 作業機械の駆動制御装置
JP2021080704A (ja) 旋回作業機
JP2021080706A (ja) 旋回作業機
WO2023189344A1 (ja) 電動作業機
US20210310214A1 (en) Working machine
WO2023189343A1 (ja) 電動作業機
JP2021080707A (ja) 作業機
JP2021080705A (ja) 旋回作業機
US20240223116A1 (en) Electric working machine and method of controlling electric working machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780003

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024512249

Country of ref document: JP

Kind code of ref document: A