WO2023189742A1 - シャント抵抗器および電流検出装置 - Google Patents

シャント抵抗器および電流検出装置 Download PDF

Info

Publication number
WO2023189742A1
WO2023189742A1 PCT/JP2023/010638 JP2023010638W WO2023189742A1 WO 2023189742 A1 WO2023189742 A1 WO 2023189742A1 JP 2023010638 W JP2023010638 W JP 2023010638W WO 2023189742 A1 WO2023189742 A1 WO 2023189742A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
resistor
shunt resistor
detection
electrode
Prior art date
Application number
PCT/JP2023/010638
Other languages
English (en)
French (fr)
Inventor
保 遠藤
Original Assignee
Koa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa株式会社 filed Critical Koa株式会社
Publication of WO2023189742A1 publication Critical patent/WO2023189742A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C13/00Resistors not provided for elsewhere

Definitions

  • the present invention relates to a shunt resistor and a current detection device.
  • Shunt resistors are widely used in current sensing applications.
  • the shunt resistor In order to enable current detection that is less affected by temperature fluctuations, the shunt resistor is required to have a temperature coefficient of resistance (TCR) as close to 0 as possible.
  • the temperature coefficient of resistance (TCR) is an index indicating the rate of change in resistance value due to temperature change, and the closer the temperature coefficient of resistance (TCR) is to 0, the smaller the change in resistance value becomes.
  • an alloy with a low TCR such as Manganin®, may be used as the material of the resistor.
  • Current detection devices equipped with shunt resistors are used in various applications such as inverter devices, converter devices, battery monitoring BMS (Battery Management System) of electric vehicles, and energy storage devices BSS (Battery Storage System) of power grids.
  • BMS Battery Management System
  • BSS Battery Storage System
  • initial measurement accuracy shipment adjustment accuracy
  • measurement accuracy with respect to temperature fluctuations measurement accuracy with respect to secular changes
  • measurement accuracy with respect to secular changes are considered to be more important than in other applications.
  • the current detection device influences the battery capacity design required for the entire system and influences the system cost. For this reason, current detection devices are required to have high measurement accuracy over a wide range of current.
  • the current detection board detects the current by measuring the voltage drop at the voltage measurement position of the shunt resistor.
  • the resistance value of the shunt resistor changes depending on the temperature. That is, even if the current flowing through the shunt resistor is constant, the detected voltage changes depending on the temperature. As a result, current measurement accuracy is reduced.
  • the present invention provides a shunt resistor and a current detection device that can accurately detect the current flowing through the shunt resistor even if the temperature of the shunt resistor changes.
  • the shunt resistor includes a resistor and a first electrode and a second electrode connected to both sides of the resistor, wherein the first electrode has a temperature coefficient of resistance of the shunt resistor as a first coefficient. and a first voltage detection terminal and a second voltage detection terminal provided at a first characteristic position of the second electrode, and the first electrode and the second electrode whose temperature coefficient of resistance of the shunt resistor is a second coefficient.
  • a shunt resistor is provided, comprising a third voltage detection terminal and a fourth voltage detection terminal provided at second characteristic positions of the shunt resistor, wherein the first coefficient and the second coefficient are different values.
  • the first coefficient is a negative value and the second coefficient is a positive value.
  • a shunt resistor having a resistor and a first electrode and a second electrode connected to both sides of the resistor, and a current detection unit electrically connected to the shunt resistor, the current detection unit a first voltage detection contact and a second voltage detection contact electrically connected to negative characteristic positions of the first electrode and the second electrode where the temperature coefficient of resistance of the shunt resistor is a negative value; a third voltage detection contact and a fourth voltage detection contact electrically connected to positive characteristic positions of the first electrode and the second electrode where the temperature coefficient of resistance of the shunt resistor is a positive value; A first voltage signal wiring, a second voltage signal wiring, a third voltage signal wiring, and a third voltage signal wiring connected to the voltage detection contact, the second voltage detection contact, the third voltage detection contact, and the fourth voltage detection contact, respectively.
  • a resistor connected to at least one of the first voltage signal wiring, the second voltage signal wiring, the third voltage signal wiring, and the fourth voltage signal wiring; and the first voltage signal wiring.
  • a first voltage signal merging wiring for merging the voltage signals from the signal wiring and the third voltage signal wiring; and a second voltage signal merging wiring for merging the voltage signals from the second voltage signal wiring and the fourth voltage signal wiring.
  • the resistor has a resistance value that brings a temperature coefficient of resistance of the shunt resistor calculated from the voltage signals from the first voltage signal merging wiring and the second voltage signal merging wiring close to 0; Equipment is provided.
  • a shunt resistor having a resistor and a first electrode and a second electrode connected to both sides of the resistor, and a current detection unit electrically connected to the shunt resistor, the current detection unit a first voltage detection contact and a second voltage detection contact electrically connected to negative characteristic positions of the first electrode and the second electrode where the temperature coefficient of resistance of the shunt resistor is a negative value; a third voltage detection contact and a fourth voltage detection contact electrically connected to positive characteristic positions of the first electrode and the second electrode where the temperature coefficient of resistance of the shunt resistor is a positive value; a current calculator to which voltage signals from a voltage detection contact, the second voltage detection contact, the third voltage detection contact, and the fourth voltage detection contact are input; the current calculator calculates from the voltage signal; of the negative characteristic side detection voltage between the first voltage detection contact and the second voltage detection contact and the positive characteristic side detection voltage between the third voltage detection contact and the fourth voltage detection contact.
  • At least one of the negative characteristic side detection voltage and the positive characteristic side detection voltage is corrected by multiplying at least one by a correction coefficient, and at least one of the negative characteristic side detection voltage and the positive characteristic side detection voltage is corrected.
  • the current flowing through the shunt resistor is determined based on the composite detection voltage calculated from the composite detection voltage and the known resistance value of the shunt resistor, and the correction coefficient is calculated from the composite detection voltage.
  • a current sensing device is provided in which the temperature coefficient of resistance of the shunt resistor is a value close to zero.
  • a shunt resistor having a resistor and a first electrode and a second electrode connected to both sides of the resistor, and a current detection unit electrically connected to the shunt resistor, the current detection unit a first voltage detection contact and a second voltage detection contact electrically connected to a first characteristic position of the first electrode and the second electrode such that the temperature coefficient of resistance of the shunt resistor is a first coefficient; , a third voltage detection contact and a fourth voltage detection contact electrically connected to second characteristic positions of the first electrode and the second electrode such that the temperature coefficient of resistance of the shunt resistor is a second coefficient; a current calculator to which voltage signals from the first voltage detection contact, the second voltage detection contact, the third voltage detection contact, and the fourth voltage detection contact are input; a first characteristic side detection voltage between the first voltage detection contact and the second voltage detection contact and a second characteristic side detection between the third voltage detection contact and the fourth voltage detection contact, which are calculated from A current sensing device is provided that derives the value of the current flowing through the s
  • the current calculator includes a current calculation formula that calculates a current value flowing through the shunt resistor from the first characteristic side detected voltage and the second characteristic side detected voltage.
  • the current calculator includes a data table of a relationship between the first characteristic side detected voltage, the second characteristic side detected voltage, and a current value flowing through the shunt resistor.
  • the current calculator has a function of deriving the temperature of the shunt resistor from the first characteristic side detection voltage and the second characteristic side detection voltage.
  • the temperature coefficient of resistance (TCR) of the shunt resistor can be brought close to 0 by selecting the resistance value of the resistor, so that the influence of temperature on the shunt resistor is reduced and the current flowing through the shunt resistor is reduced. can be determined accurately. Further, according to the present invention, the temperature coefficient of resistance (TCR) of the shunt resistor can be brought close to 0 by multiplying the detection voltage by the correction coefficient, so the influence of temperature on the shunt resistor is reduced, and the shunt resistor The current flowing through can be determined accurately. Further, according to the present invention, it is possible to accurately determine the current flowing through the shunt resistor from the first characteristic side detection voltage and the second characteristic side detection voltage.
  • FIG. 1 is a plan view schematically showing an embodiment of a shunt resistor.
  • FIG. 2 is a perspective view of the shunt resistor shown in FIG. 1.
  • FIG. It is a graph showing the relationship between voltage detection position and voltage when the temperature of the shunt resistor is 20°C. It is a graph showing the relationship between voltage detection position and voltage when the temperature of the shunt resistor is 150°C. It is a graph showing the relationship between temperature-dependent voltage change of a shunt resistor and voltage detection position.
  • 6 is a graph showing the rate of change in the resistance value of the shunt resistor at voltage detection positions P1, P2, and P3 shown in FIG. 5.
  • FIG. 2 is a perspective view showing an embodiment of a current detection device including the shunt resistor shown in FIG. 1 and a current detection section disposed on the shunt resistor.
  • 8 is a plan view of the current detection device shown in FIG. 7.
  • FIG. FIG. 2 is a plan view showing an embodiment of a current detection section electrically connected to a shunt resistor.
  • FIG. 7 is a plan view schematically showing another embodiment of the shunt resistor.
  • FIG. 7 is a plan view schematically showing still another embodiment of a shunt resistor. It is a graph showing an example of resistance temperature coefficient of a shunt resistor.
  • FIG. 7 is a plan view showing another embodiment of the current measuring device. It is a graph explaining how the resistance temperature coefficient of a shunt resistor is corrected. It is a graph which shows the relationship between the voltage between a 1st voltage detection contact and a 2nd voltage detection contact, and the temperature of a shunt resistor.
  • FIG. 7 is a plan view schematically showing another embodiment of the shunt resistor.
  • FIG. 7 is a plan view schematically showing still another embodiment of a shunt resistor.
  • FIG. 1 is a plan view schematically showing one embodiment of a shunt resistor
  • FIG. 2 is a perspective view of the shunt resistor shown in FIG. 1.
  • the shunt resistor 1 includes a resistor 5 having a predetermined thickness and width, and a pair of first resistors made of highly conductive metal connected to both sides 5a and 5b of the resistor 5. It includes an electrode 6 and a second electrode 7. Specifically, the first electrode 6 is connected to one side 5a of the resistor 5, and the second electrode 7 is connected to the other side 5b of the resistor 5.
  • the configuration of the second electrode 7 is the same as the configuration of the first electrode 6, and the first electrode 6 and the second electrode 7 are arranged symmetrically with respect to the resistor 5.
  • the first electrode 6 and the second electrode 7 may be simply referred to as electrode 6 and electrode 7.
  • Examples of the material of the resistor 5 include alloys such as copper-nickel alloy, copper-manganese alloy, iron-chromium alloy, and nickel-chromium alloy.
  • An example of the highly conductive metal constituting the electrodes 6 and 7 is copper (Cu). Both ends 5a and 5b of the resistor 5 are connected (joined) to electrodes 6 and 7 by means such as welding (for example, electron beam welding, laser beam welding, or brazing).
  • the thickness of the resistor 5 is smaller than the thickness of the electrodes 6 and 7, and the front side of the resistor 5 is lower than the front side of the electrodes 6 and 7.
  • the thickness of the resistor 5 may be the same as the thickness of the electrodes 6 and 7.
  • the electrodes 6 and 7 have slits 11 and 12, respectively.
  • the slits 11 and 12 extend parallel to both ends 5a and 5b of the resistor 5, respectively.
  • the slits 11 and 12 of this embodiment are cutouts that extend on a straight line.
  • the slit 11 extends linearly from the side surface 6a of the electrode 6 toward the center of the electrode 6, and the slit 12 extends linearly from the side surface 7a of the electrode 7 toward the center of the electrode 7.
  • the slits 11 and 12 are arranged symmetrically with respect to the resistor 5.
  • the slits 11 and 12 have the same width and the same length.
  • the lengths of the slits 11 and 12 are the dimensions of the slits 11 and 12 along both ends 5a and 5b of the resistor 5.
  • the current flowing through the shunt resistor 1 avoids the slits 11 and 12.
  • the current between the slits 11 and 12 flows around from the side opposite to the slit, and the current density becomes lower as it approaches the side surfaces 6a and 7a.
  • the state of the current flowing through the shunt resistor 1 is different from the state of the current flowing through the shunt resistor 1 without slits.
  • the potential distribution of the shunt resistor 1 is different from the potential distribution of the shunt resistor 1 without a slit.
  • the temperature coefficient of resistance (TCR) of the shunt resistor 1 varies greatly depending on the position at which the voltage is detected between the slits 11 and 12, and the temperature coefficient of resistance (TCR) of the shunt resistor 1 when no slit is formed in the electrode ( TCR).
  • the shunt resistor 1 includes multiple pairs of voltage detection terminals 16A, 16B, 16C, and 16D fixed to a pair of electrodes 6 and 7. These voltage detection terminals 16A to 16D are pin terminals protruding from the electrodes 6 and 7. Voltage detection terminals 16A and 16C are fixed to electrode 6, and voltage detection terminals 16B and 16D are fixed to electrode 7. The voltage detection terminals 16A to 16D are arranged along both sides 5a and 5b of the resistor 5. In this embodiment, two pairs of voltage detection terminals are provided. A pair of voltage detection terminals 16A, 16B are arranged on the slit side, and another pair of voltage detection terminals 16C, 16D are arranged on the side opposite to the slit.
  • FIG. 3 is a graph showing the relationship between the voltage detection position and the voltage at the voltage detection position when the temperature of the shunt resistor 1 is 20°C
  • FIG. It is a graph which shows the relationship between a voltage detection position and voltage at the time of.
  • the voltage detection position is a position along both ends 5a, 5b of the resistor 5 in the width direction of the shunt resistor 1.
  • the voltage detection positions are on the broken lines L1 and L2 in FIG. 1
  • FIGS. 3 and 4 are graphs showing the relationship between the voltage detection positions on the broken lines L1 and L2 and the voltage.
  • FIGS. 3 and 4 it is assumed that the current flowing through the shunt resistor 1 is constant in the direction from the electrode 7 to the electrode 6.
  • Resistance value of shunt resistor 1 is determined by Ohm's law based on the current flowing through shunt resistor 1 and the detected voltage. This is the value calculated based on.
  • the detected voltage changes depending on the voltage detection position (width direction position). That is, the resistance value of the shunt resistor 1 changes depending on the voltage detection position (width direction position). Furthermore, the manner in which the detected voltage changes due to temperature changes differs between the position on the slit side and the position on the opposite side to the slit. Specifically, as can be seen from the comparison between FIGS. 3 and 4, when the voltage detection position is on the slit side, as the temperature of the shunt resistor 1 rises from 20° C. to 150° C., the detected voltage decreases. On the other hand, when the voltage detection position is on the side opposite to the slit, the detection voltage increases as the temperature of the shunt resistor 1 rises from 20°C to 150°C.
  • FIG. 5 is a graph showing the relationship between the temperature-dependent voltage change of the shunt resistor 1 and the voltage detection position. Temperature-dependent voltage change is the difference between the voltage at each voltage detection position when the temperature of shunt resistor 1 is 150°C and the voltage at the same voltage detection position when the temperature of shunt resistor 1 is 20°C. It is. As can be seen from the graph of FIG. 5, the detected voltage at the voltage detection position P1 on the anti-slit side increases as the temperature of the shunt resistor 1 increases (that is, the resistance value of the shunt resistor 1 increases).
  • the detected voltage at the voltage detection position P2 on the slit side decreases as the temperature of the shunt resistor 1 increases (that is, the resistance value of the shunt resistor 1 decreases). Furthermore, there is a voltage detection position P3 where the detected voltage does not change regardless of the temperature change of the shunt resistor 1 (that is, the resistance value of the shunt resistor 1 does not change).
  • FIG. 6 is a graph showing the rate of change in the resistance value of the shunt resistor 1 calculated from the detected voltages at the voltage detection positions P1, P2, and P3 shown in FIG.
  • the vertical axis represents the rate of change in the resistance value of the shunt resistor 1
  • the horizontal axis represents the temperature of the shunt resistor 1.
  • the slope of the graph of the rate of change in resistance value represents the temperature coefficient of resistance (TCR) of the shunt resistor 1.
  • the resistance temperature coefficient of the shunt resistor 1 calculated from the detected voltage at the voltage detection position P1 indicates that the resistance value of the shunt resistor 1 increases as the temperature rises, and The resistance temperature coefficient of the resistor 1 indicates that the resistance value of the shunt resistor 1 decreases as the temperature increases. Further, the temperature coefficient of resistance of the shunt resistor 1 calculated from the detected voltage at the voltage detection position P3 indicates that the resistance value of the shunt resistor 1 does not change as the temperature rises.
  • the temperature coefficient of resistance that indicates that the resistance value increases as the temperature rises is referred to as the positive temperature coefficient of resistance
  • the temperature coefficient of resistance that indicates that the resistance value decreases as the temperature rises is referred to as the negative temperature coefficient of resistance.
  • a resistance temperature coefficient indicating that the resistance value does not change as the temperature rises is called a zero resistance temperature coefficient.
  • the two pairs of voltage detection terminals 16A to 16D are located at a position where a voltage at which the temperature coefficient of resistance of the shunt resistor 1 is a positive value is detected (hereinafter, this position is referred to as a positive characteristic position).
  • the shunt resistor 1 is placed at a position where a voltage with a negative temperature coefficient of resistance is detected (hereinafter referred to as the negative characteristic position), and the detected voltage at the positive characteristic position and the negative characteristic position are intentionally set. Obtain the detected voltage. Then, by correcting the acquired detection voltage at the positive characteristic position and the detection voltage at the negative characteristic position, and further combining the corrected detection voltage at the positive characteristic position and detection voltage at the negative characteristic position, the temperature coefficient of resistance can be approached to zero. .
  • FIG. 7 is a perspective view showing an embodiment of a current detection device including the shunt resistor 1 shown in FIG. 7 is a plan view of the current detection device shown in FIG.
  • Current detection terminals 16A to 16D on the pair of electrodes 6 and 7 are electrically connected to the current detection section 2.
  • the current detection section 2 has a base plate 3 on which a current calculator 20 and the like are arranged. This base plate 3 is fixed to current detection terminals 16A to 16D of the shunt resistor 1.
  • An example of the base plate 3 is a printed circuit board made of a material such as glass epoxy.
  • the current detection unit 2 includes a first voltage detection contact 8A and a second voltage detection contact electrically connected to a first current detection terminal 16A on the first electrode 6 and a second current detection terminal 16B on the second electrode 7, respectively.
  • a third voltage detection contact 8C and a fourth voltage detection contact 8D are electrically connected to the contact 8B, the third current detection terminal 16C on the first electrode 6, and the fourth current detection terminal 16D on the second electrode 7, respectively. It is equipped with In one embodiment, the current detection terminals 16A to 16D are inserted into holes formed in the base plate 3 and connected to the voltage detection contacts by a method such as soldering.
  • FIG. 9 is a plan view showing an embodiment of the current detection section 2 electrically connected to the shunt resistor 1.
  • the first voltage detection contact 8A and the second voltage detection contact 8B are connected to the negative characteristic positions of the first electrode 6 and the second electrode 7, where the voltage at which the temperature coefficient of resistance of the shunt resistor 1 becomes a negative value is detected. They are connected via detection terminals 16A and 16B. At the negative characteristic position, the detected voltage decreases as the temperature rises, and the resistance value of the shunt resistor 1 calculated from the detected voltage decreases.
  • the first voltage detection contact 8A and the first current detection terminal 16A are adjacent to the slit 11 of the first electrode 6, and the second voltage detection contact 8B and the second current detection terminal 16B are adjacent to the slit 11 of the second electrode 7. It is adjacent to. More specifically, the first voltage detection contact 8A and the first current detection terminal 16A are located between the slit 11 of the first electrode 6 and the resistor 5, and the second voltage detection contact 8B and the second The current detection terminal 16B is located between the slit 12 of the second electrode 7 and the resistor 5.
  • the third voltage detection contact 8C and the fourth voltage detection contact 8D are connected to the positive characteristic positions of the first electrode 6 and the second electrode 7, where the voltage at which the temperature coefficient of resistance of the shunt resistor 1 becomes a positive value is detected. They are connected via detection terminals 16C and 16D. At the positive characteristic position, the detected voltage increases as the temperature rises, and the resistance value of the shunt resistor 1 calculated from the detected voltage increases.
  • the third voltage detection contact 8C, the fourth voltage detection contact 8D, the third current detection terminal 16C, and the fourth current detection terminal 16D are located away from the slits 11 and 12. More specifically, the third voltage detection contact 8C, the fourth voltage detection contact 8D, the third current detection terminal 16C, and the fourth current detection terminal 16D are located in the area between the slits 11 and 12 and the resistor 5. It is located on the outside.
  • the positive characteristic position to which the detection contact 8D is connected is based on the results of a simulation or experiment for investigating the relationship between the voltage detection position of the shunt resistor 1 and the resistance temperature coefficient, as shown in FIGS. 3, 4, and 5. It can be determined based on
  • first voltage detection contact 8A first voltage detection terminal 16A
  • second voltage detection contact 8B second voltage detection terminal 16B
  • the three voltage detection contacts 8C (third voltage detection terminal 16C) and the fourth voltage detection contact 8D also form a pair arranged symmetrically with respect to the resistor 5.
  • First voltage detection contact 8A first voltage detection terminal 16A
  • second voltage detection contact 8B second voltage detection terminal 16B
  • third voltage detection contact 8C third voltage detection terminal 16C
  • fourth voltage detection The contact 8D (fourth voltage detection terminal 16D) is arranged along both sides 5a, 5b of the resistor 5, and is adjacent to both sides 5a, 5b of the resistor 5.
  • the voltage detection contacts 8A to 8D do not need to be arranged symmetrically with respect to the resistor 5 as long as the positions exhibit a positive temperature coefficient of resistance or a negative temperature coefficient of resistance.
  • the voltage detection contacts 8A and 8C may be shared, as shown in FIG. 10, or the voltage detection contacts 8B and 8D may be used as shown in FIG. (Voltage detection terminals 16B and 16D) may be shared.
  • a common voltage detection contact (voltage detection terminal) is arranged at a position where the potential does not vary depending on temperature.
  • the first voltage detection contact 8A, the second voltage detection contact 8B, the third voltage detection contact 8C, and the fourth voltage detection contact 8D are composed of through holes that penetrate from the back side to the front side of the base plate 3.
  • the current detection terminals 16A to 16D are inserted therethrough and electrically connected to the current detection terminals 16A to 16D by a method such as soldering.
  • soldering a method such as soldering
  • the form of electrical connection between the current detection position of the shunt resistor 1 and the voltage detection contact is not limited to the method of connecting the current detection terminal by inserting the current detection terminal into a through hole. A method in which the current detection position and the voltage detection contact are surface-connected by soldering or the like may also be used.
  • the current detection unit 2 includes a first voltage signal wiring 9A and a second voltage signal wire connected to a first voltage detection contact 8A, a second voltage detection contact 8B, a third voltage detection contact 8C, and a fourth voltage detection contact 8D, respectively. It further includes a wiring 9B, a third voltage signal wiring 9C, and a fourth voltage signal wiring 9D. These voltage signal wirings 9A to 9D are arranged on the front side of the base plate 3.
  • the current detection unit 2 includes a first resistor 10A and a second resistor 10B connected to a first voltage signal wiring 9A, a second voltage signal wiring 9B, a third voltage signal wiring 9C, and a fourth voltage signal wiring 9D, respectively. , a third resistor 10C, and a fourth resistor 10D. These resistors 10A to 10D are also arranged on the front side of the base plate 3, similarly to the voltage signal wirings 9A to 9D.
  • the current detection unit 2 includes a first voltage signal merging wiring 13 that combines the voltage signals transmitted through the first resistor 10A and the third resistor 10C, and a voltage signal transmitted through the second resistor 10B and the fourth resistor 10D.
  • a second voltage signal merging wiring 14 for merging voltage signals is provided.
  • the first voltage signal merging wiring 13 is connected to the first voltage signal wiring 9A and the third voltage signal wiring 9C, and the second voltage signal merging wiring 14 is connected to the second voltage signal wiring 9B and the fourth voltage signal wiring 9D. has been done.
  • a capacitor 19 is provided between the first voltage signal merging line 13 and the second voltage signal merging line 14.
  • the voltage signal merging lines 13 and 14 combine the voltage signal on the output side of the first resistor 10A and the voltage signal on the output side of the third resistor 10C, and combine the voltage signal on the output side of the second resistor 10B with the voltage signal on the output side of the second resistor 10B.
  • the voltage signals on the output side of the four resistors 10D are combined to form a combined voltage signal.
  • the current detection unit 2 further includes a current calculator 20 connected to the first voltage signal merging wiring 13 and the second voltage signal merging wiring 14.
  • the current calculator 20 is configured to determine the current flowing through the shunt resistor 1 from the composite detection voltage calculated from the composite voltage signal and the known resistance value of the shunt resistor 1.
  • an amplifier may be provided between the resistors 10A-10D and the current calculator 20 to amplify the voltage signal.
  • the current calculator 20 includes a storage device 20a that stores a program, and an arithmetic device 20b that executes arithmetic operations according to instructions included in the program.
  • the current calculator 20 is composed of at least one small computer.
  • the storage device 20a includes a main storage device such as a random access memory (RAM), and an auxiliary storage device such as a hard disk drive (HDD) or a solid state drive (SSD).
  • An example of the arithmetic device 20b is a CPU (central processing unit).
  • the specific configuration of the current calculator 20 is not limited to these examples.
  • the current calculator 20 may be provided remotely from the base plate 3.
  • the current detection unit 2 includes a connector connected to the output signal wiring of the current calculator 20, and may output an output signal from the base plate 3 through the connector.
  • the combined detection voltage is calculated from the combined voltage signals from the voltage signal merging lines 13 and 14.
  • the composite voltage signal from the voltage signal merging wiring 13 can be adjusted by the resistance values of the first resistor 10A and the third resistor 10C
  • the composite voltage signal from the voltage signal merging wiring 14 can be adjusted by the resistance values of the first resistor 10A and the third resistor 10C. and can be adjusted by the fourth resistor 10D. That is, the combined detection voltage calculated from the combined voltage signals from the voltage signal merging lines 13 and 14 can be adjusted by the resistance values of the resistors 10A to 10D.
  • the first resistor 10A and the second resistor 10B are negative side resistors electrically connected to the first voltage detection contact 8A and the second voltage detection contact 8B, and the third resistor 10C and the fourth resistor 10D is a positive side resistor electrically connected to the third voltage detection contact 8C and the fourth voltage detection contact 8D.
  • the negative side resistor that is, the first resistor 10A and the second resistor 10B
  • the positive side resistor that is, the third resistor 10C and the fourth resistor 10D
  • the negative side resistor that is, the first resistor 10A and the second resistor 10B
  • the positive side resistor that is, the third resistor 10C and the fourth resistor 10D
  • It has a resistance value that makes the temperature coefficient of resistance of the shunt resistor 1 calculated from the voltage signal from the signal merging line 14 approach zero.
  • FIG. 12 shows the shunt resistor 1 with a reference temperature of 25° C. when the first resistor 10A, the second resistor 10B, the third resistor 10C, and the fourth resistor 10D all have the same resistance value.
  • 3 is a graph showing an example of the temperature coefficient of resistance of .
  • the symbol TCR2 represents the temperature coefficient of resistance of the shunt resistor 1 calculated from the negative characteristic side detection voltage between the first voltage detection contact 8A and the second voltage detection contact 8B, and more specifically, the negative side resistance It represents the resistance temperature coefficient of the shunt resistor 1 calculated from the voltage signals on the output side of the first resistor 10A and the second resistor 10B, which are the resistors.
  • TCR1 represents the temperature coefficient of resistance of the shunt resistor 1 calculated from the positive characteristic side detection voltage between the third voltage detection contact 8C and the fourth voltage detection contact 8D, and more specifically, the resistance temperature coefficient of the shunt resistor 1 It represents the resistance temperature coefficient of the shunt resistor 1 calculated from the voltage signals on the output side of the third resistor 10C and the fourth resistor 10D, which are the resistors.
  • the symbol TCR3 represents the resistance temperature coefficient of the shunt resistor 1 calculated from the combined detection voltage, and more specifically, the resistance of the shunt resistor 1 calculated from the combined voltage signal from the voltage signal merging wirings 13 and 14. It represents the temperature coefficient.
  • the voltage signal merging lines 13 and 14 combine the voltage signal on the output side of the first resistor 10A and the voltage signal on the output side of the third resistor 10C, and combine the voltage signal on the output side of the second resistor 10B with the voltage signal on the output side of the second resistor 10B.
  • the voltage signals on the output side of the four resistors 10D are combined to form a combined voltage signal.
  • the voltage signal on the input side of the first resistor 10A and the third resistor is combined at a ratio of 1:1, and the voltage signal on the input side of the second resistor 10B and the input signal on the input side of the fourth resistor 10D are combined at a ratio of 1:1. each to form a composite voltage signal.
  • the combined detection voltage is calculated from the combined voltage signals from the voltage signal merging lines 13 and 14.
  • the resistance temperature coefficient TCR1 calculated from the positive characteristic side detected voltage between the third voltage detection contact 8C and the fourth voltage detection contact 8D changes as the resistance of the shunt resistor 1 increases. It is a positive temperature coefficient of resistance that increases in value.
  • the resistance temperature coefficient TCR2 calculated from the negative characteristic side detection voltage between the first voltage detection contact 8A and the second voltage detection contact 8B is a negative resistance whose resistance value of the shunt resistor 1 decreases as the temperature rises. It is the temperature coefficient.
  • the temperature coefficient of resistance TCR3 calculated from the combined detection voltage is a positive temperature coefficient of resistance whose resistance value increases as the temperature rises.
  • the temperature coefficient of resistance TCR3 is brought closer to 0.
  • the first resistor 10A and the second resistor 10B, which are negative side resistors have the same resistance value
  • the third resistor 10C and the fourth resistor 10D which are positive side resistors, have the same resistance value.
  • the temperature coefficient of resistance TCR3 can be set to 0.
  • the first resistor 10A, the second resistor 10B, the third resistor 10C, and the fourth resistor 10D may be resistors whose resistance values can be adjusted after connection. In this case, until the temperature coefficient of resistance TCR3 becomes 0 (until the slope of the graph showing TCR3 becomes 0), the first resistor 10A, the second resistor 10B, the third resistor 10C, and the fourth resistor 10D It is desirable to adjust the resistance value of at least one of the. However, depending on the characteristics of the material of the resistor 5, the graph showing the TCR3 may be curved.
  • the resistance values of the first resistor 10A, the second resistor 10B, the third resistor 10C, and the fourth resistor 10D are selected so that the temperature coefficient of resistance TCR3 falls within an allowable range.
  • the allowable range is a range that includes 0 and is set in advance.
  • the temperature coefficient of resistance TCR3 of the shunt resistor 1 approaches 0 (desirably). (because the temperature coefficient of resistance TCR3 becomes 0), the current calculator 20 can accurately determine the current without being affected by the temperature of the shunt resistor 1.
  • FIG. 14 shows the shunt resistor 1 with a reference temperature of 25° C. when the first resistor 10A, the second resistor 10B, the third resistor 10C, and the fourth resistor 10D all have the same resistance value.
  • 3 is a graph showing another example of the temperature coefficient of resistance of FIG.
  • the temperature coefficient of resistance TCR3 of the shunt resistor 1 calculated from the combined detection voltage is a negative temperature coefficient of resistance.
  • the first resistor 10A, the second resistor 10B, the third resistor 10C, and the fourth resistor 10D electrically connected to the voltage detection contacts 8A to 8D.
  • the temperature coefficient of resistance TCR3 is brought closer to 0.
  • the first resistor 10A and the second resistor 10B, which are negative side resistors have the same resistance value
  • the first resistor 10C and the second resistor 10D which are positive side resistors, have the same resistance value.
  • the temperature coefficient of resistance TCR3 can be set to 0.
  • the first resistor 10A, the second resistor 10B, the third resistor 10C, and the fourth resistor 10D may be resistors whose resistance values can be adjusted after connection.
  • the first resistor 10A, the second resistor 10B, the third resistor 10C, and the fourth resistor 10D are connected until the temperature coefficient of resistance TCR3 becomes 0 (until the slope of the graph showing TCR3 becomes 0). It is desirable to adjust the value of at least one resistance. However, depending on the characteristics of the material of the resistor 5, the graph showing the TCR3 may be curved.
  • the resistance values of the first resistor 10A, the second resistor 10B, the third resistor 10C, and the fourth resistor 10D are selected so that the temperature coefficient of resistance TCR3 falls within an allowable range.
  • the allowable range is a range that includes 0 and is set in advance.
  • the resistance values of resistors 10A to 10D are determined in advance through simulations, etc., but by using resistors whose resistance values can be adjusted, the resistance values can be further adjusted after the current detection device is completed (before shipping). It becomes possible to make adjustments. Specifically, while flowing a predetermined current through the shunt resistor 1 and changing the temperature of the shunt resistor 1, the combined detection voltage is measured by the current calculator 20, and the direction in which the change in the combined detection voltage becomes smaller (i.e. The resistance values of the first resistor 10A and the second resistor 10B, and/or the resistance values of the third resistor 10C and the fourth resistor 10D are adjusted in a direction (in which the temperature coefficient of resistance TCR3 approaches 0). By adjusting the resistance value in this way, the temperature coefficient of resistance of the shunt resistor 1 approaches 0, and the current detection device can accurately measure the current without being affected by the temperature of the shunt resistor 1. Become.
  • the negative characteristic position and the positive characteristic position may each be positions where the influence of the skin effect due to frequency is small.
  • the negative characteristic position is the position where there is a negative temperature coefficient of resistance and where the influence of the skin effect due to frequency is small
  • the positive characteristic position is the position where there is a positive temperature coefficient of resistance and where the influence of the skin effect due to frequency is small.
  • FIG. 16 is a plan view showing another embodiment of the current measuring device.
  • the first resistor 10A, second resistor 10B, third resistor 10C, and fourth resistor 10D shown in FIG. 16 are resistors having a fixed resistance value. Further, the first voltage signal merging wiring 13 and the second voltage signal merging wiring 14 shown in FIG. 9 are not provided. The first voltage signal wiring 9A, the second voltage signal wiring 9B, the third voltage signal wiring 9C, and the fourth voltage signal wiring 9D are connected to the current calculator 20.
  • the first resistor 10A, the second resistor 10B, the third resistor 10C, and the fourth resistor 10D are connected to the first voltage signal wiring 9A, the second voltage signal wiring 9B, the third voltage signal wiring 9C, and the fourth They are respectively attached to the voltage signal wiring 9D.
  • Current calculator 20 is connected to voltage detection contacts 8A-8D via voltage signal lines 9A-9D and resistors 10A-10D.
  • an amplifier may be provided between the resistors 10A-10D and the current calculator 20 to amplify the voltage signal.
  • the current calculator 20 converts the detected voltage of the analog signal calculated from the voltage signal transmitted through the voltage signal wirings 9A to 9D into a digital signal, reads the digital signal, and executes a correction process on the detected voltage of the digital signal. This performs the same operation as changing the resistance values of the resistors 10A to 10D and adjusting the composite detection voltage in the previously described embodiment.
  • the current calculator 20 calculates the negative characteristic side detected voltage between the first voltage detection contact 8A and the second voltage detection contact 8B (that is, the detected voltage at the negative characteristic position) calculated from the voltage signal. A corrected negative characteristic side detection voltage is calculated by multiplying by a negative side correction coefficient. Similarly, the current calculator 20 detects the positive characteristic side detected voltage (that is, the detected voltage at the positive characteristic position) between the third voltage detection contact 8C and the fourth voltage detection contact 8D calculated from the voltage signal. A corrected positive characteristic side detection voltage is calculated by multiplying by a correction coefficient.
  • the negative characteristic side detection voltage between the first voltage detection contact 8A and the second voltage detection contact 8B is determined from the voltage signal transmitted through the first voltage signal wiring 9A and the second voltage signal wiring 9B, and the third voltage
  • the positive characteristic side detection voltage between the detection contact 8C and the fourth voltage detection contact 8D is determined from the voltage signal transmitted through the third voltage signal wiring 9C and the fourth voltage signal wiring 9D.
  • the positive side correction coefficient and the negative side correction coefficient are numerical values calculated by a simulation or the like in which the temperature coefficient of resistance of the shunt resistor 1 calculated from the combined detection voltage approaches 0.
  • This composite detection voltage is calculated by combining the corrected negative characteristic side detection voltage and the corrected negative characteristic side detection voltage.
  • the current calculator 20 calculates the shunt voltage based on the known resistance value of the shunt resistor 1 and a composite detection voltage calculated by combining the corrected negative characteristic side detection voltage and the corrected positive characteristic side detection voltage. Determine the current flowing through resistor 1.
  • the temperature coefficient of resistance TCR3 is a temperature coefficient of resistance calculated from a composite detection voltage obtained by combining the corrected negative characteristic side detection voltage and the corrected positive characteristic side detection voltage.
  • the current calculator 20 calculates a composite detection voltage by combining the corrected negative characteristic side detection voltage and the corrected positive characteristic side detection voltage, and calculates a composite detection voltage by combining this composite detection voltage and the known voltage of the shunt resistor 1.
  • the current flowing through the shunt resistor 1 is calculated from the resistance value. According to this embodiment, as shown in FIG. 17, the temperature coefficient of resistance TCR3 of the shunt resistor 1 approaches 0, so the current calculator 20 calculates the current without being affected by the temperature of the shunt resistor 1. can be determined accurately.
  • the negative side correction coefficient and the positive side correction coefficient may be determined in advance by simulation or the like, or may be determined by inspection after the current detection device is completed (before shipping). Specifically, while a predetermined current is flowing through the shunt resistor 1 and the temperature of the shunt resistor 1 is changed, the combined detected voltage is measured by the current calculator 20, and the change in the combined detected voltage is small (that is, the resistance A negative side correction coefficient and a positive side correction coefficient are determined such that the temperature coefficient TCR3 approaches 0.
  • the negative side detection voltage or the positive side detection voltage is multiplied by either the negative side correction coefficient or the positive side correction coefficient to obtain a corrected negative side sensed voltage or a corrected negative side sensed voltage.
  • the positive characteristic side detection voltage may be calculated.
  • the correction coefficient by which the negative characteristic side detection voltage or the positive characteristic side detection voltage is multiplied is a coefficient that can bring the temperature coefficient of resistance TCR3 close to zero. Specifically, while flowing a predetermined current through the shunt resistor 1 and changing the temperature of the shunt resistor 1, the combined detection voltage is measured by the current calculator 20, and the change in the combined detection voltage is reduced (i.e. A correction coefficient is determined such that the temperature coefficient of resistance TCR3 approaches 0.
  • FIGS. 18 and 19 The configuration and operation of this embodiment, which are not particularly described, are the same as those of the embodiment described with reference to FIGS. 16 and 17, so the redundant explanation will be omitted.
  • the current flowing through the shunt resistor 1 is directly calculated using a current calculation formula. That is, the current calculator 20 calculates the negative characteristic side detected voltage (detected voltage at the negative characteristic position) between the first voltage detection contact 8A and the second voltage detection contact 8B calculated from the voltage signal and the voltage signal. A current calculation formula for calculating the current flowing through the shunt resistor 1 from the calculated positive characteristic side detected voltage (detected voltage at the positive characteristic position) between the third voltage detection contact 8C and the fourth voltage detection contact 8D is calculated. We are prepared.
  • the current calculation formula includes a first function indicating the relationship between the negative characteristic side detected voltage between the first voltage detection contact 8A and the second voltage detection contact 8B and the temperature of the shunt resistor 1, and a third voltage detection contact 8C. This is a functional expression derived from a second function that indicates the relationship between the positive characteristic side detected voltage between and the fourth voltage detection contact 8D and the temperature of the shunt resistor 1.
  • FIG. 18 is a graph showing the relationship between the negative characteristic side detected voltage between the first voltage detection contact 8A and the second voltage detection contact 8B and the temperature of the shunt resistor 1. While flowing currents of 100 amperes, 99 amperes, 98 amperes, and 97 amperes through the shunt resistor 1, the temperature of the shunt resistor 1 and the negative characteristic side between the first voltage detection contact 8A and the second voltage detection contact 8B are detected. The voltage was measured, and a linear approximation graph shown in FIG. 18 was created from the obtained temperature measurement data and voltage measurement data. The graph shown in FIG. 18 is expressed by the following first function.
  • Y1 a*I*t+b*I (1)
  • Y1 represents the negative characteristic side detection voltage [V] between the first voltage detection contact 8A and the second voltage detection contact 8B
  • a represents the coefficient (constant)
  • t represents the temperature of the shunt resistor 1.
  • b represents a coefficient (constant)
  • I represents the current [A] flowing through the shunt resistor 1.
  • the coefficients a and b can be calculated from the temperature measurement data and the voltage measurement data.
  • FIG. 19 is a graph showing the relationship between the positive characteristic side detection voltage between the third voltage detection contact 8C and the fourth voltage detection contact 8D and the temperature of the shunt resistor 1. While a current of 100 amperes, 99 amperes, 98 amperes, and 97 amperes is flowing through the shunt resistor 1, the temperature of the shunt resistor 1 and the positive characteristic side are detected between the third voltage detection contact 8C and the fourth voltage detection contact 8D. The voltage was measured, and a linear approximation graph shown in FIG. 19 was created from the obtained temperature measurement data and voltage measurement data. The graph shown in FIG. 19 is expressed by the following second function.
  • Y2 c*I*t+d*I (2)
  • Y2 represents the positive characteristic side detection voltage [V] between the third voltage detection contact 8C and the fourth voltage detection contact 8D
  • c represents the coefficient (constant)
  • t represents the temperature of the shunt resistor 1.
  • d represents a coefficient (constant)
  • I represents the current [A] flowing through the shunt resistor 1.
  • the coefficients c and d can be calculated from the temperature measurement data and the voltage measurement data.
  • the following current calculation formula and temperature calculation formula are derived from the first function (1) and the second function (2).
  • Current calculation formula I ((Y1 ⁇ c)-(Y2 ⁇ a))/((b ⁇ c)-(a ⁇ d)) (3)
  • Temperature calculation formula t ((Y2 ⁇ b)-(Y1 ⁇ d))/((Y1 ⁇ c)-(Y2 ⁇ a)) (4)
  • the specific values of a, b, c, and d are determined, so if the negative characteristic side detection voltage Y1 and the positive characteristic side detection voltage Y2 are obtained, the shunt resistor
  • the current [A] flowing through the shunt resistor 1 and the temperature [° C.] of the shunt resistor 1 can be calculated from the above current calculation formula and temperature calculation formula.
  • the current calculator 20 stores a current calculation formula and a temperature calculation formula in advance in its storage device 20a.
  • the current calculator 20 calculates a negative characteristic side detection voltage Y1 (negative The positive characteristic side between the third voltage detection contact 8C and the fourth voltage detection contact 8D is calculated from the voltage signal obtained through the third voltage signal wiring 9C and the fourth voltage signal wiring 9D.
  • Detected voltage Y2 (detected voltage at the positive characteristic position) is calculated.
  • the current calculator 20 can calculate the current [A] flowing through the shunt resistor 1 by inputting the negative characteristic side detection voltage Y1 and the positive characteristic side detection voltage Y2 into the current calculation formula.
  • the current flowing through the shunt resistor can be directly calculated using the current calculation formula without correcting or combining the negative characteristic side detection voltage and the positive characteristic side detection voltage. Further, the current calculator 20 can calculate the temperature [° C.] of the shunt resistor 1 by inputting the negative characteristic side detection voltage Y1 and the positive characteristic side detection voltage Y2 into the temperature calculation formula.
  • the current calculation formula and temperature calculation formula are obtained from the relationship between the negative characteristic side detection voltage Y1 and the positive characteristic side detection voltage Y2 and temperature, but if there is a difference between the first function and the second function, the same Since it is possible to obtain the current calculation formula and the temperature calculation formula, the negative characteristic side detection voltage Y1 and the negative characteristic side detection voltage Y2 or the positive characteristic side detection voltage Y1 and the positive characteristic side detection voltage Y2 may be used. That is, the current calculation formula and the temperature calculation formula are derived from the relationship between the first characteristic side detected voltage Y1, the second characteristic side detected voltage Y2, and temperature, and the current calculator 20 calculates the first characteristic side detected voltage Y1 and the second characteristic side detected voltage Y1.
  • the characteristic side detection voltage Y2 By inputting the characteristic side detection voltage Y2 into the current calculation formula, the current [A] flowing through the shunt resistor 1 can be calculated. By inputting the characteristic side detection voltage Y2 into the temperature calculation formula, the temperature [° C.] of the shunt resistor 1 can be calculated.
  • the shunt resistor 1 in each of the embodiments described so far has the slits 11 and 12 shown in FIGS. 1 and 2, other types of shunt resistors can also be used.
  • the shunt resistor 1 may have a protrusion 25 that protrudes in the width direction thereof.
  • a portion of the resistor 5 and a portion of the pair of electrodes 6 and 7 constitute the protrusion 25.
  • the protrusion 25 has a rectangular shape when viewed from above.
  • the shunt resistor 1 may have an L-shaped hole 27 in the pair of electrodes 6, 7.
  • the shape of the hole 27 is not limited to the shape shown in FIG. 21, and may have other shapes.
  • the present invention can be used in shunt resistors and current detection devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Details Of Resistors (AREA)

Abstract

本発明は、シャント抵抗器および電流検出装置に関するものである。電流検出部(2)は、シャント抵抗器(1)の抵抗温度係数が第1係数となる電極(6,7)の第1特性位置に設けられた電圧検出端子(8A,8B)と、シャント抵抗器(1)の抵抗温度係数が第2係数となる電極(6,7)の第2特性位置に設けられた電圧検出端子(8C,8D)を備えている。第1係数と第2係数は異なる数値である。

Description

シャント抵抗器および電流検出装置
 本発明は、シャント抵抗器および電流検出装置に関する。
 シャント抵抗器は、電流検出用途に広く用いられている。温度変動の影響が小さい電流検出を可能とするために、シャント抵抗器には、その抵抗温度係数(TCR)はできるだけ0に近いことが要請されている。抵抗温度係数(TCR)とは、温度変化による抵抗値の変化の割合を示す指標であり、抵抗温度係数(TCR)が0に近づくほど抵抗値の変化が小さくなる。シャント抵抗器のTCRを改善するために、例えば、マンガニン(登録商標)などのTCRが小さい合金が抵抗体の材料として使用されることがある。
 シャント抵抗器を備えた電流検出装置は、インバータ装置、コンバータ装置、電気自動車のバッテリ監視BMS(Battery Management System)、電力網のエネルギ貯蔵装置BSS(Battery Storage System)などのさまざまな用途に用いられる。特に、バッテリエネルギ蓄積量を監視する用途では、初期測定精度(出荷調整精度)、温度変動に対する測定精度、経年変化に対する測定精度が、他の用途よりもさらに重要とされている。電流検出装置は、システムの全体に必要なバッテリ容量設計に影響し、システムコストを左右する。このため、電流検出装置には、電流の広範囲において高い測定精度が求められている。
特表2003-518763号公報
 電流検出基板は、シャント抵抗器の電圧測定位置での電圧降下を測定することにより、電流を検出する。しかしながら、シャント抵抗器は、温度に依存して抵抗値が変化する。すなわち、シャント抵抗器に流れる電流が一定でも、温度に依存して検出電圧が変化する。結果として、電流測定精度を低下させてしまう。
 そこで、本発明は、シャント抵抗器の温度が変化しても、シャント抵抗器を流れる電流を正確に検出することができるシャント抵抗器および電流検出装置を提供する。
 一態様では、抵抗体および該抵抗体の両側に接続された第1電極および第2電極を有するシャント抵抗器であって、前記シャント抵抗器の抵抗温度係数が第1係数となる前記第1電極および前記第2電極の第1特性位置に設けられた第1電圧検出端子および第2電圧検出端子と、前記シャント抵抗器の抵抗温度係数が第2係数となる前記第1電極および前記第2電極の第2特性位置に設けられた第3電圧検出端子および第4電圧検出端子を備え、前記第1係数と前記第2係数は異なる数値である、シャント抵抗器が提供される。
 一態様では、前記第1係数は負の数値であり、前記第2係数は正の数値である。
 一態様では、前記第1電極に設けられた前記第1電圧検出端子と前記第3電圧検出端子、または、前記第2電極に設けられた前記第2電圧検出端子と前記第4電圧検出端子のどちらか一方が共通の電圧検出端子である。
 一態様では、抵抗体および該抵抗体の両側に接続された第1電極および第2電極を有するシャント抵抗器と、前記シャント抵抗器に電気的に接続された電流検出部を備え、前記電流検出部は、前記シャント抵抗器の抵抗温度係数が負の数値となる前記第1電極および前記第2電極の負特性位置に電気的に接続された第1電圧検出接点および第2電圧検出接点と、前記シャント抵抗器の抵抗温度係数が正の数値となる前記第1電極および前記第2電極の正特性位置に電気的に接続された第3電圧検出接点および第4電圧検出接点と、前記第1電圧検出接点、前記第2電圧検出接点、前記第3電圧検出接点、および前記第4電圧検出接点にそれぞれ接続された第1電圧信号配線、第2電圧信号配線、第3電圧信号配線、および第4電圧信号配線と、前記第1電圧信号配線、前記第2電圧信号配線、前記第3電圧信号配線、および前記第4電圧信号配線の少なくとも1つに接続された抵抗器と、前記第1電圧信号配線および前記第3電圧信号配線からの電圧信号を合流させる第1電圧信号合流配線と、前記第2電圧信号配線および前記第4電圧信号配線からの電圧信号を合流させる第2電圧信号合流配線を備え、前記抵抗器は、前記第1電圧信号合流配線および前記第2電圧信号合流配線からの電圧信号から算出される前記シャント抵抗器の抵抗温度係数を0に近づける抵抗値を有する、電流検出装置が提供される。
 一態様では、抵抗体および該抵抗体の両側に接続された第1電極および第2電極を有するシャント抵抗器と、前記シャント抵抗器に電気的に接続された電流検出部を備え、前記電流検出部は、前記シャント抵抗器の抵抗温度係数が負の数値となる前記第1電極および前記第2電極の負特性位置に電気的に接続された第1電圧検出接点および第2電圧検出接点と、前記シャント抵抗器の抵抗温度係数が正の数値となる前記第1電極および前記第2電極の正特性位置に電気的に接続された第3電圧検出接点および第4電圧検出接点と、前記第1電圧検出接点、前記第2電圧検出接点、前記第3電圧検出接点、および前記第4電圧検出接点からの電圧信号が入力される電流算定器を備え、前記電流算定器は、前記電圧信号から算出される前記第1電圧検出接点と前記第2電圧検出接点との間の負特性側検出電圧および前記第3電圧検出接点と前記第4電圧検出接点との間の正特性側検出電圧のうちの少なくとも一方に補正係数を乗算することで、前記負特性側検出電圧および前記正特性側検出電圧の少なくとも一方を補正し、少なくとも一方が補正された前記負特性側検出電圧および前記正特性側検出電圧から算出される合成検出電圧と、前記シャント抵抗器の既知の抵抗値に基づいて、前記シャント抵抗器を流れる電流を決定するように構成されており、前記補正係数は、前記合成検出電圧から算出される前記シャント抵抗器の抵抗温度係数を0に近づける数値である、電流検出装置が提供される。
 一態様では、抵抗体および該抵抗体の両側に接続された第1電極および第2電極を有するシャント抵抗器と、前記シャント抵抗器に電気的に接続された電流検出部を備え、前記電流検出部は、前記シャント抵抗器の抵抗温度係数が第1係数となる前記第1電極および前記第2電極の第1特性位置に電気的に接続された第1電圧検出接点および第2電圧検出接点と、前記シャント抵抗器の抵抗温度係数が第2係数となる前記第1電極および前記第2電極の第2特性位置に電気的に接続された第3電圧検出接点および第4電圧検出接点と、前記第1電圧検出接点、前記第2電圧検出接点、前記第3電圧検出接点、および前記第4電圧検出接点からの電圧信号が入力される電流算定器を備え、前記電流算定器は、前記電圧信号から算出される前記第1電圧検出接点と前記第2電圧検出接点との間の第1特性側検出電圧および前記第3電圧検出接点と前記第4電圧検出接点との間の第2特性側検出電圧から、前記シャント抵抗器を流れる電流値を導き出す、電流検出装置が提供される。
 一態様では、前記電流算定器は、前記第1特性側検出電圧および前記第2特性側検出電圧から、前記シャント抵抗器を流れる電流値を算出する電流算定式を備えている。
 一態様では、前記電流算定器は、前記第1特性側検出電圧および前記第2特性側検出電圧と、前記シャント抵抗器を流れる電流値との関係のデータテーブルを備えている。
 一態様では、前記電流算定器は、前記第1特性側検出電圧および前記第2特性側検出電圧から、前記シャント抵抗器の温度を導く機能を有する。
 本発明によれば、抵抗器の抵抗値の選定により、シャント抵抗器の抵抗温度係数(TCR)が0に近づけられるので、シャント抵抗器の温度の影響が低減され、シャント抵抗器を流れる電流を正確に求めることができる。
 また、本発明によれば、補正係数を検出電圧に乗算することにより、シャント抵抗器の抵抗温度係数(TCR)が0に近づけられるので、シャント抵抗器の温度の影響が低減され、シャント抵抗器を流れる電流を正確に求めることができる。
 さらに、本発明によれば、第1特性側検出電圧および第2特性側検出電圧からシャント抵抗器を流れる電流を正確に求めることができる。
シャント抵抗器の一実施形態を模式的に示す平面図である。 図1に示すシャント抵抗器の斜視図である。 シャント抵抗器の温度が20℃のときの、電圧検出位置と電圧との関係を示すグラフである。 シャント抵抗器の温度が150℃のときの、電圧検出位置と電圧との関係を示すグラフである。 シャント抵抗器の温度依存性電圧変化と、電圧検出位置との関係を示すグラフである。 図5に示す電圧検出位置P1,P2,P3でのシャント抵抗器の抵抗値の変化率を示すグラフである。 図1に示すシャント抵抗器と、このシャント抵抗器上に配置された電流検出部を備えた電流検出装置の一実施形態を示す斜視図である。 図7に示す電流検出装置の平面図である。 シャント抵抗器に電気的に接続される電流検出部の一実施形態を示す平面図である。 シャント抵抗器の他の実施形態を模式的に示す平面図である。 シャント抵抗器のさらに他の実施形態を模式的に示す平面図である。 シャント抵抗器の抵抗温度係数の例を示すグラフである。 正側抵抗器である第1抵抗器および第2抵抗器によりシャント抵抗器の抵抗温度係数が調整される様子を説明するためのグラフである。 シャント抵抗器の抵抗温度係数の他の例を示すグラフである。 負側抵抗器である第3抵抗器および第4抵抗器によりシャント抵抗器の抵抗温度係数が調整される様子を説明するためのグラフである。 電流測定装置の他の実施形態を示す平面図である。 シャント抵抗器の抵抗温度係数が補正される様子を説明するグラフである。 第1電圧検出接点と第2電圧検出接点との間の電圧と、シャント抵抗器の温度との関係を示すグラフである。 第3電圧検出接点と第4電圧検出接点との間の電圧と、シャント抵抗器の温度との関係を示すグラフである。 シャント抵抗器の他の実施形態を模式的に示す平面図である。 シャント抵抗器のさらに他の実施形態を模式的に示す平面図である。
 以下、本発明の実施形態について図面を参照して説明する。図1は、シャント抵抗器の一実施形態を模式的に示す平面図であり、図2は、図1に示すシャント抵抗器の斜視図である。図1および図2に示すように、シャント抵抗器1は、所定の厚みと幅を有する抵抗体5と、抵抗体5の両側5a,5bに接続された高導電性金属からなる一対の第1電極6,第2電極7とを備えている。具体的には、第1電極6は、抵抗体5の一方側5aに接続されており、第2電極7は、抵抗体5の他方側5bに接続されている。第2電極7の構成は、第1電極6の構成と同じであり、第1電極6と第2電極7は抵抗体5に関して対称に配置されている。以下、第1電極6と第2電極7を、単に電極6,電極7ということがある。
 抵抗体5の材料の例として、銅-ニッケル系合金、銅-マンガン系合金、鉄-クロム系合金、ニッケル-クロム系合金等の合金が挙げられる。電極6,7を構成する高導電性金属の例としては、銅(Cu)が挙げられる。抵抗体5の両端5a,5bは、電極6,7に溶接(例えば、電子ビーム溶接、レーザービーム溶接、または、ろう接)などの手段によって接続(接合)されている。
 本実施形態では、抵抗体5の厚さは、電極6,7の厚さよりも小さく、抵抗体5の表側面は、電極6,7の表側面よりも低い。ただし、一実施形態では、抵抗体5の厚さは、電極6,7の厚さと同じであってもよい。
 電極6,7は、スリット11,12をそれぞれ有している。スリット11,12は、抵抗体5の両端5a,5bとそれぞれ平行に延びている。本実施形態のスリット11,12は、直線上に延びる切り欠きである。スリット11は、電極6の側面6aから、電極6の中心部に向けて直線状に延びており、スリット12は、電極7の側面7aから、電極7の中心部に向けて直線状に延びている。スリット11とスリット12は、抵抗体5に関して対称に配置されている。本実施形態では、スリット11,12は、同じ幅を有し、同じ長さを有している。スリット11,12の長さとは、抵抗体5の両端5a,5bに沿ったスリット11,12の寸法である。
 電極6,7にスリット11,12を形成することによって、シャント抵抗器1を流れる電流は、スリット11,12を避けて流れる。スリット11,12の間の電流は反スリット側から回り込んで流れ、電流密度は側面6a,7a側に近いほど低くなる。シャント抵抗器1を流れる電流の状態は、スリットを有さないシャント抵抗器1を流れる電流の状態とは異なる。また、シャント抵抗器1の電位分布は、スリットを有さないシャント抵抗器1の電位分布とは異なる。その結果、シャント抵抗器1の抵抗温度係数(TCR)は、スリット11,12の間の電圧を検出する位置によって大きく変化し、電極にスリットを形成しない場合のシャント抵抗器1の抵抗温度係数(TCR)とは異なる。
 シャント抵抗器1は、一対の電極6,7に固定された複数対の電圧検出端子16A,16B,16C,16Dを備えている。これら電圧検出端子16A~16Dは電極6,7から突出するピン端子である。電圧検出端子16A,16Cは電極6に固定され、電圧検出端子16B,16Dは電極7に固定されている。電圧検出端子16A~16Dは、抵抗体5の両側5a,5bに沿って配列されている。本実施形態では、2対の電圧検出端子が設けられている。一対の電圧検出端子16A,16Bはスリット側に配置され、他の一対の電圧検出端子16C,16Dは反スリット側に配置されている。
 図1および図2に示すシャント抵抗器1の抵抗温度係数(TCR)は、電極6,7上の電圧検出位置によって変わる。図3は、シャント抵抗器1の温度が20℃のときの、電圧検出位置と、電圧検出位置での電圧との関係を示すグラフであり、図4は、シャント抵抗器1の温度が150℃のときの、電圧検出位置と電圧との関係を示すグラフである。電圧検出位置とは、抵抗体5の両端5a,5bに沿った、シャント抵抗器1の幅方向の位置である。例えば、電圧検出位置は図1の破線L1およびL2上にあり、図3および図4は、破線L1およびL2上の電圧検出位置と電圧の関係を示すグラフである。また、図3および図4において、シャント抵抗器1に流れる電流は電極7から電極6の方向に一定とする。
 「シャント抵抗器1の抵抗値」、「シャント抵抗器1の抵抗値の変化率」、「シャント抵抗器1の抵抗温度係数」とは、シャント抵抗器1に流れる電流と検出電圧からオームの法則に基づいて算出した値である。
 図3および図4から分かるように、検出電圧は、電圧検出位置(幅方向位置)に依存して変化する。すなわち、シャント抵抗器1の抵抗値は、電圧検出位置(幅方向位置)に依存して変化する。また、温度変化による検出電圧の変化の仕方は、スリット側の位置と、反スリット側の位置とで異なっている。具体的には、図3および図4の対比から分かるように、電圧検出位置がスリット側にある場合、シャント抵抗器1の温度が20℃から150℃に上昇するに従って、検出電圧は低下する。その一方で、電圧検出位置が反スリット側にある場合、シャント抵抗器1の温度が20℃から150℃に上昇するに従って、検出電圧は上昇する。
 図5は、シャント抵抗器1の温度依存性電圧変化と、電圧検出位置との関係を示すグラフである。温度依存性電圧変化は、シャント抵抗器1の温度が150℃のときの各電圧検出位置での電圧と、シャント抵抗器1の温度が20℃のときの同じ電圧検出位置での電圧との差である。図5のグラフから分かるように、反スリット側の電圧検出位置P1における検出電圧は、シャント抵抗器1の温度上昇に伴って上昇する(すなわちシャント抵抗器1の抵抗値は上昇する)。その一方で、スリット側の電圧検出位置P2における検出電圧は、シャント抵抗器1の温度上昇に伴って低下する(すなわちシャント抵抗器1の抵抗値は低下する)。さらに、シャント抵抗器1の温度変化によらず、検出電圧が変化しない電圧検出位置P3が存在する(すなわちシャント抵抗器1の抵抗値は変化しない)。
 図6は、図5に示す電圧検出位置P1,P2,P3における検出電圧から算出したシャント抵抗器1の抵抗値の変化率を示すグラフである。図6において、縦軸はシャント抵抗器1の抵抗値の変化率を表し、横軸はシャント抵抗器1の温度を表している。また、抵抗値の変化率のグラフの傾きは、シャント抵抗器1の抵抗温度係数(TCR)を表している。電圧検出位置P1における検出電圧から算出したシャント抵抗器1の抵抗温度係数は、温度上昇に伴ってシャント抵抗器1の抵抗値が上昇することを示し、電圧検出位置P2における検出電圧から算出したシャント抵抗器1の抵抗温度係数は、温度上昇に伴ってシャント抵抗器1の抵抗値が低下することを示している。さらに、電圧検出位置P3における検出電圧から算出したシャント抵抗器1の抵抗温度係数は、温度上昇に伴ってシャント抵抗器1の抵抗値が変化しないことを示している。
 以下の説明では、温度上昇に伴って抵抗値が上昇することを示す抵抗温度係数を正の抵抗温度係数と称し、温度上昇に伴って抵抗値が低下することを示す抵抗温度係数を負の抵抗温度係数と称し、温度上昇に伴って抵抗値が変化しないことを示す抵抗温度係数をゼロ抵抗温度係数と称する。
 以下に説明する実施形態では、二対の電圧検出端子16A~16Dを、シャント抵抗器1の抵抗温度係数が正の数値となる電圧が検出される位置(以下、この位置を正特性位置という)と、シャント抵抗器1の抵抗温度係数が負の数値となる電圧が検出される位置(以下、この位置を負特性位置という)に配置し、意図的に正特性位置の検出電圧と負特性位置の検出電圧を取得する。そして、取得した正特性位置の検出電圧と負特性位置の検出電圧を補正し、さらに補正された正特性位置の検出電圧と負特性位置の検出電圧を合成することで、ゼロ抵抗温度係数に近づける。
 図7は、図1に示すシャント抵抗器1と、このシャント抵抗器1上に配置された電流検出部2を備えた電流検出装置の一実施形態を示す斜視図であり、図8は、図7に示す電流検出装置の平面図である。一対の電極6,7上の電流検出端子16A~16Dは、電流検出部2に電気的に接続される。電流検出部2は、電流算定器20などが配置された基台プレート3を有している。この基台プレート3は、シャント抵抗器1の電流検出端子16A~16Dに固定されている。基台プレート3の例としては、ガラスエポキシなどの材質からなるプリント基板が挙げられる。
 電流検出部2は、第1電極6上の第1電流検出端子16Aおよび第2電極7上の第2電流検出端子16Bにそれぞれ電気的に接続された第1電圧検出接点8Aおよび第2電圧検出接点8Bと、第1電極6上の第3電流検出端子16Cおよび第2電極7上の第4電流検出端子16Dにそれぞれ電気的に接続された第3電圧検出接点8Cおよび第4電圧検出接点8Dを備えている。一実施形態では、基台プレート3に形成された孔に電流検出端子16A~16Dを挿通し、はんだ付けなどの方法により電圧検出接点と接続される。
 図9は、シャント抵抗器1に電気的に接続される電流検出部2の一実施形態を示す平面図である。第1電圧検出接点8Aおよび第2電圧検出接点8Bは、シャント抵抗器1の抵抗温度係数が負の数値となる電圧が検出される、第1電極6および第2電極7の負特性位置に電流検出端子16A,16Bを介して接続されている。負特性位置では、温度上昇に伴って検出電圧が低下し、検出電圧から算出されるシャント抵抗器1の抵抗値が低下する。
 第1電圧検出接点8Aおよび第1電流検出端子16Aは、第1電極6のスリット11に隣接しており、第2電圧検出接点8Bおよび第2電流検出端子16Bは、第2電極7のスリット12に隣接している。より具体的には、第1電圧検出接点8Aおよび第1電流検出端子16Aは、第1電極6のスリット11と抵抗体5との間に位置しており、第2電圧検出接点8Bおよび第2電流検出端子16Bは、第2電極7のスリット12と抵抗体5との間に位置している。
 第3電圧検出接点8Cおよび第4電圧検出接点8Dは、シャント抵抗器1の抵抗温度係数が正の数値となる電圧が検出される、第1電極6および第2電極7の正特性位置に電流検出端子16C,16Dを介して接続されている。正特性位置では、温度上昇に伴って検出電圧が上昇し、検出電圧から算出されるシャント抵抗器1の抵抗値が上昇する。第3電圧検出接点8C、第4電圧検出接点8D、第3電流検出端子16C、および第4電流検出端子16Dは、スリット11,12から離れた位置にある。より具体的には、第3電圧検出接点8C、第4電圧検出接点8D、第3電流検出端子16C、および第4電流検出端子16Dは、スリット11,12と抵抗体5との間の領域の外側に位置している。
 電流検出端子16A,16Bを介して第1電圧検出接点8Aおよび第2電圧検出接点8Bが接続される負特性位置、および電流検出端子16C,16Dを介して第3電圧検出接点8Cおよび第4電圧検出接点8Dが接続される正特性位置は、図3、図4および図5に示すような、シャント抵抗器1の電圧検出位置と抵抗温度係数との関係を調べるためのシミュレーションまたは実験の結果に基づいて決定することができる。
 本実施形態では、第1電圧検出接点8A(第1電圧検出端子16A)および第2電圧検出接点8B(第2電圧検出端子16B)は、抵抗体5に関して対称に配置された対をなし、第3電圧検出接点8C(第3電圧検出端子16C)および第4電圧検出接点8D(第4電圧検出端子16D)も、抵抗体5に関して対称に配置された対をなしている。第1電圧検出接点8A(第1電圧検出端子16A)、第2電圧検出接点8B(第2電圧検出端子16B)、第3電圧検出接点8C(第3電圧検出端子16C)、および第4電圧検出接点8D(第4電圧検出端子16D)は、抵抗体5の両側5a,5bに沿って配置されており、抵抗体5の両側5a,5bに隣接している。
 正の抵抗温度係数または負の抵抗温度係数を示す位置であれば、電圧検出接点8A~8D(電圧検出端子16A~16D)は抵抗体5に関して対称に配置されていなくてもよい。また、一実施形態では、図10に示すように、電圧検出接点8Aと8C(電圧検出端子16Aと16C)を共通化してもよく、または、図11に示すように、電圧検出接点8Bと8D(電圧検出端子16Bと16D)を共通化してもよい。例えば、共通化する電圧検出接点(電圧検出端子)は、温度によって電位が変動しない位置に配置される。本実施形態では、第1電圧検出接点8A、第2電圧検出接点8B、第3電圧検出接点8C、および第4電圧検出接点8Dは、基台プレート3の裏側から表側まで貫通するスルーホールから構成され、電流検出端子16A~16Dが挿通し、はんだ付けなどの方法により電流検出端子16A~16Dと電気的に接続される。ただし、シャント抵抗器1の電流検出位置と電圧検出接点との電気的な接続の形態はスルーホールに電流検出端子を挿通して接続する方法に限らず、別の方法(例えば、シャント抵抗器1の電流検出位置と電圧検出接点とをはんだ付けなどによって面接続する方法)でも良い。
 電流検出部2は、第1電圧検出接点8A、第2電圧検出接点8B、第3電圧検出接点8C、および第4電圧検出接点8Dにそれぞれ接続された第1電圧信号配線9A、第2電圧信号配線9B、第3電圧信号配線9C、および第4電圧信号配線9Dをさらに有している。これら電圧信号配線9A~9Dは、基台プレート3の表側に配置されている。
 電流検出部2は、第1電圧信号配線9A、第2電圧信号配線9B、第3電圧信号配線9C、および第4電圧信号配線9Dにそれぞれ接続された第1抵抗器10A、第2抵抗器10B、第3抵抗器10C、および第4抵抗器10Dをさらに備えている。これら抵抗器10A~10Dも、電圧信号配線9A~9Dと同様に、基台プレート3の表側に配置されている。
 電流検出部2は、第1抵抗器10Aおよび第3抵抗器10Cを通じて伝達された電圧信号を合流させる第1電圧信号合流配線13と、第2抵抗器10Bおよび第4抵抗器10Dを通じて伝達された電圧信号を合流させる第2電圧信号合流配線14を備えている。第1電圧信号合流配線13は、第1電圧信号配線9Aおよび第3電圧信号配線9Cに接続され、第2電圧信号合流配線14は、第2電圧信号配線9Bおよび第4電圧信号配線9Dに接続されている。第1電圧信号合流配線13と第2電圧信号合流配線14との間には、コンデンサ19が設けられている。電圧信号合流配線13,14により、第1抵抗器10Aの出力側の電圧信号と第3抵抗器10Cの出力側の電圧信号とが合成され、第2抵抗器10Bの出力側の電圧信号と第4抵抗器10Dの出力側の電圧信号とが合成され、それぞれ合成電圧信号を形成する。
 電流検出部2は、第1電圧信号合流配線13と第2電圧信号合流配線14に接続された電流算定器20をさらに備えている。電流算定器20は、上記合成電圧信号から算出される合成検出電圧と、シャント抵抗器1の既知の抵抗値とから、シャント抵抗器1を流れている電流を決定するように構成されている。一実施形態では、抵抗器10A~10Dと電流算定器20との間に、電圧信号を増幅するための増幅器が設けられてもよい。
 電流算定器20は、プログラムが格納された記憶装置20aと、プログラムに含まれる命令に従って演算を実行する演算装置20bを備えている。電流算定器20は、少なくとも1台の小型コンピュータから構成されている。記憶装置20aは、ランダムアクセスメモリ(RAM)などの主記憶装置と、ハードディスクドライブ(HDD)またはソリッドステートドライブ(SSD)などの補助記憶装置を備えている。演算装置20bの例としては、CPU(中央処理装置)が挙げられる。ただし、電流算定器20の具体的構成はこれらの例に限定されない。一実施形態では、電流算定器20は、基台プレート3から離れて設けられてもよい。図示しないが、電流検出部2は、電流算定器20の出力信号配線に接続されたコネクタを備えており、そのコネクタにより基台プレート3から出力信号を出力してもよい。
 合成検出電圧は、電圧信号合流配線13,14からの合成電圧信号から算出される。電圧信号合流配線13からの合成電圧信号は、第1抵抗器10Aおよび第3抵抗器10Cの抵抗値によって調整することができ、電圧信号合流配線14からの合成電圧信号は、第2抵抗器10Bおよび第4抵抗器10Dによって調整することができる。すなわち、電圧信号合流配線13,14からの合成電圧信号から算出される合成検出電圧は、抵抗器10A~10Dの抵抗値によって調整することができる。
 第1抵抗器10Aおよび第2抵抗器10Bは、第1電圧検出接点8Aおよび第2電圧検出接点8Bに電気的に接続された負側抵抗器であり、第3抵抗器10Cおよび第4抵抗器10Dは、第3電圧検出接点8Cおよび第4電圧検出接点8Dに電気的に接続された正側抵抗器である。負側抵抗器(すなわち第1抵抗器10Aおよび第2抵抗器10B)または正側抵抗器(すなわち第3抵抗器10Cおよび第4抵抗器10D)は、第1電圧信号合流配線13および第2電圧信号合流配線14からの電圧信号から算出されるシャント抵抗器1の抵抗温度係数を0に近づける抵抗値を有している。
 図12は、第1抵抗器10A、第2抵抗器10B、第3抵抗器10C、および第4抵抗器10Dがすべて同一の抵抗値とした場合の、25℃を基準温度としたシャント抵抗器1の抵抗温度係数の例を示すグラフである。記号TCR2は、第1電圧検出接点8Aと第2電圧検出接点8Bとの間の負特性側検出電圧から算出されるシャント抵抗器1の抵抗温度係数を表し、より具体的には、負側抵抗器である第1抵抗器10Aおよび第2抵抗器10Bの出力側の電圧信号から算出されるシャント抵抗器1の抵抗温度係数を表している。記号TCR1は、第3電圧検出接点8Cと第4電圧検出接点8Dとの間の正特性側検出電圧から算出されるシャント抵抗器1の抵抗温度係数を表し、より具体的には、正側抵抗器である第3抵抗器10Cおよび第4抵抗器10Dの出力側の電圧信号から算出されるシャント抵抗器1の抵抗温度係数を表している。
 記号TCR3は、合成検出電圧から算出されるシャント抵抗器1の抵抗温度係数を表し、より具体的には、電圧信号合流配線13,14からの合成電圧信号から算出されるシャント抵抗器1の抵抗温度係数を表している。電圧信号合流配線13,14により、第1抵抗器10Aの出力側の電圧信号と第3抵抗器10Cの出力側の電圧信号とが合成され、第2抵抗器10Bの出力側の電圧信号と第4抵抗器10Dの出力側の電圧信号とが合成されて、それぞれ合成電圧信号を形成する。第1抵抗器10A、第2抵抗器10B、第3抵抗器10C、および第4抵抗器10Dがすべて同一の抵抗値とした場合、第1抵抗器10Aの入力側の電圧信号と第3抵抗器10Cの入力側の電圧信号とが1:1の比率で合成され、第2抵抗器10Bの入力側の電圧信号と第4抵抗器10Dの入力側の入力信号とが1:1の比率で合成されて、それぞれ合成電圧信号を形成する。合成検出電圧は、電圧信号合流配線13,14からの合成電圧信号から算出される。
 図12から分かるように、第3電圧検出接点8Cと第4電圧検出接点8Dとの間の正特性側検出電圧から算出される抵抗温度係数TCR1は、温度上昇に伴ってシャント抵抗器1の抵抗値が上昇する正の抵抗温度係数である。第1電圧検出接点8Aと第2電圧検出接点8Bとの間の負特性側検出電圧から算出される抵抗温度係数TCR2は、温度上昇に伴ってシャント抵抗器1の抵抗値が低下する負の抵抗温度係数である。合成検出電圧から算出される抵抗温度係数TCR3は、温度上昇に伴って抵抗値が上昇する正の抵抗温度係数である。
 図13に示すように、電圧検出接点8A~8Dに電気的に接続される第1抵抗器10A、第2抵抗器10B、第3抵抗器10C、および第4抵抗器10Dの少なくとも1つの抵抗値を変更することで、抵抗温度係数TCR3を0に近づける。本実施形態では、負側抵抗器である第1抵抗器10Aおよび第2抵抗器10Bは同一の抵抗値を有し、正側抵抗器である第3抵抗器10Cおよび第4抵抗器10Dは同一の抵抗値を有する。負側抵抗器の抵抗値と正側抵抗器の抵抗値が同一にならないよう、負側抵抗器または正側抵抗器のどちらか、または両方の抵抗値を変えることで、抵抗温度係数TCR3を0に近づけることができる。
 第1抵抗器10A、第2抵抗器10B、第3抵抗器10C、および第4抵抗器10Dは接続後に抵抗値の調整が可能な抵抗器であっても良い。この場合、抵抗温度係数TCR3が0になるまで(TCR3を示すグラフの傾きが0になるまで)、第1抵抗器10A、第2抵抗器10B、第3抵抗器10C、および第4抵抗器10Dの少なくとも1つの抵抗値を調整することが望ましい。しかしながら、抵抗体5の材料の特性により、TCR3を示すグラフが湾曲している場合がある。そこで、第1抵抗器10A、第2抵抗器10B、第3抵抗器10C、および第4抵抗器10Dの抵抗値は、抵抗温度係数TCR3が許容範囲内に収まるように選定される。許容範囲は、0を含む範囲であり、予め設定される。
 このような第1抵抗器10A、第2抵抗器10B、第3抵抗器10C、および第4抵抗器10Dの抵抗値の選定により、シャント抵抗器1の抵抗温度係数TCR3が0に近づくので(望ましくは抵抗温度係数TCR3が0になるので)、電流算定器20はシャント抵抗器1の温度の影響を受けずに、電流を正確に決定することができる。
 図14は、第1抵抗器10A、第2抵抗器10B、第3抵抗器10C、および第4抵抗器10Dがすべて同一の抵抗値とした場合の、25℃を基準温度としたシャント抵抗器1の抵抗温度係数の他の例を示すグラフである。この例では、合成検出電圧から算出されるシャント抵抗器1の抵抗温度係数TCR3は、負の抵抗温度係数である。
 この場合は、図15に示すように、電圧検出接点8A~8Dに電気的に接続される第1抵抗器10A、第2抵抗器10B、第3抵抗器10C、および第4抵抗器10Dの少なくとも1つの抵抗値を変更することで、抵抗温度係数TCR3を0に近づける。本実施形態では、負側抵抗器である第1抵抗器10Aおよび第2抵抗器10Bは同一の抵抗値を有し、正側抵抗器である第1抵抗器10Cおよび第2抵抗器10Dは同一の抵抗値を有する。負側抵抗器の抵抗値と正側抵抗器の抵抗値が同一にならないよう、負側抵抗器または正側抵抗器のどちらか、または両方の抵抗値を変えることで、抵抗温度係数TCR3を0に近づけることができる。
 第1抵抗器10A、第2抵抗器10B、第3抵抗器10C、および第4抵抗器10Dは接続後に抵抗値の調整が可能な抵抗器であってもよい。この場合、抵抗温度係数TCR3が0になるまで(TCR3を示すグラフの傾きが0になるまで)第1抵抗器10A、第2抵抗器10B、第3抵抗器10C、および第4抵抗器10Dの少なくとも1つの抵抗値を調整することが望ましい。しかしながら、抵抗体5の材料の特性により、TCR3を示すグラフが湾曲している場合がある。そこで、第1抵抗器10A、第2抵抗器10B、第3抵抗器10C、および第4抵抗器10Dの抵抗値は、抵抗温度係数TCR3が許容範囲内に収まるように選定される。許容範囲は、0を含む範囲であり、予め設定される。
 抵抗器10A~10Dの抵抗値は、シミュレーションなどで予め決定されているが、抵抗値の調整が可能な抵抗器を使用することで、電流検出装置の完成後(出荷前)にさらに抵抗値を調整することが可能となる。具体的には、所定の電流をシャント抵抗器1に流しつつ、シャント抵抗器1の温度を変化させながら合成検出電圧を電流算定器20により測定し、合成検出電圧の変化が小さくなる方向(すなわち抵抗温度係数TCR3が0に近づく方向)に、第1抵抗器10Aおよび第2抵抗器10Bの抵抗値、および/または第3抵抗器10Cおよび第4抵抗器10Dの抵抗値を調整する。このような抵抗値の調整により、シャント抵抗器1の抵抗温度係数を0に近づけ、電流検出装置は、シャント抵抗器1の温度の影響を受けずに、電流を正確に測定することが可能となる。
 一実施形態では、負特性位置と正特性位置はそれぞれ周波数による表皮効果の影響の小さい位置としてもよい。負特性位置は、負の抵抗温度係数の位置、且つ、周波数による表皮効果の影響の少ない位置とし、また、正特性位置は、正の抵抗温度係数の位置、且つ、周波数による表皮効果の影響の少ない位置とすることで、シャント抵抗器1の温度の影響を受けずに、且つ、周波数による表皮効果の影響を受けずに電流を正確に測定することが可能となる。
 次に、電流測定装置の他の実施形態を図16および図17を参照して説明する。特に説明しない本実施形態の構成および動作は、図1乃至図15を参照して説明した実施形態と同じであるので、その重複する説明を省略する。図16は、電流測定装置の他の実施形態を示す平面図である。
 図16に示す第1抵抗器10A、第2抵抗器10B、第3抵抗器10C、および第4抵抗器10Dは、固定抵抗値を有する抵抗器である。また、図9に示す第1電圧信号合流配線13および第2電圧信号合流配線14は設けられていない。第1電圧信号配線9A、第2電圧信号配線9B、第3電圧信号配線9C、および第4電圧信号配線9Dは、電流算定器20に接続されている。
 第1抵抗器10A、第2抵抗器10B、第3抵抗器10C、および第4抵抗器10Dは、第1電圧信号配線9A、第2電圧信号配線9B、第3電圧信号配線9C、および第4電圧信号配線9Dにそれぞれ取り付けられている。電流算定器20は、電圧信号配線9A~9Dおよび抵抗器10A~10Dを介して電圧検出接点8A~8Dに接続されている。一実施形態では、抵抗器10A~10Dと電流算定器20との間に、電圧信号を増幅するための増幅器が設けられてもよい。
 電流算定器20は、電圧信号配線9A~9Dを通じて伝送された電圧信号から算出されるアナログ信号の検出電圧をデジタル信号に変換して読み込み、デジタル信号の検出電圧に対して補正処理を実行することにより、先述の実施形態での抵抗器10A~10Dの抵抗値を変更し、合成検出電圧を調整することと同じ動作をする。
 より具体的には、電流算定器20は、電圧信号から算出される第1電圧検出接点8Aと第2電圧検出接点8Bとの間の負特性側検出電圧(すなわち負特性位置での検出電圧)に負側補正係数を乗算して、補正された負特性側検出電圧を算出する。同様に、電流算定器20は、電圧信号から算出される第3電圧検出接点8Cと第4電圧検出接点8Dとの間の正特性側検出電圧(すなわち正特性位置での検出電圧)に正側補正係数を乗算して、補正された正特性側検出電圧を算出する。第1電圧検出接点8Aと第2電圧検出接点8Bとの間の負特性側検出電圧は、第1電圧信号配線9Aおよび第2電圧信号配線9Bを通じて伝送された電圧信号から求められ、第3電圧検出接点8Cと第4電圧検出接点8Dとの間の正特性側検出電圧は、第3電圧信号配線9Cおよび第4電圧信号配線9Dを通じて伝送された電圧信号から求められる。
 正側補正係数および負側補正係数は、合成検出電圧から算出されるシャント抵抗器1の抵抗温度係数を0に近づけるシミュレーションなどで算定された数値である。この合成検出電圧は、補正された負特性側検出電圧と、補正された負特性側検出電圧とを合成して算出される。電流算定器20は、補正された負特性側検出電圧と補正された正特性側検出電圧とを合成して算出される合成検出電圧と、シャント抵抗器1の既知の抵抗値に基づいて、シャント抵抗器1を流れる電流を決定する。
 このような電流算定器20の内部処理により、図12乃至図15を参照して説明した抵抗器10A~10Dの調整と同じ結果が得られる。電圧信号から算出される第1電圧検出接点8Aと第2電圧検出接点8Bとの間の負特性側検出電圧(負特性位置での検出電圧)に負側補正係数を乗算すると、合成検出電圧における負特性側検出電圧と正特性側検出電圧の比率が変わる。同じように、電圧信号から算出される第3電圧検出接点8Cと第4電圧検出接点8Dとの間の正特性側検出電圧(正特性位置での検出電圧)に正側補正係数を乗算すると、合成検出電圧における正特性側検出電圧と負特性側検出電圧の比率が変わる。
 抵抗温度係数TCR3は、補正された負特性側検出電圧と、補正された正特性側検出電圧とを合成した、合成検出電圧から算出された抵抗温度係数である。電流算定器20は、補正された負特性側検出電圧と、補正された正特性側検出電圧とを合成することで、合成検出電圧を算出し、この合成検出電圧とシャント抵抗器1の既知の抵抗値から、シャント抵抗器1を流れる電流を算出する。本実施形態によれば、図17に示すように、シャント抵抗器1の抵抗温度係数TCR3は0に近づくので、電流算定器20は、シャント抵抗器1の温度の影響を受けることなく、電流を正確に決定することができる。
 負側補正係数および正側補正係数はシミュレーションなどで予め決定されてもよく、電流検出装置の完成後(出荷前)の検査によって決定してもよい。具体的には、所定の電流をシャント抵抗器1に流しつつ、シャント抵抗器1の温度を変化させながら合成検出電圧を電流算定器20により測定し、合成検出電圧の変化が小さくなる(すなわち抵抗温度係数TCR3が0に近づく)ような負側補正係数および正側補正係数を決定する。
 一実施形態では、負側補正係数および正側補正係数のうちのいずれか一方を、負特性側検出電圧または正特性側検出電圧に乗算して、補正された負特性側検出電圧または補正された正特性側検出電圧を算出してもよい。この場合でも、負特性側検出電圧または正特性側検出電圧に乗算される補正係数は、抵抗温度係数TCR3を0に近づけることができる係数である。具体的には、所定の電流をシャント抵抗器1に流しつつ、シャント抵抗器1の温度を変化させながら合成検出電圧を電流算定器20により測定し、合成検出電圧の変化が小さいくなる(すなわち抵抗温度係数TCR3が0に近づく)ような補正係数を決定する。
 次に、電流測定装置のさらに他の実施形態を図18および図19を参照して説明する。特に説明しない本実施形態の構成および動作は、図16および図17を参照して説明した実施形態と同じであるので、その重複する説明を省略する。
 この実施形態では、電流算定式を用いて、シャント抵抗器1を流れる電流を直接算出する。すなわち、電流算定器20は、電圧信号から算出される第1電圧検出接点8Aと第2電圧検出接点8Bとの間の負特性側検出電圧(負特性位置での検出電圧)と、電圧信号から算出される第3電圧検出接点8Cと第4電圧検出接点8Dとの間の正特性側検出電圧(正特性位置での検出電圧)から、シャント抵抗器1を流れる電流を算出する電流算定式を備えている。電流算定式は、第1電圧検出接点8Aと第2電圧検出接点8Bとの間の負特性側検出電圧とシャント抵抗器1の温度との関係を示す第1関数と、第3電圧検出接点8Cと第4電圧検出接点8Dとの間の正特性側検出電圧とシャント抵抗器1の温度との関係を示す第2関数から導かれた関数式である。
 図18は、第1電圧検出接点8Aと第2電圧検出接点8Bとの間の負特性側検出電圧と、シャント抵抗器1の温度との関係を示すグラフである。電流100アンペア,99アンペア,98アンペア,97アンペアをシャント抵抗器1に流しながら、シャント抵抗器1の温度と、第1電圧検出接点8Aと第2電圧検出接点8Bとの間の負特性側検出電圧を測定し、得られた温度測定データおよび電圧測定データから図18に示す線形近似のグラフを作成した。図18に示すグラフは、以下の第1関数で表される。
   Y1=a*I*t+b*I     (1)
 ここで、Y1は第1電圧検出接点8Aと第2電圧検出接点8Bとの間の負特性側検出電圧[V]を表し、aは係数(定数)を表し、tはシャント抵抗器1の温度[℃]を表し、bは係数(定数)を表し、Iはシャント抵抗器1に流した電流[A]を表している。係数a,bは、温度測定データおよび電圧測定データから計算により求めることができる。
 図19は、第3電圧検出接点8Cと第4電圧検出接点8Dとの間の正特性側検出電圧と、シャント抵抗器1の温度との関係を示すグラフである。電流100アンペア,99アンペア,98アンペア,97アンペアをシャント抵抗器1に流しながら、シャント抵抗器1の温度と、第3電圧検出接点8Cと第4電圧検出接点8Dとの間の正特性側検出電圧を測定し、得られた温度測定データおよび電圧測定データから図19に示す線形近似のグラフを作成した。図19に示すグラフは、以下の第2関数で表される。
   Y2=c*I*t+d*I     (2)
 ここで、Y2は第3電圧検出接点8Cと第4電圧検出接点8Dとの間の正特性側検出電圧[V]を表し、cは係数(定数)を表し、tはシャント抵抗器1の温度[℃]を表し、dは係数(定数)を表し、Iはシャント抵抗器1に流した電流[A]を表している。係数c,dは、温度測定データおよび電圧測定データから計算により求めることができる。
 上記第1関数(1)と上記第2関数(2)から、以下の電流算定式と温度算定式が導かれる。
 電流算定式
 I=((Y1×c)-(Y2×a))/((b×c)-(a×d))     (3)
 温度算定式
 t=((Y2×b)-(Y1×d))/((Y1×c)-(Y2×a))   (4)
 上記電流算定式および温度算定式において、a,b,c,dの具体的な数値は決定されているので、負特性側検出電圧Y1と正特性側検出電圧Y2が得られれば、シャント抵抗器1を流れる電流[A]と、シャント抵抗器1の温度[℃]は、上記電流算定式および温度算定式から算出することができる。
 電流算定器20は、その記憶装置20a内に電流算定式および温度算定式を予め格納している。電流算定器20は、第1電圧信号配線9Aおよび第2電圧信号配線9Bを通じて取得した電圧信号から第1電圧検出接点8Aと第2電圧検出接点8Bとの間の負特性側検出電圧Y1(負特性位置での検出電圧)を算出し、第3電圧信号配線9Cおよび第4電圧信号配線9Dを通じて取得した電圧信号から第3電圧検出接点8Cと第4電圧検出接点8Dとの間の正特性側検出電圧Y2(正特性位置での検出電圧)を算出する。そして、電流算定器20は、負特性側検出電圧Y1と正特性側検出電圧Y2を電流算定式に入力することで、シャント抵抗器1を流れる電流[A]を算出することができる。本実施形態によれば、負特性側検出電圧および正特性側検出電圧を補正および合成することなく、電流算定式によりシャント抵抗器を流れる電流を直接的に算出することができる。さらに、電流算定器20は、負特性側検出電圧Y1と正特性側検出電圧Y2を温度算定式に入力することで、シャント抵抗器1の温度[℃]を算出することができる。
 上述では、負特性側検出電圧Y1および正特性側検出電圧Y2と温度の関係から、電流算定式および温度算定式を求めているが、第1関数と第2関数とで違いがあれば同様の電流算定式および温度算定式を求めることが可能であるため、負特性側検出電圧Y1と負特性側検出電圧Y2または正特性側検出電圧Y1と正特性側検出電圧Y2としても良い。すなわち、電流算定式および温度算定式は、第1特性側検出電圧Y1および第2特性側検出電圧Y2と温度の関係から導かれ、電流算定器20は、第1特性側検出電圧Y1と第2特性側検出電圧Y2を電流算定式に入力することで、シャント抵抗器1を流れる電流[A]を算出することができ、さらに、電流算定器20は、第1特性側検出電圧Y1と第2特性側検出電圧Y2を温度算定式に入力することで、シャント抵抗器1の温度[℃]を算出することができる。
 図18と図19は線形近似によりグラフを作成しているが、大きく湾曲した曲線データを示す場合、数式で表すことが複雑化するため、電流算定式および温度算定式の代わりに、データテーブルを記憶装置20aに格納し、そのデータテーブルから、負特性側検出電圧Y1と正特性側検出電圧Y2を参照し、シャント抵抗器1を流れる電流[A]と、シャント抵抗器1の温度[℃]とを導き出すこともできる。
 今まで説明した各実施形態でのシャント抵抗器1は、図1および図2に示すスリット11,12を有するものであるが、他のタイプのシャント抵抗器を用いることもできる。例えば、図20に示すように、シャント抵抗器1は、その幅方向に突出する突出部25を有してもよい。この例では、抵抗体5の一部および一対の電極6,7の一部は、突出部25を構成している。突出部25は、上から見たときに矩形状の形状を有している。さらに、図21に示すように、シャント抵抗器1は、一対の電極6,7にL字型の孔27を有してもよい。孔27の形状は図21に示す形状に限定されず、他の形状であってもよい。
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。
 本発明は、シャント抵抗器および電流検出装置に利用可能である。
 1   シャント抵抗器
 2   電流検出部
 3   基台プレート
 5   抵抗体
 6,7   電極
 8A~8D   電圧検出接点
 9A~9D   電圧信号配線
11,12   スリット
13,14   電圧信号合流配線
16A~16D  電圧検出端子
19   コンデンサ
20   電流算定器
25   突出部
27   孔

Claims (9)

  1.  抵抗体および該抵抗体の両側に接続された第1電極および第2電極を有するシャント抵抗器であって、
     前記シャント抵抗器の抵抗温度係数が第1係数となる前記第1電極および前記第2電極の第1特性位置に設けられた第1電圧検出端子および第2電圧検出端子と、
     前記シャント抵抗器の抵抗温度係数が第2係数となる前記第1電極および前記第2電極の第2特性位置に設けられた第3電圧検出端子および第4電圧検出端子を備え、
     前記第1係数と前記第2係数は異なる数値である、シャント抵抗器。
  2.  前記第1係数は負の数値であり、
     前記第2係数は正の数値である、請求項1に記載のシャント抵抗器。
  3.  前記第1電極に設けられた前記第1電圧検出端子と前記第3電圧検出端子、または、前記第2電極に設けられた前記第2電圧検出端子と前記第4電圧検出端子のどちらか一方が共通の電圧検出端子である、請求項1または2に記載のシャント抵抗器。
  4.  抵抗体および該抵抗体の両側に接続された第1電極および第2電極を有するシャント抵抗器と、
     前記シャント抵抗器に電気的に接続された電流検出部を備え、
     前記電流検出部は、
      前記シャント抵抗器の抵抗温度係数が負の数値となる前記第1電極および前記第2電極の負特性位置に電気的に接続された第1電圧検出接点および第2電圧検出接点と、
      前記シャント抵抗器の抵抗温度係数が正の数値となる前記第1電極および前記第2電極の正特性位置に電気的に接続された第3電圧検出接点および第4電圧検出接点と、
      前記第1電圧検出接点、前記第2電圧検出接点、前記第3電圧検出接点、および前記第4電圧検出接点にそれぞれ接続された第1電圧信号配線、第2電圧信号配線、第3電圧信号配線、および第4電圧信号配線と、
      前記第1電圧信号配線、前記第2電圧信号配線、前記第3電圧信号配線、および前記第4電圧信号配線の少なくとも1つに接続された抵抗器と、
      前記第1電圧信号配線および前記第3電圧信号配線からの電圧信号を合流させる第1電圧信号合流配線と、
      前記第2電圧信号配線および前記第4電圧信号配線からの電圧信号を合流させる第2電圧信号合流配線を備え、
     前記抵抗器は、前記第1電圧信号合流配線および前記第2電圧信号合流配線からの電圧信号から算出される前記シャント抵抗器の抵抗温度係数を0に近づける抵抗値を有する、電流検出装置。
  5.  抵抗体および該抵抗体の両側に接続された第1電極および第2電極を有するシャント抵抗器と、
     前記シャント抵抗器に電気的に接続された電流検出部を備え、
     前記電流検出部は、
      前記シャント抵抗器の抵抗温度係数が負の数値となる前記第1電極および前記第2電極の負特性位置に電気的に接続された第1電圧検出接点および第2電圧検出接点と、
      前記シャント抵抗器の抵抗温度係数が正の数値となる前記第1電極および前記第2電極の正特性位置に電気的に接続された第3電圧検出接点および第4電圧検出接点と、
      前記第1電圧検出接点、前記第2電圧検出接点、前記第3電圧検出接点、および前記第4電圧検出接点からの電圧信号が入力される電流算定器を備え、
     前記電流算定器は、
      前記電圧信号から算出される前記第1電圧検出接点と前記第2電圧検出接点との間の負特性側検出電圧および前記第3電圧検出接点と前記第4電圧検出接点との間の正特性側検出電圧のうちの少なくとも一方に補正係数を乗算することで、前記負特性側検出電圧および前記正特性側検出電圧の少なくとも一方を補正し、
      少なくとも一方が補正された前記負特性側検出電圧および前記正特性側検出電圧から算出される合成検出電圧と、前記シャント抵抗器の既知の抵抗値に基づいて、前記シャント抵抗器を流れる電流を決定するように構成されており、
     前記補正係数は、前記合成検出電圧から算出される前記シャント抵抗器の抵抗温度係数を0に近づける数値である、電流検出装置。
  6.  抵抗体および該抵抗体の両側に接続された第1電極および第2電極を有するシャント抵抗器と、
     前記シャント抵抗器に電気的に接続された電流検出部を備え、
     前記電流検出部は、
      前記シャント抵抗器の抵抗温度係数が第1係数となる前記第1電極および前記第2電極の第1特性位置に電気的に接続された第1電圧検出接点および第2電圧検出接点と、
      前記シャント抵抗器の抵抗温度係数が第2係数となる前記第1電極および前記第2電極の第2特性位置に電気的に接続された第3電圧検出接点および第4電圧検出接点と、
      前記第1電圧検出接点、前記第2電圧検出接点、前記第3電圧検出接点、および前記第4電圧検出接点からの電圧信号が入力される電流算定器を備え、
     前記電流算定器は、前記電圧信号から算出される前記第1電圧検出接点と前記第2電圧検出接点との間の第1特性側検出電圧および前記第3電圧検出接点と前記第4電圧検出接点との間の第2特性側検出電圧から、前記シャント抵抗器を流れる電流値を導き出す、電流検出装置。
  7.  前記電流算定器は、前記第1特性側検出電圧および前記第2特性側検出電圧から、前記シャント抵抗器を流れる電流値を算出する電流算定式を備えている、請求項6に記載の電流検出装置。
  8.  前記電流算定器は、前記第1特性側検出電圧および前記第2特性側検出電圧と、前記シャント抵抗器を流れる電流値との関係のデータテーブルを備えている、請求項6または7に記載の電流検出装置。
  9.  前記電流算定器は、前記第1特性側検出電圧および前記第2特性側検出電圧から、前記シャント抵抗器の温度を導く機能を有する、請求項6から8のいずれか一項に記載の電流検出装置。
PCT/JP2023/010638 2022-03-28 2023-03-17 シャント抵抗器および電流検出装置 WO2023189742A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-051426 2022-03-28
JP2022051426A JP2023144451A (ja) 2022-03-28 2022-03-28 シャント抵抗器および電流検出装置

Publications (1)

Publication Number Publication Date
WO2023189742A1 true WO2023189742A1 (ja) 2023-10-05

Family

ID=88201017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010638 WO2023189742A1 (ja) 2022-03-28 2023-03-17 シャント抵抗器および電流検出装置

Country Status (2)

Country Link
JP (1) JP2023144451A (ja)
WO (1) WO2023189742A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110267038A1 (en) * 2010-04-30 2011-11-03 Teridian Semiconductor Corp. Shunt sensor and shunt sensor assembly
JP2013536424A (ja) * 2010-08-26 2013-09-19 イザベレンヒュッテ ホイスラー ゲー・エム・ベー・ハー ウント コンパニー コマンデイトゲゼルシャフト 電流検出抵抗器
JP2020102626A (ja) * 2018-12-21 2020-07-02 乾坤科技股▲ふん▼有限公司 抵抗の温度係数が低い抵抗器
US20200292588A1 (en) * 2019-03-14 2020-09-17 Te Connectivity Germany Gmbh Passive current sensor with simplified geometry
WO2021100084A1 (ja) * 2019-11-18 2021-05-27 サンコール株式会社 シャント抵抗器
JP2021174802A (ja) * 2020-04-20 2021-11-01 Koa株式会社 シャント抵抗器
JP2021176195A (ja) * 2020-04-27 2021-11-04 Koa株式会社 シャント抵抗器、シャント抵抗器の製造方法、および電流検出装置
WO2021220758A1 (ja) * 2020-04-28 2021-11-04 Koa株式会社 シャント抵抗器
JP2022091550A (ja) * 2020-12-09 2022-06-21 株式会社Soken 電流検出装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110267038A1 (en) * 2010-04-30 2011-11-03 Teridian Semiconductor Corp. Shunt sensor and shunt sensor assembly
JP2013536424A (ja) * 2010-08-26 2013-09-19 イザベレンヒュッテ ホイスラー ゲー・エム・ベー・ハー ウント コンパニー コマンデイトゲゼルシャフト 電流検出抵抗器
JP2020102626A (ja) * 2018-12-21 2020-07-02 乾坤科技股▲ふん▼有限公司 抵抗の温度係数が低い抵抗器
US20200292588A1 (en) * 2019-03-14 2020-09-17 Te Connectivity Germany Gmbh Passive current sensor with simplified geometry
WO2021100084A1 (ja) * 2019-11-18 2021-05-27 サンコール株式会社 シャント抵抗器
JP2021174802A (ja) * 2020-04-20 2021-11-01 Koa株式会社 シャント抵抗器
JP2021176195A (ja) * 2020-04-27 2021-11-04 Koa株式会社 シャント抵抗器、シャント抵抗器の製造方法、および電流検出装置
WO2021220758A1 (ja) * 2020-04-28 2021-11-04 Koa株式会社 シャント抵抗器
JP2022091550A (ja) * 2020-12-09 2022-06-21 株式会社Soken 電流検出装置

Also Published As

Publication number Publication date
JP2023144451A (ja) 2023-10-11

Similar Documents

Publication Publication Date Title
US4747456A (en) Load cell and temperature correction of the same
US4329878A (en) Bridge circuit formed of two or more resistance strain gauges
US20230170112A1 (en) Shunt resistor, method for manufacturing shunt resistor, and current detection device
US11726114B2 (en) Current sensor element, current sensor unit, and method of measuring a current
WO2022244595A1 (ja) 電流検出装置
WO2006115110A1 (ja) 固体電解コンデンサの検査装置と検査方法
WO2023189742A1 (ja) シャント抵抗器および電流検出装置
Dorsey Homegrown strain-gage transducers: Simple compensation procedures can be used to correct errors in strain-gage transducer bridges
US20230081784A1 (en) Resistor arrangement
JP2021174916A (ja) シャント抵抗器
US20230326633A1 (en) Structure of resistor device and system for measuring resistance of same
CN116264120A (zh) 分流电阻器以及电流检测装置
WO2023135977A1 (ja) 電流検出装置およびその製造方法
Duric et al. Planar inductive sensor for small displacement
EP3527995B1 (en) Shunt resistor and measurement system
CN112714873B (zh) 用分流器与温度无关地测量电流的电池传感器
WO2023112438A1 (ja) シャント抵抗器および電流検出装置
US12135340B2 (en) Current detection device with voltage detecting portion positioning
JP3174195B2 (ja) チップ形電子部品の抵抗値測定方法
CN113077950B (zh) 电阻器
CN219066527U (zh) 用于检测电流的电阻器和电源装置
JPH11201837A (ja) ロードセル及びロードセルの温度補償方法
CN115343529B (zh) 一种电量检测电路、方法及电子设备
US20240085459A1 (en) Current-sensing resistor
CN109444532B (zh) 一种功耗检测电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779758

Country of ref document: EP

Kind code of ref document: A1