WO2021100084A1 - シャント抵抗器 - Google Patents

シャント抵抗器 Download PDF

Info

Publication number
WO2021100084A1
WO2021100084A1 PCT/JP2019/045079 JP2019045079W WO2021100084A1 WO 2021100084 A1 WO2021100084 A1 WO 2021100084A1 JP 2019045079 W JP2019045079 W JP 2019045079W WO 2021100084 A1 WO2021100084 A1 WO 2021100084A1
Authority
WO
WIPO (PCT)
Prior art keywords
notch
resistor
base material
resistance
depth
Prior art date
Application number
PCT/JP2019/045079
Other languages
English (en)
French (fr)
Inventor
愉右 森山
建二 村上
昭夫 麦島
Original Assignee
サンコール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンコール株式会社 filed Critical サンコール株式会社
Priority to PCT/JP2019/045079 priority Critical patent/WO2021100084A1/ja
Priority to EP19953210.2A priority patent/EP4036939A4/en
Priority to JP2020517228A priority patent/JP6956263B1/ja
Publication of WO2021100084A1 publication Critical patent/WO2021100084A1/ja
Priority to US17/730,543 priority patent/US20220254551A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/148Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals embracing or surrounding the resistive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/1406Terminals or electrodes formed on resistive elements having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/144Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being welded or soldered

Definitions

  • the present invention relates to a shunt resistor.
  • a shunt resistor as described in Patent Document 1 As a conventional shunt resistor, a shunt resistor as described in Patent Document 1 is known.
  • a through hole is formed in each of two plate-shaped base materials integrally formed on the resistor with the resistor sandwiched therein, and the first terminal portion is inserted into the through hole, and the second terminal portion is inserted.
  • a voltage detection terminal is provided so that the terminal portion protrudes from the inside of the through hole.
  • the temperature characteristic that combines the temperature characteristic of the resistor and the temperature characteristic of the base material appears.
  • This temperature characteristic is one of the factors that affect the accuracy of the high-precision current sensor. Therefore, as a market requirement, improvement of temperature characteristics is required so that the absolute value of the temperature coefficient of resistance (TCR) is 50 ppm or less.
  • the present invention aims to provide a shunt resistor capable of improving temperature characteristics.
  • the base material (11) is provided with a plurality of notches (first notch 13a, second notch 13b) along the longitudinal direction of the base material (11).
  • the plurality of notches (first notch 13a, second notch 13b) are characterized in that they do not communicate with each other and are provided in a stepped shape.
  • the resistor (10) located at the farthest position from the above is formed so that the depth (D2) is the deepest as compared with the depth (D1) of the other notch portions (first notch portion 13a). It is characterized by being made.
  • the measurement terminal (12) is fixed on the base material (11), and the resistor (10) is fixed.
  • the notch (2nd notch 13b) located above the bottom (13b1) of the depth (D1) of the notch (second notch 13b) and closest to the resistor (10). It is characterized in that it is fixed so as to be located inside one side portion (13a1) of the first notch portion 13a).
  • a plurality of notches are provided in the base material (11) along the longitudinal direction of the base material (11).
  • the plurality of notches are provided so as not to communicate with each other and to form a step.
  • the absolute value of the temperature coefficient of resistance (TCR) can be set to 50 ppm or less, and the temperature characteristics can be improved.
  • the notch (second notch) located at the position farthest from the resistor (10). Since the portion 13b) is formed so that the depth (D2) is the deepest as compared with the depth (D1) of the other notch portion (first notch portion 13a), it affects the temperature characteristics of the resistor 10. The depth of the notch can be adjusted so that the temperature characteristics can be further improved.
  • the notch portion (second notch portion 13b) located at the position farthest from the resistor (10) is located above the bottom portion (13b1) of the depth (D1).
  • the measurement terminal (12) is set to the base material (11) so as to be located inside the one side portion (13a1) of the notch portion (first notch portion 13a) located at the position closest to the resistor (10). Since it is fixed on the top, the absolute value of the temperature coefficient of resistance (TCR) can be easily set to 50 ppm or less, and thus the temperature characteristics can be easily improved.
  • (A) is a plan view when the measurement terminal of the shunt resistor according to the same embodiment is provided on the upper surface side
  • (b) is a plan view when the measurement terminal of the shunt resistor according to the same embodiment is provided on the lower surface side. It is a plan view of.
  • a shunt resistor according to the same embodiment in which the first notch and the second notch are not provided in the base material and (a) is a plan view when the measurement terminal of the shunt resistor is provided on the upper surface side.
  • (B) is a plan view when the measurement terminal of the shunt resistor is provided on the lower surface side.
  • a shunt resistor in which only one notch is provided in the base material (a) is a plan view when the measurement terminal of the shunt resistor is provided on the upper surface side, and (b) is a plan view. , Is a plan view when the measurement terminal of the shunt resistor is provided on the lower surface side.
  • the shunt resistor according to the present embodiment has a large current from a battery for high voltage applications used in an electric vehicle (EV vehicle), a hybrid vehicle (HV vehicle), a plug-in hybrid vehicle (PHV vehicle), etc. to a motor circuit.
  • the shunt resistor 1 is used to measure the current value of the current path through which the resistor 10 flows.
  • the shunt resistor 1 is integrated with the resistor 10 by welding Y1 sandwiching the resistor 10 and the resistor 10. It is composed of two base materials 11 formed in the above and measurement terminals 12 erected and fixed on the two base materials 11 by welding Y2, respectively.
  • the measurement terminal 12 is capable of mounting a printed circuit board for current detection, and is made of copper, tin plating, or the like.
  • the resistor 10 is made of a Cu—Mn alloy, a Cu—Ni alloy, a Ni—Cr alloy, or the like, and has a resistance value of 30 ⁇ to 50 ⁇ so that it can handle a large current of 1000 A, for example. As shown in FIG. 1, it is formed in a thick plate shape with a thickness of about 3 mm to 5 mm and a short rectangular shape, for example.
  • the base material 11 is a so-called bus bar, which is made of a metal such as copper, and is formed in a long rectangular shape, for example, in a thick plate shape having a thickness of about 2 mm to 5 mm, as shown in FIG. Then, as shown in FIG. 1, the base material 11 is provided with a first notch portion 13a and a second notch portion 13b along the longitudinal direction.
  • the first cutout portion 13a is provided at a position close to the resistor 10, and is formed by cutting out the base material 11 in a rectangular shape in a plan view from the upper surface 11a to the lower surface 11b of the base material 11. ..
  • the width W1 of the first notch 13a formed in this way is formed to be, for example, 2 mm, and the depth D1 is formed to be formed to, for example, 4 mm.
  • the second notch portion 13b is provided at a position farther from the resistor 10 than the first notch portion 13a, and is flat from the upper surface 11a to the lower surface 11b of the base material 11. It is formed by cutting out the base material 11 in a rectangular shape.
  • the width W2 of the second notch 13b thus formed is formed to be, for example, 2 mm, and the depth D2 is formed to be formed to be, for example, 6 mm.
  • the second notch portion 13b is formed at a position separated by a distance t (for example, 2 mm) so as not to communicate with the first notch portion 13a.
  • the depth D2 of the second notch 13b is formed so as to be deeper than the depth D1 of the first notch 13a, that is, a height difference s (for example, 2 mm) appears. Therefore, the first notch portion 13a and the second notch portion 13b are formed in a stepped shape.
  • the first notch 13a and the second notch 13b are provided so that the absolute value of the temperature coefficient of resistance (TCR) is 50 ppm or less. That is, as described above, the shunt resistor 1 has a temperature characteristic that is a combination of the temperature characteristic of the resistor 10 and the temperature characteristic of the base material 11. Therefore, in the present embodiment, in order to improve the temperature characteristics, that is, to reduce the absolute value of the temperature coefficient of resistance (TCR) required in the market to 50 ppm or less, the first notch 13a as shown in FIG. Two notches 13b are provided.
  • the first notch in the base material 11 with the 13a and the second notch 13b having the same depth for example, the depth of the first notch 13a and the second notch 13b is the depth D1 shown in FIG. 1).
  • a portion 13a and a second notch portion 13b are provided. Then, in that state, the measurement terminal 12 is erected and fixed on the base metal 11 by welding Y2, and the temperature coefficient of resistance (TCR) is measured.
  • TCR temperature coefficient of resistance
  • the base material 11 has a second notch as shown in FIG. 1 so that the absolute value of the temperature coefficient of resistance (TCR) is 50 ppm or less. 13b is provided, or the depth of the second notch 13b, which is about the same as the first notch 13a, is further increased so that the absolute value of the temperature coefficient of resistance (TCR) is 50 ppm or less. Go and adjust the depth. Thereby, the absolute value of the temperature coefficient of resistance (TCR) can be set to 50 ppm or less.
  • the absolute value of the temperature coefficient of resistance (TCR) can be set to 50 ppm or less, and thus the temperature characteristics can be improved.
  • the depth of the first notch 13a is adjusted so that the depth D1 of the first notch 13a is deeper than the depth D2 of the second notch 13b, so that the height difference is different.
  • the depth of the second notch 13b is adjusted so that the depth D2 of the second notch 13b is deeper than the depth D1 of the first notch 13a. , It is preferable that the height difference s appears.
  • the temperature characteristic of the resistor 10 also affects the temperature coefficient of resistance (TCR), when the depth of the first notch 13a provided at a position close to the resistor 10 is adjusted, the resistor 10 has something to do with it. It may have an effect, and thus it may be difficult to reduce the absolute value of the temperature coefficient of resistance (TCR) to 50 ppm or less. Therefore, in order to avoid such a situation, it is preferable to adjust the depth of the second notch 13b provided at a position farther from the resistor 10 than the first notch 13a.
  • TCR temperature coefficient of resistance
  • FIG. 1 shows that the position of the measurement terminal 12 erected and fixed on the base material 11 by welding Y2 is affected by the first notch 13a and the second notch 13b provided on the base material 11. It is preferable that the region R1 is erected and fixed at the position shown in 1.
  • This region R1 indicates a region above the bottom portion 13b1 of the second notch portion 13b and inside the one side portion 13a1 (side surface located near the resistor 10) of the first notch portion 13a. ..
  • TCR temperature coefficient of resistance
  • the temperature characteristics can be improved.
  • the shape of the shunt resistor 1 shown in the present embodiment is merely an example, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims.
  • only two notches 13a and 13b are provided, but more notches may be provided.
  • the notch portion is formed so that the depth gradually increases as the distance from the resistor 10 increases.
  • width W1 of the first notch portion 13a and the width W2 of the second notch portion 13b shown in the present embodiment may have any values, but are preferably the same values as the thickness of the base material 11. In this way, it becomes possible to form by press working, and thus it becomes possible to correspond to mass productivity.
  • the distance t between the first notch portion 13a and the second notch portion 13b shown in the present embodiment may be any value, but is preferably the same value as the thickness of the base metal 11. Further, in this way, it becomes possible to form by press working, and thus it becomes possible to correspond to more mass productivity.
  • first notch portion 13a and the second notch portion 13b an example of a rectangular shape in a plan view is shown in the present embodiment, but the shape is not limited to this, and any shape may be used.
  • the base material 11 is provided with a first cutout portion 13a having a width of 2 mm (see width W1 shown in FIG. 1) and a depth of 4 mm (see depth D1 shown in FIG. 1), and the first cutout portion is provided.
  • the width is 2 mm (see the width W2 shown in FIG. 1) and the depth is 6 mm (see the depth D2 shown in FIG. 1).
  • a second notch 13b was provided.
  • the measurement terminal 12 was arranged on the upper side of the region R1 (on the upper surface 11a side of the base material 11).
  • Such a shunt resistor 1 is placed on a resistance measuring jig manufactured by Suncall Corporation, and the resistance value is measured by changing the temperature using a resistance measuring machine of RM3543 RESISTANCE HiTESTER manufactured by HIOKI Corporation. It was. The results are shown in Table 1.
  • the value of the temperature coefficient of resistance (TCR) shown below is calculated using a general formula from the rate of change in resistance value from the reference temperature of 25 ° C. and the temperature difference.
  • the measurement terminal 12 was arranged about 3 mm from the position shown in FIG. 2A on the lower surface 11b side of the base material 11, and the resistance value was measured again. The results are shown in Table 2.
  • the absolute value of the temperature coefficient of resistance (TCR) is 50 ppm or less, which satisfies the market demand. ..
  • the measurement terminal 12 was arranged on the lower surface 11b side of the base material 11 so as to be outside the region R1, and the resistance value was measured again.
  • the results are shown in Table 3.
  • the absolute value of the temperature coefficient of resistance (TCR) can be easily adjusted to 50 ppm or less.
  • the first notch 13a and the second notch 13b are not formed on the base material 11, and as shown in FIG. 3A, the measurement terminal 12 is placed on the upper surface 11a side of the base material 11.
  • Each of the 10 shunt resistors placed in the above is placed on a resistance measuring jig manufactured by Sankor Co., Ltd., and the resistance value is measured by changing the temperature using the resistance measuring machine of RM3543 RESISTANCE HiTESTER manufactured by HIOKI Co., Ltd. went. The results are shown in Table 4.
  • the absolute value of the temperature coefficient of resistance (TCR) is not 50 ppm or less, which satisfies the market requirement. It does not mean that you are there.
  • the measurement terminal 12 was arranged on the lower surface 11b side of the base material 11, and the resistance value was measured again. The results are shown in Table 5.
  • the absolute value of the temperature coefficient of resistance (TCR) is not 50 ppm or less, which also does not satisfy the market demand. It will be.
  • the absolute value of the temperature coefficient of resistance (TCR) can be obtained simply by changing the position of the measurement terminal 12. It turned out that it cannot be reduced to 50 ppm or less.
  • the base material 11 has a width of 8 mm (see the longitudinal side of the base material 11 shown in FIG. 4) and a depth of 4 mm (see the lateral side of the base material 11 shown in FIG. 4).
  • the absolute value of the temperature coefficient of resistance (TCR) is not 50 ppm or less, which means that the market requirement is not satisfied. ..
  • the absolute value of the temperature coefficient of resistance (TCR) cannot be 50 ppm or less even if the position of the measurement terminal 12 is changed. I found out.
  • TCR temperature coefficient of resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Details Of Resistors (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

温度特性を改善することができるシャント抵抗器を提供することを目的としている。 抵抗体10と、 抵抗体10を挟んで当該抵抗体10に一体的に形成された一対の母材11と、 母材11上に固定される測定端子12と、を有し、 母材11には、複数の切欠部(第1切欠部13a,第2切欠部13b)が、該母材11の長手方向に沿って設けられており、 複数の切欠部(第1切欠部13a,第2切欠部13b)は、互いに連通せず、階段状となるように設けられている。

Description

シャント抵抗器
 本発明は、シャント抵抗器に関する。
 従来のシャント抵抗器として、特許文献1に記載のようなシャント抵抗器が知られている。このシャント抵抗器は、抵抗体を挟んで抵抗体に一体的に形成された二つの板状の母材それぞれに貫通孔を形成し、その貫通孔内に第1端子部が挿入され、第2端子部が貫通孔内より突出する電圧検出端子が設けられているものである。
特開2017-009419号公報
 ところで、上記のようなシャント抵抗器は、抵抗体の温度特性と母材の温度特性を合成した温度特性が表れる。この温度特性は、高精度電流センサの精度に影響を与える要因の一つである。そのため、市場の要求として、抵抗温度係数(TCR)の絶対値を50ppm以下にするよう温度特性の改善が求められている。
 そこで、本発明は、上記問題に鑑み、温度特性を改善することができるシャント抵抗器を提供することを目的としている。
 上記本発明の目的は、以下の手段によって達成される。なお、括弧内は、後述する実施形態の参照符号を付したものであるが、本発明はこれに限定されるものではない。
 請求項1の発明によれば、抵抗体(10)と、
 前記抵抗体(10)を挟んで当該抵抗体(10)に一体的に形成された一対の母材(11)と、
 前記母材(11)上に固定される測定端子(12)と、を有し、
 前記母材(11)には、複数の切欠部(第1切欠部13a,第2切欠部13b)が、該母材(11)の長手方向に沿って設けられており、
 前記複数の切欠部(第1切欠部13a,第2切欠部13b)は、互いに連通せず、階段状となるように設けられてなることを特徴としている。
 また、請求項2の発明によれば、上記請求項1に記載のシャント抵抗器において、前記複数の切欠部(第1切欠部13a,第2切欠部13b)のうち、前記抵抗体(10)から最も離れた位置にある切欠部(第2切欠部13b)は、他の切欠部(第1切欠部13a)の深さ(D1)と比べて最も深さ(D2)が深くなるように形成されてなることを特徴としている。
 さらに、請求項3の発明によれば、上記請求項2に記載のシャント抵抗器において、前記測定端子(12)は、前記母材(11)上に固定されるにあたって、前記抵抗体(10)から最も離れた位置にある切欠部(第2切欠部13b)の深さ(D1)の底部(13b1)よりも上方側で、且つ、前記抵抗体(10)に最も近い位置にある切欠部(第1切欠部13a)の一側部(13a1)よりも内側に位置するように固定されてなることを特徴としている。
 次に、本発明の効果について、図面の参照符号を付して説明する。なお、括弧内は、後述する実施形態の参照符号を付したものであるが、本発明はこれに限定されるものではない。
 請求項1に係る発明によれば、母材(11)には、複数の切欠部(第1切欠部13a,第2切欠部13b)が、該母材(11)の長手方向に沿って設けられており、複数の切欠部(第1切欠部13a,第2切欠部13b)は、互いに連通せず、階段状となるように設けられている。これにより、抵抗温度係数(TCR)の絶対値を50ppm以下にすることが可能となり、もって、温度特性を改善することができる。
 また、請求項2に係る発明によれば、複数の切欠部(第1切欠部13a,第2切欠部13b)のうち、抵抗体(10)から最も離れた位置にある切欠部(第2切欠部13b)は、他の切欠部(第1切欠部13a)の深さ(D1)と比べて最も深さ(D2)が深くなるように形成されているから、抵抗体10の温度特性に影響がでないように、切欠部の深さを調整することができ、もって、温度特性をより改善することができる。
 さらに、請求項3に係る発明によれば、抵抗体(10)から最も離れた位置にある切欠部(第2切欠部13b)の深さ(D1)の底部(13b1)よりも上方側で、且つ、抵抗体(10)に最も近い位置にある切欠部(第1切欠部13a)の一側部(13a1)よりも内側に位置するように、測定端子(12)を、母材(11)上に固定しているから、抵抗温度係数(TCR)の絶対値を50ppm以下にし易くなり、もって、温度特性を改善し易くすることができる。
は本発明の一実施形態に係るシャント抵抗器の平面図である。 (a)は、同実施形態に係るシャント抵抗器の測定端子を上面側に設けた際の平面図、(b)は、同実施形態に係るシャント抵抗器の測定端子を下面側に設けた際の平面図である。 同実施形態に係る第1切欠部及び第2切欠部を母材に設けていないシャント抵抗器であって、(a)は、そのシャント抵抗器の測定端子を上面側に設けた際の平面図、(b)は、そのシャント抵抗器の測定端子を下面側に設けた際の平面図である。 同実施形態に係る母材に1つの切欠部のみを設けたシャント抵抗器であって、(a)は、そのシャント抵抗器の測定端子を上面側に設けた際の平面図、(b)は、そのシャント抵抗器の測定端子を下面側に設けた際の平面図である。
 以下、本発明に係るシャント抵抗器の一実施形態を、図面を参照して具体的に説明する。なお、以下の説明において、上下左右の方向を示す場合は、図示正面から見た場合の上下左右をいうものとする。
 本実施形態に係るシャント抵抗器は、特に、電気自動車(EV車)、ハイブリット車(HV車)、プラグインハイブリット車(PHV車)等で使用される高電圧用途のバッテリーからモータ回路へ大電流が流れる電流経路の電流値を計測する際に用いられるもので、図1に示すように、シャント抵抗器1は、抵抗体10と、抵抗体10を挟んで溶接Y1により抵抗体10と一体的に形成された二つの母材11と、二つの母材11上にそれぞれ溶接Y2により立設固定されている測定端子12とで構成されている。なお、測定端子12は、電流検出用のプリント基板を実装可能なもので、銅,錫メッキ等で形成されている。
 抵抗体10は、Cu-Mn系合金、Cu-Ni系合金、Ni-Cr系合金、等で形成され、例えば、1000Aの大電流が流れても対応可能なように、抵抗値が30μΩ~50μΩ程度の抵抗体となっており、図1に示すように、例えば、厚み約3mm~5mmの厚板状で短尺の矩形状に形成されている。
 母材11は、所謂バスバーと呼ばれるもので、銅等の金属からなり、図1に示すように、例えば、厚み約2mm~5mmの厚板状で、長尺の矩形状に形成されている。そしてこの母材11には、図1に示すように、長手方向に沿って、第1切欠部13aと、第2切欠部13bが設けられている。この第1切欠部13aは、抵抗体10に近い位置に設けられており、母材11の上面11aから下面11bに向かって、平面視矩形状に母材11を切り欠くことによって形成されている。そして、このように形成されている第1切欠部13aの幅W1は、例えば、2mmに形成されており、深さD1は、例えば、4mmに形成されている。
 一方、第2切欠部13bは、図1に示すように、第1切欠部13aよりも抵抗体10から離れた位置に設けられており、母材11の上面11aから下面11bに向かって、平面視矩形状に母材11を切り欠くことによって形成されている。そして、このように形成されている第2切欠部13bの幅W2は、例えば、2mmに形成されており、深さD2は、例えば、6mmに形成されている。そしてさらに、第2切欠部13bは、第1切欠部13aと連通しないように、距離t(例えば、2mm)離れた位置に形成されている。またさらに、第2切欠部13bの深さD2は、第1切欠部13aの深さD1より深くなるよう、すなわち、高低差s(例えば2mm)が出るように形成されている。それゆえ、第1切欠部13aと、第2切欠部13bとは、階段状に形成されることとなる。
 ところで、この第1切欠部13aと、第2切欠部13bとは、抵抗温度係数(TCR)の絶対値を50ppm以下にするように設けられている。すなわち、上記説明したように、シャント抵抗器1は、抵抗体10の温度特性と母材11の温度特性を合成した温度特性が表れる。そのため、本実施形態においては、温度特性を改善、すなわち、市場で要求される抵抗温度係数(TCR)の絶対値を50ppm以下にするため、図1に示すような第1切欠部13aと、第2切欠部13bとが設けられている。
 より詳しく説明すると、図1に示すような第1切欠部13aと、第2切欠部13bとを設けるにあたって、まず、母材11に第1切欠部13aのみを設けるか、又は、第1切欠部13aと第2切欠部13bを同程度の深さ(例えば、第1切欠部13aと第2切欠部13bの深さを、図1に示す深さD1とする)として母材11に第1切欠部13aと第2切欠部13bを設ける。そして、その状態で、測定端子12を母材11上に溶接Y2により立設固定し、抵抗温度係数(TCR)を測定する。次いで、その測定した抵抗温度係数(TCR)の測定結果に基づいて、抵抗温度係数(TCR)の絶対値を50ppm以下にするように、母材11に、図1に示すような第2切欠部13bを設けるか、又は、抵抗温度係数(TCR)の絶対値を50ppm以下にするように、第1切欠部13aと同程度の深さとしている第2切欠部13bの深さをさらに深くしていき、深さを調整する。これにより、抵抗温度係数(TCR)の絶対値を50ppm以下にするようにすることができる。
 かくして、このようにすることにより、抵抗温度係数(TCR)の絶対値を50ppm以下にするようにすることができ、もって、温度特性を改善することができる。なお、この際、第1切欠部13aの深さを調整するようにし、第2切欠部13bの深さD2よりも、第1切欠部13aの深さD1の方が深くなるようにし、高低差sが出るようにしても良いが、第2切欠部13bの深さを調整し、第1切欠部13aの深さD1よりも、第2切欠部13bの深さD2の方が深くなるようにし、高低差sが出るようにするのが好ましい。抵抗温度係数(TCR)には、抵抗体10の温度特性も影響することから、抵抗体10に近い位置に設けられている第1切欠部13aの深さを調整した際、抵抗体10に何らかの影響を及ぼしてしまい、もって、抵抗温度係数(TCR)の絶対値を50ppm以下にすることが困難となる可能性もある。そのため、そのような事態を避けるべく、第1切欠部13aよりも抵抗体10から離れた位置に設けられている第2切欠部13bの深さを調整するのが好ましい。
 ところで、母材11上に溶接Y2により立設固定される測定端子12の位置は、母材11に設けられた第1切欠部13a及び第2切欠部13bの影響を受けられるように、図1に示す領域R1の位置に立設固定されるのが好ましい。この領域R1は、第2切欠部13bの底部13b1よりも上側で、且つ、第1切欠部13aの一側部13a1(抵抗体10に近い位置にある側面)の内側にある領域を示している。この領域R1内に、測定端子12を立設固定することにより、母材11に設けられた第1切欠部13a及び第2切欠部13bの影響を受けることができる。これにより、抵抗温度係数(TCR)の絶対値を50ppm以下にし易くなり、もって、温度特性を改善し易くすることができる。
 しかして、以上説明した本実施形態によれば、温度特性を改善することができる。
 なお、本実施形態において示したシャント抵抗器1の形状はあくまで一例であり、特許請求の範囲に記載された本発明の要旨の範囲内において種々の変形・変更が可能である。例えば、本実施形態においては、第1切欠部13a、第2切欠部13bの2つしか設けていないが、それ以上の切欠部を設けても良い。この際、切欠部は、抵抗体10から離れていくに従って、段々と深さが深くなるように形成するのが好ましい。
 また、本実施形態において示した第1切欠部13aの幅W1、第2切欠部13bの幅W2は、どのような値でも良いが、母材11の厚みと同じ値とするのが好ましい。このようにすれば、プレス加工にて形成することが可能となり、もって、量産性に対応することが可能となる。
 さらに、本実施形態において示した第1切欠部13aと第2切欠部13bとの間の距離tは、どのような値でも良いが、母材11の厚みと同じ値とするのが好ましい。さらに、このようにすれば、プレス加工にて形成することがより可能となり、もって、より量産性に対応することが可能となる。
 またさらに、第1切欠部13a、第2切欠部13bの形状として、本実施形態においては、平面視矩形状の例を示したが、それに限らず、どのような形状のものでも良い。
<実施例>
 次に、実施例を用いて、本発明を更に詳しく説明する。
 図2に示すシャント抵抗器1を10個用いて、温度を変化させ、抵抗値の測定を行った。図2に示すように、母材11に、幅2mm(図1に示す幅W1参照)、深さ4mm(図1に示す深さD1参照)の第1切欠部13aを設け、第1切欠部13aよりも抵抗体10から離れる方向に2mm間隔(図1に示す距離t参照)をあけ、幅2mm(図1に示す幅W2参照)、深さ6mm(図1に示す深さD2参照)の第2切欠部13bを設けた。そして、図2(a)に示すように、測定端子12を領域R1の上側(母材11の上面11a側)に配置した。
 かくして、このようなシャント抵抗器1を、サンコール株式会社製の抵抗測定治具に載置し、HIOKI社製RM3543 RESISTANCE HiTESTERの抵抗測定機を用いて、温度を変化させ抵抗値の測定を行った。その結果が、表1に示すものである。なお、以下で示す抵抗温度係数(TCR)の値は、25℃の基準温度からの抵抗値変化率と温度差から一般式を用いて算出したものである。
Figure JPOXMLDOC01-appb-T000001
 上記表1の結果に示すように、抵抗温度係数(TCR)は、-421.5ppmであるため、抵抗温度係数(TCR)の絶対値が50ppm以下でないことから、これでは市場の要求を満たしていることとならない。そこで、測定端子12を、図2(a)に示す位置から、3mm程、母材11の下面11b側に配置し、改めて、抵抗値の測定を行った。その結果が、表2に示すものである。
Figure JPOXMLDOC01-appb-T000002
 上記表2の結果に示すように、抵抗温度係数(TCR)は、25.3ppmであるため、抵抗温度係数(TCR)の絶対値が50ppm以下であることから、市場の要求を満たすこととなる。
 次いで、図2(b)に示すように、領域R1外となるように、測定端子12を母材11の下面11b側に配置し、改めて、抵抗値の測定を行った。その結果が、表3に示すものである。
Figure JPOXMLDOC01-appb-T000003
 上記表3の結果に示すように、抵抗温度係数(TCR)は、211.9ppmであるため、抵抗温度係数(TCR)の絶対値が50ppm以下でないことから、市場の要求を満たさないこととなる。
 しかして、上記の実験結果により、領域R1内で測定端子12を配置するようにすれば、抵抗温度係数(TCR)の絶対値を50ppm以下に調整し易いということが分かった。
 次に、母材11に、第1切欠部13a及び第2切欠部13bを設けたことによる効果を検証すべく、以下のような実験を行った。
 まず、図3に示すように、第1切欠部13a及び第2切欠部13bを母材11に形成せず、図3(a)に示すように、測定端子12を母材11の上面11a側に配置したシャント抵抗器を10個、それぞれ、サンコール株式会社製の抵抗測定治具に載置し、HIOKI社製RM3543 RESISTANCE HiTESTERの抵抗測定機を用いて、温度を変化させ抵抗値の測定を行った。その結果が、表4に示すものである。
Figure JPOXMLDOC01-appb-T000004
 上記表4の結果に示すように、抵抗温度係数(TCR)は、-421.467ppmであるため、抵抗温度係数(TCR)の絶対値が50ppm以下でないことから、これでは市場の要求を満たしていることとならない。次いで、測定端子12を、図3(b)に示すように、母材11の下面11b側に配置し、改めて、抵抗値の測定を行った。その結果が、表5に示すものである。
Figure JPOXMLDOC01-appb-T000005
 上記表5の結果に示すように、抵抗温度係数(TCR)は、81.20493ppmであるため、抵抗温度係数(TCR)の絶対値が50ppm以下でないことから、これも、市場の要求を満たさないこととなる。
 しかして、第1切欠部13a及び第2切欠部13bを母材11に形成してないシャント抵抗器では、測定端子12の位置を変化させただけでは、抵抗温度係数(TCR)の絶対値を50ppm以下とできないことが分かった。
 次に、図4に示すように、母材11に幅8mm(図4に示す母材11の長手方向側参照)、深さ4mm(図4に示す母材11の短手方向側参照)の切欠部130を一箇所だけ設け、図4(a)に示すように、測定端子12を母材11の上面11a側に配置したシャント抵抗器を10個、それぞれ、サンコール株式会社製の抵抗測定治具に載置し、HIOKI社製RM3543 RESISTANCE HiTESTERの抵抗測定機を用いて、温度を変化させ抵抗値の測定を行った。その結果が、表6に示すものである。
Figure JPOXMLDOC01-appb-T000006
 上記表6の結果に示すように、抵抗温度係数(TCR)は、-328.8ppmであるため、抵抗温度係数(TCR)の絶対値が50ppm以下でないことから、市場の要求を満たさないこととなる。次いで、測定端子12を、図4(b)に示すように、母材11の下面11b側に配置し、改めて、抵抗値の測定を行った。その結果が、表7に示すものである。
Figure JPOXMLDOC01-appb-T000007
 上記表7の結果に示すように、抵抗温度係数(TCR)は、157.6ppmであるため、抵抗温度係数(TCR)の絶対値が50ppm以下でないことから、市場の要求を満たさないこととなる。
 しかして、切欠部を母材11に1つだけ形成したシャント抵抗器では、測定端子12の位置を変化させても、抵抗温度係数(TCR)の絶対値を50ppm以下とできないことが分かった。
 したがって、第1切欠部13a及び第2切欠部13bを母材11に形成しなければ、測定端子12の位置を変化させたとしても、抵抗温度係数(TCR)の絶対値を50ppm以下とできないことが分かった。
 しかして、以上の実験結果により、母材11に、第1切欠部13a及び第2切欠部13bを設けることにより、抵抗温度係数(TCR)の絶対値を50ppm以下とできることが分かった。
1     シャント抵抗器
10    抵抗体
11    母材
12    測定端子
13a   第1切欠部(切欠部、抵抗体に最も近い位置にある切欠部)
13a1  一側部
13b   第2切欠部(切欠部、抵抗体から最も離れた位置にある切欠部)
13b1  底部
D1   (第1切欠き部の)深さ
D2   (第2切欠き部の)深さ
 

Claims (3)

  1.  抵抗体と、
     前記抵抗体を挟んで当該抵抗体に一体的に形成された一対の母材と、
     前記母材上に固定される測定端子と、を有し、
     前記母材には、複数の切欠部が、該母材の長手方向に沿って設けられており、
     前記複数の切欠部は、互いに連通せず、階段状となるように設けられてなるシャント抵抗器。
  2.  前記複数の切欠部のうち、前記抵抗体から最も離れた位置にある切欠部は、他の切欠部の深さと比べて最も深さが深くなるように形成されてなる請求項1に記載のシャント抵抗器。
  3.  前記測定端子は、前記母材上に固定されるにあたって、前記抵抗体から最も離れた位置にある切欠部の深さの底部よりも上方側で、且つ、前記抵抗体に最も近い位置にある切欠部の一側部よりも内側に位置するように固定されてなる請求項2に記載のシャント抵抗器。
     
PCT/JP2019/045079 2019-11-18 2019-11-18 シャント抵抗器 WO2021100084A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2019/045079 WO2021100084A1 (ja) 2019-11-18 2019-11-18 シャント抵抗器
EP19953210.2A EP4036939A4 (en) 2019-11-18 2019-11-18 SHUNT RESISTOR
JP2020517228A JP6956263B1 (ja) 2019-11-18 2019-11-18 シャント抵抗器
US17/730,543 US20220254551A1 (en) 2019-11-18 2022-04-27 Shunt Resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/045079 WO2021100084A1 (ja) 2019-11-18 2019-11-18 シャント抵抗器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/730,543 Continuation US20220254551A1 (en) 2019-11-18 2022-04-27 Shunt Resistor

Publications (1)

Publication Number Publication Date
WO2021100084A1 true WO2021100084A1 (ja) 2021-05-27

Family

ID=75981487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045079 WO2021100084A1 (ja) 2019-11-18 2019-11-18 シャント抵抗器

Country Status (4)

Country Link
US (1) US20220254551A1 (ja)
EP (1) EP4036939A4 (ja)
JP (1) JP6956263B1 (ja)
WO (1) WO2021100084A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189742A1 (ja) * 2022-03-28 2023-10-05 Koa株式会社 シャント抵抗器および電流検出装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011511472A (ja) * 2008-02-06 2011-04-07 ヴィシェイ デール エレクトロニクス インコーポレイテッド 抵抗器とその製造方法
JP2013536424A (ja) * 2010-08-26 2013-09-19 イザベレンヒュッテ ホイスラー ゲー・エム・ベー・ハー ウント コンパニー コマンデイトゲゼルシャフト 電流検出抵抗器
WO2016171244A1 (ja) * 2015-04-24 2016-10-27 釜屋電機株式会社 角形チップ抵抗器及びその製造法
WO2016175116A1 (ja) * 2015-04-28 2016-11-03 Koa株式会社 電流検出装置
JP2017009419A (ja) 2015-06-22 2017-01-12 Koa株式会社 電流検出装置及びその製造方法
JP2018018915A (ja) * 2016-07-27 2018-02-01 パナソニックIpマネジメント株式会社 抵抗器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214407A (en) * 1991-11-06 1993-05-25 Hewlett-Packard Company High performance current shunt
JP4971693B2 (ja) * 2006-06-09 2012-07-11 コーア株式会社 金属板抵抗器
JP6795879B2 (ja) * 2015-06-15 2020-12-02 Koa株式会社 抵抗器及びその製造方法
WO2018229816A1 (ja) * 2017-06-12 2018-12-20 新電元工業株式会社 パワーモジュールの製造方法
US10438730B2 (en) * 2017-10-31 2019-10-08 Cyntec Co., Ltd. Current sensing resistor and fabrication method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011511472A (ja) * 2008-02-06 2011-04-07 ヴィシェイ デール エレクトロニクス インコーポレイテッド 抵抗器とその製造方法
JP2013536424A (ja) * 2010-08-26 2013-09-19 イザベレンヒュッテ ホイスラー ゲー・エム・ベー・ハー ウント コンパニー コマンデイトゲゼルシャフト 電流検出抵抗器
WO2016171244A1 (ja) * 2015-04-24 2016-10-27 釜屋電機株式会社 角形チップ抵抗器及びその製造法
WO2016175116A1 (ja) * 2015-04-28 2016-11-03 Koa株式会社 電流検出装置
JP2017009419A (ja) 2015-06-22 2017-01-12 Koa株式会社 電流検出装置及びその製造方法
JP2018018915A (ja) * 2016-07-27 2018-02-01 パナソニックIpマネジメント株式会社 抵抗器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4036939A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189742A1 (ja) * 2022-03-28 2023-10-05 Koa株式会社 シャント抵抗器および電流検出装置

Also Published As

Publication number Publication date
EP4036939A4 (en) 2022-10-05
US20220254551A1 (en) 2022-08-11
EP4036939A1 (en) 2022-08-03
JPWO2021100084A1 (ja) 2021-12-02
JP6956263B1 (ja) 2021-11-02

Similar Documents

Publication Publication Date Title
TWI544502B (zh) 具有電阻溫度係數(tcr)補償的電阻器
JP5298336B2 (ja) シャント抵抗器およびその製造方法
JP6010468B2 (ja) シャント抵抗式電流センサ
JP4971693B2 (ja) 金属板抵抗器
US10026529B2 (en) Shunt resistor
CN105874338A (zh) 分流电阻器以及分流电阻器组件
WO2021100084A1 (ja) シャント抵抗器
US20170162302A1 (en) Current detection resistor
US10957472B2 (en) Method for manufacturing shunt resistor
JP7049811B2 (ja) シャント抵抗器
WO2012039175A1 (ja) 金属板低抵抗チップ抵抗器の製造方法
JP2022027164A (ja) 電流検出装置
JP2017076708A (ja) シャント抵抗器の製造方法
JP2004022658A (ja) 低い抵抗値を有するチップ抵抗器とその製造方法
JP2015021816A (ja) シャント抵抗式電流センサ
JP7094241B2 (ja) シャント抵抗器
JP7470899B2 (ja) 抵抗器およびその製造方法
US20220328217A1 (en) Resistive material, method of manufacturing resistive material, and resistor for detecting electric current

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020517228

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953210

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 19 953 210.2

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019953210

Country of ref document: EP

Effective date: 20220429

NENP Non-entry into the national phase

Ref country code: DE