WO2023189614A1 - センサ付き軸受及び軸受装置 - Google Patents

センサ付き軸受及び軸受装置 Download PDF

Info

Publication number
WO2023189614A1
WO2023189614A1 PCT/JP2023/010147 JP2023010147W WO2023189614A1 WO 2023189614 A1 WO2023189614 A1 WO 2023189614A1 JP 2023010147 W JP2023010147 W JP 2023010147W WO 2023189614 A1 WO2023189614 A1 WO 2023189614A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
ring
bearing
equipped bearing
magnetic
Prior art date
Application number
PCT/JP2023/010147
Other languages
English (en)
French (fr)
Inventor
浩義 伊藤
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2023189614A1 publication Critical patent/WO2023189614A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such

Definitions

  • the present invention relates to a bearing with a sensor and a bearing device.
  • Patent Document 1 Japanese Patent Application Publication No. 2005-256892 (Patent Document 1) describes a bearing with a sensor.
  • the sensor-equipped bearing described in Patent Document 1 includes a rolling bearing, a magnetic ring, and a sensor unit.
  • a rolling bearing has an inner ring, an outer ring, rolling elements, and a cage.
  • the magnetic ring has a core metal and a magnetic rubber layer.
  • An inner ring is press-fitted into the inner peripheral surface of the core metal.
  • the magnetic rubber layer is arranged on the outer circumferential surface of the metal core.
  • the sensor unit has an outer ring and a sensor housing. The outer ring is press-fitted into the inner peripheral surface of the outer ring.
  • the sensor housing is mounted on the inner peripheral surface of the outer ring.
  • the magnetic ring and sensor unit are fixed to the inner ring and outer ring by press-fitting, respectively, so the magnetic ring cannot be removed from the inner ring, and the sensor unit cannot be removed from the outer ring. cannot be removed. Therefore, when replacing the rolling bearing due to rolling abnormalities, etc., the magnetic ring and sensor unit must also be replaced. To put this into perspective, in the sensor-equipped bearing described in Patent Document 1, the magnetic ring and sensor unit cannot be reused.
  • the present invention has been made in view of the above problems. More specifically, the present invention provides a sensor-equipped bearing device and a bearing device in which at least the sensor unit can be reused even when the rolling bearing is replaced.
  • the sensor-equipped bearing of the present invention includes a bearing including a rotating ring, a fixed ring, and a rolling element, and a sensor unit.
  • the rotating ring has a rotating ring raceway surface extending along the circumferential direction.
  • the fixed ring has a fixed ring raceway surface that extends along the circumferential direction and faces the rotating ring raceway surface at a distance in the radial direction.
  • the rolling elements are arranged between the rotating ring raceway surface and the stationary ring raceway surface.
  • the sensor unit is removably attached to a fixed ring, and includes a power generation coil that generates an induced electromotive force as the rotating wheel rotates, a sensor that outputs a physical quantity or a chemical quantity as an electrical signal, and a sensor that outputs the output of the sensor. and a wireless communication module for wirelessly transmitting data to the outside.
  • the above sensor-equipped bearing may further include a magnetic ring that is detachably attached to the rotating ring.
  • the magnetic ring may have N poles and S poles alternately magnetized along the circumferential direction.
  • the sensor may detect the rotational state of the rotating wheel and output it as an electrical signal.
  • the sensor unit In the above sensor-equipped bearing, the sensor unit generates an induced electromotive force in the generator coil as the magnetic ring rotates, and also detects the rotation speed of the rotating ring based on the waveform of the induced electromotive force generated in the generator coil. It's okay.
  • the sensor unit may have an annular stator that is removably attached to the fixed ring and on which a power generation coil is mounted.
  • the stator may have an inner circumferential surface of the stator that extends along the circumferential direction and faces the magnetic ring at a distance in the radial direction.
  • a plurality of comb teeth arranged at intervals along the circumferential direction may be formed on the inner circumferential surface of the stator.
  • the comb teeth portion may constitute a magnetic path for magnetic flux from the magnetic ring.
  • the number of magnetic poles of the magnetic ring may be equal to the number of comb teeth.
  • the stator may be configured such that the magnetic flux from the magnetic ring passes from the comb teeth around the power generation coil.
  • the above sensor-equipped bearing may further include a ring-shaped first stopper.
  • the sensor unit may be detachably attached to the fixed ring by the elastic repulsive force along the radial direction from the first stopper.
  • the first stopper may have a plurality of first biasing parts arranged at intervals in the circumferential direction.
  • the sensor unit may be detachably attached to the fixed ring by the elastic repulsion force along the radial direction from the first biasing portion.
  • the above sensor-equipped bearing may further include a ring-shaped second stopper.
  • the magnetic ring may be removably attached to the rotating ring by an elastic repulsive force along the radial direction from the second stopper.
  • the second stopper may have a plurality of second biasing portions arranged at intervals in the circumferential direction.
  • the magnetic ring may be removably attached to the rotating ring by an elastic repulsive force along the radial direction from the second biasing portion.
  • the above sensor-equipped bearing may further include a ring-shaped rubber member.
  • the sensor unit may be detachably attached to the fixed ring by an elastic repulsive force along the radial direction from the rubber member.
  • the above sensor-equipped bearing may further include a compression coil spring.
  • the sensor unit may be detachably attached to the fixed ring by the elastic repulsive force along the radial direction from the compression coil spring.
  • the sensor and the wireless communication module may be driven by an induced electromotive force generated in the power generation coil.
  • the wireless communication module may continuously or intermittently modulate the carrier wave with the output from the sensor and wirelessly transmit it to the outside.
  • the open portion of the sensor unit may be sealed with a resin material.
  • the senor may be a vibration sensor.
  • the sensor unit may be removably attached to the fixed ring so that the detection direction of the sensor matches the load direction of the bearing.
  • the sensor unit may be provided with a mark for matching the detection direction of the sensor and the load direction of the bearing.
  • the bearing device of the present invention includes a shaft, a housing, and a sensor-equipped bearing.
  • One of the rotating ring and the fixed ring is fitted onto the shaft.
  • the other of the rotating ring and the fixed ring is fitted into the housing.
  • At least the sensor unit can be reused even when the rolling bearing is replaced.
  • FIG. 2 is a cross-sectional view of the sensor-equipped bearing 100.
  • FIG. 2 is a cross-sectional view of the sensor-equipped bearing 100 when the sensor unit 20 and the magnetic ring 30 are removed from the rolling bearing 10.
  • FIG. It is an enlarged view of II in FIG. 1A.
  • FIG. 1A is a sectional view taken along line III-III in FIG. 1A.
  • 4 is a first enlarged view of IV in FIG. 3.
  • FIG. 4 is a second enlarged view of IV in FIG. 3.
  • FIG. FIG. 4A is a cross-sectional view taken along line VV in FIG. 4A.
  • 4B is a cross-sectional view taken along VI-VI in FIG. 4B.
  • FIG. 6 is a first enlarged sectional view of the sensor-equipped bearing 100 according to Modification 1 in the vicinity of the biasing portion 51;
  • FIG. 7 is a second enlarged cross-sectional view of the sensor-equipped bearing 100 according to the first modification in the vicinity of the biasing portion 51;
  • FIG. 3 is a cross-sectional view of a sensor-equipped bearing 100 according to a second modification. 9 is an enlarged view of IX in FIG. 8.
  • FIG. FIG. 7 is a cross-sectional view of a sensor-equipped bearing 100 according to a third modification. It is an enlarged view of XI in FIG. 10.
  • FIG. 3 is a cross-sectional view of a sensor-equipped bearing 100 according to a fourth modification. It is an enlarged view of XIII in FIG. 12.
  • FIG. 7 is a cross-sectional view of a sensor-equipped bearing 100A according to modification example 1.
  • FIG. 7 is a cross-sectional view of a sensor-equipped bearing 100A according to modification example 1.
  • FIG. 7 is a cross-sectional view of a sensor-equipped bearing 100A according to a second modification.
  • It is an enlarged view of XIX in FIG. 18.
  • FIG. 7 is a cross-sectional view of a sensor-equipped bearing 100A according to a third modification.
  • 21 is an enlarged view at XXI in FIG. 20.
  • FIG. It is a sectional view of bearing 100B with a sensor.
  • 23 is an enlarged view of XXIII in FIG. 22.
  • FIG. 22 is an enlarged view of XXIII in FIG. 22.
  • FIG. 7 is a cross-sectional view of a sensor-equipped bearing 100B according to modification example 1.
  • FIG. 25 is an enlarged view of XXV in FIG. 24.
  • FIG. FIG. 7 is a cross-sectional view of a sensor-equipped bearing 100B according to a second modification.
  • 27 is an enlarged view of XXVII in FIG. 26.
  • FIG. It is a sectional view of bearing 100C with a sensor. A cross section taken along XXIX-XXIX in FIG. 28 is shown.
  • 30 is a diagram showing the lid 26 superimposed on FIG. 29.
  • bearing with a sensor 100 (hereinafter referred to as “bearing with a sensor 100") according to a first embodiment will be described.
  • FIG. 1A is a cross-sectional view of the sensor-equipped bearing 100.
  • FIG. 1A shows a cross section passing through the central axis (central axis A) of the inner ring 11 and parallel to the axial direction.
  • FIG. 1B is a cross-sectional view of the sensor-equipped bearing 100 when the sensor unit 20 and the magnetic ring 30 are removed from the rolling bearing 10.
  • FIG. 2 is an enlarged view of II in FIG. 1A.
  • FIG. 3 is a cross-sectional view taken along III-III in FIG. 1A.
  • the sensor-equipped bearing 100 includes a rolling bearing 10, a sensor unit 20, a magnetic ring 30, a first stopper 40, and a second stopper 50. It has
  • the direction along the central axis A is the axial direction.
  • the direction passing through the central axis A and perpendicular to the axial direction is defined as the radial direction.
  • the direction along the circumference centered on the central axis A when viewed along the axial direction is defined as the circumferential direction.
  • the rolling bearing 10 is, for example, a deep groove ball bearing. However, the rolling bearing 10 is not limited to this.
  • the rolling bearing 10 includes an inner ring 11, an outer ring 12, a plurality of rolling elements 13, and a cage 14.
  • the rolling bearing 10 may further include a seal 15.
  • Inner ring 11 is a rotating ring
  • outer ring 12 is a fixed ring.
  • the inner ring 11 has a first end surface 11a, a second end surface 11b, an inner circumferential surface 11c (inner ring inner circumferential surface), and an outer circumferential surface 11d (inner ring outer circumferential surface).
  • the first end surface 11a and the second end surface 11b are end surfaces of the inner ring 11 in the axial direction.
  • the second end surface 11b is a surface opposite to the first end surface 11a in the axial direction.
  • the inner peripheral surface 11c extends along the circumferential direction.
  • the inner circumferential surface 11c faces the central axis A side.
  • One end and the other end in the axial direction of the inner peripheral surface 11c are connected to the first end surface 11a and the second end surface 11b, respectively.
  • the outer peripheral surface 11d extends along the circumferential direction.
  • the outer circumferential surface 11d faces the opposite side to the central axis A. That is, the outer peripheral surface 11d is a surface opposite to the inner peripheral surface 11c in the radial direction.
  • One end and the other end in the axial direction of the outer peripheral surface 11d are connected to the first end surface 11a and the second end surface 11b, respectively.
  • the outer peripheral surface 11d has an inner ring raceway surface 11da.
  • the inner ring raceway surface 11da is a portion of the outer peripheral surface 11d that contacts the rolling elements 13.
  • the outer circumferential surface 11d is recessed toward the inner circumferential surface 11c in the inner ring raceway surface 11da.
  • the inner ring raceway surface 11da is located at the center of the outer peripheral surface 11d in the axial direction. In a cross-sectional view perpendicular to the circumferential direction, the inner ring raceway surface 11da has a partially arcuate shape.
  • the outer ring 12 has a first end surface 12a, a second end surface 12b, an inner circumferential surface 12c (outer ring inner circumferential surface), and an outer circumferential surface 12d (outer ring outer circumferential surface).
  • the first end surface 12a and the second end surface 12b are end surfaces of the outer ring 12 in the axial direction.
  • the second end surface 12b is a surface opposite to the first end surface 12a in the axial direction.
  • the inner peripheral surface 12c extends along the circumferential direction.
  • the inner peripheral surface 12c faces the central axis A side.
  • One end and the other end in the axial direction of the inner peripheral surface 12c are connected to the first end surface 12a and the second end surface 12b, respectively.
  • the outer ring 12 is arranged such that the inner circumferential surface 12c faces the outer circumferential surface 11d with an interval in the radial direction.
  • the outer peripheral surface 12d extends along the circumferential direction.
  • the outer circumferential surface 12d faces the opposite side from the central axis A. That is, the outer circumferential surface 12d is a surface opposite to the inner circumferential surface 12c in the radial direction.
  • One end and the other end in the axial direction of the outer peripheral surface 12d are connected to the first end surface 12a and the second end surface 12b, respectively.
  • the inner peripheral surface 12c has an outer ring raceway surface 12ca.
  • the outer ring raceway surface 12ca is a portion of the inner circumferential surface 12c that contacts the rolling elements 13.
  • the inner circumferential surface 12c is recessed toward the outer circumferential surface 12d in the outer ring raceway surface 12ca.
  • the outer ring raceway surface 12ca is located at the center of the inner peripheral surface 12c in the axial direction. In a cross-sectional view orthogonal to the circumferential direction, the outer ring raceway surface 12ca has a partially arcuate shape.
  • the rolling elements 13 are spherical.
  • the plurality of rolling elements 13 are arranged between the outer peripheral surface 11d and the inner peripheral surface 12c. More specifically, the plurality of rolling elements 13 are arranged along the circumferential direction between the inner ring raceway surface 11da and the outer ring raceway surface 12ca.
  • the cage 14 holds a plurality of rolling elements 13 such that the distance between two rolling elements 13 adjacent to each other in the circumferential direction is within a certain range.
  • the cage 14 includes, for example, an annular portion 14a and a plurality of column portions 14b.
  • the column portion 14b holds the rolling element 13.
  • One side (the right side in FIG. 1A) of the columnar portion 14b in the axial direction is open.
  • the annular portion 14a connects the plurality of columnar portions 14b so as to be lined up along the circumferential direction.
  • the retainer 14 is, for example, a crown-shaped retainer.
  • the cage 14 is preferably a resin molded product made of a thermoplastic resin such as polyamide reinforced with glass fibers.
  • the space between the outer circumferential surface 11d and the inner circumferential surface 12c is defined as a bearing space.
  • the seal 15 closes off the bearing space from the other side in the axial direction (the left side in FIG. 1A).
  • a groove 12cb is formed in the inner peripheral surface 12c.
  • the groove 12cb extends annularly along the circumferential direction.
  • the groove 12cb is located between the second end surface 12b and the outer ring raceway surface 12ca in the axial direction.
  • Seal 15 is annular.
  • the outer peripheral edge of the seal 15 is inserted into the groove 12cb.
  • the inner peripheral edge of the seal 15 is in contact with the outer peripheral surface 11d.
  • the seal 15 is formed, for example, by vulcanizing and adhering oil-resistant rubber (NBR, HNBR, FKM, ACM, etc.) to a core metal.
  • the seal 15 may be one in which the surface of the metal core is subjected to anti-rust treatment. A lubricant is sealed in the bearing space.
  • the sensor-equipped bearing 100 constitutes a bearing device by fitting the inner ring 11 onto the shaft at the inner circumferential surface 11c, and fitting the outer ring 12 into the housing at the outer circumferential surface 12d.
  • the sensor unit 20 includes a stator 21, a power generation coil 22, a circuit board 23, a sensor 24, and a wireless communication module 25.
  • the stator 21 is annular and extends along the circumferential direction.
  • the stator 21 includes a first member 21a and a second member 21b.
  • the first member 21a has an annular shape extending along the circumferential direction.
  • the first member 21a is divided into a first annular portion 21aa, a second annular portion 21ab, and a third annular portion 21ac in the radial direction.
  • the first annular portion 21aa is the radially innermost part
  • the third annular part 21ac is the radially outermost part.
  • the second annular portion 21ab is located between the first annular portion 21aa and the third annular portion 21ac.
  • a power generation coil 22 is arranged in the first annular portion 21aa.
  • the power generation coil 22 is housed in a coil bobbin 22a.
  • the power generation coil 22 is formed by winding enameled wire, for example.
  • the coil bobbin 22a is made of, for example, a resin material. The number of turns and wire diameter of the power generating coil 22 are appropriately determined in consideration of the generated power, self-heating amount, occupied cross-sectional area, etc.
  • the second member 21b is arranged on the first annular portion 21aa. This defines a space in which the power generating coil 22 is arranged.
  • the first member 21a and the second member 21b are preferably made of a magnetic material.
  • the second annular portion 21ab is divided into a first region 21aba and a second region 21abb in the circumferential direction.
  • a circuit board 23 is arranged on the first region 21aba.
  • the circuit board 23 extends along the circumferential direction.
  • the base material of the circuit board 23 is made of, for example, epoxy resin containing glass fiber. From the viewpoint of improving the detection accuracy of the vibration sensor, the base material of the circuit board 23 preferably has a compressive strength of 340 MPa or more and 500 MPa or less and a bending strength of 390 MPa or more and 550 MPa or less.
  • a plurality of electronic components 23a are arranged on the circuit board 23.
  • the plurality of electronic components 23a constitute a power supply section and a conversion section.
  • the power supply section converts the induced electromotive force (alternating current) generated in the power generation coil 22 into direct current.
  • the converter detects the rotation speed of the inner ring 11 by converting the AC waveform of the induced electromotive force generated in the power generation coil 22 into a pulse waveform.
  • a power storage unit is further arranged on the circuit board 23.
  • the power storage unit stores power generated by the power generation coil 22 and converted into direct current by the power supply unit.
  • the power supply section includes, for example, a circuit that rectifies and smoothes alternating current and a booster circuit.
  • the conversion section is configured by, for example, a comparator circuit.
  • the power storage unit is composed of, for example, an electric double layer capacitor or a secondary battery.
  • the sensor 24 is arranged on the circuit board 23.
  • the number and types of sensors 24 may be plural.
  • the sensor 24 includes, for example, a temperature sensor and a vibration sensor. MEMS, platinum resistors, thermistors, thermocouples, thermoelectric elements, etc. are used as temperature sensors.
  • a MEMS, capacitance type, eddy current type, piezoelectric element type, or strain gauge type is used as the vibration sensor.
  • the vibration sensor may be one that detects uniaxial vibration, or may be one that detects biaxial vibration or triaxial vibration.
  • the sensor 24 detects the rotational state (for example, temperature, vibration) of the inner ring 11 and outputs a signal according to the rotational state.
  • the sensor 24 may be any sensor that outputs a physical quantity or a chemical quantity as an electrical signal.
  • the plurality of electronic components 23a further constitute a memory section and a processing section.
  • the memory section stores the output from the sensor 24.
  • the processing unit performs a process of comparing the output from the sensor 24 with a predetermined threshold value and a process of determining the rotational state of the inner ring 11 from the output of the sensor 24 based on a predetermined criterion.
  • the memory section and the processing section are configured by, for example, a microcontroller.
  • the wireless communication module 25 is arranged on the circuit board 23.
  • the wireless communication module 25 wirelessly transmits the output of the sensor 24, which has undergone predetermined processing in the processing section, to the outside. More specifically, the wireless communication module 25 modulates the carrier wave with the output of the sensor 24 that has undergone predetermined processing in the processing section, and sends out the modulated carrier wave from the antenna.
  • This antenna may be built into the wireless communication module 25 or may be externally attached to the wireless communication module 25.
  • the wireless communication module 25 complies with, for example, Zigbee (registered trademark), Bluetooth (registered trademark), WiFi (registered trademark), and IrDA (registered trademark) communication standards.
  • the plurality of electronic components 23a may include an electronic component for attenuating or blocking harmful electrical noise from the outside.
  • These electronic components include, for example, common mode filters, single mode filters, ceramic filters, EMI filters, resistors, capacitors, coils, varistors, inductors, ferrite beads, and the like.
  • the circuit board 23 may be prevented from being exposed to the outside.
  • the second region 21abb may be filled with mold resin 27.
  • a moisture-proof coating may be provided on the surface of the circuit board 23 in order to protect the electronic component 23a from migration.
  • the third annular portion 21ac is a portion that is attached to the outer ring 12.
  • a step portion 12aa, a step portion 12ab, and a groove 12ac are formed in the first end surface 12a.
  • the step portion 12aa, the step portion 12ab, and the groove 12ac extend annularly along the circumferential direction.
  • the step portion 12aa is located at the end of the first end surface 12a on the inner peripheral surface 12c side.
  • the stepped portion 12ab is located on the radially outer side of the stepped portion 12aa.
  • the step portion 12ab is located at a position that protrudes further to one side in the axial direction (to the right in FIG. 1A) than the step portion 12aa.
  • the groove 12ac is formed at the end of the stepped portion 12ab on the opposite side to the stepped portion 12aa.
  • the end of the second annular portion 21ab on the third annular portion 21ac side is on the stepped portion 12aa.
  • the third annular portion 21ac follows the shape of the groove 12ac and the portion of the first end surface 12a located between the groove 12ac and the stepped portion 12aa.
  • a plurality of comb teeth portions 28 may be formed on the inner peripheral surface of the stator 21.
  • the plurality of comb teeth portions 28 are arranged at intervals in the circumferential direction.
  • the comb tooth portions 28 protrude radially inward from the inner circumferential surface of the stator 21 between two adjacent comb tooth portions 28 .
  • the magnetic ring 30 has a core metal 31 and magnetic rubber 32.
  • the core metal 31 has a first portion 31a and a second portion 31b.
  • the first portion 31a has a cylindrical shape extending along the axial direction.
  • the second portion 31b extends radially inward from one end in the axial direction (the right end in FIG. 1A) of the first portion 31a.
  • the core metal 31 is formed, for example, by performing press forming including deep drawing on a thin plate.
  • This thin plate is made of, for example, mild steel or stainless steel.
  • mild steel include SPCC, SPCCT, SPCD, SPCE, and SPCEN.
  • stainless steel include SUS430, SUS201, SUS304, SUS316, SUS321, SUS403, and SUS410.
  • the core bar 31 is preferably made of a magnetic material.
  • the magnetic rubber 32 is arranged at least on the outer peripheral surface of the first portion 31a.
  • the magnetic rubber 32 is formed by kneading and vulcanizing a rubber material and magnetic powder, and adhering it onto the core metal 31 at that time.
  • an adhesive is applied to the core bar 31 in advance.
  • NBR, HNBR, FKM, ACM, etc. are used as the rubber material.
  • the magnetic powder for example, ferrite-based, neodymium-based, or samarium-based magnetic powder is used.
  • the magnetic rubber 32 has north and south poles alternately magnetized along the circumferential direction.
  • the number of magnetic poles magnetized on the magnetic rubber 32 is not particularly limited.
  • the magnetic rubber 32 faces the power generation coil 22 with a gap in the radial direction.
  • the magnetic ring 30 is mounted on a rotating chuck (installation jig) of a magnetizing device.
  • the magnetizing device alternately magnetizes the magnetic rubber 32 with north and south poles by rotating a rotary chuck.
  • a magnetizing coil and a yoke are arranged so as to face the magnetic rubber 32.
  • the first fastener 40 is, for example, a circlip. That is, the first stopper 40 extends along the circumferential direction and has both end portions facing each other with an interval in the circumferential direction.
  • the first stopper 40 is arranged in the groove 12ac while the stator 21 is attached to the outer ring 12 while being reduced in diameter.
  • the first stopper 40 attempts to return to its original shape and contacts the outer ring 12.
  • the first stopper 40 is attached to the outer ring 12 due to the elastic repulsive force along the radial direction, and the stator 21 (sensor unit 20) cannot be removed from the outer ring 12.
  • the stator 21 (sensor unit 20) can be removed from the outer ring 12.
  • the sensor unit 20 is detachably attached to the outer ring 12 by the elastic repulsive force of the first stopper 40 (see FIG. 1B).
  • the second stopper 50 is annular and extends along the circumferential direction.
  • the second stopper 50 has a plurality of biasing parts 51.
  • the plurality of biasing parts 51 are arranged at intervals along the circumferential direction.
  • the biasing portion 51 is, for example, a leaf spring.
  • a groove 11db is formed in the outer peripheral surface 11d.
  • the groove 11db extends along the circumferential direction.
  • the groove 11db is located between the inner raceway surface 11da and the first end surface 11a in the axial direction.
  • a second stopper 50 is arranged within the groove 11db.
  • a stepped portion 11aa is formed on the first end surface 11a.
  • the stepped portion 11aa extends along the circumferential direction.
  • the step portion 11aa is continuous with the outer peripheral surface 11d.
  • the magnetic ring 30 moves from one side in the axial direction (the right side in FIG. 1A) to the other side in the axial direction (the left side in FIG. 1A) with the inner circumferential surface and the outer circumferential surface 11d of the first portion 31a facing each other. ), the second portion 31b is pushed against the elastic repulsive force from the biasing portion 51 until it comes into contact with the stepped portion 11aa. This elastic repulsive force causes the magnetic ring 30 to be attached to the inner ring 11.
  • the magnetic ring 30 is removed from the inner ring 11 by pulling it out against the above elastic repulsive force. In this way, the magnetic ring 30 is removably attached to the inner ring 11 by the elastic repulsive force of the second stopper 50 (see FIG. 1B).
  • the magnetic ring 30 since the magnetic ring 30 is detachably attached to the inner ring 11, it rotates together with the inner ring 11. Further, the magnetic ring 30 faces the power generating coil 22 in the radial direction with a gap therebetween, and has a magnetic rubber 32 whose N pole and S pole are alternately magnetized along the circumferential direction. . Therefore, as the inner ring 11 rotates, an alternating magnetic flux is generated around the power generation coil 22, and an induced electromotive force is generated in the power generation coil 22.
  • FIG. 4A is a first enlarged view at IV in FIG. 3.
  • FIG. 4B is a second enlarged view of IV in FIG. 3.
  • FIG. 4B shows the state when the magnetic ring 30 is rotated from FIG. 4A.
  • magnetic flux is indicated by dotted arrows.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 4A.
  • FIG. 6 is a cross-sectional view taken along VI-VI in FIG. 4B.
  • magnetic flux is indicated by dotted arrows.
  • FIGS. 4A, 4B, 5, and 6 the magnetic flux generated from the magnetic poles magnetized on the magnetic rubber 32 passes through the stator 21 around the generator coil 22 from the comb tooth portion 28. As a result, an induced electromotive voltage is generated in the power generation coil 22.
  • the rolling bearing 10 In the sensor-equipped bearing 100, if a rolling abnormality or the like occurs in the rolling bearing 10 during use, the rolling bearing 10 needs to be replaced.
  • the sensor unit 20 In the sensor-equipped bearing 100, the sensor unit 20 is removably attached to the outer ring 12, and the magnetic ring 30 is removably attached to the inner ring 11, so even when the rolling bearing 10 is replaced, the sensor unit 20 and The magnetic ring 30 can be removed from the rolling bearing 10 and reused. As a result, according to the sensor-equipped bearing 100, costs associated with continued use can be reduced.
  • FIG. 7A is a first enlarged cross-sectional view of the sensor-equipped bearing 100 according to the first modification in the vicinity of the urging portion 51.
  • FIG. 7B is a second enlarged cross-sectional view of the sensor-equipped bearing 100 according to the first modification in the vicinity of the urging portion 51.
  • the leaf spring shape of the biasing portion 51 is different from that of the sensor-equipped bearing 100. That is, the shape of the leaf spring of the biasing portion 51 is not particularly limited as long as it can generate an elastic repulsion force along the radial direction.
  • the sensor unit 20 is removably attached to the outer ring 12, and the magnetic ring 30 is removably attached to the inner ring 11. Even when the rolling bearing 10 is replaced, the sensor unit 20 and the magnetic ring 30 can be removed from the rolling bearing 10 and reused.
  • FIG. 8 is a cross-sectional view of a sensor-equipped bearing 100 according to Modification 2.
  • FIG. 8 shows a cross section corresponding to FIG. 1A.
  • FIG. 9 is an enlarged view of IX in FIG.
  • the groove 11db is not formed in the outer peripheral surface 11d.
  • a groove 11ab is formed in the stepped portion 11aa.
  • the groove 11ab extends along the circumferential direction.
  • the groove 11ab is formed at the end of the stepped portion 11aa on the opposite side to the outer circumferential surface 11d in the radial direction.
  • the core metal 31 further includes a third portion 31c.
  • the third portion 31c extends in a cylindrical shape along the axial direction from the end of the second portion 31b opposite to the first portion 31a.
  • the outer circumferential surface of the third portion 31c faces the inner circumferential surface of the first portion 31a with an interval in the radial direction.
  • the third portion 31c is arranged within the groove 11ab.
  • the second stopper 50 is attached to the side surface of the groove 11ab on the outer peripheral surface 11d side. More specifically, the second stopper 50 is arranged between the side surface of the groove 11ab on the outer peripheral surface 11d side and the outer peripheral surface of the third portion 31c. Furthermore, in the sensor-equipped bearing 100 according to the second modification, the elastic repulsion force from the biasing portion 51 is applied to the third portion 31c toward the radially inward side. That is, in the sensor-equipped bearing 100 according to the second modification, the direction of the elastic repulsion force applied from the urging portion 51 to the second stopper 50 is opposite to that of the sensor-equipped bearing 100.
  • the sensor unit 20 is removably attached to the outer ring 12, and the magnetic ring 30 is removably attached to the inner ring 11. Even when the rolling bearing 10 is replaced, the sensor unit 20 and the magnetic ring 30 can be removed from the rolling bearing 10 and reused.
  • FIG. 10 is a cross-sectional view of a sensor-equipped bearing 100 according to Modification 3.
  • FIG. 10 shows a cross section corresponding to FIG. 8.
  • FIG. 11 is an enlarged view of XI in FIG.
  • the second stopper 50 is attached to the side surface of the groove 11ab on the inner circumferential surface 11c side. More specifically, the second stopper 50 is arranged between the side surface of the groove 11ab on the inner circumferential surface 11c side and the inner circumferential surface of the third portion 31c.
  • the elastic repulsive force from the biasing portion 51 is applied to the third portion 31c toward the outside in the radial direction. That is, in the sensor-equipped bearing 100 according to the third modification, the direction of the elastic repulsion force applied from the urging portion 51 to the second stopper 50 is the same as in the sensor-equipped bearing 100.
  • the sensor unit 20 is removably attached to the outer ring 12, and the magnetic ring 30 is removably attached to the inner ring 11. Even when the rolling bearing 10 is replaced, the sensor unit 20 and the magnetic ring 30 can be removed from the rolling bearing 10 and reused.
  • FIG. 12 is a cross-sectional view of a sensor-equipped bearing 100 according to modification example 4.
  • FIG. 12 shows a cross section corresponding to FIG. 8.
  • FIG. 13 is an enlarged view of XIII in FIG. 12.
  • the second stopper 50 is a circlip.
  • the second stopper 50 has an enlarged diameter and is placed in the groove 11ab. Therefore, the second stopper 50 is attached to the side surface of the groove 11ab on the inner circumferential surface 11c side due to the elastic repulsive force that tends to reduce the diameter.
  • the magnetic ring 30 can be removed from the inner ring 11 with the second stopper 50 removed, but the magnetic ring 30 can be removed with the second stopper 50 attached. 30 cannot be removed from the inner ring 11. Therefore, also in the sensor-equipped bearing 100 according to the fourth modification, the magnetic ring 30 is detachably attached to the inner ring 11.
  • the sensor unit 20 is removably attached to the outer ring 12, and the magnetic ring 30 is removably attached to the inner ring 11. Even when the rolling bearing 10 is replaced, the sensor unit 20 and the magnetic ring 30 can be removed from the rolling bearing 10 and reused.
  • bearing with a sensor 100A A bearing with a sensor (hereinafter referred to as "bearing with a sensor 100A") according to a second embodiment will be described.
  • bearing with a sensor 100A A bearing with a sensor (hereinafter referred to as "bearing with a sensor 100A") according to a second embodiment will be described.
  • the differences from the sensor-equipped bearing 100 will be mainly explained, and duplicate explanations will not be repeated.
  • FIG. 14 is a cross-sectional view of the sensor-equipped bearing 100A.
  • FIG. 14 shows a cross section passing through the central axis A and parallel to the axial direction.
  • FIG. 15 is an enlarged view of XV in FIG. 14.
  • the sensor-equipped bearing 100A includes a rolling bearing 10, a sensor unit 20, a magnetic ring 30, and a first stopper 40.
  • the configuration of the sensor-equipped bearing 100A is common to the configuration of the sensor-equipped bearing 100.
  • the sensor-equipped bearing 100A does not have the second stopper 50. Furthermore, in the sensor-equipped bearing 100A, the magnetic ring 30 is attached to the inner ring 11 by press fitting. That is, in the sensor-equipped bearing 100A, the magnetic ring 30 is not removably attached to the inner ring 11. Regarding these points, the configuration of the sensor-equipped bearing 100A is different from the configuration of the sensor-equipped bearing 100.
  • the sensor unit 20 is detachably attached to the outer ring 12, so even when the rolling bearing 10 is replaced, the sensor unit 20 can be removed from the rolling bearing 10 and reused.
  • the cost of the sensor unit 20 is higher than the cost of the magnetic ring 30. Therefore, according to the sensor-equipped bearing 100A, since the sensor unit 20 can be reused, costs associated with continued use can be reduced even if the magnetic ring 30 cannot be reused.
  • FIG. 16 is a cross-sectional view of a sensor-equipped bearing 100A according to Modification 1.
  • FIG. 16 a cross section corresponding to FIG. 14 is shown.
  • FIG. 17 is an enlarged view of XVII in FIG. 16.
  • a rubber member 60 is used in place of the first stopper 40.
  • the rubber member 60 is ring-shaped.
  • the rubber member 60 is, for example, an O-ring.
  • a groove 21c is formed on the outer peripheral surface of the stator 21.
  • the groove 21c extends annularly along the circumferential direction.
  • a groove 12cc is formed in a portion of the inner circumferential surface 12c that is continuous with the stepped portion 12aa and faces the outer circumferential surface of the stator 21.
  • the groove 12cc faces the groove 21c in the radial direction and extends in an annular shape along the circumferential direction.
  • the rubber member 60 is arranged within the groove 12cc and within the groove 21c.
  • the outer diameter of the stator 21 in the groove 21c is larger than the inner diameter of the rubber member 60. Therefore, the rubber member 60 is compressed along the radial direction in the grooves 12cc and 21c, and the elastic repulsion force along the radial direction from the rubber member 60 accompanying this compression causes the sensor unit 20 (stator 21) to It will be removably attached to the outer ring 12.
  • the sensor unit 20 is detachably attached to the outer ring 12, so the sensor unit 20 can be removed from the rolling bearing 10 and reused.
  • FIG. 18 is a cross-sectional view of a sensor-equipped bearing 100A according to Modification 2.
  • FIG. 18 shows a cross section corresponding to FIG. 16.
  • FIG. 19 is an enlarged view of XIX in FIG. 18.
  • a plurality of plungers 70 are used instead of the rubber member 60.
  • the plunger 70 is attached to the sensor unit 20 by being inserted into a hole formed in the outer peripheral surface of the stator 21.
  • the plurality of plungers 70 are arranged at intervals along the circumferential direction.
  • the plunger 70 has a pin 71 and a compression coil spring 72. With the plunger 70 attached to the sensor unit 20, the pin 71 is in a position protruding radially outward from the outer peripheral surface of the stator 21. When the pin 71 is moved radially inward, the compression coil spring 72 generates an elastic repulsion force radially outward against the pin 71 .
  • the plunger 70 is connected to the stepped portion 12aa and is in contact with a portion of the inner circumferential surface 12c facing the outer circumferential surface of the stator 21, with the pin 71 pushed inward in the radial direction. Therefore, the sensor unit 20 is removably attached to the outer ring 12 by the radially outward elastic repulsion force applied from the compression coil spring 72 to the pin 71.
  • the sensor unit 20 is detachably attached to the outer ring 12, so the sensor unit 20 can be removed from the rolling bearing 10 and reused.
  • FIG. 20 is a cross-sectional view of a sensor-equipped bearing 100A according to Modification 3.
  • FIG. 20 shows a cross section corresponding to FIG. 16.
  • FIG. 21 is an enlarged view at XXI in FIG. 20.
  • the first stopper 40 is used instead of the rubber member 60.
  • the first stopper 40 is not a circlip, but has a plurality of biasing parts 41.
  • the plurality of biasing parts 41 are arranged at intervals along the circumferential direction.
  • the biasing portion 41 is, for example, a leaf spring.
  • the first stopper 40 is disposed between the portion of the inner peripheral surface 12c that is continuous with the stepped portion 12aa and the outer peripheral surface of the stator 21, and the first stopper 40 is disposed between the outer peripheral surface of the stator 21 and the urging portion 41.
  • An elastic repulsion force is applied to the outer circumferential surface of the stator 21 radially inward. Thereby, the sensor unit 20 is detachably attached to the outer ring 12.
  • the sensor unit 20 is detachably attached to the outer ring 12, so the sensor unit 20 can be removed from the rolling bearing 10 and reused.
  • bearing with a sensor 100B A bearing with a sensor (hereinafter referred to as "bearing with a sensor 100B") according to a third embodiment will be described.
  • the differences from the sensor-equipped bearing 100A will be mainly explained, and duplicate explanations will not be repeated.
  • FIG. 22 is a cross-sectional view of the sensor-equipped bearing 100B.
  • FIG. 22 shows a cross section passing through the central axis A and parallel to the axial direction.
  • FIG. 23 is an enlarged view of XXIII in FIG. 22.
  • the sensor-equipped bearing 100B includes a rolling bearing 10, a sensor unit 20, and a magnetic ring 30.
  • the sensor-equipped bearing 100B does not have the second stopper 50, and the magnetic ring 30 is not detachably attached to the inner ring 11. Regarding these points, the configuration of the sensor-equipped bearing 100B is common to the configuration of the sensor-equipped bearing 100A.
  • the sensor-equipped bearing 100B does not have the first stopper 40, and the sensor unit 20 is not removably attached to the outer ring 12. More specifically, in the sensor-equipped bearing 100B, the sensor unit 20 is attached to the outer ring 12 by crimping the stator 21 to the outer ring 12. In this regard, the configuration of the sensor-equipped bearing 100B is different from the configuration of the sensor-equipped bearing 100A. Note that in the sensor-equipped bearing 100B, the magnetic ring 30 may be attached to the inner ring 11 by crimping the core metal 31 to the inner ring 11.
  • the sensor unit 20 is not removably attached to the outer ring 12 and the magnetic ring 30 is not removably attached to the inner ring 11, so when replacing the rolling bearing 10, the sensor unit 20 is not removably attached to the outer ring 12. Also, the magnetic ring 30 cannot be removed from the rolling bearing 10 and reused. However, in the sensor-equipped bearing 100B, the sensor unit 20 can detect the tendency of abnormality (for example, peeling of the raceway surface, minute peeling, etc.) of the rolling bearing 10. Therefore, according to the sensor-equipped bearing 100B, the rolling bearing 10 can be replaced before it malfunctions (for example, cannot rotate due to seizure).
  • abnormality for example, peeling of the raceway surface, minute peeling, etc.
  • FIG. 24 is a cross-sectional view of a sensor-equipped bearing 100B according to Modification 1.
  • FIG. 24 shows a cross section corresponding to FIG. 22.
  • FIG. 25 is an enlarged view at XXV in FIG. 24.
  • the stator 21 is fixed to the outer ring 12 at the welded portion 81, so that the sensor unit 20 is attached to the outer ring 12.
  • the magnetic ring 30 is attached to the inner ring 11 by fixing the core metal 31 to the inner ring 11 at the welding portion 82.
  • Welding portion 81 and welding portion 82 are formed by beam welding.
  • Beam welding includes, for example, laser welding and electron beam welding.
  • Specific examples of lasers used for laser welding include YAG lasers and CO 2 lasers.
  • the sensor unit 20 can detect the trend of abnormality in the rolling bearing 10, so the rolling bearing 10 can be replaced before it malfunctions. Further, since the welded portion 81 and the welded portion 82 are formed by beam welding, in the sensor-equipped bearing 100B according to the first modification, the thermal influence on the inner ring 11 and the outer ring 12 can be minimized.
  • FIG. 26 is a cross-sectional view of a sensor-equipped bearing 100B according to Modification 2.
  • FIG. 26 shows a cross section corresponding to FIG. 22.
  • FIG. 27 is an enlarged view of XXVII in FIG. 26.
  • the stator 21 is fixed to the outer ring 12 with an adhesive 83, so that the sensor unit 20 is attached to the outer ring 12.
  • the magnetic ring 30 is attached to the inner ring 11 by fixing the core bar 31 to the inner ring 11 with adhesive 84.
  • the adhesive 83 and the adhesive 84 are, for example, an anaerobic adhesive or an epoxy resin-based, urethane resin-based, silicone-based, or phenol resin-based adhesive. Adhesive 83 and adhesive 84 are not particularly limited.
  • the sensor unit 20 can detect the tendency of the rolling bearing 10 to be abnormal, so the rolling bearing 10 can be replaced before it malfunctions.
  • the sensor unit 20 is attached to the outer ring 12 by fixing the stator 21 to the outer ring 12 by press-fitting. Also in the sensor-equipped bearing 100B according to the third modification, the sensor unit 20 can detect an abnormal tendency of the rolling bearing 10, so the rolling bearing 10 can be replaced before it malfunctions.
  • sensor-equipped bearing 100C A sensor-equipped bearing (hereinafter referred to as "sensor-equipped bearing 100C") according to a fourth embodiment will be described.
  • sensor-equipped bearing 100C A sensor-equipped bearing (hereinafter referred to as "sensor-equipped bearing 100C") according to a fourth embodiment will be described.
  • the differences from the sensor-equipped bearing 100 will be mainly explained, and duplicate explanations will not be repeated.
  • FIG. 28 is a cross-sectional view of the sensor-equipped bearing 100C.
  • FIG. 28 shows a cross section passing through the central axis A and parallel to the axial direction.
  • FIG. 29 shows a cross section along XXIX-XXIX in FIG. 28.
  • FIG. 30 is a diagram showing the lid 26 superimposed on FIG. 29.
  • the sensor-equipped bearing 100C includes a rolling bearing 10, a sensor unit 20, a magnetic ring 30, a first stopper 40, and a second stopper 50. are doing.
  • the configuration of the sensor-equipped bearing 100C is common to the configuration of the sensor-equipped bearing 100.
  • the sensor 24 is a vibration sensor.
  • the sensor unit 20 connects the outer ring 12 such that the vibration detection direction of the sensor 24 (the dotted arrow in FIG. 29) matches the load direction of the rolling bearing 10 (the solid arrow in FIG. 29). is removably attached to.
  • a mark 26a is provided on the lid 26.
  • the mark 26a overlaps the sensor 24 when viewed along the axial direction.
  • the mark 26a is provided by drawing a circle, but the method of attaching the mark 26a is not limited to this. Note that when the mold resin 27 is also placed on the circuit board 23, the mark 26a may be provided on the mold resin 27.
  • the reliability of the vibration value detected by the sensor 24 is improved.
  • the vibration detection direction of the sensor 24 and the load application direction of the rolling bearing 10 can be determined. Can be easily matched. Therefore, according to the sensor-equipped bearing 100C, the reliability of the vibration value detected by the sensor 24 can be improved.
  • a bearing with a sensor in which the inner ring is a rotating ring and the outer ring is a fixed ring, but the inner ring may be a fixed ring and the outer ring may be a rotating ring. That is, one of the inner ring and the outer ring may be a rotating ring, and the other of the inner ring and the outer ring may be a fixed ring.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing Of Bearings (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

センサ付き軸受(100,100A,100B,100C)は、回転輪(11)、固定輪(12)及び転動体(13)を含む軸受(10)と、センサユニット(20)とを備えている。回転輪は、周方向に沿って延在している回転輪軌道面(11da)を有する。固定輪は、周方向に沿って延在し、かつ径方向において回転輪軌道面と間隔を空けて対向している固定輪軌道面(12ca)を有する。転動体は、回転輪軌道面と固定輪軌道面との間に配置されている。センサユニットは、固定輪に着脱可能に取り付けられており、かつ回転輪の回転に伴って誘導起電圧を発生させる発電コイル(22)と、物理量又は化学量を電気信号として出力するセンサ(24)と、センサの出力を外部に無線送信する無線通信モジュール(25)とを有する。

Description

センサ付き軸受及び軸受装置
 本発明は、センサ付き軸受及び軸受装置に関する。
 例えば特開2005-256892号公報(特許文献1)には、センサ付き軸受が記載されている。特許文献1に記載のセンサ付き軸受は、転がり軸受と、磁気リングと、センサユニットとを有している。
 転がり軸受は、内輪と、外輪と、転動体と、保持器とを有している。磁気リングは、芯金と、磁性ゴム層とを有している。芯金の内周面には、内輪が圧入されている。磁性ゴム層は、芯金の外周面上に配置されている。センサユニットは、外環と、センサハウジングとを有している。外環は、外輪の内周面に圧入されている。センサハウジングは、外環の内周面上に取り付けられている。
特開2005-256892号公報
 上記のとおり、特許文献1に記載のセンサ付き軸受では、磁気リング及びセンサユニットがそれぞれ圧入により内輪及び外輪に固定されているため、磁気リングを内輪から取り外すことができず、センサユニットを外輪から取り外すことができない。そのため、転がり異常等により転がり軸受を交換する際に、磁気リング及びセンサユニットも併せて交換しなければならない。このことを別の観点から言えば、特許文献1に記載のセンサ付き軸受では、磁気リング及びセンサユニットの再利用ができない。
 本発明は、上記のような問題点に鑑みてなされたものである。より具体的には、本発明は、転がり軸受が交換される場合でも少なくともセンサユニットの再利用が可能なセンサ付き軸受装置及び軸受装置を提供するものである。
 本発明のセンサ付き軸受は、回転輪、固定輪及び転動体を含む軸受と、センサユニットとを備えている。回転輪は、周方向に沿って延在している回転輪軌道面を有する。固定輪は、周方向に沿って延在し、かつ径方向において回転輪軌道面と間隔を空けて対向している固定輪軌道面を有する。転動体は、回転輪軌道面と固定輪軌道面との間に配置されている。センサユニットは、固定輪に着脱可能に取り付けられており、かつ回転輪の回転に伴って誘導起電圧を発生させる発電コイルと、物理量又は化学量を電気信号として出力するセンサと、センサの出力を外部に無線送信する無線通信モジュールとを有する。
 上記のセンサ付き軸受は、回転輪に着脱可能に取り付けられている磁気リングをさらに備えていてもよい。磁気リングには、N極及びS極が周方向に沿って交互に着磁されていてもよい。センサは、回転輪の回転状態を検出して電気信号として出力してもよい。
 上記のセンサ付き軸受において、センサユニットは、磁気リングの回転に伴い、発電コイルに誘導起電圧を発生させるとともに、発電コイルで発生した誘導起電圧の波形に基づいて回転輪の回転数を検出してもよい。
 上記のセンサ付き軸受において、センサユニットは、固定輪に着脱可能に取り付けられており、かつ、発電コイルが搭載されている環状のステータを有していてもよい。ステータは、周方向に沿って延在しており、かつ、径方向において磁気リングと間隔を空けて対向しているステータ内周面を有していてもよい。ステータ内周面には、周方向に沿って間隔を空けて並んでいる複数の櫛歯部が形成されていてもよい。櫛歯部は、磁気リングからの磁束の磁路を構成していてもよい。磁気リングの磁極の数は、櫛歯部の数に等しくてもよい。
 上記のセンサ付き軸受において、ステータは、磁気リングからの磁束が櫛歯部から発電コイルの周囲を通るように構成されていてもよい。
 上記のセンサ付き軸受は、リング状の第1止め金具をさらに備えていてもよい。センサユニットは、第1止め金具からの径方向に沿う弾性反発力により固定輪に着脱可能に取り付けられていてもよい。
 上記のセンサ付き軸受において、第1止め金具は、周方向において間隔を空けて並んでいる複数の第1付勢部を有していてもよい。センサユニットは、第1付勢部からの径方向に沿う弾性反発力により固定輪に着脱可能に取り付けられていてもよい。
 上記のセンサ付き軸受は、リング状の第2止め金具をさらに備えていてもよい。磁気リングは、第2止め金具からの径方向に沿う弾性反発力により回転輪に着脱可能に取り付けられていてもよい。
 上記のセンサ付き軸受において、第2止め金具は、周方向において間隔を空けて並んでいる複数の第2付勢部を有していてもよい。磁気リングは、第2付勢部からの径方向に沿う弾性反発力により回転輪に着脱可能に取り付けられていてもよい。
 上記のセンサ付き軸受は、リング状のゴム部材をさらに備えていてもよい。センサユニットは、ゴム部材からの径方向に沿う弾性反発力により固定輪に着脱可能に取り付けられていてもよい。
 上記のセンサ付き軸受は、圧縮コイルばねをさらに備えていてもよい。センサユニットは、圧縮コイルばねからの径方向に沿う弾性反発力により固定輪に着脱可能に取り付けられていてもよい。
 上記のセンサ付き軸受において、センサ及び無線通信モジュールは、発電コイルで発生した誘導起電圧により駆動されてもよい。
 上記のセンサ付き軸受において、無線通信モジュールは、連続的又は間欠的に、センサからの出力で搬送波を変調して外部に無線送信してもよい。
 上記のセンサ付き軸受において、センサユニットの開放部は、樹脂材により密閉されていてもよい。
 上記のセンサ付き軸受において、センサは、振動センサであってもよい。センサユニットは、センサの検出方向が軸受の荷重方向と一致するように固定輪に着脱可能に取り付けられていてもよい。センサユニットには、センサの検出方向と軸受の荷重方向とを一致させるための目印が設けられていてもよい。
 本発明の軸受装置は、軸と、ハウジングと、センサ付き軸受とを備える。回転輪及び固定輪の一方は、軸に嵌め合わされている。回転輪及び固定輪の他方は、ハウジングに嵌め合わされている。
 本発明のセンサ付き軸受及び本発明の軸受装置によると、転がり軸受が交換される場合でも少なくともセンサユニットの再利用が可能である。
センサ付き軸受100の断面図である。 センサユニット20及び磁気リング30が転がり軸受10から取り外された際のセンサ付き軸受100の断面図である。 図1A中のIIにおける拡大図である。 図1A中のIII-IIIにおける断面図である。 図3中のIVにおける第1拡大図である。 図3中のIVにおける第2拡大図である。 図4A中のV-Vにおける断面図である。 図4B中のVI-VIにおける断面図である。 付勢部51の近傍における変形例1に係るセンサ付き軸受100の第1拡大断面図である。 付勢部51の近傍における変形例1に係るセンサ付き軸受100の第2拡大断面図である。 変形例2に係るセンサ付き軸受100の断面図である。 図8中のIXにおける拡大図である。 変形例3に係るセンサ付き軸受100の断面図である。 図10中のXIにおける拡大図である。 変形例4に係るセンサ付き軸受100の断面図である。 図12中のXIIIにおける拡大図である。 センサ付き軸受100Aの断面図である。 図14中のXVにおける拡大図である。 変形例1に係るセンサ付き軸受100Aの断面図である。 図16中のXVIIにおける拡大図である。 変形例2に係るセンサ付き軸受100Aの断面図である。 図18中のXIXにおける拡大図である。 変形例3に係るセンサ付き軸受100Aの断面図である。 図20中のXXIにおける拡大図である。 センサ付き軸受100Bの断面図である。 図22中のXXIIIにおける拡大図である。 変形例1に係るセンサ付き軸受100Bの断面図である。 図24中のXXVにおける拡大図である。 変形例2に係るセンサ付き軸受100Bの断面図である。 図26中のXXVIIにおける拡大図である。 センサ付き軸受100Cの断面図である。 図28中のXXIX-XXIXにおける断面が示されている。 図29に蓋26を重ねて示した図である。
 本発明の実施形態の詳細を、図面を参照しながら説明する。以下の図面では、同一又は相当する部分に同一の参照符号を付し、重複する説明は繰り返さないものとする。
 (第1実施形態)
 第1実施形態に係るセンサ付き軸受(以下「センサ付き軸受100」)を説明する。
 <センサ付き軸受100の構成>
 以下に、センサ付き軸受100の構成を説明する。
 図1Aは、センサ付き軸受100の断面図である。図1Aには、内輪11の中心軸(中心軸A)を通り、かつ軸方向に平行な断面が示されている。図1Bは、センサユニット20及び磁気リング30が転がり軸受10から取り外された際のセンサ付き軸受100の断面図である。図2は、図1A中のIIにおける拡大図である。図3は、図1A中のIII-IIIにおける断面図である。図1A、図1B、図2及び図3に示されるように、センサ付き軸受100は、転がり軸受10と、センサユニット20と、磁気リング30と、第1止め金具40と、第2止め金具50とを有している。
 中心軸Aに沿う方向を、軸方向とする。中心軸Aを通り、かつ軸方向に直交している方向を、径方向とする。軸方向に沿って見た際に中心軸Aを中心とする円周に沿う方向を、周方向とする。
 転がり軸受10は、例えば、深溝玉軸受である。但し、転がり軸受10は、これに限られるものではない。転がり軸受10は、内輪11と、外輪12と、複数の転動体13と、保持器14とを有している。転がり軸受10は、シール15をさらに有していてもよい。内輪11は回転輪であり、外輪12は固定輪である。
 内輪11は、第1端面11aと、第2端面11bと、内周面11c(内輪内周面)と、外周面11d(内輪外周面)とを有している。第1端面11a及び第2端面11bは、軸方向における内輪11の端面である。第2端面11bは、軸方向における第1端面11aの反対面である。
 内周面11cは、周方向に沿って延在している。内周面11cは、中心軸A側を向いている。内周面11cの軸方向における一方端及び他方端は、それぞれ、第1端面11a及び第2端面11bに連なっている。外周面11dは、周方向に沿って延在している。外周面11dは、中心軸Aとは反対側を向いている。すなわち、外周面11dは、径方向における内周面11cの反対面である。外周面11dの軸方向における一方端及び他方端は、それぞれ、第1端面11a及び第2端面11bに連なっている。
 外周面11dは、内輪軌道面11daを有している。内輪軌道面11daは、転動体13に接触する外周面11dの部分である。外周面11dは、内輪軌道面11daにおいて内周面11c側に窪んでいる。内輪軌道面11daは、軸方向における外周面11dの中央部にある。周方向に直交する断面視において、内輪軌道面11daは、部分円弧状になっている。
 外輪12は、第1端面12aと、第2端面12bと、内周面12c(外輪内周面)と、外周面12d(外輪外周面)とを有している。第1端面12a及び第2端面12bは、軸方向における外輪12の端面である。第2端面12bは、軸方向における第1端面12aの反対面である。
 内周面12cは、周方向に沿って延在している。内周面12cは、中心軸A側を向いている。内周面12cの軸方向における一方端及び他方端は、それぞれ、第1端面12a及び第2端面12bに連なっている。外輪12は、内周面12cが外周面11dと径方向において間隔を空けて対向するように配置されている。外周面12dは、周方向に沿って延在している。外周面12dは、中心軸Aとは反対側を向いている。すなわち、外周面12dは、径方向における内周面12cの反対面である。外周面12dの軸方向における一方端及び他方端は、それぞれ、第1端面12a及び第2端面12bに連なっている。
 内周面12cは、外輪軌道面12caを有している。外輪軌道面12caは、転動体13に接触する内周面12cの部分である。内周面12cは、外輪軌道面12caにおいて外周面12d側に窪んでいる。外輪軌道面12caは、軸方向における内周面12cの中央部にある。周方向に直交する断面視において、外輪軌道面12caは、部分円弧状になっている。
 転動体13は、球状である。複数の転動体13は、外周面11dと内周面12cとの間に配置されている。より具体的には、複数の転動体13は、内輪軌道面11daと外輪軌道面12caとの間で、周方向に沿って並んでいる。
 保持器14は、周方向において隣り合っている2つの転動体13の間の間隔が一定範囲内となるように、複数の転動体13を保持している。保持器14は、例えば、環状部14aと、複数の柱部14bとを有している。柱部14bは、転動体13を保持している。柱部14bの軸方向における一方側(図1A中の右側)は、開口されている。環状部14aは、複数の柱部14bを周方向に沿って並ぶように接続している。このことを別の観点から言えば、保持器14は、例えば冠形の保持器である。保持器14は、ガラス繊維により強化されたポリアミド等の熱可塑性樹脂により形成されている樹脂成形品であることが好ましい。
 外周面11dと内周面12cとの間の空間を、軸受空間とする。シール15は、軸方向における他方側(図1A中の左側)から、軸受空間を閉塞している。内周面12cには、溝12cbが形成されている。溝12cbは、周方向に沿って環状に延在している。溝12cbは、軸方向において、第2端面12bと外輪軌道面12caとの間にある。シール15は、環状である。シール15の外周縁は、溝12cbに挿入されている。シール15の内周縁は、外周面11dに接触している。シール15は、例えば、芯金に耐油性ゴム(NBR、HNBR、FKM、ACM等)を加硫接着することにより形成されている。シール15は、芯金の表面に防錆処理が施されたものであってもよい。軸受空間には、潤滑剤が封入されている。
 センサ付き軸受100は、内輪11が内周面11cにおいて軸に嵌め合わされるとともに、外輪12が外周面12dにおいてハウジングに嵌め合わされることにより、軸受装置を構成する。
 センサユニット20は、ステータ21と、発電コイル22と、回路基板23と、センサ24と、無線通信モジュール25とを有している。
 ステータ21は、周方向に沿って延在している環状である。ステータ21は、第1部材21aと、第2部材21bとを有している。第1部材21aは、周方向に沿って延在している環状である。第1部材21aは、径方向において、第1環状部21aaと、第2環状部21abと、第3環状部21acとに区分されている。第1環状部21aaは最も径方向内側にあり、第3環状部21acは最も径方向外側にある。第2環状部21abは、第1環状部21aaと第3環状部21acとの間にある。
 第1環状部21aaには、発電コイル22が配置されている。発電コイル22は、コイルボビン22aに収納されている。発電コイル22は、例えばエナメル線を巻回することにより形成されている。コイルボビン22aは、例えば樹脂材料により形成されている。発電コイル22の巻き数や線径は、発電される電力、自己発熱量、占有断面積等を考慮して適宜決定される。
 第2部材21bは、第1環状部21aa上に配置されている。これにより、発電コイル22が配置される空間が画されている。第1部材21a及び第2部材21bは、好ましくは、磁性材料により形成されている。
 第2環状部21abは、周方向において、第1領域21abaと、第2領域21abbとに区分されている。第1領域21aba上には、回路基板23が配置されている。回路基板23は、周方向に沿って延在している。回路基板23の基材は、例えばガラス繊維を含むエポキシ樹脂により形成されている。回路基板23の基材は、振動センサの検出精度を向上する観点から、340MPa以上500MPa以下の圧縮強度及び390MPa以上550MPa以下の曲げ強度を有していることが好ましい。回路基板23上には、複数の電子部品23aが配置されている。
 複数の電子部品23aは、電源部と、変換部とを構成している。電源部は、発電コイル22で発生した誘導起電圧(交流)を直流に変換する。変換部は、発電コイル22で発生した誘導起電圧の交流波形をパルス波形に変換することにより、内輪11の回転数を検出する。回路基板23上には、蓄電部がさらに配置されている。蓄電部は、発電コイル22で発生され、かつ電源部で直流に変換された電力を蓄電する。電源部は、例えば交流を整流して平滑化する回路や昇圧回路により構成されている。変換部は、例えばコンパレータ回路により構成されている。蓄電部は、例えば電気二重層キャパシタや二次電池により構成されている。
 センサ24は、回路基板23上に配置されている。センサ24の数及び種類は、複数であってもよい。センサ24には、例えば温度センサ、振動センサが含まれている。温度センサには、MEMS、白金抵抗体、サーミスタ、熱電対、熱電素子等が用いられる。振動センサには、MEMS又は静電容量式、渦電流式、圧電素子式若しくは歪ゲージ式のものが用いられる。振動センサは、1軸の振動を検出するものであってもよく、2軸又は3軸の振動を検出するものであってもよい。センサ24は、内輪11の回転状態(例えば、温度、振動)を検知し、当該回転状態に応じた信号を出力する。センサ24は、物理量又は化学量を電気信号として出力するものであればよい。
 複数の電子部品23aは、メモリ部と、処理部とをさらに構成している。メモリ部は、センサ24からの出力を保存する。処理部は、センサ24からの出力を所定の閾値と比較する処理や所定の判断基準に基づいてセンサ24の出力から内輪11の回転状態を判定する処理を行う。メモリ部及び処理部は、例えば、マイクロコントローラにより構成されている。
 無線通信モジュール25は、回路基板23上に配置されている。無線通信モジュール25は、処理部で所定の処理が行われたセンサ24の出力を外部に無線送信する。より具体的には、無線通信モジュール25は、搬送波を処理部で所定の処理が行われたセンサ24の出力で変調し、変調された搬送波をアンテナから送出する。このアンテナは、無線通信モジュール25に内蔵されていてもよく、無線通信モジュール25に外付けされていてもよい。無線通信モジュール25は、例えば、Zigbee(登録商標)、Bluetooth(登録商標)、WiFi(登録商標)、IrDA(登録商標)の通信規格に準拠している。
 複数の電子部品23aには、外部からの有害な電気的ノイズを減衰又は遮断するための電子部品が含まれていてもよい。これらの電子部品は、例えば、コモンモードフィルタ、シングルモードフィルタ、セラミックフィルタ、EMIフィルタ、抵抗器、コンデンサ、コイル、バリスタ、インダクタ、フェライトビーズ等である。
 回路基板23の上方に蓋26が配置されることにより、回路基板23の外部への露出が防止されてもよい。第2領域21abb上には、モールド樹脂27が充填されていてもよい。電子部品23aをマイグレーションから保護するために、回路基板23の表面に防湿被膜が設けられていてもよい。
 第3環状部21acは、外輪12への取り付けに供される部分である。第1端面12aには、段差部12aaと、段差部12abと、溝12acとが形成されている。段差部12aa、段差部12ab及び溝12acは、周方向に沿って環状に延在している。段差部12aaは、第1端面12aの内周面12c側の端にある。段差部12abは、段差部12aaの径方向外側にある。段差部12abは、段差部12aaよりも軸方向における一方側(図1A中の右側)に突出した位置にある。溝12acは、段差部12aaとは反対側の段差部12abの端に形成されている。第2環状部21abの第3環状部21ac側の端部は、段差部12aa上にある。第3環状部21acは、溝12ac及び溝12acと段差部12aaとの間にある第1端面12aの部分の形状に沿っている。
 ステータ21の内周面には、複数の櫛歯部28が形成されていてもよい。複数の櫛歯部28は、周方向において間隔を空けて並んでいる。櫛歯部28は、隣り合っている2つの櫛歯部28の間にあるステータ21の内周面よりも径方向内側に向かって突出している。
 磁気リング30は、芯金31と、磁性ゴム32とを有している。芯金31は、第1部分31aと、第2部分31bとを有している。第1部分31aは、軸方向に沿って延在している筒状である。第2部分31bは、第1部分31aの軸方向における一方端(図1A中の右側の端)から径方向内側に向かって延在している。
 芯金31は、例えば、薄板に対する深絞り加工を含むプレス成形を行うことにより形成される。この薄板は、例えば、軟鋼又はステンレス鋼により形成されている。軟鋼の具体例としては、SPCC、SPCCT、SPCD、SPCE、SPCEN等が挙げられる。ステンレス鋼の具体例としては、SUS430、SUS201、SUS304、SUS316、SUS321、SUS403、SUS410等が挙げられる。芯金31は、好ましくは磁性材料により形成されている。
 磁性ゴム32は、少なくとも第1部分31aの外周面上に配置されている。磁性ゴム32は、ゴム材及び磁性粉を混錬して加硫し、その際に芯金31上に接着されることにより形成される。なお、磁性ゴム32を接着するために、芯金31には予め接着剤が塗布されていることが好ましい。ゴム材には、例えば、NBR、HNBR、FKM、ACM等が用いられる。磁性粉には、例えば、フェライト系、ネオジム系、サマリウム系の磁性粉が用いられる。
 磁性ゴム32は、N極及びS極が周方向に沿って交互に着磁されている。磁性ゴム32に着磁される磁極の数は、特に限定されない。磁性ゴム32は、径方向において、発電コイル22と間隔を空けて対向している。
 芯金31と磁性ゴム32とが一体化された後、磁気リング30は、着磁装置の回転チャック(取り付け治具)に装着される。着磁装置は、回転チャックを回転させることにより磁性ゴム32にN極及びS極を交互に着磁させる。この際、磁性ゴム32と対向するように、着磁コイル及びヨークが配置されている。着磁コイルに流れる電流の方向を回転チャックの回転に同期して交互に切り替えることにより、磁性ゴム32にN極及びS極が交互に着磁されることになる。
 第1止め金具40は、例えば、サークリップである。すなわち、第1止め金具40は、周方向に沿って延在しており、周方向において間隔を空けて互いに対向している両端部を有している。第1止め金具40は、縮径されながら、ステータ21が外輪12に取り付けられている状態で溝12ac内に配置される。第1止め金具40が溝12ac内に配置されると、第1止め金具40は、元の形状に戻ろうとして、外輪12に接触する。この際の径方向に沿った弾性反発力により第1止め金具40が外輪12に取り付けられ、ステータ21(センサユニット20)が外輪12から取り外せなくなる。他方で、第1止め金具40を再び縮径して溝12ac内から取り出せば、ステータ21(センサユニット20)を外輪12から取り外せるようになる。このように、センサユニット20は、第1止め金具40の弾性反発力により、外輪12に着脱可能に取り付けられている(図1B参照)。
 第2止め金具50は、周方向に沿って延在している環状である。第2止め金具50は、複数の付勢部51を有している。複数の付勢部51は、周方向に沿って間隔を空けて並んでいる。付勢部51は、例えば、板ばねになっている。外周面11dには、溝11dbが形成されている。溝11dbは、周方向に沿って延在している。溝11dbは、軸方向において、内輪軌道面11daと第1端面11aとの間にある。溝11db内には、第2止め金具50が配置されている。
 第1端面11aには、段差部11aaが形成されている。段差部11aaは、周方向に沿って延在している。段差部11aaは、外周面11dに連なっている。磁気リング30は、第1部分31aの内周面と外周面11dとが対向している状態で、軸方向における一方側(図1A中の右側)から軸方向における他方側(図1A中の左側)に向かって、第2部分31bが段差部11aaに接触するまで、付勢部51からの弾性反発力に抗して押し込まれる。この弾性反発力により、磁気リング30は、内輪11に取り付けられる。
 他方で、上記の弾性反発力に抗して磁気リング30を引き抜くことにより、磁気リング30が内輪11から取り外される。このようにして、磁気リング30は、第2止め金具50の弾性反発力により、着脱可能に内輪11に取り付けられていることになる(図1B参照)。
 上記のように、磁気リング30は、内輪11に着脱可能に取り付けられているため、内輪11と共に回転する。また、磁気リング30は、径方向において発電コイル22と間隔を空けて対向しており、かつ周方向に沿ってN極及びS極が交互に着磁されている磁性ゴム32を有している。そのため、内輪11の回転に伴って交番磁束が発電コイル22の周囲に発生し、発電コイル22に誘導起電圧が発生する。
 図4Aは、図3中のIVにおける第1拡大図である。図4Bは、図3中のIVにおける第2拡大図である。図4Bには、図4Aから磁気リング30が回転した際の状態が示されている。図4A及び図4B中では、磁束が点線の矢印により示されている。図5は、図4A中のV-Vにおける断面図である。図6は、図4B中のVI-VIにおける断面図である。図5中及び図6中では、磁束が点線の矢印により示されている。図4A、図4B、図5及び図6に示されるように、磁性ゴム32に着磁されている磁極から発生する磁束は、櫛歯部28から発電コイル22の周囲にあるステータ21を通る。これにより、発電コイル22には、誘導起電圧が発生することになる。
 <センサ付き軸受100の効果>
 以下に、センサ付き軸受100の効果を説明する。
 センサ付き軸受100では、使用時に転がり軸受10に転がり異常等が発生すると、転がり軸受10を交換する必要がある。センサ付き軸受100では、センサユニット20が外輪12に着脱可能に取り付けられているとともに磁気リング30が内輪11に着脱可能に取り付けられているため、転がり軸受10を交換する場合でも、センサユニット20及び磁気リング30を転がり軸受10から取り外して再利用することができる。その結果、センサ付き軸受100によると、使用継続に伴うコストを低減することができる。
 <変形例1>
 以下に、変形例1に係るセンサ付き軸受100を説明する。ここでは、センサ付き軸受100と異なる点を主に説明し、重複する説明は繰り返さない。
 図7Aは、付勢部51の近傍における変形例1に係るセンサ付き軸受100の第1拡大断面図である。図7Bは、付勢部51の近傍における変形例1に係るセンサ付き軸受100の第2拡大断面図である。図7A及び図7Bに示されるように、変形例1に係るセンサ付き軸受100では、付勢部51の板ばね形状がセンサ付き軸受100と異なっている。すなわち、付勢部51の板ばね形状は、径方向に沿って弾性反発力を発生させることができるものであれば、特に限定されない。
 変形例1に係るセンサ付き軸受100でも、センサユニット20が外輪12に着脱可能に取り付けられているとともに、磁気リング30が内輪11に着脱可能に取り付けられているため、転がり異常等に起因して転がり軸受10を交換する場合でも、センサユニット20及び磁気リング30を転がり軸受10から取り外して再利用することができる。
 <変形例2>
 以下に、変形例2に係るセンサ付き軸受100を説明する。ここでは、センサ付き軸受100と異なる点を主に説明し、重複する説明は繰り返さない。
 図8は、変形例2に係るセンサ付き軸受100の断面図である。図8には、図1Aに対応する断面が示されている。図9は、図8中のIXにおける拡大図である。図8及び図9に示されるように、変形例2に係るセンサ付き軸受100では、外周面11dに溝11dbが形成されていない。また、変形例2に係るセンサ付き軸受100では、段差部11aaに、溝11abが形成されている。溝11abは、周方向に沿って延在している。溝11abは、径方向において、外周面11dとは反対側の段差部11aaの端に形成されている。
 変形例2に係るセンサ付き軸受100では、芯金31が、第3部分31cをさらに有している。第3部分31cは、第1部分31aとは反対側の第2部分31bの端から、軸方向に沿って、筒状に延在している。第3部分31cの外周面は、径方向において、第1部分31aの内周面と間隔を空けて対向している。第3部分31cは、溝11ab内に配置されている。
 変形例2に係るセンサ付き軸受100では、第2止め金具50が、溝11abの外周面11d側の側面に取り付けられている。より具体的には、第2止め金具50が、溝11abの外周面11d側の側面と第3部分31cの外周面との間に配置されている。また、変形例2に係るセンサ付き軸受100では、付勢部51からの弾性反発力が、径方向内側に向かって第3部分31cに加わっている。すなわち、変形例2に係るセンサ付き軸受100では、付勢部51から第2止め金具50に加わる弾性反発力の方向が、センサ付き軸受100と逆になっている。
 変形例2に係るセンサ付き軸受100でも、センサユニット20が外輪12に着脱可能に取り付けられているとともに、磁気リング30が内輪11に着脱可能に取り付けられているため、転がり異常等に起因して転がり軸受10を交換する場合でも、センサユニット20及び磁気リング30を転がり軸受10から取り外して再利用することができる。
 <変形例3>
 以下に、変形例3に係るセンサ付き軸受100を説明する。ここでは、変形例2に係るセンサ付き軸受100と異なる点を主に説明し、重複する説明は繰り返さない。
 図10は、変形例3に係るセンサ付き軸受100の断面図である。図10には、図8に対応する断面が示されている。図11は、図10中のXIにおける拡大図である。図10及び図11に示されるように、変形例3に係るセンサ付き軸受100では、第2止め金具50が、溝11abの内周面11c側の側面に取り付けられている。より具体的には、第2止め金具50が、溝11abの内周面11c側の側面と第3部分31cの内周面との間に配置されている。また、変形例3に係るセンサ付き軸受100では、付勢部51からの弾性反発力が、径方向外側に向かって第3部分31cに加わっている。すなわち、変形例3に係るセンサ付き軸受100では、付勢部51から第2止め金具50に加わる弾性反発力の方向が、センサ付き軸受100と同一になっている。
 変形例3に係るセンサ付き軸受100でも、センサユニット20が外輪12に着脱可能に取り付けられているとともに、磁気リング30が内輪11に着脱可能に取り付けられているため、転がり異常等に起因して転がり軸受10を交換する場合でも、センサユニット20及び磁気リング30を転がり軸受10から取り外して再利用することができる。
 <変形例4>
 以下に、変形例4に係るセンサ付き軸受100を説明する。ここでは、変形例2に係るセンサ付き軸受100と異なる点を主に説明し、重複する説明は繰り返さない。
 図12は、変形例4に係るセンサ付き軸受100の断面図である。図12には、図8に対応する断面が示されている。図13は、図12中のXIIIにおける拡大図である。図12及び図13に示されるように、変形例4に係るセンサ付き軸受100では、第2止め金具50が、サークリップである。
 変形例4に係るセンサ付き軸受100では、第2止め金具50が、拡径された上で、溝11abに配置されている。そのため、第2止め金具50は、縮径しようとする弾性反発力により、溝11abの内周面11c側の側面に取り付けられていることになる。変形例4に係るセンサ付き軸受100では、第2止め金具50が取り外されている状態で磁気リング30を内輪11から取り外すことができるが、第2止め金具50が取り付けられている状態で磁気リング30を内輪11から取り外すことができない。そのため、変形例4に係るセンサ付き軸受100でも、磁気リング30は、内輪11に着脱可能に取り付けられていることになる。
 変形例4に係るセンサ付き軸受100でも、センサユニット20が外輪12に着脱可能に取り付けられているとともに、磁気リング30が内輪11に着脱可能に取り付けられているため、転がり異常等に起因して転がり軸受10を交換する場合でも、センサユニット20及び磁気リング30を転がり軸受10から取り外して再利用することができる。
 (第2実施形態)
 第2実施形態に係るセンサ付き軸受(以下「センサ付き軸受100A」)を説明する。ここでは、センサ付き軸受100と異なる点を主に説明し、重複する説明は繰り返さないものとする。
 <センサ付き軸受100Aの構成>
 以下に、センサ付き軸受100Aの構成を説明する。
 図14は、センサ付き軸受100Aの断面図である。図14には、中心軸Aを通り、かつ、軸方向に平行な断面が示されている。図15は、図14中のXVにおける拡大図である。図14及び図15に示されているように、センサ付き軸受100Aは、転がり軸受10と、センサユニット20と、磁気リング30と、第1止め金具40とを有している。この点に関して、センサ付き軸受100Aの構成は、センサ付き軸受100の構成と共通している。
 センサ付き軸受100Aは、第2止め金具50を有していない。また、センサ付き軸受100Aでは、磁気リング30は、圧入により、内輪11に取り付けられている。すなわち、センサ付き軸受100Aでは、磁気リング30が内輪11に着脱可能に取り付けられていない。これらの点に関して、センサ付き軸受100Aの構成は、センサ付き軸受100の構成と異なっている。
 <センサ付き軸受100Aの効果>
 センサ付き軸受100Aでは、センサユニット20が外輪12に着脱可能に取り付けられているため、転がり軸受10を交換する場合でも、センサユニット20を転がり軸受10から取り外して再利用することができる。通常、センサユニット20のコストは、磁気リング30のコストよりも高い。そのため、センサ付き軸受100Aによると、センサユニット20の再利用が可能であることにより、磁気リング30の再利用ができなくても、使用継続に伴うコストの低減が可能である。
 <変形例1>
 以下に、変形例1に係るセンサ付き軸受100Aを説明する。ここでは、センサ付き軸受100Aと異なる点を主に説明し、重複する説明は繰り返さない。
 図16は、変形例1に係るセンサ付き軸受100Aの断面図である。図16には、図14に対応する断面が、示されている。図17は、図16中のXVIIにおける拡大図である。図16及び図17に示されるように、変形例1に係るセンサ付き軸受100Aでは、第1止め金具40に代えて、ゴム部材60が用いられている。ゴム部材60は、リング状である。ゴム部材60は、例えばOリングである。
 変形例1に係るセンサ付き軸受100Aでは、ステータ21の外周面に、溝21cが形成されている。溝21cは、周方向に沿って環状に延在している。また、変形例1に係るセンサ付き軸受100Aでは、段差部12aaに連なっており、かつステータ21の外周面に対向している内周面12cの部分に、溝12ccが形成されている。溝12ccは、径方向において溝21cと対向しており、かつ周方向に沿って環状に延在している。
 ゴム部材60は、溝12cc内及び溝21c内に配置されている。溝21cにおけるステータ21の外径は、ゴム部材60の内径よりも大きい。そのため、溝12cc内及び溝21c内においてゴム部材60は径方向に沿って圧縮されており、この圧縮に伴うゴム部材60からの径方向に沿う弾性反発力により、センサユニット20(ステータ21)が着脱可能に外輪12に取り付けられることになる。
 変形例1に係るセンサ付き軸受100Aでも、センサユニット20が外輪12に着脱可能に取り付けられているため、センサユニット20を転がり軸受10から取り外して再利用することができる。
 <変形例2>
 以下に、変形例2に係るセンサ付き軸受100Aを説明する。ここでは、変形例1に係るセンサ付き軸受100Aと異なる点を主に説明し、重複する説明は繰り返さない。
 図18は、変形例2に係るセンサ付き軸受100Aの断面図である。図18には、図16に対応する断面が示されている。図19は、図18中のXIXにおける拡大図である。図18及び図19に示されるように、変形例2に係るセンサ付き軸受100Aでは、ゴム部材60に代えて、複数のプランジャ70が用いられている。
 プランジャ70は、ステータ21の外周面に形成されている穴に挿入されることによりセンサユニット20に取り付けられている。複数のプランジャ70は、周方向に沿って間隔を空けて並んでいる。プランジャ70は、ピン71と、圧縮コイルばね72とを有している。プランジャ70がセンサユニット20に取り付けられた状態で、ピン71は、ステータ21の外周面から径方向外側に突出した位置にある。ピン71を径方向内側に向かって移動させると、圧縮コイルばね72は、ピン71に対して、径方向外側に向かう弾性反発力を発生させる。
 プランジャ70は、ピン71が径方向内側に押し込まれた状態で、段差部12aaに連なっており、かつステータ21の外周面に対向している内周面12cの部分に接触している。そのため、センサユニット20は、圧縮コイルばね72からピン71に加わる径方向外側への弾性反発力により、着脱可能に外輪12に取り付けられることになる。
 変形例2に係るセンサ付き軸受100Aでも、センサユニット20が外輪12に着脱可能に取り付けられているため、センサユニット20を転がり軸受10から取り外して再利用することができる。
 <変形例3>
 以下に、変形例3に係るセンサ付き軸受100Aを説明する。ここでは、変形例1に係るセンサ付き軸受100Aと異なる点を主に説明し、重複する説明は繰り返さない。
 図20は、変形例3に係るセンサ付き軸受100Aの断面図である。図20には、図16に対応する断面が示されている。図21は、図20中のXXIにおける拡大図である。図20及び図21に示されるように、変形例3に係るセンサ付き軸受100Aでは、ゴム部材60に代えて、第1止め金具40が用いられている。しかしながら、変形例3に係るセンサ付き軸受100Aでは、第1止め金具40がサークリップではなく、第1止め金具40が複数の付勢部41を有している。
 複数の付勢部41は、周方向に沿って間隔を空けて並んでいる。付勢部41は、例えば板ばねである。変形例3に係るセンサ付き軸受100Aでは、第1止め金具40が、段差部12aaに連なっている内周面12cの部分とステータ21の外周面との間に配置されており、付勢部41から径方向内側に向かって弾性反発力がステータ21の外周面に加わる。これにより、センサユニット20が外輪12に着脱可能に取り付けられる。
 変形例3に係るセンサ付き軸受100Aでも、センサユニット20が外輪12に着脱可能に取り付けられているため、センサユニット20を転がり軸受10から取り外して再利用することができる。
 (第3実施形態)
 第3実施形態に係るセンサ付き軸受(以下「センサ付き軸受100B」)を説明する。ここでは、センサ付き軸受100Aと異なる点を主に説明し、重複する説明は繰り返さないものとする。
 <センサ付き軸受100Bの構成>
 以下に、センサ付き軸受100Bの構成を説明する。
 図22は、センサ付き軸受100Bの断面図である。図22には、中心軸Aを通り、かつ軸方向に平行な断面が示されている。図23は、図22中のXXIIIにおける拡大図である。図22及び図23に示されているように、センサ付き軸受100Bは、転がり軸受10と、センサユニット20と、磁気リング30とを有している。センサ付き軸受100Bは、第2止め金具50を有しておらず、磁気リング30が着脱可能に内輪11に取り付けられていない。これらの点に関して、センサ付き軸受100Bの構成は、センサ付き軸受100Aの構成と共通している。
 センサ付き軸受100Bは、第1止め金具40を有しておらず、センサユニット20が着脱可能に外輪12に取り付けられていない。より具体的には、センサ付き軸受100Bでは、ステータ21が外輪12に加締められることにより、センサユニット20が外輪12に取り付けられている。この点に関して、センサ付き軸受100Bの構成は、センサ付き軸受100Aの構成と異なっている。なお、センサ付き軸受100Bでは、芯金31が内輪11に加締められることにより、磁気リング30が内輪11に取り付けられていてもよい。
 <センサ付き軸受100Bの効果>
 以下に、センサ付き軸受100Bの効果を説明する。
 センサ付き軸受100Bでは、センサユニット20が外輪12に着脱可能に取り付けられておらず、磁気リング30が内輪11に着脱可能に取り付けられていないため、転がり軸受10を交換する場合に、センサユニット20及び磁気リング30を転がり軸受10から取り外して再利用することができない。しかしながら、センサ付き軸受100Bでは、センサユニット20により転がり軸受10の異常(例えば、転走面の剥離や微小剥離等)の傾向を検出可能である。そのため、センサ付き軸受100Bによると、転がり軸受10を機能不全(例えば、焼き付きによる回転不能)に至る前に交換することができる。
 <変形例1>
 以下に、変形例1に係るセンサ付き軸受100Bを説明する。ここでは、センサ付き軸受100Bと異なる点を主に説明し、重複する説明は繰り返さない。
 図24は、変形例1に係るセンサ付き軸受100Bの断面図である。図24には、図22に対応する断面が示されている。図25は、図24中のXXVにおける拡大図である。図24及び図25に示されるように、変形例1に係るセンサ付き軸受100Bでは、溶接部81でステータ21が外輪12に固定されることにより、センサユニット20が外輪12に取り付けられている。また、変形例1に係るセンサ付き軸受100Bでは、溶接部82で芯金31が内輪11に固定されることにより、磁気リング30が内輪11に取り付けられている。
 溶接部81及び溶接部82は、ビーム溶接により形成されている。ビーム溶接には、例えば、レーザ溶接及び電子ビーム溶接が含まれている。レーザ溶接に用いられるレーザの具体例としては、YAGレーザ、COレーザが挙げられる。
 変形例1に係るセンサ付き軸受100Bでも、センサユニット20により転がり軸受10の異常の傾向を検出可能であるため、転がり軸受10を機能不全に至る前に交換することができる。また、溶接部81及び溶接部82がビーム溶接により形成されているため、変形例1に係るセンサ付き軸受100Bでは、内輪11及び外輪12に対する熱影響を最小限に抑えることができる。
 <変形例2>
 以下に、変形例2に係るセンサ付き軸受100Bを説明する。ここでは、センサ付き軸受100Bと異なる点を主に説明し、重複する説明は繰り返さない。
 図26は、変形例2に係るセンサ付き軸受100Bの断面図である。図26には、図22に対応する断面が示されている。図27は、図26中のXXVIIにおける拡大図である。図26及び図27に示されるように、変形例2に係るセンサ付き軸受100Bでは、接着剤83でステータ21が外輪12に固定されることにより、センサユニット20が外輪12に取り付けられている。また、変形例2に係るセンサ付き軸受100Bでは、接着剤84で芯金31が内輪11に固定されることにより、磁気リング30が内輪11に取り付けられている。
 接着剤83及び接着剤84は、例えば、嫌気性の接着剤又はエポキシ樹脂系、ウレタン樹脂系、シリコーン系若しくはフェノール樹脂系の接着剤である。接着剤83及び接着剤84は、特に限定されるものではない。
 変形例2に係るセンサ付き軸受100Bでも、センサユニット20により転がり軸受10の異常の傾向を検出可能であるため、転がり軸受10を機能不全に至る前に交換することができる。
 <変形例3>
 以下に、変形例3に係るセンサ付き軸受100Bを説明する。ここでは、センサ付き軸受100Bと異なる点を主に説明し、重複する説明は繰り返さない。
 変形例3に係るセンサ付き軸受100Bでは、図示されていないが、圧入でステータ21が外輪12に固定されることにより、センサユニット20が外輪12に取り付けられている。変形例3に係るセンサ付き軸受100Bでも、センサユニット20により転がり軸受10の異常の傾向を検出可能であるため、転がり軸受10を機能不全に至る前に交換することができる。
 (第4実施形態)
 第4実施形態に係るセンサ付き軸受(以下「センサ付き軸受100C」)を説明する。ここでは、センサ付き軸受100と異なる点を主に説明し、重複する説明は繰り返さないものとする。
 <センサ付き軸受100Cの構成>
 以下に、センサ付き軸受100Cの構成を説明する。
 図28は、センサ付き軸受100Cの断面図である。図28には、中心軸Aを通り、かつ軸方向に平行な断面が示されている。図29は、図28中のXXIX-XXIXにおける断面が示されている。図30は、図29に蓋26を重ねて示した図である。図28、図29及び図30に示されるように、センサ付き軸受100Cは、転がり軸受10と、センサユニット20と、磁気リング30と、第1止め金具40と、第2止め金具50とを有している。この点に関して、センサ付き軸受100Cの構成は、センサ付き軸受100の構成と共通している。
 センサ付き軸受100Cでは、センサ24が振動センサである。センサ付き軸受100Cでは、センサ24の振動検出方向(図29中の点線の矢印)が転がり軸受10の荷重負荷方向(図29中の実線の矢印)と一致するように、センサユニット20が外輪12に着脱可能に取り付けられている。
 センサ付き軸受100Cでは、蓋26に目印26aが設けられている。軸方向に沿って見た際に、目印26aはセンサ24に重なっている。図30に示される例では、丸印を描くことにより目印26aが設けられているが、目印26aの付け方はこれに限られない。なお、モールド樹脂27が回路基板23上にも配置される場合、目印26aは、モールド樹脂27に設けられてもよい。
 <センサ付き軸受100Cの効果>
 以下に、センサ付き軸受100Cの効果を説明する。
 センサ24の振動検出方向と転がり軸受10の荷重負荷方向とが一致することにより、センサ24により検出される振動値の信頼性が向上する。センサ付き軸受100Cでは、外輪12に取り付ける際に目印26aの位置を確認しながらセンサユニット20を中心軸A回りに回転させることにより、センサ24の振動検出方向と転がり軸受10の荷重負荷方向とを容易に一致させることができる。そのため、センサ付き軸受100Cによると、センサ24により検出される振動値の信頼性を向上させることができる。
 (その他の実施形態)
 上記の各実施形態においては、内輪が回転輪であるとともに外輪が固定輪であるセンサ付き軸受を説明したが、内輪が固定輪であってもよく、外輪が回転輪であってもよい。つまり、内輪及び外輪の一方が回転輪であり、内輪及び外輪の他方が固定輪であればよい。
 今回開示された実施形態は全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記の実施形態ではなく請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 100,100A,100B,100C センサ付き軸受、10 転がり軸受、11 内輪、11a 第1端面、11aa 段差部、11ab 溝、11b 第2端面、11c 内周面、11d 外周面、11db 溝、11da 内輪軌道面、11db 溝、12 外輪、12a 第1端面、12aa,12ab 段差部、12ac 溝、12b 第2端面、12c 内周面、12ca 外輪軌道面、12cb,12cc 溝、12d 外周面、13 転動体、14 保持器、14a 環状部、14b 柱部、15 シール、20 センサユニット、21 ステータ、21a 第1部材、21aa 第1環状部、21ab 第2環状部、21aba 第1領域、21abb 第2領域、21b 第2部材、21c 溝、22 発電コイル、22a コイルボビン、23 回路基板、23a 電子部品、24 センサ、25 無線通信モジュール、26 蓋、26a 目印、27 モールド樹脂、28 櫛歯部、30 磁気リング、31 芯金、31a 第1部分、31b 第2部分、31c 第3部分、32 磁性ゴム、40 第1止め金具、41 付勢部、50 第2止め金具、51 付勢部、60 ゴム部材、70 プランジャ、71 ピン、72 圧縮コイルばね、81,82 溶接部、83,84 接着剤、A 中心軸。

Claims (18)

  1.  回転輪、固定輪及び転動体を含む軸受と、
     センサユニットとを備え、
     前記回転輪は、周方向に沿って延在している回転輪軌道面を有し、
     前記固定輪は、前記周方向に沿って延在し、かつ径方向において前記回転輪軌道面と間隔を空けて対向している固定輪軌道面を有し、
     前記転動体は、前記回転輪軌道面と前記固定輪軌道面との間に配置されており、
     前記センサユニットは、前記固定輪に着脱可能に取り付けられており、かつ前記回転輪の回転に伴って誘導起電圧を発生させる発電コイルと、物理量又は化学量を電気信号として出力するセンサと、前記センサの出力を外部に無線送信する無線通信モジュールとを有する、センサ付き軸受。
  2.  前記回転輪に着脱可能に取り付けられている磁気リングをさらに備え、
     前記磁気リングには、N極及びS極が前記周方向に沿って交互に着磁されており、
     前記センサは、前記回転輪の回転状態を検出して電気信号として出力する、請求項1に記載のセンサ付き軸受。
  3.  前記センサユニットは、前記磁気リングの回転に伴い、前記発電コイルに誘導起電圧を発生させるとともに、前記発電コイルで発生した誘導起電圧の波形に基づいて前記回転輪の回転数を検出する、請求項2に記載のセンサ付き軸受。
  4.  前記センサユニットは、前記固定輪に着脱可能に取り付けられており、かつ前記発電コイルが搭載されている環状のステータを有し、
     前記ステータは、前記周方向に沿って延在しており、かつ前記径方向において前記磁気リングと間隔を空けて対向しているステータ内周面を有し、
     前記ステータ内周面には、前記周方向に沿って間隔を空けて並んでいる複数の櫛歯部が形成されており、
     前記櫛歯部は、前記磁気リングからの磁束の磁路を構成しており、
     前記磁気リングの磁極の数は、前記櫛歯部の数に等しい、請求項2又は請求項3に記載のセンサ付き軸受。
  5.  前記ステータは、前記磁気リングからの磁束が前記櫛歯部から前記発電コイルの周囲を通るように構成されている、請求項4に記載のセンサ付き軸受。
  6.  リング状の第1止め金具をさらに備え、
     前記センサユニットは、前記第1止め金具からの前記径方向に沿う弾性反発力により前記固定輪に着脱可能に取り付けられている、請求項1~請求項5のいずれか1項に記載のセンサ付き軸受。
  7.  前記第1止め金具は、前記周方向において間隔を空けて並んでいる複数の第1付勢部を有し、
     前記センサユニットは、前記第1付勢部からの前記径方向に沿う弾性反発力により前記固定輪に着脱可能に取り付けられている、請求項6に記載のセンサ付き軸受。
  8.  リング状の第2止め金具をさらに備え、
     前記磁気リングは、前記第2止め金具からの前記径方向に沿う弾性反発力により前記回転輪に着脱可能に取り付けられている、請求項2~請求項5のいずれか1項に記載のセンサ付き軸受。
  9.  前記第2止め金具は、前記周方向において間隔を空けて並んでいる複数の第2付勢部を有し、
     前記磁気リングは、前記第2付勢部からの前記径方向に沿う弾性反発力により前記回転輪に着脱可能に取り付けられている、請求項8に記載のセンサ付き軸受。
  10.  リング状のゴム部材をさらに備え、
     前記センサユニットは、前記ゴム部材からの前記径方向に沿う弾性反発力により前記固定輪に着脱可能に取り付けられている、請求項1~請求項5のいずれか1項に記載のセンサ付き軸受。
  11.  圧縮コイルばねをさらに備え、
     前記センサユニットは、前記圧縮コイルばねからの前記径方向に沿う弾性反発力により前記固定輪に着脱可能に取り付けられている、請求項1~請求項5のいずれか1項に記載のセンサ付き軸受。
  12.  前記センサ及び前記無線通信モジュールは、前記発電コイルで発生した誘導起電圧により駆動される、請求項1~請求項11のいずれか1項に記載のセンサ付き軸受。
  13.  前記無線通信モジュールは、連続的又は間欠的に、前記センサからの出力で搬送波を変調して外部に無線送信する、請求項1~請求項12のいずれか1項に記載のセンサ付き軸受。
  14.  前記センサユニットの開放部は、樹脂材により密閉されている、請求項1~請求項13のいずれか1項に記載のセンサ付き軸受。
  15.  前記センサは、振動センサであり、
     前記センサユニットは、前記センサの検出方向が前記軸受の荷重方向と一致するように前記固定輪に着脱可能に取り付けられており、
     前記センサユニットには、前記センサの検出方向と前記軸受の荷重方向とを一致させるための目印が設けられている、請求項1~請求項14のいずれか1項に記載のセンサ付き軸受。
  16.  回転輪、固定輪及び転動体を含む軸受と、
     センサユニットとを備え、
     前記回転輪は、周方向に沿って延在している回転輪軌道面を有し、
     前記固定輪は、前記周方向に沿って延在し、かつ径方向において前記回転輪軌道面と間隔を空けて対向している固定輪軌道面を有し、
     前記転動体は、前記回転輪軌道面と前記固定輪軌道面との間に配置されており、
     前記センサユニットは、加締め、溶接部又は接着剤により前記固定輪に固定されており、かつ前記回転輪の回転に伴って誘導起電圧を発生させる発電コイルと、物理量又は化学量を電気信号として出力するセンサと、前記センサの出力を外部に無線送信する無線通信モジュールとを有する、センサ付き軸受。
  17.  加締め、溶接部又は接着剤により前記回転輪に取り付けられている磁気リングをさらに備え、
     前記磁気リングには、N極及びS極が前記周方向に沿って交互に着磁されており、
     前記センサは、前記回転輪の回転状態を検出して電気信号として出力する、請求項16に記載のセンサ付き軸受。
  18.  軸と、
     ハウジングと、
     請求項1~請求項17のいずれか1項に記載の前記センサ付き軸受とを備え、
     前記回転輪及び前記固定輪の一方は前記軸に嵌め合わされており、
     前記回転輪及び前記固定輪の他方は前記ハウジングに嵌め合わされている、軸受装置。
PCT/JP2023/010147 2022-03-30 2023-03-15 センサ付き軸受及び軸受装置 WO2023189614A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022055786A JP2023147973A (ja) 2022-03-30 2022-03-30 センサ付き軸受及び軸受装置
JP2022-055786 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023189614A1 true WO2023189614A1 (ja) 2023-10-05

Family

ID=88201629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010147 WO2023189614A1 (ja) 2022-03-30 2023-03-15 センサ付き軸受及び軸受装置

Country Status (2)

Country Link
JP (1) JP2023147973A (ja)
WO (1) WO2023189614A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986418U (ja) * 1982-12-02 1984-06-11 内山工業株式会社 外れ防止リング付オイルシ−ル
JP2002372548A (ja) * 2000-08-01 2002-12-26 Ntn Corp 車輪用軸受装置
JP2003013983A (ja) * 2001-07-03 2003-01-15 Koyo Seiko Co Ltd 転がり軸受ユニット
JP2004293562A (ja) * 2003-03-25 2004-10-21 Koyo Seiko Co Ltd センサ付転がり軸受装置
JP2007303566A (ja) * 2006-05-11 2007-11-22 Ntn Corp 回転センサ付き転がり軸受
JP2008025685A (ja) * 2006-07-20 2008-02-07 Nsk Ltd 転がり軸受
JP2017048846A (ja) * 2015-09-01 2017-03-09 日本精工株式会社 軸受−センサ取付構造
JP2021063510A (ja) * 2019-10-10 2021-04-22 日本精工株式会社 センサユニット
WO2021161843A1 (ja) * 2020-02-14 2021-08-19 Ntn株式会社 軸受装置、間座および製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986418U (ja) * 1982-12-02 1984-06-11 内山工業株式会社 外れ防止リング付オイルシ−ル
JP2002372548A (ja) * 2000-08-01 2002-12-26 Ntn Corp 車輪用軸受装置
JP2003013983A (ja) * 2001-07-03 2003-01-15 Koyo Seiko Co Ltd 転がり軸受ユニット
JP2004293562A (ja) * 2003-03-25 2004-10-21 Koyo Seiko Co Ltd センサ付転がり軸受装置
JP2007303566A (ja) * 2006-05-11 2007-11-22 Ntn Corp 回転センサ付き転がり軸受
JP2008025685A (ja) * 2006-07-20 2008-02-07 Nsk Ltd 転がり軸受
JP2017048846A (ja) * 2015-09-01 2017-03-09 日本精工株式会社 軸受−センサ取付構造
JP2021063510A (ja) * 2019-10-10 2021-04-22 日本精工株式会社 センサユニット
WO2021161843A1 (ja) * 2020-02-14 2021-08-19 Ntn株式会社 軸受装置、間座および製造方法

Also Published As

Publication number Publication date
JP2023147973A (ja) 2023-10-13

Similar Documents

Publication Publication Date Title
US6892587B2 (en) Rotation detecting device and wheel support bearing assembly utilizing the same
JP5870607B2 (ja) レゾルバ及びレゾルバ付き転がり軸受装置
US20050242514A1 (en) Seal ring, sealing apparatus and bearing apparatus
WO2008110201A1 (en) A sensorized bearing unit
WO2004038426A1 (ja) センサ付軸受装置及びセンサ付転がり軸受
WO2021161843A1 (ja) 軸受装置、間座および製造方法
JP2021127831A (ja) 軸受装置、間座および製造方法
WO2019163566A1 (ja) 軸受
WO2023189614A1 (ja) センサ付き軸受及び軸受装置
JP4040331B2 (ja) 車輪用軸受装置
JP2014153069A (ja) レゾルバ及びレゾルバ付き転がり軸受装置
JP2003307435A (ja) センサ付軸受装置
JP2002327847A (ja) シールリング、密封装置ならびに軸受装置
JP2019007580A (ja) ワイヤレスセンサ付き軸受
JP7450657B2 (ja) 軸受装置
WO2023182091A1 (ja) 軸受装置
WO2023199689A1 (ja) 軸受装置
JP2009036235A (ja) 軸受
WO2023189277A1 (ja) 軸受装置
JP2023141395A (ja) 軸受装置
JP2003269477A (ja) 発電機付き転がり軸受
WO2024058050A1 (ja) センサ付軸受
WO2024053444A1 (ja) 軸受装置
WO2022209780A1 (ja) レゾルバ一体型軸受装置及びその製造方法
JP2023147977A (ja) 軸受装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779632

Country of ref document: EP

Kind code of ref document: A1