WO2023189312A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2023189312A1
WO2023189312A1 PCT/JP2023/008728 JP2023008728W WO2023189312A1 WO 2023189312 A1 WO2023189312 A1 WO 2023189312A1 JP 2023008728 W JP2023008728 W JP 2023008728W WO 2023189312 A1 WO2023189312 A1 WO 2023189312A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
display device
ramp wave
wave voltage
data lines
Prior art date
Application number
PCT/JP2023/008728
Other languages
English (en)
French (fr)
Inventor
嵩人 水蘆
光一 橋柿
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2023189312A1 publication Critical patent/WO2023189312A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals

Definitions

  • the present disclosure relates to a display device.
  • a display device is used in which pixels each including an organic EL (Electro Luminescence) display element are arranged in a two-dimensional matrix.
  • This organic EL display element is a self-luminous display element, and has advantages such as higher image quality and faster response speed than liquid crystal panels. Further, in such a liquid crystal panel, brightness information of an image to be displayed is supplied as an image signal depending on the degree of slope of the ramp waveform voltage.
  • the present disclosure provides a display device that can suppress power consumption.
  • a plurality of pixel circuits are connected to each of the plurality of data lines in a first direction; a first voltage output section that generates a first ramp wave voltage whose voltage level changes over time; a first lamp wiring that supplies the first ramp wave voltage generated by the first voltage output section to each of a plurality of first group data lines;
  • a display device is provided in which at least two of the plurality of data lines are brought into conduction before outputting the first ramp wave voltage to the first lamp wiring.
  • the pixel circuit includes a light emitting section and a drive circuit for driving the light emitting section,
  • the drive circuit includes a drive transistor and a capacitor, A voltage depending on the image signal may be held in the capacitor section.
  • the first switch may make at least two data lines of the plurality of data lines conductive.
  • a second voltage output section that generates a second ramp wave voltage whose voltage level changes over time; Further comprising: a second lamp wiring that supplies the second ramp wave voltage generated by the second voltage output section to each of a plurality of data lines of a second group different from the plurality of data lines of the first group. It's okay.
  • At least two of the plurality of data lines may be rendered conductive by the second switch.
  • Each of the plurality of drive control lines is connected to the drive transistor of a plurality of pixel circuits arranged in a second direction different from the first direction
  • the plurality of data lines of the first group are connected to the pixel circuit having the drive transistor connected to at least a first drive control line of the plurality of drive control lines
  • the plurality of data lines of the second group may be connected to at least a second drive control line different from the first drive control line among the plurality of drive control lines.
  • the first ramp wave voltage and the second ramp wave voltage may be output at different timings.
  • the voltage according to the image signal may be set using the first ramp wave voltage.
  • the first switch may be in a conductive state for a period corresponding to the image signal.
  • the first ramp wave voltage may include a DC voltage for initialization and a ramp wave voltage for setting the image signal.
  • the first ramp wave voltage may include a ramp wave voltage for initialization and a ramp wave voltage for setting the image signal.
  • the first ramp wave voltage includes a ramp wave voltage for initialization and a ramp wave voltage for setting the image signal
  • the second ramp wave voltage includes a ramp wave voltage for initialization and a ramp wave voltage for setting the image signal. Consists of a ramp voltage for setting the signal,
  • the second ramp wave voltage may output a ramp wave voltage for setting the image signal in accordance with a timing at which the first ramp wave voltage outputs a voltage for initialization.
  • At least two of the plurality of data lines may be brought into conduction.
  • At least two of the plurality of data lines may be brought into conduction.
  • the ramp wave voltage for initialization and the ramp wave voltage for setting the image signal may be output alternately at a predetermined period.
  • the first ramp wave voltage may be output to the first lamp wiring via a first buffer
  • the second ramp wave voltage may be output to the second lamp wiring via a second buffer.
  • At least one of the first buffer and the second buffer may have a high impedance during the period in which the two data lines are in a conductive state.
  • the accumulated charges in the capacitor portions of pixel circuits connected to each of the two data lines may be shared.
  • FIG. 1 is a block diagram showing a schematic configuration of a display system 2 including a display device 1 according to a first embodiment.
  • FIG. 3 is a diagram showing an example of wiring of signal lines and data lines of a pixel circuit.
  • FIG. 3 is a circuit diagram showing the internal configuration of a pixel circuit.
  • 4 is a circuit diagram of a pixel circuit having an internal configuration different from that in FIG. 3.
  • FIG. 3 is a block diagram showing the internal configuration of one horizontal drive section on the data line a side.
  • FIG. 7 is a block diagram showing the internal configuration of the other horizontal drive section on the data line side.
  • FIG. 7 is a diagram showing a more detailed connection example between a lamp buffer and a data line.
  • a time chart showing an example of the operation of the display device.
  • FIG. 3 is a diagram showing an example of wiring of signal lines and data lines of a pixel circuit.
  • FIG. 3 is a circuit diagram showing the internal configuration of a pixel circuit.
  • 4 is
  • FIG. 7 is a diagram showing a more detailed example of connection between a lamp buffer and a data line according to a comparative example.
  • 5 is a time chart showing an operation example of a display device according to a comparative example.
  • 5 is a time chart showing an example of the operation of the display device 1 according to Modification 1 of the first embodiment.
  • 7 is a time chart showing an example of the operation of the display device 1 according to modification 2 of the first embodiment.
  • 5 is a time chart showing an operation example of the display device 1 according to modification 3 of the first embodiment.
  • FIG. 7 is a diagram illustrating an example of a connection between a ramp buffer and a data line according to a fourth modification of the first embodiment.
  • FIG. 2 is a configuration diagram of a display device according to a second embodiment.
  • FIG. 1 is a configuration diagram of a display device according to a second embodiment.
  • FIG. 2 is a block diagram showing the internal configuration of a data driver.
  • FIG. 7 is a diagram illustrating a more detailed connection example between the lamp buffer and the data line DTLn according to the second embodiment. 7 is a time chart showing an example of the operation of the display device 1 according to the second embodiment.
  • FIG. 7 is a diagram illustrating a more detailed connection example between a ramp buffer and a data line according to the second embodiment. 9 is a time chart showing an example of the operation of the display device according to the third embodiment.
  • FIG. 1 is a diagram showing a pixel circuit according to an embodiment.
  • FIG. 1 is a diagram showing a pixel circuit according to an embodiment.
  • FIG. 1 is a diagram showing a pixel circuit according to an embodiment.
  • FIG. 1 is a diagram showing a pixel circuit according to an embodiment.
  • FIG. 1 is a diagram showing a pixel circuit according to an embodiment.
  • FIG. 1 is a diagram showing a pixel circuit according to an embodiment.
  • FIG. 1 is a diagram showing a pixel circuit according to an embodiment.
  • FIG. 1 is a diagram showing a pixel circuit according to an embodiment.
  • FIG. 1 is a diagram showing a pixel circuit according to an embodiment.
  • FIG. 3 is a diagram showing the inside of the vehicle from the rear to the front of the vehicle. A diagram showing the interior of the vehicle from diagonally rearward to diagonally forward.
  • FIG. 7 is a front view of a digital camera that is a second application example of the electronic device. Rear view of the digital camera.
  • FIG. 3 is an external view of an HMD, which is a third application example of electronic equipment. External view of smart glasses.
  • FIG. 4 is an external view of a TV, which is a fourth application example of electronic equipment.
  • FIG. 7 is an external view of a smartphone, which is a fifth application example of an electronic device.
  • the display device may include components and functions that are not shown or explained. The following description does not exclude components or features not shown or described.
  • FIG. 1 is a block diagram showing a schematic configuration of a display system 2 including a display device 1 according to the first embodiment.
  • a display system 2 in FIG. 1 exemplifies the configuration of a micro OLED (Organic Light Emitting Diode) system.
  • the display device 1 according to this embodiment is also applicable to a display system 2 including a large-screen display device 1 such as a TV or PC monitor.
  • the display system 2 in FIG. 1 includes a display device 1, a display controller 3, a timing controller 4, and a data input/output I/F section 5.
  • the display controller 3 and the like are separate from the display device 1, but the display controller and the like may be integrated into the display device 1.
  • the display device 1 includes a pixel array section 11, a vertical drive section (V-DRV section) 12, a horizontal drive section (H-DRV section) 13, and a signal processing section 14.
  • FIG. 2 is a diagram showing a wiring example of the signal line 60 and data line 70 (70a and 70b) of each pixel circuit 15 of the pixel array section 11.
  • the pixel array section 11 includes a plurality of pixel circuits 15 arranged in the horizontal direction and the vertical direction.
  • a data line 70a is connected to each pixel circuit 15 in an odd-numbered row
  • a data line 70b is connected to each pixel circuit 15 in an even-numbered row.
  • each pixel circuit 15 in the odd row and each pixel circuit 15 in the even row can be controlled independently in parallel.
  • Each pixel circuit 15 includes a light emitting section such as an organic EL element, and a drive circuit for driving the light emitting section, and the drive circuit includes a drive transistor and a capacitor section.
  • the structure is such that a current corresponding to the voltage held in the capacitor section flows to the light emitting section via the drive transistor. A voltage corresponding to the slope of the ramp waveform is held in the capacitor.
  • the internal configuration of the pixel circuit 15 will be described later.
  • the signal processing unit 14 performs signal processing of the video signal to be displayed on the pixel array unit 11.
  • the specific content of the signal processing does not matter; for example, it may include gamma correction.
  • the video signal processed by the signal processing section 14 is sent to the horizontal drive section 13.
  • the vertical drive section 12 includes a write scanning section 16 and a drive scanning section 17, as shown in FIG. 3, which will be described later.
  • the write scanning unit 16 sequentially supplies a write scanning signal to each scanning line, and sequentially drives each scanning line WS1 to WSn.
  • the drive scanning section 17 supplies a light emission control signal to each drive line in synchronization with the line sequential scanning by the write scanning section 16, and controls whether the light emitting section emits light or not.
  • the horizontal drive section 13 has a signal output section 18 as shown in FIG.
  • the signal output unit 18 generates a signal voltage by holding the ramp wave voltage at a timing corresponding to the gradation of each pixel.
  • the signal output unit 18 selectively selects a signal voltage (voltage for setting an image signal) or an offset voltage (voltage for initialization) Vofs and supplies it to the corresponding data lines 70a and 70b.
  • the signal voltage or offset voltage Vofs selectively output from the signal output section 18 is set in each pixel circuit 15 in units of rows selected by scanning by the write scanning section 16 via the data lines 70a and 70b. Ru.
  • an offset voltage Vofs is supplied to each pixel circuit 15 in an even-numbered row in parallel.
  • a signal voltage is supplied to each pixel circuit 15 in an even row in parallel.
  • the display controller 3 has an HLOGIC section 21 and a VLOGIC section 22, and performs display control on the pixel array section 11.
  • the HLOGIC section 21 supplies the video signal to the horizontal drive section 13.
  • the VLOGIC unit 22 supplies the vertical drive unit 12 with signals that define the timing of scanning lines and drive lines.
  • the timing controller 4 includes a clock generator 23, a timing generator 24, and an image processing section 25.
  • the clock generator 23 generates a vertical synchronization clock and a horizontal synchronization clock for the display device 1 and supplies them to the display controller 3.
  • the timing generator 24 generates a signal that defines the operation timing of the display controller 3 and supplies it to the display controller 3.
  • the image processing section 25 performs various image processing on the video signal input to the data input/output I/F section 5. The video signal after image processing is supplied to the HLOGIC section 21 in the display controller 3.
  • the data input/output I/F section 5 includes an image I/F section 531, a data S/P section 532, a clock control section 533, and an H/V synchronization section 534.
  • Image I/F section 531 receives a video signal from the outside.
  • the video signal is serial digital data.
  • the data S/P section 532 converts the video signal into parallel data, and then sends it to the image processing section 25 in the timing controller 4.
  • the clock control unit 533 generates a clock that matches the display frequency of the display device 1.
  • the H/V synchronization unit 534 generates a signal that defines horizontal synchronization timing and vertical synchronization timing of the display device 1 and sends it to the timing generator 24 .
  • FIG. 3 is a circuit diagram showing the internal configuration of the pixel circuit 15.
  • the pixel circuit 15 in FIG. 3 includes a light emitting section 41 having an organic EL element, a driving transistor 42, a sampling transistor 43, a light emission control transistor 44, a storage capacitor 45, and an auxiliary capacitor 46.
  • the pixel circuit 15 is formed on a semiconductor substrate such as silicon, and the drive transistor 42, sampling transistor 43, and light emission control transistor 44 are, for example, PMOS transistors. A power supply voltage is applied to the back gate of each transistor.
  • the sampling transistor 43 writes into the holding capacitor 45 by sampling the signal voltage Vsig supplied from the signal output section 18 via the data lines 70a and 70b.
  • the light emission control transistor 44 is connected between the power supply node of the power supply voltage Vcc and the source electrode of the drive transistor 42, and controls whether or not the light emitting section 41 emits light while being driven by the light emission control signal DS.
  • the storage capacitor 45 is connected between the gate electrode and source electrode of the drive transistor 42. This holding capacitor 45 holds the signal voltage Vsig written by sampling by the sampling transistor 43.
  • the drive transistor 42 drives the light emitting section 41 by causing a drive current corresponding to the holding voltage of the holding capacitor 45 to flow through the light emitting section 41 .
  • the auxiliary capacitor 46 is connected between the source electrode of the drive transistor 42 and a fixed potential node, for example, a power supply node of power supply voltage Vcc. This auxiliary capacitor 46 suppresses fluctuations in the source potential of the drive transistor 42 when the signal voltage Vsig is written, and has the function of adjusting the gate-source voltage Vgs of the drive transistor 42 to the threshold voltage Vth of the drive transistor 42. I do.
  • FIG. 4 is a circuit diagram of a pixel circuit 15 having an internal configuration different from that in FIG. 3.
  • the light emission control transistor 44 is connected between the power supply potential Vcc and the source S of the drive transistor 42, and controls on/off of the light emitting section 41.
  • the gate of the light emission control transistor 44 is connected to the scanning line DS.
  • the sampling transistor 43 is connected between the data lines 70a, 70b and a connection node A between the storage capacitor 45 and the auxiliary capacitor 46.
  • the gate of the sampling transistor 43 is connected to the scanning line WS.
  • a detection transistor 47 is connected between the connection node A and the source S of the drive transistor 42.
  • the gate of the detection transistor 47 is connected to the scanning line AZ.
  • the switching transistor 48 is connected between the gate G of the drive transistor 42 and a predetermined offset potential Vofs.
  • the gate of the switching transistor 48 is connected to the scanning line AZ.
  • the detection transistor 47 and the switching transistor 48 constitute a correction means for canceling Vth.
  • the storage capacitor 45 is connected between the connection node A and the gate G of the drive transistor 42, and the auxiliary capacitor 46 is connected between the power supply potential Vcc and the connection node A.
  • the drive transistor 42 drives the light emitting section 41 by flowing a drain current Ids between the source and drain according to the gate voltage Vgs applied between the source and the gate.
  • the gate voltage Vgs of the drive transistor 42 is set according to the video signal Vsig supplied from the signal line SL, and the light emission brightness of the light emitting section 41 can be controlled according to the gradation of the video signal by the drain current Ids of the drive transistor 42. .
  • the threshold voltage Vth of the drive transistor 42 varies from pixel to pixel.
  • the threshold voltage Vth of the drive transistor 42 is detected in advance and held in the storage capacitor 45. After that, the sampling transistor 43 is turned on and the signal potential Vsig is written into the auxiliary capacitor 46. As a result, a gate potential Vgs is generated in which variations in the threshold voltage Vth of the drive transistor 42 are corrected.
  • FIGS. 3 and 4 are examples of the pixel circuit 15, and the pixel circuit 15 according to this embodiment can also have an internal configuration other than that in FIGS. 3 and 4, as will be described later.
  • FIG. 5 is a block diagram showing the internal configuration of the data line 70a side in the horizontal drive section 13.
  • FIG. 6 is a block diagram showing the internal configuration of the data line 70b side in the horizontal drive section 13.
  • the horizontal drive section 13 includes a plurality of horizontal drive sections 31 and 32, a ramp signal generation circuit 34, a selector 34a, and a plurality of ramp buffers 35a and 35b.
  • the horizontal drive section 31 and the ramp buffer 35a are connected to the data line 70a, and the horizontal drive section 32 and the ramp buffer 35b are connected to the data line 70b.
  • the ramp signal generation circuit 34 is a circuit that generates a ramp signal.
  • the ramp signal generation circuit 34 includes a signal ramp generation DAC 52 and a Vofs ramp generation DAC 53.
  • the signal ramp generation DAC 52 outputs a ramp wave voltage whose voltage level changes continuously.
  • the Vofs ramp generation DAC 53 outputs a Vofs ramp wave voltage for threshold correction and mobility correction of the drive transistor 42.
  • the selector 34a selects one of the outputs of the signal ramp generation DAC 52 and the Vofs ramp generation DAC 53.
  • the Vofs ramp generation DAC 53 according to this embodiment outputs a ramp wave voltage whose voltage level changes continuously.
  • the lamp buffers 35a and 35b correspond to buffer amplifiers, and output the input lamp signals to the horizontal drive units 31 and 32, respectively. That is, the ramp buffers 35a and 35b switch between a ramp wave voltage for Vofs for performing threshold value correction and mobility correction of the drive transistor 42 in the pixel circuit 15, and a ramp wave voltage whose voltage level changes continuously. It outputs to the horizontal drive units 31 and 32. Further, the lamp buffers 35a, 35b have internal changeover switches 38a, 38b, as shown in FIG. The switches 38a and 38b are switches capable of high impedance.
  • the horizontal drive unit 31 includes a switch element 36a and a PWM 37a for each column.
  • the horizontal drive unit 32 includes a switch element 36b and a PWM 37b for each column.
  • Each of the PWMs 37a and 37b generates a PWM (Pulse Width Modulation) signal from a digital image signal when outputting the ramp wave voltage generated by the signal ramp generation DAC 52.
  • This PWM signal is a pulse signal with a constant period, and has a pulse width corresponding to a digital image signal. That is, the PWM signal becomes a pulse signal with a duty corresponding to the digital image signal.
  • Each of the PWMs 37a and 37b generates a PWM (Pulse width modulation) signal of a predetermined width when outputting a Vofs ramp wave voltage.
  • This PWM signal is a pulse signal with a constant period and has a predetermined pulse width. That is, the Vofs PWM signal becomes a pulse signal with a predetermined width.
  • the horizontal driving units 31 and 32 can be applied to the horizontal driving unit 13 disposed above the pixel array unit 10.
  • FIG. 7 is a diagram showing a more detailed connection example between the lamp buffers 35a, 35b and the data lines 70a, 70b.
  • the lamp buffers 35a, 35b have changeover switches 38a, 38b, respectively.
  • the switches 38a and 38b can be made to have high impedance.
  • a charge sharing switch 39 is connected between adjacent data lines 70a and 70b.
  • the switch 39 is a transistor, for example, and makes the data lines 70a and 70b conductive or non-conductive.
  • RAMPLINE_1 indicates a wiring to which the lamp voltage outputted by the lamp buffer 35a is supplied
  • RAMPLINE_2 indicates a wiring to which the lamp voltage outputted by the lamp buffer 35b is supplied
  • PWM1 indicates a PWM signal output by the PWM 37a
  • PWM2 indicates a PWM signal output by the PWM 37b.
  • the PWM1 signal and the PWM2 signal turn on the switches 36a and 36b when they are at a high level, and turn them off when they are at a low level.
  • CS indicates a switching signal of the switch 39.
  • the CS signal makes the switch 39 conductive at high level and non-conductive at low level.
  • FIG. 8 is a time chart showing an example of the operation of the display device 1. From the top, the CS signal, the RAMPBUF1 output voltage which is the voltage output to RAMPLINE_1, the PWM1 signal, the SIG1 signal indicating the voltage of the data line 70a, the RAMPBUF2 output voltage which is the voltage output to RAMPLINE_2, the PWM2 signal, and the voltage of the data line 70b. This shows the SIG2 signal indicating.
  • the buffer output current indicates the current output to RAMPLINE_2.
  • the first horizontal period 1H is a period in which the Vofs voltage is set on the data line 70a side, and a signal voltage setting period on the data line 70b side.
  • the RAMPBUF1 output voltage and the RAMPBUF2 output voltage have a precharge period, which is a constant voltage period, at the start of output.
  • the CS signal becomes high level, making the switch 39 conductive. Further, at timing t1, the switches 38a and 38b enter a high impedance state. At this time, in the pixel circuit 15 (see FIG. 3), the transistor 43 becomes conductive, and the transistors 42 and 44 become non-conductive. That is, by turning on the switch 39, the charges accumulated in the capacitors 45 and 46 of each pixel circuit 15 are shared. At this time, since the switches 36a and 36b are also in a conductive state, the potentials of RAMPLINE_1 and RAMPLINE_2 are also the same potential.
  • RAMPLINE_1 and RAMPLINE_2 change to higher potentials as Vup1 and Vup2 become higher, respectively. Further, since RAMPLINE_1 and RAMPLINE_2 have the same potential, potential fluctuations due to parasitic capacitance of RAMPLINE_1 and RAMPLINE_2 are also suppressed.
  • each pixel 15 also starts normal driving operation.
  • Such processing is also performed in the horizontal period H2. That is, at timing t3 of the second horizontal period 2H, the CS signal becomes high level, and the switch 39 becomes conductive. Further, at timing t3, the switches 38a and 38b enter a high impedance state. At this time, in the pixel circuit 15 (see FIG. 3), the transistor 43 becomes conductive, and the transistors 42 and 44 become non-conductive. That is, by turning on the switch 39, the charges accumulated in the capacitors 45 and 46 of each pixel circuit 15 are shared. At this time, since the switches 36a and 36b are also in a conductive state, the potentials of RAMPLINE_1 and RAMPLINE_2 are also the same potential. As a result, at timing t4, the potentials of RAMPLINE_1 and RAMPLINE_2 change to higher potentials as Vup1 and Vup2 become higher, respectively. Driving equivalent to these horizontal periods H1 and H2 is repeated.
  • the potentials of RAMPLINE_1 and RAMPLINE_2 change to higher potentials as Vup1 and Vup2, respectively. Further, transient current of the buffer output current flowing at timings t2 and t4 can also be suppressed. As can be seen from these, it is possible to reduce the power supply capacity of the ramp signal generation circuit 34, and it is also possible to suppress the current consumption of the pixel array section 11. Note that in FIG. 8, precharging ends at timing t21. Further, the timing for performing charge sharing may be any period from the completion of lamp voltage writing to the start of precharging. That is, the period from the completion of lamp voltage writing to the start of precharging is the period from t22 to t4 when PWM2 becomes Low.
  • FIG. 9 is a diagram showing a more detailed connection example between the lamp buffer 35a and the data line 70 according to the comparative example.
  • the display device 1 according to the comparative example has only the lamp buffer 35 and does not have the switch 39 for charge sharing.
  • RAMPLINE_1 indicates the wiring to which the ramp voltage output from the ramp buffer 35a is supplied.
  • PWM1 indicates a PWM signal output by the PWM 37a.
  • FIG. 10 is a time chart showing an example of the operation of the display device 1 according to the comparative example. From the top, the CS signal, the RAMPBUF output voltage which is the voltage output to RAMPLINE_1, the PWM1 signal, and the SIG1 signal indicating the voltage of the data line 70 are shown. The buffer output current indicates the current output to RAMPLINE_1.
  • the plurality of data lines 70a and 70b are brought into conduction state before the ramp signal generation circuit 34 performs the precharge operation.
  • the accumulated charges in the capacitors 45 and 46 of each pixel circuit 15 that are in conduction state between the plurality of data lines 70a and 70b are shared, and the potentials of RAMPLINE_1 and RAMPLINE_2 become higher potentials as Vup1 and Vup2 become higher, respectively.
  • the Vofs lamp generation DAC 53 of the lamp signal generation circuit 34 outputs a ramp wave, whereas the Vofs voltage according to Modification 1 of the first embodiment is output as a DC voltage. This is different from the display device 1 according to the first embodiment in that the voltage is used. Below, differences from the display device 1 according to the first embodiment will be explained.
  • FIG. 11 is a time chart showing an example of the operation of the display device 1 according to Modification 1 of the first embodiment. From the top, the CS signal, the RAMPBUF1 output voltage which is the voltage output to RAMPLINE_1, the PWM1 signal, the SIG1 signal indicating the voltage of the data line 70a, the RAMPBUF2 output voltage which is the voltage output to RAMPLINE_2, the PWM2 signal, and the voltage of the data line 70b. This shows the SIG2 signal indicating.
  • the buffer output current indicates the current output to RAMPLINE_2.
  • This display device 1 differs from the display device 1 according to the first embodiment in that the Vofs voltage is a DC fixed potential.
  • FIG. 12 is a time chart showing an example of the operation of the display device 1 according to the second modification of the first embodiment. From the top, the CS signal, the RAMPBUF1 output voltage which is the voltage output to RAMPLINE_1, the PWM1 signal, the SIG1 signal indicating the voltage of the data line 70a, the RAMPBUF2 output voltage which is the voltage output to RAMPLINE_2, the PWM2 signal, and the voltage of the data line 70b. This shows the SIG2 signal indicating.
  • the buffer output current indicates the current output to RAMPLINE_2.
  • the display device 1 is different from the display device 1 according to the first embodiment in that a plurality of data lines 70a and 70b are brought into conduction state and a precharge operation is started.
  • the switches 38a and 38b are set to low impedance on the Vofs voltage setting side, and the switches 38a and 38b are set to high impedance on the signal voltage setting side.
  • the signal ramp generation DAC 52 of the ramp signal generation circuit 34 brings the plurality of data lines 70a and 70b into a conductive state before performing the precharge operation.
  • the signal voltage setting side according to the third modification of the first embodiment is different from the display device 1 according to the first embodiment in that the plurality of data lines 70a and 70b are brought into conduction and a precharge operation is started. .
  • differences from the display device 1 according to the first embodiment will be explained.
  • FIG. 13 is a time chart showing an example of the operation of the display device 1 according to the third modification of the first embodiment.
  • the CS signal the RAMPBUF1 output voltage which is the voltage output to RAMPLINE_1, the PWM1 signal, the SIG1 signal indicating the voltage of the data line 70a, the RAMPBUF2 output voltage which is the voltage output to RAMPLINE_2, the PWM2 signal, and the voltage of the data line 70b.
  • the buffer output current indicates the current output to RAMPLINE_2.
  • the display device 1 is different from the display device 1 according to the first embodiment in that a plurality of data lines 70a and 70b are brought into conduction state and a precharge operation is started.
  • the switches 38a and 38b are set to low impedance on the signal voltage setting side, and the switches 38a and 38b are set to high impedance on the Vofs voltage setting side.
  • the capacitors 45 and 46 of each pixel circuit 15 of each pixel are Since the accumulated charges are shared, it is possible to suppress the occurrence of pixel circuits 15 with specifically reduced charges. Therefore, it is possible to suppress the transient current of the buffer output current that suddenly occurs in the pixel circuit 15 whose charge is specifically reduced. Thereby, it is possible to reduce the power supply capacity of the ramp signal generation circuit 34, and it is also possible to suppress the current consumption of the pixel array section 11.
  • the potential has increased to the precharge voltage on the signal voltage setting side, so the Vofs voltage can be supplied by lowering the precharge potential.
  • the load on the Vofs ramp generation DAC 530 of the ramp signal generation circuit 34 can also be reduced.
  • FIG. 14 is a diagram showing a more detailed connection example between the lamp buffers 35a, 35b and the data lines 70a, 70b according to the fourth modification of the first embodiment.
  • the switch 39 for charge sharing is configured between the data lines 70a and 70b, whereas the switch 39 for charge sharing according to the fourth modification of the first embodiment is , lamp line, RAMPLINE_1, and RAMPLINE_2.
  • the installation space for the switch 39 on the pixel array 11 side is not required, and the wiring flexibility of the pixel circuit 15 is suppressed from being inhibited. .
  • the voltage for Vofs is set in the pixel circuit 15, but in the display device 1 according to the present embodiment, the voltage for Vofs is not set in the pixel circuit 15. This is different from the display device 1 according to the embodiment. Below, differences from the display device 1 according to the first embodiment will be explained.
  • FIG. 15 is a configuration diagram of the display device 1 according to the second embodiment.
  • the display device 1 includes a pixel array section 200 in which a pixel circuit 300 including a light emitting section ELP and a drive circuit 400 that drives the light emitting section ELP is arranged, and a drive section 100 that drives the pixel array section 200. .
  • the pixel circuits 300 are arranged in a two-dimensional matrix while being connected to the first scanning line WS1, the second scanning line WS2, the power supply line DS, and the data line DTL.
  • the first scanning line WS1, the second scanning line WS2, and the power supply line DS are provided extending in the row direction, and the data line DTL is provided extending in the column direction.
  • FIG. 15 shows the connection relationship for one pixel circuit 300, more specifically, the (n, m)th pixel circuit 300.
  • the drive section 100 includes a power supply section 101, a scanning section 102, and a data driver 103.
  • the scanning section 102 includes a first scanning section 102A and a second scanning section 102B.
  • a driving voltage and the like are supplied from the power supply section 101 to the power supply line DS.
  • the first scanning line WS1 is supplied with a signal from the first scanning section 102A
  • the second scanning line WS2 is supplied with a signal from the second scanning section 102B.
  • a ramp waveform voltage is supplied from the data driver 103 to the data line DTL.
  • the drive circuit 400 included in the pixel circuit 300 includes at least a drive transistor TRDrv and a capacitor CHD.
  • a voltage is supplied to one source/drain region, and the other source/drain region is connected to the light emitting part ELP, and a current corresponding to the voltage held in the capacitive part CHD is supplied.
  • the light is configured to flow to the light emitting unit ELP via the drive transistor TRDrv.
  • the light-emitting part ELP is composed of a current-driven electro-optical element whose luminance changes depending on the value of the flowing current, and more specifically, an organic electroluminescence light-emitting part.
  • the drive unit 100 sets the voltage of the capacitor CHD so that the drive transistor TRDrv becomes non-conductive, and sets the gate electrode in an electrically floating state, and applies a ramp waveform voltage to the other source/drain region. Then, by applying a predetermined constant voltage to the gate electrode while continuing to apply the ramp waveform voltage, the capacitor CHD maintains a voltage corresponding to the degree of slope of the ramp waveform.
  • the drive transistor TRDrv is composed of an n-channel field effect transistor.
  • one source/drain region is connected to the power supply line DS, and the other source/drain region is connected to one end of the light emitting part ELP, more specifically, to an anode electrode provided in the light emitting part ELP. It is connected.
  • the capacitor CHD is connected between the gate electrode of the drive transistor TRDrv and the other source/drain region.
  • the capacitor CHD is used to hold the voltage of the gate electrode (so-called gate-source voltage) with respect to the source region of the drive transistor TRDrv.
  • the "source region” in this case means a source/drain region that acts as a "source region” when the light emitting part ELP emits light.
  • one source/drain region of the drive transistor TRDrv (the side connected to the power supply line DS in FIG. 15) functions as a drain region
  • the other source/drain region (the side of the light emitting part ELP) functions as a drain region.
  • One end, specifically the side connected to the anode electrode) serves as a source region.
  • the drive circuit 400 further includes a first switching element TRWS1.
  • the first switching element TRWS1 is composed of an n-channel field effect transistor similarly to the drive transistor TRDrv.
  • the gate electrode of the first switching element TRWS1 is connected to the first scanning line WS1, and conduction/non-conduction of the first switching element TRWS1 is controlled by a signal from the first scanning unit 102A.
  • a ramp waveform voltage is applied to one end (one source/drain region), and the other end (the other source/drain region) is connected to the other source/drain of the drive transistor TRDrv. connected to the area. Then, by turning on the first switching element TRWS1, a ramp waveform voltage is applied to the other source/drain region of the drive transistor TRDrv.
  • one end of the first switching element TRWS1 is connected to the data line DTL via the coupling capacitor CCP. Therefore, a ramp waveform voltage is applied to one end of the first switching element TRWS1 via the coupling capacitor CCP.
  • a configuration in which the position of the coupling capacitor CCP is swapped that is, a configuration in which the other end of the first switching element TRWS1 is connected to the other source/drain region of the drive transistor TRDrv via the coupling capacitor CCP is adopted. Good too.
  • the drive circuit 400 further includes a second switching element TRWS2.
  • the second switching element TRWS2 is also composed of an n-channel field effect transistor like the drive transistor TRDrv.
  • a gate electrode of the second switching element TRWS2 is connected to the second scanning line WS2, and conduction/non-conduction of the second switching element TRWS2 is controlled by a signal from the second scanning unit 102B.
  • a predetermined constant voltage VIni is applied to one end (one source/drain region), and the other end (the other source/drain region) is connected to the gate electrode of the drive transistor TRDrv. has been done. Then, by making the second switching element TRWS2 conductive, a predetermined constant voltage VIni is applied to the gate electrode of the drive transistor TRDrv.
  • the symbol NDg indicates a node composed of elements connected to the gate electrode of the drive transistor TRDrv.
  • the node NDg is configured by connecting the gate electrode of the drive transistor TRDrv, the other end of the second switching element TRWS2, and one electrode of the capacitor CHD.
  • the symbol NDs indicates a node composed of an element connected to the other source/drain region of the drive transistor TRDrv.
  • the node NDs is configured by connecting the anode electrode of the light emitting part ELP and the other end of the first switching element TRWS1 to the other source/drain region of the drive transistor TRDrv.
  • FIG. 16 is a block diagram showing the internal configuration of the data driver 103.
  • the data driver 103 includes a horizontal drive section 31c, a ramp signal generation circuit 34c, and a ramp buffer 36c.
  • the horizontal drive section 31c and the lamp buffer 36c are connected to the data line DTLn.
  • the ramp signal generation circuit 34c is a circuit that generates a ramp signal.
  • This ramp signal generation circuit 34c has a signal ramp generation DAC 52.
  • the signal ramp generation DAC 52 outputs a ramp wave voltage whose voltage level changes continuously.
  • the ramp buffer 35c corresponds to a buffer amplifier, and outputs the input ramp signal to the horizontal drive section 31c. That is, the ramp buffer 35c outputs a ramp wave voltage whose voltage level changes continuously for setting the signal voltage of the capacitor CHD in the pixel circuit 300.
  • the horizontal drive unit 31c includes a switch element 36ca and a PWM 37c for each column.
  • the PWM 37c When outputting the ramp wave voltage generated by the signal ramp generation DAC 52, the PWM 37c generates a PWM (Pulse Width Modulation) signal from the digital image signal.
  • This PWM signal is a pulse signal with a constant period, and has a pulse width corresponding to a digital image signal. That is, the PWM signal becomes a pulse signal with a duty corresponding to the digital image signal.
  • FIG. 17 is a diagram showing a more detailed example of the connection between the lamp buffer 35c and the data line DTLn according to the second embodiment.
  • the display device 1 according to the second embodiment has only a lamp buffer 35c and does not have a switch 39 for charge sharing.
  • RAMPLINE_1 indicates the wiring to which the ramp voltage output from the ramp buffer 35c is supplied.
  • PWM1 to PWMn each indicate a PWM signal output by the PWM 37a.
  • XCS is a control signal for the switch 38c, and when it is at a high level, it becomes a low impedance, and when it is a low level, it becomes a high impedance.
  • FIG. 18 is a time chart showing an example of the operation of the display device 1 according to the second embodiment. From the top: RAMPBUF output voltage which is the voltage output to RAMPLINE_1, XCS signal, PWM1 signal corresponding to data line DTL1, SIG1 signal indicating the voltage of data line DTL1, PWM2 signal corresponding to data line DTL2, voltage of data line DTL2. This shows the SIG2 signal indicating.
  • the buffer output current indicates the current output to RAMPLINE_1.
  • the XCS signal becomes low level at timings t1 and t3, which are the start of the charge sharing period CS, and the switch 38c becomes high impedance.
  • the switches 36c of data lines DTL1 to DTLn are rendered conductive.
  • the transistor TRWS1 in the pixel circuit 200 becomes conductive, and the transistors TRWS2 and TRDRV become non-conductive.
  • the accumulated charge of the capacitor CHD in each pixel circuit 200 is shared between timings t1 to t2 and t3 to t4.
  • the XCS signal becomes high level, and the switch 38c becomes low impedance. Further, the pixel circuit 200 (see FIG. 15) is in a normal driving state, and a ramp voltage for setting a signal voltage is applied.
  • the data lines DTL1 to DTLn are brought into conduction. did.
  • the accumulated charge of the capacitor CHD of each pixel circuit 200 that is in a conductive state between the plurality of data lines DTL1 to DTLn is shared, and the potential of RAMPLINE_1 changes to the high potential side.
  • the display device 1 according to the third embodiment differs from the display device 1 according to the second embodiment in that the odd-numbered rows and even-numbered rows of each pixel circuit 15 are independently controlled. Below, differences from the display device 1 according to the second embodiment will be explained.
  • FIG. 19 is a diagram showing a more detailed connection example between the lamp buffers 35a, 35b and the data lines DTNL1 to DTNLn.
  • the lamp buffers 35a, 35b have changeover switches 38a, 38b, respectively. It is possible to make the switches 38a and 38b high impedance.
  • a charge sharing switch 39 is connected between adjacent data lines DTNL1 and DTNL2.
  • the switch 39 is, for example, a transistor, and makes the adjacent data lines DTNL1 and DTNL2 conductive or non-conductive.
  • RAMPLINE_1 indicates a wiring to which the lamp voltage outputted by the lamp buffer 35a is supplied
  • RAMPLINE_2 indicates a wiring to which the lamp voltage outputted by the lamp buffer 35b is supplied.
  • PWM1 indicates a PWM signal outputted by a PWM corresponding to data line DTNL1
  • PWM2 indicates a PWM signal outputted by a PWM corresponding to data line DTNL2.
  • the PWM1 signal and the PWM2 signal turn on the switches 36a and 36b when they are at a high level, and turn them off when they are at a low level.
  • CS indicates a switching signal of the switch 39.
  • the CS signal makes the switch 39 conductive at high level and non-conductive at low level.
  • FIG. 20 is a time chart showing an example of the operation of the display device 1 according to the third embodiment. From the top, the CS signal, the RAMPBUF1 voltage which is the voltage output to RAMPLINE_1, the PWM1 signal, the SIG1 signal indicating the voltage of the data line 70a, the RAMPBUF2 voltage which is the voltage output to RAMPLINE_2, the PWM2 signal, and the voltage of the data line 70b are shown. The SIG2 signal is shown.
  • the buffer output current indicates the current output to RAMPLINE_2.
  • an example of the operation corresponding to the adjacent data lines DTNL1 and DTNL2 will be described, but the operation corresponding to the other data lines is also similar.
  • the CS signal becomes high level, and the switches 38a and 38b become high impedance.
  • the switch 39 between the data lines DTL1 to DTLn becomes conductive.
  • the transistor TRWS1 in the pixel circuit 200 becomes conductive, and the transistors TRWS2 and TRDRV become non-conductive.
  • the accumulated charge of the capacitor CHD in each pixel circuit 200 is shared between timings t1 to t2 and t3 to t4.
  • each pixel circuit 200 (see FIG. 15) also starts normal driving operation. Then, a ramp voltage for signal voltage setting is output to RAMPLINE_1.
  • Such processing is also performed in the horizontal period H2. That is, at timing t3 of the second horizontal period 2H, the CS signal becomes high level, and the switch 39 becomes conductive. Further, at timing t3, the switches 38a and 38b enter a high impedance state.
  • each pixel circuit 200 (see FIG. 15) also starts normal driving operation. Then, a ramp voltage for signal voltage setting is output to RAMPLINE_4.
  • FIG. 21 is a diagram showing an example of a pixel circuit.
  • FIG. 24 shows a pixel circuit with a very simple configuration.
  • the pixel circuit includes transistors Tws and Tdr, a capacitor C1, and a light emitting element L.
  • the light emitting element L is, for example, an LED element such as an LED, OLED, or M-OLED.
  • the light emitting element L is an element such as these LEDs, but it is not limited to these, and any element that emits light when a voltage is applied or a current is passed can have a similar form. can be applied.
  • the light emitting element L emits light when a current flows from its anode to its cathode.
  • the cathode is connected to a reference voltage Vcath (for example, 0V).
  • Vcath for example, 0V
  • the anode of the light emitting element L is connected to the drain of the transistor Tdr and one terminal of the first capacitor C1.
  • the transistor Tws is, for example, a p-type MOSFET, and is a transistor (write transistor) that controls writing of pixel values.
  • the transistor Tws has a source inputted with a signal Sig indicating a pixel value, a drain connected to the other end of the capacitor C1 and the gate of the transistor Tdr, and a signal Ws for write control applied to the gate.
  • This transistor Tws causes a drain current to flow according to the signal Sig by the signal Ws, and controls writing to the capacitor C1 and the gate potential of the transistor Tdr.
  • the transistor Tws When the transistor Tws is turned on, a voltage based on the magnitude of the signal Sig is charged (written) to the capacitor C1, and the light emission intensity of the light emitting element L is controlled by the amount of charge of the capacitor C1.
  • the transistor Tds is, for example, a p-type MOSFET, and is a transistor that controls driving to flow a current to the light emitting element L based on a potential corresponding to the written pixel value.
  • the transistor Tds has a source connected to the power supply voltage Vccp for driving the MOS, a drain connected to the source of the transistor Tdr, a drive signal Ds applied to the gate, and a transistor (driver) that supplies a drive current to the light emitting element L. transistor).
  • a drain current is caused to flow in accordance with the drive signal Ds to increase the drain potential of the transistor Tdr.
  • the pixel circuit 15 performs writing based on the signal Sig that determines the light emission intensity of each pixel, and by passing a drain current to the light emitting element L according to the intensity of the written signal. , emit light.
  • FIG. 22 is a diagram showing another example of the pixel circuit.
  • the pixel circuit 15 may include a first transistor Taz, a second transistor Tws, a third transistor Tds, a fourth transistor Tdr, and a first capacitor C1.
  • the anode of the light emitting element L is connected to the source of the first transistor Taz, the drain of the fourth transistor Tdr, and one terminal of the first capacitor C1.
  • the first transistor Taz is, for example, a p-type MOSFET, whose source is connected to the anode of the light emitting element L, whose drain is connected to the voltage Vss, and to whose gate a signal Az is applied.
  • This first transistor Taz is a transistor that initializes the potential of the anode of the light emitting element L according to the signal Az.
  • the voltage Vss is, for example, a reference voltage in the power supply voltage, and may represent a grounded state, or may be a potential of 0V.
  • the first capacitor C1 is a capacitor for controlling the potential on the anode side of the light emitting element L.
  • the second transistor Tws is, for example, a p-type MOSFET, and is a transistor that controls writing of pixel values.
  • the second transistor Tws has a source inputted with a signal Sig indicating a pixel value, a drain connected to the other end of the first capacitor C1 and the gate of the fourth transistor Tdr, and a signal Ws for write control applied to the gate. Ru.
  • the second transistor Tws causes a drain current according to the signal Sig to flow in response to the signal Ws, and controls writing to the first capacitor C1 and the gate potential of the fourth transistor Tdr.
  • a voltage based on the magnitude of the signal Sig is charged (written) to the first capacitor C1, and the light emission intensity of the light emitting element L is increased by the amount of charge of the first capacitor C1. controlled.
  • the third transistor Tds is, for example, a p-type MOSFET, and is a transistor that controls driving to flow a current to the light emitting element L based on a potential corresponding to the written pixel value.
  • the third transistor Tds has a source connected to the power supply voltage Vccp for driving the MOS, a drain connected to the source of the fourth transistor Tdr, and a drive signal Ds applied to the gate. A drain current is caused to flow in accordance with the drive signal Ds to increase the drain potential of the fourth transistor Tdr.
  • the fourth transistor Tdr is, for example, a p-type MOSFET, and causes a current based on the signal Sig written by the second transistor Tws to flow to the light emitting element L by driving the third transistor Tdr.
  • the fourth transistor Tdr has a source connected to the drain of the third transistor Tds, a drain connected to the anode of the light emitting element L, and a gate connected to the drain of the second transistor Tws. Since the signal Sig stored by the second transistor Tws and the first capacitor C1 is applied to the gate of the fourth transistor Tdr, the source potential becomes a sufficiently large value, so that the fourth transistor Tdr responds to this signal Sig. Flow the drain current. As this drain current flows, the light emitting element L emits light with an intensity (brightness) corresponding to the signal Sig.
  • the pixel circuit 15 performs writing based on the signal Sig that determines the luminescence intensity of each pixel, and drains the light emitting element L according to the intensity of the written signal. It emits light when a current is passed through it.
  • the first transistor Taz performs a quick discharging operation at the timing after light emission and initializes the written state.
  • the body of the first transistor Taz needs to be held at a sufficiently high potential while the pixel circuit 15 is operating (emitting light, extinguishing light) for proper driving, and for example, a power supply voltage Vccp is applied to the body of the first transistor Taz.
  • the first transistor Taz Since the first transistor Taz is turned off while the light emitting element L emits light, a voltage sufficiently higher than the threshold voltage is applied to the gate.
  • a voltage higher than the voltage Vccp is applied to the gate of the first transistor Taz.
  • the voltage Vccp is 9V, and a voltage of 10V is applied to the first transistor Taz in the light emitting state.
  • the gate of the first transistor Taz is desirably set to a potential sufficiently below the threshold voltage.
  • a voltage equivalent to the voltage Vss (for example, 0V) is applied to the gate of the first transistor Taz.
  • the first transistor Taz has, for example, a voltage of 9V applied to its body and a voltage of 0V applied to its gate. Therefore, the high voltage may be applied for a long time between the body and gate of the first transistor Taz. The longer this time is, the more likely it is that the life of the first transistor Taz will be shortened and its performance will be degraded. As the performance of the first transistor Taz deteriorates, the pixel circuit 15 may not be able to perform appropriate charging and discharging. In the present disclosure, the discharge timing of the first transistor Taz may be appropriately controlled.
  • FIG. 23 is a diagram showing another example of the pixel circuit 15.
  • Taz1 and Taz2 are provided as initialization transistors. Even in such a form, the same voltage as in each of the above-mentioned forms is applied to Taz1. Further, application of a similar voltage may be controlled at the same timing for Taz2 as well.
  • FIG. 24 is a diagram showing another example of the pixel circuit 15. As shown in FIG. 24, even when there are two types of signals, Sig1 and Sig2, indicating the intensity of the pixel, the initialization transistors Taz1 and Taz2 can be controlled in the same way.
  • FIG. 25 is a diagram showing another example of the pixel circuit 15.
  • This pixel circuit 15 is controlled by using, in addition to Ws1, which is a signal that controls writing for the pixel, Ws2, which is a signal that controls writing of the previous line that is scanned first, as an offset.
  • Ws1 which is a signal that controls writing for the pixel
  • Ws2 which is a signal that controls writing of the previous line that is scanned first
  • this pixel circuit 15 uses an offset and is provided with a write transistor that assists the second transistor Tws.
  • FIG. 26 is a diagram showing another example of the pixel circuit 15.
  • This pixel circuit 15 is configured to include transistors Tws_n and Tws_p instead of the second transistor Tws in order to control Ws in a complementary manner. Even in such a configuration, the control of the present disclosure can be similarly applied.
  • FIGS. 27 and 28 are diagrams showing the internal configuration of a vehicle 360 that is a first application example of the display device 1 according to the present disclosure.
  • 27 is a diagram showing the interior of the vehicle 360 from the rear to the front of the vehicle 360
  • FIG. 28 is a diagram showing the interior of the vehicle 360 from the diagonally rear to the diagonally front of the vehicle 360.
  • the vehicle 360 in FIGS. 27 and 28 includes a center display 361, a console display 362, a head-up display 363, a digital rear mirror 364, a steering wheel display 365, and a rear entertainment display 366.
  • the center display 361 is placed on the dashboard 367 at a location facing the driver's seat 368 and passenger seat 369.
  • 27 and 28 show an example of a horizontally long center display 361 extending from the driver's seat 368 side to the passenger seat 369 side, but the screen size and placement location of the center display 361 are arbitrary.
  • the center display 361 can display information detected by various sensors. As a specific example, the center display 361 displays images taken by an image sensor, distance images to obstacles in front of the vehicle and on the sides measured by a ToF sensor, body temperature of passengers detected by an infrared sensor, etc. Can be displayed.
  • the center display 361 can be used, for example, to display at least one of safety-related information, operation-related information, life log, health-related information, authentication/identification-related information, and entertainment-related information.
  • Safety-related information includes information such as detection of falling asleep, detection of looking away, detection of mischief by children in the same vehicle, presence or absence of seatbelts, and detection of leaving passengers behind. This information is detected by The operation-related information uses sensors to detect gestures related to operations by the occupant.
  • the sensed gestures may include manipulation of various equipment within vehicle 360. For example, the operation of air conditioning equipment, navigation equipment, AV equipment, lighting equipment, etc. is detected.
  • the life log includes life logs of all crew members. For example, a life log includes a record of the actions of each occupant during the ride. By acquiring and saving life logs, it is possible to check the condition of the occupants at the time of the accident.
  • a temperature sensor is used to detect the occupant's body temperature, and the occupant's health condition is estimated based on the detected body temperature.
  • an image sensor may be used to capture an image of the occupant's face, and the occupant's health condition may be estimated from the captured facial expression.
  • Authentication/identification related information includes a keyless entry function that performs facial recognition using a sensor, and a function that automatically adjusts seat height and position using facial recognition.
  • the entertainment-related information includes a function that uses a sensor to detect operation information of an AV device by a passenger, a function that recognizes the passenger's face using a sensor, and provides the AV device with content suitable for the passenger.
  • the console display 362 can be used, for example, to display life log information.
  • Console display 362 is located near shift lever 371 on center console 370 between driver's seat 368 and passenger seat 369.
  • the console display 362 can also display information detected by various sensors. Further, the console display 362 may display an image around the vehicle captured by an image sensor, or may display a distance image to an obstacle around the vehicle.
  • the head-up display 363 is virtually displayed behind the windshield 372 in front of the driver's seat 368.
  • the head-up display 363 can be used, for example, to display at least one of safety-related information, operation-related information, life log, health-related information, authentication/identification-related information, and entertainment-related information. Since the head-up display 363 is often located virtually in front of the driver's seat 368, it is difficult to display information directly related to the operation of the vehicle 360, such as the speed of the vehicle 360 and the remaining amount of fuel (battery). Are suitable.
  • the digital rear mirror 364 can display not only the rear of the vehicle 360 but also the state of the occupants in the rear seats, so by placing a sensor on the back side of the digital rear mirror 364, it can be used, for example, to display life log information. be able to.
  • the steering wheel display 365 is located near the center of the steering wheel 373 of the vehicle 360.
  • Steering wheel display 365 can be used, for example, to display at least one of safety-related information, operation-related information, lifelog, health-related information, authentication/identification-related information, and entertainment-related information.
  • life log information such as the driver's body temperature, information regarding the operation of the AV equipment, air conditioning equipment, etc. Are suitable.
  • the rear entertainment display 366 is attached to the back side of the driver's seat 368 and passenger seat 369, and is for viewing by passengers in the rear seats.
  • Rear entertainment display 366 can be used, for example, to display at least one of safety-related information, operation-related information, lifelog, health-related information, authentication/identification-related information, and entertainment-related information.
  • information relevant to the rear seat occupant is displayed. For example, information regarding the operation of the AV device or air conditioning equipment may be displayed, or the results of measuring the body temperature of the passenger in the rear seat using a temperature sensor may be displayed.
  • optical distance measurement methods There are two main types of optical distance measurement methods: passive and active.
  • a passive type sensor measures distance by receiving light from an object without emitting light from the sensor to the object.
  • Passive methods include the lens focusing method, stereo method, and monocular viewing method.
  • the active type measures distance by projecting light onto an object and receiving the reflected light from the object with a sensor.
  • Active types include an optical radar method, an active stereo method, a photometric stereo method, a moiré topography method, and an interferometry method.
  • the display device 1 according to the present disclosure is applicable to any of these methods of distance measurement. By using the sensors stacked on the back side of the display device 1 according to the present disclosure, the above-mentioned passive or active distance measurement can be performed.
  • the display device 1 according to the present disclosure is applicable not only to various displays used in vehicles, but also to displays mounted in various electronic devices.
  • FIG. 29 is a front view of a digital camera 310 which is a second application example of the display device 1
  • FIG. 30 is a rear view of the digital camera 310.
  • the digital camera 310 in FIGS. 29 and 30 is an example of a single-lens reflex camera in which the lens 121 can be replaced, but the present invention is also applicable to cameras in which the lens 121 cannot be replaced.
  • a monitor screen 316 that displays shooting data, live images, etc., and an electronic viewfinder 315 are provided. Further, a sub-screen that displays setting information such as shutter speed and exposure value may be provided on the top surface of the camera.
  • the display device 1 according to the present disclosure is also applicable to a head mounted display (hereinafter referred to as HMD).
  • HMD head mounted display
  • the HMD can be used for VR, AR, MR (Mixed Reality), SR (Substitutional Reality), and the like.
  • FIG. 31 is an external view of an HMD 320 that is a third application example of the display device 1.
  • the HMD 320 in FIG. 31 has a mounting member 322 that is worn to cover a human's eyes. This mounting member 322 is fixed by being hooked onto a human ear, for example.
  • a display device 321 is provided inside the HMD 320, and the wearer of the HMD 320 can view stereoscopic images and the like on this display device 321.
  • the HMD 320 includes, for example, a wireless communication function and an acceleration sensor, and can switch the stereoscopic image displayed on the display device 321 according to the wearer's posture, gestures, and the like.
  • the HMD 320 may be provided with a camera to take images of the surroundings of the wearer, and the display device 321 may display an image that is a composite of the image taken by the camera and the image generated by the computer.
  • a camera is placed on the back side of the display device 321 that is visible to the wearer of the HMD 320, and this camera photographs the area around the eyes of the wearer, and the photographed image is transferred to another camera provided on the outer surface of the HMD 320.
  • a camera is placed on the back side of the display device 321 that is visible to the wearer of the HMD 320, and this camera photographs the area around the eyes of the wearer, and the photographed image is transferred to another camera provided on the outer surface of the HMD 320.
  • HMD 320 various types are possible.
  • the display device 1 according to the present disclosure can also be applied to smart glasses 340 that display various information on glasses 344.
  • Smart glasses 340 in FIG. 32 include a main body portion 341, an arm portion 342, and a lens barrel portion 343.
  • the main body part 341 is connected to the arm part 342.
  • the main body portion 341 can be attached to and detached from the glasses 344.
  • the main body part 341 includes a control board and a display part for controlling the operation of the smart glasses 340.
  • the main body portion 341 and the lens barrel are connected to each other via an arm portion 342.
  • the lens barrel section 343 emits the image light emitted from the main body section 341 via the arm section 342 to the lens 345 side of the glasses 344 .
  • This image light enters the human eye through lens 345.
  • the wearer of the smart glasses 340 in FIG. 35B can visually recognize not only the surrounding situation but also various information emitted from the lens barrel section 343, similar to normal glasses.
  • the display device 1 according to the present disclosure is also applicable to a television device (hereinafter referred to as TV).
  • TV television device
  • Recent TVs tend to have frame sizes as small as possible from the viewpoint of miniaturization and aesthetic design. For this reason, when a TV is provided with a camera for photographing the viewer, it is desirable to arrange the camera on the back side of the display panel 331 of the TV.
  • FIG. 33 is an external view of a TV 330 that is a fourth application example of the display device 1.
  • the TV 330 in FIG. 33 has a minimized frame, and almost the entire front side is the display area.
  • the TV 330 has a built-in sensor such as a camera for photographing the viewer.
  • the sensor in FIG. 36 is arranged on the back side of a part (for example, the broken line part) in the display panel 331.
  • the sensor may be an image sensor module, or various sensors such as a face recognition sensor, a distance measurement sensor, a temperature sensor, etc. can be applied, and multiple types of sensors are installed on the back side of the display panel 331 of the TV 330. May be placed.
  • the image sensor module can be placed overlappingly on the back side of the display panel 331, there is no need to arrange a camera or the like on the frame, and the TV 330 can be downsized. Moreover, there is no fear that the frame will damage the design.
  • FIG. 34 is an external view of a smartphone 350 that is a fifth application example of the display device 1.
  • the display surface 350z extends to nearly the external size of the display device 1, and the width of the bezel 350y around the display surface 350z is set to several mm or less.
  • a front camera is often mounted on the bezel 350y, but in FIG. 37, an image sensor module 351 functioning as a front camera is mounted on the back side of the display surface 2z, for example, approximately in the center, as shown by the broken line. It is placed.
  • the pixel circuit includes a light emitting section and a drive circuit for driving the light emitting section,
  • the drive circuit includes a drive transistor and a capacitor,
  • the device further includes a second lamp wiring that supplies the second ramp wave voltage generated by the second voltage output unit to each of a plurality of data lines of a second group different from the plurality of data lines of the first group. , (2).
  • (6) further comprising a plurality of drive control lines that drive the drive transistor, Each of the plurality of drive control lines is connected to the drive transistor of a plurality of pixel circuits arranged in a second direction different from the first direction,
  • the plurality of data lines of the first group are connected to the pixel circuit having the drive transistor connected to at least a first drive control line of the plurality of drive control lines,
  • the display device according to (4), wherein the plurality of data lines of the second group are connected to at least a second drive control line different from the first drive control line among the plurality of drive control lines.
  • the first ramp wave voltage includes a ramp wave voltage for initialization and a ramp wave voltage for setting the image signal
  • the second ramp wave voltage includes a ramp wave voltage for initialization and a ramp wave voltage for setting the image signal. Consists of a ramp voltage for setting the signal, The display device according to (5), wherein the second ramp wave voltage outputs a ramp wave voltage for setting the image signal according to a timing at which the first ramp wave voltage outputs the initialization voltage. .
  • the first ramp wave voltage is output to the first lamp wiring via a first buffer
  • the second ramp wave voltage is output to the second lamp wiring via a second buffer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

[課題]消費電力の抑制が可能な表示装置を提供する。 [解決手段]表示装置は、複数のデータ線のそれぞれに第1方向に接続される複数の画素回路と、電圧レベルが時間に応じて変化する第1ランプ波電圧を生成する第1電圧出力部と、第1電圧出力部で生成された第1ランプ波電圧を複数の第1群のデータ線のそれぞれに供給する第1ランプ配線と、を備え、第1ランプ波電圧を第1ランプ配線に出力する前に、複数のデータ線のうちの少なくとも2本のデータ線間を導通状態にする。

Description

表示装置
 本開示は、表示装置に関する。
 有機EL(Electro Luminescence)による表示素子を備える画素が2次元行列状に配置されて構成される表示装置が使用されている。この有機ELによる表示素子は自発光型の表示素子であり、液晶パネルと比較して高画質かつ応答速度が速い等の利点を有する。また、このような液晶パネルでは、ランプ波形電圧の傾きの程度によって表示すべき画像の輝度情報を画像信号として供給することが行われる。
特開2014-52535号公報
 しかしながら、表示装置を構成する画素回路の高密度化が進むにつれて、画素駆動回路に印加される電源にも大きな電流供給能力を必要とする。また、表示装置の消費電力の抑制も求められている。
 そこで、本開示では、消費電力の抑制が可能な表示装置を提供する。
 上記の課題を解決するために、本開示によれば、複数のデータ線のそれぞれに第1方向に接続される複数の画素回路と、
 電圧レベルが時間に応じて変化する第1ランプ波電圧を生成する第1電圧出力部と、
 前記第1電圧出力部で生成された前記第1ランプ波電圧を複数の第1群のデータ線のそれぞれに供給する第1ランプ配線と、を備え、
 前記第1ランプ波電圧を前記第1ランプ配線に出力する前に、複数のデータ線のうちの少なくとも2本のデータ線間を導通状態にする表示装置が提供される。
 前記画素回路は、発光部と前記発光部を駆動するための駆動回路とを備えており、
 前記駆動回路は、駆動トランジスタと容量部とを有しており、
 画像信号に応じた電圧が前記容量部に保持されてもよい。
 複数のデータ線のうちの少なくとも2本のデータ線を導通状態又は非導通状態にする第1スイッチを更に備え、
 前記第1スイッチにより、複数のデータ線のうちの少なくとも2本のデータ線を導通状態であってもよい。
 電圧レベルが時間に応じて変化する第2ランプ波電圧を生成する第2電圧出力部と、
 前記第2電圧出力部で生成された前記第2ランプ波電圧を前記第1群の複数のデータ線と異なる第2群の複数のデータ線のそれぞれに供給する第2ランプ配線と、を更に備えてもよい。
 前記第1ランプ配線と、前記第2ランプ配線とを導通状態又は非導通状態にする第2スイッチを更に備え、
 前記第2スイッチにより、複数のデータ線のうちの少なくとも2本のデータ線を導通状態であってもよい。
 前記駆動トランジスタを駆動する複数の駆動制御線を更に備え、
 前記複数の駆動制御線のそれぞれは、前記第1方向と異なる第2方向に配置される複数の画素回路の前記駆動トランジスタにそれぞれ接続され、
 前記第1群の複数のデータ線は、前記複数の駆動制御線の内の少なくとも第1駆動制御線に接続される前記駆動トランジスタを有する前記画素回路に接続され、
 前記第2群の複数のデータ線は、前記複数の駆動制御線の内の前記第1駆動制御線と異なる第2駆動制御線に少なくとも接続されてもよい。
 前記第1ランプ波電圧と、前記第2ランプ波電圧とは、異なるタイミングで出力されてもよい。
 前記画像信号に応じた電圧は、前記第1ランプ波電圧を用いて設定されてもよい。
 前記第1スイッチは、前記画像信号に応じた期間で導通状態になってもよい。
 前記第1ランプ波電圧は、初期化用の直流電圧と、前記画像信号の設定用のランプ波電圧で構成されてもよい。
 前記第1ランプ波電圧は、初期化用のランプ波電圧と、前記画像信号の設定用のランプ波電圧で構成されてもよい。
 前記第1ランプ波電圧は、初期化用のランプ波電圧と、前記画像信号の設定用のランプ波電圧で構成され、前記第2ランプ波電圧は、初期化用のランプ波電圧と、前記画像信号の設定用のランプ波電圧で構成され、
 前記第1ランプ波電圧が初期化用の電圧を出力するタイミングに応じて、前記第2ランプ波電圧は、前記画像信号の設定用のランプ波電圧を出力してもよい。
 初期化用のランプ波電圧のプリチャージ期間に、複数のデータ線のうちの少なくとも2本のデータ線間を導通状態にしてもよい。
 前記画像信号の設定用のランプ波電圧のプリチャージ期間に、複数のデータ線のうちの少なくとも2本のデータ線間を導通状態にしてもよい。
 前記初期化用のランプ波電圧と、前記画像信号の設定用のランプ波電圧とは、所定の周期で交互に出力されてもよい。
 前記第1ランプ波電圧は、第1バッファを介して、前記第1ランプ配線に出力され、前記第2ランプ波電圧は、第2バッファを介して、前記第2ランプ配線に出力されてもよい。
 前記2本のデータ線間を導通状態にする期間において、前記第1バッファ、及び前記第2バッファの少なくとも一方を高インピーダンスにしてもよい。
 前記2本のデータ線間を導通状態にする場合に、前記2本のデータ線のそれぞれに接続される画素回路が有する前記容量部の蓄積電荷が共有されてもよい。
第1実施形態による表示装置1を備えた表示システム2の概略構成を示すブロック図。 画素回路の信号線及びデータ線の配線例を示す図。 画素回路の内部構成を示す回路図。 図3とは異なる内部構成を有する画素回路の回路図。 一方の水平駆動部のデータ線a側の内部構成を示すブロック図。 他方の水平駆動部のデータ線側の内部構成を示すブロック図。 ランプバッファとデータ線とのより詳細な接続例を示す図。 表示装置の動作例を示すタイムチャート。 比較例に係るランプバッファとデータ線とのより詳細な接続例を示す図。 比較例に係る表示装置の動作例を示すタイムチャート。 第1実施形態の変形例1に係る表示装置1の動作例を示すタイムチャート。 第1実施形態の変形例2に係る表示装置1の動作例を示すタイムチャート。 第1実施形態の変形例3に係る表示装置1の動作例を示すタイムチャート。 第1実施形態の変形例4に係る、ランプバッファとデータ線との接続例を示す図。 第2実施形態に係る表示装置の構成図。 データドライバの内部構成を示すブロック図。 第2実施形態に係るランプバッファとデータ線DTLnとのより詳細な接続例を示す図。 第2実施形態に係る表示装置1の動作例を示すタイムチャート。 第2実施形態に係るランプバッファとデータ線とのより詳細な接続例を示す図。 第3実施形態に係る表示装置の動作例を示すタイムチャート。 一実施形態に係る画素回路を示す図。 一実施形態に係る画素回路を示す図。 一実施形態に係る画素回路を示す図。 一実施形態に係る画素回路を示す図。 一実施形態に係る画素回路を示す図。 一実施形態に係る画素回路を示す図。 乗物の後方から前方にかけての乗物の内部の様子を示す図。 乗物の斜め後方から斜め前方にかけての乗物の内部の様子を示す図。 電子機器の第2適用例であるデジタルカメラの正面図。 デジタルカメラの背面図。 電子機器の第3適用例であるHMDの外観図。 スマートグラスの外観図。 電子機器の第4適用例であるTVの外観図。 電子機器の第5適用例であるスマートフォンの外観図。
 以下、図面を参照して、表示装置の実施形態について説明する。以下では、表示装置の主要な構成部分を中心に説明するが、表示装置には、図示又は説明されていない構成部分や機能が存在しうる。以下の説明は、図示又は説明されていない構成部分や機能を除外するものではない。
 (第1実施形態)
 図1は第1実施形態による表示装置1を備えた表示システム2の概略構成を示すブロック図である。図1の表示システム2は、マイクロOLED(Organic Light Emitting Diode)システムの構成を例示している。なお、本実施形態による表示装置1は、TVやPCモニタ等の大画面の表示装置1を備えた表示システム2にも適用可能である。
 図1の表示システム2は、表示装置1と、ディスプレイコントローラ3と、タイミングコントローラ4と、データ入出力I/F部5とを備えている。なお、図1では、ディスプレイコントローラ3等を表示装置1とは別体にしているが、ディプレイコントローラ等を表示装置1に統合させてもよい。
 表示装置1は、画素アレイ部11と、垂直駆動部(V-DRV部)12と、水平駆動部(H-DRV部)13と、信号処理部14と、を有する。
 図2は、画素アレイ部11の各画素回路15の信号線60及びデータ線70(70a及び70b)の配線例を示す図である。画素アレイ部11は、水平方向及び垂直方向に配置される複数の画素回路15を有する。例えば、奇数行目の各画素回路15には、データ線70aが接続され、偶数行目の各画素回路15には、データ線70bが接続される。これにより、奇数行目の各画素回路15と、偶数行目の各画素回路15とでは、並行して独立した制御が可能となっている。
 各画素回路15は、例えば有機EL素子等の発光部と、発光部を駆動するための駆動回路とを備えており、駆動回路は、駆動トランジスタと容量部とを有する。容量部に保持される電圧に応じた電流が駆動トランジスタを介して発光部に流れるように構成される。容量部には、ランプ波形の傾きの程度に応じた電圧が容量部に保持される。画素回路15の内部構成は後述する。
 信号処理部14は、画素アレイ部11に表示されるべき映像信号の信号処理を行う。信号処理の具体的内容は問わないが、例えばガンマ補正などである。信号処理部14で信号処理された映像信号は、水平駆動部13に送られる。
 垂直駆動部12は、後述する図3に示すように、書き込み走査部16と駆動走査部17とを有する。書き込み走査部16は、各画素回路15に信号電圧を書き込むに際して、各走査線に書き込み走査信号を順次供給して、各走査線WS1~WSnを順次駆動する。駆動走査部17は、書き込み走査部16による線順次走査に同期して、各駆動線に発光制御信号を供給し、発光部の発光と非発光を制御する。
 水平駆動部13は、図3に示すように信号出力部18を有する。信号出力部18は、ランプ波電圧を、各画素の階調に応じたタイミングで保持して信号電圧を生成する。信号出力部18は、信号電圧(画像信号の設定用の電圧)又はオフセット電圧(初期化用の電圧)Vofsを選択的に選択して、対応するデータ線70a、70bに供給する。
 信号出力部18から択一的に出力される信号電圧又はオフセット電圧Vofsは、データ線70a、70bを介して、書き込み走査部16による走査で選択された行単位で、各画素回路15に設定される。本実施形態では、例えば奇数行目の各画素回路15に信号電圧を供給する場合に、並行して偶数行目の各画素回路15にオフセット電圧Vofsを供給する。逆に例えば奇数行目の各画素回路15にオフセット電圧Vofsを供給する場合に、並行して偶数行目の各画素回路15に信号電圧を供給する。これにより、例えばデータ線70が一本の場合の、倍の表示速度が実現可能である。
 再び図1に示すように、ディスプレイコントローラ3は、HLOGIC部21とVLOGIC部22を有し、画素アレイ部11に対する表示制御を行う。
 HLOGIC部21は、映像信号を水平駆動部13に供給する。VLOGIC部22は、走査線及び駆動線のタイミングを規定する信号を垂直駆動部12に供給する。
 タイミングコントローラ4は、クロック生成器23と、タイミング生成器24と、画像処理部25とを有する。クロック生成器23は、表示装置1の垂直同期クロックと水平同期クロックを生成して、ディスプレイコントローラ3に供給する。タイミング生成器24は、ディスプレイコントローラ3の動作タイミングを規定する信号を生成して、ディスプレイコントローラ3に供給する。画像処理部25は、データ入出力I/F部5に入力された映像信号に対して、種々の画像処理を施す。画像処理を行った後の映像信号は、ディスプレイコントローラ3内のHLOGIC部21に供給される。
 データ入出力I/F部5は、画像I/F部531と、データS/P部532と、クロック制御部533と、H/V同期部534とを有する。画像I/F部531は、外部からの映像信号を受信する。映像信号は、シリアルのデジタルデータである。データS/P部532は、映像信号をパラレルデータに変換した後、タイミングコントローラ4内の画像処理部25に送る。クロック制御部533は、表示装置1の表示周波数に適合するクロックを生成する。H/V同期部534は、表示装置1の水平同期タイミングと垂直同期タイミングを規定する信号を生成して、タイミング生成器24に送る。
 図3は画素回路15の内部構成を示す回路図である。図3の画素回路15は、有機EL素子を有する発光部41と、駆動トランジスタ42と、サンプリングトランジスタ43と、発光制御トランジスタ44と、保持容量45と、補助容量46とを有する。画素回路15は、シリコン等の半導体基板上に形成され、駆動トランジスタ42、サンプリングトランジスタ43及び発光制御トランジスタ44は例えばPMOSトランジスタである。各トランジスタはバックゲートには電源電圧が印加されている。
 サンプリングトランジスタ43は、信号出力部18からデータ線70a、70bを介して供給される信号電圧Vsigをサンプリングすることによって保持容量45に書き込む。発光制御トランジスタ44は、電源電圧Vccの電源ノードと駆動トランジスタ42のソース電極との間に接続され、発光制御信号DSによる駆動の下に、発光部41の発光/非発光を制御する。
 保持容量45は、駆動トランジスタ42のゲート電極とソース電極との間に接続されている。この保持容量45は、サンプリングトランジスタ43によるサンプリングによって書き込まれた信号電圧Vsigを保持する。駆動トランジスタ42は、保持容量45の保持電圧に応じた駆動電流を発光部41に流すことによって発光部41を駆動する。補助容量46は、駆動トランジスタ42のソース電極と、固定電位のノード、例えば、電源電圧Vccの電源ノードとの間に接続されている。この補助容量46は、信号電圧Vsigを書き込んだときに駆動トランジスタ42のソース電位が変動するのを抑制するとともに、駆動トランジスタ42のゲート-ソース間電圧Vgsを駆動トランジスタ42の閾値電圧Vthに合わせる作用を行う。
 画素回路15の内部構成は図3に示したものに限定されない。例えば、図4は図3とは異なる内部構成を有する画素回路15の回路図である。発光制御トランジスタ44は電源電位Vccと駆動トランジスタ42のソースSとの間に接続されており、発光部41のオン/オフを制御する。発光制御トランジスタ44のゲートは走査線DSに接続されている。
 サンプリングトランジスタ43はデータ線70a、70bと、保持容量45及び補助容量46の接続ノードAとの間に接続されている。サンプリングトランジスタ43のゲートは走査線WSに接続されている。接続ノードAと駆動トランジスタ42のソースSとの間に検出トランジスタ47が接続されている。検出トランジスタ47のゲートは走査線AZに接続されている。スイッチングトランジスタ48は、駆動トランジスタ42のゲートGと所定のオフセット電位Vofsとの間に接続されている。スイッチングトランジスタ48のゲートは走査線AZに接続されている。検出トランジスタ47とスイッチングトランジスタ48はVthキャンセル用の補正手段を構成している。保持容量45は接続ノードAと駆動トランジスタ42のゲートGとの間に接続され、補助容量46は電源電位Vccと接続ノードAとの間に接続されている。
 駆動トランジスタ42はソース/ゲート間に印加されるゲート電圧Vgsに応じてソース/ドレイン間にドレイン電流Idsを流して、発光部41を駆動する。信号線SLから供給される映像信号Vsigに応じて駆動トランジスタ42のゲート電圧Vgsが設定され、駆動トランジスタ42のドレイン電流Idsにより、映像信号の階調に応じて発光部41の発光輝度を制御できる。
 駆動トランジスタ42の閾値電圧Vthは画素毎に変動する。この閾値電圧をキャンセルするため、予め駆動トランジスタ42の閾値電圧Vthを検出し、保持容量45に保持しておく。この後サンプリングトランジスタ43をオンして補助容量46に信号電位Vsigを書き込む。これにより、駆動トランジスタ42の閾値電圧Vthのばらつきを補正したゲート電位Vgsが生成される。
 図3及び図4は、画素回路15の一例であり、本実施形態による画素回路15には、後述するように、図3及び図4以外の内部構成の画素回路15も適用可能である。
 図5は水平駆動部13内のデータ線70a側の内部構成を示すブロック図である。図6は水平駆動部13内のデータ線70b側の内部構成を示すブロック図である。図5、及び図6に示すように水平駆動部13は、複数の水平駆動部31、32と、ランプ信号生成回路34と、セレクタ34aと、複数のランプバッファ35a、35bとを有する。水平駆動部31、及びランプバッファ35aは、データ線70aに接続され、水平駆動部32、及びランプバッファ35bは、データ線70bに接続される。
 ランプ信号生成回路34は、ランプ信号を生成する回路である。このランプ信号生成回路34は、信号用ランプ生成DAC52と、Vofs用ランプ生成DAC53とを有する。信号用ランプ生成DAC52は、電圧レベルが連続的に変化するランプ波電圧を出力する。Vofs用ランプ生成DAC53は、駆動トランジスタ42の閾値補正と移動度補正を行うためのVofs用ランプ波電圧を出力する。セレクタ34aは、信号用ランプ生成DAC52とVofs用ランプ生成DAC53との出力の一方を選択する。本実施形形態に係るVofs用ランプ生成DAC53は、電圧レベルが連続的に変化するランプ波電圧を出力する。
 ランプバッファ35a、35bは、バッファアンプに相当し、入力されたランプ信号をそれぞれ水平駆動部31及び32に出力する。すなわち、ランプバッファ35a、35bは、画素回路15内の駆動トランジスタ42の閾値補正と移動度補正を行うためのVofs用ランプ波電圧と、電圧レベルが連続的に変化するランプ波電圧とを切り替えて水平駆動部31、32に出力する。また、ランプバッファ35a、35bは、図7に示すように、内部に切り変えスイッチ38a、38bを有する。スイッチ38a、38bは、ハイインピーダンス化が可能なスイッチである。
 水平駆動部31は、それぞれスイッチ素子36aと、PWM37aとを列毎に備える。水平駆動部32は、それぞれスイッチ素子36bと、PWM37bとを列毎に備える。
 PWM37a、37bのそれぞれは、信号用ランプ生成DAC52の生成するランプ波電圧を出力する場合には、デジタルの画像信号からPWM(Pulse width modulation)信号を生成する。このPWM信号は、一定周期のパルス信号であり、デジタルの画像信号に応じたパルス幅を持った信号である。すなわち、PWM信号は、デジタルの画像信号に応じたデューティのパルス信号となる。
 PWM37a、37bのそれぞれは、Vofs用ランプ波電圧を出力する場合には、所定幅のPWM(Pulse width modulation)信号を生成する。このPWM信号は、一定周期のパルス信号であり、予め定められたパルス幅を持った信号である。すなわち、Vofs用PWM信号は、所定幅のパルス信号となる。図2に示したように、水平駆動部31及び32は、画素アレイ部10の上部に配置される水平駆動部13に適用することができる。
 図7は、ランプバッファ35a、35bとデータ線70a、70bとのより詳細な接続例を示す図である。ランプバッファ35a、35bは、それぞれ切り変えスイッチ38a、38bを有する。スイッチ38a、38bは高インピーダンス化にすることが可能である。
 また、隣接するデータ線70a、70bの間にはチャージシェア用のスイッチ39が接続される。スイッチ39は、例えばトランジスタであり、データ線70a、70bを導通状態、或いは非導通状態にする。
 また、図7では、RAMPLINE_1は、ランプバッファ35aが出力するランプ電圧が供給される配線を示し、RAMPLINE_2は、ランプバッファ35bが出力するランプ電圧が供給される配線を示す。また、PWM1は、PWM37aが出力するPWM信号を示し、PWM2は、PWM37bが出力するPWM信号を示す。PWM1信号、PWM2信号は、ハイレベルでスイッチ36a、36bを導通状態にし、ロウレベルで非導通状態にする。
 また、CSは、スイッチ39の切り変え信号を示す。CS信号は、ハイレベルでスイッチ39を導通状態にし、ロウレベルで非導通状態にする。
 図8は、表示装置1の動作例を示すタイムチャートである。上からCS信号、RAMPLINE_1に出力される電圧であるRAMPBUF1出力電圧、PWM1信号、データ線70aの電圧を示すSIG1信号、RAMPLINE_2に出力される電圧であるRAMPBUF2出力電圧、PWM2信号、データ線70bの電圧を示すSIG2信号を示す。バッフア出力電流は、RAMPLINE_2に出力される電流を示す。
 図8に示す様に、第1水平期間1Hは、データ線70a側がVofs電圧の設定期間であり、データ線70b側が信号電圧の設定期間である。RAMPBUF1出力電圧、及びRAMPBUF2出力電圧は、出力の開始時に、一定電圧の期間であるプリチャージの期間を有する。
 第1水平期間1Hのタイミングt1でCS信号がハイレベルとなり、スイッチ39を導通状態にする。また、タイミングt1で、スイッチ38a、38bは、ハイインピーダンスの状態となる。このとき、画素回路15(図3参照)では、トランジスタ43が導通状態となり、トランジスタ42、44が非導通状態となる。すなわち、スイッチ39を導通状態にすることにより、各画素回路15の容量45、46の蓄積電荷が共有される。この際に、スイッチ36a、36bも導通状態であるので、RAMPLINE_1とRAMPLINE_2の電位も同電位となる。これにより、タイミングt2では、RAMPLINE_1とRAMPLINE_2の電位は、それぞれVup1、Vup2ほど高電位側に状態が変化する。また、RAMPLINE_1とRAMPLINE_2が同電位になることにより、RAMPLINE_1とRAMPLINE_2の寄生容量による電位変動も抑制される。
 そして、タイミングt2でCS信号がハイレベルとなり、スイッチ39を非導通状態にする。また、タイミングt2で、スイッチ38a、38bは、ロウインピーダンスの状態となる。一方で、各画素15も通常の駆動動作を開始する。
 このような処理は水平期間H2でも行われる。すなわち、第2水平期間2Hのタイミングt3でCS信号がハイレベルとなり、スイッチ39を導通状態にする。また、タイミングt3で、スイッチ38a、38bは、ハイインピーダンスの状態となる。このとき、画素回路15(図3参照)では、トランジスタ43が導通状態となり、トランジスタ42、44が非導通状態となる。すなわち、スイッチ39を導通状態にすることにより、各画素回路15の容量45、46の蓄積電荷が共有される。この際に、スイッチ36a、36bも導通状態であるので、RAMPLINE_1とRAMPLINE_2の電位も同電位となる。これにより、タイミングt4では、RAMPLINE_1とRAMPLINE_2の電位は、それぞれVup1、Vup2ほど高電位側に状態が変化する。これらの水平期間H1、H2と同等な駆動が、繰り返される。
 このように、タイミングt2、t4で、RAMPLINE_1とRAMPLINE_2の電位は、それぞれVup1、Vup2ほど高電位側に状態が変化する。また、タイミングt2、t4で流れるバッフア出力電流の過度的電流も抑制できる。これらから分かる様に、ランプ信号生成回路34の電源容量を低減することが可能であるとともに、画素アレイ部11の消費電流を抑制可能となる。なお、図8では、タイミングt21で、プリチャージが終了する。また、チャージシェアを行うタイミングは、ランプ電圧書き込み完了後からプリチャージ開始までの期間であれば良い。すなわち、ランプ電圧書き込み完了後からプリチャージ開始までの期間とは、PWM2がLowになるt22からt4までの期間となる。
 (比較例)
 図9は、比較例に係るランプバッファ35aとデータ線70とのより詳細な接続例を示す図である。比較例に係る表示装置1は、ランプバッファ35のみであり、チャージシェア用のスイッチ39を有さない構成である。図7では、RAMPLINE_1は、ランプバッファ35aが出力するランプ電圧が供給される配線を示す。また、PWM1は、PWM37aが出力するPWM信号を示す。
 図10は、比較例に係る表示装置1の動作例を示すタイムチャートである。上からCS信号、RAMPLINE_1に出力される電圧であるRAMPBUF出力電圧、PWM1信号、データ線70の電圧を示すSIG1信号を示す。バッフア出力電流は、RAMPLINE_1に出力される電流を示す。
 図10に示す様に、水平期間内のVofs電圧の設定期間、及び信号電圧の設定期間内にチャージシェア用の期間を有しないものである。このため、ランプ信号生成回路34から出力されるランプ電圧は、常に基準電圧に対して供給される。これにより、信号電圧のランプ電圧が印可されるときに生じるバッフア出力電流は、エリアA10に示すように過大となってしまう。これに対して本実施形態に係る表示装置1では、図8に示す様に、チャージシェアした後に、信号電圧のランプ電圧が印可されるので、信号電圧のランプ電圧が印可されるときに生じるバッフア出力電流は抑制されている。
 以上説明したように本実施形態に係る表示装置1では、ランプ信号生成回路34がプリチャージ動作を行う前に、複数のデータ線70a、70b間を導通状態にすることとした。これにより、複数のデータ線70a、70b間と導通状態となっている各画素回路15の容量45、46の蓄積電荷が共有され、RAMPLINE_1とRAMPLINE_2の電位は、それぞれVup1、Vup2ほど高電位側に状態が変化する。これにより、ランプ信号生成回路34の電源容量を低減することが可能であるとともに、画素アレイ部11の消費電流を抑制可能となる。
 (第1実施形態の変形例1)
 第1実施形態に係る表示装置1では、ランプ信号生成回路34のVofs用ランプ生成DAC53は、ランプ波を出力していたのに対し、第1実施形態の変形例1に係るVofs用電圧を直流電圧にした点で第1実施形態に係る表示装置1と相違する。以下では、第1実施形態に係る表示装置1と相違する点を説明する。
 図11は、第1実施形態の変形例1に係る表示装置1の動作例を示すタイムチャートである。上からCS信号、RAMPLINE_1に出力される電圧であるRAMPBUF1出力電圧、PWM1信号、データ線70aの電圧を示すSIG1信号、RAMPLINE_2に出力される電圧であるRAMPBUF2出力電圧、PWM2信号、データ線70bの電圧を示すSIG2信号を示す。バッフア出力電流は、RAMPLINE_2に出力される電流を示す。Vofs用電圧が直流の固定電位である点が第1実施形態に係る表示装置1と相違する。
 このように、タイミングt2、t4で、RAMPLINE_1とRAMPLINE_2の電位は、Vofs用電圧の設定側でそれぞれVup1ほど高電位側に状態が変化する。また、各画素の各画素回路15の容量45、46の蓄積電荷が共有されるので、特異的に電荷の低減した画素回路15が発生することを抑制可能となる。このため、タイミングt2、t4での信号電圧の設定側でも、特異的に電荷の低減した画素回路15に対して、突入的に発生するバッフア出力電流の過度的電流も抑制できる。これにより、ランプ信号生成回路34の電源容量を低減することが可能であるとともに、画素アレイ部11の消費電流を抑制可能となる。
 (第1実施形態の変形例2)
 第1実施形態に係る表示装置1では、ランプ信号生成回路34のVofs用ランプ生成DAC53がプリチャージ動作を行う前に、複数のデータ線70a、70b間を導通状態にしていたのに対し、第1実施形態の変形例2に係るVofs用電圧の設定側では、複数のデータ線70a、70b間を導通状態とすると共にプリチャージ動作を開始する点で第1実施形態に係る表示装置1と相違する。以下では、第1実施形態に係る表示装置1と相違する点を説明する。
 図12は、第1実施形態の変形例2に係る表示装置1の動作例を示すタイムチャートである。上からCS信号、RAMPLINE_1に出力される電圧であるRAMPBUF1出力電圧、PWM1信号、データ線70aの電圧を示すSIG1信号、RAMPLINE_2に出力される電圧であるRAMPBUF2出力電圧、PWM2信号、データ線70bの電圧を示すSIG2信号を示す。バッフア出力電流は、RAMPLINE_2に出力される電流を示す。Vofs用電圧の設定側では、複数のデータ線70a、70b間を導通状態とすると共にプリチャージ動作を開始する点で第1実施形態に係る表示装置1と相違する。
 この場合、CS信号がハイレベルの期間では、Vofs用電圧の設定側では、スイッチ38a、38bをローインピーダンスにし、信号電圧の設定側では、スイッチ38a、38bをハイインピーダンスにする。
 このように、タイミングt1、t3で、複数のデータ線70a、70b間を導通状態にするので、Vofs用電圧の設定側のプリチャージ動作期間に、各画素の各画素回路15の容量45、46の蓄積電荷が共有される。これにより、特異的に電荷の低減した画素回路15が発生することを抑制可能となる。このため、特異的に電荷の低減した画素回路15に対して、突入的に発生するバッフア出力電流の過度的電流も抑制できる。これにより、ランプ信号生成回路34の電源容量を低減することが可能であるとともに、画素アレイ部11の消費電流を抑制可能となる。
 一方で、タイミングt2、t4での信号電圧の設定側でも、電位がVofs用電圧の設定側のプリチャージ電圧まで上がっているので、プリチャージを電位がVup2上がった状態から電圧を供給可能となる。これにより、ランプ信号生成回路34の信号用ランプ生成DAC52の負荷も低減可能となる。
 (第1実施形態の変形例3)
 第1実施形態に係る表示装置1では、ランプ信号生成回路34の信号用ランプ生成DAC52がプリチャージ動作を行う前に、複数のデータ線70a、70b間を導通状態にしていたのに対し、第1実施形態の変形例3に係る信号電圧の設定側では、複数のデータ線70a、70b間を導通状態とすると共にプリチャージ動作を開始する点で第1実施形態に係る表示装置1と相違する。以下では、第1実施形態に係る表示装置1と相違する点を説明する。
 図13は、第1実施形態の変形例3に係る表示装置1の動作例を示すタイムチャートである。上からCS信号、RAMPLINE_1に出力される電圧であるRAMPBUF1出力電圧、PWM1信号、データ線70aの電圧を示すSIG1信号、RAMPLINE_2に出力される電圧であるRAMPBUF2出力電圧、PWM2信号、データ線70bの電圧を示すSIG2信号を示す。バッフア出力電流は、RAMPLINE_2に出力される電流を示す。信号電圧の設定側では、複数のデータ線70a、70b間を導通状態とすると共にプリチャージ動作を開始する点で第1実施形態に係る表示装置1と相違する。 
 この場合、CS信号がハイレベルの期間では、信号電圧の設定側では、スイッチ38a、38bをローインピーダンスにし、Vofs用電圧の設定側では、スイッチ38a、38bをハイインピーダンスにする。
 このように、タイミングt1、t3で、複数のデータ線70a、70b間を導通状態にするので、信号電圧の設定側のプリチャージ動作期間に、各画素の各画素回路15の容量45、46の蓄積電荷が共有されるので、特異的に電荷の低減した画素回路15が発生することを抑制可能となる。このため、特異的に電荷の低減した画素回路15に対して、突入的に発生するバッフア出力電流の過度的電流も抑制できる。これにより、ランプ信号生成回路34の電源容量を低減することが可能であるとともに、画素アレイ部11の消費電流を抑制可能となる。
 一方で、タイミングt2、t4でのVofs用電圧の設定側でも、電位が信号電圧の設定側のプリチャージ電圧まで上がっているので、プリチャージを電位下げることによりVofs用電圧の供給可能となる。これにより、ランプ信号生成回路34のVofs用ランプ生成DAC530の負荷も低減可能となる。
 (第1実施形態の変形例4)
 図14は、第1実施形態の変形例4に係る、ランプバッファ35a、35bとデータ線70a、70bとのより詳細な接続例を示す図である。第1実施形態に係る表示装置1では、チャージシェア用のスイッチ39をデータ線70a、70b間に構成しているのに対し、第1実施形態の変形例4に係るチャージシェア用のスイッチ39は、ランプ線、RAMPLINE_1、RAMPLINE_2間に構成している点で相違する。このように、ランプ線、RAMPLINE_1、RAMPLINE_2間に構成する場合には、画素アレイブ11側での、スイッチ39の設置スペースが不要となり、画素回路15の配線自由度が阻害されることが抑制される。
 (第2実施形態)
 第1実施形態に係る表示装置1では、画素回路15にVofs用電圧を設定していたが、本実施形態に係る表示装置1では、画素回路15にVofs用電圧を設定しない点で第1実施形態に係る表示装置1と相違する。以下では、第1実施形態に係る表示装置1と相違する点を説明する。
 図15は、第2実施形態に係る表示装置1の構成図である。表示装置1は、発光部ELPと発光部ELPを駆動する駆動回路400とを備えた画素回路300が配置された画素アレイ部200、及び、画素アレイ部200を駆動する駆動部100を備えている。
 画素アレイ部200において、画素回路300は、第1走査線WS1、第2走査線WS2、給電線DS、及び、データ線DTLに接続された状態で、2次元マトリクス状に配置されている。第1走査線WS1、第2走査線WS2、及び、給電線DSは、行方向に延在して設けられ、データ線DTLは、列方向に延在して設けられている。
 尚、図示の都合上、図15においては、1つの画素回路300、より具体的には、(n、m)番目の画素回路300についての結線関係を示した。駆動部100は、電源部101、走査部102、及び、データドライバ103から構成される。走査部102は、第1走査部102Aと、第2走査部102Bとを備えている。給電線DSには、電源部101から駆動電圧などが供給される。第1走査線WS1には、第1走査部102Aから信号が供給され、第2走査線WS2には第2走査部102Bから信号が供給される。データ線DTLには、データドライバ103から、ランプ波形の電圧が供給される。
 画素回路300が備える駆動回路400は、駆動トランジスタTRDrvと容量部CHDとを少なくとも含んでいる。駆動トランジスタTRDrvにあっては、一方のソース/ドレイン領域には電圧が供給されると共に、他方のソース/ドレイン領域は発光部ELPに接続され、容量部CHDに保持される電圧に応じた電流が駆動トランジスタTRDrvを介して発光部ELPに流れるように構成されている。発光部ELPは、流れる電流値に応じて発光輝度が変化する電流駆動型の電気光学素子、より具体的には、有機エレクトロルミネッセンス発光部から構成されている。
 駆動部100は、駆動トランジスタTRDrvが非導通状態となるように容量部CHDの電圧を設定し且つゲート電極を電気的に浮遊している状態として、他方のソース/ドレイン領域にランプ波形の電圧を印加し、その後、ランプ波形の電圧の印加を継続している状態でゲート電極に所定の一定電圧を印加することによって、ランプ波形の傾きの程度に応じた電圧を容量部CHDに保持させる。
 駆動トランジスタTRDrvはnチャネル型の電界効果トランジスタから構成されている。駆動トランジスタTRDrvにおいて、一方のソース/ドレイン領域は給電線DSに接続されており、他方のソース/ドレイン領域は発光部ELPの一端、より具体的には、発光部ELPに備えられたアノード電極に接続されている。容量部CHDは、駆動トランジスタTRDrvのゲート電極と他方のソース/ドレイン領域との間に接続されている。 
 容量部CHDは、駆動トランジスタTRDrvのソース領域に対するゲート電極の電圧(所謂ゲート-ソース間電圧)を保持するために用いられる。この場合の「ソース領域」とは、発光部ELPが発光するときに「ソース領域」として働く側のソース/ドレイン領域を意味する。画素回路300の発光状態においては、駆動トランジスタTRDrvの一方のソース/ドレイン領域(図15において給電線DSに接続されている側)はドレイン領域として働き、他方のソース/ドレイン領域(発光部ELPの一端、具体的には、アノード電極に接続されている側)はソース領域として働く。
 駆動回路400は、更に、第1スイッチング素子TRWS1を含んでいる。第1スイッチング素子TRWS1は、駆動トランジスタTRDrvと同様にnチャネル型の電界効果トランジスタから構成されている。第1スイッチング素子TRWS1のゲート電極は第1走査線WS1に接続されており、第1スイッチング素子TRWS1の導通/非導通は、第1走査部102Aからの信号によって制御される。
 第1スイッチング素子TRWS1にあっては、一端(一方のソース/ドレイン領域)にランプ波形の電圧が印加されると共に、他端(他方のソース/ドレイン領域)は駆動トランジスタTRDrvの他方のソース/ドレイン領域に接続されている。そして、第1スイッチング素子TRWS1が導通状態とされることによって、駆動トランジスタTRDrvの他方のソース/ドレイン領域にランプ波形の電圧が印加される。
 図15に示す例では、第1スイッチング素子TRWS1の一端は、カップリング容量CCPを介してデータ線DTLに接続されている。従って、第1スイッチング素子TRWS1の一端には、カップリング容量CCPを介してランプ波形の電圧が印加される。尚、カップリング容量CCPの位置を入れ替えた構成、即ち、第1スイッチング素子TRWS1の他端は、カップリング容量CCPを介して、駆動トランジスタTRDrvの他方のソース/ドレイン領域に接続されている構成としてもよい。
 駆動回路400は、更に、第2スイッチング素子TRWS2を含んでいる。第2スイッチング素子TRWS2も、駆動トランジスタTRDrvと同様にnチャネル型の電界効果トランジスタから構成されている。第2スイッチング素子TRWS2のゲート電極は第2走査線WS2に接続されており、第2スイッチング素子TRWS2の導通/非導通は、第2走査部102Bからの信号によって制御される。
 第2スイッチング素子TRWS2にあっては、一端(一方のソース/ドレイン領域)に所定の一定電圧VIniが印加されると共に、他端(他方のソース/ドレイン領域)は駆動トランジスタTRDrvのゲート電極に接続されている。そして、第2スイッチング素子TRWS2が導通状態とされることによって、駆動トランジスタTRDrvのゲート電極に所定の一定電圧VIniが印加される。
 符号NDgは、駆動トランジスタTRDrvのゲート電極に接続される要素で構成されるノードを示す。ノードNDgは、駆動トランジスタTRDrvのゲート電極に、第2スイッチング素子TRWS2の他端と、容量部CHDの一方の電極とが接続されて構成される。
 符号NDsは、駆動トランジスタTRDrvの他方のソース/ドレイン領域に接続される要素で構成されるノードを示す。ノードNDsは、駆動トランジスタTRDrvの他方のソース/ドレイン領域に、発光部ELPのアノード電極と、第1スイッチング素子TRWS1の他端とが接続されて構成される。
 図16はデータドライバ103の内部構成を示すブロック図である。図16に示すようにデータドライバ103は、水平駆動部31cと、ランプ信号生成回路34cと、ランプバッファ36cとを有する。水平駆動部31c、及びランプバッファ36cは、データ線DTLnに接続される。
 ランプ信号生成回路34cは、ランプ信号を生成する回路である。このランプ信号生成回路34cは、信号用ランプ生成DAC52を有する。信号用ランプ生成DAC52は、電圧レベルが連続的に変化するランプ波電圧を出力する。
 ランプバッファ35cは、バッファアンプに相当し、入力されたランプ信号を水平駆動部31cに出力する。すなわち、ランプバッファ35cは、画素回路300内の容量CHDの信号電圧を設定するための、電圧レベルが連続的に変化するランプ波電圧を出力する。水平駆動部31cは、スイッチ素子36caと、PWM37cとを列毎に備える。
 PWM37cは、信号用ランプ生成DAC52の生成するランプ波電圧を出力する場合には、デジタルの画像信号からPWM(Pulse width modulation)信号を生成する。このPWM信号は、一定周期のパルス信号であり、デジタルの画像信号に応じたパルス幅を持った信号である。すなわち、PWM信号は、デジタルの画像信号に応じたデューティのパルス信号となる。
 図17は、第2実施形態に係るランプバッファ35cとデータ線DTLnとのより詳細な接続例を示す図である。第2実施形態に係るに係る表示装置1は、ランプバッファ35cのみであり、チャージシェア用のスイッチ39を有さない構成である。図17では、RAMPLINE_1は、ランプバッファ35cが出力するランプ電圧が供給される配線を示す。また、PWM1~PWMnは、PWM37aが出力するPWM信号をそれぞれ示す。XCSは、スイッチ38cの制御信号であり、ハイレベルでロウインピーダンスにし、ロウレベルでハイインピーダンスにする。
 図18は、第2実施形態に係る表示装置1の動作例を示すタイムチャートである。上からRAMPLINE_1に出力される電圧であるRAMPBUF出力電圧、XCS信号、データ線DTL1に対応するPWM1信号、データ線DTL1の電圧を示すSIG1信号、データ線DTL2に対応するPWM2信号、データ線DTL2の電圧を示すSIG2信号を示す。バッフア出力電流は、RAMPLINE_1に出力される電流を示す。
 図18に示す様に、チャージシェアの期間CSの開始であるタイミングt1、t3でXCS信号はロウレベルとなり、スイッチ38cはハイインピーダンスになる。このとき、データ線DTL1~データ線DTLnのスイッチ36cは導通状態となる。また、画素回路200(図15参照)内のトランジスタTRWS1は導通状態となり、トランジスタTRWS2、TRDRVは非導通状態となる。これにより、タイミングt1~t2、t3~t4の間に、各画素回路200内の容量CHDの蓄積電荷が共有化される。
 次にチャージシェアの期間CSの終了であるタイミングt2、t4でXCS信号はハイレベルとなり、スイッチ38cはロウインピーダンスになる。また、画素回路200(図15参照)は通常の駆動状態となり、信号電圧の設定用のランプ電圧が印加される。
 このように、タイミングt2、t4で、RAMPLINE_1の電位は、それぞれ高電位側に状態が変化する。また、タイミングt2、t4で流れるバッフア出力電流の過度的電流も抑制できる。これらから分かる様に、ランプ信号生成回路34の電源容量を低減することが可能であるとともに、画素アレイ部11の消費電流を抑制可能となる。また、各画素回路200の容量CHDの蓄積電荷が共有されるので、特異的に電荷の低減した画素回路200が発生することを抑制可能となる。このため、タイミングt2、t4でのランプ電圧の印加開始タイミングでも、特異的に電荷の低減した画素回路200に対して、突入的に発生するバッフア出力電流の過度的電流も抑制できる。これにより、ランプ信号生成回路34の電源容量を低減することが可能であるとともに、画素アレイ部11の消費電流を抑制可能となる。
 以上説明したように本実施形態に係る表示装置1では、ランプ信号生成回路34が信号電圧の設定用のプリチャージ動作を行う前に、データ線DTL1~データ線DTLn間を導通状態にすることとした。これにより、複数のデータ線DTL1~データ線DTLn間と導通状態となっている各画素回路200の容量CHDの蓄積電荷が共有され、RAMPLINE_1の電位は、それぞれ高電位側に状態が変化する。これにより、ランプ信号生成回路34の電源容量を低減することが可能であるとともに、画素アレイ部11の消費電流を抑制可能となる。
 (第3実施形態)
 第3実施形態に係る表示装置1では、各画素回路15の奇数行と偶数行とで独立した制御を行う点で第2実施形態に係る表示装置1と相違する。以下では、第2実施形態に係る表示装置1と相違する点を説明する。
 図19は、ランプバッファ35a、35bとデータ線DTNL1~nとのより詳細な接続例を示す図である。ランプバッファ35a、35bは、それぞれ切り変えスイッチ38a、38bを有する。スイッチ38a、38bを高インピーダンス化にすることが可能である。
 また、隣接するデータ線DTNL1、2の間にはチャージシェア用のスイッチ39が接続される。スイッチ39は、例えばトランジスタであり、隣接するデータ線DTNL1、2を導通状態、或いは非導通状態にする。
 また、図19では、RAMPLINE_1は、ランプバッファ35aが出力するランプ電圧が供給される配線を示し、RAMPLINE_2は、ランプバッファ35bが出力するランプ電圧が供給される配線を示す。また、PWM1は、データ線DTNL1に対応するPWMが出力するPWM信号を示し、PWM2は、データ線DTNL2に対応するPWMが出力するPWM信号を示す。PWM1信号、PWM2信号は、ハイレベルでスイッチ36a、36bを導通状態にし、ロウレベルで非導通状態にする。
 また、CSは、スイッチ39の切り変え信号を示す。CS信号は、ハイレベルでスイッチ39を導通状態にし、ロウレベルで非導通状態にする。
 図20は、第3実施形態に係る表示装置1の動作例を示すタイムチャートである。上からCS信号、RAMPLINE_1に出力される電圧であるRAMPBUF1電圧、PWM1信号、データ線70aの電圧を示すSIG1信号、RAMPLINE_2に出力される電圧であるRAMPBUF2電圧、PWM2信号、データ線70bの電圧を示すSIG2信号を示す。バッフア出力電流は、RAMPLINE_2に出力される電流を示す。ここでは、隣接するデータ線DTNL1、2に対応する動作例を説明するが、他のデータ線に対応する動作も同様である。
 図20に示す様に、チャージシェアの期間CSの開始であるタイミングt1でCS信号はハイレベルとなり、スイッチ38a、bはハイインピーダンスになる。このとき、データ線DTL1~データ線DTLn間のスイッチ39は導通状態となる。また、画素回路200(図15参照)内のトランジスタTRWS1は導通状態となり、トランジスタTRWS2、TRDRVは非導通状態となる。これにより、タイミングt1~t2、t3~t4の間に、各画素回路200内の容量CHDの蓄積電荷が共有化される。
 次に、タイミングt2でCS信号がロウレベルとなり、スイッチ39を非導通状態にする。また、タイミングt2で、スイッチ38a、38bは、ロウインピーダンスの状態となる。一方で、各画素回路200(図15参照)も通常の駆動動作を開始する。そして、RAMPLINE_1に信号電圧設定用のランプ電圧が出力される。
 このような処理は水平期間H2でも行われる。すなわち、第2水平期間2Hのタイミングt3でCS信号がハイレベルとなり、スイッチ39を導通状態にする。また、タイミングt3で、スイッチ38a、38bは、ハイインピーダンスの状態となる。
 次に、タイミングt4でCS信号がロウレベルとなり、スイッチ39を非導通状態にする。また、タイミングt2で、スイッチ38a、38bは、ロウインピーダンスの状態となる。一方で、各画素回路200(図15参照)も通常の駆動動作を開始する。そして、RAMPLINE_4に信号電圧設定用のランプ電圧が出力される。
 このように、タイミングt2、t4で、RAMPLINE_1、及びRAMPLINE_2にランプ電圧を印加する前に、データ線DTL1~データ線DTLn間のスイッチ39は導通状態となり、各画素回路200内の容量CHDの蓄積電荷が共有化される。これにより、タイミングt2、t4で流れるバッフア出力電流の過度的電流も抑制できる。これらから分かる様に、ランプ信号生成回路34の電源容量を低減することが可能であるとともに、画素アレイ部11の消費電流を抑制可能となる。
 図21は、画素回路の一例を示す図である。この図24は、非常にシンプルな構成の画素回路である。画素回路は、トランジスタTws、Tdrと、キャパシタC1と、発光素子Lと、を備える。
 発光素子Lは、例えば、LED、OLED、M-OLED等のLED素子である。以下においては、発光素子Lは、これらLED等の素子とするが、これらに限定されるものではなく、電圧が印加され、又は、電流が流されることにより発光する素子であれば、同様の形態を適用することができる。発光素子Lは、そのアノードからカソードに電流が流れることにより発光する。カソードには、基準となる電圧Vcath(例えば、0V)に接続される。発光素子Lのアノードは、トランジスタTdrのドレイン、及び、第1キャパシタC1の一方の端子と接続される。
 トランジスタTwsは、例えば、p型のMOSFETであり、画素値の書込を制御するトランジスタ(書き込みトランジスタ)である。トランジスタTwsは、ソースに画素値を示す信号Sigが入力され、ドレインがキャパシタC1の他端とトランジスタTdrのゲートに接続され、ゲートに書き込み制御のための信号Wsが印加される。このトランジスタTwsは、信号Wsにより信号Sigにしたがったドレイン電流を流し、キャパシタC1への書込及びトランジスタTdrのゲート電位を制御する。このトランジスタTwsがオンすることにより、信号Sigの大きさに基づいた電圧をキャパシタC1に充電(書込)し、このキャパシタC1の充電量により、発光素子Lの発光強度が制御される。
 トランジスタTdsは、例えば、p型のMOSFETであり、書き込まれた画素値に応じた電位に基づいた電流を発光素子Lに流す駆動を制御するトランジスタである。トランジスタTdsは、ソースがMOSを駆動するための電源電圧Vccpに接続され、ドレインがトランジスタTdrのソースに接続され、ゲートに駆動信号Dsが印加され、発光素子Lに駆動電流を供給するトランジスタ(駆動トランジスタ)である。駆動信号Dsに応じてドレイン電流を流し、トランジスタTdrのドレイン電位を上昇させる。
 単純な例として、画素回路15は、このように画素ごとの発光強度を決定する信号Sigに基づいた書き込みと、発光素子Lへのこの書き込まれた信号の強度に応じたドレイン電流を流すことにより、発光する。
 図22は、画素回路の別の例を示す図である。一般的な単純な例として、画素回路15は、第1トランジスタTazと、第2トランジスタTwsと、第3トランジスタTdsと、第4トランジスタTdrと、第1キャパシタC1と、を備えてもよい。
 発光素子Lのアノードは、第1トランジスタTazのソース、第4トランジスタTdrのドレイン、及び、第1キャパシタC1の一方の端子と接続される。
 第1トランジスタTazは、例えば、p型のMOSFETであり、ソースが発光素子Lのアノードと接続され、ドレインが電圧Vssと接続され、ゲートに信号Azが印加される。この第1トランジスタTazは、信号Azにしたがい、発光素子Lのアノードの電位を初期化するトランジスタである。電圧Vssは、例えば、電源電圧における基準電圧であり、接地された状態を表してもよいし、0Vの電位であってもよい。
 第1キャパシタC1は、発光素子Lのアノード側の電位を制御するためのキャパシタである。
 第2トランジスタTwsは、例えば、p型のMOSFETであり、画素値の書込を制御するトランジスタである。第2トランジスタTwsは、ソースに画素値を示す信号Sigが入力され、ドレインが第1キャパシタC1の他端と第4トランジスタTdrのゲートに接続され、ゲートに書き込み制御のための信号Wsが印加される。この第2トランジスタTwsは、信号Wsにより信号Sigにしたがったドレイン電流を流し、第1キャパシタC1への書込及び第4トランジスタTdrのゲート電位を制御する。この第2トランジスタTwsがオンすることにより、信号Sigの大きさに基づいた電圧を第1キャパシタC1に充電(書込)し、この第1キャパシタC1の充電量により、発光素子Lの発光強度が制御される。
 第3トランジスタTdsは、例えば、p型のMOSFETであり、書き込まれた画素値に応じた電位に基づいた電流を発光素子Lに流す駆動を制御するトランジスタである。第3トランジスタTdsは、ソースがMOSを駆動するための電源電圧Vccpに接続され、ドレインが第4トランジスタTdrのソースに接続され、ゲートに駆動信号Dsが印加される。駆動信号Dsに応じてドレイン電流を流し、第4トランジスタTdrのドレイン電位を上昇させる。
 第4トランジスタTdrは、例えば、p型のMOSFETであり、第2トランジスタTwsにより書き込まれた信号Sigに基づいた電流を、第3トランジスタTdrの駆動により、発光素子Lへと流す。第4トランジスタTdrは、ソースが第3トランジスタTdsのドレインと接続され、ドレインが発光素子Lのアノードと接続され、ゲートが第2トランジスタTwsのドレインと接続される。第4トランジスタTdrは、第2トランジスタTws及び第1キャパシタC1により保存されている信号Sigがゲートに印加されていることから、ソース電位が十分に大きな値となることにより、この信号Sigに応じたドレイン電流を流す。このドレイン電流が流れることにより、発光素子Lが信号Sigに応じた強度(輝度)で発光する。
 上記と同様に、単純な例として、画素回路15は、このように画素ごとの発光強度を決定する信号Sigに基づいた書き込みと、発光素子Lへのこの書き込まれた信号の強度に応じたドレイン電流を流すことにより、発光する。
 発光後のタイミングにおいて、素早い放電動作をし、書き込まれた状態を初期化するトランジスタが第1トランジスタTazである。第1トランジスタTazのボディは、適切な駆動のため画素回路15が動作(発光、消光)する間において十分大きな電位が保持される必要があり、例えば、電源電圧Vccpが印加される。
 発光素子Lが発光している間、第1トランジスタTazは、オフさせるので、ゲートには閾値電圧よりも十分に高い電圧が印加される。発光素子Lを発光させる場合には、例えば、第1トランジスタTazのゲートには、電圧Vccpよりも高い電圧が印加される。一例として、電圧Vccpが9Vであり、発光状態において第1トランジスタTazには10Vの電圧が印加される。
 これに対して、発光素子Lが消光する間、第1トランジスタTazは、書き込みされた電荷を放電するためにオンとなるタイミングがある。このオンとなるタイミングにおいて、第1トランジスタTazのゲートは、閾値電圧を十分に下回る電位に設定されることが望ましい。例えば、第1トランジスタTazのゲートには、電圧Vssと同等の電圧(例えば、0V)が印加される。
 この場合、第1トランジスタTazは、例えば、ボディに9V、ゲートに0Vの電圧が印加される。このため、第1トランジスタTazのボディ-ゲート間には、高電圧が印加される時間が長くなる可能性がある。この時間が長くなるほど、第1トランジスタTazの寿命を短くし、また、性能を低下させる可能性が高くなる。第1トランジスタTazの性能が低くなることにより、画素回路15において適切な充放電が実行できなくなることがある。本開示では、第1トランジスタTazの放電タイミングを適切に制御されてもよい。
 図23は、画素回路15の別の例を示す図である。この図23においては、初期化トランジスタとして、Taz1、Taz2を備える。このような形態においても、Taz1には、前述の各形態と同様の電圧が印加される。また、Taz2についても同じタイミングで同様の電圧の印加が制御されてもよい。
 このように、複数の初期化トランジスタが存在する場合においても同様に制御をすることにより、初期化トランジスタのボディ-ゲート間に高電位が印加される時間を削減することが可能となる。
 図24は、画素回路15の別の例を示す図である。この図24に示すように、画素の強度を示す信号がSig1、Sig2の2種類ある場合においても、初期化トランジスタであるTaz1、Taz2について同様の制御とすることが可能である。
 図25は、画素回路15の別の例を示す図である。この画素回路15は、当該画素についての書き込み制御をする信号であるWs1の他に、先にスキャンされる前ラインの書き込み制御をする信号であるWs2をオフセットとして制御される。このように他のラインによる制御に依存する形態においても、適切に適用することができる。さらに、この画素回路15においては、充電の安定を図るべく、オフセットを用いるとともに、第2トランジスタTwsを補助する書込トランジスタが備えられている。
 図26は、画素回路15の別の例を示す図である。この画素回路15は、Wsを相補的に制御するために、第2トランジスタTwsの代わりに、トランジスタTws_n、Tws_pを備える構成である。このような構成においても、同様に本開示の制御を適用することができる。
 なお、上記において構成要素については、表示に必要である他の回路等の適切な構成要素について本開示における要部しか図示していないが、表示装置1は、この他にも映像等を表示するために必要となる図示しない構成要素を適宜備えている。
 (本開示による表示装置1の適用例)
 (第1適用例)
 本開示による表示装置1は、種々の用途に用いることができる。図27及び図28は本開示による表示装置1の第1適用例である乗物360の内部の構成を示す図である。図27は乗物360の後方から前方にかけての乗物360の内部の様子を示す図、図28は乗物360の斜め後方から斜め前方にかけての乗物360の内部の様子を示す図である。
 図27及び図28の乗物360は、センターディスプレイ361と、コンソールディスプレイ362と、ヘッドアップディスプレイ363と、デジタルリアミラー364と、ステアリングホイールディスプレイ365と、リアエンタテイメントディスプレイ366とを有する。
 センターディスプレイ361は、ダッシュボード367上の運転席368及び助手席369に対向する場所に配置されている。図27及び図28では、運転席368側から助手席369側まで延びる横長形状のセンターディスプレイ361の例を示すが、センターディスプレイ361の画面サイズや配置場所は任意である。センターディスプレイ361には、種々のセンサで検知された情報を表示可能である。具体的な一例として、センターディスプレイ361には、イメージセンサで撮影した撮影画像、ToFセンサで計測された乗物前方や側方の障害物までの距離画像、赤外線センサで検出された乗客の体温などを表示可能である。センターディスプレイ361は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、及びエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。
 安全関連情報は、居眠り検知、よそ見検知、同乗している子供のいたずら検知、シートベルト装着有無、乗員の置き去り検知などの情報であり、例えばセンターディスプレイ361の裏面側に重ねて配置されたセンサにて検知される情報である。操作関連情報は、センサを用いて乗員の操作に関するジェスチャを検知する。検知されるジェスチャは、乗物360内の種々の設備の操作を含んでいてもよい。例えば、空調設備、ナビゲーション装置、AV装置、照明装置等の操作を検知する。ライフログは、乗員全員のライフログを含む。例えば、ライフログは、乗車中の各乗員の行動記録を含む。ライフログを取得及び保存することで、事故時に乗員がどのような状態であったかを確認できる。健康関連情報は、温度センサを用いて乗員の体温を検知し、検知した体温に基づいて乗員の健康状態を推測する。あるいは、イメージセンサを用いて乗員の顔を撮像し、撮像した顔の表情から乗員の健康状態を推測してもよい。さらに、乗員に対して自動音声で会話を行って、乗員の回答内容に基づいて乗員の健康状態を推測してもよい。認証/識別関連情報は、センサを用いて顔認証を行うキーレスエントリ機能や、顔識別でシート高さや位置の自動調整機能などを含む。エンタテイメント関連情報は、センサを用いて乗員によるAV装置の操作情報を検出する機能や、センサで乗員の顔を認識して、乗員に適したコンテンツをAV装置にて提供する機能などを含む。
 コンソールディスプレイ362は、例えばライフログ情報の表示に用いることができる。コンソールディスプレイ362は、運転席368と助手席369の間のセンターコンソール370のシフトレバー371の近くに配置されている。コンソールディスプレイ362にも、種々のセンサで検知された情報を表示可能である。また、コンソールディスプレイ362には、イメージセンサで撮像された車両周辺の画像を表示してもよいし、車両周辺の障害物までの距離画像を表示してもよい。
 ヘッドアップディスプレイ363は、運転席368の前方のフロントガラス372の奥に仮想的に表示される。ヘッドアップディスプレイ363は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、及びエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。ヘッドアップディスプレイ363は、運転席368の正面に仮想的に配置されることが多いため、乗物360の速度や燃料(バッテリ)残量などの乗物360の操作に直接関連する情報を表示するのに適している。
 デジタルリアミラー364は、乗物360の後方を表示できるだけでなく、後部座席の乗員の様子も表示できるため、デジタルリアミラー364の裏面側に重ねてセンサを配置することで、例えばライフログ情報の表示に用いることができる。
 ステアリングホイールディスプレイ365は、乗物360のハンドル373の中心付近に配置されている。ステアリングホイールディスプレイ365は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、及びエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。特に、ステアリングホイールディスプレイ365は、運転者の手の近くにあるため、運転者の体温等のライフログ情報を表示したり、AV装置や空調設備等の操作に関する情報などを表示したりするのに適している。
 リアエンタテイメントディスプレイ366は、運転席368や助手席369の背面側に取り付けられており、後部座席の乗員が視聴するためのものである。リアエンタテイメントディスプレイ366は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、及びエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。特に、リアエンタテイメントディスプレイ366は、後部座席の乗員の目の前にあるため、後部座席の乗員に関連する情報が表示される。例えば、AV装置や空調設備の操作に関する情報を表示したり、後部座席の乗員の体温等を温度センサで計測した結果を表示したりしてもよい。
 上述したように、表示装置1の裏面側に重ねてセンサを配置することで、周囲に存在する物体までの距離を計測することができる。光学的な距離計測の手法には、大きく分けて、受動型と能動型がある。受動型は、センサから物体に光を投光せずに、物体からの光を受光して距離計測を行うものである。受動型には、レンズ焦点法、ステレオ法、及び単眼視法などがある。能動型は、物体に光を投光して、物体からの反射光をセンサで受光して距離計測を行うものである。能動型には、光レーダ方式、アクティブステレオ方式、照度差ステレオ法、モアレトポグラフィ法、干渉法などがある。本開示による表示装置1は、これらのどの方式の距離計測にも適用可能である。本開示による表示装置1の裏面側に重ねて配置されるセンサを用いることで、上述した受動型又は能動型の距離計測を行うことができる。
 (第2適用例)
 本開示による表示装置1は、乗物で用いられる種々のディスプレイに適用されるだけでなく、種々の電子機器に搭載されるディスプレイにも適用可能である。
 図29は表示装置1の第2適用例であるデジタルカメラ310の正面図、図30はデジタルカメラ310の背面図である。図29及び図30のデジタルカメラ310は、レンズ121を交換可能な一眼レフカメラの例を示しているが、レンズ121を交換できないカメラにも適用可能である。
 図29及び図30のカメラは、撮影者がカメラボディ311のグリップ313を把持した状態で電子ビューファインダ315を覗いて構図を決めて、焦点調節を行った状態でシャッタを押すと、カメラ内のメモリに撮影データが保存される。カメラの背面側には、図34Bに示すように、撮影データ等やライブ画像等を表示するモニタ画面316と、電子ビューファインダ315とが設けられている。また、カメラの上面には、シャッタ速度や露出値などの設定情報を表示するサブ画面が設けられる場合もある。
 カメラに用いられるモニタ画面316、電子ビューファインダ315、サブ画面等の裏面側に重ねてセンサを配置することで、本開示による表示装置1として用いることができる。
 (第3適用例)
 本開示による表示装置1は、ヘッドマウントディスプレイ(以下、HMDと呼ぶ)にも適用可能である。HMDは、VR、AR、MR(Mixed Reality)、又はSR(Substitutional Reality)等に利用されることができる。
 図31は表示装置1の第3適用例であるHMD320の外観図である。図31のHMD320は、人間の目を覆うように装着するための装着部材322を有する。この装着部材322は例えば人間の耳に引っ掛けて固定される。HMD320の内側には表示装置321が設けられており、HMD320の装着者はこの表示装置321にて立体映像等を視認できる。HMD320は例えば無線通信機能と加速度センサなどを備えており、装着者の姿勢やジェスチャなどに応じて、表示装置321に表示される立体映像等を切り換えることができる。
 また、HMD320にカメラを設けて、装着者の周囲の画像を撮影し、カメラの撮影画像とコンピュータで生成した画像とを合成した画像を表示装置321で表示してもよい。例えば、HMD320の装着者が視認する表示装置321の裏面側に重ねてカメラを配置して、このカメラで装着者の目の周辺を撮影し、その撮影画像をHMD320の外表面に設けた別のディスプレイに表示することで、装着者の周囲にいる人間は、装着者の顔の表情や目の動きをリアルタイムに把握可能となる。
 なお、HMD320には種々のタイプが考えられる。例えば、図32のように、本開示による表示装置1は、メガネ344に種々の情報を映し出すスマートグラス340にも適用可能である。図32のスマートグラス340は、本体部341と、アーム部342と、鏡筒部343とを有する。本体部341はアーム部342に接続されている。本体部341は、メガネ344に着脱可能とされている。本体部341は、スマートグラス340の動作を制御するための制御基板や表示部を内蔵している。本体部341と鏡筒は、アーム部342を介して互いに連結されている。鏡筒部343は、本体部341からアーム部342を介して出射される画像光を、メガネ344のレンズ345側に出射する。この画像光は、レンズ345を通して人間の目に入る。図35Bのスマートグラス340の装着者は、通常のメガネと同様に、周囲の状況だけでなく、鏡筒部343から出射された種々の情報を合わせて視認できる。
 (第4適用例)
 本開示による表示装置1は、テレビジョン装置(以下、TV)にも適用可能である。最近のTVは、小型化の観点及び意匠デザイン性の観点から、額縁をできるだけ小さくする傾向にある。このため、視聴者を撮影するカメラをTVに設ける場合には、TVの表示パネル331の裏面側に重ねて配置するのが望ましい。
 図33は表示装置1の第4適用例であるTV 330の外観図である。図33のTV 330は、額縁が極小化されており、正面側のほぼ全域が表示エリアとなっている。TV 330には視聴者を撮影するためのカメラ等のセンサが内蔵されている。図36のセンサは、表示パネル331内の一部(例えば破線箇所)の裏側に配置されている。センサは、イメージセンサモジュールでもよいし、顔認証用のセンサや距離計測用のセンサ、温度センサなど、種々のセンサが適用可能であり、複数種類のセンサをTV 330の表示パネル331の裏面側に配置してもよい。
 上述したように、本開示の表示装置1によれば、表示パネル331の裏面側に重ねてイメージセンサモジュールを配置できるため、額縁にカメラ等を配置する必要がなくなり、TV 330を小型化でき、かつ額縁により意匠デザインが損なわれるおそれもなくなる。
 (第5適用例)
 本開示による表示装置1は、スマートフォンや携帯電話にも適用可能である。図34は表示装置1の第5適用例であるスマートフォン350の外観図である。図34の例では、表示装置1の外形サイズの近くまで表示面350zが広がっており、表示面350zの周囲にあるベゼル350yの幅を数mm以下にしている。通常、ベゼル350yには、フロントカメラが搭載されることが多いが、図37では、破線で示すように、表示面2zの例えば略中央部の裏面側にフロントカメラとして機能するイメージセンサモジュール351を配置している。このように、フロントカメラを表示面2zの裏面側に設けることで、ベゼル350yにフロントカメラを配置する必要がなくなり、ベゼル350yの幅を狭めることができる。
 なお、本技術は以下のような構成を取ることができる。
(1)
 複数のデータ線のそれぞれに第1方向に接続される複数の画素回路と、
 電圧レベルが時間に応じて変化する第1ランプ波電圧を生成する第1電圧出力部と、
 前記第1電圧出力部で生成された前記第1ランプ波電圧を複数の第1群のデータ線のそれぞれに供給する第1ランプ配線と、を備え、
 前記第1ランプ波電圧を前記第1ランプ配線に出力する前に、複数のデータ線のうちの少なくとも2本のデータ線間を導通状態にする、表示装置。
(2)
 前記画素回路は、発光部と前記発光部を駆動するための駆動回路とを備えており、
 前記駆動回路は、駆動トランジスタと容量部とを有しており、
 画像信号に応じた電圧が前記容量部に保持される、(1)に記載の表示装置。
(3)
 複数のデータ線のうちの少なくとも2本のデータ線を導通状態又は非導通状態にする第1スイッチを更に備え、
 前記第1スイッチにより、複数のデータ線のうちの少なくとも2本のデータ線を導通状態にする、(2)に記載の表示装置。
(4)
 電圧レベルが時間に応じて変化する第2ランプ波電圧を生成する第2電圧出力部と、
 前記第2電圧出力部で生成された前記第2ランプ波電圧を前記第1群の複数のデータ線と異なる第2群の複数のデータ線のそれぞれに供給する第2ランプ配線と、を更に備える、(2)に記載の表示装置。
(5)
 前記第1ランプ配線と、前記第2ランプ配線とを導通状態又は非導通状態にする第2スイッチを更に備え、
 前記第2スイッチにより、複数のデータ線のうちの少なくとも2本のデータ線を導通状態にする、(4)に記載の表示装置。
(6)
 前記駆動トランジスタを駆動する複数の駆動制御線を更に備え、
 前記複数の駆動制御線のそれぞれは、前記第1方向と異なる第2方向に配置される複数の画素回路の前記駆動トランジスタにそれぞれ接続され、
 前記第1群の複数のデータ線は、前記複数の駆動制御線の内の少なくとも第1駆動制御線に接続される前記駆動トランジスタを有する前記画素回路に接続され、
 前記第2群の複数のデータ線は、前記複数の駆動制御線の内の前記第1駆動制御線と異なる第2駆動制御線に少なくとも接続される、(4)に記載の表示装置。
(7)
 前記第1ランプ波電圧と、前記第2ランプ波電圧とは、異なるタイミングで出力される、(5)に記載の表示装置。
(8)
 前記画像信号に応じた電圧は、前記第1ランプ波電圧を用いて設定される、(2)に記載の表示装置。
(9)
 前記第1スイッチは、前記画像信号に応じた期間で導通状態になる、(3)に記載の表示装置。
(10)
 前記第1ランプ波電圧は、初期化用の直流電圧と、前記画像信号の設定用のランプ波電圧で構成される、(2)に記載の表示装置。
(11)
 前記第1ランプ波電圧は、初期化用のランプ波電圧と、前記画像信号の設定用のランプ波電圧で構成される、(2)に記載の表示装置。
(12)
 前記第1ランプ波電圧は、初期化用のランプ波電圧と、前記画像信号の設定用のランプ波電圧で構成され、前記第2ランプ波電圧は、初期化用のランプ波電圧と、前記画像信号の設定用のランプ波電圧で構成され、
 前記第1ランプ波電圧が初期化用の電圧を出力するタイミングに応じて、前記第2ランプ波電圧は、前記画像信号の設定用のランプ波電圧を出力する、(5)に記載の表示装置。
(13)
 初期化用のランプ波電圧のプリチャージ期間に、複数のデータ線のうちの少なくとも2本のデータ線間を導通状態にする、(12)に記載の表示装置。
(14)
 前記画像信号の設定用のランプ波電圧のプリチャージ期間に、複数のデータ線のうちの少なくとも2本のデータ線間を導通状態にする、(12)に記載の表示装置。
(15)
 前記初期化用のランプ波電圧と、前記画像信号の設定用のランプ波電圧とは、所定の周期で交互に出力される、(12)に記載の表示装置。
(16)
 前記第1ランプ波電圧は、第1バッファを介して、前記第1ランプ配線に出力され、前記第2ランプ波電圧は、第2バッファを介して、前記第2ランプ配線に出力され、(12)に記載の表示装置。
(17)
 前記2本のデータ線間を導通状態にする期間において、前記第1バッファ、及び前記第2バッファの少なくとも一方を高インピーダンスにする、(16)に記載の表示装置。
(18)
 2本のデータ線間を導通状態にする場合に、前記2本のデータ線のそれぞれに接続される画素回路が有する前記容量部の蓄積電荷が共有される、(2)に記載の表示装置。
 本開示の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本開示の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本開示の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。
 1:表示装置、
2:表示システム、
3:ディスプレイコントローラ、
4:タイミングコントローラ、
5:データ入15、200:画素回路、
34:ランプ信号生成回路(電圧出力部)、
36a、36b、36c:スイッチ、
39:スイッチ、
42:駆動トランジスタ、
45:容量部、
70a、70b:データ線、
400:駆動回路、
CHD:容量部、
DNL1~DNLn:データ線、
TRDrv:駆動トランジスタ、
RAMPLINE_1:第1ランプ配線、
RAMPLINE_2:第2ランプ配線。

Claims (18)

  1.  複数のデータ線のそれぞれに第1方向に接続される複数の画素回路と、
     電圧レベルが時間に応じて変化する第1ランプ波電圧を生成する第1電圧出力部と、
     前記第1電圧出力部で生成された前記第1ランプ波電圧を複数の第1群のデータ線のそれぞれに供給する第1ランプ配線と、を備え、
     前記第1ランプ波電圧を前記第1ランプ配線に出力する前に、複数のデータ線のうちの少なくとも2本のデータ線間を導通状態にする、表示装置。
  2.  前記画素回路は、発光部と前記発光部を駆動するための駆動回路とを備えており、
     前記駆動回路は、駆動トランジスタと容量部とを有しており、
     画像信号に応じた電圧が前記容量部に保持される、請求項1に記載の表示装置。
  3.  複数のデータ線のうちの少なくとも2本のデータ線を導通状態又は非導通状態にする第1スイッチを更に備え、
     前記第1スイッチにより、複数のデータ線のうちの少なくとも2本のデータ線を導通状態にする、請求項2に記載の表示装置。
  4.  電圧レベルが時間に応じて変化する第2ランプ波電圧を生成する第2電圧出力部と、
     前記第2電圧出力部で生成された前記第2ランプ波電圧を前記第1群の複数のデータ線と異なる第2群の複数のデータ線のそれぞれに供給する第2ランプ配線と、を更に備える、請求項2に記載の表示装置。
  5.  前記第1ランプ配線と、前記第2ランプ配線とを導通状態又は非導通状態にする第2スイッチを更に備え、
     前記第2スイッチにより、複数のデータ線のうちの少なくとも2本のデータ線を導通状態にする、請求項4に記載の表示装置。
  6.  前記駆動トランジスタを駆動する複数の駆動制御線を更に備え、
     前記複数の駆動制御線のそれぞれは、前記第1方向と異なる第2方向に配置される複数の画素回路の前記駆動トランジスタにそれぞれ接続され、
     前記第1群の複数のデータ線は、前記複数の駆動制御線の内の少なくとも第1駆動制御線に接続される前記駆動トランジスタを有する前記画素回路に接続され、
     前記第2群の複数のデータ線は、前記複数の駆動制御線の内の前記第1駆動制御線と異なる第2駆動制御線に少なくとも接続される、請求項5に記載の表示装置。
  7.  前記第1ランプ波電圧と、前記第2ランプ波電圧とは、異なるタイミングで出力される、請求項5に記載の表示装置。
  8.  前記画像信号に応じた電圧は、前記第1ランプ波電圧を用いて設定される、請求項2に記載の表示装置。
  9.  前記第1スイッチは、前記画像信号に応じた期間で導通状態になる、請求項3に記載の表示装置。
  10.  前記第1ランプ波電圧は、初期化用の直流電圧と、前記画像信号の設定用のランプ波電圧で構成される、請求項2に記載の表示装置。
  11.  前記第1ランプ波電圧は、初期化用のランプ波電圧と、前記画像信号の設定用のランプ波電圧で構成される、請求項2に記載の表示装置。
  12.  前記第1ランプ波電圧は、初期化用のランプ波電圧と、前記画像信号の設定用のランプ波電圧で構成され、前記第2ランプ波電圧は、初期化用のランプ波電圧と、前記画像信号の設定用のランプ波電圧で構成され、
     前記第1ランプ波電圧が初期化用の電圧を出力するタイミングに応じて、前記第2ランプ波電圧は、前記画像信号の設定用のランプ波電圧を出力する、請求項5に記載の表示装置。
  13.  初期化用のランプ波電圧のプリチャージ期間に、複数のデータ線のうちの少なくとも2本のデータ線間を導通状態にする、請求項12に記載の表示装置。
  14.  前記画像信号の設定用のランプ波電圧のプリチャージ期間に、複数のデータ線のうちの少なくとも2本のデータ線間を導通状態にする、請求項12に記載の表示装置。
  15.  前記初期化用のランプ波電圧と、前記画像信号の設定用のランプ波電圧とは、所定の周期で交互に出力される、請求項12に記載の表示装置。
  16.  前記第1ランプ波電圧は、第1バッファを介して、前記第1ランプ配線に出力され、前記第2ランプ波電圧は、第2バッファを介して、前記第2ランプ配線に出力される、請求項12に記載の表示装置。
  17.  前記2本のデータ線間を導通状態にする期間において、前記第1バッファ、及び前記第2バッファの少なくとも一方を高インピーダンスにする、請求項16に記載の表示装置。
  18.  前記2本のデータ線間を導通状態にする場合に、前記2本のデータ線のそれぞれに接続される画素回路が有する前記容量部の蓄積電荷が共有される、請求項2に記載の表示装置。
PCT/JP2023/008728 2022-03-29 2023-03-08 表示装置 WO2023189312A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022054137 2022-03-29
JP2022-054137 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023189312A1 true WO2023189312A1 (ja) 2023-10-05

Family

ID=88201456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008728 WO2023189312A1 (ja) 2022-03-29 2023-03-08 表示装置

Country Status (1)

Country Link
WO (1) WO2023189312A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137268A1 (ja) * 2009-05-26 2010-12-02 パナソニック株式会社 画像表示装置およびその駆動方法
JP2013054161A (ja) * 2011-09-02 2013-03-21 Seiko Epson Corp 電気光学装置、電気光学装置の駆動方法および電子機器
WO2014046029A1 (ja) * 2012-09-19 2014-03-27 シャープ株式会社 データ線駆動回路、それを備える表示装置、およびデータ線駆動方法
US20170169796A1 (en) * 2015-12-11 2017-06-15 National Chiao Tung University Brightness compensation circuitry, and display device including the same
JP2018530795A (ja) * 2015-10-19 2018-10-18 コピン コーポレーション マイクロディスプレイ装置の2行駆動方法
JP2021039297A (ja) * 2019-09-05 2021-03-11 株式会社Jvcケンウッド 液晶デバイス、波長選択光スイッチ装置、及び、液晶デバイスの画素検査方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137268A1 (ja) * 2009-05-26 2010-12-02 パナソニック株式会社 画像表示装置およびその駆動方法
JP2013054161A (ja) * 2011-09-02 2013-03-21 Seiko Epson Corp 電気光学装置、電気光学装置の駆動方法および電子機器
WO2014046029A1 (ja) * 2012-09-19 2014-03-27 シャープ株式会社 データ線駆動回路、それを備える表示装置、およびデータ線駆動方法
JP2018530795A (ja) * 2015-10-19 2018-10-18 コピン コーポレーション マイクロディスプレイ装置の2行駆動方法
US20170169796A1 (en) * 2015-12-11 2017-06-15 National Chiao Tung University Brightness compensation circuitry, and display device including the same
JP2021039297A (ja) * 2019-09-05 2021-03-11 株式会社Jvcケンウッド 液晶デバイス、波長選択光スイッチ装置、及び、液晶デバイスの画素検査方法

Similar Documents

Publication Publication Date Title
US10274734B2 (en) Personal immersive display device and driving method thereof
CN106920499B (zh) 显示装置及其驱动方法和个人沉浸式装置
CN108169900B (zh) 显示装置
CN107665669B (zh) 电光学装置、电光学装置的驱动方法以及电子设备
TWI444967B (zh) Image display device
KR101878571B1 (ko) 표시 장치 및 표시 장치의 구동 방법
KR20170077912A (ko) 개인 몰입형 장치의 표시장치
WO2023189312A1 (ja) 表示装置
US11127351B2 (en) Display device and method of driving the same using fake data insertion
WO2023243474A1 (ja) 表示装置
WO2023182097A1 (ja) 表示装置及びその駆動方法
WO2022196492A1 (ja) 表示装置及び電子機器
KR20180113671A (ko) 표시 장치 및 그의 구동 방법
WO2023181652A1 (ja) 表示装置
US11145250B2 (en) Organic light emitting display device reliably compensating threshold voltage of a driving transistor and method of driving the same
WO2024048221A1 (ja) 表示装置
WO2023182100A1 (ja) 表示駆動回路及び表示装置
WO2024048268A1 (ja) 表示装置、電子機器及び表示装置の駆動方法
WO2024084876A1 (ja) 表示装置および電子機器
WO2023176166A1 (ja) 表示装置及び電子機器
WO2024101213A1 (ja) 表示装置
WO2023062976A1 (ja) 表示装置及び電子機器
WO2023119861A1 (ja) 表示装置
WO2023013247A1 (ja) 表示装置、電子機器、及び表示制御方法
WO2022270300A1 (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779339

Country of ref document: EP

Kind code of ref document: A1