WO2023189185A1 - シート状ヒータ - Google Patents

シート状ヒータ Download PDF

Info

Publication number
WO2023189185A1
WO2023189185A1 PCT/JP2023/007893 JP2023007893W WO2023189185A1 WO 2023189185 A1 WO2023189185 A1 WO 2023189185A1 JP 2023007893 W JP2023007893 W JP 2023007893W WO 2023189185 A1 WO2023189185 A1 WO 2023189185A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
sheet
porous heating
insulating layer
aid
Prior art date
Application number
PCT/JP2023/007893
Other languages
English (en)
French (fr)
Inventor
誠 後藤
卓 蔵原
陽輔 菅原
Original Assignee
株式会社巴川製紙所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社巴川製紙所 filed Critical 株式会社巴川製紙所
Publication of WO2023189185A1 publication Critical patent/WO2023189185A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • H05B3/36Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heating conductor embedded in insulating material

Definitions

  • the present invention relates to a sheet-like heater.
  • Patent Document 1 discloses a planar shape that includes a resistor that is provided in the form of a foil on a base film and functions as a heating element, and a pair of electrodes that are formed continuously on the resistor and function as an electric bus bar.
  • a heater device is disclosed in which an arbitrary number of heaters are prepared and the arbitrary number of planar heaters are connected by welding at the ends of the pair of electrodes.
  • a heater that heats an object to be heated such as a pipe, that has a curved surface is required to be flexible so that it can follow the object to be heated.
  • the first heating element and the second heating element are not connected. That is required.
  • the bond between the first heating element and the second heating element is made too strong, the flexibility of the heater tends to decrease.
  • An object of the present invention is to provide a sheet-like heater in which a first heating element and a second heating element are more firmly joined, and which has excellent flexibility.
  • the present invention includes the following (1) to (5).
  • a sheet-shaped heater having a formed joint.
  • the sheet-like heater according to (1) above which is formed by at least a portion of the heater being melted and then solidified.
  • each first bonding aid has a plurality of bonding portions.
  • the first heating element and the second heating element are more firmly joined, and the sheet-shaped heater has excellent flexibility. can be provided.
  • FIG. 1 is a diagram (schematic diagram) of the main surface of the sheet-like heater 1a of the present invention in Embodiment 1, viewed from the perpendicular direction.
  • FIG. 2 is a cross-sectional view (schematic diagram) taken along the line AA in FIG.
  • FIG. 3 is a sectional view (schematic diagram) taken along line BB in FIG.
  • FIG. 4 is a cross-sectional view (schematic diagram) taken along the line CC in FIG.
  • FIG. 5 is a diagram (schematic diagram) of a cross section obtained by cutting the sheet-like heater 1b of the present invention according to Embodiment 2 in a direction parallel to the perpendicular to the main surface thereof.
  • FIG. 2 is a cross-sectional view (schematic diagram) taken along the line AA in FIG.
  • FIG. 3 is a sectional view (schematic diagram) taken along line BB in FIG.
  • FIG. 4 is a cross-sectional view (schematic diagram) taken along the line CC
  • FIG. 6 shows a cross section obtained by cutting the vicinity of the joint 8 in the sheet-like heater 1b of the present invention in a direction parallel to the perpendicular to the main surface of the sheet-like heater 1b of the present invention, using a scanning electron microscope (SEM). This is a SEM image obtained by observation.
  • FIG. 7 is a diagram (schematic diagram) of the main surface of the sheet-like heater 1c of the present invention in Embodiment 3, viewed from the perpendicular direction.
  • FIG. 8 is a diagram (schematic diagram) of the main surface of the sheet-like heater 1d of the present invention in Embodiment 4, viewed from the perpendicular direction.
  • FIG. 7 is a diagram (schematic diagram) of the main surface of the sheet-like heater 1c of the present invention in Embodiment 3, viewed from the perpendicular direction.
  • FIG. 8 is a diagram (schematic diagram) of the main surface of the sheet-like heater 1d of the present invention in Embodiment 4, viewed
  • FIG. 9 is a diagram (schematic diagram) of the main surface of the sheet-like heater 1e of the present invention in Embodiment 5, viewed from the perpendicular direction.
  • 7 is a diagram for explaining a method of manufacturing a sheet-like heater 1b according to a second embodiment.
  • FIG. 7 is another diagram for explaining the manufacturing method of the sheet-like heater 1b of Embodiment 2.
  • the sheet-like heater of the present invention is a sheet-like heater that includes a first insulating layer, a first sheet-like porous heating element, a second insulating layer, a third insulating layer, and a second sheet-like porous heating element. a porous heating element and a fourth insulating layer are laminated in this order, and the second insulating layer is disposed between the first porous heating element and the second porous heating element.
  • the second porous heating element is a sheet-like heater having a joint formed by melting at least a portion of each of the second porous heating element and then solidifying the second porous heating element.
  • Embodiment 1 is A sheet-like heater, a first insulating layer; a sheet-shaped first porous heating element; a second insulating layer; a third insulating layer; a sheet-shaped second porous heating element; a fourth insulating layer; Including the parts where are laminated in this order, Between the first porous heating element and the second porous heating element, there is a part where a first bonding aid exists instead of the second insulating layer and the third insulating layer.
  • the second bonding aid is disposed on the opposite main surface side from the side where the first bonding aid is present, of the two main surfaces of the first porous heating element, By being heated, at least a portion of each of the second bonding aid, the first porous heating element, the first bonding aid, and the second porous heating element is heated. It is a sheet-like heater that has a joint formed by melting and then solidifying.
  • Embodiment 1 is a preferred embodiment of the sheet-like heater of the present invention, which further includes a second bonding aid.
  • the joining part is heated, so that at least a part of the second joining aid, at least a part of the first porous heating element, and at least a part of the first joining aid, It is formed by melting at least a portion of the second porous heating element and then solidifying it.
  • FIG. 1 is a diagram (schematic diagram) of the main surface of the sheet-like heater 1a of the present invention in Embodiment 1, viewed from the perpendicular direction.
  • 2 is a cross-sectional view (schematic diagram) taken along the line AA in FIG. 1
  • FIG. 3 is a cross-sectional view taken along the line B-B (schematic diagram) in FIG. Figure).
  • 2 to 4 each show a cross section of the main surface of the sheet-like heater 1a of the present invention in a direction parallel to a perpendicular line.
  • the laminated state thereof can be determined by observing the cross section of the sheet-shaped heater of the present invention corresponding to FIGS. 2 to 4 using an optical microscope or a scanning electron microscope. This can be confirmed by observing with a microscope.
  • the sheet-like heater 1a of the present invention of Embodiment 1 includes a first insulating layer 6a, a sheet-like first porous heating element 2, a second insulating layer 6b, It includes a portion in which a third insulating layer 6c, a sheet-shaped second porous heating element 3, and a fourth insulating layer 6d are laminated in this order. All of the sheet-like heaters 1a of the present invention may be formed by laminating these heaters in this order. Moreover, as long as these are laminated in this order, a separate layer or the like may exist between each layer.
  • the sheet-like heater 1a of the present invention has a first porous heating element 2 and a first porous heating element 3 between the first porous heating element 2 and the second porous heating element 3 instead of the second insulating layer 6b and the third insulating layer 6c. It has a part where the joining aid 4 is present. Even if a separate layer or the like exists between the first porous heating element 2 and the first joining aid 4 or between the first joining aid 4 and the second porous heating element 3, good. It is preferable that such a separate layer or the like does not exist, and the first porous heating element 2, first joining aid 4, and second porous heating element 3 are in contact with each other.
  • the sheet-like heater 1a of the present invention has a second bonding aid 5, and the second bonding aid 5 is attached to the first of the two main surfaces of the first porous heating element 2. It is arranged on the main surface side opposite to the side where the joining aid 4 is present.
  • a separate layer or the like may exist between the second bonding aid 5 and the first porous heating element 2. It is preferable that such a separate layer or the like does not exist, and the second bonding aid 5 and the first porous heating element 2 are in contact with each other.
  • the sheet-like heater 1a of the present invention according to the first embodiment has three joint parts 8 and one first joining aid 4, as shown in FIGS. 1 to 4.
  • the bonding portion 8 is heated to form at least a portion of the second bonding aid 5, at least a portion of the first porous heating element 2, and at least a portion of the first bonding aid 4. , and at least a portion of the second porous heating element 3 are melted and then solidified.
  • the second porous heating element 3 the first joining aid 4, the first porous heating element 2, and the second joining aid 5 are stacked in this order
  • the heat causes at least a portion of the second welding aid 5, at least a portion of the first porous heating element 2, and the second welding aid 5 to be welded.
  • At least a portion of the first joining aid 4 and at least a portion of the second porous heating element 3 are melted. Thereafter, when the melted portion is allowed to cool and solidified, this constitutes the joint portion 8.
  • the second porous heating element 3 , the first joining aid 4 , the first porous heating element 2 , and the second joining aid 5 are electrically connected by the joint 8 .
  • the second porous heating element 3, the first joining aid 4, the first porous heating element 2, and the second joining aid 5 may be made of different metals. However, it is preferable that the metals are made of the same type of metal.
  • the same kind of metal means that the main elements are the same.
  • the main elements are the elements that make up the metal, arranged in descending order of their content (mol%), and the elements with the highest content (mol%) added up in order, and the elements that exceed 90 mol%. It shall mean a set of one or more elements whose content rates have been added up to that point. In the case of a metal in which the content of one element is 90 mol% or more, the main element of the metal is only that one element.
  • the sheet-like heater 1a of the present invention has three joints 8.
  • the sheet-like heater of the present invention including Embodiment 1 and another embodiment described below, it is preferable that a plurality of bonding portions 8 exist for one first bonding aid 4.
  • the sheet-like heater of the present invention preferably has 2 to 20 joints, more preferably 3 to 15 joints for one first joining aid 4. preferable.
  • the sheet-like heater of the present invention has a plurality of bonding parts for one first bonding aid, the second porous heating element 3, the first bonding aid 4, and the first porous This is because the heat generating element 2 can be more firmly joined to the heating element 2, and the flexibility of the sheet-shaped heater of the present invention can also be improved.
  • the size, shape, etc. of the joints are all the same. It may be different or it may be different. Further, when the sheet-like heater of the present invention has a plurality of joints for one first joining aid, the joints may be localized in the first joining aid, but may be scattered. It is preferable that the objects are located at regular intervals, and preferably that they are regularly scattered so as to maintain a certain distance.
  • the joint portion when looking at the main surface of the sheet-like heater of the present invention, is dot-like and/or linear. is preferred.
  • the joint portion may have a shape other than a point shape or a linear shape, for example, a planar shape.
  • it is more preferable that the joint portion is linear.
  • the bonding between the second porous heating element 3, the first joining aid 4, and the first porous heating element 2 can be strengthened, and furthermore, when the sheet-like heater of the present invention is bent This is because the flexibility of the material is also good.
  • the joint portion 8 of the sheet-like heater 1a of the present invention according to Embodiment 1 has a linear shape as shown in FIG. 1 when its main surface is viewed.
  • Embodiment 2 of the sheet-like heater of the present invention will be described with reference to the drawings.
  • Embodiment 2 is A sheet-like heater, a first insulating layer; a sheet-shaped first porous heating element; a second insulating layer; a third insulating layer; a sheet-shaped second porous heating element; a fourth insulating layer; Including the parts where are laminated in this order, Between the first porous heating element and the second porous heating element, a first bonding aid and a third bonding aid are provided instead of the second insulating layer and the third insulating layer.
  • the sheet-like heater has a joint portion formed by melting and then solidifying at least a portion of each of the fourth joining aid material and the fourth joining aid material.
  • Embodiment 2 is a preferred embodiment of the sheet-like heater of the present invention, which further includes a second bonding aid, a third bonding aid, and a fourth bonding aid. Further, Embodiment 2 is a preferred embodiment of the sheet-like heater of the present invention of Embodiment 1, further including a third bonding aid and a fourth bonding aid.
  • the joining part is heated, so that at least a part of the second joining aid, at least a part of the first porous heating element, and at least a part of the first joining aid, At least a portion of the third bonding aid, at least a portion of the second porous heating element, and at least a portion of the fourth bonding aid are each melted and then solidified.
  • the second joining aid, the first porous heating element, the first joining aid, the third joining aid, the second porous heating element, and the fourth It is electrically connected to the joining aid.
  • a diagram (schematic diagram) of the main surface of the sheet-like heater 1b of the present invention in Embodiment 2 viewed from the perpendicular direction is similar to FIG. 1.
  • a cross-sectional view (schematic view) obtained by cutting the sheet-like heater 1b of the present invention in Embodiment 2 in a direction parallel to the perpendicular to the main surface at a location corresponding to line AA in FIG. It is 5.
  • FIG. 6 shows a cross section obtained by cutting the vicinity of the joint portion 8 of the sheet-like heater 1b of the present invention in a direction parallel to the perpendicular to the main surface of the sheet-like heater 1b of the present invention, using a scanning electron microscope (SEM). ) is an SEM image obtained by observation.
  • SEM scanning electron microscope
  • the sheet-like heater 1b of the present invention from which the SEM image of FIG.
  • stainless steel foil was used as the first bonding aid 4
  • stainless steel foil was used as the third bonding aid 9
  • stainless steel fiber sheet was used as the second porous heating element 3 (Tomy Firec SS, Tomogawa Paper Manufacturing Co., Ltd.).
  • stainless steel foil is used as the fourth joining aid 10.
  • a second joining aid 5 a first porous heating element 2, a first joining aid 4, a third joining aid 9, a second porous heating element 3, and a fourth joining aid 10 were laminated in this order, spot welding was performed on the upper surface of the second joining aid 5 to form a joint 8.
  • FIG. 7 is a diagram (schematic diagram) of the main surface of the sheet-like heater 1c of the present invention in Embodiment 3, viewed from the perpendicular direction.
  • Embodiment 3 is similar to Embodiment 1 or Embodiment 2, but differs from Embodiment 1 or Embodiment 2 in the joint portion 8, and is otherwise common.
  • the sheet-like heater 1c of the present invention according to Embodiment 3 has 12 dotted joints 8 scattered therein.
  • FIG. 8 is a diagram (schematic diagram) of the main surface of the sheet-like heater 1d of the present invention in Embodiment 4, viewed from the perpendicular direction.
  • Embodiment 4 is similar to Embodiment 1 or Embodiment 2, but differs from Embodiment 1 or Embodiment 2 in the joint portion 8, and is otherwise common.
  • a sheet-like heater 1d of the present invention according to Embodiment 4 has one linear joint 8.
  • FIG. 9 is a diagram (schematic diagram) of the main surface of the sheet-like heater 1e of the present invention in Embodiment 5, viewed from the perpendicular direction.
  • Embodiment 5 has a similar form to Embodiment 1 or Embodiment 2, but differs from Embodiment 1 or Embodiment 2 in the joint portion 8 and is otherwise common.
  • a sheet-like heater 1e of the present invention according to Embodiment 5 has two linear joints 8. Furthermore, in this fifth embodiment, the joint portions 8 are localized.
  • the first porous heating element and the second porous heating element may be the same or different.
  • porous heating element means both the first porous heating element and the second porous heating element.
  • the porous heating element may be any porous body that generates heat when energized.
  • the material of the porous heating element is not particularly limited as long as it generates heat when energized, and is preferably stainless steel (for example, SUS304, SUS316, SUS316L), but Cu (copper), Al (aluminum), It may be Ni (nickel), nichrome, or carbon.
  • the porous heating element is made of a fibrous material.
  • Porous heating elements made of fibrous materials include, for example, sheet-like metal meshes made of linear fibers arranged substantially orthogonally, metal fiber nonwoven fabrics made of randomly arranged metal fibers, and metal fiber woven fabrics. , linear metal fibers, or tape-shaped metal fibers.
  • the metal mesh includes, for example, a 200 to 500 mesh metal mesh.
  • the metal fiber nonwoven fabric for example, a 1500 g/m 2 stainless steel fiber nonwoven fabric (SUS316L needle punch web, manufactured by Nikko Techno Co., Ltd.) can be mentioned.
  • the metal fiber woven fabric include SUS cloth (Naslon Cloth A, manufactured by Nippon Seisen Co., Ltd.).
  • examples of linear metal fibers include filament yarn (Naslon 12-2000/3, manufactured by Nippon Seisen Co., Ltd.).
  • a tape-shaped metal fiber for example, SUS tape (Naslon Tape B W16 (manufactured by Nippon Seisen Co., Ltd.) can be mentioned.
  • the porous heating element preferably contains metal fibers, more preferably consists mainly of metal fibers, and even more preferably consists only of metal fibers.
  • “mainly” means that the content is 70% by mass or more. That is, it is preferable that 70% by mass or more of the porous heating element is metal fiber.
  • the proportion of metal fibers contained in the porous heating element is more preferably 80% by mass or more, more preferably 90% by mass or more, more preferably 95% by mass or more, and 98% by mass or more. It is even more preferable that there be. When the content of metal fibers in the porous heating element is within the above range, the porous heating element can fully exhibit its electrical conductivity and heat generation properties.
  • the proportion of metal fibers contained in the porous heating element shall be specified by the following method.
  • a scanning electron microscope (SEM) is used to obtain an SEM image of the surface of the porous heating element magnified 1,000 times.
  • EDS analysis is performed on the field of view of 90 ⁇ m x 120 ⁇ m in the SEM image to identify the presence and type of metal fibers, and further image processing is performed to determine the metal fibers (excluding voids) occupying the field of view. Find the area ratio of. Then, the area ratio is raised to the third power of 2 to convert it into a volume ratio, and further multiplied by the true specific gravity of the metal fiber to obtain the mass ratio, and the content rate of the metal fiber is calculated. When two or more types of metal fibers are included, the content rate of each metal fiber is determined and the summed value is taken as the proportion of metal fibers contained in the porous heating element.
  • the metal fiber is preferably a metal fiber having a cross-sectional equivalent area diameter of 2 to 100 ⁇ m (preferably 5 to 20 ⁇ m) and a length of 2 to 20 mm.
  • the porous heating element is preferably a metal fiber nonwoven fabric (hereinafter also referred to as a metal fiber sheet) in which such metal fibers are randomly arranged.
  • the metal fiber sheet consists only of metal fibers and may have voids, but in addition to the metal fibers, other than metal fibers (for example, resin fibers that function as a binder, etc.) may be added to the extent that does not impede heat generation. It may include. Examples of the binder include carbon, glass, and silicone resin.
  • the metal fibers constituting the metal fiber sheet are connected to each other at a contact point at least to the extent that they conduct electricity. For example, it is more preferable that some of the metal fibers are melted by sintering at a high temperature and then solidified so that the metal fibers are fused to each other at their contact points.
  • the metal fiber sheet is preferably a stainless steel fiber sheet because it has high heat resistance and chemical resistance.
  • the stainless steel fiber sheet include a stainless steel fiber sheet (for example, Tomy Firec SS, manufactured by Tomogawa Paper Manufacturing Co., Ltd.).
  • the basis weight of the metal fiber sheet is preferably 25 g/m 2 or more, more preferably 50 g/m 2 or more. Further, it is preferably 1000 g/m 2 or less, more preferably 200 g/m 2 or less. When the basis weight of the metal fiber sheet is 25 g/m 2 to 1000 g/m 2 , the strength as a metal fiber sheet can be ensured, and the points of contact between the metal fibers can be made relatively uniform. A sheet-like heater using such a metal fiber sheet as a porous heating element can bond the first porous heating element and the second porous heating element more firmly, and has flexibility. Excellent in Note that the basis weight is calculated by calculating the volume of fibers per unit area of the metal fiber sheet from image observation using an optical microscope, determining the weight from the specific gravity, and calculating the basis weight.
  • the density of metal fiber sheet is 1.0 to 5.0 g/cm 3 is preferable, 1.4 to 2.0 g/cm 3 is more preferable, and about 1.7 g/cm 3 is preferable.
  • density of the metal fiber sheet is 1.0 to 5.0 g/cm 3 , the strength of the metal fiber sheet can be ensured, and the contact points between the metal fibers can be made relatively uniform.
  • a sheet heater using such a metal fiber sheet as a first porous heating element and/or a second porous heating element has a structure in which the first porous heating element and the second porous heating element are Can be firmly joined and has excellent flexibility.
  • the metal fiber sheet can be manufactured by a dry nonwoven fabric manufacturing method or a wet paper forming method.
  • a dispersion medium water, organic solvent, etc.
  • an organic flocculant, etc. is added, and the sheet is formed into a sheet using a square hand-sheeting device (manufactured by Toyo Seiki Co., Ltd., etc.), and a dry sheet with a basis weight of 50 to 1100 g/m 2 is obtained using a ferro-type drying device. .
  • a metal fiber sheet can be obtained by firing at 400 to 1300°C.
  • the porous heating element preferably has a specific electrical resistance of 5 to 3000 ⁇ cm, more preferably 10 to 2500 ⁇ cm.
  • the specific electrical resistance of the porous heating element 2 is a value determined in accordance with JIS K 7194.
  • the thickness of the porous heating element is preferably 10 to 600 ⁇ m, more preferably 20 to 150 ⁇ m, and even more preferably 25 to 100 ⁇ m.
  • a sheet heater using a first porous heating element and/or a second porous heating element having a thickness of 10 to 600 ⁇ m includes a first porous heating element and a second porous heating element. It can be joined more firmly and has excellent flexibility.
  • the thickness of the porous heating element is determined as follows. First, a cross section of the sheet heater of the present invention in a direction parallel to a perpendicular to its main surface is obtained. This cross section corresponds to FIGS. 2 to 4. Next, after obtaining an enlarged photograph (200x) of its cross section using an optical microscope, the thickness of the porous heating element was measured at 100 randomly selected locations on the enlarged photograph, and the simple average of the thickness was measured at 100 randomly selected locations. Find the value. Then, the obtained simple average value is taken as the thickness of the porous heating element. Note that the thicknesses of elements other than the porous heating element included in the sheet-like heater of the present invention are also determined by the same method.
  • the shape and size of the porous heating element can be adjusted as appropriate depending on the shape and size of the object to be heated.
  • the first porous heating element 2 and the second porous heating element 3 may be different, but are preferably the same.
  • the sheet-like heater of the present invention is folded or deformed to be installed on the surface of an object to be heated, the first porous heating element 2 and the second porous heating element 3 behave in the same manner. This is because it is easy to maintain the bonded state and has excellent flexibility.
  • the materials of the first bonding aid and the third bonding aid are not particularly limited as long as they have conductivity. It may be made of Cu (copper), Al (aluminum), Ni (nickel), nichrome, carbon, Fe (iron), Cr (chromium), etc., but stainless steel is preferable.
  • the materials of the first bonding auxiliary material and the third bonding auxiliary material are determined based on the bonding strength and ease of bonding between the first porous heating element 2 and the second porous heating element 3, and the sheet-like heater of the present invention. It can be selected as appropriate in consideration of the flexibility and the like.
  • the first bonding aid and the third bonding aid may be, for example, metal foil, sheet-shaped metal mesh, metal fiber nonwoven fabric, metal fiber woven fabric, linear metal fiber, or tape-shaped metal fiber.
  • the metal mesh includes, for example, a 200 to 500 mesh metal mesh.
  • the metal fiber nonwoven fabric include a 1500 g/m 2 stainless steel fiber nonwoven fabric (SUS316L needle punch web, manufactured by Nikko Techno Co., Ltd.).
  • the metal fiber woven fabric include SUS cloth (Naslon Cloth A, manufactured by Nippon Seisen Co., Ltd.).
  • linear metal fibers include filament yarn (NASLON 12-2000/3, manufactured by Nippon Seisen Co., Ltd.).
  • tape-shaped metal fibers include SUS tape (Naslon Tape B W16 (manufactured by Nippon Seisen Co., Ltd.)).
  • the first bonding aid and/or the third bonding aid are preferably metal foil, more preferably stainless steel foil.
  • the first bonding aid and/or the third bonding aid is metal foil, the first porous heating element and/or the second porous heating element and the first bonding aid and/or It is easy to weld and join the third joining aid.
  • the material of the first porous heating element and the second porous heating element is stainless steel
  • the first joining aid and the third joining aid made of stainless steel are used, a joint is formed. It's easy to do.
  • the first porous heating element, the second porous heating element, the first joining aid, and the third joining aid are made of stainless steel having the same composition, it is easier to form a joint.
  • the material of the first porous heating element and the second porous heating element is stainless steel
  • using stainless steel foil as the first joining aid and/or the third joining aid improves the joining part. Easy to form.
  • the first porous heating element, the second porous heating element, the first joining aid material which is stainless steel foil, and the third joining aid material which is stainless steel foil are made of stainless steel with the same composition, the joining part is formed more easily. It's easy to do. In this case, even if the joint portion is small, it is easy to ensure the joint strength between the first porous heating element, the first joining aid, the third joining aid, and the second porous heating element, and the main The flexibility of the sheet-like heater 1 of the invention is increased.
  • the shape and size of the first bonding aid and the third bonding aid can be adjusted as appropriate.
  • the first bonding aid and the third bonding aid preferably have a specific electrical resistance of 5 to 100 ⁇ cm, more preferably 10 to 90 ⁇ cm.
  • the specific electrical resistances of the first bonding aid and the third bonding aid are values determined in accordance with JIS K 7194.
  • the thickness of the first bonding aid and the third bonding aid is preferably 10 to 100 ⁇ m.
  • the first porous heating element, the first joining aid, the third joining aid, and the second porous heating element are It is also possible to ensure the bonding strength of .
  • the second bonding aid and the fourth bonding aid have flexibility, and when the first porous heating element and the second porous heating element included in the sheet heater of the present invention generate heat, It may be an inorganic material or an organic material as long as it has heat resistance to the temperature reached (exothermic temperature).
  • the material of the second bonding aid and the fourth bonding aid is, for example, a metal such as Cu (copper), Al (aluminum), Ni (nickel), nichrome, carbon, Fe (iron), or Cr (chromium).
  • a metal such as Cu (copper), Al (aluminum), Ni (nickel), nichrome, carbon, Fe (iron), or Cr (chromium).
  • stainless steel is preferable.
  • the second bonding aid and the fourth bonding aid are made of metal, which is an inorganic substance.
  • the second bonding aid 5 is made of metal, so the bonding portion 8 of the sheet-like heater 1a of the present invention in Embodiment 1 is connected to at least a portion of the second bonding aid 5 and the first bonding aid 5.
  • At least a portion of the porous heating element 2, at least a portion of the first joining aid 4, and at least a portion of the second porous heating element 3 are each melted and then solidified.
  • the joint part 8 connects the second joining aid 5, the first porous heating element 2, the first joining aid 4, and the second porous heating element 3 to each other. are connected to each other.
  • the bonding portion 8 of the sheet-like heater 1a of the present invention in such an embodiment is at least one of the first porous heating elements 2. It is formed by melting a part of the porous material, at least a part of the first joining aid 4, and at least a part of the second porous heating element 3, and then solidifying them.
  • the materials of the second bonding aid and the fourth bonding aid may be the same as or different from the first bonding aid.
  • the second bonding aid and the fourth bonding aid are preferably made of the same metal as the first porous heating element.
  • the material of the second bonding aid and the fourth bonding aid is preferably the same type of metal as the first bonding aid and/or the third bonding aid.
  • the second bonding aid and the fourth bonding aid are preferably made of the same metal as the second porous heating element.
  • the second bonding aid and the fourth bonding aid may be, for example, metal foil, sheet-shaped metal mesh, metal fiber nonwoven fabric, metal fiber woven fabric, linear metal fiber, or tape-shaped metal fiber.
  • the metal mesh includes, for example, a 200 to 500 mesh metal mesh.
  • the metal fiber nonwoven fabric include a 1500 g/m 2 stainless steel fiber nonwoven fabric (SUS316L needle punch web, manufactured by Nikko Techno Co., Ltd.).
  • the metal fiber woven fabric include SUS cloth (Naslon Cloth A, manufactured by Nippon Seisen Co., Ltd.).
  • linear metal fibers include filament yarn (NASLON 12-2000/3, manufactured by Nippon Seisen Co., Ltd.).
  • tape-shaped metal fibers include SUS tape (Naslon Tape B W16 (manufactured by Nippon Seisen Co., Ltd.)).
  • the presence of the second bonding aid makes it difficult for the first porous heating element to break when an external force is applied to the sheet-like heater of the present invention. Bonding with the porous heating element is easily maintained.
  • the fourth bonding aid Due to the presence of the fourth bonding aid, when an external force is applied to the sheet-like heater of the present invention, the second porous heating element is difficult to break, so that the first porous heating element and the second Bonding with the porous heating element is easily maintained.
  • the size and shape of the second bonding aid and the fourth bonding aid are not particularly limited.
  • the size and shape of the second bonding aid and the fourth bonding aid may be the same as or different from the first bonding aid.
  • the thickness of the second bonding aid and the fourth bonding aid is preferably 10 to 100 ⁇ m. In this case, it is easy to join the first porous heating element and the second porous heating element, and the sheet-like heater of the present invention can easily maintain its flexibility.
  • the sheet-like heater of the present invention includes a first insulating layer, a sheet-like first porous heating element, a second insulating layer, a third insulating layer, a sheet-like second porous heating element, and a second sheet-like porous heating element. 4 insulating layers are laminated in this order.
  • the first insulating layer, the second insulating layer, the third insulating layer, and the fourth insulating layer play the role of electrically insulating the first porous heating element, the second porous heating element, and the others. Therefore, it is preferable to use a sheet-like material made of a material with high insulation properties.
  • the sheet-like heater of the present invention when installed on the surface of the object to be heated, it is preferable that the insulating layer closer to the surface of the object to be heated has thermal conductivity in addition to insulation.
  • the first insulating layer, the second insulating layer, the third insulating layer, and the fourth insulating layer are, for example, PET (polyethylene terephthalate), PI (polyimide), PP (polypropylene), PE (polyethylene), PEN (polyethylene naphthalate), It may be made of TAC (triacetyl cellulose), silicone resin, ceramic, or the like. This is because these have high insulation properties.
  • at least one selected from the group consisting of the first insulating layer, the second insulating layer, the third insulating layer, and the fourth insulating layer is preferably made of PI (polyimide). This is because it has excellent heat resistance and insulation properties.
  • the thickness of the first insulating layer, the second insulating layer, the third insulating layer, and the fourth insulating layer is not particularly limited, but each is preferably 50 to 700 ⁇ m, more preferably 100 to 600 ⁇ m, and 200 ⁇ m to 200 ⁇ m. More preferably, the thickness is 500 ⁇ m.
  • the shapes and sizes of the first insulating layer, second insulating layer, third insulating layer, and fourth insulating layer are not particularly limited.
  • the first insulating layer, the second insulating layer, the third insulating layer, and the fourth insulating layer play a role of electrically insulating the first porous heating element and the second porous heating element from others. Therefore, the size of the main surfaces of the first insulating layer and the second insulating layer is usually larger than that of the first porous heating element, and the size of the main surface of the third and fourth insulating layers is usually larger than that of the first porous heating element. The size is usually larger than the size of the main surface of the second porous heating element.
  • the main surface of the first insulating layer 6a and the first porous heating element 2 the main surfaces of the first porous heating element 2 and the second insulating layer 6b, the main surfaces of the third insulating layer 6c and the second porous heating element 3, the second porous heating element 3
  • the main surfaces of the fourth insulating layer 6d and the fourth insulating layer 6d can be bonded together using an adhesive, for example.
  • first insulating layer 6a and the first porous heating element 2 Between the first insulating layer 6a and the first porous heating element 2, between the first porous heating element 2 and the second insulating layer 6b, and between the third insulating layer 6c and the second porous heating element 3 Another layer or the like may be present between the second porous heating element 3 and the fourth insulating layer 6d.
  • the first insulating layer, the second insulating layer, the third insulating layer, and the fourth insulating layer may be made of the same material or may be made of different materials. It may be something like that. In one sheet-shaped heater of the present invention, the first insulating layer, the second insulating layer, the third insulating layer, and the fourth insulating layer may have the same thickness or may have different thicknesses. It may be something.
  • the thickness of the sheet-like heater of the present invention is preferably 150 to 500 ⁇ m, more preferably 300 to 400 ⁇ m.
  • the first bonding layer is formed between the first porous heating element and the second porous heating element instead of the second insulating layer and the third insulating layer. It has a part where auxiliary material is present. That is, in the sheet-like heater of the present invention, the second insulating layer and the third insulating layer are not present at the location where the first bonding aid is present.
  • the method for manufacturing a sheet-like heater of the present invention (hereinafter referred to as the manufacturing method of the present invention) will be described with reference to FIGS. 10 and 11.
  • the manufacturing method of the present invention described below is an example of a preferred manufacturing method.
  • the sheet-like heater of the present invention is not limited to the sheet-like heater manufactured by the manufacturing method of the present invention described below.
  • FIGS. 10 and 11 are diagrams for explaining a method of manufacturing the sheet-like heater 1b of the second embodiment.
  • the first insulating layer 6a, the second bonding aid 5, the first porous heating element 2, the first bonding aid 4, and the second insulating layer 6b are laminated in this order, and each layer is adhered to the base material 11a.
  • Each layer can be stuck together, for example, by using an adhesive.
  • the third insulating layer 6c, the third bonding aid 9, the second porous heating element 3, the fourth bonding aid 10, and the fourth insulating layer 6d are laminated in this order, and each layer is adhered to the base material. 11b (Fig. 10).
  • a part of the second insulating layer 6b is opened to expose the main surface of the first bonding aid 4 (FIG. 11).
  • a part of the third insulating layer 6c is opened to expose the main surface of the third bonding aid 9 (FIG. 11).
  • Any means known to those skilled in the art can be used as the opening means, and for example, a cutter can be used.
  • the base materials 11a and 11b are brought close together so that the exposed main surfaces of the first bonding aid 4 and the third bonding aid 9 are brought into close contact (FIG. 11).
  • the joining means include a method of welding by pressing a welding rod against the exposed main surface of the second joining aid 5 or the exposed main surface of the fourth joining aid 10. Then, the joints can be formed in the same way.
  • the sheet-like heater according to the present invention can be applied, for example, to piping applications, film forming apparatus applications, hot air generation applications, and the like.

Landscapes

  • Surface Heating Bodies (AREA)

Abstract

2つ以上の発熱体が接続されたシート状ヒータにおいて、第1の発熱体と第2の発熱体とがより強固に接合されており、かつ可撓性に優れたシート状ヒータを提供することを目的とする。シート状ヒータであって、第一絶縁層と、シート状の第一の多孔質発熱体と、第二絶縁層と、第三絶縁層と、シート状の第二の多孔質発熱体と、第四絶縁層と、がこの順に積層している部分を含み、前記第一の多孔質発熱体と前記第二の多孔質発熱体との間に、前記第二絶縁層および前記第三絶縁層の代わりに、第一の接合助材が存在する部分を有し、加熱されたことで前記第一の多孔質発熱体と、前記第一の接合助材と、前記第二の多孔質発熱体と、の各々における少なくとも一部が溶融し、その後、固化したことで形成された接合部を有する、シート状ヒータ。

Description

シート状ヒータ
 本発明は、シート状ヒータに関する。
 従来いくつかのシート状ヒータが提案されている。
 例えば、特許文献1には、ベースフィルム上に箔状に設けられ発熱体として機能する抵抗体と、上記抵抗体に連続して形成され電気母線として機能する一対の電極と、を具備した面状ヒータを任意個数用意して、該任意個数の面状ヒータを、上記一対の電極の端部で、溶接により接続してなることを特徴とするヒータ装置が開示されている。
特開2004-071407号公報
 配管等の湾曲した表面を有する被加熱体を加熱するヒータは、被加熱体に追従できるよう可撓性が求められる。また、2つ以上の発熱体が接続されたシート状ヒータの場合、接続部に振動や揺動等の外力が加わっても、第1の発熱体と第2の発熱体とが接合されていることが求められる。しかしながら、第1の発熱体と第2の発熱体との接合を強固にし過ぎると、ヒータの可撓性が低下する傾向があった。
 本発明では、第1の発熱体と第2の発熱体とがより強固に接合されており、かつ可撓性に優れたシート状ヒータの提供を目的とする。
 本発明は、以下の(1)~(5)である。
(1)シート状ヒータであって、
 第一絶縁層と、
 シート状の第一の多孔質発熱体と、
 第二絶縁層と、
 第三絶縁層と、
 シート状の第二の多孔質発熱体と、
 第四絶縁層と、
がこの順に積層している部分を含み、
 前記第一の多孔質発熱体と前記第二の多孔質発熱体との間に、前記第二絶縁層および前記第三絶縁層の代わりに、第一の接合助材が存在する部分を有し、
 加熱されたことで前記第一の多孔質発熱体と、前記第一の接合助材と、前記第二の多孔質発熱体と、の各々における少なくとも一部が溶融し、その後、固化したことで形成された接合部を有する、シート状ヒータ。
(2)さらに第二の接合助材を有し、
 前記第二の接合助材は、前記第一の多孔質発熱体の2つの主面のうち、前記第一の接合助材が存在する側とは逆の主面側に配置されており、
 前記接合部が、加熱されたことで前記第二の接合助材と、前記第一の多孔質発熱体と、前記第一の接合助材と、前記第二の多孔質発熱体と、の各々における少なくとも一部が溶融し、その後、固化したことで形成されたものである、上記(1)に記載のシート状ヒータ。
(3)1つの前記第一の接合助材につき、複数の前記接合部を有する、上記(1)または(2)に記載のシート状ヒータ。
(4)前記第一の多孔質発熱体および/または前記第二の多孔質発熱体が金属繊維を含む、上記(1)~(3)のいずれかに記載のシート状ヒータ。
(5)前記第一の接合助材が金属箔である、上記(1)~(4)のいずれかに記載のシート状ヒータ。
 本発明では、2つ以上の発熱体が接続されたシート状ヒータにおいて、第1の発熱体と第2の発熱体とがより強固に接合されており、かつ可撓性に優れたシート状ヒータの提供することができる。
図1は、実施形態1における本発明のシート状ヒータ1aの主面を、その垂線方向から見た場合の図(概略図)である。 図2は図1のA-A線断面図(概略図)である。 図3は図1のB-B線断面図(概略図)である。 図4は図1のC-C線断面図(概略図)である。 図5は、実施形態2における本発明のシート状ヒータ1bをその主面における垂線に平行な方向に切って得られる断面の図(概略図)である。 図6は、本発明のシート状ヒータ1bにおける接合部8の付近を、本発明のシート状ヒータ1bの主面における垂線に平行な方向に切って得た断面を走査型電子顕微鏡(SEM)で観察して得たSEM画像である。 図7は、実施形態3における本発明のシート状ヒータ1cの主面を、その垂線方向から見た場合の図(概略図)である。 図8は、実施形態4における本発明のシート状ヒータ1dの主面を、その垂線方向から見た場合の図(概略図)である。 図9は、実施形態5における本発明のシート状ヒータ1eの主面を、その垂線方向から見た場合の図(概略図)である。 実施形態2のシート状ヒータ1bの製造方法を説明するための図である。 実施形態2のシート状ヒータ1bの製造方法を説明するための別の図である。
 本発明について説明する。
 本発明のシート状ヒータは、シート状ヒータであって、第一絶縁層と、シート状の第一の多孔質発熱体と、第二絶縁層と、第三絶縁層と、シート状の第二の多孔質発熱体と、第四絶縁層と、がこの順に積層している部分を含み、前記第一の多孔質発熱体と前記第二の多孔質発熱体との間に、前記第二絶縁層および前記第三絶縁層の代わりに、第一の接合助材が存在する部分を有し、加熱されたことで前記第一の多孔質発熱体と、前記第一の接合助材と、前記第二の多孔質発熱体と、の各々における少なくとも一部が溶融し、その後、固化したことで形成された接合部を有する、シート状ヒータである。
 本発明のシート状ヒータの実施形態について、図面を用いて説明する。
 なお、以下に説明する実施形態は、本発明のシート状ヒータの好適例を示しており、本発明は以下に説明する実施形態に限定されない。また、図に示す各部の大きさや形状なども例を示しており、本発明はこれに限定されない。
<<実施形態>>
<実施形態1>
 本発明のシート状ヒータの実施形態1について、図を用いて説明する。
 実施形態1は、
 シート状ヒータであって、
 第一絶縁層と、
 シート状の第一の多孔質発熱体と、
 第二絶縁層と、
 第三絶縁層と、
 シート状の第二の多孔質発熱体と、
 第四絶縁層と、
がこの順に積層している部分を含み、
 前記第一の多孔質発熱体と前記第二の多孔質発熱体との間に、前記第二絶縁層および前記第三絶縁層の代わりに、第一の接合助材が存在する部分を有し、
 さらに第二の接合助材を有し、
 前記第二の接合助材は、前記第一の多孔質発熱体の2つの主面のうち、前記第一の接合助材が存在する側とは逆の主面側に配置されており、
 加熱されたことで前記第二の接合助材と、前記第一の多孔質発熱体と、前記第一の接合助材と、前記第二の多孔質発熱体と、の各々における少なくとも一部が溶融し、その後、固化したことで形成された接合部を有する、シート状ヒータである。
 つまり、実施形態1は、本発明のシート状ヒータであって、さらに第二の接合助材を有する好適態様である。
 この場合、接合部は、加熱されたことで、第二の接合助材の少なくとも一部と、第一の多孔質発熱体の少なくとも一部と、第一の接合助材の少なくとも一部と、第二の多孔質発熱体の少なくとも一部との各々が溶融し、その後、固化したことで形成されたものである。
 図1は、実施形態1における本発明のシート状ヒータ1aの主面を、その垂線方向から見た場合の図(概略図)である。また、図2は図1のA-A線断面図(概略図)、図3は図1のB-B線断面図(概略図)、図4は図1のC-C線断面図(概略図)である。図2~図4は、いずれも本発明のシート状ヒータ1aの主面における垂線に平行な方向における断面を表している。
 なお、実施形態1および後述する別の実施形態を含む本発明のシート状ヒータにおいて、その積層状態は、図2~図4に相当する本発明のシート状ヒータの断面を光学顕微鏡または走査型電子顕微鏡で観察することで確認することができる。
 図1~図4に示すように、実施形態1の本発明のシート状ヒータ1aは、第一絶縁層6aと、シート状の第一の多孔質発熱体2と、第二絶縁層6bと、第三絶縁層6cと、シート状の第二の多孔質発熱体3と、第四絶縁層6dと、がこの順に積層している部分を含む。
 本発明のシート状ヒータ1aの全てが、これらがこの順に積層してなるものであってもよい。
 また、これらがこの順に積層していれば、各々の間に別層等が存在していてもよい。
 また、本発明のシート状ヒータ1aは、第一の多孔質発熱体2と第二の多孔質発熱体3との間に、第二絶縁層6bおよび第三絶縁層6cの代わりに、第一の接合助材4が存在する部分を有する。
 第一の多孔質発熱体2と第一の接合助材4との間、または第一の接合助材4と第二の多孔質発熱体3との間に、別層等が存在してもよい。
 このような別層等が存在せず、第一の多孔質発熱体2と第一の接合助材4と第二の多孔質発熱体3とが互いに接していることが好ましい。
 さらに、本発明のシート状ヒータ1aは、第二の接合助材5を有し、第二の接合助材5は、第一の多孔質発熱体2の2つの主面のうち、第一の接合助材4が存在する側とは逆の主面側に配置されている。
 第二の接合助材5と第一の多孔質発熱体2と間に別層等が存在してもよい。
 このような別層等が存在せず、第二の接合助材5と第一の多孔質発熱体2とが接していることが好ましい。
 実施形態1の本発明のシート状ヒータ1aは、図1~4に示すように、3個の接合部8と1個の第一の接合助材4を有する。
 接合部8は、加熱されたことで、第二の接合助材5の少なくとも一部と、第一の多孔質発熱体2の少なくとも一部と、第一の接合助材4の少なくとも一部と、第二の多孔質発熱体3の少なくとも一部と、の各々が溶融し、その後、固化したことで形成されたものである。
 例えば、第二の多孔質発熱体3と、第一の接合助材4と、第一の多孔質発熱体2と、第二の接合助材5とがこの順で積層されている場合に、第二の接合助材5の表面上に溶接棒を押し付けて溶接すると、その熱によって第二の接合助材5の少なくとも一部と、第一の多孔質発熱体2の少なくとも一部と、第一の接合助材4の少なくとも一部と、第二の多孔質発熱体3の少なくとも一部とが溶融する。その後、放冷して溶融した部分を固化させると、これが接合部8を構成することになる。
 接合部8によって、第二の多孔質発熱体3と、第一の接合助材4と、第一の多孔質発熱体2と、第二の接合助材5とは電気的につながる。
 ここで第二の多孔質発熱体3と、第一の接合助材4と、第一の多孔質発熱体2と、第二の接合助材5とは異種の金属からなるものであってよいが、同種の金属からなることが好ましい。第二の多孔質発熱体3と、第一の接合助材4と、第一の多孔質発熱体2と、第二の接合助材5とが同種の金属からなると、形成された接合部8の強度が高くなる傾向があるからである。
 なお、本発明において「同種の金属」とは主元素が同じであることを意味するものとする。
 また、主元素とは、その金属を構成する元素を含有率(モル%)が高い順にならべ、含有率(モル%)が高い元素から順にその含有率を加算していき、90モル%を超えた時点で、それまでにその含有率を加算した1以上の元素の集合を意味するものとする。ここで1つの元素の含有率が90モル%以上である金属の場合、その金属の主元素はその1つの元素のみとする。
 上記のように、実施形態1の本発明のシート状ヒータ1aは3つの接合部8を有する。
 実施形態1および後述する別の実施形態を含む本発明のシート状ヒータにおいて、1個の第一の接合助材4に対して接合部8が複数存在することが好ましい。具体的には、本発明のシート状ヒータは1個の第一の接合助材4に対して2~20個の接合部を有することが好ましく、3~15個の接合部を有することがより好ましい。
 本発明のシート状ヒータが1個の第一の接合助材に対して複数の接合部を有すると、第二の多孔質発熱体3と、第一の接合助材4と、第一の多孔質発熱体2とをより強固に接合し、かつ本発明のシート状ヒータの可撓性も良好になるからである。
 実施形態1および後述する別の実施形態を含む本発明のシート状ヒータにおいて、本発明のシート状ヒータが複数の接合部を有する場合、それらの接合部の大きさ、形状などは全て同一であってもよいし、異なっていてもよい。
 また、本発明のシート状ヒータが1個の第一の接合助材に対して複数の接合部を有する場合、接合部は第一の接合助材において局在してもよいが、散在していることが好ましく、一定の距離を保つように規則的に散在していることが好ましい。
 実施形態1および後述する別の実施形態を含む本発明のシート状ヒータにおいて、本発明のシート状ヒータの主面を見た場合に、接合部が点状および/または線状となっていることが好ましい。なお、接合部は点状や線状ともいえない形状、例えば面状をなしていてもよい。
 本発明のシート状ヒータの主面を見た場合に、接合部が直線状となっていることがより好ましい。この場合、第二の多孔質発熱体3と第一の接合助材4と第一の多孔質発熱体2との接合を強固にすることができ、さらに本発明のシート状ヒータを折り曲げた場合の可撓性も良好なるからである。
 実施形態1の本発明のシート状ヒータ1aが有する接合部8は、その主面を見た場合、図1に示すように、直線状をなしている。
<実施形態2>
 本発明のシート状ヒータの実施形態2について、図を用いて説明する。
 実施形態2は、
 シート状ヒータであって、
 第一絶縁層と、
 シート状の第一の多孔質発熱体と、
 第二絶縁層と、
 第三絶縁層と、
 シート状の第二の多孔質発熱体と、
 第四絶縁層と、
がこの順に積層している部分を含み、
 前記第一の多孔質発熱体と前記第二の多孔質発熱体との間に、前記第二絶縁層および前記第三絶縁層の代わりに、第一の接合助材および第三の接合助材が存在する部分を有し、
 さらに第二の接合助材および第四の接合助材を有し、
 前記第二の接合助材は、前記第一の多孔質発熱体の2つの主面のうち、前記第一の接合助材が存在する側とは逆の主面側に配置されており、
 前記第四の接合助材は、前記第二の多孔質発熱体の2つの主面のうち、前記第三の接合助材が存在する側とは逆の主面側に配置されており、
 加熱されたことで前記第二の接合助材と、前記第一の多孔質発熱体と、前記第一の接合助材と、前記第三の接合助材と、前記第二の多孔質発熱体と、前記第四の接合助材との各々における少なくとも一部が溶融し、その後、固化したことで形成された接合部を有する、シート状ヒータである。
 つまり、実施形態2は、本発明のシート状ヒータであって、さらに第二の接合助材、第三の接合助材および第四の接合助材を有する好適態様である。
 また、実施形態2は、実施形態1の本発明のシート状ヒータであって、さらに第三の接合助材および第四の接合助材を有する好適態様である。
 この場合、接合部は、加熱されたことで、第二の接合助材の少なくとも一部と、第一の多孔質発熱体の少なくとも一部と、第一の接合助材の少なくとも一部と、第三の接合助材の少なくとも一部と、第二の多孔質発熱体の少なくとも一部と、第四の接合助材の少なくとも一部との各々が溶融し、その後、固化したことで形成されたものである。
 また、接合部によって、第二の接合助材と、第一の多孔質発熱体と、第一の接合助材と、第三の接合助材と、第二の多孔質発熱体と、第四の接合助材とは電気的につながっている。
 実施形態2における本発明のシート状ヒータ1bの主面を、その垂線方向から見た場合の図(概略図)は、図1と同様になる。また、実施形態2における本発明のシート状ヒータ1bを、図1のA-A線に相当する箇所においてその主面における垂線に平行な方向に切って得られる断面の図(概略図)が図5である。
 また、図6は、本発明のシート状ヒータ1bにおける接合部8の付近を、本発明のシート状ヒータ1bの主面における垂線に平行な方向に切って得た断面を走査型電子顕微鏡(SEM)で観察して得たSEM画像である。
 なお、図6のSEM画像を得た本発明のシート状ヒータ1bは、第二の接合助材5としてステンレス箔、第一の多孔質発熱体2としてステンレス繊維シート(トミーファイレックSS、巴川製紙所社製)、第一の接合助材4としてステンレス箔、第三の接合助材9としてステンレス箔、第二の多孔質発熱体3としてステンレス繊維シート(トミーファイレックSS、巴川製紙所社製)、第四の接合助材10としてステンレス箔を用いたものである。
 また、第二の接合助材5、第一の多孔質発熱体2、第一の接合助材4、第三の接合助材9、第二の多孔質発熱体3および第四の接合助材10をこの順に積層した後、第二の接合助材5の上面にてスポット溶接を行い、接合部8を形成した。
 図6から、第二の接合助材5の一部と、第一の多孔質発熱体2の一部と、第一の接合助材4の一部と、第三の接合助材9の一部と、第二の多孔質発熱体3の一部と、第四の接合助材10の一部とが溶解した後、固化して、接合部8が形成されていることが理解できる。
<実施形態3>
 本発明のシート状ヒータの実施形態3について、図を用いて説明する。
 図7は、実施形態3における本発明のシート状ヒータ1cの主面を、その垂線方向から見た場合の図(概略図)である。
 実施形態3は、実施形態1または実施形態2と類似する形態であるが、実施形態1または実施形態2とは接合部8が異なり、それ以外は共通する。
 実施形態3の本発明のシート状ヒータ1cは、12個の点状の接合部8が散在している態様である。
<実施形態4>
 本発明のシート状ヒータの実施形態4について、図を用いて説明する。
 図8は、実施形態4における本発明のシート状ヒータ1dの主面を、その垂線方向から見た場合の図(概略図)である。
 実施形態4は、実施形態1または実施形態2と類似する形態であるが、実施形態1または実施形態2とは接合部8が異なり、それ以外は共通する。
 実施形態4の本発明のシート状ヒータ1dは、1個の直線状の接合部8を有する態様である。
<実施形態5>
 本発明のシート状ヒータの実施形態5について、図を用いて説明する。
 図9は、実施形態5における本発明のシート状ヒータ1eの主面を、その垂線方向から見た場合の図(概略図)である。
 実施形態5は、実施形態1または実施形態2と類似する形態であるが、実施形態1または実施形態2とは接合部8が異なり、それ以外は共通する。
 実施形態5の本発明のシート状ヒータ1eは、2個の直線状の接合部8を有する態様である。また、この実施形態5において接合部8は局在している。
<多孔質発熱体>
 本発明のシート状ヒータが有する第一の多孔質発熱体および第二の多孔質発熱体について説明する。
 1つの本発明のシート状ヒータにおいて、第一の多孔質発熱体と第二の多孔質発熱体とは同一であってもよいし、異なるものであってもよい。
 以下において、単に「多孔質発熱体」と記した場合、第一の多孔質発熱体と第二の多孔質発熱体との両方を意味している。
 多孔質発熱体は通電することで発熱する多孔質体であればよい。
 多孔質発熱体の材質は、通電することで発熱するものであれば特に限定されず、ステンレス(例えば、SUS304、SUS316、SUS316L)であることが好ましいが、Cu(銅)、Al(アルミニウム)、Ni(ニッケル)、ニクロム、カーボンであってもよい。
 多孔質発熱体は繊維状物によって構成されていることが好ましい。
 繊維状物によって構成された多孔質発熱体として、例えば直線状の繊維が略直交して配置されてなるシート状の金属メッシュ、金属繊維がランダムに配置されてなる金属繊維不織布、金属繊維織布、線状の金属繊維、テープ状の金属繊維であってよい。
 具体的には、金属メッシュとして、例えば200~500メッシュの金属メッシュが挙げられる。
 また、金属繊維不織布として、例えば1500g/m2のステンレス繊維不織布(SUS316Lニードルパンチウェブ、株式会社日工テクノ製)が挙げられる。
 また、金属繊維織布として、例えばSUSクロス(ナスロンクロスA、日本精線株式会社製)が挙げられる。
 また、線状の金属繊維として、例えばフィラメントヤーン(ナスロン12-2000/3、日本精線株式会社製)が挙げられる。
 また、テープ状の金属繊維として、例えばSUSテープ(ナスロンテープB W16(日本精線株式会社製)が挙げられる。
 多孔質発熱体は金属繊維を含むことが好ましく、主として金属繊維からなることがより好ましく、金属繊維のみからなることがさらに好ましい。
 ここで「主として」とは、含有率が70質量%以上であることを意味する。すなわち、多孔質発熱体はその70質量%以上が金属繊維であることが好ましい。多孔質発熱体に含まれる金属繊維の割合は80質量%以上であることがより好ましく、90質量%以上であることがより好ましく、95質量%以上であることがより好ましく、98質量%以上であることがさらに好ましい。
 多孔質発熱体における金属繊維の含有率を上記の範囲とすると、多孔質発熱体の通電性、発熱性を十分に発揮することができる。
 なお、多孔質発熱体に含まれる金属繊維の割合は次の方法によって特定するものとする。
 初めに、多孔質発熱体の表面を走査型電子顕微鏡(SEM)を用いて1,000倍に拡大して得たSEM像を得る。
 次に、そのSEM像における90μm×120μmの視野内についてEDS分析を行って金属繊維の存在およびその種類を特定し、さらに画像処理を行うことで、その視野内に占める金属繊維(空隙を除く)の面積比率を求める。
 そして、その面積比率を2分の3乗とすることで体積比率に換算し、さらに金属繊維の真比重を乗じることで質量比率を求め、金属繊維の含有率を算出する。
 ここで金属繊維が2種類以上含まれている場合、それぞれの金属繊維について含有率を求め合算した値を、多孔質発熱体に含まれる金属繊維の割合とする。
 金属繊維は、断面の等面積円相当径が2~100μm(好ましくは5~20μm)、長さが2~20mmの金属製の繊維であることが好ましい。
 また、多孔質発熱体は、このような金属製の繊維がランダムに配置された金属繊維不織布(以下、金属繊維シートとも言う。)であることが好ましい。
 ここで金属繊維シートは金属繊維のみからなり、空隙を有していてもよいが、金属繊維に加え、発熱性を妨げない範囲で金属繊維以外(例えばバインダーとしての機能がある樹脂繊維等)を含むものであってもよい。
 バインダーとしては、カーボンやガラス、シリコーン樹脂などが挙げられる。
 ここで、金属繊維シートを構成する金属繊維同士は少なくとも通電する程度に接点においてつながっていることが好ましい。例えば高温にて焼結することで金属繊維の一部が溶けた後、凝固することで、金属繊維同士がその接点において融着していることがより好ましい。
 金属繊維シートは耐熱性や耐薬品性が高いことからステンレス繊維シートであることが好ましい。ステンレス繊維シートとして、ステンレス繊維シート(例えば、トミーファイレックSS、巴川製紙所社製)が挙げられる。
 金属繊維シートは坪量が25g/m2以上であることが好ましく、50g/m2以上であることが好ましい。また、1000g/m2以下であることが好ましく、200g/m2以下であることがより好ましい。
 金属繊維シートの坪量が、25g/m2~1000g/m2であると、金属繊維シートとしての強度を確保することができ、金属繊維同士の接点を比較的、均一にすることができるため、このような金属繊維シートを多孔質発熱体として用いたシート状ヒータは、第一の多孔質発熱体と第二の多孔質発熱体とをより強固に接合することができ、かつ可撓性に優れる。
 なお、坪量は光学顕微鏡による画像観察から、金属繊維シートの単位面積あたりの繊維の体積を算出し、比重から重量を割り出し、坪量を算出する。
 金属繊維シートの密度は1.0~5.0
g/cm3であることが好ましく、1.4~2.0g/cm3であることがより好ましく、1.7g/cm3程度であることが好ましい。
 なお、金属繊維シートの密度は、JIS P 8118に従い、密度(g/cm3)=坪量(g/m2)/(厚さ(mm)×1000)により求めた値とする。
 金属繊維シートの密度が、1.0~5.0g/cm3であると金属繊維シートとしての強度を確保することができ、金属繊維同士の接点を比較的、均一にすることができるため、このような金属繊維シートを第一の多孔質発熱体および/または第二の多孔質発熱体として用いたシート状ヒータは、第一の多孔質発熱体と第二の多孔質発熱体とをより強固に接合することができ、かつ可撓性に優れる。
 金属繊維シートは、乾式不織布の製造方法によっても、湿式抄造法によっても製造することができる。湿式抄造法によって製造する場合には、例えば、断面の等面積円相当径が2~100μm、長さが2~20mmの無数の金属製の繊維を分散媒(水や有機溶媒等)内で撹拌した後、有機系の凝集剤等を加え、角形手漉き装置(東洋精機社製など)を用いてシート化し、フェロタイプの乾燥装置を用いて坪量が50~1100g/m2の乾燥シートを得る。その後、400~1300℃で焼成すると金属繊維シートを得ることができる。
 多孔質発熱体は、その比電気抵抗が5~3000μΩcmのものであることが好ましく、10~2500μΩcmのものであることがより好ましい。
 ここで多孔質発熱体2の比電気抵抗は、JIS K 7194に準拠して求めた値とする。
 多孔質発熱体の厚さは10~600μmであることが好ましく、20~150μmであることがより好ましく、25~100μmであることがさらに好ましい。厚さが10~600μmである第一の多孔質発熱体および/または第二の多孔質発熱体を用いたシート状ヒータは、第一の多孔質発熱体と第二の多孔質発熱体とをより強固に接合することができ、かつ可撓性に優れる。
 ここで多孔質発熱体の厚さは、次のように求めるものとする。
 初めに、本発明のシート状ヒータについて、その主面の垂線に平行な方向における断面を得る。この断面は図2~図4に相当する。
 次に、光学顕微鏡を用いてその断面の拡大写真(200倍)を得た後、拡大写真において多孔質発熱体の厚さを無作為に選択した100か所にて測定し、それらの単純平均値を求める。
 そして、得られた単純平均値をその多孔質発熱体の厚さとする。
 なお、本発明のシート状ヒータが備える多孔質発熱体以外の要素の厚さについても、同様の方法によって求めるものとする。
 多孔質発熱体の形状や大きさは、加熱対象物の形状や大きさ等に合わせて、適宜、調整することができる。
 1つの本発明のシート状ヒータにおいて、第一の多孔質発熱体2と第二の多孔質発熱体3とが異なるものであってよいが、同一のものであることが好ましい。本発明のシート状ヒータを折り曲げたときや、加熱対象物の表面に設置させるために変形させたときに、第一の多孔質発熱体2と第二の多孔質発熱体3が同一挙動となるため、接合状態を維持しやすく、かつ可撓性にも優れるからである。
<第一の接合助材、第三の接合助材>
 第一の接合助材および第三の接合助材について説明する。
 第一の接合助材および第三の接合助材は導電性を有していれば、その材質は特に限定されない。Cu(銅)、Al(アルミニウム)、Ni(ニッケル)、ニクロム、カーボン、Fe(鉄)、Cr(クロム)などであってよいが、ステンレスであることが好ましい。
 第一の接合助材および第三の接合助材の材質は、第一の多孔質発熱体2と第二の多孔質発熱体3との接合強度および接合容易性、ならびに本発明のシート状ヒータの可撓性等を考慮して適宜選択することができる。
 第一の接合助材および第三の接合助材は、例えば金属箔、シート状の金属メッシュ、金属繊維不織布、金属繊維織布、線状の金属繊維、テープ状の金属繊維であってよい。
 具体的には、金属メッシュとして、例えば200~500メッシュの金属メッシュが挙げられる。
 金属繊維不織布として、例えば1500g/m2のステンレス繊維不織布(SUS316Lニードルパンチウェブ、株式会社日工テクノ製)が挙げられる。
 金属繊維織布として、例えばSUSクロス(ナスロンクロスA、日本精線株式会社製)が挙げられる。
 線状の金属繊維として、例えばフィラメントヤーン(ナスロン12-2000/3、日本精線株式会社製)が挙げられる。
 テープ状の金属繊維として、例えばSUSテープ(ナスロンテープB W16(日本精線株式会社製)が挙げられる。
 第一の接合助材および/または第三の接合助材は金属箔であることが好ましく、ステンレス箔であることがより好ましい。第一の接合助材および/または第三の接合助材が金属箔であると、第一の多孔質発熱体および/または第二の多孔質発熱体と、第一の接合助材および/または第三の接合助材とを溶接接合をしやすい。
 第一の多孔質発熱体および第二の多孔質発熱体の材質がステンレスである場合に、同様にステンレスからなる第一の接合助材および第三の接合助材を用いると、接合部を形成しやすい。
 第一の多孔質発熱体、第二の多孔質発熱体、第一の接合助材および第三の接合助材が同一組成のステンレスからなると、接合部をより形成しやすい。
 第一の多孔質発熱体および第二の多孔質発熱体の材質がステンレスである場合に、ステンレス箔を第一の接合助材および/または第三の接合助材として用いると、接合部をより形成しやすい。
 第一の多孔質発熱体、第二の多孔質発熱体、ステンレス箔である第一の接合助材およびステンレス箔である第三の接合助材が同一組成のステンレスからなると、接合部をより形成しやすい。この場合、接合部が小さくても第一の多孔質発熱体と第一の接合助材と第三の接合助材と第二の多孔質発熱体との接合強度を確保しやすく、かつ、本発明のシート状ヒータ1の可撓性が高まる。
 第一の接合助材および第三の接合助材の形状や大きさは、適宜、調整することができる。
 第一の接合助材および第三の接合助材は比電気抵抗が5~100μΩcmのものであることが好ましく、10~90μΩcmのものであることがより好ましい。
 ここで第一の接合助材および第三の接合助材の比電気抵抗は、JIS K 7194に準拠して求めた値とする。
 第一の接合助材および第三の接合助材の厚さは、各々、10~100μmであることが好ましい。この場合、本発明のシート状ヒータ1の可撓性を確保したうえで、第一の多孔質発熱体と第一の接合助材と第三の接合助材と第二の多孔質発熱体との接合強度も確保することができる。
<第二の接合助材、第四の接合助材>
 第二の接合助材および第四の接合助材について説明する。
 第二の接合助材および第四の接合助材は、可撓性を有し、本発明のシート状ヒータが含む第一の多孔質発熱体および第二の多孔質発熱体が発熱した場合に到達する温度(発熱温度)に対する耐熱性があれば、無機物であっても、有機物であってもよい。
 第二の接合助材および第四の接合助材の材質は、例えば、Cu(銅)、Al(アルミニウム)、Ni(ニッケル)、ニクロム、カーボン、Fe(鉄)、Cr(クロム)などの金属であってもよいが、ステンレスであることが好ましい。
 ただし、上記の実施形態1~5は、第二の接合助材および第四の接合助材が、無機物の一つである金属からなる態様である。
 例えば実施形態1は第二の接合助材5が金属からなるため、実施形態1の本発明のシート状ヒータ1aが有する接合部8は第二の接合助材5の少なくとも一部と、第一の多孔質発熱体2の少なくとも一部と、第一の接合助材4の少なくとも一部と、第二の多孔質発熱体3の少なくとも一部との各々が溶融し、その後、固化したことで形成されたものであり、接合部8によって第二の接合助材5と、第一の多孔質発熱体2と、第一の接合助材4と、第二の多孔質発熱体3とは電気的につながっている。
 これに対して、実施態様1における第二の接合助材5が金属ではない場合、そのような態様の本発明のシート状ヒータ1aが有する接合部8は第一の多孔質発熱体2の少なくとも一部と、第一の接合助材4の少なくとも一部と、第二の多孔質発熱体3の少なくとも一部との各々が溶融し、その後、固化したことで形成されたものである。
 第二の接合助材および第四の接合助材の材質は、第一の接合助材と同じであってもよいし、第一の接合助材と異なっていてもよい。
 第二の接合助材および第四の接合助材の材質は、第一の多孔質発熱体と同種の金属であることが好ましい。
 第二の接合助材および第四の接合助材の材質は、第一の接合助材および/または第三の接合助材と同種の金属であることが好ましい。
 第二の接合助材および第四の接合助材の材質は、第二の多孔質発熱体と同種の金属であることが好ましい。
 第二の接合助材および第四の接合助材は、例えば金属箔、シート状の金属メッシュ、金属繊維不織布、金属繊維織布、線状の金属繊維、テープ状の金属繊維であってよい。
 具体的には、金属メッシュとして、例えば200~500メッシュの金属メッシュが挙げられる。
 金属繊維不織布として、例えば1500g/m2のステンレス繊維不織布(SUS316Lニードルパンチウェブ、株式会社日工テクノ製)が挙げられる。
 金属繊維織布として、例えばSUSクロス(ナスロンクロスA、日本精線株式会社製)が挙げられる。
 線状の金属繊維として、例えばフィラメントヤーン(ナスロン12-2000/3、日本精線株式会社製)が挙げられる。
 テープ状の金属繊維として、例えばSUSテープ(ナスロンテープB W16(日本精線株式会社製)が挙げられる。
 第二の接合助材が存在することにより、本発明のシート状ヒータに外力が加わった場合に、第一の多孔質発熱体が破断し難いため、第一の多孔質発熱体と第二の多孔質発熱体との接合が維持されやすい。
 第四の接合助材が存在することにより、本発明のシート状ヒータに外力が加わった場合に、第二の多孔質発熱体が破断し難いため、第一の多孔質発熱体と第二の多孔質発熱体との接合が維持されやすい。
 第二の接合助材および第四の接合助材の大きさ、形状は特に限定されない。第二の接合助材および第四の接合助材の大きさ、形状は、第一の接合助材と同じであってもよいし、第一の接合助材と異なっていてもよい。
 第二の接合助材および第四の接合助材の厚さは、各々、10~100μmであることが好ましい。この場合、第一の多孔質発熱体および第二の多孔質発熱体と接合しやすく、かつ本発明のシート状ヒータは可撓性を維持しやすい。
<第一絶縁層、第二絶縁層、第三絶縁層および第四絶縁層>
 第一絶縁層、第二絶縁層、第三絶縁層および第四絶縁層について説明する。
 本発明のシート状ヒータは第一絶縁層と、シート状の第一の多孔質発熱体と、第二絶縁層と、第三絶縁層と、シート状の第二の多孔質発熱体と、第四絶縁層と、がこの順に積層している部分を含む。
 第一絶縁層、第二絶縁層、第三絶縁層および第四絶縁層は、第一の多孔質発熱体および第二の多孔質発熱体と他とを電気的に絶縁する役割を果たす。したがって絶縁性が高い材質からなるシート状のものであることが好ましい。
 また、本発明のシート状ヒータを加熱対象物の表面に設置したときに、加熱対象物の表面に近い方の絶縁層は、絶縁性に加え、熱伝導性を備えることが好ましい。
 第一絶縁層、第二絶縁層、第三絶縁層および第四絶縁層は、例えばPET(ポリエチレンテレフタレート)、PI(ポリイミド)、PP(ポリプロピレン)、PE(ポリエチレン)、PEN(ポリエチレンナフタレート)、TAC(トリアセチルセルロース)、シリコーン樹脂、セラミック等からなるものであってよい。これらは絶縁性が高いからである。これらの中でも第一絶縁層、第二絶縁層、第三絶縁層および第四絶縁層からなるからなる群から選ばれる少なくとも1つはPI(ポリイミド)からなることが好ましい。耐熱性および絶縁性が優れるからである。
 第一絶縁層、第二絶縁層、第三絶縁層および第四絶縁層の厚さは特に限定されないが、各々、50~700μmであることが好ましく、100~600μmであることがより好ましく、200~500μmであることがさらに好ましい。
 第一絶縁層、第二絶縁層、第三絶縁層および第四絶縁層の形状や大きさは特に限定されない。ただし、第一絶縁層、第二絶縁層、第三絶縁層および第四絶縁層は、第一の多孔質発熱体および第二の多孔質発熱体と他とを電気的に絶縁する役割を果たすため、第一絶縁層および第二絶縁層の主面の大きさは、通常、第一の多孔質発熱体の主面の大きさよりも大きく、第三絶縁層および第四絶縁層の主面の大きさは、通常、第二の多孔質発熱体の主面の大きさよりも大きい。
 例えば実施形態1のように、第一絶縁層6aと、シート状の第一の多孔質発熱体2と、第二絶縁層6bと、第三絶縁層6cと、シート状の第二の多孔質発熱体3と、第四絶縁層6dと、がこの順に積層している部分を含む本発明のシート状ヒータ1aの場合、第一絶縁層6aと第一の多孔質発熱体2との主面同士、第一の多孔質発熱体2と第二絶縁層6bとの主面同士、第三絶縁層6cと第二の多孔質発熱体3との主面同士、第二の多孔質発熱体3と第四絶縁層6dとの主面同士は、例えば接着剤を用いて接着させることができる。
 第一絶縁層6aと第一の多孔質発熱体2との間、第一の多孔質発熱体2と第二絶縁層6bとの間、第三絶縁層6cと第二の多孔質発熱体3との間、第二の多孔質発熱体3と第四絶縁層6dとの間に、他層等が存在していてもよい。
 1つの本発明のシート状ヒータにおいて、第一絶縁層と、第二絶縁層と、第三絶縁層と、第四絶縁層とは、同一の材料からなるものであってよいし、異なる材料からなるものであってもよい。
 1つの本発明のシート状ヒータにおいて、第一絶縁層と、第二絶縁層と、第三絶縁層と、第四絶縁層とは、同一の厚さであってもよいし、異なる厚さのものであってもよい。
 本発明のシート状ヒータの厚さは150~500μmであることが好ましく、300~400μmであることがより好ましい。
 前述のように、本発明のシート状ヒータでは、第一の多孔質発熱体と第二の多孔質発熱体との間に、第二絶縁層および第三絶縁層の代わりに、第一の接合助材が存在する部分を有する。つまり、本発明のシート状ヒータにおける第一の接合助材が存在する箇所において、第二絶縁層および第三絶縁層は存在しない。
<<製造方法>>
 本発明のシート状ヒータの製造方法(以下、本発明の製造方法という)について、図10、図11を用いて説明する。
 以下に説明する本発明の製造方法は好ましい製造方法の例示である。本発明のシート状ヒータは、以下に説明する本発明の製造方法によって製造されたシート状ヒータに限定されない。
 図10、図11は、実施形態2のシート状ヒータ1bの製造方法を説明するための図である。
 先ず、第一絶縁層6a、第二の接合助材5、第一の多孔質発熱体2、第一の接合助材4および第二絶縁層6bの順に積層し、各層を密着した基材11aを用意する(図10)。各層は、例えば接着剤を用いることによって密着することができる。
 同様に、第三絶縁層6c、第三の接合助材9、第二の多孔質発熱体3、第四の接合助材10および第四絶縁層6dの順に積層し、各層を密着した基材11bを用意する(図10)。
 次に、基材11aにおいて、第二絶縁層6bの一部を開口して第一の接合助材4の主面を露出させる(図11)。同様に、基材11bにおいて第三絶縁層6cの一部を開口して第三の接合助材9の主面を露出させる(図11)。開口する手段としては、当業者の知る任意の手段を用いることが可能であり、例えばカッターを用いることができる。
 次に、露出させた第一の接合助材4の主面と第三の接合助材9の主面とを密着させるように、基材11aと基材11bとを近づける(図11)。
 次に、第一絶縁層6aおよび/または第四絶縁層6dの少なくとも一部を剥がして、第二の接合助材5の主面および/または第四の接合助材10の主面を露出させる。
 そして、密着させた第一の接合助材4の主面と第三の接合助材9の主面とを接合する。接合する手段としては、例えば露出させた第二の接合助材5の主面または第四の接合助材10の主面に溶接棒を押し当てて溶接する方法が挙げられる。そうすると、同じに接合部を形成することができる。
 本発明に係るシート状ヒータは、例えば、配管用途、成膜装置用途や温風発生用途等に適用可能である。
 この出願は、2022年3月31日に出願された日本出願特願2022-058789を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
 1a、1b、1c、1d、1e シート状ヒータ
 2 第一の多孔質発熱体
 3 第二の多孔質発熱体
 4 第一の接合助材
 5 第二の接合助材
 6a 第一絶縁層
 6b 第二絶縁層
 6c 第三絶縁層
 6d 第四絶縁層
 8 接合部
 9 第三の接合助材
 10 第四の接合助材
 11a、11b 基材

Claims (5)

  1.  シート状ヒータであって、
     第一絶縁層と、
     シート状の第一の多孔質発熱体と、
     第二絶縁層と、
     第三絶縁層と、
     シート状の第二の多孔質発熱体と、
     第四絶縁層と、
    がこの順に積層している部分を含み、
     前記第一の多孔質発熱体と前記第二の多孔質発熱体との間に、前記第二絶縁層および前記第三絶縁層の代わりに、第一の接合助材が存在する部分を有し、
     加熱されたことで前記第一の多孔質発熱体と、前記第一の接合助材と、前記第二の多孔質発熱体と、の各々における少なくとも一部が溶融し、その後、固化したことで形成された接合部を有する、シート状ヒータ。
  2.  さらに第二の接合助材を有し、
     前記第二の接合助材は、前記第一の多孔質発熱体の2つの主面のうち、前記第一の接合助材が存在する側とは逆の主面側に配置されており、
     前記接合部が、加熱されたことで前記第二の接合助材と、前記第一の多孔質発熱体と、前記第一の接合助材と、前記第二の多孔質発熱体と、の各々における少なくとも一部が溶融し、その後、固化したことで形成されたものである、請求項1に記載のシート状ヒータ。
  3.  1つの前記第一の接合助材につき、複数の前記接合部を有する、請求項1または2に記載のシート状ヒータ。
  4.  前記第一の多孔質発熱体および/または前記第二の多孔質発熱体が金属繊維を含む、請求項1~3のいずれかに記載のシート状ヒータ。
  5.  前記第一の接合助材が金属箔である、請求項1~4のいずれかに記載のシート状ヒータ。
PCT/JP2023/007893 2022-03-31 2023-03-02 シート状ヒータ WO2023189185A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-058789 2022-03-31
JP2022058789 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023189185A1 true WO2023189185A1 (ja) 2023-10-05

Family

ID=88201245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007893 WO2023189185A1 (ja) 2022-03-31 2023-03-02 シート状ヒータ

Country Status (1)

Country Link
WO (1) WO2023189185A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312255U (ja) * 1976-07-15 1978-02-01
JPS57136196U (ja) * 1981-02-21 1982-08-25
JP2004071407A (ja) * 2002-08-07 2004-03-04 Kurabe Ind Co Ltd ヒータ装置
US20180128144A1 (en) * 2015-07-07 2018-05-10 Continental Automotive Gmbh Layer packet contacting for electrically heatable honeycomb body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312255U (ja) * 1976-07-15 1978-02-01
JPS57136196U (ja) * 1981-02-21 1982-08-25
JP2004071407A (ja) * 2002-08-07 2004-03-04 Kurabe Ind Co Ltd ヒータ装置
US20180128144A1 (en) * 2015-07-07 2018-05-10 Continental Automotive Gmbh Layer packet contacting for electrically heatable honeycomb body

Similar Documents

Publication Publication Date Title
JPWO2007110976A1 (ja) 面状発熱体とそれを用いた座席
JP2010517205A (ja) 面状発熱体
WO2023189185A1 (ja) シート状ヒータ
WO2023189184A1 (ja) シート状ヒータ
TW202418877A (zh) 片狀加熱器
TW202418878A (zh) 片狀加熱器
JP5742460B2 (ja) 布帛
JP2023002984A (ja) シート状ヒータ
JP2023044077A (ja) シート状ヒータ連結体
JP2023053041A (ja) シート状ヒータ
WO2023181649A1 (ja) 配管加熱構造体および配管加熱構造連結体
JP7388412B2 (ja) 歪みセンサ素子の製造方法及び歪みセンサ素子
WO2017026254A1 (ja) 自己発熱型定着ローラ
JP6590827B2 (ja) 低抵抗金属繊維シート及びその製造方法
JP2018077963A (ja) 面状発熱体
JP2011003330A (ja) 面状発熱体およびそれを用いた座席
JP3122226U (ja) 面状発熱シート
JP2010003606A (ja) 面状発熱体
WO2023188955A1 (ja) シート状ヒータ
WO2023188956A1 (ja) シート状ヒータおよびそれに用いるフッ素系接着剤
US11937342B2 (en) Spot heater
JP2018181554A (ja) ヒータユニット及び車両用シート
KR20230142606A (ko) 전열체
TW202415135A (zh) 片狀加熱器
TW202247698A (zh) 發熱體、加熱器、加熱器模組及發熱體的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779214

Country of ref document: EP

Kind code of ref document: A1