WO2023188876A1 - Sintered compact and cutting tool - Google Patents

Sintered compact and cutting tool Download PDF

Info

Publication number
WO2023188876A1
WO2023188876A1 PCT/JP2023/004750 JP2023004750W WO2023188876A1 WO 2023188876 A1 WO2023188876 A1 WO 2023188876A1 JP 2023004750 W JP2023004750 W JP 2023004750W WO 2023188876 A1 WO2023188876 A1 WO 2023188876A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
mass
binder phase
particles
total content
Prior art date
Application number
PCT/JP2023/004750
Other languages
French (fr)
Japanese (ja)
Inventor
貫志 櫛引
恵人 小嶋
亮二 豊田
Original Assignee
Ntkカッティングツールズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntkカッティングツールズ株式会社 filed Critical Ntkカッティングツールズ株式会社
Publication of WO2023188876A1 publication Critical patent/WO2023188876A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides

Definitions

  • the present disclosure relates to a sintered body and a cutting tool.
  • Cutting tools using cemented carbide or cermet as a base material which have a hard phase mainly composed of tungsten carbide or titanium carbonitride and a binder phase mainly composed of iron group elements, are known (for example, patented (See Reference 1).
  • cutting tools based on cemented carbide or cermet generally have excellent fracture resistance, but are said to have poor heat resistance and are not suitable for high-speed machining. Therefore, in cermets, a structure is known in which the heat resistance is improved by controlling the amount of metal binder phase on the surface. However, simply reducing the amount of binder phase on the surface is not enough to suppress wear, plastic deformation, etc. in the high-speed machining region. On the other hand, there is a need for technology for high-speed machining of steel materials with high cutting resistance.
  • the present disclosure has been made in view of the above circumstances, and aims to provide a sintered body and a cutting tool that have excellent wear resistance, heat resistance, and chipping resistance under high-speed machining.
  • the present disclosure can be realized as the following forms.
  • the main component is TiN, TiC, TiCN, or (Ti, M) (C, N) (M is one or more elements selected from the elements belonging to Groups 4 to 6 of the periodic table (excluding the Ti element)) hard particles, a bonded phase containing at least one of Co and Ni;
  • a sintered body comprising: The bonding phase further includes at least one selected from Re, Ru, Mo, and W, In the surface area from the surface of the sintered body to a depth of 20 ⁇ m, the total content of Re, Ru, Mo, and W relative to the total content (mass%) of Co, Ni, Re, Ru, Mo, and W.
  • the content rate (mass%) of the binder phase with respect to the total content rate (mass%) of the hard particles, the binder phase, and the dispersed particles is Ms
  • the content rate (mass%) of the binder phase with respect to the total content rate (mass%) of the hard particles, the binder phase, and the dispersed particles is Mi
  • a cutting tool that uses the sintered body according to [1] or [2] as a base material, and has a coating layer on the surface of the base material.
  • a sintered body having excellent wear resistance, heat resistance, and fracture resistance under high-speed processing is provided.
  • a hard phase mainly composed of a Ti compound that has excellent reaction resistance to iron (Fe) and hardness the sintered body has excellent wear resistance.
  • a binder phase containing at least one selected from Re, Ru, Mo, and W the heat resistance of the binder phase itself can be improved. As a result, a sintered body with excellent wear resistance and plastic deformation resistance can be obtained even under high-speed processing.
  • the component ratio of the binder phase contributes to improving the wear resistance and plastic deformation resistance of the sintered body, and the more Re, Ru, Mo, and W, which are high-melting point metal components, are contained in the binder phase, the better. , the wear resistance and plastic deformation resistance of the sintered body are improved.
  • the amounts of Re, Ru, Mo, and W are excessive, there is also a concern that the fracture resistance of the sintered body will decrease. Therefore, in the surface area up to a depth of 20 ⁇ m from the surface of the sintered body, the total content of Re, Ru, Mo, and W with respect to the total content (mass%) of Co, Ni, Re, Ru, Mo, and W.
  • the content ratio (mass%) of the binder phase with respect to the total content (mass%) of the hard particles, binder phase, and dispersed particles is Ms
  • the content (mass %) of the binder phase with respect to the total content (mass %) of the binder phase and dispersed particles is Mi
  • the relational expression 0.5 ⁇ Ms/Mi ⁇ 0.8 is satisfied
  • the smaller the amount of the binder phase the better the wear resistance and plastic deformation resistance of the sintered body. This is due to a decrease in fracture resistance.
  • a cutting tool with excellent wear resistance and chipping resistance can be provided.
  • a coating layer is formed on the surface of a cutting tool, it is possible to harden the surface and suppress oxidation of the base material covered with the coating layer, so that the wear resistance of the cutting tool can be further improved.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1.
  • FIG. 2 is an explanatory diagram illustrating a cross section of a sintered body.
  • FIG. 2 is an explanatory diagram illustrating a region used for composition analysis in a cross section of a sintered body.
  • Sintered body (1) Structure of sintered body The sintered body is made of TiN, TiC, TiCN, or (Ti, M) (C, N) (M is an element belonging to groups 4 to 6 of the periodic table (Ti element). (excluding)); and a binder phase containing at least one of Co (cobalt) and Ni (nickel).
  • the bonding phase further includes at least one selected from Re (rhenium), Ru (ruthenium), Mo (molybdenum), and W (tungsten).
  • the hard particles are selected from TiN, TiC, TiCN, or (Ti, M) (C, N) (M is an element belonging to Groups 4 to 6 of the periodic table (excluding the Ti (titanium) element).
  • the main component is one or more types of Here, the term "main component" means that the Ti compound is 60% by volume or more when the hard particles are 100% by volume.
  • M is at least one selected from Ta (tantalum), Nb (niobium), W (tungsten), V (vanadium), Cr (chromium), Zr (zirconium), Mo (molybdenum), and Hf (hafnium). Elements are preferred.
  • the composition ratio of the elements constituting the hard particles is not particularly limited.
  • the hard particles may be particles of a single composition or may be particles containing multiple components (for example, particles with a core-rim structure).
  • the composition ratio of the elements constituting TiC, TiN, TiCN, (Ti, M) (C, N) is not particularly limited.
  • the ratio of C and N in TiCN is not limited, and the ratio of C and N may be non-stoichiometric. Only one type of hard particles may be present, or a plurality of types may be present.
  • the presence of multiple types means that (Ti, M) (C, N) particles with different elements M exist together, as well as particles with the same element M but Ti constituting the particles. It also means that (Ti, M) (C, N) particles having different composition ratios of , M, C, and N exist together.
  • the carbon composition ratio XC and the nitrogen composition ratio XN are 0.10 to 0 in the ratio expressed by (XN/(XC+XN)) from the viewpoint of reaction resistance to iron contained in the work material.
  • a range of .90 is preferred, a range of 0.20 to 0.80 is more preferred, and a range of 0.30 to 0.70 is even more preferred.
  • the composition ratio XTi of titanium and the composition ratio XM of the metal element M are preferably in the range of 0.40 to 0.95 in the ratio expressed by (XTi/(XTi+XM)), and 0.50 to The range of 0.95 is more preferable, and the range of 0.70 to 0.95 is even more preferable.
  • the content rate (volume %) of each substance in the sintered body can be calculated by determining the amount of each element by fluorescent X-ray analysis or the like.
  • the content of hard particles in the sintered body is not particularly limited. From the viewpoint of increasing wear resistance and plastic deformation resistance, the hard particles are 70% by volume or more and 95% by volume or less when the total of hard particles, binder phase, and dispersed particles described below are 100% by volume. It is preferable that the content of the hard particles is 75% by volume or more and 90% by volume or less, and it is even more preferable that the content of the hard particles is 80% by volume or more and 85% by volume or less.
  • the bonded phase contains at least one of Co and Ni.
  • the binder phase contains at least one of Co and Ni, the bond between particles in the hard particles and the dispersed particles described below can be strengthened. Therefore, the wear resistance and fracture resistance of the sintered body can be improved.
  • the bonded phase further includes at least one selected from Re, Ru, Mo, and W.
  • the bonding phase preferably contains Co, Re, and Mo.
  • Mo dissolves in solid solution in the hard particles, and serves as an intermediate layer between the hard particles and the binder phase to improve the fracture resistance of the sintered body. Furthermore, it is a high melting point metal. Moreover, by further including Re in the binder phase, high temperature softening of the binder phase can be further suppressed. Therefore, the sintered body becomes difficult to be plastically deformed.
  • the sintered body has a binder phase of 3% to 12% by volume, when the total of hard particles, binder phase, and dispersed particles described below is 100% by volume.
  • the content of the binder phase is preferably 5% by volume or more and 8% by volume or less.
  • the area inside the surface area of the sintered body is defined as an internal area.
  • the ratio of the total content (mass %) of Re, Ru, Mo, and W to the total content (mass %) of Co, Ni, Re, Ru, Mo, and W is defined as Bi.
  • Bs and Bi satisfy the following relational expression (1).
  • Bs and Bi satisfy the above relational expression (1), Bs can be made larger than Bi, and the fracture resistance, wear resistance, and plastic deformation resistance of the sintered body can be achieved at the same time.
  • the content (mass %) of the binder phase relative to the total content (mass %) of the hard particles and the binder phase is represented by Ms.
  • Ms Rs (bind phase). /(Rs (hard particles) + Rs (bond phase) + Rs (dispersed particles)).
  • Mi the content (mass %) of the binder phase relative to the total content (mass %) of the hard particles and the binder phase.
  • the ratio of the total content (mass%) of Re, Ru, Mo, and W to the total content (mass%) of Co, Ni, Re, Ru, Mo, and W is continuously It's changing.
  • the content (mass %) of the binder phase relative to the total content (mass %) of the hard particles, the binder phase, and the dispersed particles changes continuously.
  • the sintered body may include independent particles (dispersed particles) that do not form a solid solution with the hard particles.
  • the sintered body contains dispersed particles, which prevents the movement of hard particles in a high-temperature, high-load environment, thereby contributing to improved plastic deformation resistance.
  • Dispersed particles are preferable because they contain chemically stable Al, which improves wear resistance.
  • the dispersed particles containing Al exist dispersedly in the sintered body and suppress the grain growth of the hard particles.
  • particles containing Al will also be referred to as dispersed particles.
  • the dispersed particles include particles made of one or more of Al nitrides, oxides, and oxynitrides. For example, it is shown that the particles are composed of one or more of AlN particles (aluminum nitride particles), Al 2 O 3 particles (aluminum oxide particles), and AlON particles (aluminum oxynitride particles).
  • the dispersed particles are preferably AlN particles.
  • AlN particles can increase the thermal conductivity and reduce the coefficient of thermal expansion of a cutting tool using a sintered body. Therefore, by including AlN particles as dispersed particles, better wear resistance and chipping resistance can be exhibited under high-speed machining, and the life of the tool can be improved.
  • the content of dispersed particles is not particularly limited.
  • the content of the dispersed particles is preferably from 2% by volume to 25% by volume, more preferably from 5% by volume to 10% by volume, when the entire sintered body is 100% by volume. If the content of the dispersed particles is within this range, it is possible to suppress diffusion wear during high-speed machining, thereby increasing the wear resistance of the tool. In addition, even if the firing temperature during manufacturing increases due to the higher melting point (heat resistance) of the binder phase, the growth of hard particles can be effectively suppressed and the structure can be refined, which improves the wear resistance of tools. Fracture resistance can be improved.
  • Method for manufacturing a sintered body The method for manufacturing a sintered body is not particularly limited. An example of a method for producing a sintered body is shown below.
  • Raw materials The following raw material powders are used as raw materials.
  • Ti carbonitride-based raw material powder ⁇ One or more raw material powders selected from TaC powder (tantalum carbide powder), NbC powder (niobium carbide powder), and WC powder (tungsten carbide powder), or a solid solution powder thereof.
  • Raw material powders such as AlN (aluminum nitride), Al2O3 powder (aluminum oxide powder), etc.
  • Raw material powders such as Co powder, Ni powder, Re powder, Ru powder, Mo powder, W powder, etc.
  • Raw material powders are weighed to a predetermined mixing ratio.
  • a raw material powder, a coccule (eg, Al 2 O tricoccite ), and a solvent (eg, acetone) are placed in a container (eg, a resin pot, etc.) and mixed and pulverized.
  • the obtained slurry is dried in a hot water bath to obtain a dry mixed powder.
  • the obtained sintered body is subjected to tilt treatment (heat treatment).
  • the tilting process is performed under an Ar atmosphere or an N 2 atmosphere.
  • the value of Ms/Mi and the value of Bs/Bi can be controlled by the blending composition and heat treatment conditions (heat treatment temperature, atmospheric pressure). In particular, the amount of binder phase can be reduced by heat treatment.
  • a cutting tool 1 is formed using the sintered body 2 described above.
  • the shape of the cutting tool 1 is not particularly limited.
  • the sintered body 2 can be made into the cutting tool 1 by finishing its shape and surface by at least one processing method of cutting, grinding, and polishing. Of course, if these finishes are not required, the sintered body 2 may be used as the cutting tool 1 as it is.
  • the cutting tool 1 may have a sintered body 2 as a base material, and a coating layer 7 may be formed on the surface of the base material.
  • the coating layer 7 is made of at least one material selected from carbides, nitrides, oxides, carbonitrides, carbonates, oxynitrides, and carbonitrides of titanium, zirconium, chromium, and aluminum, although not particularly limited thereto. Preferably, it consists of a species of compound.
  • At least one compound selected from carbides, nitrides, oxides, carbonitrides, carbonates, oxynitrides, and carbonitrides of titanium, zirconium, chromium, and aluminum is not particularly limited, but TiN , TiAlN, TiCrAlN, and CrAlN are suitable examples. From the viewpoint of wear resistance, Ti-based materials (eg, TiCrAlN, TiAlN) are more preferred.
  • the form of the covering layer 7 may be a single layer film or a laminated film in which a plurality of films are laminated.
  • the thickness of the covering layer 7 is not particularly limited.
  • the thickness of the coating layer 7 is preferably 0.02 ⁇ m or more and 30 ⁇ m or less from the viewpoint of wear resistance.
  • Experimental Examples 1 to 11, 13, 14, 16, and 17 are examples, and Experimental Examples 12 and 15 are comparative examples.
  • experimental examples are indicated using “No.”.
  • “*” is added, such as "*12", it indicates that it is a comparative example.
  • Experimental examples 1 to 17 Each of the sintered bodies of Experimental Examples 1 to 17 was produced, and each of these sintered bodies was processed to obtain each of the cutting tools of Experimental Examples 1 to 17.
  • the total amount of contained components is 100% by volume.
  • “(Ti, Nb) (C, N)-9% AlN-8% (Co, Re, Mo)” of the blending composition of Experimental Example 3 is (Ti, Nb) (C, N), This means that AlN, (Co, Re, Mo) are contained at 83% by volume, 9% by volume, and 8% by volume, respectively.
  • Raw material powder The raw material powder shown below was used.
  • Ti carbonitride raw material powder average particle size 1.5 ⁇ m or less
  • NbC powder average particle size 1.5 ⁇ m or less
  • AlN powder average particle size 0.7 ⁇ m or less
  • Co powder average particle size 5.0 ⁇ m or less
  • Ni powder average particle Diameter 5.0 ⁇ m or less
  • Re powder Average particle size 5.0 ⁇ m or less
  • Ru powder Average particle size 5.0 ⁇ m or less
  • Mo powder Average particle size 5.0 ⁇ m or less
  • W powder Average particle size 5.0 ⁇ m or less
  • Ms/Mi and Bs/Bi were controlled by the blending composition and the heat treatment conditions (heat treatment temperature, atmospheric pressure) of the gradient treatment.
  • Table 1 shows the blending composition (volume %), binder phase component ratio (mass %), and gradient conditions for each experimental example.
  • FIG. 4 is an explanatory diagram showing a cross section 5 of the sintered body 2 and a part thereof in an enlarged manner.
  • a region overlapping the edge 5A on one side and spaced apart by 1 mm from the edge 5B on the other side was defined as a region A.
  • area A a 20 ⁇ m x 20 ⁇ m area AR1 overlapping the edge 5A on one side and an area AR2 spaced apart by 1 mm from the edge 5A on one side were used for analysis. Specifically, the amounts of Ti, Nb, Co, Ni, Re, Ru, Mo, and W are measured, and the respective contents of Ti, Nb, Co, Ni, Re, Ru, Mo, and W in the sintered body are determined. (mass%) was calculated. Then, the values of Bs/Bi and Ms/Mi were evaluated.
  • Experimental Examples 9 to 11 in which the composition ratio of the components of the binder phase was different, there was no plastic deformation, and the VB wear amount was 0.07 mm, 0.05 mm, and 0.15 mm, respectively.
  • Experimental Examples 1 to 5 all satisfied the following requirements (a) and (b) and were passed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Abstract

Provided are a sintered compact and a cutting tool that have excellent abrasion resistance, heat resistance, and defect resistance under high-speed processing. A sintered compact (2) comprises: hard particles in which the main component is TiN, TiC, TiCN, or (Ti, M)(C, N) (M represents at least one selected from elements (excluding Ti element) belonging to groups 4-6 in the periodic table); and a binding phase containing at least one of Co and Ni. The binding phase further contains at least one selected from Re, Ru, Mo, and W. The sintered compact (2) satisfies relational formula (1) when, in a surface region from the surface to a depth of 20 μm, Bs represents the proportion of the total percentage content (mass%) of Re, Ru, Mo, and W with respect to the total percentage content (mass%) of Co, Ni, Re, Ru, Mo, and W, and Bi represents the proportion of the total percentage content (mass%) of Re, Ru, Mo, and W with respect to the total percentage content (mass%) of Co, Ni, Re, Ru, Mo, and W in an internal region further inside the surface region. (1): Bs/Bi≥1.1

Description

焼結体、及び切削工具Sintered bodies and cutting tools
 本開示は、焼結体、及び切削工具に関する。 The present disclosure relates to a sintered body and a cutting tool.
 炭化タングステンやチタン炭窒化物を主成分とする硬質相と、鉄族元素を主成分とする結合相とを備える超硬合金やサーメットを基材として用いた切削工具が知られている(例えば特許文献1参照)。 Cutting tools using cemented carbide or cermet as a base material, which have a hard phase mainly composed of tungsten carbide or titanium carbonitride and a binder phase mainly composed of iron group elements, are known (for example, patented (See Reference 1).
国際公開第2008/146856号International Publication No. 2008/146856
 ところで、超硬合金やサーメットを基材とする切削工具は一般的に耐欠損性に優れるが、耐熱性に乏しく、高速加工に向いていないとされている。そこで、サーメットにおいては、表面における金属結合相量を制御することで、耐熱性の向上を図る構成が知られている。しかしながら、表面の結合相量を減らすだけでは、高速加工領域における摩耗、塑性変形等を抑えるまでには至っていない。一方で、切削抵抗の高い鋼材を高速加工する技術が求められている。
 本開示は、上記実情を鑑みてなされたものであり、高速加工下において耐摩耗性、耐熱性、及び耐欠損性に優れた焼結体及び切削工具を提供することを目的とする。本開示は、以下の形態として実現することが可能である。
Incidentally, cutting tools based on cemented carbide or cermet generally have excellent fracture resistance, but are said to have poor heat resistance and are not suitable for high-speed machining. Therefore, in cermets, a structure is known in which the heat resistance is improved by controlling the amount of metal binder phase on the surface. However, simply reducing the amount of binder phase on the surface is not enough to suppress wear, plastic deformation, etc. in the high-speed machining region. On the other hand, there is a need for technology for high-speed machining of steel materials with high cutting resistance.
The present disclosure has been made in view of the above circumstances, and aims to provide a sintered body and a cutting tool that have excellent wear resistance, heat resistance, and chipping resistance under high-speed machining. The present disclosure can be realized as the following forms.
 〔1〕TiN、TiC、TiCN、又は(Ti、M)(C、N)(Mは周期表の4~6族に属する元素(Ti元素を除く)から選ばれる1種以上)を主成分とする硬質粒子と、
 Co及びNiの少なくとも1種を含む結合相と、
を含む焼結体であって、
 前記結合相は、さらにRe、Ru、Mo、Wから選ばれる少なくとも1種を含み、
 前記焼結体の表面から20μmの深さまでの表面領域において、 Co、Ni、Re、Ru、Mo、Wの合計の含有率(質量%)に対する、Re、Ru、Mo、Wの合計の含有率(質量%)の割合をBsとし、
 前記焼結体の前記表面領域よりも内側の内部領域において Co、Ni、Re、Ru、Mo、Wの合計の含有率(質量%)に対する、Re、Ru、Mo、Wの合計の含有率(質量%)の割合をBiとし、
 以下の関係式(1)を満たす焼結体。
 Bs/Bi≧1.1 …(1)
[1] The main component is TiN, TiC, TiCN, or (Ti, M) (C, N) (M is one or more elements selected from the elements belonging to Groups 4 to 6 of the periodic table (excluding the Ti element)) hard particles,
a bonded phase containing at least one of Co and Ni;
A sintered body comprising:
The bonding phase further includes at least one selected from Re, Ru, Mo, and W,
In the surface area from the surface of the sintered body to a depth of 20 μm, the total content of Re, Ru, Mo, and W relative to the total content (mass%) of Co, Ni, Re, Ru, Mo, and W. (mass%) is Bs,
In the internal region inside the surface region of the sintered body, the total content (% by mass) of Re, Ru, Mo, and W relative to the total content (mass%) of Co, Ni, Re, Ru, Mo, and W Mass %) is Bi,
A sintered body that satisfies the following relational expression (1).
Bs/Bi≧1.1…(1)
 〔2〕前記焼結体の前記表面領域において、前記硬質粒子と前記結合相と分散粒子との合計の含有率(質量%)に対する前記結合相の含有率(質量%)をMsとし、
 前記焼結体の前記内部領域において、前記硬質粒子と前記結合相と前記分散粒子との合計の含有率(質量%)に対する前記結合相の含有率(質量%)をMiとし、
 以下の関係式(2)を満たす〔1〕に記載の焼結体。
 0.5≦Ms/Mi≦0.8 …(2)
[2] In the surface region of the sintered body, the content rate (mass%) of the binder phase with respect to the total content rate (mass%) of the hard particles, the binder phase, and the dispersed particles is Ms,
In the internal region of the sintered body, the content rate (mass%) of the binder phase with respect to the total content rate (mass%) of the hard particles, the binder phase, and the dispersed particles is Mi,
The sintered body according to [1], which satisfies the following relational expression (2).
0.5≦Ms/Mi≦0.8…(2)
 〔3〕〔1〕または〔2〕に記載の焼結体を用いた切削工具。 [3] A cutting tool using the sintered body according to [1] or [2].
 〔4〕〔1〕または〔2〕に記載の焼結体を基材とし、前記基材の表面に被覆層を有する切削工具。 [4] A cutting tool that uses the sintered body according to [1] or [2] as a base material, and has a coating layer on the surface of the base material.
 本開示によれば、高速加工下において耐摩耗性、耐熱性、及び耐欠損性に優れた焼結体を提供する。
 鉄(Fe)に対する耐反応性と硬度に優れるTi化合物を主成分とした硬質相を含むことで、耐摩耗性に優れる焼結体となる。また、Re、Ru、Mo、Wから選ばれる少なくとも1種を含む結合相を有することで、結合相自体の耐熱性を向上できる。その結果、高速加工下においても、耐摩耗性と耐塑性変形性に優れた焼結体が得られる。高速加工化において、結合相の成分比率が焼結体の耐摩耗性及び耐塑性変形性の向上に寄与し、結合相中において高融点金属成分であるRe、Ru、Mo、Wを多く含むほど、焼結体の耐摩耗性及び耐塑性変形性が向上する。一方で、Re、Ru、Mo、Wの量が過剰となると、焼結体の耐欠損性が低下するといった懸念もある。そこで、焼結体の表面から20μmの深さまでの表面領域において、Co、Ni、Re、Ru、Mo、Wの合計の含有率(質量%)に対する、Re、Ru、Mo、Wの合計の含有率(質量%)の割合をBsとし、焼結体の表面領域よりも内側の内部領域において Co、Ni、Re、Ru、Mo、Wの合計の含有率(質量%)に対する、Re、Ru、Mo、Wの合計の含有率(質量%)の割合をBiとし、Bs/Bi≧1.1の関係式を満たすことで、焼結体の耐欠損性と耐摩耗性及び耐塑性変形性の両立を図ることができる。
 焼結体の表面領域において、硬質粒子と結合相と分散粒子との合計の含有率(質量%)に対する結合相の含有率(質量%)をMsとし、焼結体の内部領域において、硬質粒子と結合相と分散粒子との合計の含有率(質量%)に対する結合相の含有率(質量%)をMiとし、0.5≦Ms/Mi≦0.8の関係式を満たす場合には、焼結体の耐欠損性と耐摩耗性及び耐塑性変形性の両立を図れる。これは、結合相の構成成分だけでなく結合相量も切削性能に寄与し、具体的には、結合相量が小さいほど焼結体の耐摩耗性及び耐塑性変形性を向上できるが、一方で耐欠損性が低下することによる。
 本開示の焼結体を切削工具に供することで、耐摩耗性及び耐欠損性に優れた切削工具を提供できる。
 切削工具の表面に被覆層が形成されている場合には、表面を硬質化するとともに被覆層に覆われた基材の酸化を抑制できるため、切削工具の耐摩耗性をより一層向上できる。
According to the present disclosure, a sintered body having excellent wear resistance, heat resistance, and fracture resistance under high-speed processing is provided.
By including a hard phase mainly composed of a Ti compound that has excellent reaction resistance to iron (Fe) and hardness, the sintered body has excellent wear resistance. Moreover, by having a binder phase containing at least one selected from Re, Ru, Mo, and W, the heat resistance of the binder phase itself can be improved. As a result, a sintered body with excellent wear resistance and plastic deformation resistance can be obtained even under high-speed processing. In high-speed processing, the component ratio of the binder phase contributes to improving the wear resistance and plastic deformation resistance of the sintered body, and the more Re, Ru, Mo, and W, which are high-melting point metal components, are contained in the binder phase, the better. , the wear resistance and plastic deformation resistance of the sintered body are improved. On the other hand, if the amounts of Re, Ru, Mo, and W are excessive, there is also a concern that the fracture resistance of the sintered body will decrease. Therefore, in the surface area up to a depth of 20 μm from the surface of the sintered body, the total content of Re, Ru, Mo, and W with respect to the total content (mass%) of Co, Ni, Re, Ru, Mo, and W. Re, Ru, relative to the total content (mass %) of Co, Ni, Re, Ru, Mo, and W in the internal region inside the surface region of the sintered body, where the ratio (mass %) is Bs. By setting the ratio of the total content (mass%) of Mo and W to Bi, and satisfying the relational expression Bs/Bi≧1.1, the chipping resistance, wear resistance, and plastic deformation resistance of the sintered body can be improved. It is possible to achieve both.
In the surface area of the sintered body, the content ratio (mass%) of the binder phase with respect to the total content (mass%) of the hard particles, binder phase, and dispersed particles is Ms, and in the internal area of the sintered body, the hard particles When the content (mass %) of the binder phase with respect to the total content (mass %) of the binder phase and dispersed particles is Mi, and the relational expression 0.5≦Ms/Mi≦0.8 is satisfied, It is possible to achieve both fracture resistance, wear resistance, and plastic deformation resistance of the sintered body. This is because not only the constituent components of the binder phase but also the amount of the binder phase contributes to cutting performance. Specifically, the smaller the amount of the binder phase, the better the wear resistance and plastic deformation resistance of the sintered body. This is due to a decrease in fracture resistance.
By using the sintered body of the present disclosure in a cutting tool, a cutting tool with excellent wear resistance and chipping resistance can be provided.
When a coating layer is formed on the surface of a cutting tool, it is possible to harden the surface and suppress oxidation of the base material covered with the coating layer, so that the wear resistance of the cutting tool can be further improved.
焼結体(切削工具)の一例の斜視図である。It is a perspective view of an example of a sintered compact (cutting tool). 図1のA-A線断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 1. 焼結体の断面を説明する説明図である。FIG. 2 is an explanatory diagram illustrating a cross section of a sintered body. 焼結体の断面において組成物の分析に用いた領域を説明する説明図である。FIG. 2 is an explanatory diagram illustrating a region used for composition analysis in a cross section of a sintered body.
 以下、本開示を詳しく説明する。なお、本明細書において、数値範囲について「~」を用いた記載では、特に断りがない限り、下限値及び上限値を含むものとする。例えば、「10~20」という記載では、下限値である「10」、上限値である「20」のいずれも含むものとする。すなわち、「10~20」は、「10以上20以下」と同じ意味である。 Hereinafter, the present disclosure will be explained in detail. In this specification, descriptions using "~" for numerical ranges include the lower limit and upper limit unless otherwise specified. For example, the description "10 to 20" includes both the lower limit value of "10" and the upper limit value of "20". That is, "10 to 20" has the same meaning as "10 or more and 20 or less".
1.焼結体
(1)焼結体の構成
 焼結体は、TiN、TiC、TiCN、又は(Ti、M)(C、N)(Mは周期表の4~6族に属する元素(Ti元素を除く)から選ばれる1種以上)を主成分とする硬質粒子と、Co(コバルト)及びNi(ニッケル)の少なくとも1種を含む結合相と、を含む。結合相は、さらにRe(レニウム)、Ru(ルテニウム)、Mo(モリブデン)、W(タングステン)から選ばれる少なくとも1種を含む。
1. Sintered body (1) Structure of sintered body The sintered body is made of TiN, TiC, TiCN, or (Ti, M) (C, N) (M is an element belonging to groups 4 to 6 of the periodic table (Ti element). (excluding)); and a binder phase containing at least one of Co (cobalt) and Ni (nickel). The bonding phase further includes at least one selected from Re (rhenium), Ru (ruthenium), Mo (molybdenum), and W (tungsten).
(2)硬質粒子
 硬質粒子は、TiN、TiC、TiCN、又は(Ti、M)(C、N)(Mは周期表の4~6族に属する元素(Ti(チタン)元素を除く)から選ばれる1種以上)を主成分とする。ここで「主成分」とは、硬質粒子を100体積%とした場合に、Ti化合物が60体積%以上であることを意味する。Mは、Ta(タンタル)、Nb(ニオブ)、W(タングステン)、V(バナジウム)、Cr(クロム)、Zr(ジルコニウム)、Mo(モリブデン)、Hf(ハフニウム)から選択される少なくとも1種の元素が好ましい。中でも、Ta(タンタル)、Nb(ニオブ)、W(タングステン)から選択される少なくとも1種の元素がより好ましく、Ta及び/又はNbであることがさらに好ましい。なお、硬質粒子を構成する元素の組成比は、特に限定されない。
 硬質粒子は、単一組成の粒子であっても良いし、複数成分を含む粒子(例えばコアリム構造の粒子)であってもよい。TiC、TiN、TiCN、(Ti、M)(C、N)を構成する元素の組成比は、特に限定されない。例えば、TiCNにおけるC、Nの比率は限定されないし、CやNは非化学量比でもよい。硬質粒子は、1種のみ存在してもよく、複数種存在していてもよい。複数種存在しているとは、元素Mが異なる(Ti、M)(C、N)粒子が一緒に存在していることを意味するほか、元素Mは同一であるが、粒子を構成するTi,M,C,Nの組成比が異なる(Ti、M)(C、N)粒子が一緒に存在していることも意味する。
 なお、炭素の組成比XCと窒素の組成比XNとは、被削材に含まれる鉄に対する耐反応性の観点から、(XN/(XC+XN))で表される比率において、0.10~0.90の範囲が好ましく、0.20~0.80の範囲がより好ましく、0.30~0.70の範囲が更に好ましい。
 チタンの組成比XTiと金属元素Mの組成比XMとは、硬度の観点から、(XTi/(XTi+XM))で表される比率において0.40~0.95の範囲が好ましく、0.50~0.95の範囲がより好ましく、0.70~0.95の範囲が更に好ましい。
 焼結体における各物質の含有率(体積%)は、蛍光X線分析法等により各元素の量を求めることで算出できる。
(2) Hard particles The hard particles are selected from TiN, TiC, TiCN, or (Ti, M) (C, N) (M is an element belonging to Groups 4 to 6 of the periodic table (excluding the Ti (titanium) element). The main component is one or more types of Here, the term "main component" means that the Ti compound is 60% by volume or more when the hard particles are 100% by volume. M is at least one selected from Ta (tantalum), Nb (niobium), W (tungsten), V (vanadium), Cr (chromium), Zr (zirconium), Mo (molybdenum), and Hf (hafnium). Elements are preferred. Among these, at least one element selected from Ta (tantalum), Nb (niobium), and W (tungsten) is more preferable, and Ta and/or Nb are even more preferable. Note that the composition ratio of the elements constituting the hard particles is not particularly limited.
The hard particles may be particles of a single composition or may be particles containing multiple components (for example, particles with a core-rim structure). The composition ratio of the elements constituting TiC, TiN, TiCN, (Ti, M) (C, N) is not particularly limited. For example, the ratio of C and N in TiCN is not limited, and the ratio of C and N may be non-stoichiometric. Only one type of hard particles may be present, or a plurality of types may be present. The presence of multiple types means that (Ti, M) (C, N) particles with different elements M exist together, as well as particles with the same element M but Ti constituting the particles. It also means that (Ti, M) (C, N) particles having different composition ratios of , M, C, and N exist together.
Note that the carbon composition ratio XC and the nitrogen composition ratio XN are 0.10 to 0 in the ratio expressed by (XN/(XC+XN)) from the viewpoint of reaction resistance to iron contained in the work material. A range of .90 is preferred, a range of 0.20 to 0.80 is more preferred, and a range of 0.30 to 0.70 is even more preferred.
From the viewpoint of hardness, the composition ratio XTi of titanium and the composition ratio XM of the metal element M are preferably in the range of 0.40 to 0.95 in the ratio expressed by (XTi/(XTi+XM)), and 0.50 to The range of 0.95 is more preferable, and the range of 0.70 to 0.95 is even more preferable.
The content rate (volume %) of each substance in the sintered body can be calculated by determining the amount of each element by fluorescent X-ray analysis or the like.
 焼結体における硬質粒子の含有率は、特に限定されない。硬質粒子は、耐摩耗性及び耐塑性変形性を高める観点から、硬質粒子、結合相、及び後述する分散粒子の合計を100体積%としたとき、硬質粒子が70体積%以上95体積%以下であることが好ましく、硬質粒子が75体積%以上90体積%以下であることがより好ましく、硬質粒子が80体積%以上85体積%以下であることが更に好ましい。 The content of hard particles in the sintered body is not particularly limited. From the viewpoint of increasing wear resistance and plastic deformation resistance, the hard particles are 70% by volume or more and 95% by volume or less when the total of hard particles, binder phase, and dispersed particles described below are 100% by volume. It is preferable that the content of the hard particles is 75% by volume or more and 90% by volume or less, and it is even more preferable that the content of the hard particles is 80% by volume or more and 85% by volume or less.
(3)結合相
 結合相は、Co及びNiの少なくとも1種を含む。結合相がCo及びNiの少なくとも1種を含むことで、硬質粒子及び後述する分散粒子における粒子間の結合を強化することができる。そのため、焼結体の耐摩耗性及び耐欠損性を高めることができる。
(3) Bonded Phase The bonded phase contains at least one of Co and Ni. When the binder phase contains at least one of Co and Ni, the bond between particles in the hard particles and the dispersed particles described below can be strengthened. Therefore, the wear resistance and fracture resistance of the sintered body can be improved.
 結合相は、さらにRe、Ru、Mo、Wから選ばれる少なくとも1種を含む。これにより、結合相自体の耐熱性を高めることができる。その結果、高温下における硬度の低下を抑制でき、結合相の高温軟化を抑制できる。そのため、焼結体が組成変形し難くなる。 The bonded phase further includes at least one selected from Re, Ru, Mo, and W. Thereby, the heat resistance of the binder phase itself can be improved. As a result, a decrease in hardness at high temperatures can be suppressed, and softening of the binder phase at high temperatures can be suppressed. This makes it difficult for the sintered body to undergo compositional deformation.
 結合相は、Co、Re、及びMoを含むことが好ましい。Moは、硬質粒子中に固溶し、これが硬質粒子と結合相の中間層として焼結体の耐欠損性を高めることができる。さらに、高融点金属である。また、結合相中に更にReを含むことで、結合相の高温軟化をより一層抑制できる。そのため、焼結体が塑性変形し難くなる。 The bonding phase preferably contains Co, Re, and Mo. Mo dissolves in solid solution in the hard particles, and serves as an intermediate layer between the hard particles and the binder phase to improve the fracture resistance of the sintered body. Furthermore, it is a high melting point metal. Moreover, by further including Re in the binder phase, high temperature softening of the binder phase can be further suppressed. Therefore, the sintered body becomes difficult to be plastically deformed.
 焼結体は、耐摩耗性及び耐塑性変形性を高める観点から、硬質粒子、結合相、及び後述する分散粒子の合計を100体積%としたとき、結合相が3体積%以上12体積%以下であることが好ましく、結合相が5体積%以上8体積%以下であることが更に好ましい。 From the viewpoint of increasing wear resistance and plastic deformation resistance, the sintered body has a binder phase of 3% to 12% by volume, when the total of hard particles, binder phase, and dispersed particles described below is 100% by volume. The content of the binder phase is preferably 5% by volume or more and 8% by volume or less.
(4)焼結体の表面領域及び内部領域の構成
 焼結体における表面から20μmの深さまでの領域を表面領域とする。焼結体の表面領域において、Co、Ni、Re、Ru、Mo、Wの合計の含有率(質量%)に対する、Re、Ru、Mo、Wの合計の含有率(質量%)の割合をBsとする。焼結体の表面領域におけるCo、Ni、Re、Ru、Mo、Wの各含有率(質量%)をRs(Co)、Rs(Ni)、Rs(Re)、Rs(Ru)、Rs(Mo)、Rs(W)と表すと、Bs=(Rs(Re)+Rs(Ru)+Rs(Mo)+Rs(W))/(Rs(Co)+Rs(Ni)+Rs(Re)+Rs(Ru)+Rs(Mo)+Rs(W))となる。
 焼結体における表面領域よりも内側の領域を内部領域とする。内部領域において、Co、Ni、Re、Ru、Mo、Wの合計の含有率(質量%)に対する、Re、Ru、Mo、Wの合計の含有率(質量%)の割合をBiとする。内部領域におけるCo、Ni、Re、Ru、Mo、Wの各含有率(質量%)をRi(Co)、Ri(Ni)、Ri(Re)、Ri(Ru)、Ri(Mo)、Ri(W)と表すと、Bi=(Ri(Re)+Ri(Ru)+Ri(Mo)+Ri(W))/(Ri(Co)+Ri(Ni)+Ri(Re)+Ri(Ru)+Ri(Mo)+R(W))となる。
 BsとBiは、以下の関係式(1)を満たす。
 Bs/Bi≧1.1 …(1)
 BsとBiが上記関係式(1)を満たすことで、BiよりもBsを大きくすることができ、焼結体の耐欠損性と耐摩耗性及び耐塑性変形性の両立を図ることができる。
(4) Structure of surface area and internal area of sintered body The area from the surface of the sintered body to a depth of 20 μm is defined as the surface area. In the surface area of the sintered body, the ratio of the total content (mass %) of Re, Ru, Mo, and W to the total content (mass %) of Co, Ni, Re, Ru, Mo, and W is Bs shall be. The respective contents (mass%) of Co, Ni, Re, Ru, Mo, and W in the surface area of the sintered body are Rs(Co), Rs(Ni), Rs(Re), Rs(Ru), Rs(Mo ), Rs(W), Bs=(Rs(Re)+Rs(Ru)+Rs(Mo)+Rs(W))/(Rs(Co)+Rs(Ni)+Rs(Re)+Rs(Ru)+Rs( Mo)+Rs(W)).
The area inside the surface area of the sintered body is defined as an internal area. In the internal region, the ratio of the total content (mass %) of Re, Ru, Mo, and W to the total content (mass %) of Co, Ni, Re, Ru, Mo, and W is defined as Bi. The respective contents (mass%) of Co, Ni, Re, Ru, Mo, and W in the internal region are determined by Ri(Co), Ri(Ni), Ri(Re), Ri(Ru), Ri(Mo), Ri( W), Bi=(Ri(Re)+Ri(Ru)+Ri(Mo)+Ri(W))/(Ri(Co)+Ri(Ni)+Ri(Re)+Ri(Ru)+Ri(Mo)+R( W)).
Bs and Bi satisfy the following relational expression (1).
Bs/Bi≧1.1…(1)
When Bs and Bi satisfy the above relational expression (1), Bs can be made larger than Bi, and the fracture resistance, wear resistance, and plastic deformation resistance of the sintered body can be achieved at the same time.
 焼結体の表面領域において、硬質粒子と結合相との合計の含有率(質量%)に対する結合相の含有率(質量%)をMsとする。焼結体の表面領域における硬質粒子、結合相の含有率(質量%)を、それぞれRs(硬質粒子)、Rs(結合相)、Rs(分散粒子)と表すと、Ms=Rs(結合相)/(Rs(硬質粒子)+Rs(結合相)+Rs(分散粒子))となる。
 内部領域において、硬質粒子と結合相との合計の含有率(質量%)に対する結合相の含有率(質量%)をMiとする。内部領域における硬質粒子、結合相の含有率(質量%)を、それぞれRi(硬質粒子)、Ri(結合相)、Ri(分散粒子)と表すと、Mi=Ri(結合相)/(Ri(硬質粒子)+Ri(結合相)+Ri(分散粒子))となる。
 MsとMiは、以下の関係式(2)を満たす。
 0.5≦Ms/Mi≦0.8 …(2)
 MsとMiが上記関係式(2)を満たすことで、焼結体の耐欠損性と耐摩耗性及び耐塑性変形性の両立を図れる。これは、結合相の構成成分だけでなく結合相量も切削性能に寄与し、具体的には、結合相量が小さいほど耐摩耗性及び耐塑性変形性を向上できるが、一方で耐欠損性が低下することによる。
In the surface region of the sintered body, the content (mass %) of the binder phase relative to the total content (mass %) of the hard particles and the binder phase is represented by Ms. When the content (mass %) of hard particles and binder phase in the surface area of the sintered body is expressed as Rs (hard particles), Rs (bind phase), and Rs (dispersed particles), respectively, Ms = Rs (bind phase). /(Rs (hard particles) + Rs (bond phase) + Rs (dispersed particles)).
In the internal region, the content (mass %) of the binder phase relative to the total content (mass %) of the hard particles and the binder phase is defined as Mi. If the content (mass%) of hard particles and binder phase in the internal region is expressed as Ri (hard particles), Ri (bond phase), and Ri (dispersed particles), then Mi=Ri (bond phase)/(Ri( hard particles) + Ri (bond phase) + Ri (dispersed particles)).
Ms and Mi satisfy the following relational expression (2).
0.5≦Ms/Mi≦0.8…(2)
When Ms and Mi satisfy the above relational expression (2), it is possible to achieve both fracture resistance, wear resistance, and plastic deformation resistance of the sintered body. This means that not only the constituent components of the binder phase but also the amount of the binder phase contributes to cutting performance. Specifically, the smaller the amount of the binder phase, the better the wear resistance and plastic deformation resistance, but on the other hand, the fracture resistance This is due to a decrease in
 焼結体において、Co、Ni、Re、Ru、Mo、Wの合計の含有率(質量%)に対する、Re、Ru、Mo、Wの合計の含有率(質量%)の割合は、連続的に変化している。焼結体において、硬質粒子と結合相と分散粒子との合計の含有率(質量%)に対する結合相の含有率(質量%)は、連続的に変化している。 In the sintered body, the ratio of the total content (mass%) of Re, Ru, Mo, and W to the total content (mass%) of Co, Ni, Re, Ru, Mo, and W is continuously It's changing. In the sintered body, the content (mass %) of the binder phase relative to the total content (mass %) of the hard particles, the binder phase, and the dispersed particles changes continuously.
(5)分散粒子
 焼結体は、上記硬質粒子の他に、硬質粒子と固溶体を形成しない独立の粒子(分散粒子)を含んでもよい。焼結体は、分散粒子を含むことで、高温・高負荷環境下における硬質粒子の移動が妨げられるため、耐塑性変形性の向上に寄与できる。分散粒子は、化学的に安定なAlを含むことで、耐摩耗性向上が図れるため、好ましい。Alを含む分散粒子は、焼結体中に分散して存在し、硬質粒子の粒成長を抑制する。以下、Alを含む粒子を分散粒子とも称する。
 分散粒子は、Alの窒化物、酸化物、及び酸窒化物のうちの1種以上からなる粒子が例示される。例えば、AlN粒子(窒化アルミニウム粒子)、Al粒子(酸化アルミニウム粒子)、及びAlON粒子(酸窒化アルミニウム粒子)のうちの1種以上からなることが示される。
(5) Dispersed Particles In addition to the hard particles described above, the sintered body may include independent particles (dispersed particles) that do not form a solid solution with the hard particles. The sintered body contains dispersed particles, which prevents the movement of hard particles in a high-temperature, high-load environment, thereby contributing to improved plastic deformation resistance. Dispersed particles are preferable because they contain chemically stable Al, which improves wear resistance. The dispersed particles containing Al exist dispersedly in the sintered body and suppress the grain growth of the hard particles. Hereinafter, particles containing Al will also be referred to as dispersed particles.
Examples of the dispersed particles include particles made of one or more of Al nitrides, oxides, and oxynitrides. For example, it is shown that the particles are composed of one or more of AlN particles (aluminum nitride particles), Al 2 O 3 particles (aluminum oxide particles), and AlON particles (aluminum oxynitride particles).
 分散粒子は、AlN粒子であることが好ましい。AlN粒子は、焼結体を用いてなる切削工具の熱伝導率を増加させ、熱膨張率を低下できる。よって、分散粒子としてAlN粒子を含むことで、高速加工下においてより優れた耐摩耗性と耐欠損性を発揮でき、工具の寿命が向上する。 The dispersed particles are preferably AlN particles. AlN particles can increase the thermal conductivity and reduce the coefficient of thermal expansion of a cutting tool using a sintered body. Therefore, by including AlN particles as dispersed particles, better wear resistance and chipping resistance can be exhibited under high-speed machining, and the life of the tool can be improved.
 分散粒子の含有率は、特には限定されない。分散粒子の含有量は、焼結体全体を100体積%とした場合に、2体積%以上25体積%以下が好ましく、5体積%以上10体積%以下が更に好ましい。分散粒子の含有率がこのような範囲であれば、高速加工下における拡散摩耗を抑制できるため、工具の耐摩耗性を高めることができる。また、結合相の高融点化(耐熱化)に伴い製造時の焼成温度が高温化しても、硬質粒子の粒成長を効果的に抑制でき、組織細分化が図れるため、工具の耐摩耗性と耐欠損性を高めることができる。 The content of dispersed particles is not particularly limited. The content of the dispersed particles is preferably from 2% by volume to 25% by volume, more preferably from 5% by volume to 10% by volume, when the entire sintered body is 100% by volume. If the content of the dispersed particles is within this range, it is possible to suppress diffusion wear during high-speed machining, thereby increasing the wear resistance of the tool. In addition, even if the firing temperature during manufacturing increases due to the higher melting point (heat resistance) of the binder phase, the growth of hard particles can be effectively suppressed and the structure can be refined, which improves the wear resistance of tools. Fracture resistance can be improved.
2.焼結体の製造方法
 焼結体の製造方法は特に限定されない。焼結体の製造方法の一例を以下に示す。
2. Method for manufacturing a sintered body The method for manufacturing a sintered body is not particularly limited. An example of a method for producing a sintered body is shown below.
(1)原料
 原料として次の原料粉末を使用する。
・Ti炭窒化物系原料粉末
・TaC粉末(炭化タンタル粉末)、NbC粉末(炭化ニオブ粉末)、及びWC粉末(炭化タングステン粉末)から選択される1種以上の原料粉末、またはこれらの固溶体粉末
・AlN(窒化アルミニウム)、Al粉末(酸化アルミニウム粉末)等の原料粉末
・Co粉末、Ni粉末、Re粉末、Ru粉末、Mo粉末、W粉末等の原料粉末
(1) Raw materials The following raw material powders are used as raw materials.
・Ti carbonitride-based raw material powder ・One or more raw material powders selected from TaC powder (tantalum carbide powder), NbC powder (niobium carbide powder), and WC powder (tungsten carbide powder), or a solid solution powder thereof. Raw material powders such as AlN (aluminum nitride), Al2O3 powder (aluminum oxide powder), etc. Raw material powders such as Co powder, Ni powder, Re powder, Ru powder, Mo powder, W powder, etc.
(2)焼成用粉末の準備
 原料粉末を所定の配合割合になる様に秤量する。容器(例えば樹脂ポット等)の中に、原料粉末、球石(例えばAl球石)、及び溶媒(例えばアセトン)を入れて混合粉砕する。得られたスラリーは湯煎乾燥にて処理し、乾燥混合粉末を得る。
(2) Preparation of powder for firing Raw material powders are weighed to a predetermined mixing ratio. A raw material powder, a coccule (eg, Al 2 O tricoccite ), and a solvent (eg, acetone) are placed in a container (eg, a resin pot, etc.) and mixed and pulverized. The obtained slurry is dried in a hot water bath to obtain a dry mixed powder.
(3)焼成
 乾燥混合粉をプレス成型後、雰囲気焼成を行って焼結体を作製する。雰囲気焼成は、Ar雰囲気下、またはN雰囲気下で行う。
(3) Firing After the dry mixed powder is press-molded, it is fired in an atmosphere to produce a sintered body. Atmosphere firing is performed under an Ar atmosphere or an N 2 atmosphere.
(4)傾斜処理
 得られた焼結体に傾斜処理(熱処理)を施す。傾斜処理は、Ar雰囲気下、またはN雰囲気下で行う。Ms/Miの値、及びBs/Biの値は、配合組成、及び熱処理条件(熱処理温度、雰囲気圧力)によって制御できる。特に、結合相量の低減は、熱処理によって行うことができる。
(4) Tilt treatment The obtained sintered body is subjected to tilt treatment (heat treatment). The tilting process is performed under an Ar atmosphere or an N 2 atmosphere. The value of Ms/Mi and the value of Bs/Bi can be controlled by the blending composition and heat treatment conditions (heat treatment temperature, atmospheric pressure). In particular, the amount of binder phase can be reduced by heat treatment.
3.切削工具
 図1及び図2に示すように、切削工具1は、上記焼結体2を用いてなる。切削工具1の形状は、特に限定されない。
3. Cutting Tool As shown in FIGS. 1 and 2, a cutting tool 1 is formed using the sintered body 2 described above. The shape of the cutting tool 1 is not particularly limited.
 焼結体2は、切削、研削、及び研磨の少なくとも1つの加工法によって形状や表面の仕上げを行って、切削工具1とすることができる。もちろん、これらの仕上げが不要であれば、焼結体2をそのまま切削工具1として用いてもよい。 The sintered body 2 can be made into the cutting tool 1 by finishing its shape and surface by at least one processing method of cutting, grinding, and polishing. Of course, if these finishes are not required, the sintered body 2 may be used as the cutting tool 1 as it is.
 切削工具1は、焼結体2を基材として、基材の表面に被覆層7が形成されていてもよい。被覆層7は、特に限定されないが、例えば、チタン、ジルコニウム、クロム及びアルミニウムの炭化物、窒化物、酸化物、炭窒化物、炭酸化物、酸窒化物、及び炭窒酸化物より選択される少なくとも1種の化合物からなることが好ましい。被覆層7が形成されると、切削工具1の表面硬度が増加すると共に、被覆層7に覆われた基材の酸化を抑制できるため、切削工具1の耐摩耗性を向上できる。
 チタン、ジルコニウム、クロム及びアルミニウムの炭化物、窒化物、酸化物、炭窒化物、炭酸化物、酸窒化物、及び炭窒酸化物より選択される少なくとも1種の化合物としては、特に限定されないが、TiN、TiAlN、TiCrAlN、CrAlNが好適な例として挙げられる。耐摩耗性の観点から、Ti系(例えばTiCrAlN、TiAlN)がより好ましい。
 被覆層7の形態は、単層膜であっても、複数の膜が積層した積層膜であってもよい。
 被覆層7の厚みは、特に限定されない。被覆層7の厚みは、耐摩耗性の観点から、0.02μm以上30μm以下が好ましい。
The cutting tool 1 may have a sintered body 2 as a base material, and a coating layer 7 may be formed on the surface of the base material. The coating layer 7 is made of at least one material selected from carbides, nitrides, oxides, carbonitrides, carbonates, oxynitrides, and carbonitrides of titanium, zirconium, chromium, and aluminum, although not particularly limited thereto. Preferably, it consists of a species of compound. When the coating layer 7 is formed, the surface hardness of the cutting tool 1 increases, and oxidation of the base material covered with the coating layer 7 can be suppressed, so that the wear resistance of the cutting tool 1 can be improved.
At least one compound selected from carbides, nitrides, oxides, carbonitrides, carbonates, oxynitrides, and carbonitrides of titanium, zirconium, chromium, and aluminum is not particularly limited, but TiN , TiAlN, TiCrAlN, and CrAlN are suitable examples. From the viewpoint of wear resistance, Ti-based materials (eg, TiCrAlN, TiAlN) are more preferred.
The form of the covering layer 7 may be a single layer film or a laminated film in which a plurality of films are laminated.
The thickness of the covering layer 7 is not particularly limited. The thickness of the coating layer 7 is preferably 0.02 μm or more and 30 μm or less from the viewpoint of wear resistance.
 なお、明細書に記載の種々の数値範囲は、それぞれそれらの上限値と下限値を任意に組み合わせることができ、それら全ての組み合わせが好ましい数値範囲として本明細書に記載されているものとする。 Note that the upper and lower limits of the various numerical ranges described in the specification can be arbitrarily combined, and all combinations are described herein as preferred numerical ranges.
 以下、実施例により本開示を更に具体的に説明する。
 なお、実験例1~11,13,14,16,17は実施例であり、実験例12,15は比較例である。
 表において、実験例を「No.」を用いて示す。また、表において「※12」のように、「※」が付されている場合には、比較例であることを示している。
Hereinafter, the present disclosure will be explained in more detail with reference to Examples.
Note that Experimental Examples 1 to 11, 13, 14, 16, and 17 are examples, and Experimental Examples 12 and 15 are comparative examples.
In the table, experimental examples are indicated using "No.". In addition, in the table, when "*" is added, such as "*12", it indicates that it is a comparative example.
1.実験例1~17
 実験例1~17の各焼結体を作製し、これらの各焼結体を加工して、実験例1~17の各切削工具とした。表1に示す配合組成では、含まれる成分の合計が100体積%となっている。表1中、実験例3の配合組成の「(Ti,Nb)(C,N)-9%AlN-8%(Co,Re,Mo)」は、(Ti,Nb)(C,N)、AlN、(Co,Re,Mo)がそれぞれ83体積%、9体積%、8体積%含まれていることを意味している。
1. Experimental examples 1 to 17
Each of the sintered bodies of Experimental Examples 1 to 17 was produced, and each of these sintered bodies was processed to obtain each of the cutting tools of Experimental Examples 1 to 17. In the formulation shown in Table 1, the total amount of contained components is 100% by volume. In Table 1, "(Ti, Nb) (C, N)-9% AlN-8% (Co, Re, Mo)" of the blending composition of Experimental Example 3 is (Ti, Nb) (C, N), This means that AlN, (Co, Re, Mo) are contained at 83% by volume, 9% by volume, and 8% by volume, respectively.
(1)原料粉末
 以下に示す原料粉末を用いた。
 Ti炭窒化物系原料粉末:平均粒径1.5μm以下
 NbC粉末:平均粒径1.5μm以下
 AlN粉末:平均粒径0.7μm以下
 Co粉末:平均粒径5.0μm以下
 Ni粉末:平均粒径5.0μm以下
 Re粉末:平均粒径5.0μm以下
 Ru粉末:平均粒径5.0μm以下
 Mo粉末:平均粒径5.0μm以下
 W粉末:平均粒径5.0μm以下
(1) Raw material powder The raw material powder shown below was used.
Ti carbonitride raw material powder: average particle size 1.5 μm or less NbC powder: average particle size 1.5 μm or less AlN powder: average particle size 0.7 μm or less Co powder: average particle size 5.0 μm or less Ni powder: average particle Diameter 5.0 μm or less Re powder: Average particle size 5.0 μm or less Ru powder: Average particle size 5.0 μm or less Mo powder: Average particle size 5.0 μm or less W powder: Average particle size 5.0 μm or less
(2)焼結体(実験例1~17)の作製
 原料粉末を用いて混合粉末を調製し、混合粉末にアセトンを入れて、72hr粉砕・混合した。粉砕・混合後、得られたスラリーを湯煎乾燥することで、アセトンの抜気を行い、乾燥混合粉末を調製した。得られた乾燥混合粉末を用いて、プレス成型後、雰囲気焼成を行って焼結体を作製した。雰囲気焼成の条件は、焼成温度1500℃~1750℃、2時間、Ar雰囲気下であった。得られた焼結体に対して、傾斜処理を行った。傾斜処理の条件は、焼成温度1400℃~1500℃、70Pa~270Pa、Ar雰囲気下であった。
 Ms/Miの値、及びBs/Biの値は、配合組成、及び傾斜処理の熱処理条件(熱処理温度、雰囲気圧力)によって制御した。
 各実験例の配合組成(体積%)、結合相成分比(質量%)、傾斜条件を表1に示す。
(2) Production of sintered bodies (Experimental Examples 1 to 17) A mixed powder was prepared using the raw material powder, acetone was added to the mixed powder, and the mixture was ground and mixed for 72 hours. After pulverization and mixing, the obtained slurry was dried in a hot water bath to remove the acetone and prepare a dry mixed powder. Using the obtained dry mixed powder, press molding was performed, followed by atmosphere firing to produce a sintered body. The conditions for the atmosphere firing were a firing temperature of 1500° C. to 1750° C. for 2 hours in an Ar atmosphere. The obtained sintered body was subjected to a tilting treatment. The conditions for the tilting treatment were a firing temperature of 1400° C. to 1500° C., 70 Pa to 270 Pa, and an Ar atmosphere.
The values of Ms/Mi and Bs/Bi were controlled by the blending composition and the heat treatment conditions (heat treatment temperature, atmospheric pressure) of the gradient treatment.
Table 1 shows the blending composition (volume %), binder phase component ratio (mass %), and gradient conditions for each experimental example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

(3)焼結体の表面領域及び内部領域の評価
 実験例1~17の焼結体に対して、最表層を含む断面を切り出し、鏡面加工を行った後、電子線マイクロアナライザー(EPMA)を用いて組成物を分析した。例えば、図3に示すように焼結体2を切断し、一方の分割体の断面5(焼結体2の断面5)を分析に用いた。図4は、焼結体2の断面5と、その一部を拡大して示す説明図である。断面5において、一側の縁5Aに重なり、他側の縁5Bから1mm離間した領域を領域Aとした。領域Aにおいて、一側の縁5Aに重なる20μm×20μmの領域AR1と、一側の縁5Aから1mm離間した領域AR2を分析に用いた。具体的には、Ti、Nb、Co、Ni、Re、Ru、Mo、Wの成分量を測定し、焼結体におけるTi、Nb、Co、Ni、Re、Ru、Mo、Wの各含有率(質量%)を算出した。そして、Bs/Bi及びMs/Miの値を評価した。
(3) Evaluation of surface area and internal area of sintered bodies For the sintered bodies of Experimental Examples 1 to 17, a cross section including the outermost layer was cut out, mirror-finished, and then subjected to an electron beam microanalyzer (EPMA). The composition was analyzed using For example, the sintered body 2 was cut as shown in FIG. 3, and a cross section 5 of one of the divided bodies (cross section 5 of the sintered body 2) was used for analysis. FIG. 4 is an explanatory diagram showing a cross section 5 of the sintered body 2 and a part thereof in an enlarged manner. In the cross section 5, a region overlapping the edge 5A on one side and spaced apart by 1 mm from the edge 5B on the other side was defined as a region A. In area A, a 20 μm x 20 μm area AR1 overlapping the edge 5A on one side and an area AR2 spaced apart by 1 mm from the edge 5A on one side were used for analysis. Specifically, the amounts of Ti, Nb, Co, Ni, Re, Ru, Mo, and W are measured, and the respective contents of Ti, Nb, Co, Ni, Re, Ru, Mo, and W in the sintered body are determined. (mass%) was calculated. Then, the values of Bs/Bi and Ms/Mi were evaluated.
 例えば、実験例3の場合、Bs=(Rs(Re)+Rs(Mo))/(Rs(Co)+Rs(Re)+Rs(Mo))であり、Bi=(Ri(Re)+Ri(Mo))/(Ri(Co)+Ri(Re)+Ri(Mo))である。また、Ms=(Rs(Co)+Rs(Re)+Rs(Mo))/(Rs(Ti)+Rs(Nb)+Rs(Co)+Rs(Re)+Rs(Mo))であり、Mi=(Ri(Co)+Ri(Re)+Ri(Mo))/(Ri(Ti)+Ri(Nb)+Ri(Co)+Ri(Re)+Ri(Mo))である。 For example, in the case of Experimental Example 3, Bs=(Rs(Re)+Rs(Mo))/(Rs(Co)+Rs(Re)+Rs(Mo)), and Bi=(Ri(Re)+Ri(Mo)) /(Ri(Co)+Ri(Re)+Ri(Mo)). Also, Ms=(Rs(Co)+Rs(Re)+Rs(Mo))/(Rs(Ti)+Rs(Nb)+Rs(Co)+Rs(Re)+Rs(Mo)), and Mi=(Ri(Co )+Ri(Re)+Ri(Mo))/(Ri(Ti)+Ri(Nb)+Ri(Co)+Ri(Re)+Ri(Mo)).
(4)切削工具の作製
 実験例1~17の焼結体を、所定の寸法となるように研磨加工し、切削工具を作製した。
(4) Production of cutting tools The sintered bodies of Experimental Examples 1 to 17 were polished to predetermined dimensions to produce cutting tools.
(5)炭素鋼に対する耐摩耗性能評価試験
(5.1)試験条件
 各切削工具を用いて、切削試験を行った。試験条件は下記の通りである。
・チップ形状:CNMN120408T00520
・被削材:S45C(JIS)
・切削速度:500m/min
・切込み量:3.0mm
・送り量:0.4mm/rev.
・切削環境:乾式施削試験
(5) Wear resistance performance evaluation test for carbon steel (5.1) Test conditions A cutting test was conducted using each cutting tool. The test conditions are as follows.
・Chip shape: CNMN120408T00520
・Work material: S45C (JIS)
・Cutting speed: 500m/min
・Depth of cut: 3.0mm
・Feed amount: 0.4mm/rev.
・Cutting environment: Dry cutting test
(5.2)評価
 評価結果を上記表2に示す。
 表2中、「材質特性」の「Bs/Bi≧1.1」の欄の「OK」は、Bs及びBiがBs/Bi≧1.1の関係式を満たすことを意味し、「NG」は、Bs及びBiがBs/Bi≧1.1の関係式を満たさないことを意味する。
 下記項目を寿命判定基準として寿命に至るまでの切削距離にて評価を行った。切削距離1kmの加工時点で欠損又は塑性変形が生じていなかった場合に、合格とした。逃げ面を基準面として刃先の変形量が0.10mmを超過した場合に、「塑性変形」を生じたと判定した。
 切削距離1kmの加工時のVB摩耗量を評価した。
(5.2) Evaluation The evaluation results are shown in Table 2 above.
In Table 2, "OK" in the "Bs/Bi≧1.1" column of "Material properties" means that Bs and Bi satisfy the relational expression of Bs/Bi≧1.1, and "NG" means that Bs and Bi do not satisfy the relational expression of Bs/Bi≧1.1.
Evaluation was performed based on the cutting distance until the end of the life using the following items as the life judgment criteria. If no chipping or plastic deformation occurred at the cutting distance of 1 km, the test piece was passed. When the amount of deformation of the cutting edge exceeded 0.10 mm using the flank surface as a reference plane, it was determined that "plastic deformation" had occurred.
The amount of VB wear during machining with a cutting distance of 1 km was evaluated.
(6)評価結果
(6.1)結合相の構成について
 実験例1~5を比較検討する。結合相にCo、Re、Moを含む実験例1,3は、塑性変形が無く、それぞれVB摩耗量が0.08mm、0.05mmであった。結合相にCo、Moを含む実験例2は、塑性変形が無く、VB摩耗量が0.09mmであった。結合相にNi、Ru、Moを含む実験例4は、塑性変形が無く、VB摩耗量が0.07mmであった。結合相にCo、Re、Wを含む実験例5は、塑性変形が無く、VB摩耗量が0.09mmであった。また、結合相の成分構成比率が異なる実験例9~11は、塑性変形が無
く、VB摩耗量が、それぞれ0.07mm、0.05mm、0.15mmであった。実験例1~5は、いずれも以下の要件(a)(b)を満たし、合格であった。
・要件(a):結合相は、Re、Ru、Mo、Wから選ばれる少なくとも1種を含む
・要件(b):Bs/Bi≧1.1を満たす
 実験例1~5と実験例9~11は、上記要件(a)(b)を満たすことで、高い耐摩耗性と高い耐塑性変形性を示した。
(6) Evaluation results (6.1) Regarding the composition of the binder phase Experimental Examples 1 to 5 will be compared and studied. Experimental Examples 1 and 3 containing Co, Re, and Mo in the binder phase had no plastic deformation, and the VB wear amount was 0.08 mm and 0.05 mm, respectively. Experimental example 2 containing Co and Mo in the binder phase had no plastic deformation and the VB wear amount was 0.09 mm. Experimental example 4 containing Ni, Ru, and Mo in the binder phase had no plastic deformation and the VB wear amount was 0.07 mm. Experimental example 5 containing Co, Re, and W in the binder phase had no plastic deformation and the VB wear amount was 0.09 mm. Further, in Experimental Examples 9 to 11 in which the composition ratio of the components of the binder phase was different, there was no plastic deformation, and the VB wear amount was 0.07 mm, 0.05 mm, and 0.15 mm, respectively. Experimental Examples 1 to 5 all satisfied the following requirements (a) and (b) and were passed.
・Requirement (a): The bonding phase contains at least one selected from Re, Ru, Mo, and W. ・Requirement (b): Satisfies Bs/Bi≧1.1 Experimental Examples 1 to 5 and Experimental Examples 9 to No. 11 exhibited high wear resistance and high plastic deformation resistance by satisfying the above requirements (a) and (b).
 実験例11,12を比較検討する。結合相にCo、Re、Moを含む実験例11は、上記要件(a)(b)を満たし、塑性変形が無かった。結合相にCo、Re、Moを含む実験例12は、上記要件(a)を満たし、上記要件(b)を満たさず、塑性変形が生じた。実験例11は、上記要件(a)(b)を満たすことで、耐塑性変形性が向上した。 Comparatively study Experimental Examples 11 and 12. Experimental Example 11 containing Co, Re, and Mo in the binder phase satisfied the above requirements (a) and (b) and had no plastic deformation. Experimental Example 12 containing Co, Re, and Mo in the binder phase satisfied the above requirement (a) but did not satisfy the above requirement (b), and plastic deformation occurred. In Experimental Example 11, the plastic deformation resistance was improved by satisfying the above requirements (a) and (b).
(6.2)焼結体の構成について
 実験例3,6~8を比較検討する。Ms/Miが0.64である実験例3は、以下の要件(c)を満たし、VB摩耗量が0.05mmであった。Ms/Miが0.51である実験例6は、以下の要件(c)を満たし、VB摩耗量が0.04mmであった。Ms/Miが0.79である実験例7は、以下の要件(c)を満たし、VB摩耗量が0.08mmであった。Ms/Miが0.85である実験例8は、以下の要件(c)を満たさず、VB摩耗量が0.18mmであった。
・要件(c)0.5≦Ms/Mi≦0.8
 実験例3,6,7は、上記要件(c)を満たすことで、耐摩耗性が向上した。
(6.2) Regarding the structure of the sintered body Experimental Examples 3 and 6 to 8 will be compared and studied. Experimental example 3 in which Ms/Mi was 0.64 satisfied the following requirement (c) and had a VB wear amount of 0.05 mm. Experimental example 6 in which Ms/Mi was 0.51 satisfied the following requirement (c) and had a VB wear amount of 0.04 mm. Experimental Example 7 in which Ms/Mi was 0.79 satisfied the following requirement (c) and had a VB wear amount of 0.08 mm. Experimental example 8 in which Ms/Mi was 0.85 did not satisfy the following requirement (c), and the VB wear amount was 0.18 mm.
・Requirement (c) 0.5≦Ms/Mi≦0.8
In Experimental Examples 3, 6, and 7, the wear resistance was improved by satisfying the above requirement (c).
(6.3)結合相量について
 実験例3,13~15を比較検討する。結合相の組成比が8体積%である実験例3は、塑性変形が無く、VB摩耗量が0.05mmであった。結合相の組成比が10体積%である実験例13は、塑性変形が無く、VB摩耗量が0.13mmであった。結合相の組成比が12体積%である実験例14は、塑性変形が無く、VB摩耗量が0.15mmであった。結合相の組成比が12体積%である実験例15は、塑性変形が生じた。実験例3,13,14は、上記要件(b)(c)を満たし、実験例15は、上記要件(b)(c)を満たしていない。上記要件(b)(c)を満たす場合において、結合相が8体積%以上12体積%以下の範囲で、十分な工具性能(高い耐摩耗性)を示した。
(6.3) Regarding the amount of binder phase Experimental Examples 3 and 13 to 15 will be compared and studied. In Experimental Example 3 in which the composition ratio of the binder phase was 8% by volume, there was no plastic deformation and the VB wear amount was 0.05 mm. In Experimental Example 13 in which the composition ratio of the binder phase was 10% by volume, there was no plastic deformation and the VB wear amount was 0.13 mm. In Experimental Example 14 in which the composition ratio of the binder phase was 12% by volume, there was no plastic deformation and the VB wear amount was 0.15 mm. In Experimental Example 15 in which the composition ratio of the binder phase was 12% by volume, plastic deformation occurred. Experimental Examples 3, 13, and 14 satisfy the above requirements (b) and (c), and Experimental Example 15 does not satisfy the above requirements (b) and (c). In cases where the above requirements (b) and (c) were satisfied, sufficient tool performance (high wear resistance) was exhibited in a range in which the binder phase was 8% by volume or more and 12% by volume or less.
(6.4)コーティングについて
 実験例7,16,17を比較検討する。焼結体にコーティングを施していない実験例7は、VB摩耗量が0.08mmであった。焼結体にコーティングを施した実験例16は、VB摩耗量が0.05mmであった。焼結体にコーティングを施した実験例17は、VB摩耗量が0.07mmであった。実験例16,17は、焼結体にコーティングを施すことで、工具の耐摩耗性が向上した。
(6.4) Regarding coating Experimental Examples 7, 16, and 17 will be compared and studied. In Experimental Example 7 in which the sintered body was not coated, the VB wear amount was 0.08 mm. In Experimental Example 16 in which the sintered body was coated, the VB wear amount was 0.05 mm. In Experimental Example 17 in which the sintered body was coated, the VB wear amount was 0.07 mm. In Experimental Examples 16 and 17, the wear resistance of the tool was improved by coating the sintered body.
(6.5)まとめ
 実験例1~7,9~11、13,14,16,17では、高速加工下において耐摩耗性及び耐欠損性に優れた焼結体及び切削工具となった。このような切削工具によれば、鋼材加工の切削速度を向上でき、切削加工の高能率化を図ることができる。
(6.5) Summary In Experimental Examples 1 to 7, 9 to 11, 13, 14, 16, and 17, the sintered bodies and cutting tools had excellent wear resistance and chipping resistance under high-speed machining. According to such a cutting tool, the cutting speed of steel material machining can be improved, and the efficiency of cutting can be improved.
 本開示は上記で詳述した実施形態に限定されず、本開示の請求項に示した範囲で様々な変形又は変更が可能である。 The present disclosure is not limited to the embodiments detailed above, and various modifications or changes are possible within the scope of the claims of the present disclosure.
1  …切削工具
2  …焼結体
5  …断面
5A …一側の縁
5B …他側の縁
7  …被覆層
A,AR1,AR2 …領域
1...Cutting tool 2...Sintered compact 5...Cross section 5A...Edge 5B on one side...Edge 7 on the other side...Coating layer A, AR1, AR2...Region

Claims (4)

  1.  TiN、TiC、TiCN、又は(Ti、M)(C、N)(Mは周期表の4~6族に属する元素(Ti元素を除く)から選ばれる1種以上)を主成分とする硬質粒子と、
     Co及びNiの少なくとも1種を含む結合相と、
    を含む焼結体であって、
     前記結合相は、さらにRe、Ru、Mo、Wから選ばれる少なくとも1種を含み、
     前記焼結体の表面から20μmの深さまでの表面領域において、Co、Ni、Re、Ru、Mo、Wの合計の含有率(質量%)に対する、Re、Ru、Mo、Wの合計の含有率(質量%)の割合をBsとし、
     前記焼結体の前記表面領域よりも内側の内部領域においてCo、Ni、Re、Ru、Mo、Wの合計の含有率(質量%)に対する、Re、Ru、Mo、Wの合計の含有率(質量%)の割合をBiとし、
     以下の関係式(1)を満たす焼結体。
     Bs/Bi≧1.1 …(1)
    Hard particles whose main component is TiN, TiC, TiCN, or (Ti, M) (C, N) (M is one or more elements selected from elements belonging to Groups 4 to 6 of the periodic table (excluding Ti element)) and,
    a bonded phase containing at least one of Co and Ni;
    A sintered body comprising:
    The bonding phase further includes at least one selected from Re, Ru, Mo, and W,
    In the surface area from the surface of the sintered body to a depth of 20 μm, the total content of Re, Ru, Mo, and W relative to the total content (mass%) of Co, Ni, Re, Ru, Mo, and W. (mass%) is Bs,
    The total content (% by mass) of Co, Ni, Re, Ru, Mo, and W relative to the total content (mass%) of Co, Ni, Re, Ru, Mo, and W in the internal region inside the surface region of the sintered body Mass %) is Bi,
    A sintered body that satisfies the following relational expression (1).
    Bs/Bi≧1.1…(1)
  2.  前記焼結体の前記表面領域において、前記硬質粒子と前記結合相と分散粒子との合計の含有率(質量%)に対する前記結合相の含有率(質量%)をMsとし、
     前記焼結体の前記内部領域において、前記硬質粒子と前記結合相と前記分散粒子との合計の含有率(質量%)に対する前記結合相の含有率(質量%)をMiとし、
     以下の関係式(2)を満たす請求項1に記載の焼結体。
     0.5≦Ms/Mi≦0.8 …(2)
    In the surface region of the sintered body, the content rate (mass%) of the binder phase with respect to the total content rate (mass%) of the hard particles, the binder phase, and the dispersed particles is Ms,
    In the internal region of the sintered body, the content rate (mass%) of the binder phase with respect to the total content rate (mass%) of the hard particles, the binder phase, and the dispersed particles is Mi,
    The sintered body according to claim 1, which satisfies the following relational expression (2).
    0.5≦Ms/Mi≦0.8…(2)
  3.  請求項1又は請求項2に記載の焼結体を用いた切削工具。 A cutting tool using the sintered body according to claim 1 or 2.
  4.  請求項1又は請求項2に記載の焼結体を基材とし、前記基材の表面に被覆層を有する切削工具。 A cutting tool using the sintered body according to claim 1 or 2 as a base material and having a coating layer on the surface of the base material.
PCT/JP2023/004750 2022-03-30 2023-02-13 Sintered compact and cutting tool WO2023188876A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-056513 2022-03-30
JP2022056513A JP2023148472A (en) 2022-03-30 2022-03-30 Sintered body and cutting tool

Publications (1)

Publication Number Publication Date
WO2023188876A1 true WO2023188876A1 (en) 2023-10-05

Family

ID=88201026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004750 WO2023188876A1 (en) 2022-03-30 2023-02-13 Sintered compact and cutting tool

Country Status (2)

Country Link
JP (1) JP2023148472A (en)
WO (1) WO2023188876A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187739A (en) * 1990-11-21 1992-07-06 Toshiba Tungaloy Co Ltd Hard sintered alloy having gradient compositional structure and its manufacture
JPH05171335A (en) * 1991-12-16 1993-07-09 Toshiba Tungaloy Co Ltd Differential layer surface refined sintered alloy and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187739A (en) * 1990-11-21 1992-07-06 Toshiba Tungaloy Co Ltd Hard sintered alloy having gradient compositional structure and its manufacture
JPH05171335A (en) * 1991-12-16 1993-07-09 Toshiba Tungaloy Co Ltd Differential layer surface refined sintered alloy and its manufacture

Also Published As

Publication number Publication date
JP2023148472A (en) 2023-10-13

Similar Documents

Publication Publication Date Title
US5643658A (en) Coated cemented carbide member
JP6044336B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
WO2010104094A1 (en) Cermet and coated cermet
CN106794523A (en) Composite sinter cutting element
JP6245432B2 (en) Surface coated cutting tool
WO2023188876A1 (en) Sintered compact and cutting tool
JP5023896B2 (en) Surface coated cutting tool
WO2023188871A1 (en) Sintered body and cutting tool
WO2023188875A1 (en) Sintered body and cutting tool
JP4069749B2 (en) Cutting tool for roughing
JP2019155569A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP2019155570A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP4863071B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP7031532B2 (en) TiN-based sintered body and cutting tool made of TiN-based sintered body
JP2000126905A (en) Surface-covered tungsten carbide group cemented carbide cutting tool excellent in chipping resistance
JPS6151034B2 (en)
JP7393253B2 (en) Ceramic sintered bodies and cutting tools
JP5561607B2 (en) Surface-coated WC-based cemented carbide insert
JP2020132971A (en) Cemented carbide and cutting tool
JPH0673560A (en) Coated sintered hard alloy member and its production
JPS5917176B2 (en) Sintered hard alloy with hardened surface layer
JP5613888B2 (en) Surface-coated WC-based cemented carbide insert
JP2004249380A (en) Surface-coated ti group cermet cutting tool and its manufacturing method
WO2022113477A1 (en) Sintered compact and cutting tool
JP2005153100A (en) Cutting tool for finishing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778910

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)