JPS5917176B2 - Sintered hard alloy with hardened surface layer - Google Patents

Sintered hard alloy with hardened surface layer

Info

Publication number
JPS5917176B2
JPS5917176B2 JP4766578A JP4766578A JPS5917176B2 JP S5917176 B2 JPS5917176 B2 JP S5917176B2 JP 4766578 A JP4766578 A JP 4766578A JP 4766578 A JP4766578 A JP 4766578A JP S5917176 B2 JPS5917176 B2 JP S5917176B2
Authority
JP
Japan
Prior art keywords
group
metals
surface layer
composite
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4766578A
Other languages
Japanese (ja)
Other versions
JPS54139815A (en
Inventor
寛範 吉村
賢一 西垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP4766578A priority Critical patent/JPS5917176B2/en
Publication of JPS54139815A publication Critical patent/JPS54139815A/en
Publication of JPS5917176B2 publication Critical patent/JPS5917176B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

【発明の詳細な説明】 この発明は、特にすぐれた耐摩耗性および耐塑性変形性
を有する焼結硬質合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sintered hard alloy having particularly excellent wear resistance and plastic deformation resistance.

従来、一般に焼結硬質合金は、 (a) 炭化タングステン(以下WCで示す)を主成
分として含有するWCC超超硬合金 (b) 炭化チタン(以下TiCで示す)、窒化チタ
ン(以下TiNで示す)、あるいは炭窒化チタン(以下
T1CNで示す)を主成分として含有するサーメット、 (c) 酸化アルミニウム(以下Al2O3で示す)
を主成分として含有するセラミックス、 に大別されてきたー これら従来焼結硬質合金のうちで、セラミックスは、こ
れを切削工具として使用した場合、靭性の点で上記WC
C超超硬合金よびサーメットに比して劣るため、Al2
O3のもつすぐれた耐熱性、耐酸化性、および耐溶着性
を十分に生かしきれず、したがってごく一部の限られた
分野で実用されているにすぎない。
Conventionally, sintered hard alloys generally include: (a) WCC cemented carbide containing tungsten carbide (hereinafter referred to as WC) as a main component; (b) titanium carbide (hereinafter referred to as TiC) and titanium nitride (hereinafter referred to as TiN). ), or cermet containing titanium carbonitride (hereinafter referred to as T1CN) as a main component; (c) aluminum oxide (hereinafter referred to as Al2O3);
Among these conventional sintered hard alloys, ceramics have a toughness that exceeds the above-mentioned WC when used as a cutting tool.
Since it is inferior to C cemented carbide and cermet, Al2
The excellent heat resistance, oxidation resistance, and welding resistance of O3 cannot be fully utilized, and therefore it is only put into practical use in a few limited fields.

また、上記サーメットにおいては、TiCを主成分とす
るものが大半を占めているが、TiCはWCに比して靭
性および耐塑性変形性が劣るために、このTiC基サー
メットを負荷の大きい断続切削や高硬度被剛材の切削に
使用した場合には、欠損や塑性変形を起しやすいという
問題点があり、このようなことから、TiC基サーメッ
トの靭性を改良するために、種々の炭化物や窒化物を添
加することが検討され、これら成分の添加によって前記
TiC基サーメットの靭性はある程度改善されたが耐摩
耗性および耐塑性変形性の面では十分な改善がなされて
いないのが現状である。
In addition, most of the above cermets are mainly composed of TiC, but since TiC has inferior toughness and plastic deformation resistance compared to WC, this TiC-based cermet cannot be used during interrupted cutting under heavy loads. TiC-based cermets have the problem of being prone to chipping and plastic deformation when used for cutting hard and rigid materials. Therefore, in order to improve the toughness of TiC-based cermets, various carbides and The addition of nitrides has been considered, and although the toughness of the TiC-based cermet has been improved to some extent by the addition of these components, the current situation is that sufficient improvements have not been made in terms of wear resistance and plastic deformation resistance. .

一方、WCC超超硬合金、靭性面で上記サーメットに比
してすぐれているが、耐摩耗性では劣るので、このWC
C超超硬合金高速切削に使用すると、前記サーメットに
比して著しく劣った切削性能を示す。
On the other hand, although WCC cemented carbide is superior to the above cermet in terms of toughness, it is inferior in wear resistance.
When used for high-speed cutting of C cemented carbide, it exhibits significantly inferior cutting performance compared to the above-mentioned cermet.

このように上記WCC超超硬合金よびサーメットには、
それぞれ一長一短があり、いずれも十分に汎用性に富ん
だ材料とはいえず、特に比較的硬度の高い被削材の切削
や、負荷の大きい重切削に使用した場合には、その切刃
が著しく摩耗したり、塑性変形を起したりすることが多
く発生した。
In this way, the above WCC cemented carbide and cermet have
Each has its own merits and demerits, and none of them can be said to be a sufficiently versatile material, especially when used for cutting relatively hard work materials or for heavy cutting with a large load. There were many cases of wear and plastic deformation.

そこで、本発明者等は、上述のような観点から、上記の
従来サーメットおよびWCC超超硬合金比して、著しく
改善された耐摩耗性と耐塑性変形性とを有する焼結硬質
合金を得べく研究を行なった結果、 (a) 硬質相形成成分としての周期律表の4aおよ
び5a族金属の窒化物、複合窒化物、炭窒化物、および
複合炭窒化物、並びに同4aおよび5a族金属と同6a
族金属の複合炭窒化物からなる群のうちの1種または2
種以上の原料粉末と、結合相形成成分としての鉄族金属
のうちの1種または2種以上の原料粉末とからなる圧粉
体を、COやCH4などの炭化水素などを含有する浸炭
ガス雰囲気中で、液相が出現する温度以下に加熱し、引
続いて真空焼結すると、この結果ボア(小孔)がなく、
シかも表面に向って連続的に高くなる硬さ分布を有した
硬化表層が形成された焼結硬質合金が得られ、前記焼結
硬質合金はすぐれた耐摩耗性および耐塑性変形性を有す
ること。
Therefore, from the above-mentioned viewpoint, the present inventors have obtained a sintered hard alloy that has significantly improved wear resistance and plastic deformation resistance compared to the conventional cermet and WCC cemented carbide. As a result of our research, we found that (a) nitrides, composite nitrides, carbonitrides, and composite carbonitrides of metals from groups 4a and 5a of the periodic table, as well as metals from groups 4a and 5a of the periodic table, as hard phase-forming components; same as 6a
One or two of the group consisting of composite carbonitrides of group metals
A green compact consisting of at least one raw material powder and one or more raw material powders of iron group metals as a binder phase forming component is placed in a carburizing gas atmosphere containing hydrocarbons such as CO and CH4. The material is heated below the temperature at which a liquid phase appears, followed by vacuum sintering, resulting in no bores (small pores).
Furthermore, a sintered hard alloy is obtained in which a hardened surface layer having a hardness distribution that increases continuously toward the surface is obtained, and the sintered hard alloy has excellent wear resistance and plastic deformation resistance. .

(b) 上記(a)項における焼結硬質合金に、周期
律表の4a、5aおよび6a族の金属の炭化物および複
合炭化物からなる群のうちの1種または2種以上を硬質
相形成成分として含有させると、前記焼結硬質合金にお
ける硬化表層の厚みおよび硬さを調整することができる
こと。
(b) One or more of the group consisting of carbides and composite carbides of metals of groups 4a, 5a and 6a of the periodic table is added to the sintered hard alloy in item (a) above as a hard phase forming component. When it is included, the thickness and hardness of the hardened surface layer in the sintered hard alloy can be adjusted.

(c) 上言αω項および(b)項に示される焼結硬
質合金の結合相に、Cr族金属(Cr、MoおよびWを
いう)のうちの1種または2種以上を含有させると、鉄
族金属からなる結合相中に前記Cr族金属が固溶して合
金の高温度強度が一層向上するようになると共に、焼結
時における硬質相とのぬれ性がさらに向上するようにな
ること。
(c) When the binder phase of the sintered hard alloy shown in the above αω terms and (b) terms contains one or more of the Cr group metals (Cr, Mo and W), The Cr group metal dissolves in solid solution in the binder phase made of the iron group metal, further improving the high temperature strength of the alloy and further improving the wettability with the hard phase during sintering. .

(d) 上記a)項、(b)項、および(c)項に示
される焼結硬質合金の結合相に、Alを含有させると、
前記結合相には微細なAAの金属間化合物が形成し、前
記焼結硬質合金における硬化表層の高温強度が一層向上
するようになること。
(d) When Al is included in the binder phase of the sintered hard alloy shown in the above items a), (b), and (c),
Fine intermetallic compounds of AA are formed in the binder phase, and the high temperature strength of the hardened surface layer of the sintered hard alloy is further improved.

以上(a)〜(d)項に示される知見を得たのである。The findings shown in sections (a) to (d) above have been obtained.

したがって、この発明は上記知見にもとづいてなされた
ものであって、焼結硬質合金を、(a) 硬質相形成
成分として、周期律表の4a、5a。
Therefore, the present invention has been made based on the above knowledge, and uses sintered hard alloys as (a) hard phase-forming components, 4a and 5a of the periodic table.

および6a族の金属の炭化物および複合炭化物からなる
群のうちの1種または2種以上(以下硬化表層調整成分
という):10〜85.5%、(b) 同じく硬質相
形成成分として、周期律表の43および5a族金属の窒
化物、複合窒化物、炭窒化物、および複合炭窒化物、並
びに同4aおよび5a族金属と同6a族金属の複合炭窒
化物からなる群のうちの1種または2種以上(以下硬化
表層形成成分という):9.5〜85%、を含有し、さ
らに必要に応じて、 (c) 結合相形成成分として、Cr族金属のうちの
1種または2種以上:1−15%、 (d) 同じく結合相形成成分として、A7:0.0
5〜5%、 以上Cおよびdのうちの1種または2種を含有し、 (e) 残りが結合相形成成分としての鉄族金属のう
ちの1種または2種以上と不可避不純物からなり、かつ
、 硬質相:50〜95%、 結合相: 5〜50%、 からなる組成(以上容量%)で構成し、しかも前記焼結
硬質合金は、iの表面から最大深さ1mmまで内部に向
って連続的に低くなる硬さ分布を有すると共に、内部硬
さに対して表面硬さが5〜30%高い硬質表層をもつこ
とに特徴を有するものである。
and one or more of the group consisting of carbides and composite carbides of group 6a metals (hereinafter referred to as hard surface layer adjusting components): 10 to 85.5%, (b) Also as a hard phase forming component, periodic rule One of the group consisting of nitrides, composite nitrides, carbonitrides, and composite carbonitrides of Group 43 and 5a metals, and composite carbonitrides of Group 4a and 5a metals and Group 6a metals in Table 1. or two or more (hereinafter referred to as hardened surface layer forming components): 9.5 to 85%, and if necessary, (c) one or two of the Cr group metals as a binder phase forming component. or more: 1-15%, (d) Also as a bonded phase forming component, A7: 0.0
(e) the remainder consists of one or more iron group metals as binder phase forming components and unavoidable impurities; and a hard phase: 50 to 95%, a binder phase: 5 to 50%, and the sintered hard alloy has a composition (volume %) consisting of: It is characterized by having a hardness distribution that decreases continuously and having a hard surface layer whose surface hardness is 5 to 30% higher than the internal hardness.

ついで、この発明の焼結硬質合金をこおいて、上述のよ
うに数値限定した理由を説明する。
Next, referring to the sintered hard alloy of the present invention, the reason why the numerical values are limited as described above will be explained.

(a) 硬質相および結合相の含有量 硬質相の含有量が50容量%未満では、相対的に結合相
の含有量が50容量%を越えて多くなるため、合金の耐
摩耗性、耐塑性変形性が劣化するようになり、一方硬質
相の含有量が95容量%を越えて多くなると、相対的に
結合相の含有量が5容量%未満となり、合金の靭性が著
しく低くなることから、硬質相の含有量を50〜95容
量%および結合相の含有量を5〜50容量%とそれぞれ
定めた。
(a) Content of hard phase and binder phase If the content of the hard phase is less than 50% by volume, the content of the binder phase will be relatively higher than 50% by volume, which will affect the wear resistance and plasticity resistance of the alloy. On the other hand, if the content of the hard phase increases beyond 95% by volume, the content of the binder phase becomes relatively less than 5% by volume, and the toughness of the alloy decreases significantly. The content of the hard phase was determined to be 50 to 95% by volume, and the content of the binder phase was determined to be 5 to 50% by volume, respectively.

(b) 硬化表層調整成分および硬化表層形成成分の
含有量 硬化表層調整成分の含有量が10容量%未満では、相対
的に硬化表層形成成分の含有量が85容量%を越えて多
くなりすぎ、硬化表層の厚みが1韻を越えて厚くなり、
合金の靭性が劣化するようになり、一方硬化表層調整成
分の含有量が85.5容量%を越えると相対的に硬化表
層形成成分の含有量が9.5%未満と少なくなりすぎ、
硬化表層を形成するのが困難となることから、硬化表層
調整成分の含有量を10〜85.5容量%、硬化表層形
成成分の含有量を9.5〜85容量%と定めた。
(b) Content of the hardened surface layer adjusting component and hardened surface layer forming component If the content of the hardening surface layer adjusting component is less than 10% by volume, the content of the hardened surface layer forming component will be relatively too high, exceeding 85% by volume; The thickness of the hardened surface layer becomes thicker than one rhyme,
The toughness of the alloy begins to deteriorate, and on the other hand, when the content of the hardened surface layer adjusting component exceeds 85.5% by volume, the content of the hardened surface layer forming component becomes relatively too small, less than 9.5%.
Since it would be difficult to form a hardened surface layer, the content of the hardened surface layer adjusting component was determined to be 10 to 85.5% by volume, and the content of the hardened surface layer forming component was determined to be 9.5 to 85% by volume.

(e)Cr族金属の含有量 その含有量が1容量%未満では、所望の高温強度改善効
果および硬質相とのぬれ性改善効果を確保することがで
きず、一方15容量%を越えて含有させると、合金の靭
性が低下するようになることから、その含有量を1〜1
5容量%と定めた。
(e) Content of Cr group metal If the content is less than 1% by volume, the desired effect of improving high-temperature strength and wettability with the hard phase cannot be secured, while if the content exceeds 15% by volume. If the content is 1 to 1, the toughness of the alloy will decrease.
It was set at 5% by volume.

(d)AAの含有量 その含有量が0.05容量%未満では所望の高温強度が
得られず、一方5容量%を越えて含有させると、例えば
NiTi (Al)などの脆化相が析出するようになっ
て合金の靭性が低下することから、その含有量を0.0
5〜5容量%と定めた。
(d) Content of AA If the content is less than 0.05% by volume, the desired high temperature strength cannot be obtained, while if the content exceeds 5% by volume, brittle phases such as NiTi (Al) will precipitate. As the toughness of the alloy decreases, its content is reduced to 0.0.
It was set at 5 to 5% by volume.

(e) 硬化表層の厚さ 硬化表層を1間を越えて厚くすると靭性が低下し、これ
を切刃として適用した場合、欠損を起しやすくなること
から、その厚さをl i7+!以下と定めた。
(e) Thickness of the hardened surface layer If the hardened surface layer is made thicker than 1 inch, its toughness will decrease, and if it is used as a cutting edge, it will be more likely to break, so the thickness should be set to l i7+! It was determined as follows.

(f) 硬化表層の表面硬さ 合金内部硬さに対する表面硬さの硬化度が5%未満の硬
さ分布では、所望の耐摩耗性および耐塑性変形性を合金
に付与することができず、一方同じく表面硬さの硬化度
が合金内部硬さに比して30%を越えて高くなると、合
金を切刃として使用した場合、欠損を起しやすくなるこ
とから、表面硬さを合金の内部硬さに比して5〜30%
高い硬さに定めた。
(f) Surface hardness of the hardened surface layer If the hardness distribution is such that the degree of hardening of the surface hardness relative to the internal hardness of the alloy is less than 5%, the desired wear resistance and plastic deformation resistance cannot be imparted to the alloy. On the other hand, if the degree of hardening of the surface hardness is higher than 30% compared to the internal hardness of the alloy, when the alloy is used as a cutting edge, it will easily break. 5-30% compared to hardness
Set to high hardness.

つぎに、この発明の焼結硬質合金を実施例により説明す
る。
Next, the sintered hard alloy of the present invention will be explained using examples.

実施例 l 原料粉末として、 平均粒径:1.0μmのTiC粉末、 同1.2μmのTaC粉末、 同1.2μmのWC粉末、 同1.0μmのTiN粉末、 平均粒径:1.5μmのZrN粉末、 同0.6μmのMo粉末、 同1.0μmのW粉末、 同1.0μmのNi粉末、 同1.2μmのCo粉末、 を使用し、これらの原料粉末を第1表に示される配合組
成に配合し、この配合粉末をボールミル中で粉砕混合し
、ついでこの混合粉末より圧粉体をプレス成形し、前記
圧粉体を圧カニ1100m1HのCOガス雰囲気中で温
度1250℃に加熱し、引続いて真空度:1σ21nr
ILHgの真空中で、温度1450℃に1時間保持して
焼結することによって実質的に配合組成と同一の成分組
成をもった本発明焼結硬質合金(以下本発明合金という
)1〜3と、比較焼結硬質合金(以下比較合金という)
1とをそれぞれ製造した。
Example 1 As raw material powders, TiC powder with an average particle size of 1.0 μm, TaC powder with an average particle size of 1.2 μm, WC powder with an average particle diameter of 1.2 μm, TiN powder with an average particle size of 1.5 μm, ZrN powder, 0.6 μm Mo powder, 1.0 μm W powder, 1.0 μm Ni powder, and 1.2 μm Co powder were used, and these raw material powders were as shown in Table 1. This mixed powder is pulverized and mixed in a ball mill, and then a green compact is press-molded from this mixed powder, and the green compact is heated to a temperature of 1250°C in a CO gas atmosphere of a pressure crab 1100 ml H. , followed by vacuum degree: 1σ21nr
The sintered hard alloys of the present invention (hereinafter referred to as the alloys of the present invention) 1 to 3, which have substantially the same composition as the blended composition, are obtained by sintering them at a temperature of 1450°C for 1 hour in a vacuum of ILHg (hereinafter referred to as the alloy of the present invention). , comparative sintered hard alloy (hereinafter referred to as comparative alloy)
1 and were manufactured, respectively.

なお、比較合金lは硬化表層調整成分が本発明範囲から
外れた含有量のものである。
Note that Comparative Alloy 1 has a content of hardening surface layer adjusting components that is outside the range of the present invention.

また比較の目的で、同じく第1表に示される配合組成に
配合し、混合し、プレス成形した圧粉体を、真空度0.
5mmHgの真空中、温度1450℃に1時間保持して
焼結することによって硬化表層を有しない比較合金2を
製造した。
In addition, for the purpose of comparison, a green compact prepared by blending, mixing and press-molding the composition shown in Table 1 was prepared at a vacuum degree of 0.
Comparative alloy 2 without a hardened surface layer was produced by sintering at a temperature of 1450° C. for 1 hour in a vacuum of 5 mmHg.

ついで、上記本発明合金1〜3、比較合金1〜2、およ
び従来切削工具用材料として知られている硬化表層を有
しない市販のTiC基サーメット(以下従来合金1とい
う)から、Cl5(超硬工具協会規格)・SNMN43
2に則した形状の切削試験用チップをそれぞれ製作し、 被削材:JIS −8NCM−8(硬さHB:270)
、チップホーニング:0.1mm。
Then, Cl5 (carbide Tool Association Standard)・SNMN43
Cutting test chips with shapes conforming to 2 were manufactured, and workpiece material: JIS-8NCM-8 (hardness HB: 270).
, Chip honing: 0.1mm.

切削速度: 200 m/mi!L。Cutting speed: 200 m/mi! L.

送り: 0.4mm1rev、、 切込み=1.5朋、 切削時間: 5. amin。Feed: 0.4mm1rev,, Depth of cut = 1.5 mm, Cutting time: 5. amin.

の条件で連続切削試験を行ない、試験切刃の逃げ面最大
摩耗幅を測定した。
Continuous cutting tests were conducted under these conditions, and the maximum flank wear width of the test cutting edge was measured.

この結果を第2表に示したが、第2表には硬化表層の平
均厚みおよび硬さ分布、並びに合金の内部硬さを示すと
共に、内部硬さに対する表面硬さの硬化率をそれぞれ合
せて示した。
The results are shown in Table 2, which shows the average thickness and hardness distribution of the hardened surface layer, the internal hardness of the alloy, and the hardening ratio of the surface hardness to the internal hardness. Indicated.

また、第1図に、本発明合金1、比較合金1、および比
較合金2に関して、硬さ分布態様を示した。
Further, FIG. 1 shows the hardness distribution of Invention Alloy 1, Comparative Alloy 1, and Comparative Alloy 2.

第2表および第1図に示される結果から明らかなように
、この発明で定めた硬化表層を有する本発明合金1〜3
は、いずれも比較合金1.2および従来合金1に比して
すぐれた連続切削特性を示し、高い耐摩耗性と耐塑性変
形性をもつどとが確認された。
As is clear from the results shown in Table 2 and FIG.
It was confirmed that both showed superior continuous cutting properties compared to Comparative Alloy 1.2 and Conventional Alloy 1, and had high wear resistance and plastic deformation resistance.

実施例 2 原料粉末として、 平均粒径1.5μmの(Ti、Mo)CN粉末(TiN
/Mo2C=20重量%/80重量%)、平均粒径1.
5μmの(Ti 、Nb)CN粉末(TiN/NbC=
50重量%150重量%)、 同1.2μmのWC粉末およびCo粉末、同1.5μm
のZrC粉末およびFe粉末、同2.0μmのVC粉末
、 同0.6μmのMO@末、 同1.0μmのW 粉末、Cr粉末、およびNi粉末、 を使用し、これらの原料粉末を第3表に示される配合組
成に配合し、ついで実施例1におけると同様に圧粉体を
成形し、前記圧粉体を、CH4: 0.217m1tt
とH2: 1.01J /mixからなる混合ガスの流
通下で温度1250℃まで加熱し、引続いて真空度10
−10−271Lの真空中で温度1400°Cに1時間
保持して焼結することによって実質的に配合組成と同一
の成分組成をもった本発明合金4〜6を製造した。
Example 2 As raw material powder, (Ti, Mo)CN powder (TiN) with an average particle size of 1.5 μm was used.
/Mo2C=20wt%/80wt%), average particle size 1.
5 μm (Ti, Nb)CN powder (TiN/NbC=
50% by weight (150% by weight), 1.2 μm WC powder and Co powder, 1.5 μm
ZrC powder and Fe powder, VC powder of 2.0 μm, MO@ powder of 0.6 μm, W powder, Cr powder, and Ni powder of 1.0 μm were used, and these raw material powders were The composition shown in the table was blended, and then a green compact was formed in the same manner as in Example 1.
and H2: heated to a temperature of 1250° C. under the flow of a mixed gas consisting of 1.01 J/mix, and then the vacuum degree was 10
Alloys 4 to 6 of the present invention having substantially the same composition as the blended composition were manufactured by sintering in a vacuum of -10-271L at a temperature of 1400°C for 1 hour.

また比較の目的で、上記焼結条件を変えることによって
成分組成は本発明に定めた成分組成をもつが、硬化表層
の深さが本発明範囲から外れて深い比較合金3、および
同じく成分組成は本発明範囲内にあるが、硬化表層の表
面硬さの硬化率が本発明範囲を越えて硬い比較合金4を
製造した1ついで、本発明合金4〜6、比較合金3,4
、および従来切削工具用材料として知られている硬化表
層を有しない超硬合金P20(以下従来合金2という)
より、実施例1におけると同条件で切削試験用チップを
製作し、 被削材:JIS−8NCM−8(硬さHB:270)チ
ップホーニング: 0.03mm。
For the purpose of comparison, Comparative Alloy 3 has a chemical composition defined in the present invention by changing the above sintering conditions, but the depth of the hardened surface layer is deep outside the range of the present invention, and Comparative Alloy 3 has a chemical composition that is similar to that specified in the present invention. Comparative alloy 4 was produced which was within the range of the present invention, but the hardening rate of the hardened surface layer exceeded the range of the present invention, followed by alloys 4 to 6 of the present invention, comparative alloys 3 and 4
, and cemented carbide P20 (hereinafter referred to as conventional alloy 2) without a hardened surface layer, which is conventionally known as a material for cutting tools.
A cutting test chip was manufactured under the same conditions as in Example 1. Work material: JIS-8NCM-8 (Hardness HB: 270) Chip honing: 0.03 mm.

切削速度:150m/mへ 送り: 0.4mm/rev、、
場1 切込み:1.5mm。
Cutting speed: 150m/m Feed: 0.4mm/rev,,
Field 1 Depth of cut: 1.5mm.

切削時間: i omiyt。Cutting time: iomiyt.

の条件で連続切削試験を行ない、実施例1におけると同
様に切刃の逃げ面最大摩耗幅を測定した。
A continuous cutting test was conducted under the following conditions, and the maximum width of flank wear of the cutting edge was measured in the same manner as in Example 1.

この結果を硬化表層の態様とともに第4表に示した。The results are shown in Table 4 along with the appearance of the hardened surface layer.

また第2図に本発明合金4および比較合金34の硬さ分
布態様を示した。
Further, FIG. 2 shows the hardness distribution of Invention Alloy 4 and Comparative Alloy 34.

第4表に示されるように、本発明合金4〜6は硬化表層
の平均厚みおよび硬化率がそれぞれ本発明に定めた範囲
から外れているために、切刃欠損を起して逃げ面最大摩
耗幅の測定が不可能となった比較合金3,4、およd従
来合金(P2O)に比して、きわめてすぐれた切削特性
、すなわちすぐれた耐摩耗性および耐塑性変形性を有す
ることが明らかである。
As shown in Table 4, the average thickness of the hardened surface layer and the hardening rate of alloys 4 to 6 of the present invention are outside the ranges defined by the present invention, resulting in chipping of the cutting edge and maximum wear on the flank surface. It is clear that this alloy has extremely superior cutting properties, that is, excellent wear resistance and plastic deformation resistance, compared to Comparative Alloys 3 and 4, for which width measurement was impossible, and the conventional alloy (P2O). It is.

実施例 3 原料粉末として、 平径粒径1.2μmの(Ti、W)CN粉末(TiN/
WC=30重量%/70重量%)、 同1.2μmのWC粉末、TaC粉末、およびC。
Example 3 As a raw material powder, (Ti, W)CN powder (TiN/
WC=30 wt%/70 wt%), 1.2 μm WC powder, TaC powder, and C.

粉末を使用し、これらの原料粉末を第5表に示される配
合組成に配合し、実施例1におけると同様に粉砕混合し
、プレス成形し、ついでこの結果得られた圧粉体を、圧
力20miHgのCH4ガス雰囲気中で温度1250°
Cに加熱し、引続いて真空度10−’mmHgの真空中
、温度1400°Cに1時間保持して焼結することによ
って実質的に配合組成と同一の成分組成をもった本発明
合金7〜9と比較合金5をそれぞれ製造した。
These raw material powders were blended into the composition shown in Table 5, pulverized and mixed in the same manner as in Example 1, and press-molded. Temperature 1250° in CH4 gas atmosphere of
Alloy 7 of the present invention, which has substantially the same composition as the blended composition, is obtained by heating the alloy to C and then sintering it by holding it at a temperature of 1400°C for 1 hour in a vacuum with a degree of vacuum of 10 mmHg. -9 and Comparative Alloy 5 were produced, respectively.

なお、比較合金5は硬化表層形成成分の含有量が本発明
範囲から低い方に外れたものである。
Note that Comparative Alloy 5 has a content of hardened surface layer forming components that is lower than the range of the present invention.

ついで、本発明合金7〜9および比較合金5より、実施
例1におけると同一の条件で切削試験用チップを製作し
、 被削材:JIS−8NCM−8(硬さHB:270)、
チップホーニング:0.03朋、 切削速度:1・OOm /miy’t。
Next, chips for cutting tests were manufactured from the present invention alloys 7 to 9 and comparative alloy 5 under the same conditions as in Example 1. Work material: JIS-8NCM-8 (hardness HB: 270),
Chip honing: 0.03 mm, cutting speed: 1・OOm/miy't.

送り: 0.6 mml rev、、 切込み:1.5mm。Feed: 0.6 mml rev,, Depth of cut: 1.5mm.

切削時間: 10m1yt。Cutting time: 10m1yt.

の条件で連続切削試験を行ない、実施例1におけると同
様に切刃の逃げ面最大摩耗幅を測定した。
A continuous cutting test was conducted under the following conditions, and the maximum width of flank wear of the cutting edge was measured in the same manner as in Example 1.

この結果を硬化表層の態様と合せて第6表に示した。The results are shown in Table 6 together with the appearance of the hardened surface layer.

第6表に示されるように、本発明合金7〜9においては
、硬化表層調整成分の含有量によって硬化表層の厚みお
よび硬さが調整でき、すなわち硬化表層調整成分の含有
量が減少する(これに伴って相対的に硬化表層形成成分
の含有量が増加することになる)と、硬化表層の厚みお
よび確化率が増大する傾向を示し、さらに本発明合金7
〜9は比較合金5に比べて著しくすぐれた耐摩耗性をも
つことが明らかである。
As shown in Table 6, in Invention Alloys 7 to 9, the thickness and hardness of the hardened surface layer can be adjusted by the content of the hardened surface layer adjusting component, that is, the content of the hardened surface layer adjusting component decreases (this As the content of the hardened surface layer-forming components relatively increases with
It is clear that alloys 9 to 9 have significantly better wear resistance than comparative alloy 5.

実施例 4 原料粉末として、 平均粒径2.0μmのCr3C2粉末、 平均粒径1.5μmのMO2C粉末、 同1.6μmのNbC粉末、 同1.8μmの(Ti、Ta)C粉末(TiC/TaC
=90重量%/lO重量%)、 同1.2μmの(Hf、Nb)C粉末(HfC/ Nb
C−30重量%/70重量%)、 同1.0μmの(Ti 、Nb 、 W) C粉末(T
iC/NbC/WC= 30重量%/20重量%150
重量%)。
Example 4 Raw material powders include Cr3C2 powder with an average particle size of 2.0 μm, MO2C powder with an average particle size of 1.5 μm, NbC powder with an average particle size of 1.6 μm, and (Ti, Ta)C powder (TiC/ TaC
=90 wt%/lO wt%), (Hf, Nb)C powder (HfC/Nb) with the same 1.2 μm
(Ti, Nb, W) C powder (T
iC/NbC/WC=30wt%/20wt%150
weight%).

同2.2μmのVN粉末、 同1.5μmのHfN粉末、 同1.2μmのTaN粉末、 同1.0μmの(Ti、Nb)N粉末(TiN/NbN
−50重量%150重量%)、 同1.5μmのT1CN粉末(TiC/TiN=50重
量%150重量%)、 同1.8μmのHfCN粉末(HfC/HfN=60重
量%/40重量%)、 同2.0μmの■CN粉末(VC/VN=70重量%/
30重量%)、 同2.0μmの(Ti、Ta)CN粉末(TiC/Ta
N−70重量%/30重量%)、 平均粒径2.5μmの(Zr、Nb、Ta)CN粉末(
ZrC/NbC/NbN/TaN=10重量%150重
量%/20重量%/20重量%)、 同2.8μmの(Ti、Hf、Cr)CN粉末(TiC
/TiN/HfN/Cr5C2=50重量%/20 重
量%/25重量%15重量%)、 同2.0μmの(Ti、V、W)CN粉末(TiC/T
iN/VN/WC=40重量%/30重量%15重量%
/重量%/30重 子 (TiC/TiN/TaN/NbC/Mo2C=30重
量%/30重量%/10重量%/10重量%/20重量
%)、同0.6μmのMo粉末、 同1.0μmのW粉末、Cr粉末、およびNi粉末、同
2.5μmのN1−A7合金粉末(Al:31重量%含
有)、 同1.2μmのCo粉末、 同2.7μmのFe粉末、 を用意し、これら原料粉末を番7表に示される配合組成
に配合し、ボールミルにて粉砕混合し、圧粉体にプレス
成形した後、この圧粉体を、CH,:l l/m1yt
、 H2: I It 7mVtからなる混合ガスノ流
通下で温度1250℃に加熱し、引続いて真空度1O−
21n7!LHgの真空中、1400〜1450℃の範
囲内の所定温度に1時間保持して焼結することによって
実質的に配合組成と同一の成分組成をもった本発明合金
10〜20をそれぞれ製造した。
2.2 μm VN powder, 1.5 μm HfN powder, 1.2 μm TaN powder, 1.0 μm (Ti, Nb)N powder (TiN/NbN)
-50% by weight, 150% by weight), 1.5 μm T1CN powder (TiC/TiN = 50% by weight, 150% by weight), 1.8 μm HfCN powder (HfC/HfN = 60% by weight/40% by weight), 2.0μm ■CN powder (VC/VN=70% by weight/
30% by weight), 2.0 μm (Ti, Ta)CN powder (TiC/Ta
N-70% by weight/30% by weight), (Zr, Nb, Ta)CN powder with an average particle size of 2.5 μm (
(Ti, Hf, Cr)CN powder (TiC
/TiN/HfN/Cr5C2=50wt%/20wt%/25wt%15wt%), 2.0 μm (Ti, V, W)CN powder (TiC/T
iN/VN/WC=40wt%/30wt%15wt%
/wt%/30 weight% (TiC/TiN/TaN/NbC/Mo2C=30wt%/30wt%/10wt%/10wt%/20wt%), Mo powder of 0.6μm, 1.0μm Prepare W powder, Cr powder, and Ni powder, 2.5 μm N1-A7 alloy powder (containing Al: 31% by weight), 1.2 μm Co powder, and 2.7 μm Fe powder, These raw material powders were blended into the composition shown in Table No. 7, pulverized and mixed in a ball mill, and press-molded into a green compact.
, H2: I It was heated to a temperature of 1250° C. under the flow of a mixed gas consisting of 7 mVt, and then the vacuum degree was 1 O-
21n7! Alloys 10 to 20 of the present invention having substantially the same composition as the blended composition were manufactured by holding and sintering the alloys at a predetermined temperature in the range of 1400 to 1450° C. for 1 hour in a vacuum of LHg.

ついで、本発明合金lO〜20について、実施例1にお
けると同一の条件で硬化表層の平均厚みおよび硬さ分布
を測定すると共に、合金の内部硬さを測定し、さらに連
続切削試験を行なった。
Next, the average thickness and hardness distribution of the hardened surface layer of the alloys 10 to 20 of the present invention were measured under the same conditions as in Example 1, and the internal hardness of the alloy was also measured, and a continuous cutting test was conducted.

これらの結果を第7表に合せて示したが、第7表に示さ
れるように、本発明合金lO〜20は、いずれもすぐれ
た耐摩耗性と耐塑性変形性をもつので、すぐれた切削性
能を示すことが明らかである。
These results are shown in Table 7, and as shown in Table 7, the present invention alloys 10 to 20 have excellent wear resistance and plastic deformation resistance, and therefore have excellent cutting properties. It is clear that the performance is shown.

上述のように、この発明の焼結硬質合金は、きわめてす
ぐれた耐摩耗性および耐塑性変形性、並びに靭性を有す
るので、これを一般の切削はもちろんのこと、従来サー
メットやWCC超超硬合金不得意としていた比較的硬度
の高い被削材の切削や、負荷の大きい重切削に適用した
場合にすぐれた切削性能を発揮すると共に、耐摩耗部品
の製造にも使用できるなど工業上有用な特性をもつもの
である。
As mentioned above, the sintered hard alloy of the present invention has extremely excellent wear resistance, plastic deformation resistance, and toughness, so it can be used not only for general cutting but also for conventional cermet and WCC cemented carbide. It exhibits excellent cutting performance when applied to cutting relatively hard work materials, which have been weak, and heavy cutting with large loads, and has industrially useful properties such as being able to be used in the manufacture of wear-resistant parts. It is something that has.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明合金および比較合金の硬さ
分布を示す曲線図である。
FIGS. 1 and 2 are curve diagrams showing the hardness distribution of the alloy of the present invention and the comparative alloy.

Claims (1)

【特許請求の範囲】 1 硬質相形成成分おして、周期律表の4a、5aおよ
び6a族金属の炭化物および複合炭化物からなる群のう
ちの1種または2種以上:lO〜85.5%、 同じく硬質相形成成分として、周期律表の4aおよび5
a族金属の窒化物、複合窒化物、炭窒化物、および複合
炭窒化物、並びに同4aおよび5a族金属と同6a族金
属の複合炭窒化物からなる群のうちの1種または2種以
上:9.5〜85%、を含有し、残りが結合相形成成分
としての鉄族金属のうちの1種または2種以上と不可避
不純物からなり、かつ、 硬質相:50〜95%。 結合相: 5〜50%、 からなる組成(以上容量%)を有する焼結硬質合金にし
て、さらに、 上記焼結硬質合金は、その表面から最大深さ1mmまで
内部に向って連続的に低くなる硬さ分布を有し、しかも
内部硬さに対して表面硬さが5〜30%高い硬質表層を
もつことを特徴とする硬化表層を有する焼結硬質合金。 2 硬質相形成成分として、周期律表の4a。 5a、および6a族金属の炭化物および複合炭化物から
なる群のうちの1[または2種以上:10〜85.5%
、 同じく硬質相形成成分として、周期律表の43および5
a族金属の窒化物、複合窒化物、炭窒化物、および複合
炭窒化物、並びに同4aおよび5a族金属と同6a族金
属の複合炭窒化物からなる群のうちの1種または2種以
上:9.5〜85%、結合相形成成分として、Cr族金
属のうちの1種または2種以上=1〜15%、 を含有し、残りが結合相形成成分としての鉄族金属のう
ちの1種または2種以上と不可避不純物からなり、かつ
、 硬質相:50〜95%、 結合相: 5〜50%、 からなる組成(以上容量%)を有する焼結硬質合金にし
て、さら)こ、 上記焼結硬質合金は、その表面から最大深さ11rLm
まで内部に向って連続的に低くなる硬さ分布を有し、し
かも内部硬さに対して表面硬さが5〜30%高い硬質表
層をもつことを特徴とする硬化表層を有する焼結硬質合
金。 3 硬質相形成成分として、周期律表の4a。 5a、および6a族金属の炭化物および複合炭化物から
なる群のうちの1種または2種以上:10〜85.5%
、 同じく硬質相形成成分として、周期律表の43および5
a族金属の窒化物、複合窒化物、炭窒化物、および複合
炭窒化物、並びに同4aおよび5a族金属と同6a族金
属の複合炭窒化物からなる群のうちの1種または2種以
上=9.5〜85%、結合相形成成分として、l:0.
05〜5%、を含有し、残りが結合相形成成分としての
鉄族金属のうちの1種または2種以上と不可避不純物か
らなり、かつ、 硬質相:50〜95%、 結合相: 5〜50%、 からなる組成(以上容量%)を有する焼結硬質合金にし
て、さらに、 上記焼結硬質合金は、その表面から最大深さ1間まで内
部に向って連続的に低くなる硬さ分布を有し、しかも内
部硬さに対して表面硬さが5〜30%高い硬質表層をも
つことを特徴とする硬化表層を有する焼結硬質合金。 4 硬質相形成成分として、周期律表の4a。 5a、および6a族金属の炭化物および複合炭化物から
なる群のうちの1種または2種以上=10〜85.5%
、 同じく硬質相形成成分として、周期律表の4aおよび5
a族金属の窒化物、複合窒化物、炭窒化物、および複合
炭窒化物、並びに同4aおよび5a族金属と同6a族金
属の複合炭窒化物からなる群のうちの1種または2種以
上=9.5〜85%、結合相形成成分として、Cr族金
属のうちの1種または2種以上=1〜15%、 同じく結合相形成成分として、A7:0.05〜5%% を含有し、残りが結合相形成成分としての鉄族金属のう
ちの1種または2種以上と不可避不純物からなり、かつ
、 硬質相:50〜95%、 結合相: 5〜50%、 からなる組成(以上容量%)を有する焼結硬質合金にし
て、さらに、 上記焼結硬質合金は、その表面から最大深さ1mmまで
内部に向って連続的に低くなる硬さ分布を有し、しかも
内部硬さに対して表面硬さが5〜30%高い硬質表層を
もつことを特徴とする硬化表層を有する焼結硬質合金。
[Scope of Claims] 1. Among the hard phase-forming components, one or more of the group consisting of carbides and composite carbides of metals of groups 4a, 5a and 6a of the periodic table: 1O to 85.5%; 4a and 5 of the periodic table as hard phase forming components.
One or more of the group consisting of nitrides, composite nitrides, carbonitrides, and composite carbonitrides of group a metals, and composite carbonitrides of group 4a and 5a metals and group 6a metals. : 9.5 to 85%, and the remainder consists of one or more iron group metals as binder phase forming components and unavoidable impurities, and hard phase: 50 to 95%. A sintered hard alloy having a composition (volume %) consisting of a binder phase of 5 to 50%, and further, the sintered hard alloy has a binder phase of 5 to 50%. 1. A sintered hard alloy having a hardened surface layer, which has a hardness distribution and has a hard surface layer whose surface hardness is 5 to 30% higher than the internal hardness. 2. 4a of the periodic table as a hard phase forming component. 1 [or 2 or more of the group consisting of carbides and composite carbides of group 5a and 6a metals: 10 to 85.5%
, 43 and 5 of the periodic table are also hard phase forming components.
One or more of the group consisting of nitrides, composite nitrides, carbonitrides, and composite carbonitrides of group a metals, and composite carbonitrides of group 4a and 5a metals and group 6a metals. : 9.5 to 85%, one or more Cr group metals = 1 to 15% as a binder phase forming component, and the remainder is an iron group metal as a binder phase forming component. A sintered hard alloy consisting of one or more types and unavoidable impurities, and having a composition (volume %) consisting of: hard phase: 50 to 95%, binder phase: 5 to 50%, and further) , The sintered hard alloy has a maximum depth of 11 rLm from its surface.
A sintered hard alloy having a hardened surface layer, which has a hardness distribution that continuously decreases toward the inside, and has a hard surface layer whose surface hardness is 5 to 30% higher than the internal hardness. . 3 4a of the periodic table as a hard phase forming component. One or more of the group consisting of carbides and composite carbides of group 5a and 6a metals: 10 to 85.5%
, 43 and 5 of the periodic table are also hard phase forming components.
One or more of the group consisting of nitrides, composite nitrides, carbonitrides, and composite carbonitrides of group a metals, and composite carbonitrides of group 4a and 5a metals and group 6a metals. =9.5 to 85%, as a binder phase forming component, l:0.
05-5%, the remainder consists of one or more iron group metals as binder phase forming components and unavoidable impurities, and hard phase: 50-95%, binder phase: 5-5%. 50%, and furthermore, the sintered hard alloy has a hardness distribution that continuously decreases inward from the surface to a maximum depth of 1. 1. A sintered hard alloy having a hardened surface layer, characterized in that the hardened surface layer has a surface hardness that is 5 to 30% higher than the internal hardness. 4 4a of the periodic table as a hard phase forming component. One or more of the group consisting of carbides and composite carbides of group 5a and 6a metals = 10 to 85.5%
, Also as hard phase forming components, 4a and 5 of the periodic table
One or more of the group consisting of nitrides, composite nitrides, carbonitrides, and composite carbonitrides of group a metals, and composite carbonitrides of group 4a and 5a metals and group 6a metals. = 9.5 to 85%, one or more Cr group metals = 1 to 15% as a bonding phase forming component, and A7: 0.05 to 5%% as a bonding phase forming component. and the remainder consists of one or more iron group metals as binder phase forming components and unavoidable impurities, and a composition consisting of: hard phase: 50 to 95%, binder phase: 5 to 50% ( The sintered hard alloy has a hardness distribution that decreases continuously from the surface to a maximum depth of 1 mm from the surface to the inside, and further has an internal hardness. A sintered hard alloy having a hardened surface layer characterized by having a hard surface layer having a surface hardness 5 to 30% higher than that of the hardened surface layer.
JP4766578A 1978-04-24 1978-04-24 Sintered hard alloy with hardened surface layer Expired JPS5917176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4766578A JPS5917176B2 (en) 1978-04-24 1978-04-24 Sintered hard alloy with hardened surface layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4766578A JPS5917176B2 (en) 1978-04-24 1978-04-24 Sintered hard alloy with hardened surface layer

Publications (2)

Publication Number Publication Date
JPS54139815A JPS54139815A (en) 1979-10-30
JPS5917176B2 true JPS5917176B2 (en) 1984-04-19

Family

ID=12781545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4766578A Expired JPS5917176B2 (en) 1978-04-24 1978-04-24 Sintered hard alloy with hardened surface layer

Country Status (1)

Country Link
JP (1) JPS5917176B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067003A (en) * 1983-09-21 1985-04-17 Hitachi Metals Ltd Coating cutting tool
JPH0276606A (en) * 1988-09-09 1990-03-16 Mitsubishi Metal Corp Cutting tool made of high abrasion-resistant titanium carbide-nitride radical cermet
JP2775298B2 (en) * 1989-06-28 1998-07-16 京セラ株式会社 Cermet tool
SE511846C2 (en) * 1997-05-15 1999-12-06 Sandvik Ab Ways to melt phase a titanium-based carbonitride alloy
SE511212C2 (en) * 1997-12-22 1999-08-23 Sandvik Ab Ballpoint pens and their use for ballpoint pens with water-based ink
EP3031982B1 (en) * 2014-12-10 2017-03-29 voestalpine Precision Strip AB A long life cermet coated crêping blade

Also Published As

Publication number Publication date
JPS54139815A (en) 1979-10-30

Similar Documents

Publication Publication Date Title
AU735278B2 (en) An elongate rotary machining tool comprising a cermet having a CO-NI-FE-binder
JPS5823457B2 (en) Tough cermet
JP2775955B2 (en) Manufacturing method of coating cermet with excellent wear resistance
JPS5917176B2 (en) Sintered hard alloy with hardened surface layer
JP2013129915A (en) Cemented carbide body and application thereof
JPH0253510B2 (en)
JP2893886B2 (en) Composite hard alloy material
US20090169315A1 (en) CVD Coated Cutting Tool Insert for Milling
JPS5914534B2 (en) Tough cermet with a softened surface layer
JP2004223666A (en) Cutting tool for rough machining
JPS6225630B2 (en)
JPH0271906A (en) Surface coated tungsten carbide base sintered hard alloy made cutting tool excellent in plastic deformation resistance
JPS5941445A (en) Cubic boron nitride base high pressure sintered material for cutting tool
JP2982359B2 (en) Cemented carbide with excellent wear and fracture resistance
JPS5823455B2 (en) sintered hard alloy
JPH0673560A (en) Coated sintered hard alloy member and its production
JPS5915970B2 (en) Tough cermet with a softened surface layer
JPS585981B2 (en) Tough cermet containing titanium nitride
KR100497850B1 (en) sinterd alloy of tungsten carbide having tensile strength and wear resistance character & cutting tools using the same
JPS6196072A (en) Surface coated cermet member for cutting tool and wear resistant tool
JPS593532B2 (en) Super hard sintered alloy
JPS63103069A (en) Surface coated sintered hard alloy
JPS5935644A (en) Manufacture of sintered hard material for cutting tool
JPS629551B2 (en)
JPS5854183B2 (en) Oxygen-containing tungsten carbide-based sintered hard alloy