JPS6151034B2 - - Google Patents
Info
- Publication number
- JPS6151034B2 JPS6151034B2 JP14142983A JP14142983A JPS6151034B2 JP S6151034 B2 JPS6151034 B2 JP S6151034B2 JP 14142983 A JP14142983 A JP 14142983A JP 14142983 A JP14142983 A JP 14142983A JP S6151034 B2 JPS6151034 B2 JP S6151034B2
- Authority
- JP
- Japan
- Prior art keywords
- cutting
- phase forming
- coating layer
- layer thickness
- average
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011195 cermet Substances 0.000 claims description 38
- 239000010410 layer Substances 0.000 claims description 30
- 239000002345 surface coating layer Substances 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 13
- 229910052721 tungsten Inorganic materials 0.000 claims description 12
- 239000011230 binding agent Substances 0.000 claims description 11
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000006104 solid solution Substances 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 239000002356 single layer Substances 0.000 claims description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 3
- -1 carbonitrides Chemical class 0.000 claims description 3
- 239000011247 coating layer Substances 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 claims 1
- 239000000843 powder Substances 0.000 description 19
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
- C23C30/005—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Description
この発明は、すぐれた耐衝撃性を有し、特に鋼
の高速切削に切削工具として使用するのに適した
表面被覆サーメツト部材に関するものである。
従来、硬質相形成成分として、Tiと,Wと,
TiとWを除く元素周期律表の4a,5a,および6a
族金属のうちの1種または2種以上との複合金属
炭窒化物固溶体(以下、(Ti,M,W)CNで示
す):60〜90%を含有し、さらに必要に応じて、
結合相形成成分としてのMo:1〜20%,W:1
〜20%,およびAl:0.1〜2%のうちの1種また
は2種以上を、耐熱性向上の目的で含有させ、残
りがNiおよびCoのうちの1種または2種と不可
避不純物からなる組成(以上重量%、以下%は重
量%を示す)をもつたサーメツト部材の表面に、
Tiの炭化物,窒化物,炭窒化物,炭酸化物,お
よび炭窒酸化物,並びにAlの酸化物(以下、こ
れらを、それぞれ、TiC,TiN,TiCN,TiCO,
TiCNO,およびAl2O3で示す)のうちの1種の単
層、または2種以上の複層からなる表面被覆層を
0.5〜10μmの平均層厚で形成してなる表面被覆
サーメツト部材が切削工具として用いられてい
る。
しかし、この従来表面被覆サーメツト部材を、
例えば切削速度が250m/minを越える鋼の高速
切削に用いると、耐衝撃性不足が原因で、切刃に
欠けが発生し易く、工具寿命のきわめて短かいも
のであつた。
一方、近年、加工能率の向上に対する要請は強
く、切削速度が250〜300m/minの高速切削が可
能な切削工具の開発が強く望まれているのが現状
である。
そこで、本発明者は、上述のような観点から、
切削速度が250m/min以上の高速切削に十分耐
え得る切削工具を開発すべく、特に、上記の従来
表面被覆サーメツト部材に着目し研究を行なつた
結果、サーメツト部材の表面と表面被覆層との間
に、中間層として、TiC被覆層中にサーメツト部
材の結合相形成成分を拡散したものからなる層を
介在させると、この中間層は、拡散含有した結合
相形成成分によつて、すぐれた耐衝撃性を具備す
るようになり、かつサーメツト部材の表面と表面
被覆層のいずれに対しても著しく高い密着強度で
接合することから、切削速度が250m/min以上
の高速切削において、切刃に欠けなどの発生な
く、すぐれた切削性能を示すようになるという知
見を得たものである。
したがつて、この発明は、上記知見にもとづい
てなされたものであつて、
硬質相形成成分として、(Ti,M,W)CN:60
〜95%,
を含有し、さらに必要に応じて、
結合相形成成分として、Mo:1〜20%,W:
1〜20%,およびAl:0.1〜2%のうちの1種ま
たは2種、
を含有し、
残りが同じく結合相形成成分としてのNiおよ
びCoのうちの1種または2種と不可避不純物か
らなる組成をもつたサーメツト部材の表面に、
TiC被覆層中に上記結合相形成成分を拡散した
のからなる平均層厚:0.5〜10μmの中間層を介
して、
TiN,TiCN,TiCO,TiCNO,およびAl2O3の
うちの1種の単層、または2種以上の複層からな
る表面被覆層を0.5〜10μmの平均層厚で形成し
てなる切削工具用表面被覆サーメツト部材に特徴
を有するものである。
つぎに、この発明の表面被覆サーメツト部材に
おいて、サーメツト部材の成分組成、並びに中間
層および表面被覆層の平均層厚を上記の通りに限
定した理由を説明する。
A サーメツト部材の成分組成
(a) (Ti,M,W)CN
これらの成分には、スケルトンを形成して
サーメツト部材自体の硬さを向上させ、かつ
耐塑性変形性を向上させる作用があるが、そ
の含有量が60%未満では前記作用に所望の効
果が得られず、一方95%を含有させると、サ
ーメツト部材の靭性が劣化するようになるこ
とから、その含有量を60〜95%と定めた。
(b) Mo,W,およびAl
これらの成分には、結合相に固溶、あるい
は析出して、これを強化し、かつ耐熱性を向
上させる作用があるので、これらの特性が要
求される場合に、必要に応じて含有される
が、その含有量が、それぞれMo:1%未
満,W:1%未満,およびAl:0.1%未満で
は前記作用に所望の効果が得られず、一方
Mo:20%,W:20%,およびAl:2%をそ
れぞれ越えて含有させると、耐摩耗性が低下
するようになることから、その含有量を、そ
れぞれMo:1〜20%,W:1〜20%,およ
びAl:0.1〜2%と定めた。
B 中間層の平均層厚
中間層を構成するTiCは、サーメツト部材表
面および表面被覆層と強固に結し、かつ結合相
形成成分の拡散含有を許容する唯一の成分であ
るが、その平均層厚が0.5μm未満では所望の
すぐれた耐衝撃性を確保することができず、一
方10μmを越えた平均層厚にすると、実質的に
結合相形成成分を層厚全体に拡散させることは
困難であることと相まつて、総体的に表面被覆
サーメツト部材の耐衝撃性を劣化させることか
ら、その平均層厚を0.5〜10μmと定めた。
C 表面被覆層の平均層厚
これらの表面被覆層の形成によつて耐摩耗性
が著しく向上するようになるが、その平均層厚
が0.5μm未満では所望の耐摩耗性を確保する
ことができず、一方10μmを越えた平均層厚に
すると、表面被覆層が原因で表面被覆サーメツ
ト部材自体の耐衝撃性が低下するようになるこ
とから、その平均層厚を0.5〜10μmと定め
た。
つぎに、この発明の表面被覆サーメツト部材を
実施例により具体的に説明する。
実施例
原料粉末として、いずれも1.0〜2.0μmの範囲
内の平均粒径を有し、かつ完全固溶した。
(Ti0,45Ta0,05W0.50)C0.80N0.20粉末
(Ti0.50Nb0.20Mo0.10W0.20)
C0.70N0.30粉末,
(Ti0.60Ta0.10Mo0.10W0.20)
C0.65N0.35粉末,
(Ti0.65Ta0.10Cr0.10W0.15)
C0.60N0.40粉末,
(Ti0.70Nb0.10W0.20)C0.50N0.50粉末,
(Ti0.80V0.10W0.10)C0.40N0.60粉末,
(Ti0.60Zr0.05Ta0.15W0.20)
C0.70N0.30粉末,
(Ti0.60Hf0.05Ta0.15W0.20)
C0.75N0.25粉末,
(Ti0.65V0.05Ta0.10W0.20) C0.75N0.25粉末,
(Ti0.60Cr0.05W0.35)C0.70N0.30粉末,
(Ti0.60Zr0.05W0.35)C0.70N0.30粉末,
(Ti0.55Hf0.05Ta0.10Mo0.05W0.25)
C0.65N0.35粉末,
(以上カツコ内の数値は重量比)、さらにいず
れも0.6〜2.5μmの範囲内の平均粒径をもつた
Mo粉末,W粉末,Al粉末,Ni粉末,およびCo粉
末を用意し、これら原料粉末をそれぞれ第1表に
示される配合組成に配合し、ボールミルにて72時
間湿式粉砕・混合し、乾燥した後、15Kg/cm2の圧
力にてプレス成形して圧粉体し、ついで、これら
の圧粉体を、N2雰囲気中、1410〜1480℃の範囲
内の所定温度に1時間保持の条件で焼結して実質
的に配合組成と同一の成分組成をもつたサーメツ
ト部材を製造し、引続いて、これらサーメツト部
材を、耐熱合金製反応容器内に装入し、
The present invention relates to a surface-coated cermet member which has excellent impact resistance and is particularly suitable for use as a cutting tool for high-speed cutting of steel. Conventionally, as hard phase forming components, Ti, W,
4a, 5a, and 6a of the periodic table of elements excluding Ti and W
Composite metal carbonitride solid solution with one or more group metals (hereinafter referred to as (Ti, M, W) CN): Contains 60 to 90%, and if necessary,
Mo as a bonding phase forming component: 1 to 20%, W: 1
~20%, and Al: 0.1 to 2%, for the purpose of improving heat resistance, and the remainder consists of one or two of Ni and Co and unavoidable impurities. On the surface of a cermet member with (the above weight %, below % shows weight %)
Carbides, nitrides, carbonitrides, carbonates, and carbonitrides of Ti, and oxides of Al (hereinafter, these are referred to as TiC, TiN, TiCN, TiCO,
A surface coating layer consisting of a single layer or a multilayer of two or more of TiCNO, and Al 2 O 3 ).
Surface-coated cermet members formed with an average layer thickness of 0.5 to 10 μm are used as cutting tools. However, this conventional surface-coated cermet member
For example, when used for high-speed cutting of steel at a cutting speed exceeding 250 m/min, the cutting edge tends to chip due to insufficient impact resistance, resulting in an extremely short tool life. On the other hand, in recent years, there has been a strong demand for improved machining efficiency, and the current situation is that there is a strong desire to develop cutting tools capable of high-speed cutting at a cutting speed of 250 to 300 m/min. Therefore, from the above-mentioned viewpoint, the present inventors
In order to develop cutting tools that can withstand high-speed cutting at cutting speeds of 250 m/min or higher, we conducted research focusing on the conventional surface-coated cermet parts mentioned above, and found that the relationship between the surface of the cermet parts and the surface coating layer When a layer consisting of a binder phase forming component of the cermet member diffused in the TiC coating layer is interposed as an intermediate layer between the two, this intermediate layer has excellent resistance due to the diffused binder phase forming component. It has impact resistance and bonds with extremely high adhesion strength to both the surface of the cermet component and the surface coating layer, so it will not chip on the cutting edge during high-speed cutting at cutting speeds of 250 m/min or more. We have obtained the knowledge that this method does not cause such problems and exhibits excellent cutting performance. Therefore, this invention was made based on the above knowledge, and includes (Ti, M, W) CN:60 as a hard phase forming component.
~95%, and if necessary, as a binder phase forming component, Mo: 1~20%, W:
1 to 20%, and one or two of Al: 0.1 to 2%, and the remainder consists of one or two of Ni and Co as bonding phase forming components and unavoidable impurities. TiN, TiCN, TiCO, TiCNO, and Al are applied to the surface of a cermet member having a composition of A surface-coated cermet member for a cutting tool is characterized by forming a surface coating layer consisting of a single layer or a multilayer of two or more of 2 O 3 with an average layer thickness of 0.5 to 10 μm. be. Next, in the surface-coated cermet member of the present invention, the reason why the component composition of the cermet member and the average layer thickness of the intermediate layer and the surface coating layer are limited as described above will be explained. A Composition of cermet members (a) (Ti, M, W) CN These components have the effect of forming a skeleton, improving the hardness of the cermet member itself, and improving its plastic deformation resistance. If the content is less than 60%, the desired effect cannot be obtained, while if the content is 95%, the toughness of the cermet member will deteriorate. Established. (b) Mo, W, and Al These components have the effect of solid solution or precipitation in the binder phase to strengthen it and improve heat resistance, so when these properties are required. is contained as necessary, but if the content is less than 1% for Mo, less than 1% for W, and less than 0.1% for Al, the desired effect cannot be obtained;
If the content exceeds Mo: 20%, W: 20%, and Al: 2%, the wear resistance will decrease, so the contents should be adjusted to Mo: 1 to 20% and W: 1 to 20%, and Al: 0.1 to 2%. B Average layer thickness of the intermediate layer TiC constituting the intermediate layer is the only component that firmly bonds with the cermet member surface and the surface coating layer and allows the diffusion and inclusion of the binder phase forming component. If the average layer thickness is less than 0.5 μm, it is not possible to secure the desired excellent impact resistance, while if the average layer thickness exceeds 10 μm, it is difficult to substantially diffuse the binder phase-forming component throughout the layer thickness. Coupled with this, the average layer thickness was determined to be 0.5 to 10 .mu.m since the overall impact resistance of the surface-coated cermet member would be degraded. C Average layer thickness of surface coating layer The formation of these surface coating layers significantly improves wear resistance, but if the average layer thickness is less than 0.5 μm, the desired wear resistance cannot be secured. On the other hand, if the average layer thickness exceeds 10 .mu.m, the impact resistance of the surface-coated cermet member itself will decrease due to the surface coating layer, so the average layer thickness was set at 0.5 to 10 .mu.m. Next, the surface-coated cermet member of the present invention will be specifically explained using examples. Examples All of the raw material powders had an average particle size within the range of 1.0 to 2.0 μm, and were completely dissolved in solid solution. (Ti 0 , 45 Ta 0 , 05 W 0.50 ) C 0.80 N 0.20 powder ( Ti 0.50 Nb 0.20 Mo 0.10 W 0.20 ) C 0.70 N 0.30 powder , ( Ti 0.60 Ta 0.10 Mo 0.10 W 0.20) C 0.65 N 0.35 powder , ( Ti 0.65 Ta 0.10 Cr 0.10 W 0.15 ) C 0 . 60 N 0.40 powder , (Ti 0.70 Nb 0.10 W 0.20 ) C 0.50 N 0.50 powder, ( Ti 0.80 V 0.10 W 0.10 ) C 0.40 N 0.60 powder , ( Ti 0.60 Zr 0.05 Ta 0.15 W 0.20 ) C 0.70 N 0.30 powder , ( Ti 0.60 Hf 0.05 Ta 0.15 W 0.20 ) C0.75 N0.25 powder , ( Ti0.65 V0.05 Ta0.10 W0.20 ) C0.75 N0.25 powder , ( Ti0.60 Cr0.05 W0 _ _ .35 ) C0.70 N0.30 powder , ( Ti0.60 Zr0.05 W0.35 ) C0.70 N0.30 powder , ( Ti0.55 Hf0.05 Ta0.10 _ _ Mo 0.05 W 0.25 ) C 0.65 N 0.35 powder, (values in brackets above are weight ratios) , and each has an average particle size within the range of 0.6 to 2.5 μm .
Mo powder, W powder, Al powder, Ni powder, and Co powder were prepared, and these raw material powders were blended into the composition shown in Table 1, wet milled and mixed in a ball mill for 72 hours, and then dried. , press-formed at a pressure of 15 kg/cm 2 to form a green compact, and then baked the green compact at a predetermined temperature within the range of 1410 to 1480°C for 1 hour in an N 2 atmosphere. As a result, cermet members having substantially the same composition as the blended composition are manufactured, and subsequently, these cermet members are charged into a reaction vessel made of a heat-resistant alloy,
【表】【table】
【表】
1000℃の温度で、TiCl4:2%,CH4:2%,
H2:残りからなる組成(容量%)の反応混合ガ
スを10/minの流速で送り込んで反応させ、反
応時間を変化させて、それぞれ第1表に示される
平均層厚をもつたTiC層をサーメツト部材の表面
に形成し、反応終了後、残留ガスを除去し、1050
℃の温度に1時間保持の条件で加熱してサーメツ
ト部材中の結合相形成成分を前記TiC層中に拡散
含有させて中間層を形成し、さらに、前記反応容
器内に水素を流しながら、1000℃の温度に加熱し
た後、形成しようとする表面被覆層の組成に応じ
て、第2表に示されるガス組成をもつた反応混合
ガスを導入し、同じく第2表に示される反応温度
に加熱保持し、もつて、それぞれ第1表に示され
る組成、平均層厚、および層数の表面被覆層を形
成することによつて、本発明表面被覆サーメツト
部材1〜20および比較表面被覆サーメツト部材1
〜6をそれぞれ製造した。なお、比較表面被覆サ
ーメツト部材1〜6は、サーメツト部材の組成,
中間層,および表面被覆層のうちのいずれ[Table] At a temperature of 1000℃, TiCl 4 : 2%, CH 4 : 2%,
A reaction mixture gas having a composition (volume %) consisting of H 2 :remaining was fed at a flow rate of 10/min to react, and the reaction time was varied to form a TiC layer with the average layer thickness shown in Table 1. It is formed on the surface of the cermet member, and after the reaction is completed, residual gas is removed and 1050
The binder phase forming component in the cermet member is diffused into the TiC layer by heating at a temperature of 100°C for 1 hour to form an intermediate layer. After heating to a temperature of °C, a reaction mixture gas having a gas composition shown in Table 2 is introduced depending on the composition of the surface coating layer to be formed, and heated to the reaction temperature also shown in Table 2. Surface-coated cermet members 1 to 20 of the present invention and Comparative surface-coated cermet members 1 were prepared by holding and forming surface coating layers having the composition, average layer thickness, and number of layers shown in Table 1, respectively.
-6 were produced, respectively. In addition, the comparative surface-coated cermet members 1 to 6 have different compositions of the cermet members,
Which of the intermediate layer and surface coating layer
【表】
か(第1表に※印を付したもの)がこの発明の範
囲から外れたものである。
ついで、これらの表面被覆サーメツト部材を用
いて、
被削材:JIS・SNCM―8
(硬さHB240)の丸棒、
切削速度:300m/min、
送り:0.3mm/rev.、
切込み:1.5mm、
切削時間:10min、
チツプ形状:JIS・SNP432、
の条件での鋼連続高速切削試験、並びに、
被削材:JIS・SNCM―8
(硬さHB240)の角材、
切削速度:250m/min、
送り:0.2mm/rev.、
切込み:2mm、
切削時間:3min、
チツプ形状:JIS・SNP432、
の条件での鋼断続切削試験を行ない、前者の高速
切削では切刃の逃げ面摩耗幅とすくい面摩耗深さ
を測定し、また後者の断続切削では10個の試験[Table] Items marked with * in Table 1 are outside the scope of this invention. Next, using these surface-coated cermet members, workpiece material: JIS/SNCM-8 (hardness H B 240) round bar, cutting speed: 300 m/min, feed: 0.3 mm/rev., depth of cut: 1.5 mm, Cutting time: 10 min, Chip shape: JIS/SNP432, Steel continuous high-speed cutting test under the following conditions, Work material: JIS/SNCM-8 (Hardness HB 240) square material, Cutting speed: 250 m/ A steel interrupted cutting test was conducted under the following conditions: min, feed: 0.2mm/rev., depth of cut: 2mm, cutting time: 3min, chip shape: JIS/SNP432, and in the former high-speed cutting, the flank wear width of the cutting edge and Measure the rake face wear depth and also perform 10 tests in the latter interrupted cut.
【表】【table】
【表】
切刃のうちの欠損発生切刃数を測定した。これら
の切削試験結果を第3表に示した。
第3表に示される結果から、本発明表面被覆サ
ーメツト部材1〜20は、いずれもすぐれた耐塑性
変形性,耐衝撃性,および耐摩耗性を兼ね備えて
いるので、高速切削および断続切削のいずれにお
いてもすぐれた切削性能を発揮するのに対して、
従来表面被覆サーメツト部材に相当する比較表面
被覆サーメツト部材3は、耐衝撃性不足が原因で
断続切削では全切刃に欠損が発生し、さらに比較
表面被覆サーメツト部材1〜6に見られるように
サーメツト部材の成分組成,中間層,および表面
被覆層のうちのいずれかでもこの発明の範囲から
外れると、満足な切削性能を示さないことが明ら
かである。
上述のように、この発明の表面被覆サーメツト
部材は、特にすぐれた耐衝撃性を有し、かつ耐塑
性変形性および耐摩耗性にもすぐれているので、
鋼などの高速切削や、高切り込み切削および高送
り切削などの重切削に切削工具として用いた場合
すぐれた切削性能を発揮するものである。[Table] The number of broken cutting edges was measured. The results of these cutting tests are shown in Table 3. From the results shown in Table 3, surface-coated cermet members 1 to 20 of the present invention all have excellent plastic deformation resistance, impact resistance, and wear resistance, so they are suitable for both high-speed cutting and interrupted cutting. Although it exhibits excellent cutting performance even in
Comparative surface-coated cermet member 3, which corresponds to the conventional surface-coated cermet member, suffered from chipping on all cutting edges during interrupted cutting due to insufficient impact resistance, and as seen in comparative surface-coated cermet members 1 to 6, cermet It is clear that if any of the component composition, intermediate layer, and surface coating layer of the member deviates from the scope of the present invention, satisfactory cutting performance will not be exhibited. As mentioned above, the surface-coated cermet member of the present invention has particularly excellent impact resistance, and also has excellent plastic deformation resistance and abrasion resistance.
It exhibits excellent cutting performance when used as a cutting tool for high-speed cutting of steel and heavy-duty cutting such as high-cutting and high-feed cutting.
Claims (1)
Wを除く元素周期律表の4a,5a,および6a族金属
のうちの1種または2種以上との複合金属炭窒化
物固溶体:60〜95%、 結合相形成成分としてのNiおよびCoのうちの
1種または2種と不可避不純物:残り、 からなる組成(以上重量%)を有するサーメツト
部材の表面に、炭化チタンの被覆層中に前記結合
相形成成分を拡散したものからなる平均層厚:
0.5〜10μmの中間層を介して、Tiの窒化物,炭
窒化物,炭酸化物,および炭窒酸化物,並びに
Alの酸化物のうちの1種の単層、または2種以
上の複層からなる表面被覆層を0.5〜10μmの平
均層厚で形成してなる切削工具用表面被覆サーメ
ツト部材。 2 硬質相形成成分として、Tiと,Wと,Tiと
Wを除く元素周期律表の4a,5a,および6a族金属
のうちの1種または2種以上との複合金属炭窒化
物固溶体:60〜95%、 結合相形成成分としてのMo:1〜20%,W:
1〜20%,およびAl:0.1〜2%のうちの1種ま
たは2種以上、 同じく結合相形成成分としてのNiおよびCoの
うちの1種または2種と不可避不純物:残り、 からなる組成(以上重量%)を有するサーメツト
部材の表面に、炭化チタンの被覆層中に前記結合
相形成成分を拡散したものからなる平均層厚:
0.5〜10μmの中間層を介して、Tiの窒化物,炭
窒化物,炭酸化物,および炭窒酸化物、並びに
Alの酸化物のうちの1種の単層、まさは2種以
上の複層からなる表面被覆層を0.5〜10μmの平
均層厚で形成してなる切削工具用表面被覆サーメ
ツト部材。[Scope of Claims] 1. A composite metal containing Ti, W, and one or more metals from Groups 4a, 5a, and 6a of the Periodic Table of the Elements excluding Ti and W as hard phase forming components. Carbonitride solid solution: 60 to 95%, one or two of Ni and Co as binder phase forming components, and unavoidable impurities: the rest, on the surface of a cermet member having a composition (the above weight %). Average layer thickness consisting of a titanium coating layer in which the binder phase forming component is diffused:
Ti nitrides, carbonitrides, carbonates, and carbonitrides, and
A surface-coated cermet member for a cutting tool, comprising a surface coating layer consisting of a single layer or a multilayer of two or more types of Al oxides, with an average layer thickness of 0.5 to 10 μm. 2. Composite metal carbonitride solid solution containing Ti, W, and one or more metals from groups 4a, 5a, and 6a of the periodic table of the elements excluding Ti and W as hard phase forming components: 60 ~95%, Mo as a bonding phase forming component: 1~20%, W:
1 to 20%, and one or more of Al: 0.1 to 2%, one or two of Ni and Co as binder phase forming components, and the remainder of unavoidable impurities ( average layer thickness consisting of a titanium carbide coating layer in which the binder phase-forming component is diffused on the surface of a cermet member having an average thickness of
Ti nitrides, carbonitrides, carbonates, and carbonitrides, and
A surface-coated cermet member for a cutting tool, which is formed by forming a surface coating layer consisting of a single layer of one type of Al oxide, or indeed a multilayer of two or more types, with an average layer thickness of 0.5 to 10 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14142983A JPS6033353A (en) | 1983-08-02 | 1983-08-02 | Surface coated cermet member for cutting tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14142983A JPS6033353A (en) | 1983-08-02 | 1983-08-02 | Surface coated cermet member for cutting tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6033353A JPS6033353A (en) | 1985-02-20 |
JPS6151034B2 true JPS6151034B2 (en) | 1986-11-07 |
Family
ID=15291767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14142983A Granted JPS6033353A (en) | 1983-08-02 | 1983-08-02 | Surface coated cermet member for cutting tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6033353A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6391026U (en) * | 1986-11-29 | 1988-06-13 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0745707B2 (en) * | 1986-11-25 | 1995-05-17 | 三菱マテリアル株式会社 | Surface-coated titanium carbonitride-based cermet for high-speed cutting |
JP2623508B2 (en) * | 1989-10-30 | 1997-06-25 | 東芝タンガロイ株式会社 | Coated cemented carbide with adjusted surface roughness |
US5436071A (en) * | 1990-01-31 | 1995-07-25 | Mitsubishi Materials Corporation | Cermet cutting tool and process for producing the same |
US5942350A (en) * | 1997-03-10 | 1999-08-24 | United Technologies Corporation | Graded metal hardware component for an electrochemical cell |
SE519832C2 (en) * | 1999-05-03 | 2003-04-15 | Sandvik Ab | Titanium-based carbonitride alloy with binder phase of cobalt for easy finishing |
SE519834C2 (en) * | 1999-05-03 | 2003-04-15 | Sandvik Ab | Titanium-based carbonitride alloy with binder phase of cobalt for tough machining |
-
1983
- 1983-08-02 JP JP14142983A patent/JPS6033353A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6391026U (en) * | 1986-11-29 | 1988-06-13 |
Also Published As
Publication number | Publication date |
---|---|
JPS6033353A (en) | 1985-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3402146B2 (en) | Surface-coated cemented carbide end mill with a hard coating layer with excellent adhesion | |
JPS6151034B2 (en) | ||
JP3972299B2 (en) | Surface coated cermet cutting tool with excellent chipping resistance in high speed heavy cutting | |
WO2023188875A1 (en) | Sintered body and cutting tool | |
JPH0253510B2 (en) | ||
JP2019155569A (en) | Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance | |
JP2019155570A (en) | Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance | |
JPS5914534B2 (en) | Tough cermet with a softened surface layer | |
JPS5917176B2 (en) | Sintered hard alloy with hardened surface layer | |
JPH0271906A (en) | Surface coated tungsten carbide base sintered hard alloy made cutting tool excellent in plastic deformation resistance | |
WO2023188876A1 (en) | Sintered compact and cutting tool | |
JPS6146542B2 (en) | ||
JP2982359B2 (en) | Cemented carbide with excellent wear and fracture resistance | |
JPS62278267A (en) | Surface-coated ticn cermet | |
JPH11350111A (en) | Super hard film-coated tool member | |
JPS6321751B2 (en) | ||
JPS6245293B2 (en) | ||
JP2023148452A (en) | Sintered body and cutting tool | |
JPS6245290B2 (en) | ||
JPS6117899B2 (en) | ||
JPS6245291B2 (en) | ||
JPS6056781B2 (en) | Cermets for cutting tools and hot working tools | |
JPS59126751A (en) | Sintered hard alloy | |
JPS6017016B2 (en) | Cutting tool material with excellent high temperature properties | |
JPS601380B2 (en) | Cutting tool material with excellent high temperature properties |