JPS6321751B2 - - Google Patents

Info

Publication number
JPS6321751B2
JPS6321751B2 JP59004536A JP453684A JPS6321751B2 JP S6321751 B2 JPS6321751 B2 JP S6321751B2 JP 59004536 A JP59004536 A JP 59004536A JP 453684 A JP453684 A JP 453684A JP S6321751 B2 JPS6321751 B2 JP S6321751B2
Authority
JP
Japan
Prior art keywords
cutting
phase forming
dispersed phase
carbonitrides
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59004536A
Other languages
Japanese (ja)
Other versions
JPS60149775A (en
Inventor
Hironori Yoshimura
Naohisa Ito
Kenichi Nishigaki
Katsuaki Anzai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP453684A priority Critical patent/JPS60149775A/en
Publication of JPS60149775A publication Critical patent/JPS60149775A/en
Publication of JPS6321751B2 publication Critical patent/JPS6321751B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、高靭性および高硬度を有し、さら
に特にすぐれた耐酸化性を有し、かつ耐摩耗性、
耐塑性変形性、および耐衝撃性にもすぐれ、した
がつて、これらの特性が要求される高速切削に、
切削工具として用いた場合にすぐれた性能を発揮
する表面被覆サーメツト部材に関するものであ
る。 近年、加工能率向上のために切削速度の高速化
が検討されているが、切削速度を速くすると、切
削工具の刃先温度が上昇し、刃先が摩耗よりは、
むしろ高温に起因する塑性変形によつて使用寿命
に至る場合が多い。 しかしながら、現在切削工具として実用に供さ
れている硬質分散相が主として炭化タングステン
(以下WCで示す)や炭化チタン(以下TiCで示
す)で構成され、一方結合相が主として鉄族金属
で構成されているWC基超硬合金や、TiC基サー
メツトは、刃先温度が1000℃を越えると急激に軟
化するようになるために、これらのWC基超硬合
金やTiC基サーメツトは勿論のこと、これらの表
面に硬質被覆層を形成したものにおいても、その
使用条件は刃先温度が1000℃を若干上廻る程度に
制限され、刃先温度が1000℃をはるかに超える温
度になる高速切削に供することはできないのが現
状である。 また、硬質分散相がTiとWの複合金属炭窒化
物(以下、(Ti,W)CNで示す)で構成され、
一方結合相がW―Mo合金で構成されたサーメツ
トが提案され、この(Ti,W)CN基サーメツト
を高速切削用切削工具として用いる試みもなされ
ているが、この従来(Ti,W)CN基サーメツト
は、耐酸化性に劣るものであるために、切削速度
が250m/min近くになると、摩耗、特に前切刃
の境界摩耗が著しく発達し、短かい使用寿命しか
示さないものである。 そこで、本発明者等は、上述のような観点か
ら、高速切削に適した切削工具を開発すべく研究
を行なつた結果、重量%で(以下%は重量%を示
す)、 硬質分散相形成成分として、Tiと、Wと、元
素周期律表のTiを除く4aおよび5a族金属のうち
の1種または2種以上との複合金属炭窒化物固溶
体(以下、(Ti,M,W)CNで示す):10〜65
%、 を含有し、さらに、 同じく硬質分散相形成成分として、Al,Y,
およびZrの酸化物(以下Al2O3,Y2O3,および
ZrO2で示す)のうちの1種または2種以上:0.5
〜10%と、 酸化マグネシウム(以下Mgoで示す):0.01〜
1%、 のいずれか、または両方を含有し、残りが結合相
形成成分としてのWと不可避不純物からなる組成
を有するサーメツト基体の表面に、 Ti,Zr,およびHfの炭化物,窒化物,炭窒化
物,および炭窒酸化物,並びにAlの酸化物およ
び酸窒化物(以下、それぞれTiC,ZrC,HfC,
TiN,ZrN,HfN,TiCN,ZrCN,HfCN,
TiCNO,ZrCNO,HfCNO,Al2O3,および
AlONで示す)のうちの1種の単層または2種以
上の複層からなる硬質被覆層を形成してなる表面
被覆サーメツト部材は、高靭性および高硬度を有
し、さらに特にすぐれた耐酸化性を有し、かつ耐
摩耗性,耐塑性変形性,および耐衝撃性にもすぐ
れた特性をもつことから、これを切削速度が250
m/min付近の高速切削に使用した場合にも、き
わめてすぐれた切削性能を著しく長期に亘つて発
揮するという知見を得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、以下に成分組成を上記の通りに限定
した理由を説明する。 (a) (Ti,M,W)CN これらの成分は、主体硬質分散相形成成分であ
つて、サーメツト基体にすぐれた耐摩耗性と耐塑
性変形性を付与せしめる作用があるが、その含有
量が10%未満では、結合相を形成する金属Wの素
地中にスケルトンを形成することなく均一に分散
してしまつて前記作用を十分に発揮させることが
できず、一方65%を越えて含有させると、相対的
に結合相の量が減少し、サーメツト基体の靭性が
劣化するようになることから、その含有量を10〜
65%と定めた。 (b) Al2O3,Y2O3,およびZrO2 これらの成分は、いずれも分散相形成成分であ
つて、そのほとんどが素地に均一に分散し、特に
サーメツト基体の耐酸化性を向上させるほか、耐
摩耗性を向上させる作用をもつが、その含有量が
0.5%未満では前記作用に所望の効果が得られず、
一方10%を越えて含有させると、耐衝撃性および
耐塑性変形性が低下するようになることから、そ
の含有量を0.5〜10%と定めた。 (c) Mgo Mgo成分は、そのほとんどが焼結時に(Ti,
W)・CNまたは(Ti,M,W)CN中のCと反応
して基体のC量を減少させると同時に、焼結性を
改善し、かつそのわずかな量が基体中に残留して
耐衝撃性を著しく向上させる作用をもつが、その
含有量が0.01%未満では前記作用に所望の効果が
得られず、一方その含有量が1%を越えると、基
体にポアが残存し、基体の耐衝撃性および耐塑性
変形性に劣化傾向が現われるようになることか
ら、その含有量を0.01〜1%と定めた。 (d) Wおよび不可避不純物 Wは、その一部が硬質相に固溶するが、大部分
は結合相として存在して硬質被覆層と強固に結合
し、部材にすぐれた耐衝撃性を付与する作用を有
するものである。また、不可避不純物として、
Mo,Cr,Fe,Ni,Co,Re,Pt,およびPdなど
のうちの1種または2種以上を含有しても、それ
ぞれの含有量が1%以下であれば基体の特性が何
ら損なわれるものではない。 さらに、この発明の表面被覆サーメツト部材に
おける耐摩耗性のすぐれた硬質被覆層は、特に基
体の構成成分であるWとの結合力が強く、基体表
面と強固に密着するもので、通常の化学蒸着法や
物理蒸着法によつて形成することができるが、こ
の場合の層厚は、平均層厚で0.5〜20μmとするの
が望ましく、これは0.5μm未満では所望の耐摩耗
性を確保することができず、一方20μmを越える
と部材自体の靭性劣化が著しくなるという理由に
よるものである。 つぎに、この発明の表面被覆サーメツト部材を
実施例により具体的に説明する。 実施例 通常の粉末冶金法にて、それぞれ第1表に示さ
れる成分組成〔(Ti,M,W)CNの数字は原子
比を示す〕をもつたサーメツト基体を製造し、こ
れよりJIS・SNP432の形状をもつた切削チツプ
を切出し、ついでこの切削チツプの表面に、通常
の化学蒸着法および物理蒸着法を用いて、同じく
第1表に示される組成(組成における数字は原子
比を示す)および層厚をもつた硬質被覆層を形成
することによつて本発明表面被覆サーメツト部材
としての本発明表面被覆切削チツプ1〜9および
比較表面被覆サーメツト部材としての比較表面被
覆切削チツプ1〜4を製造し、さらに基体の成分
組成はこの発明の範囲内にあるが、硬質被覆層の
形成がない比較切削チツプを製造した。なお、比
較表面被覆切削チツプ1〜
This invention has high toughness and high hardness, and further has particularly excellent oxidation resistance, wear resistance,
It has excellent plastic deformation resistance and impact resistance, so it is suitable for high-speed cutting that requires these properties.
The present invention relates to a surface-coated cermet member that exhibits excellent performance when used as a cutting tool. In recent years, increasing the cutting speed has been considered to improve machining efficiency, but increasing the cutting speed increases the temperature of the cutting tool's edge and causes the edge to wear out.
Rather, the service life is often reached due to plastic deformation caused by high temperatures. However, the hard dispersed phase currently in practical use as cutting tools is mainly composed of tungsten carbide (hereinafter referred to as WC) and titanium carbide (hereinafter referred to as TiC), while the binder phase is mainly composed of iron group metals. The WC-based cemented carbide and TiC-based cermet that are used in the cutting process rapidly soften when the cutting edge temperature exceeds 1000°C. Even for those with a hard coating layer formed on them, their usage conditions are limited to a blade edge temperature of slightly over 1000℃, and they cannot be used for high-speed cutting where the blade edge temperature far exceeds 1000℃. This is the current situation. In addition, the hard dispersed phase is composed of a composite metal carbonitride of Ti and W (hereinafter referred to as (Ti, W)CN),
On the other hand, a cermet in which the binder phase is composed of a W--Mo alloy has been proposed, and attempts have been made to use this (Ti, W)CN-based cermet as a cutting tool for high-speed cutting. Since cermet has poor oxidation resistance, when the cutting speed approaches 250 m/min, wear, especially boundary wear on the front cutting edge, develops significantly, resulting in only a short service life. Therefore, from the above-mentioned viewpoint, the present inventors conducted research to develop a cutting tool suitable for high-speed cutting, and as a result, the hard dispersed phase formation was determined by weight% (hereinafter % indicates weight%). A composite metal carbonitride solid solution (hereinafter referred to as (Ti,M,W)CN ): 10 to 65
%, and further contains Al, Y, and also as hard dispersed phase forming components.
and Zr oxides (hereinafter referred to as Al 2 O 3 , Y 2 O 3 , and
One or more of the following : 0.5
~10% and magnesium oxide (hereinafter referred to as Mgo): 0.01~
Carbides, nitrides, and carbonitrides of Ti, Zr, and Hf are coated on the surface of a cermet substrate having a composition of 1%, either or both of the following, and the remainder consisting of W as a binder phase forming component and unavoidable impurities. oxides, carbonitrides, and oxides and oxynitrides of Al (hereinafter referred to as TiC, ZrC, HfC,
TiN, ZrN, HfN, TiCN, ZrCN, HfCN,
TiCNO, ZrCNO, HfCNO, Al 2 O 3 , and
A surface-coated cermet member formed with a hard coating layer consisting of a single layer or a multilayer of two or more types of AlON) has high toughness and hardness, and has particularly excellent oxidation resistance. It has excellent properties such as wear resistance, plastic deformation resistance, and impact resistance.
It was discovered that even when used for high-speed cutting at around m/min, it exhibits extremely excellent cutting performance over an extremely long period of time. This invention was made based on the above knowledge, and the reason why the component composition was limited as described above will be explained below. (a) (Ti, M, W)CN These components are mainly hard dispersed phase forming components and have the effect of imparting excellent wear resistance and plastic deformation resistance to the cermet substrate. If it is less than 10%, it will be uniformly dispersed in the matrix of the metal W that forms the binder phase without forming a skeleton, and the above effect cannot be fully exerted.On the other hand, if it is contained more than 65% , the amount of binder phase decreases relatively and the toughness of the cermet substrate deteriorates, so the content should be reduced to 10~
It was set at 65%. (b) Al 2 O 3 , Y 2 O 3 , and ZrO 2 All of these components are dispersed phase forming components, and most of them are uniformly dispersed in the substrate, particularly improving the oxidation resistance of the cermet substrate. In addition, it has the effect of improving wear resistance, but its content is
If it is less than 0.5%, the desired effect cannot be obtained,
On the other hand, if the content exceeds 10%, the impact resistance and plastic deformation resistance will decrease, so the content was set at 0.5 to 10%. (c) Mgo Most of the Mgo components (Ti,
Reacts with C in W)・CN or (Ti,M,W)CN to reduce the amount of C in the substrate and at the same time improve sinterability, and a small amount of it remains in the substrate to improve durability. It has the effect of significantly improving impact resistance, but if its content is less than 0.01%, the desired effect cannot be obtained, while if its content exceeds 1%, pores remain in the substrate, causing damage to the substrate. Since the impact resistance and plastic deformation resistance tend to deteriorate, the content was set at 0.01 to 1%. (d) W and unavoidable impurities A part of W is dissolved in the hard phase, but most of it is present as a binder phase and is strongly bonded to the hard coating layer, giving the member excellent impact resistance. It has an effect. In addition, as inevitable impurities,
Even if it contains one or more of Mo, Cr, Fe, Ni, Co, Re, Pt, and Pd, the properties of the substrate will not be impaired in any way if the content of each is 1% or less. It's not a thing. Furthermore, the hard coating layer with excellent abrasion resistance in the surface-coated cermet member of the present invention has a particularly strong bonding force with W, which is a component of the base material, and firmly adheres to the surface of the base material. In this case, the average layer thickness is preferably 0.5 to 20 μm, and if it is less than 0.5 μm, the desired wear resistance cannot be ensured. This is because, on the other hand, if the thickness exceeds 20 μm, the toughness of the member itself will deteriorate significantly. Next, the surface-coated cermet member of the present invention will be specifically explained using examples. Example Cermet substrates having the component compositions shown in Table 1 [(Ti, M, W) CN numbers indicate atomic ratios] were manufactured using the usual powder metallurgy method, and from this, JIS/SNP432 A cutting chip having a shape of By forming a hard coating layer with a layer thickness, surface-coated cutting chips 1 to 9 of the present invention as surface-coated cermet members of the present invention and comparative surface-coated cutting chips 1 to 4 as comparative surface-coated cermet members were manufactured. In addition, a comparative cutting tip was manufactured in which the composition of the substrate was within the scope of the present invention, but without the formation of a hard coating layer. In addition, comparative surface coated cutting chips 1~

【表】 (*印:本発明範囲外)
4は、基体の成分組成がこの発明の範囲から外れ
た組成をもつものである。 ついで、この結果得られた本発明被覆切削チツ
プ1〜9、比較表面被覆切削チツプ1〜4,およ
び比較切削チツプについて、 被削材:JIS・SNCM―8(硬さ:HB270)、 切削速度:250m/min、 送り:0.36mm/rev.、 切込み:1.5mm、 切削時間:10min、 の条件での高速連続切削試験、並びに 被削材:JIS・SNCM―8(硬さ:HB270)、 切削速度:200m/min、 送り:0.3mm/rev.、 切込み:3mm、 切削時間:3m の条件での断続切削試験を行ない、高速連続切削
試験では、切刃のすくい面摩耗深さと逃げ面摩耗
幅を測定し、また断続切削試験では10個の試験切
刃のうち、その刃先に欠損が発生した切刃数を測
定した。これらの測定結果を第1表に合せて示し
た。また、第1表には、比較の目的で、市販の
ISOのP10グレードのWC基超硬合金製切削チツ
プ(以下従来切削チツプ1という)、TiC―10%
Mo―15%Niの組成を有するTiC基サーメツト製
切削チツプ(以下従来切削チツプ2という)、お
よび前記従来切削チツプ1の表面に、内層として
平均層厚:6μmのTiCを被覆し、さらにその上に
表面層として平均層厚:1μmのAl2O3を被覆して
なる表面被覆切削チツプ(以下従来切削チツプ3
という)の上記と同一の切削条件での切削試験結
果を示した。 第1表に示される結果から、本発明表面被覆切
削チツプ1〜9は、いずれも上記の厳しい条件で
の切削試験ですぐれた耐摩耗性と耐衝撃性を示す
のに対して、基体の成分組成がこの発明の範囲か
れ外れた比較表面被覆切削チツプ1〜4は、耐摩
耗性および耐衝撃性のうちの少なくともいずれか
の特性が劣つたものになつており、また基体の成
分組成はこの発明の範囲内にあるが硬質被覆層の
形成がない比較切削チツプはすぐれた耐衝撃性を
示すものの、耐摩耗性の劣つたものになつてい
る。さらに、従来切削チツプ1〜3は、いずれも
切削速度が250m/minの高速になると耐摩耗性
が低下するようになるばかりでなく、耐衝撃性に
ついても上記の試験条件が厳しい断続切削試験で
は劣つた結果しか示さないことが明らかである。 上述のように、この発明の表面被覆サーメツト
部材は、基体が高硬度および高靭性を有し、さら
に特にすぐれた耐酸化性を有し、この結果、基体
はすぐれた耐摩耗性、耐塑性変形性、および耐衝
撃性を有するものとなり、さらにこれに加えて基
体表面に形成された硬質被覆層は高硬度および化
学的安定性を有するばかりでなく、基体表面に著
しく強固に密着しているので一段とすぐれた耐摩
耗性が確保されるようになり、したがつて、これ
を特に鋼や鋳鉄などの高速切削や重切削に切削工
具として用いた場合に、きわめてすぐれた切削性
能を著しく長期に亘つて安定的に発揮するもので
ある。
[Table] (*mark: outside the scope of the present invention)
In No. 4, the component composition of the substrate is outside the scope of the present invention. Next, regarding the thus obtained coated cutting chips 1 to 9 of the present invention, comparative surface coated cutting chips 1 to 4, and comparative cutting chips, the following were performed: Work material: JIS/SNCM-8 (hardness: H B 270), cutting High speed continuous cutting test under the conditions of speed: 250m/min, feed: 0.36mm/rev., depth of cut: 1.5mm, cutting time: 10min, and workpiece material: JIS/SNCM-8 (hardness: H B 270) ), cutting speed: 200m/min, feed: 0.3mm/rev., depth of cut: 3mm, cutting time: 3m. The width of the surface wear was measured, and in the interrupted cutting test, the number of cutting edges in which chipping occurred among the 10 test cutting edges was measured. These measurement results are also shown in Table 1. Table 1 also includes commercially available
ISO P10 grade WC-based cemented carbide cutting tip (hereinafter referred to as conventional cutting tip 1), TiC-10%
The surfaces of the TiC-based cermet cutting tip having a composition of Mo-15% Ni (hereinafter referred to as conventional cutting tip 2) and the conventional cutting tip 1 are coated with TiC as an inner layer with an average layer thickness of 6 μm, and further A surface-coated cutting chip (hereinafter referred to as conventional cutting chip 3) is made by coating Al 2 O 3 as a surface layer with an average layer thickness of 1 μm.
The results of the cutting test under the same cutting conditions as above are shown. From the results shown in Table 1, surface-coated cutting chips 1 to 9 of the present invention all showed excellent wear resistance and impact resistance in the cutting tests under the above-mentioned severe conditions. Comparative surface-coated cutting chips 1 to 4 whose compositions were outside the scope of the present invention were inferior in at least one of wear resistance and impact resistance, and the component composition of the substrate was inferior to this one. Comparative cutting chips within the scope of the invention but without the formation of a hard coating layer exhibit excellent impact resistance, but have poor abrasion resistance. Furthermore, for conventional cutting chips 1 to 3, not only the wear resistance deteriorates when the cutting speed increases to 250 m/min, but also the impact resistance deteriorates in the severe interrupted cutting test described above. It is clear that it shows inferior results. As mentioned above, in the surface-coated cermet member of the present invention, the base has high hardness and high toughness, and further has particularly excellent oxidation resistance.As a result, the base has excellent wear resistance and plastic deformation resistance. In addition to this, the hard coating layer formed on the substrate surface not only has high hardness and chemical stability, but also has extremely strong adhesion to the substrate surface. This ensures even better wear resistance, and therefore, when used as a cutting tool, especially for high-speed cutting and heavy-duty cutting of steel, cast iron, etc., extremely excellent cutting performance can be achieved over a significantly long period of time. It is something that is stable and performs well.

Claims (1)

【特許請求の範囲】 1 硬質分散相形成成分として、Tiと、Wと、
元素周期律表のTiを除く4aおよび5a族金属のう
ちの1種または2種以上との複合金属炭窒化物固
溶体:10〜65%、 同じく硬質分散相形成成分として、Al、Y、
およびZrの酸化物のうちの1種または2種以
上:0.5〜10%、 を含有し、残りが結合相形成成分としてのWと不
可避不純物からなる組成(以上重量%)を有する
サーメツト基体の表面に、 Ti、Zr、およびHfの炭化物、窒化物、炭窒化
物、および炭窒酸化物、並びにAlの酸化物およ
び酸窒化物のうちの1種の単層または2種以上の
複層からなる硬質被覆層を形成してなる切削工具
用表面被覆サーメツト部材。 2 硬質分散相形成成分として、Tiと、Wと、
元素周期律表のTiを除く4aおよび5a族金属のう
ちの1種または2種以上との複合金属炭窒化物固
溶体:10〜65%、 同じく硬質分散相形成成分として、酸化マグネ
シウム:0.01〜1%、 を含有し、残りが結合相形成成分としてのWと不
可避不純物からなる組成(以上重量%)を有する
サーメツト基体の表面に、 Ti、Zr、およびHfの炭化物、窒化物、炭窒化
物および炭窒酸化物、並びにAlの酸化物および
酸窒化物のうちの1種の単層または2種以上の複
層からなる硬質被覆層を形成してなる切削工具用
表面被覆サーメツト部材。 3 硬質分散相形成成分として、Tiと、Wと、
元素周期律表のTiを除く4aおよび5a族金属のう
ちの1種または2種以上との複合金属炭窒化物固
溶体:10〜65%、 硬質分散相形成成分として、Al、Y、および
Zrの酸化物のうちの1種または2種以上:0.5〜
10%、 同じく硬質分散相形成成分として、酸化マグネ
シウム:0.01〜1%、 を含有し、残りが結合相形成成分としてのWと不
可避不純物からなる組成(以上重量%)を有する
サーメツト基体の表面に、 Ti、Zr、およびHfの炭化物、窒化物、炭窒化
物および炭窒酸化物、並びにAlの酸化物および
酸窒化物のうちの1種の単層または2種以上の複
層からなる硬質被覆層を形成してなる切削工具用
表面被覆サーメツト部材。
[Claims] 1. As hard dispersed phase forming components, Ti, W,
Composite metal carbonitride solid solution with one or more metals of group 4a and 5a of the periodic table of elements excluding Ti: 10-65%, also containing Al, Y, as hard dispersed phase forming components
and one or more of Zr oxides: 0.5 to 10%, with the remainder consisting of W as a binder phase forming component and unavoidable impurities (wt%). Consisting of a single layer or a multilayer of two or more of carbides, nitrides, carbonitrides, and carbonitrides of Ti, Zr, and Hf, and oxides and oxynitrides of Al. A surface-coated cermet member for cutting tools formed with a hard coating layer. 2. As hard dispersed phase forming components, Ti, W,
Composite metal carbonitride solid solution with one or more metals from group 4a and 5a metals excluding Ti in the Periodic Table of the Elements: 10-65%, Magnesium oxide: 0.01-1 as a hard dispersed phase forming component %, with the remainder consisting of W as a binder phase-forming component and unavoidable impurities (weight %), carbides, nitrides, carbonitrides and A surface-coated cermet member for a cutting tool, comprising a hard coating layer consisting of a single layer or a multilayer of two or more of carbonitrides, oxides of Al, and oxynitrides. 3 As hard dispersed phase forming components, Ti and W,
Composite metal carbonitride solid solution with one or more of group 4a and 5a metals excluding Ti in the periodic table of the elements: 10-65%, Al, Y, and as hard dispersed phase forming components
One or more Zr oxides: 0.5~
10%, magnesium oxide: 0.01 to 1%, also as a hard dispersed phase forming component, and the remainder consisting of W as a binder phase forming component and unavoidable impurities (weight %). , a hard coating consisting of a single layer or a multilayer of two or more of carbides, nitrides, carbonitrides, and carbonitrides of Ti, Zr, and Hf, and oxides and oxynitrides of Al. A surface-coated cermet member for cutting tools formed by forming layers.
JP453684A 1984-01-13 1984-01-13 Surface coated cermet member for cutting tool Granted JPS60149775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP453684A JPS60149775A (en) 1984-01-13 1984-01-13 Surface coated cermet member for cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP453684A JPS60149775A (en) 1984-01-13 1984-01-13 Surface coated cermet member for cutting tool

Publications (2)

Publication Number Publication Date
JPS60149775A JPS60149775A (en) 1985-08-07
JPS6321751B2 true JPS6321751B2 (en) 1988-05-09

Family

ID=11586760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP453684A Granted JPS60149775A (en) 1984-01-13 1984-01-13 Surface coated cermet member for cutting tool

Country Status (1)

Country Link
JP (1) JPS60149775A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788569B2 (en) * 1986-09-04 1995-09-27 三菱マテリアル株式会社 Surface coated hard alloy for cutting tools with excellent fracture resistance
JPH0745707B2 (en) * 1986-11-25 1995-05-17 三菱マテリアル株式会社 Surface-coated titanium carbonitride-based cermet for high-speed cutting
DE59606970D1 (en) * 1996-10-09 2001-06-28 Widia Gmbh COMPOSITE BODY, METHOD FOR ITS PRODUCTION AND USE OF THE COMPOSITE BODY

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151032A (en) * 1980-12-09 1986-03-13 ヘキスト・セラニーズ・コーポレーション Anisotropic melt phase forming polymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151032A (en) * 1980-12-09 1986-03-13 ヘキスト・セラニーズ・コーポレーション Anisotropic melt phase forming polymer

Also Published As

Publication number Publication date
JPS60149775A (en) 1985-08-07

Similar Documents

Publication Publication Date Title
USRE39814E1 (en) Cemented carbide insert and method of making same
JP3347687B2 (en) Hard coating tool
JP3248897B2 (en) Hard coating tool
KR960006053B1 (en) Coated cemented carbide member and the method of manufacturing the same
CN101018879B (en) Coated cutting cutter comprising carbide substrate and coating and its manufacture method
EP0236961B1 (en) Surface-coated cutting member
JPS6321751B2 (en)
EP1222316B1 (en) Coated cemented carbide insert
JP4069749B2 (en) Cutting tool for roughing
JP3123067B2 (en) WC-based cemented carbide and cemented carbide with hard layer excellent in toughness
JP3460571B2 (en) Milling tool with excellent wear resistance
JPS5826428B2 (en) Coated cemented carbide tools
JPS6151034B2 (en)
JP3589396B2 (en) Hard coating tool
JPS62174380A (en) Surface coated sintered hard alloy member for cutting tool
JP2982359B2 (en) Cemented carbide with excellent wear and fracture resistance
JPS6151032B2 (en)
JP2571772B2 (en) Surface coated cutting tool with excellent fracture resistance
JPH10310878A (en) Cutting tool made of surface-coated cemented carbide having hard coating layer excellent in wear resistance
JP2697187B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool for cutting Ti and Ti alloys
JP2560541B2 (en) Surface coated cermet cutting tool
JPH10298700A (en) Cemented carbide
JPH07328811A (en) Surface covered high-speed steel cutting tool superior in abrasion resistance
JPS62278267A (en) Surface-coated ticn cermet
JP2591403B2 (en) Surface coated cemented carbide cutting tool