WO2023188692A1 - 透明樹脂フィルム及び表示装置 - Google Patents

透明樹脂フィルム及び表示装置 Download PDF

Info

Publication number
WO2023188692A1
WO2023188692A1 PCT/JP2023/000760 JP2023000760W WO2023188692A1 WO 2023188692 A1 WO2023188692 A1 WO 2023188692A1 JP 2023000760 W JP2023000760 W JP 2023000760W WO 2023188692 A1 WO2023188692 A1 WO 2023188692A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin layer
less
transparent
mass
Prior art date
Application number
PCT/JP2023/000760
Other languages
English (en)
French (fr)
Inventor
寛 岩脇
崇弘 石原
宏司 西岡
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022205854A external-priority patent/JP2023152662A/ja
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2023188692A1 publication Critical patent/WO2023188692A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to a transparent resin film containing inorganic particles and a display device including the transparent resin film.
  • Patent Document 1 discloses a quantum dot-containing resin sheet or film in which a plurality of resin layers are laminated and at least one resin layer contains quantum dots, and a wavelength conversion member using the same. is listed.
  • the present invention provides a transparent resin film and a display device shown below.
  • a transparent resin film comprising: The first resin layer contains inorganic particles, The absolute value of the difference between the glossiness of the surface of the second resin layer opposite to the first resin layer and the glossiness of the third resin layer of the surface opposite to the first resin layer is C. When, formula (i): C ⁇ 5.5 (i) A transparent resin film that meets the following requirements.
  • a transparent resin film comprising: The first resin layer contains inorganic particles, The first resin has a melt flow rate of M 1 [g/10 min], The second resin has a melt flow rate of M 2 [g/10 minutes], The ratio M 1 /M 2 of the M 1 to the M 2 is defined as B, and the glossiness of the surface of the second resin layer opposite to the first resin layer and the first resin in the third resin layer When the absolute value of the difference from the glossiness of the surface opposite to the layer is C, formula (ii): B ⁇ C ⁇ 8.5 (ii) A transparent resin film that meets the following requirements.
  • the resin contained in the first resin layer is made of the first resin
  • the resin contained in the second resin layer is made of the second resin
  • the resin contained in the third resin layer is made of the third resin.
  • the transparent resin film according to any one of [1] to [4] which is made of a resin.
  • the transparent resin film according to the present invention includes a first resin layer containing inorganic particles and a first resin, a second resin layer containing a second resin, and a second resin layer containing a second resin. It is a resin film with a multilayer structure including a third resin layer containing three resins.
  • Transparent in a transparent resin film means that the total light transmittance measured in accordance with JIS K 7361-1:1997 is 30% or more. The total light transmittance is preferably 35% or more, more preferably 40% or more, even more preferably 45% or more, and may be 100% or less, or 95% or less. It is preferable that each of the resin layers constituting the transparent resin film is "transparent".
  • the term “film” also includes the meaning of the term "sheet”.
  • the transparent resin film can be suitably used as a film for optical applications (optical film).
  • An example of optical use is use as an optical member used in a display device.
  • Transparent resin films can have good impact resistance and bending resistance, and are suitable as optical films.
  • the transparent resin film will be explained in detail below.
  • FIG. 1 is a schematic cross-sectional view showing an example of a transparent resin film.
  • the transparent resin film shown in FIG. 1 includes a first resin layer 10 containing inorganic particles 15, a second resin layer 20 disposed on the first surface (one surface) of the first resin layer 10, and It is a resin film with a three-layer structure consisting of a first surface of one resin layer 10 and a third resin layer 30 disposed on the opposing second surface (the other surface).
  • first resin layer 10 and the second resin layer 20 are in contact with each other, and it is preferable that the first resin layer 10 and the third resin layer 30 are in contact with each other.
  • the first resin layer 10 is a resin layer containing inorganic particles 15, and the inorganic particles 15 are normally dispersed in the first resin layer 10.
  • the resin contained in the first resin layer 10 includes a first resin, and preferably, the resin contained in the first resin layer 10 is made of the first resin.
  • the first resin layer 10 contains one or more types of inorganic particles 15.
  • the shape of the inorganic particles 15 is not particularly limited, but is preferably granular, more preferably spherical or approximately spherical.
  • the inorganic particles 15 may have a single layer structure or a multilayer structure.
  • the density of the inorganic particles 15 is usually 0.8 g/cm 3 or more, preferably 0.9 g/cm 3 or more, more preferably 1.0 g/cm 3 or more, and still more preferably 1.0 g/cm 3 or more. , still more preferably 2.0 g/cm 3 or more.
  • the density of the inorganic particles 15 is usually 7.0 g/cm 3 or less, preferably 6.0 g/cm 3 or less, more preferably 5.0 g/cm 3 or less, even more preferably 4.5 g/cm 3 It is as follows.
  • the density of the inorganic particles 15 can be measured using a Gerussac type pycnometer in an environment at a temperature of 25°C.
  • the density of the inorganic particles 15 is below the above upper limit, sedimentation of the inorganic particles 15 is easily suppressed, and the distribution of the inorganic particles 15 in the first resin layer 10 tends to be uniform, so that variations in surface hardness are reduced.
  • Cheap Moreover, when the density of the inorganic particles 15 is equal to or higher than the above lower limit, mechanical strength such as surface hardness is easily increased.
  • Examples of the inorganic particles 15 contained in the first resin layer 10 include light scattering agents and luminescent (fluorescent) semiconductor particles (hereinafter also simply referred to as "semiconductor particles").
  • Examples of the light scattering agent include metal or metal oxide particles, glass particles (glass beads, etc.), and the like.
  • the light scattering agent is preferably a particle of a metal oxide, since it is preferable to have only a scattering effect without absorption due to coloring, and examples of the metal oxide include TiO 2 , SiO 2 , BaTiO 3 , ZnO, etc. Among them, TiO 2 particles are preferable because they scatter light efficiently.
  • the volume-based median diameter of the light scattering agent is, for example, about 0.03 ⁇ m or more and 20 ⁇ m or less, preferably 0.05 ⁇ m or more and 1 ⁇ m or less, and more preferably 0.05 ⁇ m or more and 0.5 ⁇ m or less.
  • the semiconductor particles emit light of a different wavelength from the primary light, and preferably convert the wavelength of blue light, which is the primary light, into the wavelength of light of a different color.
  • the semiconductor particles preferably emit green or red light, and more preferably absorb blue light and emit green or red light.
  • blue refers to all light that is visually recognized as blue (general light having an intensity in the blue wavelength range, for example, 380 nm to 495 nm), and is not limited to light of a single wavelength.
  • Green refers to all light that is visually perceived as green (all light having an intensity in the green wavelength range, for example, 495 nm to 585 nm), and is not limited to light of a single wavelength.
  • Red refers to light in general that is visually recognized as red (general light having an intensity in the red wavelength range, for example, 585 nm to 780 nm), and is not limited to light of a single wavelength.
  • yellow refers to all light that is visually perceived as yellow (all light having an intensity in the yellow wavelength range, for example, 560 nm to 610 nm), and is not limited to light of a single wavelength.
  • the emission spectrum of the semiconductor particles that emit green light preferably includes a peak having a maximum value in a wavelength range of 500 nm or more and 560 nm or less, more preferably a peak having a maximum value in a wavelength range of 520 nm or more and 545 nm or less, More preferably, it includes a peak having a maximum value in a wavelength range of 525 nm or more and 540 nm or less.
  • the full width at half maximum of the peak is preferably 15 nm or more and 80 nm or less, more preferably 15 nm or more and 60 nm or less, still more preferably 15 nm or more and 50 nm or less, particularly preferably 15 nm or more and 45 nm or less.
  • the emission spectrum of the semiconductor particles that emit red light preferably includes a peak having a maximum value in a wavelength range of 610 nm or more and 750 nm or less, more preferably a peak having a maximum value in a wavelength range of 615 nm or more and 650 nm or less, More preferably, it includes a peak having a maximum value in a wavelength range of 620 nm or more and 640 nm or less.
  • the full width at half maximum of the peak is preferably 15 nm or more and 80 nm or less, more preferably 15 nm or more and 60 nm or less, still more preferably 15 nm or more and 50 nm or less, particularly preferably 15 nm or more and 45 nm or less.
  • the emission spectrum of the semiconductor particles can be determined using, for example, a spectrofluorophotometer or an absolute PL quantum yield measuring device (“C9920-02” manufactured by Hamamatsu Photonics, excitation light 450 nm, room temperature, in the atmosphere). For example, the measurement is performed using a semiconductor particle dispersion diluted so that the absorbance at a wavelength of 450 nm is 0.4.
  • the emission spectrum of a transparent resin film containing semiconductor particles was determined by placing a measurement sample of the transparent resin film on a blue LED backlight with a peak wavelength of 450 nm, and measuring the transmitted light with a spectroradiometer (“SR- UL1R").
  • the semiconductor particles are particles made of semiconductor crystals, preferably nanoparticles made of semiconductor crystals.
  • Preferred examples of semiconductor particles include semiconductor quantum dots (hereinafter also referred to as “quantum dots”) and particles of compounds having a perovskite crystal structure (hereinafter also referred to as “perovskite compounds”), and more preferably It is a quantum dot.
  • Quantum dots are luminescent semiconductor particles that emit light by absorbing ultraviolet light or visible light (for example, blue light) by utilizing the band gap of the semiconductor.
  • the average particle size of the quantum dots is, for example, 0.5 nm or more and 100 nm or less, preferably 0.5 nm or more and 20 nm or less, and more preferably 1 nm or more and 15 nm or less (for example, 2 nm or more and 15 nm or less).
  • the average particle size of quantum dots can be determined using a transmission electron microscope (TEM). Since the energy state of a quantum dot depends on its size, it is possible to freely select the emission wavelength by changing the particle size.
  • the peak wavelengths of the emission spectrum when the particle diameters are 2.3 nm, 3.0 nm, 3.8 nm, and 4.6 nm are 528 nm, 570 nm, 592 nm, and 637 nm, respectively. It is.
  • quantum dots include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdHgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, Hg STe, CdZnS, CdZnSe, CdZnTe , CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSe Compounds of group 12 elements such as Te and HgZnSTe and group 16 elements; GaN
  • quantum dots surface-modified with metal oxides or organic substances may be used.
  • surface-modified quantum dots it is possible to prevent S and Se from being extracted by reactive components that are or may be included in the composition.
  • the quantum dot may form a core-shell structure by combining the above-mentioned compounds. Examples of such combinations include fine particles in which the core is CdSe and the shell is ZnS, and fine particles in which the core is InP and the shell is ZnSeS.
  • quantum dots Since the energy state of a quantum dot depends on its size, it is possible to freely select the emission wavelength by changing the particle size. Furthermore, since the light emitted from the quantum dots has a narrow spectrum width, it is advantageous for widening the color gamut of a display device. Furthermore, since quantum dots have high responsiveness, they are also advantageous in terms of primary light utilization efficiency.
  • quantum dots may have a single layer structure made of a single semiconductor material, or the surface of a nuclear particle (core layer) made of a single semiconductor material may be made of one or two different types. It may be a core-shell structure covered with a covering layer (shell layer) made of one or more semiconductor materials. In the latter case, the semiconductor material constituting the shell layer usually has a larger bandgap energy than the semiconductor material constituting the core layer.
  • the quantum dot may have two or more types of shell layers.
  • the shape of the quantum dots is not particularly limited, and may be, for example, spherical or approximately spherical, rod-shaped, disc-shaped, or the like.
  • a perovskite compound is a compound having a perovskite-type crystal structure containing A, B, and X as components.
  • A is a component located at each vertex of a hexahedron centered on B, and is a monovalent cation.
  • X represents a component located at each vertex of an octahedron centered on B in the perovskite crystal structure, and is at least one ion selected from the group consisting of halide ions and thiocyanate ions.
  • B is a component located at the center of the hexahedron with A at the apex and the octahedron with X at the apex, and is a metal ion.
  • the average particle diameter of the semiconductor particles made of a perovskite compound is preferably 3 nm or more, more preferably 4 nm or more, and still more preferably 5 nm or more, from the viewpoint of maintaining a good crystal structure. Further, from the viewpoint of dispersibility of the semiconductor particles made of a perovskite compound, the average particle size of the semiconductor particles is preferably 5 ⁇ m or less, more preferably 500 nm or less, and even more preferably 100 nm or less.
  • the average particle size of semiconductor particles made of a perovskite compound can be determined using a transmission electron microscope (TEM).
  • the perovskite compound containing A, B, and X as components is not particularly limited, and may be a compound having any structure such as a three-dimensional structure, a two-dimensional structure, or a pseudo-two-dimensional structure.
  • the perovskite compound is represented by ABX (3+ ⁇ ) .
  • the perovskite compound is represented by A 2 BX (4+ ⁇ ) .
  • is a number that can be changed as appropriate depending on the charge balance of B, and is ⁇ 0.7 or more and 0.7 or less.
  • Preferred specific examples of perovskite compounds having a two-dimensional perovskite crystal structure represented by A 2 BX (4+ ⁇ ) include: ( C4H9NH3 ) 2PbBr4 , ( C4H9NH3 ) 2PbCl4 , ( C4H9NH3 ) 2PbI4 , ( C7H15NH3 ) 2PbBr4 , ( C 7 H 15 NH 3 ) 2 PbCl 4 , (C 7 H 15 NH 3 ) 2 PbI 4 , (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4+ ⁇ ) (0 ⁇ a ⁇ 0.
  • the first resin layer may contain two or more types of semiconductor particles.
  • the first resin layer may contain only one type of semiconductor particles that absorb primary light and emit green light, or may contain a combination of two or more types.
  • the first resin layer may contain only one type of semiconductor particles that absorb primary light and emit red light, or may contain a combination of two or more types.
  • the first resin layer 10 may contain only one type of inorganic particles 15, or may contain two or more types of inorganic particles 15.
  • the content rate of the inorganic particles 15 contained in the first resin layer 10 is, for example, 0.05% by mass with respect to the total amount of the first resin layer 10 because it is easy to increase the mechanical strength and bending resistance of the transparent resin film. or more, preferably 0.10% by mass or more, more preferably 0.15% by mass or more, even more preferably 0.20% by mass or more, even more preferably 0.25% by mass or more, particularly preferably 0.30% by mass or more. % by mass or more, preferably 50% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less, even more preferably 10% by mass or less, particularly preferably 7% by mass or less.
  • the first resin layer 10 can contain one or more light scattering agents.
  • the first resin layer 10 can contain one or more types of semiconductor particles.
  • the first resin layer 10 can contain red-emitting semiconductor particles and green-emitting semiconductor particles.
  • the first resin layer 10 can contain one or more types of light scattering agents and one or more types of semiconductor particles.
  • the content of the light scattering agent in the first resin layer 10 is, for example, 0.01% by mass or more, preferably 0.01% by mass or more, based on the total amount of the first resin layer 10. 05% by mass or more, more preferably 0.08% by mass or more, still more preferably 0.10% by mass or more, even more preferably 0.15% by mass or more, particularly preferably 0.20% by mass or more, and preferably 30% by mass or less, more preferably 20% by mass or less, even more preferably 10% by mass or less, even more preferably 5.0% by mass or less, particularly preferably 2.0% by mass or less, particularly more preferably 1.0% by mass. % or less, most preferably 0.5% by mass or less.
  • the content of the light scattering agent in the first resin layer 10 is within the above range, it is easy to increase the mechanical strength, bending resistance, light scattering performance, and/or luminescence intensity of the transparent resin film.
  • the content of the semiconductor particles in the first resin layer 10 is, for example, 0.01% by mass or more, preferably 0.05% by mass, based on the total amount of the first resin layer 10. % or more, more preferably 0.10% by mass or more, still more preferably 0.15% by mass or more, even more preferably 0.20% by mass or more, particularly preferably 0.25% by mass or more, and preferably 30% by mass. % or less, more preferably 10% by mass or less, still more preferably 5.0% by mass or less, even more preferably 3.0% by mass or less.
  • the content of semiconductor particles in the first resin layer 10 is within the above range, it is easy to increase the mechanical strength, bending resistance, and luminescence intensity of the transparent resin film.
  • the ratio of the content of the semiconductor particles to the content of the light scattering agent is preferably 0.1 or more and 15 or less, more preferably 0.2 or more and 10 or less, and It is preferably 0.3 or more and 8.0 or less, even more preferably 0.5 or more and 5.0 or less.
  • the ratio of the content of the semiconductor particles to the content of the light scattering agent is within the above range, it is easy to efficiently emit light from the semiconductor particles to the outside, and it is easy to increase the light emission intensity of the transparent resin film.
  • the transparent resin film can be suitably used as a wavelength conversion film that emits white light.
  • the ratio of the content of green-emitting semiconductor particles to the content of red-emitting semiconductor particles is preferably 0.1 or more and 60 or less, more preferably 1 or more and 50 or less, still more preferably 5 or more and 45 or less. Preferably it is 10 or more and 40 or less. When the ratio of the content of green-emitting semiconductor particles to the content of red-emitting semiconductor particles is within the above range, desired white light can be easily obtained.
  • the first resin layer 10 includes a first resin.
  • the resin contained in the first resin layer 10 is made of a first resin.
  • the first resin is preferably a thermoplastic resin.
  • the first resin may contain two or more types of thermoplastic resins.
  • the resin contained in the first resin layer 10 may be made of one type of first resin, or may be made of two or more types of first resin, but is preferably made of one type of first resin. Become.
  • thermoplastic resins include polyolefin resins such as chain polyolefin resins and cyclic polyolefin resins; polyester resins; (meth)acrylic resins such as polymethyl methacrylate (PMMA); cellulose ester resins; polycarbonate.
  • PMMA polymethyl methacrylate
  • Polyvinyl alcohol resin; Polyvinyl acetate resin; Polyarylate resin; Polystyrene resin; Polyethersulfone resin; Polysulfone resin; Polyamide resin; Polyimide resin; and mixtures and copolymers thereof, etc. can be mentioned.
  • (meth)acrylic means at least one selected from acrylic and methacryl.
  • the first resin is preferably a thermoplastic resin that can be melted at a temperature that does not adversely affect the optical properties of the semiconductor particles during molding of the transparent resin film.
  • the first resin is preferably one or more thermoplastic resins selected from polystyrene resins and (meth)acrylic resins, and more preferably polystyrene resins. It is a type resin.
  • Polystyrene resin refers to a polymer or copolymer containing a structural unit derived from a styrene monomer.
  • polystyrene resins include polymers or copolymers of one or more styrene monomers; copolymers of rubber polymers (rubber elastic bodies) and one or more styrene monomers; Coalescence (rubber-modified polystyrene resin; also referred to as impact-resistant polystyrene resin); copolymer of one or more styrene monomers and one or more other monomers copolymerizable with the same. (Excluding rubber-modified polystyrene resins).
  • the first resin can include one or more polystyrene resins.
  • styrenic monomers include, in addition to styrene, ⁇ -methylstyrene, pt-butylstyrene, m- or p-methylstyrene, m- or p-ethylstyrene, ⁇ -methyl-p-methylstyrene, , ⁇ -substituted and/or nuclear-substituted styrene such as chlorostyrene, and the like.
  • rubber polymers include natural crepe rubber, polybutadiene, butadiene-styrene copolymer rubber, butadiene-acrylonitrile copolymer rubber, polyisoprene, polyisobutylene, isoprene-isobutylene copolymer rubber, polychloroprene, and ethylene-propylene copolymer rubber.
  • ethylene-propylene-diene monomer rubber styrene-butadiene block copolymer rubber, ethylene-vinyl acetate copolymer rubber, (meth)acrylic acid alkyl ester copolymer rubber, and the like.
  • Examples of other monomers that can be copolymerized with the styrenic monomer include (meth)acrylic acid ester, (meth)acrylic acid, maleic anhydride, vinylnaphthalene, bromostyrene, phenylmaleimide, acrylonitrile, etc. It will be done.
  • HIPS resins polybutadiene-grafted styrene polymers
  • HISMAA resins polybutadiene-grafted styrene-methacrylic acid copolymers
  • ABS resin polybutadiene-grafted styrene-acrylonitrile copolymers.
  • HIPS resin is preferred from the viewpoint of impact resistance and bending resistance of the transparent resin film.
  • Copolymers of one or more styrene monomers and one or more other monomers include, for example, styrene-methyl methacrylate copolymer (MS resin), styrene-methacrylic acid copolymer (SMAA resin), styrene-acrylic acid copolymer (SAA resin), styrene-acrylonitrile copolymer (AS resin), and the like.
  • MS resin styrene-methyl methacrylate copolymer
  • SMAA resin styrene-methacrylic acid copolymer
  • SAA resin styrene-acrylic acid copolymer
  • AS resin styrene-acrylonitrile copolymer
  • the melt flow rate M1 of the first resin is preferably 0.5 g/10 minutes or more and 10 g/10 minutes or less, more preferably 0.8 g/10 minutes or more. 8.0 g/10 minutes or less, more preferably 1.0 g/10 minutes or more and 5.0 g/10 minutes or less, even more preferably 2.0 g/10 minutes or more and 5.0 g/10 minutes or less, particularly preferably 2.0 g/10 minutes or less. It is 5 g/10 minutes or more and 5.0 g/10 minutes or less.
  • the melt flow rate of the resin such as the first resin is measured according to the description in the [Example] section below.
  • the content of the first resin in the first resin layer 10 is, for example, 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, and even more preferably is 80% by mass or more, still more preferably 85% by mass or more, particularly preferably 90% by mass or more, for example 99.9% by mass or less, preferably 99.5% by mass or less, more preferably 99.0% by mass or less. % by mass or less.
  • the content of the first resin in the first resin layer 10 is within the above range, it is easy to improve the impact resistance and bending resistance of the transparent resin film.
  • the first resin layer 10 may contain other components other than the inorganic particles 15 and the first resin. Examples of other components include additives such as ultraviolet absorbers, antioxidants, lubricants, plasticizers, mold release agents, color inhibitors, flame retardants, nucleating agents, and antistatic agents.
  • the first resin layer 10 may contain two or more types of additives.
  • Antioxidants are not particularly limited as long as they are commonly used industrially, and include phenolic antioxidants, phosphorus antioxidants, phosphorus/phenol complex antioxidants, and sulfur antioxidants. etc. can be used. Two or more kinds of antioxidants may be used.
  • a phosphorus/phenol composite antioxidant is, for example, a compound that has one or more phosphorus atoms and one or more phenol structures in its molecule. Among these, from the viewpoint of the luminescence intensity of the transparent resin film, it is preferable that the antioxidant includes a phosphorus/phenol composite type antioxidant.
  • phenolic antioxidant examples include Irganox (registered trademark) 1010 (Irganox 1010: pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]), BASF Corporation.
  • 1076 (Irganox 1076: octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, manufactured by BASF Corporation), 1330 (Irganox 1330: 3,3',3 '',5,5',5''-hexa-tert-butyl-a,a',a''-(mesitylene-2,4,6-triyl)tri-p-cresol, manufactured by BASF Corporation) , 3114 (Irganox 3114: 1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)-1,3,5-triazine-2, 4,6(1H,3H,5H)-trione, manufactured by BASF Corporation), 3790 (Irganox 3790: 1,3,5-tris((4-tert-butyl-3-hydroxy-2,6-xylyl) ) methyl)-1,3,5-triazine-2,
  • phenolic antioxidant an antioxidant having a hindered phenol structure in which a bulky organic group is bonded to at least one ortho position of a phenolic hydroxy group is preferable.
  • the bulky organic group is preferably a secondary or tertiary alkyl group, and specific examples include isopropyl group, s-butyl group, t-butyl group, s-amyl group, and t-amyl group. Among these, a tertiary alkyl group is preferred, and a t-butyl group or a t-amyl group is particularly preferred.
  • Examples of the phosphorus antioxidant include Irgafos (registered trademark) 168 (Irgafos 168: tris(2,4-di-tert-butylphenyl) phosphite, manufactured by BASF Corporation) and Irgafos 12 (Irgafos 12: tris).
  • Examples of the phosphorus/phenol complex antioxidant include Sumilizer (registered trademark) GP (6-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propoxy]-2,4,8, Examples include 10-tetra-tert-butyldibenz[d,f][1.3.2]dioxaphosphepine (manufactured by Sumitomo Chemical Co., Ltd.).
  • sulfur-based antioxidants include dialkyl thiodipropionate compounds such as dilauryl thiodipropionate, dimyristyl or distearyl thiodipropionate, and ⁇ -alkylmercaptopropionate esters of polyols such as tetrakis[methylene(3-dodecylthio)propionate]methane. Examples include compounds.
  • the content of the antioxidant in the first resin layer 10 is, for example, 0.001% by mass or more and 10% by mass or less with respect to the total amount of the first resin layer 10. From the viewpoint of the luminescence intensity of the transparent resin film, preferably 0.01% by mass or more and 5% by mass or less, more preferably 0.05% by mass or more and 2% by mass or less, even more preferably 0.1% by mass or more and 1% by mass. % or less.
  • ultraviolet absorbers examples include 2,2'-methylenebis[4-(1,1,3,3-tetramethylbutyl)-6-(2H-benzotriazol-2-yl)phenol], 2-(5 -Methyl-2-hydroxyphenyl)-2H-benzotriazole, 2-[2-hydroxy-3,5-bis( ⁇ , ⁇ -dimethylbenzyl)phenyl]-2H-benzotriazole, 2-(3,5-dimethylbenzyl)phenyl -tert-butyl-2-hydroxyphenyl)-2H-benzotriazole, 2-(3-tert-butyl-5-methyl-2-hydroxyphenyl)-5-chloro-2H-benzotriazole, 2-(3,5 -di-tert-butyl-2-hydroxyphenyl)-5-chloro-2H-benzotriazole, 2-(3,5-di-tert-amyl-2-hydroxyphenyl)-2H-benzotriazole, 2-(2 Benzotriazole
  • Salicylic acid phenyl ester type UV absorber such as p-tert-butylphenyl salicylic acid ester, p-octylphenyl salicylic acid ester; 2,4-diphenyl-6-(2-hydroxy-4-methoxyphenyl)-1,3 ,5-triazine, 2,4-diphenyl-6-(2-hydroxy-4-ethoxyphenyl)-1,3,5-triazine, 2,4-diphenyl-(2-hydroxy-4-propoxyphenyl)-1 , 3,5-triazine, 2,4-diphenyl-(2-hydroxy-4-butoxyphenyl)-1,3,5-triazine, 2,4-diphenyl-6-(2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6-(2-hydroxy-4-hexyloxyphenyl)-1,3,5-triazine, 2,4-diphenyl-6-(2-hydroxy-4-he
  • the ultraviolet absorber commercially available products may be used.
  • Kemisorb 102 manufactured by ChemiPro Kasei Co., Ltd.
  • ADEKA STAB LA46 ADEKA STAB LAF70
  • BASF Corporation ADEKA STAB LAF70
  • BASF Corporation ADEKA STAB LAF70
  • TINUVIN 460 manufactured by BASF Corporation.
  • TINUVIN 405, TINUVIN 400 and TINUVIN 477, and CYASORB UV-1164 manufactured by Sun Chemical Co., Ltd. all of the above are product names).
  • benzotriazole ultraviolet absorbers examples include ADEKA STAB LA31 and ADEKA STAB LA36 manufactured by ADEKA Co., Ltd., SUMISORB 200, SUMISORB 250, SUMISORB 300, SUMISORB 340 and SUMISORB 350 manufactured by Sumika Chemtex Co., Ltd., and Kemisorb manufactured by ChemiPro Kasei Co., Ltd. 74 , Kemisorb 79 and Kemisorb 279, TINUVIN 99-2, TINUVIN 360, TINUVIN 900 and TINUVIN 928 manufactured by BASF, JF-77, JF-79, JF-80, JF manufactured by Johoku Kagaku Kogyo Co., Ltd. -83, JF- 832, JAST-500, JF-90G, JF-95 (all of the above are trade names).
  • the content of the ultraviolet absorber in the first resin layer 10 is, for example, 0.001% by mass or more and 10% by mass or less with respect to the total amount of the first resin layer 10. Yes, from the viewpoint of improving the weather resistance of the transparent resin film, preferably 0.01% by mass or more and 5% by mass or less, more preferably 0.05% by mass or more and 2% by mass or less, even more preferably 0.1% by mass or more. It is 1% by mass or less.
  • the thickness T 1 of the first resin layer 10 is preferably 50 ⁇ m or more and 500 ⁇ m or less, more preferably 70 ⁇ m or more and 400 ⁇ m or less. , more preferably 80 ⁇ m or more and 350 ⁇ m or less, even more preferably 100 ⁇ m or more and 300 ⁇ m or less, particularly preferably 150 ⁇ m or more and 250 ⁇ m or less.
  • the thickness of the resin layer such as the first resin layer can be measured according to the description in the [Example] section below.
  • the second resin layer 20 is a resin layer disposed on the first surface of the first resin layer 10.
  • the resin contained in the second resin layer 20 includes a second resin, and preferably the resin contained in the second resin layer 20 is made of the second resin.
  • the third resin layer 30 is a resin layer disposed on the second surface of the first resin layer 10 that faces the first surface.
  • the resin contained in the third resin layer 30 includes a third resin, and preferably, the resin contained in the third resin layer 30 is made of the third resin.
  • the first resin layer 10 contains a light scattering agent and inorganic particles 15 selected from luminescent semiconductor particles
  • the second resin layer 20 and the third resin layer 30 contain a light scattering agent and semiconductor particles. Contains no. This makes it easier to achieve both optical properties based on the inorganic particles 15 and mechanical strength in the transparent resin film.
  • the light scattering agent can be present near the semiconductor particles, which may be advantageous in improving the luminescence intensity of the transparent resin film.
  • the second resin layer 20 and the third resin layer 30 may each contain inorganic particles. However, the second resin layer 20 and the third resin layer 30 preferably do not contain luminescent semiconductor particles, and more preferably do not contain luminescent semiconductor particles and light scattering agents.
  • the second resin layer 20 and the third resin layer 30 contains an anti-blocking agent, and more preferably, both resin layers contain an anti-blocking agent. Contains an agent. Thereby, it is possible to suppress adhesion (blocking) of the films when the transparent resin films are made into a roll or when the transparent resin films in the sheet state are laminated. Furthermore, by incorporating an anti-blocking agent into one or both of the resin layers, the pencil hardness and impact resistance of the transparent resin film can be increased.
  • the second resin layer 20 and the third resin layer 30 may each contain two or more types of anti-blocking agents.
  • the first resin layer 10 may contain an anti-blocking agent, it is preferable that the first resin layer 10 does not contain an anti-blocking agent since this tends to increase the luminescence intensity of the transparent resin film.
  • anti-blocking agents examples include inorganic particles made of silica, alumina, calcium carbonate, magnesium carbonate, calcium sulfate, barium sulfate, kaolin, hydrophobically treated products of these, etc.; (meth)acrylic resin, urethane resin, phenol resin. , silicone resin, fluororesin, polyamide, polyolefin such as polypropylene, polycarbonate, and the like.
  • a preferable example of the resin particles is (meth)acrylic resin particles.
  • the anti-blocking agent is preferably resin particles.
  • the anti-blocking agent is a resin particle
  • the anti-blocking agent present on the surface of the transparent resin film can improve the impact resistance of the transparent resin film. Furthermore, scattering of light emitted from the inside of the transparent resin film, preferably from the first resin layer, can be suppressed, and the transparency of the transparent resin film can be increased compared to the case where, for example, inorganic particles are included. Therefore, a decrease in the intensity of light emitted from the transparent resin film can be suppressed.
  • the anti-blocking agent is preferably a particle that has a small refractive index difference with the second resin or third resin in which it is dispersed.
  • the anti-blocking agent is preferably resin particles, more preferably (meth)acrylic resin particles.
  • the average particle size of the anti-blocking agent is preferably 1 ⁇ m or more and 45 ⁇ m or less, more preferably 2 ⁇ m or more and 30 ⁇ m or less, and even more preferably 3 ⁇ m or more and 15 ⁇ m or less, considering the impact resistance, pencil hardness, bending resistance, and gloss of the transparent resin film. Below, it is still more preferably 4 ⁇ m or more and 10 ⁇ m or less.
  • the content of the anti-blocking agent in the resin layer is, for example, 0.01% by mass or more and 50% by mass or more with respect to the total amount of the resin layer. mass% or less, preferably 0.1 mass% or more and 30 mass% or less, more preferably 0.5 mass% or more and 20 mass% or less, still more preferably 1.0 mass% or more and 15 mass% or less, even more preferably is 3.0% by mass or more and 12% by mass or less, particularly preferably 5.0% by mass or more and 12% by mass or less.
  • the content of the anti-blocking agent in the resin layer is within the above range, adhesion (blocking) of the film can be suppressed when the transparent resin film is made into a roll or when the transparent resin films in the sheet state are laminated. In addition, it is easy to increase the luminous intensity of the transparent resin film. Furthermore, when the content of the anti-blocking agent in the resin layer is within the above range, the impact resistance of the transparent resin film can be improved.
  • the second resin and the third resin are each preferably a thermoplastic resin.
  • the second resin and the third resin may each contain two or more types of thermoplastic resins.
  • thermoplastic resins the description in (2-2) above is cited.
  • the resin contained in the second resin layer 20 may be made of one type of second resin, or may be made of two or more types of second resin, but is preferably made of one type of second resin.
  • the resin contained in the third resin layer 30 may be made of one type of third resin, or may be made of two or more types of third resin, but is preferably made of one type of third resin. Become.
  • the second resin and the third resin are respectively thermoplastic resins that can be melted at a temperature that does not adversely affect the optical properties of the semiconductor particles during molding of the transparent resin film. It is preferable that
  • the second resin and the third resin are each preferably one or more thermoplastic resins selected from polystyrene resins and (meth)acrylic resins from the viewpoint of impact resistance and bending resistance of the transparent resin film. , more preferably polystyrene resin.
  • the second resin and the third resin can each contain one or more polystyrene resins. Among these, from the viewpoint of impact resistance and bending resistance of the transparent resin film, each of the second resin and the third resin is preferably a HIPS resin.
  • the first resin and the second resin may be the same or different.
  • the first resin and the third resin may be the same or different.
  • the second resin and the third resin may be the same or different.
  • the transparent resin film has a first resin layer 10, a second resin layer 20, and a third resin layer 30, and the first resin, second resin, and third resin are HIPS resins.
  • the melt flow rate M 2 of the second resin and the melt flow rate M 3 of the third resin are preferably 0.5 g/10 minutes or more and 10 g/10 minutes or less, respectively. , more preferably 0.8 g/10 minutes or more and 8.0 g/10 minutes or less, still more preferably 1.0 g/10 minutes or more and 5.0 g/10 minutes or less, even more preferably 2.0 g/10 minutes or more and 5. It is 0 g/10 minutes or less, particularly preferably 2.5 g/10 minutes or more and 5.0 g/10 minutes or less.
  • the ratio M 3 /M 2 of the melt flow rate M 3 of the third resin to the melt flow rate M 2 of the second resin is preferably 0.5 or more and 2 or less, more preferably 0.7 or more and 1.5 or less, and It is preferably 0.9 or more and 1.2 or less, particularly preferably 1.
  • the content rate of the second resin in the second resin layer 20 and the content rate of the third resin in the third resin layer 30 are each, for example, 50% by mass or more, preferably 60% by mass, based on the total amount of the resin layer.
  • the above content is more preferably 70% by mass or more, still more preferably 80% by mass, even more preferably 85% by mass or more, particularly preferably 90% by mass or more, and, for example, 99.9% by mass or less, preferably 99. It is 5% by mass or less, more preferably 99.0% by mass or less, even more preferably 98.0% or less, even more preferably 96.0% or less.
  • the second resin layer 20 and the third resin layer 30 can contain components other than the anti-blocking agent and the second resin or third resin. Examples of other components are the same as the additives described in (2-3) above.
  • the thickness T 2 of the second resin layer 20 and the thickness T 3 of the third resin layer 30 are Each is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, even more preferably 15 ⁇ m or more, even more preferably 20 ⁇ m or more, preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, still more preferably 100 ⁇ m or less, and even more preferably 50 ⁇ m. Particularly preferably 40 ⁇ m or less.
  • the ratio T 3 /T 2 of the thickness T 3 of the third resin layer 30 to the thickness T 2 of the second resin layer 20 is preferably 0.5 or more and 2 or less, more preferably 0.7 or more and 1.5 or less, and It is preferably 0.9 or more and 1.2 or less, particularly preferably 1.
  • the transparent resin film has good impact resistance and bending resistance. It is preferable that the transparent resin film satisfies both formula (i) and formula (ii).
  • a transparent resin film that satisfies formula (i) provides good impact resistance and bending resistance is that the transparent resin film as a whole has good impact resistance and bending resistance. This seems to be because the film has a structure in which the stress applied to the film is easily relaxed.
  • a transparent resin film satisfies formula (ii) it can have good impact resistance and bending resistance because the stress remaining in the film during manufacturing is reduced, and the transparent resin film as a whole is resistant to bending. This is believed to be because the structure is such that stress applied to the film due to impact or the like is easily relaxed.
  • one of the surface layers satisfies formula (ii). If there is, the surface layer is used as the second resin layer 20.
  • both surface layers satisfy formula (ii) either surface layer may be used as the second resin layer 20.
  • the transparent resin film satisfies formula (ii)
  • the transparent resin film when the ratio M 1 /M 3 of the melt flow rate M 1 of the first resin to the melt flow rate M 3 of the third resin is B', the transparent resin film is , from the viewpoint of impact resistance and bending resistance, preferably further satisfies formula (ii'). B' ⁇ C ⁇ 8.5 (ii')
  • melt flow rate M1 and melt flow rate M2 are melt flow rates measured under the same conditions, specifically, in accordance with JIS K 7210, at 200 ° C. and under a load of 5 kg. Melt flow rate.
  • the value of C is preferably 6.0 or more, more preferably 8.0 or more, and even more preferably 10.0, from the viewpoint of impact resistance and bending resistance of the transparent resin film. It is 0 or more, still more preferably 12.0 or more, particularly preferably 15.0 or more.
  • the value of C is usually 100 or less, and may be 80 or less, 60 or less, 50 or less, 40 or less, 30 or less, or 20 or less. In determining whether the value of C is within the above range and determining whether formula (i) is satisfied, the value of C shall be determined if there is a value one digit below the minimum digit of the numerical value listed above. is the number obtained by rounding it off.
  • the value of C in this case is 5.49, which is obtained by rounding off 9 to the second decimal place. .5, and it is determined that it is 5.5 or higher.
  • B ⁇ C value, B′ ⁇ C value, B value, and B′ value is 5.49, which is obtained by rounding off 9 to the second decimal place. .5, and it is determined that it is 5.5 or higher.
  • the values of B x C and B' x C are preferably 9.0 or more, respectively, from the viewpoint of impact resistance and bending resistance of the transparent resin film. Preferably it is 10.0 or more, more preferably 12.0 or more, even more preferably 14.0 or more, particularly preferably 15.0 or more.
  • the value of B ⁇ C is usually 120 or less, and may be 100 or less, 80 or less, 60 or less, 50 or less, 40 or less, 30 or less, or 20 or less.
  • the value of B and the value of B' are determined, respectively, because it becomes easier to achieve both optical properties based on the inorganic particles 15 and mechanical strength. From the viewpoint of impact resistance and bending resistance, it is preferably 1.4 or less, more preferably 1.3 or less, even more preferably 1.2 or less, even more preferably 1.1 or less, and particularly preferably 1.0. , preferably 0.5 or more, more preferably 0.7 or more, even more preferably 0.9 or more, even more preferably 0.95 or more.
  • the second resin layer side glossiness and the third resin layer side glossiness are each, for example, 10.0 or more and 100 or less, preferably 15.0 or more and 80.0 or less, and more preferably 20.0 or more and 75.0 or less. It is. Glossiness is measured according to the method described in the [Examples] section below.
  • the second resin layer 20 and the third resin layer may have different compositions, or the second resin layer 20 and the third resin layer may have different compositions when producing the transparent resin film.
  • One example is to provide the layer 30 with a different thermal history.
  • the content of the inorganic particles 15 and/or anti-blocking agent in the second resin layer 20 may be different from the content of the inorganic particles 15 and/or the anti-blocking agent in the third resin layer 30, or
  • the type of inorganic particles 15 and/or anti-blocking agent contained in the third resin layer 30 may be different from the type of inorganic particles 15 and/or anti-blocking agent contained in the third resin layer 30, or in the production of a transparent resin film by co-extrusion molding.
  • the cooling profile can be made different between the front and back sides of the laminate.
  • Thickness ratio and melt flow rate ratio of resin layer The ratio T 1 /T 2 of the thickness T 1 [ ⁇ m] of the first resin layer 10 to the thickness T 2 [ ⁇ m] of the second resin layer 20 is defined as A;
  • the transparent resin film has the following formulas (iii) and (iv): A ⁇ 15 (iii) B ⁇ 1.5 (iv) It is preferable to satisfy the following.
  • formula (iii) and formula (iv) the transparent resin film can further have good impact resistance and bending resistance.
  • the value of A is preferably 14.0, because in the transparent resin film, it becomes easier to achieve both optical properties based on the inorganic particles 15 and mechanical strength, and from the viewpoint of the impact resistance and bending resistance of the transparent resin film. 8 or less, more preferably 14.5 or less, still more preferably 14.0 or less, even more preferably 13.5 or less, particularly preferably 13.0 or less, preferably 0.5 or more, more preferably 1. It is 0 or more, more preferably 2.0 or more, even more preferably 3.0 or more. In determining whether the value of A is within the above range and determining whether formula (iii) is satisfied, the value of A shall be determined if there is a value one digit below the minimum digit of the numerical value listed above.
  • the value of B is preferably 1.4 or less, more preferably 1.3 or less, even more preferably 1.2 or less, even more preferably 1.1 or less, and particularly preferably 1.0. , preferably 0.5 or more, more preferably 0.7 or more, even more preferably 0.9 or more, even more preferably 0.95 or more. Furthermore, by setting the value of B within the above range, the adhesion between the first resin layer 10 and the second resin layer 20 can be improved.
  • the transparent resin film has the formula (v): A ⁇ B ⁇ 18 (v) It is preferable to further satisfy the following. Further satisfying the formula (v) is advantageous from the viewpoint of impact resistance and bending resistance of the transparent resin film.
  • the value of A ⁇ B is preferably 15 or less, more preferably 14 or less, still more preferably 13 or less, still more preferably 12 or less.
  • the value of A ⁇ B is preferably 1 or more, 2 or more, 3 or more, or 4 or more, since it is easy to improve the impact resistance, bending resistance, curl resistance, pencil hardness, and luminescent properties of the transparent resin film. It's okay. In determining whether the value of A ⁇ B is within the above range and determining whether formula (v) is satisfied, if the value of A ⁇ B has a number below the decimal point, round it off. This makes the value an integer. The same applies to the value of A' ⁇ B' below.
  • the ratio T 1 /T 3 of the thickness T 1 [ ⁇ m] of the first resin layer 10 to the thickness T 3 [ ⁇ m] of the third resin layer 30 is defined as A′
  • the ratio T 1 /T 3 of the thickness T 1 [ ⁇ m] of the third resin layer 30 is defined as
  • the transparent resin film has the following formulas (vi) and (vii): A' ⁇ 15 (vi) B' ⁇ 1.5 (vii) It is preferable to satisfy the following.
  • the transparent resin film can further have good impact resistance and bending resistance.
  • melt flow rate M1 and melt flow rate M3 are melt flow rates measured under the same conditions, specifically, in accordance with JIS K 7210, at 200 ° C. and under a load of 5 kg. Melt flow rate.
  • the value of A' is preferably 14 from the viewpoint of achieving both optical properties based on the inorganic particles 15 and mechanical strength in the transparent resin film, and from the viewpoint of impact resistance and bending resistance of the transparent resin film. .8 or less, more preferably 14.5 or less, still more preferably 14.0 or less, even more preferably 13.5 or less, particularly preferably 13.0 or less, preferably 0.5 or more, more preferably 1 .0 or more, more preferably 2.0 or more, even more preferably 3.0 or more.
  • the value of B' is preferably 1, since it becomes easier to achieve both optical properties based on the inorganic particles 15 and mechanical strength in the transparent resin film, and from the viewpoint of impact resistance and bending resistance of the transparent resin film. .4 or less, more preferably 1.3 or less, still more preferably 1.2 or less, even more preferably 1.1 or less, particularly preferably 1.0, preferably 0.5 or more, more preferably 0. It is 7 or more, more preferably 0.9 or more, even more preferably 0.95 or more. Furthermore, by setting the value of B' within the above range, the adhesion between the first resin layer 10 and the third resin layer 30 can be improved.
  • the transparent resin film has the formula (viii): A' ⁇ B' ⁇ 18 (viii) It is preferable to further satisfy the following. Further satisfying formula (viii) is advantageous from the viewpoint of impact resistance and bending resistance of the transparent resin film.
  • the value of A' ⁇ B' is preferably 15 or less, more preferably 12 or less, even more preferably 10 or less, even more preferably 8 or less, particularly preferably 6 or less.
  • the value of A' x B' is preferably 1 or more, and even if it is 2 or more, 3 or more, or 4 or more, since it is easy to improve the impact resistance, bending resistance, pencil hardness, and luminescent properties of the transparent resin film. good.
  • the transparent resin film includes a second resin layer 20, a first resin layer 10, and a third resin layer 30 in this order, and preferably satisfies any of the following, more preferably satisfies two or more of the following. and more preferably all of the following.
  • the ratio T 3 /T 2 is 0.9 or more and 1.2 or less, preferably 1.
  • the ratio M 3 /M 2 is 0.9 or more and 1.2 or less, preferably 1.
  • the first resin and the second or third resin are the same.
  • the second resin and the third resin are the same.
  • the second resin layer and the third resin layer have the same material composition.
  • a and A' are the same.
  • [g] B and B' are the same.
  • [h] A ⁇ B and A′ ⁇ B′ are the same. In [f] to [h] above, "the same” includes the case where one value is within the range of ⁇ 5% of the other value.
  • the thickness (total thickness) of the transparent resin film is preferably 55 ⁇ m or more and 900 ⁇ m or less, more preferably 75 ⁇ m, from the viewpoint of handling the film and making the display device to which the film is applied thinner.
  • the thickness is 700 ⁇ m or more, more preferably 95 ⁇ m or more and 550 ⁇ m or less, even more preferably 120 ⁇ m or more and 400 ⁇ m or less, particularly preferably 150 ⁇ m or more and 300 ⁇ m or less.
  • the transparent resin film can have good impact resistance and bending resistance.
  • the impact resistance of the transparent resin film can be evaluated by impact absorption energy measured by the method described in the Examples section below (Charpy impact test according to JIS K 7111-1:2006).
  • the impact absorption energy of the second resin layer when the surface opposite to the first resin layer is measured is preferably 20 kJ/m 2 or more, more preferably 30 kJ/m 2 or more, and even more preferably 50 kJ/m 2 or more. , still more preferably 70 kJ/m 2 or more, particularly preferably 75 kJ/m 2 or more, and may be 100 kJ/m 2 or more or 120 kJ/m 2 or more.
  • the impact absorption energy is usually 200 kJ/m 2 or less, and since it is easy to increase the mechanical strength of the transparent resin film, it is preferably 150 kJ/m 2 or less, more preferably 135 kJ/m 2 or less, and even more preferably 130 kJ/m 2 or less, even more preferably 120 kJ/m 2 or less.
  • Setting the surface of the second resin layer opposite to the first resin layer as the measurement surface means that this surface is the surface against which a hammer is struck in the Charpy impact test.
  • the impact absorption energy when the measurement surface is the surface of the third resin layer of the transparent resin film opposite to the first resin layer is within the above range.
  • a transparent resin film with good bending resistance is less likely to crack when bent in at least one direction, even by the measuring method described in the Examples section below.
  • the transparent resin film may have good pencil hardness.
  • the pencil hardness of the surface of the second resin layer of the transparent resin film opposite to the first resin layer is preferably HB or higher.
  • the pencil hardness of the surface of the third resin layer opposite to the first resin layer is also preferably HB or higher.
  • the impact absorption energy is preferably 130 kJ/m 2 or less, more preferably 120 kJ/m 2 or less, and even more preferably 100 kJ/m 2 or less.
  • Pencil hardness can be measured according to the method described in the [Examples] section below.
  • the transparent resin film may have good surface appearance and curl resistance.
  • a transparent resin film with a good surface appearance has reduced or no flow marks (spotted patterns, etc.) that may be formed on the film surface during film molding.
  • a transparent resin film with good curl resistance is resistant to curling even when rolled. Furthermore, when the first resin layer 10 contains luminescent semiconductor fine particles, flow marks are reduced, and the in-plane uniformity of light emission from the transparent resin film is likely to be improved.
  • the appearance of the surface of the transparent resin film can be visually confirmed.
  • the curl resistance of the transparent resin film can be evaluated by the distance [mm] measured by the method below.
  • the distance is preferably less than 15 mm, more preferably 12 mm or less, even more preferably 10 mm or less.
  • a test piece with a size of 150 mm x 100 mm is cut out from a transparent resin film so that the longitudinal direction is the MD direction.
  • This test piece is wound around a resin core rod having a diameter of 16 mm, the ends are fixed with tape, and the test piece is left standing for 1 minute in an environment of a temperature of 25° C. and a relative humidity of 50% RH.
  • the test piece is removed from the core rod, placed on a horizontal table with the convex surface of the curled test piece facing upward, and the distance [mm] from the surface of the horizontal table to the highest point of the test piece's convex portion is measured.
  • the transparent resin film is not particularly limited, it is preferably manufactured by extrusion molding, and more preferably manufactured by coextrusion molding.
  • the transparent resin film is an extrusion molded product, preferably a coextrusion molded product.
  • a method for manufacturing a transparent resin film by coextrusion molding may include, for example, the following steps. Step (X) of preparing a first resin composition for the first resin layer; Step (Y-1) of preparing a second resin composition for the second resin layer; Step (Y-2) of preparing a third resin composition for the third resin layer; Step (Z) of manufacturing a transparent resin film by coextrusion molding using the first resin composition, the second resin composition, and the third resin composition.
  • the second resin composition and the third resin composition have the same composition, there is no need to provide a step (Y-2) separately from the step (Y-1), and the second resin composition is used as the third resin composition.
  • a composition may be used.
  • Step (X) is a step of preparing a first resin composition containing inorganic particles, a first resin, optional additives, etc. at a desired content, preferably through heating and melt-kneading. Step (X) may consist of a plurality of steps.
  • step (X) is a step of preparing a masterbatch (MB) containing a light scattering agent, which is an inorganic particle, and a first resin by heating and melt-kneading them;
  • the method may include a step of heating and melt-kneading each MB and a first resin to prepare an MB containing them; and a step of heating and melt-kneading each MB and a first resin to prepare a first resin composition containing them.
  • the additive can be contained in any or all of the multiple MBs.
  • Each MB may be prepared in pellet form. According to the method using MB, it is easy to prepare a first resin composition with uniform concentrations of inorganic particles and additives.
  • Preparation of the first resin composition and preparation of each MB by heating and melt-kneading can be carried out by a method in which predetermined components are put into an extruder such as a twin-screw extruder and then heated and melt-kneaded.
  • the temperature during heating and melt-kneading is, for example, 150°C or higher, preferably 180°C or higher, more preferably 200°C or higher, and, for example, 350°C or lower, preferably 320°C or lower, more preferably 300°C or lower, and still more preferably 280°C or lower.
  • the temperature is preferably 260°C or lower, particularly preferably 260°C or lower.
  • the mixture of predetermined components contains a solvent or water
  • a devolatilization treatment is performed to remove these during or after heating and melting and kneading. be able to.
  • a solvent is included in the mixture of predetermined components
  • semiconductor particles are introduced in the form of a dispersion liquid in which semiconductor particles are dispersed in a dispersion medium.
  • step (Y-1) and step (Y-2) can also be prepared in the same manner as the first resin composition.
  • step (Y-1) is a step of melt-kneading an anti-blocking agent and a second resin to prepare a MB containing them; and a step of melt-kneading an MB and a second resin to prepare a second resin containing them.
  • the method may include a step of preparing a resin composition. Additives can be included in the MB.
  • Coextrusion molding in step (Z) may be performed by a conventionally known method.
  • a first resin composition in a molten state prepared in a first extruder in step (X) and a second extruder different from the first extruder in steps (Y-1) and (Y-2) The second resin composition (and the third resin composition) in a molten state prepared in the above are supplied to a three-layer feedblock, and further coextruded from a T-die to form the first resin layer and the third resin composition.
  • a transparent resin film having two resin layers and a third resin layer can be manufactured.
  • the temperature of each resin composition during coextrusion is, for example, 150°C or higher, preferably 180°C or higher, more preferably 200°C or higher, and, for example, 350°C or lower, preferably 320°C or lower, more preferably 300°C or lower, The temperature is more preferably 280°C or lower, particularly preferably 260°C or lower.
  • the value of A (ratio T 1 /T 2 ) and the value of A' (ratio T 1 /T 3 ) of the transparent resin film can be adjusted, for example, by adjusting the supply speed ratio (extrusion amount ratio) of the resin composition to the feed block. It can be controlled by The thickness of each resin layer of the transparent resin film is determined by adjusting, for example, the feeding rate of the resin composition to the feed block, the opening width of the T-die discharge port, the gap between the rolls of the forming/cooling rolls described below, etc. It can be controlled by A transparent resin film as a long product is obtained by passing the molten laminate extruded from the T-die through a forming/cooling roll. If the second resin layer and the third resin layer are different in composition or thickness, a third extruder for preparing the third resin composition may be separately prepared.
  • the method for producing a transparent resin film may include steps other than those described above.
  • the other steps include a step of trimming the longitudinal ends of the long transparent resin film, a step of winding up the long transparent resin film into a roll, and a step of winding the long transparent resin film into a roll. Examples include a step of cutting the film into sheets of predetermined size.
  • a display device includes the transparent resin film described above.
  • the display device include a liquid crystal display device, an organic EL display device, an inorganic EL display device, and the like.
  • the transparent resin film By placing the transparent resin film over the light source (the backlight of a liquid crystal display device, the EL display element of an organic EL display device or an inorganic EL display device) (on the viewing side), it can diffuse the light from the light source and change the wavelength. It can be suitably used as a film that performs conversion (ie, a diffusion film or a wavelength conversion film).
  • Impact absorption energy was determined in accordance with JIS K 7111-1:2006.
  • a rectangular test piece (notchless test piece) with a width of 10 mm and a length of 120 mm was cut out from the produced transparent resin film.
  • Both ends of the test piece in the long side direction were fixed to a support stand so that the test piece would not move due to the impact when punching with a hammer, and the longitudinal direction of the cutting edge of the hammer was Hit the surface of the second resin layer on the side opposite to the first resin layer so that it is parallel to the thickness direction at the center in the longitudinal direction of the test piece, and
  • the energy required to break the test piece was measured using the surface as the measurement surface.
  • the impact absorption energy was measured using the surface of the third resin layer opposite to the first resin layer as the measurement surface in the same manner as above. The results were the same as those obtained when the impact absorption energy was measured using the surface opposite to the first resin layer.
  • ⁇ Manufacture example 1 Preparation of glass beads MB for the first resin layer> HIPS resin pellets, glass beads (light scattering agent), antioxidant, and ultraviolet absorber were dry blended in a tumbler at the following blending ratio, and kneaded at a molding temperature of 200 to 260°C using a twin-screw extruder. The strand obtained from the extruder was cooled in a water bath and then cut with a pelletizer to obtain glass beads MB for the first resin layer in which glass beads were dispersed in the resin.
  • HIPS resin pellets (“SX100” manufactured by PS Japan, melt flow rate (MFR): 3.3 g/10 minutes) 76.0% by mass Glass beads (“UBS-0010E” manufactured by Unitika, main particle size: ⁇ 10 ⁇ m, density: 2.6 g/cm 3 ) 20.0% by mass Antioxidant (“Sumilyzer GP” manufactured by Sumitomo Chemical Co., Ltd.) 2.0% by mass Ultraviolet absorber (JF-77 manufactured by Johoku Kagaku Kogyo Co., Ltd.) 2.0% by mass
  • TiO 2 titanium oxide particles (TiO 2 ) particles (light scattering agent), antioxidant, and ultraviolet absorber were dry blended in a tumbler at the following blending ratio, and molded at a temperature of 200 to 260°C using a twin-screw extruder. It was kneaded with The strand obtained from the extruder was cooled in a water bath and then cut with a pelletizer to obtain titanium oxide particles MB for the first resin layer in which titanium oxide particles were dispersed in the resin.
  • HIPS resin pellets (“SX100” manufactured by PS Japan, melt flow rate (MFR): 3.3 g/10 minutes) 91.0% by mass Titanium oxide particles (median diameter based on volume: 0.2 ⁇ m, density: 4.2 g/cm 3 ) 5.0% by mass Antioxidant (“Sumilyzer GP” manufactured by Sumitomo Chemical Co., Ltd.) 2.0% by mass Ultraviolet absorber (JF-77 manufactured by Johoku Kagaku Kogyo Co., Ltd.) 2.0% by mass
  • ⁇ Manufacturing Example 3 Preparation of the first MB for the second and third resin layers> HIPS resin pellets, an anti-blocking agent, an antioxidant, and an ultraviolet absorber were dry blended in a tumbler at the following blending ratio, and kneaded using a twin-screw extruder at a molding temperature of 200 to 260°C. After cooling the strand obtained from the extruder in a water bath, the first MB for the second and third resin layers was obtained by cutting it with a pelletizer.
  • HIPS resin pellets (“SX100” manufactured by PS Japan, melt flow rate (MFR): 3.3 g/10 minutes) 77.0% by mass Anti-blocking agent (crosslinked PMMA particles “Gantz Pearl GM-0806S” manufactured by Aica Kogyo Co., Ltd. Average particle size: 8 ⁇ m) 20.0% by mass Antioxidant (“Sumilyzer GP” manufactured by Sumitomo Chemical Co., Ltd.) 2.0% by mass Ultraviolet absorber (JF-77 manufactured by Johoku Kagaku Kogyo Co., Ltd.) 1.0% by mass
  • Anti-blocking agent crosslinked PMMA particles “Gantz Pearl GM-0806S” manufactured by Aica Kogyo Co., Ltd. Average particle size: 8 ⁇ m
  • Antioxidant (“Sumilyzer GP” manufactured by Sumitomo Chemical Co., Ltd.) 2.0% by mass Ultraviolet absorber (JF-77 manufactured by Johoku Kagaku Kogyo Co., Ltd.) 1.
  • ⁇ Manufacture example 4 Preparation of second MB for second and third resin layers> MS resin pellets, an anti-blocking agent, an antioxidant, and an ultraviolet absorber were dry-blended in a tumbler at the following blending ratio, and kneaded using a twin-screw extruder at a molding temperature of 200 to 260°C. A second MB for the second and third resin layers was obtained by cooling the strand obtained from the extruder in a water bath and cutting it with a pelletizer.
  • MS resin pellets (“MS-200NT” manufactured by Toyo Styrene Co., Ltd., melt flow rate (MFR): 2.1 g/10 minutes) 77.9% by mass Anti-blocking agent (crosslinked PMMA particles “Gantz Pearl GM-0806S” manufactured by Aica Kogyo Co., Ltd., average particle size: 8 ⁇ m) 20.0% by mass Antioxidant (“Sumilyzer GP” manufactured by Sumitomo Chemical Co., Ltd.) 0.1% by mass Ultraviolet absorber (“TINUVIN 360” manufactured by BASF) 2.0% by mass
  • Example 1 Glass beads MB for the first resin layer prepared in Production Example 1, titanium oxide particles MB for the first resin layer prepared in Production Example 2, and HIPS resin pellets (same as those used for preparing MB) A predetermined amount of the mixture was put into a twin-screw extruder and heated and melted and kneaded at a temperature of 200 to 260°C to obtain a resin composition for the first resin layer in a molten state. The composition of the resin composition is shown below. On the other hand, predetermined amounts of the first MB for the second and third resin layers prepared in Production Example 3 and HIPS resin pellets (same as those used for preparing the MB) were put into another twin-screw extruder. The mixture was heated and melted and kneaded at a temperature of 200 to 260° C. to obtain a resin composition for the second and third resin layers in a molten state. The composition of the resin composition is shown below.
  • composition of resin composition for first resin layer HIPS resin: 94.57% by mass Glass beads: 4.00% by mass Titanium oxide particles: 0.35% by mass Antioxidant: 0.54% by mass Ultraviolet absorber: 0.54% by mass
  • HIPS resin 91.26% by mass
  • Anti-blocking agent 7.60% by mass
  • Antioxidant 0.76% by mass
  • Ultraviolet absorber 0.38% by mass
  • the molten resin composition for the first resin layer and the resin compositions for the second and third resin layers obtained above were sent to a three-layer feed block, and further coextruded from a T-die.
  • a second resin layer (thickness: 35 ⁇ m), a first resin layer (thickness: 180 ⁇ m), and a third resin layer (thickness: 35 ⁇ m) are formed in this order.
  • a transparent resin film (total thickness: 250 ⁇ m) was obtained.
  • the second resin layer and the third resin layer had the same thickness and composition.
  • the total light transmittance was measured using a haze meter (HM-150) manufactured by Murakami Color Research Institute Co., Ltd. in accordance with JIS K 7361-1:1997, and it was found to be 56. It was 6%.
  • Example 1 was carried out in the same manner as in Example 1, except that the thickness of the second resin layer and the third resin layer was set to 15 ⁇ m by adjusting the supply rate of the resin composition for the second and third resin layers to the feed block. A transparent resin film was obtained (total thickness: 210 ⁇ m). The total light transmittance of the transparent resin film obtained by the above method was 56.8%.
  • Example 3 Glass beads MB for the first resin layer prepared in Production Example 1, titanium oxide particles MB for the first resin layer prepared in Production Example 2, and HIPS resin pellets (same as those used for preparing MB) A predetermined amount of the mixture was put into a twin-screw extruder and heated and melted and kneaded at a temperature of 200 to 260°C to obtain a resin composition for the first resin layer in a molten state. The composition of the resin composition was the same as in Example 1. On the other hand, predetermined amounts of the first MB for the second and third resin layers prepared in Production Example 3 and HIPS resin pellets (same as those used for preparing the MB) were put into another twin-screw extruder.
  • the mixture was heated and melted and kneaded at a temperature of 200 to 260° C. to obtain a resin composition for the second and third resin layers in a molten state.
  • the composition of the resin composition is shown below.
  • the content of the anti-blocking agent was increased to the resin composition for the second and third resin layers used in Example 1. I made it smaller than the object.
  • HIPS resin 94.48% by mass
  • Anti-blocking agent 4.80% by mass
  • Antioxidant 0.48% by mass
  • Ultraviolet absorber 0.24% by mass
  • the molten resin composition for the first resin layer and the resin compositions for the second and third resin layers obtained above were sent to a three-layer feed block, and further coextruded from a T-die. By passing the extruded molten laminate through three forming/cooling rolls, a second resin layer (thickness 15 ⁇ m), a first resin layer (thickness 180 ⁇ m), and a third resin layer (thickness 15 ⁇ m) are formed in this order. A transparent resin film (total thickness: 210 ⁇ m) was obtained. The second resin layer and the third resin layer had the same thickness and composition. The total light transmittance of the transparent resin film obtained by the above method was 57.4%.
  • Example 4 A predetermined amount of titanium oxide particles MB for the first resin layer prepared in Production Example 2 and HIPS resin pellets (same as those used for preparing MB) were put into a twin screw extruder, and heated at 200 to 260°C. The resin composition was heated, melted and kneaded at a temperature of 1, to obtain a resin composition for the first resin layer in a molten state. The composition of the resin composition is shown below. On the other hand, predetermined amounts of the first MB for the second and third resin layers prepared in Production Example 3 and HIPS resin pellets (same as those used for preparing the MB) were put into another twin-screw extruder. , 200 The resin compositions for the second and third resin layers in a molten state were obtained by heating, melting and kneading at a temperature of ⁇ 260°C. The composition of the resin composition is shown below.
  • composition of resin composition for first resin layer HIPS resin: 99.37% by mass Titanium oxide particles: 0.35% by mass Antioxidant: 0.14% by mass Ultraviolet absorber: 0.14% by mass
  • HIPS resin 91.26% by mass
  • Anti-blocking agent 7.60% by mass
  • Antioxidant 0.76% by mass
  • Ultraviolet absorber 0.38% by mass
  • the molten resin composition for the first resin layer and the resin compositions for the second and third resin layers obtained above are sent to a three-layer feed block, and further coextruded from a T-die, A transparent resin film (total thickness 240 ⁇ m) having a second resin layer (thickness 25 ⁇ m), a first resin layer (thickness 190 ⁇ m), and a third resin layer (thickness 25 ⁇ m) in this order was obtained.
  • the total light transmittance of the transparent resin film obtained by the above method was 51.9%.
  • the molten resin composition for the first resin layer and the resin compositions for the second and third resin layers obtained above were sent to a three-layer feed block and further coextruded from a T-die.
  • a second resin layer (thickness: 40 ⁇ m), a first resin layer (thickness: 180 ⁇ m), and a third resin layer (thickness: 40 ⁇ m) are formed in this order.
  • a transparent resin film (total thickness: 260 ⁇ m) was obtained.
  • the second resin layer and the third resin layer had the same thickness and composition.
  • the total light transmittance of the transparent resin film obtained by the above method was 56.1%.
  • Table 1 shows the thickness of each resin layer, melt flow rate (MFR) of the resin, A, B and A ⁇ B, and C and B ⁇ C values for the obtained transparent resin film.
  • MFR melt flow rate
  • A', B', and A' ⁇ B' are the same as the values of A, B, and A ⁇ B, respectively, and are not shown.
  • the evaluation results are also shown in Table 1.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Laminated Bodies (AREA)

Abstract

第1樹脂を含有する第1樹脂層と、第1樹脂層の第1表面上に配置される樹脂層であって第2樹脂を含有する第2樹脂層と、第1樹脂層の第1表面と対向する第2表面上に配置される樹脂層であって第3樹脂を含有する第3樹脂層とを含む透明樹脂フィルムであって、第1樹脂層は無機粒子を含有し、第2樹脂層における第1樹脂層とは反対側の表面の光沢度と、第3樹脂層における第1樹脂層とは反対側の表面の光沢度との差の絶対値Cとするとき、式:C≧5.5を満たす透明樹脂フィルムが提供される。

Description

透明樹脂フィルム及び表示装置
 本発明は、無機粒子を含有する透明樹脂フィルム、及び該透明樹脂フィルムを含む表示装置に関する。
 国際公開第2019/078135号(特許文献1)には、複数の樹脂層が積層され、少なくとも一層の樹脂層に量子ドットを含有する量子ドット含有樹脂シート又はフィルム、及びこれを用いた波長変換部材が記載されている。
国際公開第2019/078135号
 無機粒子を含有する従来の多層樹脂フィルムは、耐衝撃性及び曲げ耐性において改善の余地があった。
 本発明の1つの目的は、複数の樹脂層から構成され、無機粒子を含有する透明樹脂フィルムであって、耐衝撃性及び曲げ耐性が良好である透明樹脂フィルムを提供することにある。本発明の他の目的は、該透明樹脂フィルムを含む表示装置を提供することにある。
 本発明は、以下に示される透明樹脂フィルム及び表示装置を提供する。
 [1] 第1樹脂を含有する第1樹脂層と、
 前記第1樹脂層の第1表面上に配置される樹脂層であって、第2樹脂を含有する第2樹脂層と、
 前記第1樹脂層の前記第1表面と対向する第2表面上に配置される樹脂層であって、第3樹脂を含有する第3樹脂層と、
を含む透明樹脂フィルムであって、
 前記第1樹脂層は、無機粒子を含有し、
 前記第2樹脂層における前記第1樹脂層とは反対側の表面の光沢度と、前記第3樹脂層における前記第1樹脂層とは反対側の表面の光沢度との差の絶対値をCとするとき、式(i):
 C≧5.5    (i)
を満たす、透明樹脂フィルム。
 [2] 第1樹脂を含有する第1樹脂層と、
 前記第1樹脂層の第1表面上に配置される樹脂層であって、第2樹脂を含有する第2樹脂層と、
 前記第1樹脂層の前記第1表面と対向する第2表面上に配置される樹脂層であって、第3樹脂を含有する第3樹脂層と、
を含む透明樹脂フィルムであって、
 前記第1樹脂層は、無機粒子を含有し、
 前記第1樹脂は、メルトフローレートがM[g/10分]であり、
 前記第2樹脂は、メルトフローレートがM[g/10分]であり、
 前記Mに対する前記Mの比M/MをBとし、前記第2樹脂層における前記第1樹脂層とは反対側の表面の光沢度と、前記第3樹脂層における前記第1樹脂層とは反対側の表面の光沢度との差の絶対値をCとするとき、式(ii):
 B×C≧8.5    (ii)
を満たす、透明樹脂フィルム。
 [3] 前記無機粒子が光散乱剤を含む、[1]又は[2]に記載の透明樹脂フィルム。
 [4] 前記第1樹脂、前記第2樹脂及び前記第3樹脂がそれぞれ熱可塑性樹脂である、[1]~[3]のいずれかに記載の透明樹脂フィルム。
 [5] 前記第1樹脂層に含まれる樹脂は前記第1樹脂からなり、前記第2樹脂層に含まれる樹脂は前記第2樹脂からなり、前記第3樹脂層に含まれる樹脂は前記第3樹脂からなる、[1]~[4]のいずれかに記載の透明樹脂フィルム。
 [6] 前記第1樹脂と前記第2樹脂と前記第3樹脂とが同一である、[1]~[5]のいずれかに記載の透明樹脂フィルム。
 [7] 前記第2樹脂層における前記第1樹脂層とは反対側の表面の鉛筆硬度がHB以上である、[1]~[6]のいずれかに記載の透明樹脂フィルム。
 [8] 前記無機粒子が半導体粒子を含む、[1]~[7]のいずれかに記載の透明樹脂フィルム。
 [9] 押出成形品である、[1]~[8]のいずれかに記載の透明樹脂フィルム。
 [10] [1]~[9]のいずれかに記載の透明樹脂フィルムを含む表示装置。
 複数の樹脂層から構成され、無機粒子を含有する透明樹脂フィルムであって、耐衝撃性及び曲げ耐性が良好である透明樹脂フィルム、及びこれを含む表示装置を提供することができる。
透明樹脂フィルムの一例を示す模式断面図である。
 <透明樹脂フィルム>
 本発明に係る透明樹脂フィルム(以下、単に「透明樹脂フィルム」ともいう。)は、無機粒子及び第1樹脂を含有する第1樹脂層と、第2樹脂を含有する第2樹脂層と、第3樹脂を含有する第3樹脂層とを含む多層構造の樹脂フィルムである。透明樹脂フィルムにおける「透明」とは、JIS K 7361-1:1997に準拠して測定される全光線透過率が30%以上であることを意味する。全光線透過率は、好ましくは35%以上、より好ましくは40%以上、さらに好ましくは45%以上であり、また、100%以下であってもよく、95%以下であってもよい。透明樹脂フィルムを構成する樹脂層のそれぞれが「透明」であることが好ましい。
 なお、本明細書において用語「フィルム」は、用語「シート」の意味をも包含する。
 透明樹脂フィルムは、光学用途のフィルム(光学フィルム)として好適に用いることができる。光学用途の例は、表示装置に用いられる光学部材としての用途である。
 透明樹脂フィルムは、良好な耐衝撃性及び曲げ耐性を有することができ、光学フィルムとして好適である。
 以下、透明樹脂フィルムについて詳細に説明する。
 図1は、透明樹脂フィルムの一例を示す模式断面図である。図1に示される透明樹脂フィルムは、無機粒子15を含有する第1樹脂層10と、第1樹脂層10の第1表面(一方の表面)上に配置される第2樹脂層20と、第1樹脂層10の第1表面と対向する第2表面(他方の表面)上に配置される第3樹脂層30とからなる3層構造の樹脂フィルムである。
 第1樹脂層10と第2樹脂層20とは接していることが好ましく、第1樹脂層10と第3樹脂層30とは接していることが好ましい。
 (2)第1樹脂層
 第1樹脂層10は、無機粒子15を含有する樹脂層であり、無機粒子15は通常、第1樹脂層10中に分散されている。第1樹脂層10に含まれる樹脂は第1樹脂を含み、好ましくは、第1樹脂層10に含まれる樹脂は第1樹脂からなる。
 (2-1)無機粒子
 第1樹脂層10は、無機粒子15を1種又は2種以上含有する。無機粒子15の形状は特に制限されないが、好ましくは粒状であり、より好ましくは球状又は略球状である。無機粒子15は単層構造であってもよいし、多層構造であってもよい。無機粒子15の密度は、通常0.8g/cm以上であり、好ましくは0.9g/cm以上、より好ましくは1.0g/cm以上、さらに好ましくは1.0g/cmより大きく、なおさらに好ましくは2.0g/cm以上である。また、無機粒子15の密度は、通常7.0g/cm以下であり、好ましくは6.0g/cm以下、より好ましくは5.0g/cm以下、さらに好ましくは4.5g/cm以下である。無機粒子15の密度は、温度25℃の環境下、ゲーリュサック型比重瓶を用いて測定することができる。無機粒子15の密度が上記上限以下であると、無機粒子15の沈降を抑制しやすく、第1樹脂層10中での無機粒子15の分布が均一になりやすいため、表面硬度のバラツキが小さくなりやすい。また、無機粒子15の密度が上記下限以上であると、表面硬度等の機械的強度を高めやすい。
 第1樹脂層10に含有される無機粒子15としては、光散乱剤及び発光性(蛍光発光性)の半導体粒子(以下、単に「半導体粒子」ともいう。)等が挙げられる。
 光散乱剤としては、金属又は金属酸化物の粒子、ガラス粒子(ガラスビーズ等)等が挙げられる。光散乱剤は、着色による吸収が無く、散乱効果のみを有する方が好ましいことから、好ましくは金属酸化物の粒子であり、該金属酸化物としては、TiO、SiO、BaTiO、ZnO等が挙げられ、効率的に光を散乱することから、好ましくはTiOの粒子である。光散乱剤の体積基準のメディアン径は、例えば0.03μm以上20μm以下程度であり、好ましくは0.05μm以上1μm以下であり、より好ましくは0.05μm以上0.5μm以下である。
 半導体粒子は、一次光とは異なる波長の光を発し、好ましくは、一次光である青色の光の波長を、これとは異なる色の光の波長に変換する。半導体粒子は、緑色又は赤色を発光することが好ましく、青色光を吸収して緑色又は赤色を発光することがより好ましい。
 本明細書において「青色」とは、青色として視認される光全般(青色の波長域、例えば380nm~495nmに強度を有する光全般)を指し、単一波長の光に限定されない。「緑色」とは、緑色として視認される光全般(緑色の波長域、例えば495nm~585nmに強度を有する光全般)を指し、単一波長の光に限定されない。「赤色」とは、赤色として視認される光全般(赤色の波長域、例えば585nm~780nmに強度を有する光全般)を指し、単一波長の光に限定されない。「黄色」とは、黄色として視認される光全般(黄色の波長域、例えば560nm~610nmに強度を有する光全般)を指し、単一波長の光に限定されない。
 緑色を発光する半導体粒子の発光スペクトルは、好ましくは、500nm以上560nm以下の波長域に極大値を有するピークを含み、より好ましくは、520nm以上545nm以下の波長域に極大値を有するピークを含み、さらに好ましくは、525nm以上540nm以下の波長域に極大値を有するピークを含む。これにより、表示装置の緑色光の表示可能色域を拡大させることができる。該ピークは、好ましくは、半値全幅が15nm以上80nm以下、より好ましくは15nm以上60nm以下、さらに好ましくは15nm以上50nm以下、特に好ましくは15nm以上45nm以下である。これにより、表示装置の緑色光の表示可能色域を拡大させることができる。
 赤色を発光する半導体粒子の発光スペクトルは、好ましくは、610nm以上750nm以下の波長域に極大値を有するピークを含み、より好ましくは、615nm以上650nm以下の波長域に極大値を有するピークを含み、さらに好ましくは、620nm以上640nm以下の波長域に極大値を有するピークを含む。これにより、表示装置の赤色光の表示可能色域を拡大させることができる。該ピークは、好ましくは、半値全幅が15nm以上80nm以下、より好ましくは15nm以上60nm以下、さらに好ましくは15nm以上50nm以下、特に好ましくは15nm以上45nm以下である。これにより、表示装置の赤色光の表示可能色域を拡大させることができる。
 半導体粒子の発光スペクトルは、例えば、分光蛍光光度計や絶対PL量子収率測定装置(浜松ホトニクス製の「C9920-02」、励起光450nm、室温、大気下)を用いて求めることができる。例えば、波長450nmにおける吸光度が0.4となるように希釈した半導体粒子分散液を測定サンプルとして測定される。
 また、半導体粒子を含有する透明樹脂フィルムの発光スペクトルは、ピーク波長450nmの青色LEDバックライト上に透明樹脂フィルムの測定サンプルを置き、透過光を分光放射計(トプコンテクノハウス社製の「SR-UL1R」)を用いて測定することで求めることができる。
 半導体粒子は、半導体結晶からなる粒子、好ましくは半導体結晶からなるナノ粒子である。半導体粒子の好ましい例としては、半導体量子ドット(以下、「量子ドット」ともいう。)及びペロブスカイト型結晶構造を有する化合物(以下、「ペロブスカイト化合物」ともいう。)の粒子が挙げられ、より好ましくは量子ドットである。量子ドットは、発光性半導体微粒子であり、半導体のバンドギャップを利用し、紫外光又は可視光(例えば青色光)を吸収して発光する微粒子である。
 量子ドットの平均粒径は、例えば0.5nm以上100nm以下、好ましくは0.5nm以上20nm以下、より好ましくは1nm以上15nm以下(例えば2nm以上15nm以下)である。量子ドットの平均粒径は、透過型電子顕微鏡(TEM)を用いて求めることができる。量子ドットのエネルギー状態はその大きさに依存するため、粒子径を変えることにより自由に発光波長を選択することが可能である。例えば、CdSeのみから構成される量子ドットの場合、粒子径が2.3nm、3.0nm、3.8nm、4.6nmであるときの発光スペクトルのピーク波長は、それぞれ528nm、570nm、592nm、637nmである。
 量子ドットとしては、例えば、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTe、CdHgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe等の12族元素と16族元素との化合物;GaN、GaP、GaAs、AlN、AlP、AlAs、InN、InP、InAs、GaNP、GaNAs、GaPAs、AlNP、AlNAs、AlPAs、InNP、InNAs、InPAs、GaAlNP、GaAlNAs、GaAlPAs、GaInNP、GaInNAs、GaInPAs、InAlNP、InAlNAs、InAlPAs等の13族元素と15族元素との化合物;PdS、PbSe等の14族元素と16族元素との化合物等が挙げられる。
 量子ドットがSやSeを含む場合、金属酸化物や有機物で表面修飾した量子ドットを使用してもよい。表面修飾した量子ドットを使用することで、組成物に含まれる又は含まれ得る反応成分によってSやSeが引き抜かれることを防止することができる。
 また量子ドットは、上記の化合物を組み合わせてコアシェル構造を形成していてもよい。このような組み合わせとしては、コアがCdSeであり、シェルがZnSである微粒子、コアがInPであり、シェルがZnSeSである微粒子等が挙げられる。
 量子ドットのエネルギー状態はその大きさに依存するため、粒子径を変えることにより自由に発光波長を選択することが可能である。また、量子ドットからの発光光はスペクトル幅が狭いため、表示装置の広色域化に有利である。さらに、量子ドットは応答性が高いため、一次光の利用効率の面でも有利である。
 量子ドットは、前述のとおり、単一の半導体材料からなる単層構造であってもよいし、単一の半導体材料からなる核粒子(コア層)の表面が、これとは異なる1種又は2種以上の半導体材料からなる被覆層(シェル層)によって被覆されたコアシェル構造であってもよい。後者の場合、シェル層を構成する半導体材料としては通常、コア層を構成する半導体材料よりもバンドギャップエネルギーが大きいものを用いる。量子ドットは、シェル層を2種以上有していてもよい。量子ドットの形状は特に限定されず、例えば、球状又は略球状、棒状、円盤状等であり得る。
 ペロブスカイト化合物は、A、B及びXを成分とする、ペロブスカイト型結晶構造を有する化合物である。
 Aは、ペロブスカイト型結晶構造において、Bを中心とする6面体の各頂点に位置する成分であって、1価の陽イオンである。
 Xは、ペロブスカイト型結晶構造において、Bを中心とする8面体の各頂点に位置する成分を表し、ハロゲン化物イオン及びチオシアン酸イオンからなる群より選ばれる少なくとも一種のイオンである。
 Bは、ペロブスカイト型結晶構造において、Aを頂点に配置する6面体及びXを頂点に配置する8面体の中心に位置する成分であって、金属イオンである。
 ペロブスカイト化合物からなる半導体粒子の平均粒径は、良好に結晶構造を維持させる観点から、好ましくは3nm以上、より好ましくは4nm以上、さらに好ましくは5nm以上である。また、ペロブスカイト化合物からなる半導体粒子の分散性の観点から、該半導体粒子の平均粒径は、好ましくは5μm以下、より好ましくは500nm以下、さらに好ましくは100nm以下である。ペロブスカイト化合物からなる半導体粒子の平均粒径は、透過型電子顕微鏡(TEM)を用いて求めることができる。
 A、B及びXを成分とするペロブスカイト化合物としては、特に限定されず、3次元構造、2次元構造、疑似2次元構造のいずれの構造を有する化合物であってもよい。
 3次元構造の場合には、ペロブスカイト化合物は、ABX(3+δ)で表される。
 2次元構造の場合には、ペロブスカイト化合物は、ABX(4+δ)で表される。
 ここで、δは、Bの電荷バランスに応じて適宜変更が可能な数であり、-0.7以上0.7以下である。
 ペロブスカイト化合物であって、ABX(3+δ)で表される、3次元構造のペロブスカイト型の結晶構造を有する化合物の好ましい具体例としては、
 CHNHPbBr、CHNHPbCl、CHNHPbI、CHNHPbBr(3-y)(0<y<3)、CHNHPbBr(3-y)Cl(0<y<3)、(HN=CH-NH)PbBr、(HN=CH-NH)PbCl、(HN=CH-NH)PbI
 CHNHPb(1-a)CaBr(0<a≦0.7)、CHNHPb(1-a)SrBr(0<a≦0.7)、CHNHPb(1-a)LaBr(3+δ)(0<a≦0.7,0<δ≦0.7)、CHNHPb(1-a)BaBr(0<a≦0.7)、CHNHPb(1-a)DyBr(3+δ)(0<a≦0.7,0<δ≦0.7)、
 CHNHPb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、CHNHPb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、
 CsPb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、CsPb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、
 CHNHPb(1-a)NaBr(3+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<3)、CHNHPb(1-a)LiBr(3+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<3)、CHNHPb(1-a)NaBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<3)、CHNHPb(1-a)LiBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<3)、
 (HN=CH-NH)Pb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、(HN=CH-NH)Pb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、(HN=CH-NH)Pb(1-a)NaBr(3+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<3)、(HN=CH-NH)Pb(1-a)NaBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<3)、
 CsPbBr、CsPbCl、CsPbI、CsPbBr(3-y)(0<y<3)、CsPbBr(3-y)Cl(0<y<3)、CHNHPbBr(3-y)Cl(0<y<3)、
 CHNHPb(1-a)ZnBr(0<a≦0.7)、CHNHPb(1-a)AlBr(3+δ)(0<a≦0.7,0≦δ≦0.7)、CHNHPb(1-a)CoBr(0<a≦0.7)、CHNHPb(1-a)MnBr(0<a≦0.7)、CHNHPb(1-a)MgBr(0<a≦0.7)、
 CsPb(1-a)ZnBr(0<a≦0.7)、CsPb(1-a)AlBr(3+δ)(0<a≦0.7,0<δ≦0.7)、CsPb(1-a)CoBr(0<a≦0.7)、CsPb(1-a)MnBr(0<a≦0.7)、CsPb(1-a)MgBr(0<a≦0.7)、
 CHNHPb(1-a)ZnBr(3-y)(0<a≦0.7,0<y<3)、CHNHPb(1-a)AlBr(3+δ-y)(0<a≦0.7,0<δ≦0.7,0<y<3)、CHNHPb(1-a)CoBr(3-y)(0<a≦0.7,0<y<3)、CHNHPb(1-a)MnBr(3-y)(0<a≦0.7,0<y<3)、CHNHPb(1-a)MgBr(3-y)(0<a≦0.7,0<y<3)、CHNHPb(1-a)ZnBr(3-y)Cl(0<a≦0.7,0<y<3)、CHNHPb(1-a)AlBr(3+δ-y)Cl(0<a≦0.7,0<δ≦0.7,0<y<3)、CHNHPb(1-a)CoBr(3+δ-y)Cl(0<a≦0.7,0<y<3)、CHNHPb(1-a)MnBr(3-y)Cl(0<a≦0.7,0<y<3)、CHNHPb(1-a)MgBr(3-y)Cl(0<a≦0.7,0<y<3)、
 (HN=CH-NH)ZnBr(0<a≦0.7)、(HN=CH-NH)MgBr(0<a≦0.7)、(HN=CH-NH)Pb(1-a)ZnBr(3-y)(0<a≦0.7,0<y<3)、(HN=CH-NH)Pb(1-a)ZnBr(3-y)Cl(0<a≦0.7,0<y<3)等が挙げられる。
 ペロブスカイト化合物であって、ABX(4+δ)で表される、2次元構造のペロブスカイト型の結晶構造を有する化合物の好ましい具体例としては、
 (CNHPbBr、(CNHPbCl、(CNHPbI、(C15NHPbBr、(C15NHPbCl、(C15NHPbI、(CNHPb(1-a)LiBr(4+δ)(0<a≦0.7,-0.7≦δ<0)、(CNHPb(1-a)NaBr(4+δ)(0<a≦0.7,-0.7≦δ<0)、(CNHPb(1-a)RbBr(4+δ)(0<a≦0.7,-0.7≦δ<0)、
 (C15NHPb(1-a)NaBr(4+δ)(0<a≦0.7,-0.7≦δ<0)、(C15NHPb(1-a)LiBr(4+δ)(0<a≦0.7,-0.7≦δ<0)、(C15NHPb(1-a)RbaBr(4+δ)(0<a≦0.7,-0.7≦δ<0)、
 (CNHPb(1-a)NaBr(4+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<4)、(CNHPb(1-a)LiBr(4+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<4)、(CNHPb(1-a)RbBr(4+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<4)、
 (CNHPb(1-a)NaBr(4+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<4)、(CNHPb(1-a)LiBr(4+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<4)、(CNHPb(1-a)RbBr(4+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<4)、
 (CNHPbBr、(C15NHPbBr
 (CNHPbBr(4-y)Cl(0<y<4)、(CNHPbBr(4-y)(0<y<4)、
 (CNHPb(1-a)ZnBr(0<a≦0.7)、(CNHPb(1-a)MgBr(0<a≦0.7)、(CNHPb(1-a)CoBr(0<a≦0.7)、(CNHPb(1-a)MnBr(0<a≦0.7)、
 (C15NHPb(1-a)ZnBr(0<a≦0.7)、(C15NHPb(1-a)MgBr(0<a≦0.7)、(C15NHPb(1-a)CoBr(0<a≦0.7)、(C15NHPb(1-a)MnBr(0<a≦0.7)、
 (CNHPb(1-a)ZnBr(4-y)(0<a≦0.7,0<y<4)、(CNHPb(1-a)MgBr(4-y)(0<a≦0.7,0<y<4)、(CNHPb(1-a)CoBr(4-y)(0<a≦0.7,0<y<4)、(CNHPb(1-a)MnBr(4-y)(0<a≦0.7,0<y<4)、
 (CNHPb(1-a)ZnBr(4-y)Cl(0<a≦0.7,0<y<4)、(CNHPb(1-a)MgBr(4-y)Cl(0<a≦0.7,0<y<4)、(CNHPb(1-a)CoBr(4-y)Cl(0<a≦0.7,0<y<4)、(CNHPb(1-a)MnBr(4-y)Cl(0<a≦0.7,0<y<4)等が挙げられる。
 第1樹脂層は、半導体粒子を2種以上含有していてもよい。例えば、第1樹脂層は、一次光を吸収して緑色を発光する半導体粒子を1種のみを含有していてもよく、2種以上組み合わせて含有していてもよい。第1樹脂層は、一次光を吸収して赤色を発光する半導体粒子を1種のみを含有していてもよく、2種以上組み合わせて含有していてもよい。
 第1樹脂層10は、無機粒子15を1種のみ含有していてもよいし、2種以上の無機粒子15を含有していてもよい。第1樹脂層10に含まれる無機粒子15の含有率は、透明樹脂フィルムの機械的強度や曲げ耐性を高めやすいことから、第1樹脂層10の総量に対して、例えば、0.05質量%以上であり、好ましくは0.10質量%以上、より好ましくは0.15質量%以上、さらに好ましくは0.20質量%以上、なおさらに好ましくは0.25質量%以上、特に好ましくは0.30質量%以上であり、好ましくは50質量%以下、より好ましくは30質量%以下、さらに好ましくは20質量%以下、なおさらに好ましくは10質量%以下、特に好ましくは7質量%以下である。
 第1樹脂層10は、光散乱剤を1種又は2種以上含有することができる。第1樹脂層10は、半導体粒子を1種又は2種以上含有することができる。例えば、第1樹脂層10は、赤色発光性の半導体粒子と緑色発光性の半導体粒子とを含有することができる。また、第1樹脂層10は、1種又2種以上の光散乱剤と1種又2種以上の半導体粒子とを含有することができる。第1樹脂層10に光散乱剤及び発光性の半導体粒子の両方を含有させることにより、半導体粒子の近傍に光散乱剤を存在させることができるため、透明樹脂フィルムの発光強度向上に有利となり得る。
 無機粒子15が光散乱剤を含む場合、第1樹脂層10における光散乱剤の含有率は、第1樹脂層10の総量に対して、例えば0.01質量%以上であり、好ましくは0.05質量%以上、より好ましくは0.08質量%以上、さらに好ましくは0.10質量%以上、なおさらに好ましくは0.15質量%以上、特に好ましくは0.20質量%以上であり、好ましくは30質量%以下、より好ましくは20質量%以下、さらに好ましくは10質量%以下、なおさらに好ましくは5.0質量%以下、特に好ましくは2.0質量%以下、特により好ましくは1.0質量%以下、最も好ましくは0.5質量%以下である。第1樹脂層10における光散乱剤の含有率が上記範囲であると、透明樹脂フィルムの機械的強度や曲げ耐性、光散乱性能及び/又は発光強度を高めやすい。
 無機粒子15が半導体粒子を含む場合、第1樹脂層10における半導体粒子の含有率は、第1樹脂層10の総量に対して、例えば0.01質量%以上であり、好ましくは0.05質量%以上、より好ましくは0.10質量%以上、さらに好ましくは0.15質量%以上、なおさらに好ましくは0.20質量%以上、特に好ましくは0.25質量%以上であり、好ましくは30質量%以下、より好ましくは10質量%以下、さらに好ましくは5.0質量%以下、なおさらに好ましくは3.0質量%以下である。第1樹脂層10における半導体粒子の含有率が上記範囲であると、透明樹脂フィルムの機械的強度、曲げ耐性及び発光強度を高めやすい。
 無機粒子15が半導体粒子及び光散乱剤を含む場合、光散乱剤の含有量に対する半導体粒子の含有量の比は、好ましくは0.1以上15以下、より好ましくは0.2以上10以下、さらに好ましくは0.3以上8.0以下、なおさらに好ましくは0.5以上5.0以下である。光散乱剤の含有量に対する半導体粒子の含有量の比が上記範囲であると、半導体粒子の発光を効率よく外部に射出しやすく、透明樹脂フィルムの発光強度を高めやすい。
 無機粒子15が赤色発光性の半導体粒子と緑色発光性の半導体粒子とを含有する場合、該透明樹脂フィルムは白色光を発する波長変換フィルムとして好適に用いることができる。赤色発光性の半導体粒子の含有量に対する緑色発光性の半導体粒子の含有量の比は、好ましくは0.1以上60以下、より好ましくは1以上50以下、さらに好ましくは5以上45以下、なおさらに好ましくは10以上40以下である。赤色発光性の半導体粒子の含有量に対する緑色発光性の半導体粒子の含有量の比が上記範囲であると、所望の白色光を得やすい。
 (2-2)第1樹脂
 第1樹脂層10は、第1樹脂を含む。好ましくは、第1樹脂層10に含まれる樹脂は第1樹脂からなる。第1樹脂は、好ましくは熱可塑性樹脂である。第1樹脂は、2種以上の熱可塑性樹脂を含んでいてもよい。
 第1樹脂層10に含まれる樹脂は、1種の第1樹脂からなっていてもよいし、2種以上の第1樹脂からなっていてもよいが、好ましくは、1種の第1樹脂からなる。
 熱可塑性樹脂としては、例えば、鎖状ポリオレフィン系樹脂、環状ポリオレフィン系樹脂等のポリオレフィン系樹脂;ポリエステル系樹脂;ポリメタクリル酸メチル(PMMA)等の(メタ)アクリル系樹脂;セルロースエステル系樹脂;ポリカーボネート系樹脂;ポリビニルアルコール系樹脂;ポリ酢酸ビニル系樹脂;ポリアリレート系樹脂;ポリスチレン系樹脂;ポリエーテルスルホン系樹脂;ポリスルホン系樹脂;ポリアミド系樹脂;ポリイミド系樹脂;及びこれらの混合物、共重合物等が挙げられる。本明細書において「(メタ)アクリル」とは、アクリル及びメタクリルから選択される少なくとも一方を意味する。
 無機粒子15が半導体粒子を含む場合、第1樹脂は、透明樹脂フィルムの成形時に、半導体粒子の光学特性等に悪影響が与えない程度の温度で溶融可能な熱可塑性樹脂であることが好ましい。
 第1樹脂は、透明樹脂フィルムの耐衝撃性及び曲げ耐性の観点から、好ましくは、ポリスチレン系樹脂及び(メタ)アクリル系樹脂から選択される1種以上の熱可塑性樹脂であり、より好ましくはポリスチレン系樹脂である。ポリスチレン系樹脂とは、スチレン系単量体から誘導される構成単位を含む重合体又は共重合体をいう。ポリスチレン系樹脂としては、例えば、1種又は2種以上のスチレン系単量体の重合体又は共重合体;ゴム重合体(ゴム弾性体)と1種以上のスチレン系単量体との共重合体(ゴム変性ポリスチレン系樹脂。耐衝撃性ポリスチレン系樹脂ともいう。);1種以上のスチレン系単量体と、これと共重合可能な1種以上の他の単量体との共重合体(ゴム変性ポリスチレン系樹脂は除く。)等が挙げられる。第1樹脂は、1種又は2種以上のポリスチレン系樹脂を含むことができる。
 スチレン系単量体としては、例えば、スチレンの他、α-メチルスチレン、p-t-ブチルスチレン、m-又はp-メチルスチレン、m-又はp-エチルスチレン、α-メチル-p-メチルスチレン、クロロスチレン等のα置換及び/又は核置換スチレン等が挙げられる。
 ゴム重合体としては、例えば、天然クレープゴム、ポリブタジエン、ブタジエン-スチレン共重合ゴム、ブタジエン-アクリロニトリル共重合ゴム、ポリイソプレン、ポリイソブチレン、イソプレン-イソブチレン共重合ゴム、ポリクロロプレン、エチレン-プロピレン共重合ゴム、エチレン-プロピレン-ジエン単量体ゴム、スチレン-ブタジエンブロック共重合ゴム、エチレン-酢酸ビニル共重合ゴム、(メタ)アクリル酸アルキルエステル共重合ゴム等が挙げられる。
 スチレン系単量体と共重合可能な他の単量体としては、例えば、(メタ)アクリル酸エステル、(メタ)アクリル酸、無水マレイン酸、ビニルナフタレン、ブロモスチレン、フェニルマレイミド、アクリロニトリル等が挙げられる。
 ゴム変性ポリスチレン系樹脂(耐衝撃性ポリスチレン系樹脂)としては、例えば、ポリブタジエングラフトスチレン重合体(HIPS樹脂)、ポリブタジエングラフトスチレン-メタクリル酸共重合体(HISMAA樹脂)、ポリブタジエングラフトスチレン-アクリロニトリル共重合体(ABS樹脂)等が挙げられる。中でも、透明樹脂フィルムの耐衝撃性及び曲げ耐性の観点から、HIPS樹脂が好ましい。
 1種以上のスチレン系単量体と1種以上の他の単量体との共重合体としては、例えば、スチレン-メチルメタクリレート共重合体(MS樹脂)、スチレン-メタクリル酸共重合体(SMAA樹脂)、スチレン-アクリル酸共重合体(SAA樹脂)、スチレン-アクリロニトリル共重合体(AS樹脂)等が挙げられる。
 透明樹脂フィルムの耐衝撃性及び曲げ耐性の観点から、第1樹脂のメルトフローレートMは、好ましくは0.5g/10分以上10g/10分以下、より好ましくは0.8g/10分以上8.0g/10分以下、さらに好ましくは1.0g/10分以上5.0g/10分以下、なおさらに好ましくは2.0g/10分以上5.0g/10分以下、特に好ましくは2.5g/10分以上5.0g/10分以下である。第1樹脂等の樹脂のメルトフローレートは、後述する[実施例]の項の記載に従って測定される。
 第1樹脂層10における第1樹脂の含有率は、第1樹脂層10の総量に対して、例えば50質量%以上であり、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、なおさらに好ましくは85質量%以上、特に好ましくは90質量%以上であり、例えば99.9質量%以下であり、好ましくは99.5質量%以下、より好ましくは99.0質量%以下である。第1樹脂層10における第1樹脂の含有率が上記範囲内であると、透明樹脂フィルムの耐衝撃性及び曲げ耐性を高めやすい。
 (2-3)第1樹脂層に含まれ得る他の成分
 第1樹脂層10は、無機粒子15及び第1樹脂以外の他の成分を含むことができる。他の成分としては、例えば、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、着色防止剤、難燃剤、核剤、帯電防止剤等の添加剤が挙げられる。第1樹脂層10は、2種以上の添加剤を含有してもよい。
 酸化防止剤としては、工業的に一般に使用される酸化防止剤であれば特に限定はなく、フェノール系酸化防止剤、リン系酸化防止剤、リン/フェノール複合型酸化防止剤及び硫黄系酸化防止剤等を用いることができる。2種以上の酸化防止剤を用いてもよい。
 リン/フェノール複合型酸化防止剤は、例えば、分子中にリン原子とフェノール構造とをそれぞれ1以上有する化合物である。中でも、透明樹脂フィルムの発光強度の観点から、酸化防止剤は、リン/フェノール複合型酸化防止剤を含むことが好ましい。
 フェノール系酸化防止剤としては、例えば、イルガノックス(登録商標)1010(Irganox 1010:ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、BASF(株)製)、同1076(Irganox 1076:オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、BASF(株)製)、同1330(Irganox 1330:3,3’,3’’,5,5’,5’’-ヘキサ-tert-ブチル-a,a’,a’’-(メシチレン-2,4,6-トリイル)トリ-p-クレゾール、BASF(株)製)、同3114(Irganox 3114:1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,
4,6(1H,3H,5H)-トリオン、BASF(株)製)、同3790(Irganox 3790:1,3,5-トリス((4-tert-ブチル-3-ヒドロキシ-2,6-キシリル)メチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、BASF(株)製)、同1035(Irganox 1035:チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、BASF(株)製)、同1135(Irganox 1135:ベンゼンプロパン酸の3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシ-C7-C9側鎖アルキルエステル、BASF(株)製)、同1520L(Irganox 1520L:4,6-ビス(オクチルチオメチル)-o-クレゾール、BASF(株)製)、同3125(Irganox 3125、BASF(株)製)、同565(Irganox 565:2,4-ビス(n-オクチルチオ)-6-(4-ヒドロキシ-3’、5’-ジ-tert-ブチルアニリノ)-1,3,5-トリアジン、BASF(株)製)、アデカスタブ(登録商標)AO-80(アデカスタブ AO-80:3,9-ビス(2-(3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ)-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン、(株)ADEKA製)、スミライザー(登録商標)BHT、同GA-80、同GS(以上、住友化学(株)製)、サイアノックス(登録商標)1790(Cyanox 1790、(株)サイテック製)、ビタミンE(エーザイ(株)製)等が挙げられる。
 フェノール系酸化防止剤としては、フェノール性ヒドロキシ基の少なくとも一方のオルト位に嵩高い有機基が結合したヒンダードフェノール構造を有する酸化防止剤が好ましい。嵩高い有機基としては、2級又は3級アルキル基が好ましく、具体的には、イソプロピル基、s-ブチル基、t-ブチル基、s-アミル基、t-アミル基等が挙げられる。中でも、3級アルキル基が好ましく、t-ブチル基又はt-アミル基が特に好ましい。
 リン系酸化防止剤としては、例えば、イルガフォス(登録商標)168(Irgafos 168:トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト、BASF(株)製)、同12(Irgafos 12:トリス[2-[[2,4,8,10-テトラ-tert-ブチルジベンゾ[d、f][1,3,2]ジオキサフォスフィン-6-イル]オキシ]エチル]アミン、BASF(株)製)、同38(Irgafos 38:ビス(2,4-ビス(1,1-ジメチルエチル)-6-メチルフェニル)エチルエステル亜りん酸、BASF(株)製)、アデカスタブ(登録商標)329K、同PEP36、同PEP-8(以上、(株)ADEKA製)、Sandstab P-EPQ(クラリアント社製)、Weston(登録商標)618、同619G(以上、GE社製)、Ultranox626(GE社製)等が挙げられる。
 リン/フェノール複合型酸化防止剤としては、例えば、スミライザー(登録商標)GP(6-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-tert-ブチルジベンズ[d,f][1.3.2]ジオキサホスフェピン)(住友化学(株)製)等が挙げられる。
 硫黄系酸化防止剤としては、例えば、チオジプロピオン酸ジラウリル、ジミリスチル又はジステアリール等のジアルキルチオジプロピオネート化合物及びテトラキス[メチレン(3-ドデシルチオ)プロピオネート]メタン等のポリオールのβ-アルキルメルカプトプロピオン酸エステル化合物等が挙げられる。
 第1樹脂層10が酸化防止剤を含む場合、第1樹脂層10における酸化防止剤の含有率は、第1樹脂層10の総量に対して、例えば0.001質量%以上10質量%以下であり、透明樹脂フィルムの発光強度の観点から、好ましくは0.01質量%以上5質量%以下、より好ましくは0.05質量%以上2質量%以下、さらに好ましくは0.1質量%以上1質量%以下である。
 紫外線吸収剤の例としては、2,2’-メチレンビス〔4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール〕、2-(5-メチル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、2-〔2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル〕-2H-ベンゾトリアゾール、2-(3,5-ジ-tert-ブチル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、2-(3-tert-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロ-2H-ベンゾトリアゾール、2-(3,5-ジ-tert-ブチル-2-ヒドロキシフェニル)-5-クロロ-2H-ベンゾトリアゾール、2-(3,5-ジ-tert-アミル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)-2H-ベンゾトリアゾール等のベンゾトリアゾール系紫外線吸収剤;2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクチルオキシベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-4’-クロロベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン等の2-ヒドロキシベンゾフェノン系紫外線吸収剤;p-tert-ブチルフェニルサリチル酸エステル、p-オクチルフェニルサリチル酸エステル等のサリチル酸フェニルエステル系紫外線吸収剤;2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン、2-(2-ヒドロキシ-4-[1-オクチルオキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン、4-ビス[2-ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-(2’-エチル)ヘキシルオキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-(4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-ヒドロキシフェニル、2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチルオキシ)フェノール、2-[2,6-ジ(2,4-キシリル)-1,3,5-トリアジン-2-イル]-5-オクチルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[2-(2-エチルヘキサノイル)エトキシ]フェノール、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メトキシフェニル)-1,3,5トリアジン等のトリアジン系紫外線吸収剤などが挙げられ、必要に応じてそれらの2種以上を用いてもよい。
 紫外線吸収剤としては、市販品を使用してもよく、例えば、トリアジン系紫外線吸収剤として、ケミプロ化成株式会社製のKemisorb 102、株式会社ADEKA製のアデカスタブ LA46、アデカスタブ LAF70、BASF社製のTINUVIN 460、TINUVIN 405、TINUVIN 400及びTINUVIN 477、サンケミカル株式会社製のCYASORB UV-1164(以上、いずれも商品名)等がある。ベンゾトリアゾール系紫外線吸収剤としては、株式会社ADEKA製のアデカスタブ LA31及びアデカスタブ LA36、住化ケムテックス株式会社製のスミソーブ 200、スミソーブ 250、スミソーブ 300、スミソーブ 340及びスミソーブ 350、ケミプロ化成株式会社製のKemisorb 74、Kemisorb 79及びKemisorb 279、BASF社製のTINUVIN 99-2、TINUVIN 360、TINUVIN 900及びTINUVIN 928、城北化学工業株式会社製のJF-77、JF-79、JF-80、JF-83、JF-832、JAST-500、JF-90G、JF-95(以上、いずれも商品名)等が挙げられる。
 第1樹脂層10が紫外線吸収剤を含む場合、第1樹脂層10における紫外線吸収剤の含有率は、第1樹脂層10の総量に対して、例えば0.001質量%以上10質量%以下であり、透明樹脂フィルムの耐候性向上等の観点から、好ましくは0.01質量%以上5質量%以下、より好ましくは0.05質量%以上2質量%以下、さらに好ましくは0.1質量%以上1質量%以下である。
 (2-4)第1樹脂層の厚み
 透明樹脂フィルムの耐衝撃性及び曲げ耐性の観点から、第1樹脂層10の厚みTは、好ましくは50μm以上500μm以下、より好ましくは70μm以上400μm以下、さらに好ましくは80μm以上350μm以下、なおさらに好ましくは100μm以上300μm以下、特に好ましくは150μm以上250μm以下である。第1樹脂層等の樹脂層の厚みは、後述する[実施例]の項の記載に従って測定することができる。
 (3)第2樹脂層及び第3樹脂層
 第2樹脂層20は、第1樹脂層10の第1表面上に配置される樹脂層である。第2樹脂層20に含まれる樹脂は第2樹脂を含み、好ましくは、第2樹脂層20に含まれる樹脂は第2樹脂からなる。
 第3樹脂層30は、第1樹脂層10の第1表面と対向する第2表面上に配置される樹脂層である。第3樹脂層30に含まれる樹脂は第3樹脂を含み、好ましくは、第3樹脂層30に含まれる樹脂は第3樹脂からなる。
 好ましくは、第1樹脂層10は、光散乱剤及び発光性の半導体粒子から選択される無機粒子15を含有し、第2樹脂層20及び第3樹脂層30は、光散乱剤及び半導体粒子を含有しない。これにより、透明樹脂フィルムにおいて、無機粒子15に基づく光学特性と機械的強度とを両立させやすくなる。また、第1樹脂層10に光散乱剤及び半導体粒子の両方を含有させることにより、半導体粒子の近傍に光散乱剤を存在させることができるため、透明樹脂フィルムの発光強度向上に有利となり得る。
 第2樹脂層20、第3樹脂層30はそれぞれ、無機粒子を含有し得る。ただし、第2樹脂層20及び第3樹脂層30は、発光性の半導体粒子を含有しないことが好ましく、発光性の半導体粒子及び光散乱剤を含有しないことがより好ましい。
 (3-1)アンチブロッキング剤
 第2樹脂層20及び第3樹脂層30は、好ましくは、少なくともいずれか一方の樹脂層がアンチブロッキング剤を含有し、より好ましくは、両方の樹脂層がアンチブロッキング剤を含有する。これにより、透明樹脂フィルムをロール状態にしたときや枚葉状態の透明樹脂フィルムを積層させたときのフィルムの密着(ブロッキング)を抑制することができる。また、いずれか一方又は両方の樹脂層にアンチブロッキング剤を含有させることにより、透明樹脂フィルムの鉛筆硬度や耐衝撃性を高め得る。第2樹脂層20、第3樹脂層30はそれぞれ、2種以上のアンチブロッキング剤を含有してもよい。なお、第1樹脂層10は、アンチブロッキング剤を含有していてもよいが、透明樹脂フィルムの発光強度を高めやすいことから、アンチブロッキング剤を含有しないことが好ましい。
 アンチブロッキング剤を第2樹脂層20及び/又は第3樹脂層30に含有させ、第1樹脂層10には含有させないことにより、透明樹脂フィルムの全光線透過率を高めやすくなり、光学特性の観点から有利である。
 アンチブロッキング剤としては、例えば、シリカ、アルミナ、炭酸カルシウム、炭酸マグネシウム、硫酸カルシウム、硫酸バリウム、カオリン、これらの疎水処理物等からなる無機系の粒子;(メタ)アクリル樹脂、ウレタン樹脂、フェノール樹脂、シリコン樹脂、フッ素樹脂、ポリアミド、ポリプロピレン等のポリオレフィン、ポリカーボネート等からなる樹脂粒子が挙げられる。樹脂粒子の好ましい一例は、(メタ)アクリル樹脂粒子である。
 アンチブロッキング剤は、好ましくは樹脂粒子である。アンチブロッキング剤が樹脂粒子であると、透明樹脂フィルムの表面に存在するアンチブロッキング剤により、透明樹脂フィルムの耐衝撃性を高めることができる。さらには、透明樹脂フィルムの内部、好ましくは第1樹脂層から発せられる光の散乱を抑制できるとともに、例えば無機系の粒子を含有させた場合に比して透明樹脂フィルムの透明性を高めることができるため、透明樹脂フィルムの出射光強度の低下を抑制することができる。
 アンチブロッキング剤は、それが分散される第2樹脂又は第3樹脂との屈折率差が小さい粒子であることが好ましい。屈折率差を小さくすることにより、アンチブロッキング剤により生じる、透明樹脂フィルム内部から発せられる光の散乱を抑制できるため、透明樹脂フィルムの出射光強度を向上させることができる。上記屈折率差を小さくする観点から、アンチブロッキング剤は、好ましくは樹脂粒子であり、より好ましくは(メタ)アクリル樹脂粒子である。
 アンチブロッキング剤の平均粒径は、透明樹脂フィルムの耐衝撃性や鉛筆硬度、曲げ耐性及び光沢を考慮して、好ましくは1μm以上45μm以下、より好ましくは2μm以上30μm以下、さらに好ましくは3μm以上15μm以下、なおさらに好ましくは4μm以上10μm以下である。
 第2樹脂層20及び/又は第3樹脂層30がアンチブロッキング剤を含む場合、該樹脂層におけるアンチブロッキング剤の含有率は、該樹脂層の総量に対して、例えば0.01質量%以上50質量%以下であり、好ましくは0.1質量%以上30質量%以下、より好ましくは0.5質量%以上20質量%以下、さらに好ましくは1.0質量%以上15質量%以下、なおさらに好ましくは3.0質量%以上12質量%以下、特に好ましくは5.0質量%以上12質量%以下である。該樹脂層におけるアンチブロッキング剤の含有率が上記範囲であると、透明樹脂フィルムをロール状態にしたときや枚葉状態の透明樹脂フィルムを積層させたときのフィルムの密着(ブロッキング)を抑制することができ、また、透明樹脂フィルムの発光強度を高めやすい。さらに、該樹脂層におけるアンチブロッキング剤の含有率が上記範囲であると、透明樹脂フィルムの耐衝撃性を高め得る。
 (3-2)第2樹脂及び第3樹脂
 第2樹脂及び第3樹脂は、好ましくは、それぞれ熱可塑性樹脂である。第2樹脂及び第3樹脂はそれぞれ、2種以上の熱可塑性樹脂を含んでいてもよい。熱可塑性樹脂の例については上記(2-2)での記載が引用される。
 第2樹脂層20に含まれる樹脂は、1種の第2樹脂からなっていてもよいし、2種以上の第2樹脂からなっていてもよいが、好ましくは、1種の第2樹脂からなる。第3樹脂層30に含まれる樹脂は、1種の第3樹脂からなっていてもよいし、2種以上の第3樹脂からなっていてもよいが、好ましくは、1種の第3樹脂からなる。
 第1樹脂層10が半導体粒子を含む場合、第2樹脂及び第3樹脂はそれぞれ、透明樹脂フィルムの成形時に、半導体粒子の光学特性等に悪影響が与えない程度の温度で溶融可能な熱可塑性樹脂であることが好ましい。
 第2樹脂及び第3樹脂はそれぞれ、透明樹脂フィルムの耐衝撃性及び曲げ耐性の観点から、好ましくは、ポリスチレン系樹脂及び(メタ)アクリル系樹脂から選択される1種以上の熱可塑性樹脂であり、より好ましくはポリスチレン系樹脂である。第2樹脂及び第3樹脂はそれぞれ、1種又は2種以上のポリスチレン系樹脂を含むことができる。中でも、透明樹脂フィルムの耐衝撃性及び曲げ耐性の観点から、第2樹脂及び第3樹脂はそれぞれ、好ましくは、HIPS樹脂である。
 第1樹脂と第2樹脂とは同じであってもよいし、異なっていてもよい。第1樹脂と第3樹脂とは同じであってもよいし、異なっていてもよい。第2樹脂と第3樹脂とは同じであってもよいし、異なっていてもよい。
 1つの好ましい実施形態において、透明樹脂フィルムは第1樹脂層10、第2樹脂層20及び第3樹脂層30を有し、第1樹脂、第2樹脂及び第3樹脂はHIPS樹脂である。
 透明樹脂フィルムの耐衝撃性及び曲げ耐性の観点から、第2樹脂のメルトフローレートM、第3樹脂のメルトフローレートMはそれぞれ、好ましくは0.5g/10分以上10g/10分以下、より好ましくは0.8g/10分以上8.0g/10分以下、さらに好ましくは1.0g/10分以上5.0g/10分以下、なおさらに好ましくは2.0g/10分以上5.0g/10分以下、特に好ましくは2.5g/10分以上5.0g/10分以下である。
 第2樹脂のメルトフローレートMに対する第3樹脂のメルトフローレートMの比M/Mは、好ましくは0.5以上2以下、より好ましくは0.7以上1.5以下、さらに好ましくは0.9以上1.2以下、特に好ましくは1である。
 第2樹脂層20における第2樹脂の含有率、第3樹脂層30における第3樹脂の含有率はそれぞれ、該樹脂層の総量に対して、例えば50質量%以上であり、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%、なおさらに好ましくは85質量%以上、特に好ましくは90質量%以上であり、例えば99.9質量%以下であり、好ましくは99.5質量%以下、より好ましくは99.0質量%以下、さらに好ましくは98.0%以下、なおさらに好ましくは96.0%以下である。第2樹脂層20における第2樹脂の含有率及び第3樹脂層30における第3樹脂の含有率が上記範囲内であると、透明樹脂フィルムの耐衝撃性及び曲げ耐性を高めやすい。
 第2樹脂層20及び第3樹脂層30は、アンチブロッキング剤及び第2樹脂又は第3樹脂以外の他の成分を含むことができる。他の成分の例は、上記(2-3)に記載の添加剤の例と同様である。
 (3-3)第2樹脂層及び第3樹脂層の厚み
 透明樹脂フィルムの耐衝撃性及び曲げ耐性の観点から、第2樹脂層20の厚みT、第3樹脂層30の厚みTはそれぞれ、好ましくは5μm以上、より好ましくは10μm以上、さらに好ましくは15μm以上、なおさらに好ましくは20μm以上であり、好ましくは200μm以下、より好ましくは150μm以下、さらに好ましくは100μm以下、なおさらに好ましくは50μm以下、特に好ましくは40μm以下である。
 第2樹脂層20の厚みTに対する第3樹脂層30の厚みTの比T/Tは、好ましくは0.5以上2以下、より好ましくは0.7以上1.5以下、さらに好ましくは0.9以上1.2以下、特に好ましくは1である。
 (4)光沢度の差
 第2樹脂層20における第1樹脂層10とは反対側の表面の光沢度(第2樹脂層側光沢度)と、第3樹脂層30における第1樹脂層10とは反対側の表面の光沢度(第3樹脂層側光沢度)との差の絶対値をCとし、第2樹脂のメルトフローレートMに対する第1樹脂のメルトフローレートMの比M/MをBとするとき、透明樹脂フィルムは、式(i)及び式(ii)のいずれか一方又は両方を満たす。
 C≧5.5    (i)
 B×C≧8.5  (ii)
 式(i)及び式(ii)のいずれか一方又は両方を満たすことにより、透明樹脂フィルムは、耐衝撃性及び曲げ耐性が良好なものとなる。透明樹脂フィルムは、式(i)及び式(ii)の両方を満たすことが好ましい。
 特定の理論に拘束されるものではないが、透明樹脂フィルムが式(i)を満たすことにより、耐衝撃性及び曲げ耐性が良好なものとなるのは、透明樹脂フィルム全体として、曲げや衝撃等により、フィルムに負荷された応力の緩和が生じやすい構造となっているからであると思われる。また、透明樹脂フィルムが式(ii)を満たすことにより、耐衝撃性及び曲げ耐性が良好なものとなり得るのは、製造時にフィルムに残留する応力が減少し、さらに透明樹脂フィルム全体として、曲げや衝撃等により、フィルムに負荷された応力の緩和が生じやすい構造となっているからであると思われる。
 なお、第2樹脂層20又は第3樹脂層30に相当し得る、3層構造からなる透明樹脂フィルムの表層である2つの樹脂層のうち、いずれか一方の表層が式(ii)を満たしている場合には、その表層を第2樹脂層20とする。両方の表層が式(ii)を満たしている場合には、どちらの表層を第2樹脂層20としてもよい。
 透明樹脂フィルムが式(ii)を満たす場合において、第3樹脂のメルトフローレートMに対する第1樹脂のメルトフローレートMの比M/MをB’とするとき、透明樹脂フィルムは、耐衝撃性及び曲げ耐性の観点から、好ましくは、式(ii’)をさらに満たす。
 B’×C≧8.5  (ii’)
 メルトフローレートMとメルトフローレートMとは同一条件下で測定されるメルトフローレートであり、具体的には、JIS K 7210に準拠し、200℃、荷重5kgの条件下で測定されるメルトフローレートである。
 式(i)及び式(ii)において、Cの値は、透明樹脂フィルムの耐衝撃性及び曲げ耐性の観点から、好ましくは6.0以上、より好ましくは8.0以上、さらに好ましくは10.0以上、なおさらに好ましくは12.0以上、特に好ましくは15.0以上である。Cの値は通常、100以下であり、80以下、60以下、50以下、40以下、30以下又は20以下であってもよい。
 Cの値が上記範囲内にあるかどうかの判断及び式(i)を充足するかどうかの判断において、Cの値は、上に掲げる数値の最小桁よりも一桁下の数値がある場合には、これを四捨五入することによって得られる数値とする。例えば、Cの値が5.5以上であるかどうか判断において、Cの値が5.49であるとき、この場合のCの値は、小数第二位の9を四捨五入することによって得られる5.5とし、5.5以上であると判断される。上記又は下記B×Cの値、B’×Cの値、Bの値及びB’の値についても同様である。
 式(ii)、式(ii’)において、B×Cの値、B’×Cの値は、それぞれ、透明樹脂フィルムの耐衝撃性及び曲げ耐性の観点から、好ましくは9.0以上、より好ましくは10.0以上、さらに好ましくは12.0以上、なおさらに好ましくは14.0以上、特に好ましくは15.0以上である。B×Cの値は通常、120以下であり、100以下、80以下、60以下、50以下、40以下、30以下又は20以下であってもよい。
 式(ii)、式(ii’)において、Bの値、B’の値は、それぞれ、無機粒子15に基づく光学特性と機械的強度とを両立させやすくなることから、また、透明樹脂フィルムの耐衝撃性及び曲げ耐性の観点から、好ましくは1.4以下、より好ましくは1.3以下、さらに好ましくは1.2以下、なおさらに好ましくは1.1以下、特に好ましくは1.0であり、好ましくは0.5以上、より好ましくは0.7以上、さらに好ましくは0.9以上、なおさらに好ましくは0.95以上である。さらに、Bの値及びB’の値を上記範囲内にすることにより、それぞれ、第1樹脂層10と第2樹脂層20との密着性、第1樹脂層10と第3樹脂層30との密着性を高めることができる。
 第2樹脂層側光沢度及び第3樹脂層側光沢度はそれぞれ、例えば10.0以上100以下であり、好ましくは15.0以上80.0以下、より好ましくは20.0以上75.0以下である。光沢度は、後述する[実施例]の項に記載の方法に従って測定される。
 Cの値を5.5以上にする方法としては、例えば、第2樹脂層20と第3樹脂層の組成を異ならせることや、透明樹脂フィルムの製造時に、第2樹脂層20と第3樹脂層30に異なる熱履歴を与えることが挙げられる。例えば、第2樹脂層20の無機粒子15及び/又はアンチブロッキング剤の含有率と第3樹脂層30の無機粒子15及び/又はアンチブロッキング剤の含有率とを異ならせたり、第2樹脂層20に含有させる無機粒子15及び/又はアンチブロッキング剤の種類と第3樹脂層30に含有させる無機粒子15及び/又はアンチブロッキング剤の種類とを異ならせたり、共押出成形による透明樹脂フィルムの製造において、T-ダイから押し出される溶融状態の積層物を成形・冷却ロール等を用いて成形・冷却する際に、積層物の表裏で冷却プロファイルを異ならせたりすることができる。
 (5)樹脂層の厚み比及びメルトフローレート比
 第2樹脂層20の厚みT[μm]に対する第1樹脂層10の厚みT[μm]の比T/TをAとし、第2樹脂のメルトフローレートMに対する第1樹脂のメルトフローレートMの比M/MをBとするとき、透明樹脂フィルムは、式(iii)及び式(iv):
 A≦15    (iii)
 B≦1.5   (iv)
を満たすことが好ましい。
 式(iii)及び式(iv)を満たすことにより、透明樹脂フィルムは、さらに、耐衝撃性及び曲げ耐性が良好なものとなり得る。
 Aの値は、透明樹脂フィルムにおいて、無機粒子15に基づく光学特性と機械的強度とを両立させやすくなることから、また、透明樹脂フィルムの耐衝撃性及び曲げ耐性の観点から、好ましくは14.8以下、より好ましくは14.5以下、さらに好ましくは14.0以下、なおさらに好ましくは13.5以下、特に好ましくは13.0以下であり、好ましくは0.5以上、より好ましくは1.0以上、さらに好ましくは2.0以上、なおさらに好ましくは3.0以上である。
 Aの値が上記範囲内にあるかどうかの判断及び式(iii)を充足するかどうかの判断において、Aの値は、上に掲げる数値の最小桁よりも一桁下の数値がある場合には、これを四捨五入することによって得られる数値とする。例えば、Aの値が14.8以下であるかどうか判断において、Aの値が14.79であるとき、この場合のAの値は、小数第二位の9を四捨五入することによって得られる14.8とし、14.8以下であると判断される。下記Bの値、A’の値及びB’の値についても同様である。
 Bの値は、上述のように、好ましくは1.4以下、より好ましくは1.3以下、さらに好ましくは1.2以下、なおさらに好ましくは1.1以下、特に好ましくは1.0であり、好ましくは0.5以上、より好ましくは0.7以上、さらに好ましくは0.9以上、なおさらに好ましくは0.95以上である。さらに、Bの値を上記範囲内にすることにより、第1樹脂層10と第2樹脂層20との密着性を高めることができる。
 また、透明樹脂フィルムは、式(v):
 A×B≦18    (v)
をさらに満たすことが好ましい。式(v)をさらに満たすことは、透明樹脂フィルムの耐衝撃性及び曲げ耐性の観点から有利である。
 A×Bの値は、透明樹脂フィルムの耐衝撃性及び曲げ耐性の観点から、好ましくは15以下、より好ましくは14以下、さらに好ましくは13以下、なおさらに好ましくは12以下である。A×Bの値は、透明樹脂フィルムの耐衝撃性、曲げ耐性、耐カール性、鉛筆硬度及び発光特性を高めやすいことから、好ましくは1以上であり、2以上、3以上又は4以上であってもよい。
 A×Bの値が上記範囲内にあるかどうかの判断及び式(v)を充足するかどうかの判断において、A×Bの値は、小数点以下の数値がある場合には、これを四捨五入することによって整数とした数値とする。下記A’×B’の値についても同様である。
 また、第3樹脂層30の厚みT[μm]に対する第1樹脂層10の厚みT[μm]の比T/TをA’とし、第3樹脂のメルトフローレートMに対する第1樹脂のメルトフローレートMの比M/MをB’とするとき、透明樹脂フィルムは、式(vi)及び式(vii):
 A’≦15    (vi)
 B’≦1.5   (vii)
を満たすことが好ましい。
 式(vi)及び式(vii)を満たすことにより、透明樹脂フィルムは、さらに、耐衝撃性及び曲げ耐性が良好なものとなり得る。
 メルトフローレートMとメルトフローレートMとは同一条件下で測定されるメルトフローレートであり、具体的には、JIS K 7210に準拠し、200℃、荷重5kgの条件下で測定されるメルトフローレートである。
 A’の値は、透明樹脂フィルムにおいて、無機粒子15に基づく光学特性と機械的強度とを両立させやすくなることから、また、透明樹脂フィルムの耐衝撃性及び曲げ耐性の観点から、好ましくは14.8以下、より好ましくは14.5以下、さらに好ましくは14.0以下、なおさらに好ましくは13.5以下、特に好ましくは13.0以下であり、好ましくは0.5以上、より好ましくは1.0以上、さらに好ましくは2.0以上、なおさらに好ましくは3.0以上である。
 B’の値は、透明樹脂フィルムにおいて、無機粒子15に基づく光学特性と機械的強度とを両立させやすくなることから、また、透明樹脂フィルムの耐衝撃性及び曲げ耐性の観点から、好ましくは1.4以下、より好ましくは1.3以下、さらに好ましくは1.2以下、なおさらに好ましくは1.1以下、特に好ましくは1.0であり、好ましくは0.5以上、より好ましくは0.7以上、さらに好ましくは0.9以上、なおさらに好ましくは0.95以上である。さらに、B’の値を上記範囲内にすることにより、第1樹脂層10と第3樹脂層30との密着性を高めることができる。
 また、透明樹脂フィルムは、式(viii):
 A’×B’≦18    (viii)
をさらに満たすことが好ましい。式(viii)をさらに満たすことは、透明樹脂フィルムの耐衝撃性及び曲げ耐性の観点から有利である。
 A’×B’の値は、透明樹脂フィルムの耐衝撃性及び曲げ耐性の観点から、好ましくは15以下、より好ましくは12以下、さらに好ましくは10以下、なおさらに好ましくは8以下、特に好ましくは6以下である。A’×B’の値は、透明樹脂フィルムの耐衝撃性、曲げ耐性、鉛筆硬度及び発光特性を高めやすいことから、好ましくは1以上であり、2以上、3以上又は4以上であってもよい。
 1つの実施形態において透明樹脂フィルムは、第2樹脂層20と第1樹脂層10と第3樹脂層30とをこの順に含み、好ましくは下記のいずれかを満たし、より好ましくは下記の2以上を満たし、さらに好ましくは下記のすべてを満たす。
 〔a〕比T/Tが0.9以上1.2以下、好ましくは1である。
 〔b〕比M/Mが0.9以上1.2以下、好ましくは1である。
 〔c〕第1樹脂と、第2樹脂又は第3樹脂とが同一である。
 〔d〕第2樹脂と第3樹脂とが同一である。
 〔e〕第2樹脂層と第3樹脂層とが、それらを構成する材料組成において同一である。
 〔f〕AとA’とが同一である。
 〔g〕BとB’とが同一である。
 〔h〕A×BとA’×B’とが同一である。
 上記〔f〕~〔h〕において「同一である」とは、一方の値が他方の値の±5%の範囲内である場合を含む。
 (6)透明樹脂フィルムの厚み
 透明樹脂フィルムの厚み(総厚み)は、該フィルムの取扱性及び該フィルムを適用した表示装置の薄型化の観点から、好ましくは55μm以上900μm以下、より好ましくは75μm以上700μm以下、さらに好ましくは95μm以上550μm以下、なおさらに好ましくは120μm以上400μm以下、特に好ましくは150μm以上300μm以下である。
 (7)透明樹脂フィルムの優位性
 透明樹脂フィルムは、耐衝撃性及び曲げ耐性が良好なものであり得る。透明樹脂フィルムの耐衝撃性は、後述する[実施例]の項に記載の方法(JIS K 7111-1:2006に準拠するシャルピー衝撃試験)によって測定される衝撃吸収エネルギーによって評価することができる。第2樹脂層における第1樹脂層とは反対側の表面を測定面とする衝撃吸収エネルギーは、好ましくは20kJ/m以上、より好ましくは30kJ/m以上、さらに好ましくは50kJ/m以上、なおさらに好ましくは70kJ/m以上、特に好ましくは75kJ/m以上であり、100kJ/m以上又は120kJ/m以上であってもよい。衝撃吸収エネルギーは通常、200kJ/m以下であり、透明樹脂フィルムの機械的強度を高めやすいことから、好ましくは150kJ/m以下、より好ましくは135kJ/m以下、さらに好ましくは130kJ/m以下、なおさらに好ましくは120kJ/m以下である。第2樹脂層における第1樹脂層とは反対側の表面を測定面とするとは、シャルピー衝撃試験において、該表面がハンマーを打ち当てる面であることを意味する。
 透明樹脂フィルムの第3樹脂層における第1樹脂層とは反対側の表面を測定面とする衝撃吸収エネルギーも上記範囲内であることが好ましい。
 曲げ耐性が良好な透明樹脂フィルムは、後述する[実施例]の項に記載の測定方法によっても、少なくとも一方向に折り曲げたときにワレを生じにくい。
 透明樹脂フィルムは、鉛筆硬度が良好なものであり得る。透明樹脂フィルムの第2樹脂層における第1樹脂層とは反対側の表面の鉛筆硬度は、好ましくはHB以上である。透明樹脂フィルムが第3樹脂層を有する場合、第3樹脂層における第1樹脂層とは反対側の表面の鉛筆硬度もまた、HB以上であることが好ましい。鉛筆硬度をHB以上とする観点からは、衝撃吸収エネルギーは、好ましくは130kJ/m以下、より好ましくは120kJ/m以下、さらに好ましくは100kJ/m以下である。鉛筆硬度は、後述する[実施例]の項に記載の方法に従って測定することができる。
 透明樹脂フィルムは、表面の外観及び耐カール性が良好なものであり得る。表面の外観が良好な透明樹脂フィルムは、フィルム成形時にフィルム表面に形成され得るフローマーク(斑点模様等)が低減されているか、又はこれを有しない。耐カール性が良好な透明樹脂フィルムは、ロール(巻回物)状態にしても巻癖が付きにくい。さらには、第1樹脂層10が発光性半導体微粒子を含有する場合、フローマークが低減されることで、透明樹脂フィルムからの発光の面内均一性が向上しやすい。
 透明樹脂フィルムの表面の外観は、目視で確認することができる。透明樹脂フィルムの耐カール性は、下記方法によって測定される距離[mm]によって評価することができる。該距離は、好ましくは15mm未満、より好ましくは12mm以下、さらに好ましくは10mm以下である。
 透明樹脂フィルムから、長手方向がMD方向となるように150mm×100mmサイズの試験片を切り出す。この試験片を、直径が16mmである樹脂製の芯棒に巻き付け、端部をテープで固定し、温度25℃、相対湿度50%RHの環境下で1分間静置する。次いで、試験片を芯棒から取り外し、カールした試験片の凸面を上にして水平台に置き、水平台の面から試験片凸部の最高点までの距離[mm]を測定する。
 A、B、A×B、A’、B’及びA’×B’の値を上述の範囲とすることは、表面の外観及び耐カール性を良好なものとするうえでも有利である。
 <透明樹脂フィルムの製造方法>
 透明樹脂フィルムは、特に制限されるものではないが、押出成形によって製造されることが好ましく、共押出成形によって製造されることがより好ましい。この場合、透明樹脂フィルムは押出成形品であり、好ましくは共押出成形品である。
 共押出成形による透明樹脂フィルムの製造方法は、例えば、以下の工程を含む製造方法であることができる。
 第1樹脂層用の第1樹脂組成物を調製する工程(X)、
 第2樹脂層用の第2樹脂組成物を調製する工程(Y-1)、
 第3樹脂層用の第3樹脂組成物を調製する工程(Y-2)、
 第1樹脂組成物、第2樹脂組成物及び第3樹脂組成物を用い、共押出成形により透明樹脂フィルムを製造する工程(Z)。
 第2樹脂組成物と第3樹脂組成物とが同一組成である場合には、工程(Y-1)と別に工程(Y-2)を設ける必要はなく、第3樹脂組成物として第2樹脂組成物を用いればよい。
 工程(X)は、所望の含有率で無機粒子、第1樹脂及び任意で含有される添加剤等を含有する第1樹脂組成物を、好ましくは加熱溶融混練を経て、調製する工程である。工程(X)は、複数の工程からなっていてもよい。例えば、工程(X)は、無機粒子である光散乱剤と第1樹脂とを加熱溶融混練してこれらを含むマスターバッチ(MB)を調製する工程;無機粒子である半導体粒子と第1樹脂とを加熱溶融混練してこれらを含むMBを調製する工程;及び、各MBと第1樹脂とを加熱溶融混練してこれらを含む第1樹脂組成物を調製する工程を含むことができる。MBが複数ある場合、添加剤は、複数のMBのいずれか又はすべてに含有させることができる。各MBは、ペレットの形態で調製されてよい。MBを用いる方法によれば、無機粒子や添加剤の濃度が均一な第1樹脂組成物を調製しやすい。
 加熱溶融混練による第1樹脂組成物の調製及び各MBの調製は、所定成分を二軸押出機等の押出機に投入し、加熱溶融混練する方法によって実施できる。加熱溶融混練時の温度は、例えば150℃以上、好ましくは180℃以上、より好ましくは200℃以上であり、例えば350℃以下、好ましくは320℃以下、より好ましくは300℃以下、さらに好ましくは280℃以下、特に好ましくは260℃以下である。
 第1樹脂組成物の調製及びMBの調製において、所定成分の混合物に溶剤や水分が含まれる場合には、加熱溶融混練しながら又は加熱溶融混練後に、これらを除去するための脱揮処理を行うことができる。所定成分の混合物に溶剤が含まれる場合とは、例えば、半導体粒子を、これを分散媒に分散させた分散液の形態で投入する場合である。
 工程(Y-1)及び工程(Y-2)における第2樹脂組成物及び第3樹脂組成物についても、第1樹脂組成物と同様にして調製することができる。例えば、工程(Y-1)は、アンチブロッキング剤と第2樹脂とを溶融混練してこれらを含むMBを調製する工程;及び、MBと第2樹脂とを溶融混練してこれらを含む第2樹脂組成物を調製する工程を含むことができる。添加剤は、MBに含有させることができる。
 工程(Z)における共押出成形は、従来公知の方法で行ってよい。例えば、工程(X)において第1押出機内で調製された溶融状態の第1樹脂組成物と、工程(Y-1)及び工程(Y-2)において第1押出機とは異なる第2押出機内で調製された溶融状態の第2樹脂組成物(及び第3樹脂組成物)とを、3層構成のフィードブロックに供給し、さらにT-ダイから共押出することにより、第1樹脂層、第2樹脂層及び第3樹脂層を有する透明樹脂フィルムを製造することができる。共押出時の各樹脂組成物の温度は、例えば150℃以上、好ましくは180℃以上、より好ましくは200℃以上であり、例えば350℃以下、好ましくは320℃以下、より好ましくは300℃以下、さらに好ましくは280℃以下、特に好ましくは260℃以下である。
 透明樹脂フィルムのA(比T/T)の値及びA’(比T/T)の値は、例えば、フィードブロックへの樹脂組成物の供給速度比(押出量比)を調整することによって制御できる。透明樹脂フィルムが有する各樹脂層の厚みは、例えば、フィードブロックへの樹脂組成物の供給速度、T-ダイ吐出口の開口幅、下記成形・冷却ロールにおけるロール間ギャップ(間隔)等を調整することによって制御できる。T-ダイから押し出された溶融状態の積層物を成形・冷却ロールに通すことによって、長尺物としての透明樹脂フィルムが得られる。第2樹脂層と第3樹脂層とが、組成や厚みにおいて異なる場合には、第3樹脂組成物を調製するための第3押出機を別途準備すればよい。
 透明樹脂フィルムの製造方法は、上記以外の他の工程を有していてもよい。他の工程としては、上記長尺物である透明樹脂フィルムの長手方向端部をトリミングする工程、上記長尺物である透明樹脂フィルムをロール状に巻き取る工程、上記長尺物である透明樹脂フィルムを所定サイズの枚葉フィルムに裁断する工程等が挙げられる。
 <表示装置>
 本発明に係る表示装置は、上記透明樹脂フィルムを含む。表示装置としては、液晶表示装置、有機EL表示装置、無機EL表示装置等が挙げられる。透明樹脂フィルムは、光源(液晶表示装置のバックライト、有機EL表示装置や無機EL表示装置のEL表示素子)の上(視認側)に配置することにより、光源からの光を拡散させたり、波長変換を行ったりするフィルム(すなわち、拡散フィルム又は波長変換フィルム)として好適に用いることができる。
 以下、実施例により本発明をさらに詳細に説明する。例中の「%」及び「部」は、特記のない限り、質量%及び質量部である。
 <測定及び評価>
 (1)樹脂層の厚みの測定
 製造した透明樹脂フィルムについて、ミクロトームを用いてその断面を露出させ、レーザー顕微鏡(オリンパス株式会社製「LEXT OLS4000」)を用いた断面観測により、各樹脂層の厚みを測定した。
 (2)樹脂のメルトフローレートの測定
 JIS K 7210に準拠し、メルトインデクサ(テクノ・セブン社製「L217-E14011」)を用いて、200℃、荷重5kgで測定した。
 (3)透明樹脂フィルムの光沢度の測定
 製造した透明樹脂フィルムから、50mm×50mmの試験片を切り出し、JIS Z
 8741:1997(入射角60°)に準拠して、光沢計(TIME社製「HP-300」)を用いて、第2樹脂層側光沢度及び第3樹脂層側光沢度を測定し、それらの差の絶対値Cを求めた。
 (4)透明樹脂フィルムの耐衝撃性の評価
 JIS K 7111-1:2006に準拠して、衝撃吸収エネルギーを求めた。製造した透明樹脂フィルムから、幅10mm×長さ120mmの長方形の試験片(ノッチなし試験片)を切り出した。ハンマーにより打ち抜くときの衝撃で試験片が動かないように試験片の長辺方向両端を支持台に固定して、株式会社安田精機製作所製のシャルピー衝撃試験機により、ハンマーをその刃先長手方向が、試験片の長手方向中央部で厚み方向と平行になるように、第2樹脂層における第1樹脂層とは反対側の表面に打ち当てて、第2樹脂層における第1樹脂層とは反対側の表面を測定面とする、試験片の破断に要するエネルギー(衝撃吸収エネルギー)を測定した。
 実施例で得られた透明樹脂フィルムについて、上記と同様にして、第3樹脂層における第1樹脂層とは反対側の表面を測定面とする衝撃吸収エネルギーを測定したところ、第2樹脂層における第1樹脂層とは反対側の表面を測定面とする衝撃吸収エネルギーと同じ結果であった。
 (5)透明樹脂フィルムの曲げ耐性の評価
 製造した透明樹脂フィルムから、幅20mm×長さ80mmの長方形の試験片を切り出した。下記の評価基準に従って、試験片の長辺方向の中心を曲率半径4mmでフィルムを折り曲げたときのワレ及び分断の有無から、曲げ耐性を評価した。ワレとは、折り目に沿って透明樹脂フィルムの一部に、厚み方向全体にわたって裂け目が生じている状態をいい、分断とは、該裂け目が折り目全体に生じた結果、透明樹脂フィルムが2つに分断された状態をいう。
 AA:一方向に折り曲げた後、逆方向に折り曲げてもワレを生じない。
  A:一方向に折り曲げたときにはワレを生じないが、続けて逆方向に折り曲げるとワレを生じる。
  B:一方向に折り曲げたときに分断が生じる。
 (6)透明樹脂フィルムの鉛筆硬度の評価
 製造した透明樹脂フィルムから、50mm×50mmの試験片を切り出した。第2樹脂層における第1樹脂層とは反対側の表面について、HEIDON社製 トライボギアを用いて、JIS K 5600-5-4:1999に規定される鉛筆硬度試験に従って、鉛筆硬度を測定した。
 実施例で得られた透明樹脂フィルムについて、上記と同様にして、第3樹脂層における第1樹脂層とは反対側の表面の鉛筆硬度を測定したところ、第2樹脂層における第1樹脂層とは反対側の表面と同じ結果であった。
 <製造例1:第1樹脂層用のガラスビーズMBの調製>
 HIPS樹脂ペレット、ガラスビーズ(光散乱剤)、酸化防止剤、紫外線吸収剤を、下記の配合比率でタンブラーにてドライブレンドし、二軸押出機を用い成形温度200~260℃で混練した。押出機から得られたストランドをウォーターバスで冷却した後、ペレタイザーで切断することによって、ガラスビーズが樹脂中に分散した第1樹脂層用のガラスビーズMBを得た。
 HIPS樹脂ペレット(PS Japan社製「SX100」、メルトフローレート(MFR):3.3g/10分)        76.0質量%
 ガラスビーズ(ユニチカ社製「UBS-0010E」、メイン粒径:~10μm、密度:2.6g/cm
                      20.0質量%
 酸化防止剤(住友化学株式会社製「スミライザーGP」)
                       2.0質量%
 紫外線吸収剤(城北化学工業株式会社製「JF-77」)
                       2.0質量%
 <製造例2:第1樹脂層用の酸化チタン粒子MBの調製>
 HIPS樹脂ペレット、酸化チタン(TiO)粒子(光散乱剤)、酸化防止剤、紫外線吸収剤を、下記の配合比率でタンブラーにてドライブレンドし、二軸押出機を用い成形温度200~260℃で混練した。押出機から得られたストランドをウォーターバスで冷却した後、ペレタイザーで切断することによって、酸化チタン粒子が樹脂中に分散した第1樹脂層用の酸化チタン粒子MBを得た。
 HIPS樹脂ペレット(PS Japan社製「SX100」、メルトフローレート(MFR):3.3g/10分)        91.0質量%
 酸化チタン粒子(体積基準のメディアン径:0.2μm、密度:4.2g/cm
                       5.0質量%
 酸化防止剤(住友化学株式会社製「スミライザーGP」)
                       2.0質量%
 紫外線吸収剤(城北化学工業株式会社製「JF-77」)
                       2.0質量%
 <製造例3:第2及び第3樹脂層用の第1MBの調製>
 HIPS樹脂ペレット、アンチブロッキング剤、酸化防止剤、紫外線吸収剤を、下記の配合比率でタンブラーにてドライブレンドし、二軸押出機を用い成形温度200~260℃で混練した。押出機から得られたストランドをウォーターバスで冷却した後、ペレタイザーで切断することによって、第2及び第3樹脂層用の第1MBを得た。
 HIPS樹脂ペレット(PS Japan社製「SX100」、メルトフローレート(MFR):3.3g/10分)        77.0質量%
 アンチブロッキング剤(アイカ工業社製の架橋PMMA粒子「ガンツパール GM-0806S」 平均粒径:8μm)
                      20.0質量%
 酸化防止剤(住友化学株式会社製「スミライザーGP」)
                       2.0質量%
 紫外線吸収剤(城北化学工業株式会社製「JF-77」)
                       1.0質量%
 <製造例4:第2及び第3樹脂層用の第2MBの調製>
 MS樹脂ペレット、アンチブロッキング剤、酸化防止剤、紫外線吸収剤を、下記の配合比率でタンブラーにてドライブレンドし、二軸押出機を用い成形温度200~260℃で混練した。押出機から得られたストランドをウォーターバスで冷却した後、ペレタイザーで切断することによって、第2及び第3樹脂層用の第2MBを得た。
 MS樹脂ペレット(東洋スチレン社製「MS-200NT」、メルトフローレート(MFR):2.1g/10分)         77.9質量%
 アンチブロッキング剤(アイカ工業社製の架橋PMMA粒子「ガンツパール GM-0806S」、平均粒径:8μm)
                      20.0質量%
 酸化防止剤(住友化学株式会社製「スミライザーGP」)
                       0.1質量%
 紫外線吸収剤(BASF社製「TINUVIN 360」)
                       2.0質量%
 <実施例1>
 製造例1で調製した第1樹脂層用のガラスビーズMB、製造例2で調製した第1樹脂層用の酸化チタン粒子MB、及び、HIPS樹脂ペレット(MBの調製に用いたものと同じもの)の所定量を二軸押出機に投入し、200~260℃の温度で加熱溶融混練して、溶融状態の第1樹脂層用の樹脂組成物を得た。該樹脂組成物の組成を下記に示す。
 一方、製造例3で調製した第2及び第3樹脂層用の第1MB、及び、HIPS樹脂ペレット(MBの調製に用いたものと同じもの)の所定量を別の二軸押出機に投入し、200~260℃の温度で加熱溶融混練して、溶融状態の第2及び第3樹脂層用の樹脂組成物を得た。該樹脂組成物の組成を下記に示す。
 (第1樹脂層用の樹脂組成物の組成)
 HIPS樹脂    :94.57質量%
 ガラスビーズ    : 4.00質量%
 酸化チタン粒子   : 0.35質量%
 酸化防止剤     : 0.54質量%
 紫外線吸収剤    : 0.54質量%
 (第2及び第3樹脂層用の樹脂組成物の組成)
 HIPS樹脂    :91.26質量%
 アンチブロッキング剤: 7.60質量%
 酸化防止剤     : 0.76質量%
 紫外線吸収剤    : 0.38質量%
 上記で得た溶融状態の第1樹脂層用の樹脂組成物、並びに、第2及び第3樹脂層用の樹脂組成物を3層構成のフィードブロックに送り、さらにT-ダイから共押出した。押し出された溶融状態の積層物を3本の成形・冷却ロールに通すことによって、第2樹脂層(厚み35μm)、第1樹脂層(厚み180μm)及び第3樹脂層(厚み35μm)をこの順に有する透明樹脂フィルム(総厚み250μm)を得た。第2樹脂層と第3樹脂層とは、厚み及び組成が同一であった。得られた透明樹脂フィルムについて、株式会社村上色彩技術研究所社製のヘイズメーター(HM-150)を用い、JIS K 7361-1:1997に準拠して全光線透過率を測定したところ、56.6%であった。
 <実施例2>
 フィードブロックへの第2及び第3樹脂層用の樹脂組成物の供給速度を調整することにより、第2樹脂層及び第3樹脂層の厚みを15μmとしたこと以外は実施例1と同様にして、透明樹脂フィルムを得た(総厚み210μm)。上記方法による透明樹脂フィルムの全光線透過率は、56.8%であった。
 <実施例3>
 製造例1で調製した第1樹脂層用のガラスビーズMB、製造例2で調製した第1樹脂層用の酸化チタン粒子MB、及び、HIPS樹脂ペレット(MBの調製に用いたものと同じもの)の所定量を二軸押出機に投入し、200~260℃の温度で加熱溶融混練して、溶融状態の第1樹脂層用の樹脂組成物を得た。該樹脂組成物の組成は実施例1と同じであった。
 一方、製造例3で調製した第2及び第3樹脂層用の第1MB、及び、HIPS樹脂ペレット(MBの調製に用いたものと同じもの)の所定量を別の二軸押出機に投入し、200~260℃の温度で加熱溶融混練して、溶融状態の第2及び第3樹脂層用の樹脂組成物を得た。該樹脂組成物の組成を下記に示す。該樹脂組成物では、上記HIPS樹脂ペレットの配合量を実施例1のときよりも多くすることにより、アンチブロッキング剤の含有率を実施例1で用いた第2及び第3樹脂層用の樹脂組成物よりも小さくした。
 (第2及び第3樹脂層用の樹脂組成物の組成)
 HIPS樹脂    :94.48質量%
 アンチブロッキング剤: 4.80質量%
 酸化防止剤     : 0.48質量%
 紫外線吸収剤    : 0.24質量%
 上記で得た溶融状態の第1樹脂層用の樹脂組成物、並びに、第2及び第3樹脂層用の樹脂組成物を3層構成のフィードブロックに送り、さらにT-ダイから共押出した。押し出された溶融状態の積層物を3本の成形・冷却ロールに通すことによって、第2樹脂層(厚み15μm)、第1樹脂層(厚み180μm)及び第3樹脂層(厚み15μm)をこの順に有する透明樹脂フィルム(総厚み210μm)を得た。第2樹脂層と第3樹脂層とは、厚み及び組成が同一であった。上記方法による透明樹脂フィルムの全光線透過率は、57.4%であった。
 <実施例4>
 製造例2で調製した第1樹脂層用の酸化チタン粒子MB、及び、HIPS樹脂ペレット(MBの調製に用いたものと同じもの)の所定量を二軸押出機に投入し、200~260℃の温度で加熱溶融混練して、溶融状態の第1樹脂層用の樹脂組成物を得た。該樹脂組成物の組成を下記に示す。
 一方、製造例3で調製した第2及び第3樹脂層用の第1MB、及び、HIPS樹脂ペレット(MBの調製に用いたものと同じもの)の所定量を別の二軸押出機に投入し、200
~260℃の温度で加熱溶融混練して、溶融状態の第2及び第3樹脂層用の樹脂組成物を得た。該樹脂組成物の組成を下記に示す。
 (第1樹脂層用の樹脂組成物の組成)
 HIPS樹脂    :99.37質量%
 酸化チタン粒子   : 0.35質量%
 酸化防止剤     : 0.14質量%
 紫外線吸収剤    : 0.14質量%
 (第2及び第3樹脂層用の樹脂組成物の組成)
 HIPS樹脂    :91.26質量%
 アンチブロッキング剤: 7.60質量%
 酸化防止剤     : 0.76質量%
 紫外線吸収剤    : 0.38質量%
 上記で得た溶融状態の第1樹脂層用の樹脂組成物、並びに、第2及び第3樹脂層用の樹脂組成物を3層構成のフィードブロックに送り、さらにT-ダイから共押出して、第2樹脂層(厚み25μm)、第1樹脂層(厚み190μm)及び第3樹脂層(厚み25μm)をこの順に有する透明樹脂フィルム(総厚み240μm)を得た。上記方法による透明樹脂フィルムの全光線透過率は、51.9%であった。
 <比較例1>
 製造例1で調製した第1樹脂層用のガラスビーズMB、製造例2で調製した第1樹脂層用の酸化チタン粒子MB、及び、HIPS樹脂ペレット(MBの調製に用いたものと同じもの)の所定量を二軸押出機に投入し、200~260℃の温度で加熱溶融混練して、溶融状態の第1樹脂層用の樹脂組成物を得た。該樹脂組成物の組成は実施例1と同じであった。
 一方、製造例4で調製した第2及び第3樹脂層用の第2MB、及び、MS樹脂ペレット(MBの調製に用いたものと同じもの)の所定量を別の二軸押出機に投入し、200~260℃の温度で加熱溶融混練して、溶融状態の第2及び第3樹脂層用の樹脂組成物を得た。該樹脂組成物の組成を下記に示す。
 (第2及び第3樹脂層用の樹脂組成物の組成)
 MS樹脂      :91.51質量%
 アンチブロッキング剤: 7.68質量%
 酸化防止剤     : 0.04質量%
 紫外線吸収剤    : 0.77質量%
 上記で得た溶融状態の第1樹脂層用の樹脂組成物、並びに、第2及び第3樹脂層用の樹脂組成物を3層構成のフィードブロックに送り、さらにT-ダイから共押出した。押し出された溶融状態の積層物を3本の成形・冷却ロールに通すことによって、第2樹脂層(厚み40μm)、第1樹脂層(厚み180μm)及び第3樹脂層(厚み40μm)をこの順に有する透明樹脂フィルム(総厚み260μm)を得た。第2樹脂層と第3樹脂層とは、厚み及び組成が同一であった。上記方法による透明樹脂フィルムの全光線透過率は、56.1%であった。
 得られた透明樹脂フィルムについて、各樹脂層の厚み、樹脂のメルトフローレート(MFR)、A、B及びA×B、並びに、C及びB×Cの値を表1に示す。A’、B’及びA’×B’の値はそれぞれ、A、B及びA×Bの値と同じであり、表記していない。評価結果を併せて表1に示す。
Figure JPOXMLDOC01-appb-T000001
 10 第1樹脂層、15 無機粒子、20 第2樹脂層、30 第3樹脂層。 

Claims (10)

  1.  第1樹脂を含有する第1樹脂層と、
     前記第1樹脂層の第1表面上に配置される樹脂層であって、第2樹脂を含有する第2樹脂層と、
     前記第1樹脂層の前記第1表面と対向する第2表面上に配置される樹脂層であって、第3樹脂を含有する第3樹脂層と、
    を含む透明樹脂フィルムであって、
     前記第1樹脂層は、無機粒子を含有し、
     前記第2樹脂層における前記第1樹脂層とは反対側の表面の光沢度と、前記第3樹脂層における前記第1樹脂層とは反対側の表面の光沢度との差の絶対値をCとするとき、式(i):
     C≧5.5    (i)
    を満たす、透明樹脂フィルム。
  2.  第1樹脂を含有する第1樹脂層と、
     前記第1樹脂層の第1表面上に配置される樹脂層であって、第2樹脂を含有する第2樹脂層と、
     前記第1樹脂層の前記第1表面と対向する第2表面上に配置される樹脂層であって、第3樹脂を含有する第3樹脂層と、
    を含む透明樹脂フィルムであって、
     前記第1樹脂層は、無機粒子を含有し、
     前記第1樹脂は、メルトフローレートがM[g/10分]であり、
     前記第2樹脂は、メルトフローレートがM[g/10分]であり、
     前記Mに対する前記Mの比M/MをBとし、前記第2樹脂層における前記第1樹脂層とは反対側の表面の光沢度と、前記第3樹脂層における前記第1樹脂層とは反対側の表面の光沢度との差の絶対値をCとするとき、式(ii):
     B×C≧8.5    (ii)
    を満たす、透明樹脂フィルム。
  3.  前記無機粒子が光散乱剤を含む、請求項1又は2に記載の透明樹脂フィルム。
  4.  前記第1樹脂、前記第2樹脂及び前記第3樹脂がそれぞれ熱可塑性樹脂である、請求項1又は2に記載の透明樹脂フィルム。
  5.  前記第1樹脂層に含まれる樹脂は前記第1樹脂からなり、前記第2樹脂層に含まれる樹脂は前記第2樹脂からなり、前記第3樹脂層に含まれる樹脂は前記第3樹脂からなる、請求項1又は2に記載の透明樹脂フィルム。
  6.  前記第1樹脂と前記第2樹脂と前記第3樹脂とが同一である、請求項1又は2に記載の透明樹脂フィルム。
  7.  前記第2樹脂層における前記第1樹脂層とは反対側の表面の鉛筆硬度がHB以上である、請求項1又は2に記載の透明樹脂フィルム。
  8.  前記無機粒子が半導体粒子を含む、請求項1又は2に記載の透明樹脂フィルム。
  9.  押出成形品である、請求項1又は2に記載の透明樹脂フィルム。
  10.  請求項1又は2に記載の透明樹脂フィルムを含む表示装置。 
PCT/JP2023/000760 2022-03-31 2023-01-13 透明樹脂フィルム及び表示装置 WO2023188692A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022059789 2022-03-31
JP2022-059789 2022-03-31
JP2022205854A JP2023152662A (ja) 2022-03-31 2022-12-22 透明樹脂フィルム及び表示装置
JP2022-205854 2022-12-22

Publications (1)

Publication Number Publication Date
WO2023188692A1 true WO2023188692A1 (ja) 2023-10-05

Family

ID=88200144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000760 WO2023188692A1 (ja) 2022-03-31 2023-01-13 透明樹脂フィルム及び表示装置

Country Status (2)

Country Link
TW (1) TW202340338A (ja)
WO (1) WO2023188692A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001858A (ja) * 2000-06-22 2002-01-08 Daicel Chem Ind Ltd 積層フィルム
JP2007219456A (ja) * 2006-01-20 2007-08-30 Sumitomo Chemical Co Ltd 耐熱性光拡散板
JP2008139736A (ja) * 2006-12-05 2008-06-19 Sumitomo Chemical Co Ltd 光拡散板
JP2009211055A (ja) * 2008-02-06 2009-09-17 Sumitomo Chemical Co Ltd 光拡散性積層樹脂フィルムおよびその製造方法、ならびに防眩フィルム、防眩性偏光板および画像表示装置
JP2013063638A (ja) * 2011-08-30 2013-04-11 Sumitomo Chemical Co Ltd 光学シートの製造方法
JP2017177677A (ja) * 2016-03-31 2017-10-05 東洋紡株式会社 空洞含有熱収縮性ポリエステル系フィルム
JP2020535247A (ja) * 2017-09-18 2020-12-03 スリーエム イノベイティブ プロパティズ カンパニー 量子ドット組成物及び物品に好適なヒドロキシル官能性ポリアミンシリコーンリガンド

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001858A (ja) * 2000-06-22 2002-01-08 Daicel Chem Ind Ltd 積層フィルム
JP2007219456A (ja) * 2006-01-20 2007-08-30 Sumitomo Chemical Co Ltd 耐熱性光拡散板
JP2008139736A (ja) * 2006-12-05 2008-06-19 Sumitomo Chemical Co Ltd 光拡散板
JP2009211055A (ja) * 2008-02-06 2009-09-17 Sumitomo Chemical Co Ltd 光拡散性積層樹脂フィルムおよびその製造方法、ならびに防眩フィルム、防眩性偏光板および画像表示装置
JP2013063638A (ja) * 2011-08-30 2013-04-11 Sumitomo Chemical Co Ltd 光学シートの製造方法
JP2017177677A (ja) * 2016-03-31 2017-10-05 東洋紡株式会社 空洞含有熱収縮性ポリエステル系フィルム
JP2020535247A (ja) * 2017-09-18 2020-12-03 スリーエム イノベイティブ プロパティズ カンパニー 量子ドット組成物及び物品に好適なヒドロキシル官能性ポリアミンシリコーンリガンド

Also Published As

Publication number Publication date
TW202340338A (zh) 2023-10-16

Similar Documents

Publication Publication Date Title
US11905443B2 (en) Quantum-dot containing resin sheet or film, method for producing the same, and wavelength conversion member
TWI513759B (zh) 光散射膜及使用此光散射膜之平面螢幕
WO2011134674A1 (en) Improved light diffusing composition
US11242481B2 (en) Wavelength conversion film and backlight unit
KR101379156B1 (ko) 높은 수준의 광 투과율을 가지는 광 산란 성형체
WO2023188692A1 (ja) 透明樹脂フィルム及び表示装置
WO2023188691A1 (ja) 透明樹脂フィルム及び表示装置
WO2023188693A1 (ja) 透明樹脂フィルム及び表示装置
WO2023188688A1 (ja) 透明樹脂フィルム及び表示装置
KR20080038430A (ko) 높은 광 투과율 및 개선된 대전방지 특성을 갖는 광 산란시트
WO2023188689A1 (ja) 透明樹脂フィルム及び表示装置
WO2023188690A1 (ja) 透明樹脂フィルム及び表示装置
JP2009531198A (ja) フラットスクリーンにおける拡散シートとしての使用のための高い光拡散性および高い光透過率を有する成形品
JP2023152662A (ja) 透明樹脂フィルム及び表示装置
JP2023152661A (ja) 透明樹脂フィルム及び表示装置
JP2023152663A (ja) 透明樹脂フィルム及び表示装置
JP2023152658A (ja) 透明樹脂フィルム及び表示装置
KR20100001581A (ko) 광확산판, 이를 구비한 백라이트 장치 및 액정표시장치
JP2024106524A (ja) 樹脂フィルム及び表示装置
JP2024106523A (ja) 樹脂フィルム及び表示装置
WO2022049624A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
JP2006078954A (ja) 直下型パックライト用拡散板
KR20190081474A (ko) 양자점을 포함하는 양자점 시트 형성용 조성물 및 이로부터 제조되는 양자점 시트
JP7563926B2 (ja) (メタ)アクリル系樹脂フィルムの製造方法
KR20180098273A (ko) 수지 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778731

Country of ref document: EP

Kind code of ref document: A1