WO2023188331A1 - ポリオールを含むたばこ抽出組成物およびその製造方法 - Google Patents

ポリオールを含むたばこ抽出組成物およびその製造方法 Download PDF

Info

Publication number
WO2023188331A1
WO2023188331A1 PCT/JP2022/016701 JP2022016701W WO2023188331A1 WO 2023188331 A1 WO2023188331 A1 WO 2023188331A1 JP 2022016701 W JP2022016701 W JP 2022016701W WO 2023188331 A1 WO2023188331 A1 WO 2023188331A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
tobacco
extract composition
polyol
tobacco extract
Prior art date
Application number
PCT/JP2022/016701
Other languages
English (en)
French (fr)
Inventor
拓也 岩本
大史 藤倉
剣士 中尾
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2022/016701 priority Critical patent/WO2023188331A1/ja
Publication of WO2023188331A1 publication Critical patent/WO2023188331A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/24Treatment of tobacco products or tobacco substitutes by extraction; Tobacco extracts

Definitions

  • the present invention relates to a tobacco extract composition containing a polyol and a method for producing the same.
  • Patent Document 1 relates to a method for manufacturing a pre-vapor preparation used in such an electronic vaping device, and discloses a manufacturing method comprising a step of heating a tobacco material, recovering volatile components, and combining the volatile components with a pre-vapor preparation. .
  • an object of the present invention is to provide a method for producing a tobacco extract composition with a high yield of flavor components.
  • Aspect 1 a heating step of heating tobacco raw materials in the presence of a polyol, and a recovery step of recovering volatile components generated in the heating step
  • a method for producing a tobacco extract composition comprising:
  • Aspect 2 The manufacturing method according to aspect 1, further comprising a step of mixing the tobacco raw material with the polyol before the heating step.
  • Aspect 3 The manufacturing method according to aspect 1 or 2, wherein the raw material mixture containing the tobacco raw material to be subjected to the heating step contains 5 to 35% by weight of the polyol.
  • Aspect 4 The manufacturing method according to any one of aspects 1 to 3, wherein the tobacco raw material has a particle size of 0.5 to 2 mm as measured according to ASTM E11-95.
  • Aspect 5 The manufacturing method according to any one of aspects 1 to 4, wherein the tobacco raw material is selected from burley varieties, yellow varieties, or a combination thereof.
  • Aspect 6 When the diameter of the tube through which the volatile matter is discharged in the heating step is D1, and the diameter of the tube into which the volatile matter is introduced in the recovery step is D2, D2/D1 ⁇ 0.17 The manufacturing method according to any one of aspects 1 to 5.
  • Aspect 7 A tobacco extract composition produced by the production method according to any one of aspects 1 to 6.
  • Aspect 8 The tobacco extract composition according to aspect 7, wherein the turbidity (OD660) measured using a spectrophotometer is 0.90 to 1.80 when the concentration of the polyol component is 15 to 35% by weight.
  • a tobacco extract composition can be produced with a high yield of aroma and flavor components.
  • X to Y includes the end values of X and Y.
  • the method for manufacturing the tobacco extract composition according to this embodiment includes a heating step of heating tobacco raw material in the presence of a polyol, and a recovery step of recovering volatile components generated in the heating step.
  • FIG. 1 shows one aspect of the manufacturing method according to this embodiment.
  • 100 is a tobacco raw material
  • 110 is a container
  • 102 is an air introduction pipe
  • 104 is an exhaust pipe
  • 200 is a tobacco extract composition
  • 120 is a collection container
  • 122 is an ice water bath
  • 130 is a pipe.
  • Tobacco raw material Various materials can be used as the tobacco raw material 100, for example, yellow variety, burley variety, orient variety, native variety, and other Nicotiana tabacum or Nicotiana rustica. species, and mixtures thereof can be used. As a mixture, a blend of the above-mentioned varieties as appropriate can be used so as to provide the desired aroma and flavor. Further, raw materials from any production area can be selected so that the tobacco extract composition according to this embodiment has desired aroma and taste characteristics. For example, when the tobacco extract composition according to the present embodiment is used in a product with a high nicotine content, it is preferable to prepare the tobacco extract composition from a high nicotine-rich variety with a nicotine content of 6% by weight or more.
  • Examples of such varieties and production areas include Burley variety from Japan and sun-dried variety from the Philippines. Details of the tobacco varieties are disclosed in "Tobacco Encyclopedia, Tobacco Research Center, March 31, 2009.” Additionally, as described in WO2021/070932, leaves with high nicotine content obtained through specific fertilization and harvesting can also be used. Specifically, in the cultivation of Burley species, the leaves are treated with fertilizer with a nitrogen content of 6 to 15 kg/10a between one week before and one week after pruning; Harvesting and removing unnecessary leaves at an early stage; Harvesting the leaves after extending the period from the point of plucking to harvesting by one to two weeks longer than usual; Obtaining the leaves through air drying. Alternatively, the tobacco raw material may be subjected to a known alkali treatment.
  • the tobacco raw material 100 may be shredded or powdered tobacco raw material (hereinafter also referred to as "raw material pieces").
  • raw material pieces if the particle size is too large, the stirring efficiency may decrease in this step. On the other hand, if the particle size is too small, it may be difficult to process it into a molded article or the like. From this point of view, it is preferable that the particle size of the raw material pieces is 0.5 to 2 mm as measured according to ASTM-E11-95. Having the particle size means that the raw material pieces do not pass through a sieve with an opening of 0.5 mm (>0.5 mm), but pass through a sieve with an opening of 2.36 mm ( ⁇ 2.5 mm). means. Preferably, this measurement is carried out using a dry piece of raw material by a mechanical shaking method.
  • the particle size of the raw material pieces can be adjusted to a desired range by classification.
  • particle size can be adjusted as follows. i) Prepare a sieve mesh L having a mesh size near the minimum particle size of the raw material piece, a sieve mesh M having a mesh size near the maximum particle size of the raw material piece, and several sieve meshes between L and M. do. ii) Using these sieve meshes, raw material pieces are sieved and classified by a dry and mechanical shaking method. iii) The classified fractions are appropriately collected to obtain raw material pieces of desired particle size.
  • the opening size is 2.36 mm, 2 mm, 1.7 mm, 1.4 mm, 1.18 mm, 1 mm, 0.85 mm, 0.71 mm, 0.6 mm. , 0.5 mm, and 0.425 mm sieves and the fractions obtained by classification may be mixed.
  • the average particle size can be determined by performing classification according to i) to iii) above, measuring the amount of the fraction remaining in each sieve, and dividing it by weight. For example, classification using sieves with openings of 2.36 mm, 2 mm, 1.7 mm, 1.4 mm, 1.18 mm, 1 mm, 0.85 mm, 0.71 mm, 0.6 mm, 0.5 mm, and 0.425 mm.
  • the average particle size can be determined by measuring the weight of the fraction obtained and dividing the fraction by weight.
  • the container 110 is equipped with a stirring device, and the tobacco raw material 100 is stirred.
  • the tobacco raw material 100 is preferably heated to a temperature of 100 to 270°C.
  • the temperature of the tobacco raw material 100 can be measured by arranging a temperature sensor in the container 110 so as to be in contact with the tobacco raw material 100.
  • the temperature sensor may be a thermocouple.
  • the temperature is preferably 200 to 250°C.
  • the atmosphere in which the tobacco raw material 100 is placed is not limited, but from the viewpoint of increasing the efficiency of exhausting volatile components, an air-flowing atmosphere is preferable.
  • Tobacco raw material 100 is heated in the presence of polyol.
  • Polyols include glycerin or propylene glycol.
  • the amount of polyol is preferably 5 to 35% by weight in the raw material mixture containing tobacco raw materials. If the amount of polyol is too large, stirring efficiency may decrease. Furthermore, if the amount is too small, the yield of flavor components may decrease. From this viewpoint, the lower limit of the amount is preferably 7% by weight or more, and the upper limit is preferably 35% by weight or less.
  • the tobacco raw material and the polyol are mixed in advance or the tobacco raw material is pre-soaked in the polyol before heat treatment, the raw material and the polyol are heated in a sufficiently mixed state. Therefore, it becomes possible to improve the yield of flavor components (preferably nicotine). For example, it can be placed under harmonized conditions (relative humidity 60%, 23° C.) for about 12 to 24 hours.
  • a solvent supply port may be provided in the container 110, and the polyol may be supplied into the container from the supply port. In these embodiments as well, it is preferable that the amount of polyol is adjusted to the above-mentioned amount.
  • a solvent other than the polyol can also be used if necessary.
  • the collection container 120 is connected to the container 110 via a pipe 130. Volatile components exhausted from container 110 are introduced into collection container 120.
  • the collection container 120 may be filled with a collection solvent. Moreover, it is preferable that the collection container 120 constitutes a closed space.
  • a device for fractionating the extract depending on the temperature may be used in combination.
  • the collection solvent is not limited as long as it can dissolve the flavor component, but preferably water or an aqueous organic solvent such as glycerin or ethanol can be used.
  • the ambient temperature or the temperature of the collection solvent during collection is not limited, but from the viewpoint of increasing collection efficiency, it is preferably about -20 to 10°C.
  • the collection container 20 may be immersed in an ice water bath.
  • Tobacco Extract composition 200 is manufactured as described above.
  • the tobacco extract composition contains at least a nicotine component, which is an indicator of flavor components.
  • the tobacco extract composition 200 further includes components that can impart tobacco-like astringency, aroma, and sweetness that cannot be achieved with conventional flavoring agents. It is presumed that this component is caused by the generation of volatile components at the above temperature.
  • the tobacco extract composition has a turbidity (OD660) of about 0.90 to about 1 when the concentration of the polyol component contained in the tobacco extract composition is 15 to 35% by weight. It has the characteristic that it is .80.
  • a tobacco extract composition with low turbidity is less likely to generate burnt components when used in smoking articles. Turbidity is measured with reference to JIS K0101.
  • the amount of nicotine in a tobacco extract composition can be determined by a known method.
  • the amount of nicotine can be quantified by the following method. 1) Extraction is performed by adding a hydrocarbon (such as hexane or methanol) that is immiscible with the aqueous solution to the sample. An internal standard substance (eg 0.05% w/v n-heptadecane or 0.05% w/v octadecane) is added to the hydrocarbon. 2) After shaking, dispense the oil phase into vials and quantify nicotine using GC-FID.
  • a hydrocarbon such as hexane or methanol
  • the tobacco extract composition according to this embodiment is suitable for smoking articles.
  • it is useful as an aerosol source for a non-combustion, indirect heating type flavor suction article as shown in FIG.
  • It is also useful as a flavor source for combustion type smoking articles or non-combustion direct heating type smoking articles, or as a flavoring agent for filters and the like.
  • this article will be described below as an example.
  • FIGS 2(1) and (2) illustrate preferred embodiments of non-combustible flavor aspirate articles and non-combustible flavor aspirate systems.
  • 10 is a non-combustible flavor suction article
  • 1c is a capsule which is a flavor generation segment
  • 2 is an atomization section
  • 4 is an aerosol source
  • 40 is an aerosol generation segment
  • 5 is a mouthpiece
  • 6 is a housing
  • 8 is a power source It is.
  • non-combustion indirect heating type flavor suction article Since the non-combustion flavor suction article of this embodiment indirectly heats the capsule, it is also referred to as a "non-combustion indirect heating type flavor suction article.”
  • the article is an article that generates an aerosol from an aerosol generation source disposed upstream of a flavor-generating segment, and causes the aerosol to carry a flavor component from the flavor-generating segment to produce a flavor.
  • the capsule 1c is sealed so that gas can communicate between the outside and the inside.
  • the aerosol generated from the aerosol source 4 is introduced into the container and is sealed so that it can pass from the container toward the mouth end. For this reason, openings are preferably provided at both longitudinal ends of the container.
  • the container is filled with a flavor source.
  • Flavor sources include known tobacco materials. Although the shape of the tobacco material is not limited, it is preferably granular.
  • Aerosol Source 4 can be constructed by supporting the above-described aerosol-generating base material on a porous body such as a fiber filler. Although the length of the aerosol source 4 is not limited, it is preferably 10 to 25 mm.
  • the tobacco extract composition according to this embodiment can be supported on the porous body and used as an aerosol source.
  • Atomization section 2 is preferably capable of electrically heating the aerosol source 4 to about 200 to 300°C.
  • the heating generates an aerosol, which is introduced into the capsule 1c, passes through the filling while creating an atmosphere of 30 to 80°C, carries flavor components, and is inhaled by the user.
  • the combination of a non-combustible flavor suction article and a power source is also referred to as a non-combustible flavor suction system.
  • the atomizer 4 may be a coil, for example, and can generate an aerosol using electricity supplied from a power source 8, as shown in FIG. 2(2).
  • Such a system 10 is disclosed in International Publication No. 2016/075749, for example.
  • Mouthpiece 5 may be equipped with a filter.
  • Housing The housing 6 may be made of a known material, but is preferably made of polymer, for example.
  • Example 1 Burley leaf shreds from Brazil and yellow leaf shreds from Brazil were mixed at a weight ratio of 1:1.
  • the particle size of each piece was 0.5 to 1.18 mm as measured according to ASTM E11-95.
  • Glycerin was further added to this mixed mixture to prepare a raw material mixture.
  • the amount of glycerin was 9% by weight in the raw material mixture.
  • 46.2 g of the mixture (minced amount in the mixture was 42 g) was separated and charged into a 1000 mL separable flask equipped with a stirring device.
  • An air introduction tube and an air introduction tube for discharging volatile components from inside the flask were connected to the flask.
  • a thermocouple was placed in contact with the groove inside the flask.
  • the flask was heated with a mantle heater (set temperature: 250°C), and air was introduced into the flask at a flow rate of 5 L/min.
  • the volatile components discharged from the exhaust pipe were introduced into the collection vessel.
  • the inside of the collection container was immersed in an ice water bath at 0°C. Collection was completed 10 minutes and 45 seconds after the start of heating.
  • the amount of nicotine and the amount of water were determined according to the method described below.
  • Examples 2 to 5 A collection liquid was obtained in the same manner as in Example 1, except that the amount of glycerin was changed to the amount shown in Table 1. In order to standardize the chopped amount in the raw material mixture at 42 g, the fractionated amounts of the raw material mixture in each example were set to 49.4 g, 54.5 g, 60.9 g, and 67.7 g.
  • Nic residual rate (%) Nic amount in the raw material after treatment / Nic amount in the initial raw material
  • Nic loss rate (%) Total Nic amount (100%) - Nic recovery rate - Nic residual rate
  • Nic recovery rate (%) Tobacco extraction Nic amount in composition/Nic amount in initial raw material
  • the tobacco extract composition thus obtained was filled into a cartridge of a non-combustion, indirect heating type smoking article shown in FIG.
  • the product was subjected to a smoking test by well-trained panelists. Specific evaluation comments were as follows. When glycerin was added to the raw material composition, the raw material odor of the extracted composition was suppressed and the taste was pleasant compared to when glycerin was not added. Furthermore, as the amount of glycerin (G amount) in the extract composition increased, the taste felt mellower.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Tobacco Products (AREA)

Abstract

ポリオール存在下でたばこ原料を加熱する加熱工程、および 前記加熱工程で生成した揮発分を回収する回収工程、 を備える、たばこ抽出組成物の製造方法。

Description

ポリオールを含むたばこ抽出組成物およびその製造方法
 本発明は、ポリオールを含むたばこ抽出組成物およびその製造方法に関する。
 近年、燃焼しないタイプの香味吸引物品が開発されている。当該物品においては、エアロゾル発生基材を加熱してエアロゾルを発生させる。特許文献1は、このような電子ベイピング装置に用いるプレベイパー製剤の製造方法に関し、たばこ材料を加熱して揮発分を回収し、当該揮発分とプレベイパー製剤とを化合する工程を備える製造方法を開示する。
特表2019-507592号公報
 発明者らは特許文献1に記載された方法を予備的に検討したが、特に香喫味成分の収率の点において改善の余地があることを見出した。かかる事情に鑑み、本発明は、高い香喫味成分収率でたばこ抽出組成物を製造する方法を提供することを課題とする。
 発明者らは、たばこ原料をポリオール存在下で加熱することによって前記課題を解決できることを見出した。
すなわち、前記課題は以下の本発明によって解決される。
態様1
 ポリオール存在下でたばこ原料を加熱する加熱工程、および
 前記加熱工程で生成した揮発分を回収する回収工程、
を備える、たばこ抽出組成物の製造方法。
態様2
 前記加熱工程の前に、前記たばこ原料を前記ポリオールと混合する工程をさらに備える、態様1に記載の製造方法。
態様3
 前記加熱工程に供する前記たばこ原料を含む原料混合物が、5~35重量%の前記ポリオールを含む、態様1または2記載の製造方法。
態様4
 前記たばこ原料のASTM E11-95に準じて測定した粒度が0.5~2mmである、態様1~3のいずれかに記載の製造方法。
態様5
 前記たばこ原料が、バーレー種、黄色種、またはこれらの組合せから選択される、態様1~4のいずれかに記載の製造方法。
態様6
 前記加熱工程において揮発分が排出される管の径をD1、前記回収工程において揮発分が導入される管の径をD2とするとき、
 D2/D1≦0.17
である、態様1~5のいずれかに記載の製造方法。
態様7
 態様1~6のいずれかに記載の製造方法で製造されたたばこ抽出組成物。
態様8
 ポリオール成分の濃度が15~35重量%である場合において、分光光度計を用いて測定した濁度(OD660)が0.90~1.80である、態様7に記載のたばこ抽出組成物。
 本発明によって、高い香喫味成分収率でたばこ抽出組成物を製造することができる。
たばこ抽出組成物の製造装置の概念図 非燃焼間接加熱型喫煙物品の一例を示す断面模式図
 以下、本発明を詳細に説明する。本発明において「X~Y」はその端値であるXおよびYを含む。
1.製造方法
 本実施態様にかかるたばこ抽出組成物の製造方法は、ポリオール存在下でたばこ原料を加熱する加熱工程、および前記加熱工程で生成した揮発分を回収する回収工程、を備える。図1は、本実施態様にかかる製造方法の一態様を示す。図中、100はたばこ原料、110は容器、102は空気導入管、104は排気管、200はたばこ抽出組成物、120は捕集容器、122は氷水浴、130はパイプである。
(1)加熱工程
 1)たばこ原料
 たばこ原料100としては、様々なものを用いることができ、例えば、黄色種、バーレー種、オリエント種、在来種、これ以外のニコチアナ-タバカムまたはニコチアナ-ルスチカに属する種、およびこれらの混合物を使用できる。混合物としては、目的とする香喫味となるように前記の各品種を適宜ブレンドしたものを用いることができる。また、本実施態様にかかるたばこ抽出組成物が所望の香喫味特徴を有するよう、任意の産地の原料を選択できる。例えば、本実施態様にかかるたばこ抽出組成物をニコチンの含有割合が高い製品に用いる場合は、ニコチン含有量が6重量%以上のニコチン高含有品種からたばこ抽出組成物を調製することが好ましい。そのような品種や産地の例としては、日本産バーレー種、フィリピン産日干し乾燥種を用いることができる。当該たばこの品種の詳細は、「たばこの事典、たばこ総合研究センター、2009.3.31」に開示されている。また、WO2021/070932に記載のとおり、特定な施肥および収穫によって得たニコチンの含有量が高い葉を用いることもできる。具体的に、当該葉は、バーレー種の栽培において、摘心の1週間前から1週間後の間に窒素量として6~15kg/10aの肥料を施用し;通常位置よりも1~2枚深い摘心を実施し;不要な葉を早期に収穫除去し;摘心から収穫までの期間を通常よりも1週間~2週間長くした後に葉を収穫し;収空気乾燥を経て得られる。あるいは、たばこ原料には公知のアルカリ処理が施されていてもよい。
 たばこ原料100は、刻みまたは粉粒体のたばこ原料(以下、「原料片」ともいう)であってもよい。このような場合において、粒度が過度に大きいと、本工程において撹拌効率が低下しうる。一方、粒度が過度に小さいと、成形体等への加工が困難となる場合がある。かかる観点から、原料片の、ASTM-E11-95に準じて測定した粒度が0.5~2mmであることが好ましい。当該粒度を有するとは、原料片が0.5mmの目開きを有する篩を通過せず(>0.5mm)、2.36mmの目開きを有する篩を通過する(<2.5mm)ことを意味する。この測定は、乾燥した原料片を用い、機械式震盪法によって実施されることが好ましい。
 原料片の粒度は分級によって、所望の範囲に調整できる。例えば、次のようにして粒度を調整できる。i)原料片の最小粒径付近の目開きを有する篩目Lと、原料片の最第粒径付近の目開きを有する篩目Mと、LとMの間に属する篩目を数点準備する。ii)これらの篩目を用い、乾燥式かつ機械式震盪法によって原料片を篩分けして分級を行なう。iii)分級された画分を適宜採取して、所望の粒度の原料片を得る。具体的に、粒度0.5~2mmの原料片を得る場合、目開き2.36mm、2mm、1.7mm、1.4mm、1.18mm、1mm、0.85mm、0.71mm、0.6mm、0.5mm、0.425mmの篩を用いて分級して得た画分を混合すればよい。
 平均粒度は、前記i)~iii)に従って分級を行ない、それぞれの篩目に残った画分の量を測定し、重量按分して求めることができる。例えば、目開き2.36mm、2mm、1.7mm、1.4mm、1.18mm、1mm、0.85mm、0.71mm、0.6mm、0.5mm、0.425mmの篩を用いてで分級して得た画分について重量を測定し、重量按分することで、平均粒度を求めることができる。
 2)温度
 容器110には撹拌装置が備えられ、たばこ原料100は撹拌されることが好ましい。本工程では、たばこ原料100の温度が100~270℃となるように加熱されることが好ましい。たばこ原料100の温度は、容器110内に、たばこ原料100に接するように温度センサーを配置することで測定できる。温度センサーは熱電対であってよい。前記温度好ましくは200~250℃である。たばこ原料100を加熱することで、揮発成分が発生する。パイプ130に弁を介して分岐を設け、前記温度の下限に達するまでに発生した揮発分、および前記温度の上限を超えた際に発生した揮発分を、捕集容器120に導入しないこともできる。
 3)雰囲気
 たばこ原料100がおかれる雰囲気は限定されないが、揮発成分の排気効率を高める観点から、空気流動雰囲気下であることが好ましい。
 たばこ原料100はポリオール存在下で加熱に供される。ポリオールとしては、グリセリンまたはプロピレングリコールが挙げられる。ポリオールの量は、たばこ原料を含む原料混合物中に、5~35重量%であることが好ましい。ポリオールの量が過多であると撹拌効率が低下しうる。また、当該量が過少であると香喫味成分の収率が低下しうる。かかる観点から、前記量の下限値は好ましくは7重量%以上であり、上限値は好ましくは35重量%以下である。
 加熱処理前に、たばこ原料とポリオールとを予め混合、またはたばこ原料をポリオールに予め浸漬すると、十分に原料とポリオールが混合された状態で加熱される。このため香喫味成分(好ましくはニコチン)収率を向上させることが可能になる。例えば、調和条件(相対湿度60%、23℃)で、12~24時間程度載置することができる。さらに本工程においては、容器110に溶媒供給口を設けて、当該供給口からポリオールを容器内に供給することもできる。これらの態様においても、ポリオールの量が前述の量となるように調整されることが好ましい。また、必要に応じて、ポリオール以外の溶媒を用いることもできる。
(2)回収工程
 捕集装容器120は、パイプ130を介して容器110と接続される。容器110から排気された揮発成分は、捕集容器120内に導入される。捕集容器120内には捕集溶媒が充填されていてもよい。また、捕集容器120は密閉空間を構成することが好ましい。所定の品温で処理された抽出物を入手するために、品温に応じ、抽出物を分取する装置を併用してもよい。
 捕集溶媒としては、香味成分を溶解させることができれば限定されないが、好ましくは水、またはグリセリン、エタノール等の水性有機溶媒を用いることができる。捕集時の雰囲気温度または捕集溶媒の温度は、限定されないが、捕集効率を高める観点から、-20~10℃程度であることが好ましい。このため、捕集容器20は、氷水浴に浸漬されてもよい。
 前記加熱工程において揮発分が排出される管(「排出管」ともいう)の径をD1、前記回収工程において揮発分が導入される管(「導入管」ともいう)の径をD2とするとき、これらは以下の関係を満たすことが好ましい。当該関係が満たされると、揮発成分が慣性衝突により液化するため、揮発成分の回収効率が向上する。導入管の径は、管を通して一定であってもよいし、変動してもよい。導入管の径が変動する場合、排出管に接続される部分の径をD2とする。
   D2/D1≦0.17
 この関係が満たされると、バブリングや冷却等の追加工程や設備を必要とすることなく、揮発成分を捕集することが可能であるため、工程の簡略化が可能になる。
2.たばこ抽出組成物
 上記のようにして、たばこ抽出組成物200が製造される。たばこ抽出組成物は、少なくとも、香味成分の指標であるニコチン成分を含む。たばこ抽出組成物200は、さらに、従来の香料などで達成されなかったたばこ様の、渋さ、香ばしさ、甘さを付与できる成分を含む。当該成分は前記温度で揮発成分を発生させることに起因すると推察される。
 たばこ抽出組成物は、たばこ抽出組成物中に含まれるポリオール成分の濃度が15~35重量%である場合において、分光光度計を用いて測定した濁度(OD660)が約0.90~約1.80であるという特性を有する。濁度が低いたばこ抽出組成物は、喫煙物品に用いた場合に、焦げ成分が発生しにくい。濁度はJIS K 0101を参考にして測定される。
 たばこ抽出組成物中のニコチン量は、公知の方法で定量できる。一態様において、以下の方法でニコチン量を定量できる。
 1)試料に当該水溶液と混和しない炭化水素(例えばヘキサンまたはメタノールなど)を加えて抽出を行う。炭化水素には、内部標準物質(例えばとして0.05w/v%のn-ヘプタデカンまたは0.05w/v%のオクタデカン)を添加する。
 2)振盪後、油相をバイアルに分注し、GC-FIDにてニコチンを定量する。
3.喫煙物品
 本実施態様にかかるたばこ抽出組成物は、喫煙物品に好適である。例えば、図2に示すような非燃焼間接加熱型香味吸引物品のエアロゾル源として有用である。また、燃焼型喫煙物品または非燃焼直接加熱型喫喫煙物品の香味源またはフィルター等への香味付与剤としても有用である。特に、たばこ抽出組成物は図2に示すような非燃焼間接加熱型香味吸引物品のエアロゾル源として有用であるので、以下当該物品を例として説明する。
 図2(1)および(2)は非燃焼香味吸引物品および非燃焼香味吸引物システムの好ましい態様を示す。図中、10は非燃焼香味吸引物品、1cは香味発生セグメントであるカプセル、2は霧化部、4はエアロゾル源、40はエアロゾル発生セグメント、5はマウスピース、6は筐体、8は電源である。本態様の非燃焼香味吸引物品は、カプセルを間接的に加熱するので「非燃焼間接加熱型香味吸引物品」とも称される。当該物品は、香味発生セグメントの上流に配置したエアロゾル発生源からエアロゾルを発生させて、当該エアロゾルに香味発生セグメントからの香味成分を担持させて香味を生成する物品である。
 1)カプセル
 カプセル1cは、気体が外部と内部に連通可能であるように封止されている。エアロゾル源4から発生したエアロゾルが当該容器内に導入され、かつ当該容器から吸口端に向かって通過できるように封止されている。このため、好ましくは容器の長手方向の両端部に開口が設けられている。容器内には香味源が充填される。香味源としては公知のたばこ材料が挙げられる。当該たばこ材料の形状は限定されないが、顆粒状であることが好ましい。
 2)エアロゾル源
 エアロゾル源4は、前述のエアロゾル生成基材を繊維充填物等の多孔質体に担持させて構成することができる。エアロゾル源4の長さは限定されないが10~25mmであることが好ましい。本実施態様にかかるたばこ抽出組成物を、前記多孔質体に担持させてエアロゾル源として用いることができる。
 3)霧化部
 霧化部2は電気的にエアロゾル源4を200~300℃程度に加熱できることが好ましい。当該加熱によってエアロゾルが発生し、当該エアロゾルはカプセル1c内に導入され、充填物を30~80℃の雰囲気にしながら通過し、香味成分を担持し、使用者に吸引される。非燃焼香味吸引物品と電源との組合せを非燃焼香味吸引システムともいう。霧化部4は例えばコイルであってよく、図2(2)に示すように電源8から供給される電気によってエアロゾルを発生させることができる。このようなシステム10は、例えば、国際公開2016/075749に開示されている。
 4)マウスピース
 マウスピース5はフィルターを備えていてもよい。
 5)筐体
 筐体6は公知の材料で構成されてよいが、例えばポリマーで構成されていることが好ましい。
[実施例1]
 ブラジル産バーレー葉刻とブラジル産黄色葉刻を重量比1:1で混合した。ASTM E11-95に準じて測定した各刻の粒度は0.5~1.18mmであった。この混合刻にさらにグリセリンを添加し、原料混合物を調製した。グリセリンの量は、原料混合物中に9重量%とした。当該混合物46.2g(混合物中の刻量は42g)を分取し、撹拌装置を備えた1000mLのセパラブルフラスコに仕込んだ。当該フラスコに空気導入管およびフラスコ内からの揮発成分を排出する空気導入管を接続した。フラスコ内部の刻に接触する位置に熱電対を配置した。
 前記フラスコをマントルヒータ(設定温度:250℃)で加熱するとともに、空気を5L/分の流速でフラスコ内に導入した。排気管から排出された揮発成分を捕集容器に導入した。捕集容器内は0℃の氷水浴に浸漬された。加熱開始から10分45秒経過後に捕集を終了した。得られた捕集液中の香喫味成分の指標として、後述する方法に従ってニコチン量および水の量を定量した。また、以下の式からニコチン回収率を算出した。
 ニコチン回収率
  =捕集液(たばこ抽出組成物)中のニコチン量/原料刻(初期原料)中のニコチン量
[実施例2~5]
 グリセリンの量を表1に示す量に変更した以外は、実施例1と同じ方法で捕集液を得た。原料混合物中の刻量を42gで統一するため、各例における原料混合物の分取量は、49.4g、54.5g、60.9g、67.7gとした。
[比較例1]
 グリセリンを用いなかった以外は、実施例1と同じ方法で捕集液を得た。これらの結果を表1に示した。
 Nic残留率(%)=処理後原料中Nic量/初期原料中Nic量
 Nicロス率(%)=全Nic量(100%)―Nic回収率―Nic残留率
 Nic回収率(%)=たばこ抽出組成物中Nic量/初期原料中Nic量
 このようにして得たたばこ抽出組成物を図2に示す非燃焼間接加熱型喫煙物品のカートリッジに充填した。当該製品を、十分に訓練されたパネリストによる喫煙試験に供した。具体的な評価コメントは以下のとおりであった。
 原料組成物中にグリセリンを添加した場合は、グリセリンを添加しない場合と比較して、抽出組成物の原料臭が抑えられ好ましい喫味となった。また、抽出組成物中のグリセリン量(G量)が多くなるに従い、まろやかな喫味を感じた。
[ニコチンの分析]
 試料100mg±5mgをガラス瓶に測り取った。
 当該瓶にメタノールを10mL加え振盪し(200rpm、1h)、抽出を行った。メタノールには、内部標準物質として0.05w/v%のオクタデカンおよび4.2w/v%のイソプロピルアルコールを添加した。
 振盪後、メタノール相をバイアルに分注し、GC-FIDにてニコチン量を分析した。
 GC条件は、下表のとおりとした。
[水分測定]
 試料100mg±5mgをガラス瓶に測り取った。
 当該瓶にメタノールを10mL加え振盪し(200rpm、1h)、抽出を行った。メタノールには、内部標準物質として0.05w/v%のオクタデカンおよび4.2w/v%のイソプロピルアルコールを添加した。
 振盪後、メタノール相をバイアルに分注し、GC-TCDにて水分量を分析した。
 GC条件は、下表のとおりとした。
 1c カプセル(香味発生セグメント)
 2 霧化部
 4 エアロゾル源
 40 エアロゾル発生セグメント
 5 マウスピース
 6 筐体
 8 電源
 10 非燃焼香味吸引物品
 30 加熱装置
 31 ボディ
 32 ヒーター
 33 金属管
 34 電池ユニット
 35 制御ユニット
 36 凹部
 37 通気穴
 
 100 たばこ原料
 110 容器
 102 空気導入管
 104 排気管
 200 たばこ抽出組成物
 120 捕集容器
 122 氷水浴
 130 パイプ
 

Claims (8)

  1.  ポリオール存在下でたばこ原料を加熱する加熱工程、および
     前記加熱工程で生成した揮発分を回収する回収工程、
    を備える、たばこ抽出組成物の製造方法。
  2.  前記加熱工程の前に、前記たばこ原料を前記ポリオールと混合する工程をさらに備える、請求項1に記載の製造方法。
  3.  前記加熱工程に供する前記たばこ原料を含む原料混合物が、5~35重量%の前記ポリオールを含む、請求項1または2に記載の製造方法。
  4.  前記たばこ原料のASTM E11-95に準じて測定した粒度が0.5~2mmである、請求項1~3のいずれかに記載の製造方法。
  5.  前記たばこ原料が、バーレー種、黄色種、またはこれらの組合せから選択される、請求項1~4のいずれかに記載の製造方法。
  6.  前記加熱工程において揮発分が排出される管の径をD1、前記回収工程において揮発分が導入される管の径をD2とするとき、
     D2/D1≦0.17
    である、請求項1~5のいずれかに記載の製造方法。
  7.  請求項1~6のいずれかに記載の製造方法で製造されたたばこ抽出組成物。
  8.  ポリオール成分の濃度が15~35重量%である場合において、分光光度計を用いて測定した濁度(OD660)が0.90~1.80である、請求項7に記載のたばこ抽出組成物。
     
PCT/JP2022/016701 2022-03-31 2022-03-31 ポリオールを含むたばこ抽出組成物およびその製造方法 WO2023188331A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016701 WO2023188331A1 (ja) 2022-03-31 2022-03-31 ポリオールを含むたばこ抽出組成物およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016701 WO2023188331A1 (ja) 2022-03-31 2022-03-31 ポリオールを含むたばこ抽出組成物およびその製造方法

Publications (1)

Publication Number Publication Date
WO2023188331A1 true WO2023188331A1 (ja) 2023-10-05

Family

ID=88200350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016701 WO2023188331A1 (ja) 2022-03-31 2022-03-31 ポリオールを含むたばこ抽出組成物およびその製造方法

Country Status (1)

Country Link
WO (1) WO2023188331A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106318640A (zh) * 2016-09-09 2017-01-11 湖北中烟工业有限责任公司 一种香料烟提取物的制备方法及其在卷烟中的应用
JP2019507592A (ja) * 2016-02-25 2019-03-22 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 揮発分を含むプレベイパー製剤を製造する方法
CN112956731A (zh) * 2021-04-02 2021-06-15 河南中烟工业有限责任公司 一种烟草资源氧化裂解制备烟草裂解液的方法
WO2022030426A1 (ja) * 2020-08-03 2022-02-10 日本たばこ産業株式会社 たばこ製品用の香味成分含有溶液の製造方法及び製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019507592A (ja) * 2016-02-25 2019-03-22 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 揮発分を含むプレベイパー製剤を製造する方法
CN106318640A (zh) * 2016-09-09 2017-01-11 湖北中烟工业有限责任公司 一种香料烟提取物的制备方法及其在卷烟中的应用
WO2022030426A1 (ja) * 2020-08-03 2022-02-10 日本たばこ産業株式会社 たばこ製品用の香味成分含有溶液の製造方法及び製造装置
CN112956731A (zh) * 2021-04-02 2021-06-15 河南中烟工业有限责任公司 一种烟草资源氧化裂解制备烟草裂解液的方法

Similar Documents

Publication Publication Date Title
KR102143214B1 (ko) 흡입 가능한 매체를 생성하기 위한 디바이스에 사용하기 위한 조성물
JP2021000113A (ja) タバコ組成物
CN110169606B (zh) 一种加热不燃烧发烟颗粒及其制备方法和应用
RU2733079C1 (ru) Табачная смесь
RU2753216C2 (ru) Табачная смесь
WO2016184978A1 (en) Aerosol generating material and devices including the same
JP7053462B2 (ja) たばこ風味抽出物を獲得するためのプロセスおよび装置
WO2019097641A1 (ja) 香料担持たばこ充填材の製造方法、香料担持たばこ充填材、および加熱型香味吸引器
KR20020035612A (ko) 담배의 가공처리 방법
JP2020519290A (ja) タバコ抽出物を作製する方法
KR20230093020A (ko) 비-가연성 에어로졸 제공 시스템에 사용하기 위한 물품
WO2023188331A1 (ja) ポリオールを含むたばこ抽出組成物およびその製造方法
WO2023188342A1 (ja) たばこ抽出組成物およびその製造方法
WO2023188340A1 (ja) たばこ抽出組成物およびその製造方法
WO2024095398A1 (ja) 香味成分吸着体およびその製造方法、香味成型体およびその製造方法、並びに非燃焼加熱型香味吸引器
WO2024062588A1 (ja) 脱色たばこ材料およびその製造方法
RU2770830C1 (ru) Способ получения табачной ароматической жидкости, табачная ароматическая жидкость, способ получения сложноэфирного соединения и курительное изделие
EP4190175A1 (en) Method for extracting flavor component and method for producing constituent element of processed tobacco leaves
WO2024034013A1 (ja) たばこ成形体およびその製造方法
TW202128035A (zh) 非燃燒型香味吸嚐器用的煙草母料及含有該母料的煙草材料
TW201924544A (zh) 擔持有香料之煙草填充材的製造方法、擔持有香料之煙草填充材及加熱型香味吸嚐器
KR20040088802A (ko) 은행잎을 이용한 금연초의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935473

Country of ref document: EP

Kind code of ref document: A1