WO2024095398A1 - 香味成分吸着体およびその製造方法、香味成型体およびその製造方法、並びに非燃焼加熱型香味吸引器 - Google Patents

香味成分吸着体およびその製造方法、香味成型体およびその製造方法、並びに非燃焼加熱型香味吸引器 Download PDF

Info

Publication number
WO2024095398A1
WO2024095398A1 PCT/JP2022/041007 JP2022041007W WO2024095398A1 WO 2024095398 A1 WO2024095398 A1 WO 2024095398A1 JP 2022041007 W JP2022041007 W JP 2022041007W WO 2024095398 A1 WO2024095398 A1 WO 2024095398A1
Authority
WO
WIPO (PCT)
Prior art keywords
flavor
adsorbent
tobacco
yeast
heating
Prior art date
Application number
PCT/JP2022/041007
Other languages
English (en)
French (fr)
Inventor
亮祐 長瀬
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2022/041007 priority Critical patent/WO2024095398A1/ja
Publication of WO2024095398A1 publication Critical patent/WO2024095398A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/16Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
    • A24B15/167Chemical features of tobacco products or tobacco substitutes of tobacco substitutes in liquid or vaporisable form, e.g. liquid compositions for electronic cigarettes

Definitions

  • the present invention relates to a flavor component adsorbent and a method for producing the same, a flavor molded body and a method for producing the same, and a non-combustion heating type flavor inhaler.
  • the leaves of tobacco plants undergo a drying process at the farm, a long-term aging process of one to several years at a raw material factory, and then various processing steps such as blending and chopping at a manufacturing factory, before being used to manufacture flavor inhalers such as cigarettes.
  • various processing steps such as blending and chopping at a manufacturing factory, before being used to manufacture flavor inhalers such as cigarettes.
  • the leaves of tobacco plants become fragrant tobacco material.
  • tobacco material is called "leaf tobacco” to distinguish it from the leaves of tobacco plants.
  • the leaf tobacco itself may be used as a flavor source for flavor inhalers, or tobacco flavor components may be extracted from the leaf tobacco and the resulting tobacco extract may be used as a flavor source for flavor inhalers.
  • Patent Document 1 discloses a method for preparing flavored reconstituted tobacco from tobacco particles, in which tobacco particles are extracted with water to obtain an extract and a residue, the resulting extract is then fermented with yeast to prepare a fermented liquid, reconstituted tobacco is prepared from the resulting residue, and the fermented liquid is added to the reconstituted tobacco to prepare the flavored reconstituted tobacco.
  • the present invention aims to provide a flavor component adsorbent capable of providing enhanced flavor.
  • a first aspect extracting water-soluble components contained in the tobacco material from the tobacco material with an aqueous solvent to obtain a tobacco extract; Cultivating yeast in the tobacco extract to obtain a yeast-containing culture solution; Heating the yeast-containing culture liquid to vaporize flavor components from the yeast-containing culture liquid; and adsorbing the flavor component onto an adsorbent.
  • a flavour adsorbent obtainable by the method according to the first aspect.
  • a flavor molded body including the flavor component adsorbent according to the second aspect and a molding material.
  • Producing a flavor component adsorbent by a method according to a first aspect A method for producing a flavor molded body is provided, the method comprising mixing the flavor component adsorbent with a molding material and molding the resulting mixture.
  • a flavor source including a flavor component adsorbent according to the second aspect or a flavor molded body according to the third aspect; and a heater for heating the flavor source.
  • the present invention provides a flavor component adsorbent that can provide enhanced flavor.
  • FIG. 1 is a flow chart showing an example of a method for producing a flavor component adsorbent.
  • FIG. 2 is a schematic diagram showing an example of a flavor component adsorption system.
  • FIG. 3 is a schematic diagram showing an example of a liquid phase adsorption apparatus.
  • FIG. 4A is a schematic front view showing an example of an aerosol generating device.
  • FIG. 4B is a schematic top view of the aerosol generating device shown in FIG. 4A.
  • FIG. 4C is a schematic bottom view of the aerosol generating device shown in FIG. 4A.
  • FIG. 5 is a schematic cross-sectional side view showing an example of a flavor generating article.
  • FIG. 6 is a cross-sectional view taken along line III-III of the aerosol generating device shown in FIG.
  • FIG. 7 is a perspective view showing an example of a non-combustion heating type flavor inhaler.
  • FIG. 8 is a perspective view of a power supply unit in the non-combustion heating type flavor inhaler of FIG.
  • FIG. 9 is a cross-sectional view of the non-combustion heating type flavor inhaler of FIG.
  • FIG. 10 is a block diagram showing the configuration of a main part of the power supply unit in the non-combustion heating type flavor inhaler of FIG.
  • FIG. 11 is a graph showing nicotine recovery.
  • FIG. 12 is a graph showing the analysis results of flavor components.
  • FIG. 13 is a graph showing the analysis results of flavor components.
  • the method for producing a flavor component adsorbent includes the steps of: extracting water-soluble components contained in the tobacco material from the tobacco material with an aqueous solvent to obtain a tobacco extract; Cultivating yeast in the tobacco extract to obtain a yeast-containing culture solution; Heating the yeast-containing culture liquid to vaporize flavor components from the yeast-containing culture liquid; and adsorbing the flavor component onto an adsorbent.
  • the "adsorbent having adsorbed flavor components" produced by this method is referred to as a flavor component adsorbent.
  • the flavor component adsorbent may be used by itself incorporated into a non-combustion heating type flavor inhaler (hereinafter also simply referred to as a "heating type flavor inhaler”), or it may be combined with a molding material and processed into a molded body, and the resulting molded body may be incorporated into a heating type flavor inhaler.
  • Figure 1 shows a flow chart of an example of a method for producing a flavor component adsorbent.
  • extraction step (S1) water-soluble components contained in the tobacco material are extracted from the tobacco material with an aqueous solvent to obtain a tobacco extract.
  • tobacco residue is also obtained at the same time as the tobacco extract (see FIG. 1).
  • tobacco material can be tobacco shreds that are ready to be incorporated into tobacco products, such as combustion-type or heat-type flavor inhalers.
  • tobacco shreds ready to be incorporated into tobacco products refers to tobacco shreds that have been through a drying process on the farm, a long-term aging process of one to several years at a raw material factory, and various other processing steps, such as blending and cutting at a manufacturing factory, and are ready to be incorporated into tobacco products.
  • Tobacco shreds are cut tobacco leaves.
  • Tobacco shreds may be shredded leaves, shredded backbones, shredded reconstituted tobacco (i.e., tobacco material made by processing leaf waste, shredded waste, backbone waste, fine powder, etc. generated during factory operations into a reusable form), or a mixture of these.
  • Tobacco shreds may be pulverized, and the resulting pulverized material may be used for the extraction step (S1).
  • pulverized tobacco shreds as the tobacco material can increase the efficiency of extraction of flavor components from the tobacco material. This can increase the amount of flavor components adsorbed in the final flavor component adsorbent.
  • the tobacco shreds may be of any variety, such as flue-cured, burley, or oriental, etc.
  • the tobacco shreds may be of a single variety or a mixture of different varieties.
  • aqueous solvent water or aqueous ethanol can be used.
  • aqueous ethanol for example, a mixture of ethanol and water in a volume ratio of 1:1 can be used.
  • the aqueous solvent is generally water, and is preferably water at room temperature (e.g., about 20°C) to 70°C.
  • the aqueous solvent can be used in an amount of, for example, 500 to 5000% by mass relative to the tobacco material.
  • Extraction can be carried out, for example, by soaking the tobacco material in warm water at 40 to 60°C for 30 to 180 minutes, or by shaking (e.g., 200 rpm) the tobacco material in warm water at 40 to 60°C for 30 to 180 minutes.
  • the extraction may be performed by repeating the extraction operation several times. Specifically, the water-soluble components contained in the tobacco material are extracted from the tobacco material with an aqueous solvent, and then the obtained tobacco residue is placed in a new aqueous solvent to perform a second extraction operation, and if necessary, the extraction operation is further repeated with the new aqueous solvent.
  • the extraction produces a mixture of tobacco residue and tobacco extract.
  • the tobacco extract contains the water-soluble components contained in the tobacco material.
  • water-soluble components contained in the tobacco material include components that serve as nutrient sources for yeast (e.g., sugars, amino acids, proteins, and nutrients) and components that contribute to tobacco flavor (e.g., organic acids, leaf resins, terpenoids, and polyphenols).
  • the tobacco residue and the tobacco extract are separated, and the tobacco extract is used as a medium for culturing yeast in the next cultivation step (S2).
  • the tobacco residue can be mixed with the final flavor component adsorbent and used to process the resulting mixture into a molded body.
  • the tobacco residue can be mixed with the final flavor component adsorbent and used to produce a molded body such as a tobacco sheet from the resulting mixture. In this way, the tobacco residue can be used as a molding material for producing a molded body.
  • yeast is cultured in the tobacco extract obtained in the extraction step (S1) to obtain a yeast-containing culture solution (see FIG. 1).
  • Any type of yeast can be used as long as it is capable of producing flavor components when cultured in tobacco extract.
  • flavoring ingredient refers to an ingredient that provides aroma and/or flavor.
  • a “flavoring ingredient” may be an ingredient that provides aroma and/or flavor itself, or it may be a precursor that is converted to a flavoring ingredient when heated or combusted in a flavor inhaler.
  • Flavoring components include, for example, fatty acids, acetate esters, fatty acid esters, organic acids, and higher alcohols (e.g., alcohols with 8 to 22 carbon atoms).
  • yeasts known to produce the flavor components described above can be used in the methods of the present invention.
  • yeasts that produce fatty acids include yeasts of the genus Yarrowia, such as Yarrowia alimentaria, Yarrowia bubula, Yarrowia deformans, Yarrowia divulgata, Yarrowia galli, Yarrowia hollandica, Yarrowia keelungensis, Yarrowia lipolytica, Yarrowia osloensis, Yarrowia parophoni, Yarrowia phangngaensis, Yarrowia porcina, and Yarrowia yakushimensis; yeasts of the genus Lipomyces, such as Lipomyc Lipomyces anomalus, Lipomyces arxii, Lipomyces chichibuensis, Lipomyces doorenjongii, Lipomyces japonicus, Lipomyces kockii, Lipomyces kononenkoae, Lipomyces lipofer
  • yeasts that produce acetate esters, fatty acid esters, or higher alcohols include yeasts of the genus Saccharomyces, such as Saccharomyces cerevisiae, Saccharomyces paradoxus, Saccharomyces bayanus, Saccharomyces uvarum, and Saccharomyces arboricola; yeasts of the genus Cyberlindnera, such as Cyberlindnera jadinii, Cyberlindnera saturnus, Cyberlindnera fabianii, Cyberlindnera suaveolens, Cyberlindnera americana, and Cyberlindnera xylosilytyca; and yeasts of the genus Wickerhamomyces, such as Wickerhamomyces anomalus, Wickerhamomyces ciferri, and Wickerhamomyces canadensis.
  • yeasts of the genus Saccharomyces such as Saccharomyces cerevisiae, Saccharomyces paradoxus, Saccharomyces bayanus, Sac
  • yeast may be cultured in the tobacco extract, or two or more types of yeast may be cultured in the tobacco extract.
  • the yeast may also be a genetically modified yeast that has been genetically altered to increase the production of flavor components.
  • the conditions for culturing the yeast are not particularly limited, and conditions suitable for the growth of the yeast used and the production of flavor components can be appropriately selected.
  • the yeast Prior to the culturing, the yeast can be added to the tobacco extract at a concentration of, for example, 10 to 10 cells/mL.
  • the culturing can be carried out, for example, at 10 to 40° C., for example, for 5 to 168 hours.
  • Tobacco extract contains components that serve as a source of nutrients for yeast and as raw materials for flavor components, and can provide an environment suitable for yeast growth and flavor component production. For this reason, there is no need to add additional components to the tobacco extract. However, the method of the present invention does not exclude the addition of additional components to the tobacco extract.
  • yeast-containing culture medium The mixture of yeast and tobacco extract obtained after culturing yeast in tobacco extract is referred to in this specification as the "yeast-containing culture medium.”
  • yeast-containing culture medium contains an increased amount of flavor components produced by the yeast.
  • the yeast-containing culture medium contains a decreased amount of substances consumed by the yeast for growth and production of flavor components.
  • Heating step (S3) In the heating step (S3), the yeast-containing culture liquid obtained in the culturing step (S2) is heated to vaporize flavor components from the yeast-containing culture liquid (see FIG. 1).
  • the heating can be performed at a temperature of, for example, 80 to 130°C, preferably 90 to 130°C, and more preferably 90 to 110°C.
  • the heating can be performed for, for example, 30 to 120 minutes, and preferably 40 to 90 minutes.
  • the amount of the yeast-containing culture liquid is not particularly limited, but, for example, 10 to 1000 mL of the yeast-containing culture liquid can be heated.
  • TSNAs tobacco-specific nitrosamines
  • NNK 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone
  • NNK N'-nitrosonornicotine
  • NAT N'-nitrosoanatabine
  • NAB N'-nitrosoanabasine
  • the heating step (S3) can be performed using a heating device 2X shown in FIG. 2.
  • the heating device 2X shown in FIG. 2 includes a heater-equipped container 2A and a gas flow path 2H.
  • the container with heater 2A includes a container body for storing the yeast-containing culture liquid 2B and a heater.
  • the container with heater 2A includes a container body with a double structure consisting of an inner tank and a jacket tank (outer tank), and a heater for heating the jacket tank.
  • the structure of the container with heater 2A is not particularly limited as long as it can heat the yeast-containing culture liquid 2B and vaporize the flavor components.
  • the gas flow path 2H connects the gas exhaust hole on the top surface of the heated container 2A to the gas inlet hole of the subsequent gas phase adsorption device 2Y.
  • the yeast-containing culture liquid 2B When the yeast-containing culture liquid 2B is heated in the heater-equipped container 2A, a gas containing flavor components is generated.
  • the gas containing the flavor components is discharged through a gas flow path 2H from a gas exhaust hole provided on the upper surface of the heater-equipped container 2A.
  • the heating process produces a gas containing flavor components.
  • the adsorbent used in this process is preferably a porous material.
  • a porous material refers to a material that has many fine pores (i.e., pores).
  • a porous material is preferably one that exhibits a wide range of pore distribution from micropores (d ⁇ 2 nm) to mesopores (2 nm ⁇ d ⁇ 50 nm) to macropores (50 nm ⁇ d), i.e., one that has pores of various sizes including micropores, mesopores, and macropores. It is known that the size of the pores in a porous material is correlated with the molecular weight of the molecules that can be adsorbed. Therefore, if a porous material exhibits a wide range of pore distribution, flavor components of various molecular sizes derived from tobacco materials can be adsorbed into the pores.
  • the adsorbent may have any form, for example, in the form of particles, sheets, or fibers.
  • the adsorbent is preferably in the form of particles. It is more preferable that the adsorbent is a porous material and has the form of particles. That is, the adsorbent is more preferably a porous particle.
  • the particle size of the adsorbent particles can be determined taking into consideration the incorporation into the flavor inhaler, ease of handling, ease of processing into a molded body, and the like.
  • the adsorbent particles have a particle size of, for example, 200 to 1000 ⁇ m.
  • the porous material preferably has a total pore volume of 0.2 to 3.0 mL/g.
  • the porous material more preferably has a total pore volume of 0.4 to 1.5 mL/g.
  • the porous material preferably has all pores including micropores (d ⁇ 2 nm), mesopores (2 nm ⁇ d ⁇ 50 nm), and macropores (50 nm ⁇ d).
  • the pore volume refers to a value measured according to JIS Z8831-2:2010 and JIS Z8831-3:2010.
  • the porous material preferably has a BET specific surface area of 500 to 2000 m 2 /g.
  • the porous material more preferably has a BET specific surface area of 550 to 1000 m 2 /g.
  • the BET specific surface area refers to a value measured according to JIS Z8830:2013.
  • porous materials include activated carbon, activated alumina, synthetic adsorbents, and zeolites.
  • the porous material is preferably activated carbon.
  • Activated carbon can adsorb flavor components of various molecular sizes derived from tobacco materials in its pores.
  • One type of porous material may be used, or two or more types with different pore characteristics may be used in combination.
  • the activated carbon can have any form, for example, in the form of particles, sheets, or fibers.
  • the activated carbon is preferably in the form of particles. That is, the adsorbent is preferably activated carbon particles.
  • the activated carbon particles are also called granular activated carbon, and include crushed activated carbon and granulated activated carbon.
  • the activated carbon particles have a particle size of, for example, 200 to 1000 ⁇ m.
  • the adsorption step (S4) can be carried out by a known method using the above-mentioned adsorbent, so long as the flavor components contained in the gas obtained in the heating step (S3) can be adsorbed by the adsorbent.
  • the adsorption step (S4) can be carried out by gas phase adsorption or liquid phase adsorption. Gas phase adsorption and liquid phase adsorption are explained below.
  • the gas phase adsorption can be carried out by contacting the gas obtained in the heating step (S3) with an adsorbent.
  • the gas phase adsorption can be carried out, for example, by using a flavor component adsorption system shown in Fig. 2.
  • the flavor component adsorption system 2 shown in Fig. 2 includes a heating device 2X, a gas phase adsorption device 2Y, and an adsorption auxiliary device 2Z.
  • the heating device 2X includes a heater-equipped container 2A and a gas flow path 2H.
  • the gas-phase adsorption device 2Y includes an adsorbent 2D, a column container 2C that contains the adsorbent 2D, and a gas flow path 2I that discharges the gas in the column container 2C.
  • the gas-phase adsorption device 2Y is connected to the heating device 2X via a gas flow path 2H.
  • the adsorbent 2D may be any of those described above.
  • the adsorbent 2D is preferably activated carbon particles.
  • the adsorption auxiliary device 2Z includes a cooling liquid 2F, a container 2E that contains the cooling liquid 2F, a pump 2G that draws up the gas in the container 2E, and a gas flow path 2J that connects the pump 2G and the container 2E.
  • the adsorption auxiliary device 2Z is connected to the gas-phase adsorption device 2Y via a gas flow path 2I. The tip of the gas flow path 2I is immersed in the cooling liquid 2F.
  • the gas generated in the heating device 2X passes through the gas flow path 2H and enters the gas-phase adsorption device 2Y (specifically, the gas inlet of the column container 2C).
  • the gas then passes through the column container 2C of the gas-phase adsorption device 2Y.
  • the flavor components contained in the gas are adsorbed by the adsorbent 2D.
  • the gas that has passed through the column container 2C i.e., the column eluted gas
  • the gas that has passed through the column container 2C i.e., the column eluted gas
  • the cooling liquid 2F is, for example, water.
  • the pump 2G sucks up the gas in the container 2E through the gas flow path 2J.
  • the pump 2G can promote the flow of gas passing through the column container 2C. This allows the gas generated in the heating device 2X to flow smoothly into the gas-phase adsorption device 2Y, and the flavor components in the gas can be sequentially adsorbed by the adsorbent 2D.
  • Liquid phase adsorption can be carried out by passing the gas obtained in the heating step (S3) through water containing an adsorbent, and then recovering the adsorbent from the water.
  • liquid-phase adsorption first, the gas (containing flavor components) obtained in the heating step (S3) is passed through water containing an adsorbent, so that the flavor components are adsorbed by the adsorbent. This results in an adsorbent with the flavor components adsorbed (i.e., a flavor component adsorbent) being obtained in the water.
  • the adsorbent may be any of those described above.
  • the adsorbent is preferably activated carbon particles.
  • the adsorbent may be precipitated or suspended in water.
  • the water serves to efficiently adsorb the flavor components to the adsorbent through dissolution in water without releasing them into the atmosphere.
  • the water serves as a trapping solvent for temporarily trapping the flavor components.
  • the water is not particularly limited, and tap water, ion-exchanged water, distilled water, etc. may be used.
  • the mass ratio of the adsorbent to water can be, for example, 1:0.5 to 1:20, and preferably 1:2 to 1:5.
  • the adsorbent such as activated carbon is contained in water, but has a non-polar nature, so it is difficult to adsorb water, which is a polar molecule. Therefore, when water is used as a trap solvent, the adsorbent hardly adsorbs water before adsorbing the flavor components, and does not hinder the adsorption of the flavor components.
  • the adsorbent since many of the flavor components contained in the gas obtained in the heating step (S3) are non-polar, they are energetically more stable when adsorbed on the adsorbent than when dissolved in water. Therefore, when the flavor components are adsorbed on the adsorbent through dissolution in water, they are stably maintained in the state adsorbed on the adsorbent. For these reasons, water is an excellent trap solvent.
  • the trap solvent solvents that are commonly used as aerosol sources for heated flavor inhalers (e.g., polyethylene glycol and glycerin), or ethanol, which is described in the prior art document (WO 2017/144705).
  • polyethylene glycol or glycerin the adsorbent such as activated carbon adsorbs these liquids before adsorbing the flavor components, and the flavor components cannot be adequately adsorbed.
  • ethanol when ethanol is used as the trap solvent, the flavor components are energetically more stable when dissolved in ethanol than when adsorbed on the adsorbent, and therefore the flavor components cannot be adequately adsorbed on the adsorbent. Therefore, the above solvents are not suitable as trap solvents.
  • this adsorption step can be carried out by bubbling the gas (containing flavor components) obtained in the heating step (S3) into water containing an adsorbent.
  • this adsorption step for example, 3 to 20 mL of water can be used per 10 g of the tobacco material used in the extraction step (S1).
  • This adsorption process can be carried out using an apparatus that dissolves gas in a liquid and collects it.
  • this adsorption process can be carried out using the liquid-phase adsorption apparatus shown in Figure 3.
  • the liquid-phase adsorption device 3 shown in FIG. 3 is connected to the heating device 2X shown in FIG. 2 via the gas flow path 2H. That is, the heating device 2X shown in FIG. 2 may be connected to the liquid-phase adsorption device 3 shown in FIG. 3 instead of the gas-phase adsorption device 2Y shown in FIG. 2.
  • the liquid-phase adsorption device 3 includes an inner container 3A for containing water 3E containing an adsorbent 3D, a sintered filter 3B as a bubbling nozzle, an outer container 3C for containing the inner container 3A, a gas flow path 2H for sending gas containing flavor components to the inner container 3A, and an exhaust gas flow path 3H for exhausting the gas in the inner container 3A.
  • the adsorption action through dissolution in water is explained below.
  • the gas (containing flavor components) obtained in the heating step (S3) is sent through the gas flow path 2H to the sintered filter 3B provided at the end of the gas flow path 2H.
  • the sintered filter 3B has a porous structure and is immersed in water 3E containing adsorbent 3D. Therefore, the gas containing the flavor components is bubbled into the water 3E containing adsorbent 3D. As a result, the gas containing the flavor components dissolves in the water 3E and is adsorbed by the adsorbent 3D contained in the water 3E.
  • Inner container 3A contains glass beads 3F in addition to adsorbent 3D and water 3E. In this way, when bubbling is performed in the presence of glass beads 3F, flavor components are trapped in water 3E, increasing the efficiency of adsorption to adsorbent 3D.
  • this adsorption step is not limited to being performed using the liquid-phase adsorption device shown in Figure 3, so long as the gas (including flavor components) obtained in the heating step (S3) can be adsorbed into the adsorbent through dissolution in water.
  • an adsorbent that has adsorbed flavor components i.e., flavor component adsorbent
  • the flavor component adsorbent is then recovered from the water.
  • the recovery may be performed by sucking the water out of the water containing the flavor component adsorbent, or by passing the water containing the flavor component adsorbent through a filter such as a filter or sieve.
  • the flavor component adsorbent may be dried. By drying the flavor component adsorbent, water present on the surface of the flavor component adsorbent can be removed. This makes the flavor component adsorbent less likely to aggregate and easier to handle. Drying may be performed by blowing air at room temperature (for example, a temperature of 15 to 25°C) onto the flavor component adsorbent, or by heat drying. Heat drying may be performed, for example, by heating with a heater or by blowing heated air. When drying is performed by heat drying, it may be performed at a temperature of, for example, 50 to 100°C. Heating at such a temperature can prevent the flavor components adsorbed to the adsorbent from being desorbed from the adsorbent.
  • room temperature for example, a temperature of 15 to 25°C
  • Heat drying may be performed, for example, by heating with a heater or by blowing heated air. When drying is performed by heat drying, it may be performed at a temperature of, for example, 50 to 100°C. Heating at such
  • the above method may further include adjusting the pH of the yeast-containing culture liquid to at least 7 between the culturing step (S2) and the heating step (S3).
  • the pH of the yeast-containing culture liquid can be adjusted to, for example, 7 to 11, preferably 8 to 10.5, and more preferably 8 to 10.
  • the pH of the yeast-containing culture liquid can be adjusted by adding an aqueous sodium hydroxide solution to the yeast-containing culture liquid.
  • yeast is cultured in a tobacco extract, and then the yeast-containing culture solution is heated to vaporize flavor components from the yeast-containing culture solution, and the flavor components are adsorbed onto an adsorbent and recovered. Therefore, the flavor component adsorbent obtained by the method of the present invention can contain flavor components produced by the yeast in addition to flavor components derived from the tobacco material. Therefore, when such a flavor component adsorbent is incorporated into a heated flavor inhaler, an enhanced flavor can be provided to the user (see Examples 1 and 3 described below).
  • TSNAs tobacco-specific nitrosamines
  • the flavor component adsorbent obtained by the method of the present invention can contain a reduced amount of TSNAs.
  • the method of the present invention simply heats the tobacco extract (a water-based liquid) to vaporize the flavor components, and does not use an extraction solvent such as an organic solvent to recover the flavor components. Therefore, the method of the present invention is not only highly safe to carry out, but also highly safe for users when the flavor component adsorbent obtained by the method of the present invention is incorporated into a flavor inhaler.
  • the method of the present invention recovers flavor components in the form of a flavor component adsorbent (solid), and not in the form of a liquid containing the flavor components. Therefore, the flavor component adsorbent obtained by the method of the present invention can be incorporated into a flavor inhaler as is (i.e., without the trouble of concentrating the liquid).
  • the flavor component adsorbent obtained by the method of the present invention has the flavor components adsorbed to the adsorbent material, so the flavor components are less likely to desorb, and the storage stability is high.
  • flavor component adsorbent obtained by the above-mentioned "method for producing a flavor component adsorbent".
  • the flavor component adsorbent is composed of an adsorbent and a flavor component adsorbed to the adsorbent.
  • the flavor component adsorbent like the adsorbent, can have any form, for example, the form of particles, sheets, or fibers.
  • the flavor component adsorbent is preferably in the form of particles. When the flavor component adsorbent is in the form of particles, it has a particle size of, for example, 200 to 1000 ⁇ m.
  • the flavor component adsorbent may be used alone as a flavor source in a heated flavor inhaler, or may be mixed with a tobacco filler typically used in heated flavor inhalers and used as a flavor source.
  • the flavor component adsorbent obtained by the method of the present invention can contain flavor components produced by yeast in addition to flavor components derived from tobacco materials. Therefore, when such a flavor component adsorbent is incorporated into a heated flavor inhaler, an enhanced flavor can be provided to the user. Also, as described above, the flavor component adsorbent obtained by the method of the present invention can contain a reduced amount of TSNA.
  • Flavor molded body and its manufacturing method> The above-mentioned flavor component adsorbent may be incorporated into a heated flavor inhaler by itself for use, or may be combined with a molding material to be processed into a molded body, and the obtained molded body may be incorporated into a heated flavor inhaler for use.
  • a flavor molded body that includes the above-mentioned flavor component adsorbent and a molding material.
  • a method for producing a flavor shaped body comprising: producing a flavor component adsorbent by the method described in the above section ⁇ 1. Method for producing flavor component adsorbent>; mixing the flavor component adsorbent with a molding material; and molding the resulting mixture.
  • the method for producing a flavor shaped body includes the steps of: extracting water-soluble components contained in the tobacco material from the tobacco material with an aqueous solvent to obtain a tobacco extract; Cultivating yeast in the tobacco extract to obtain a yeast-containing culture solution; Heating the yeast-containing culture liquid to vaporize flavor components from the yeast-containing culture liquid; adsorbing the flavor component onto an adsorbent to obtain a flavor component adsorbent; mixing the flavor adsorbent with a molding material and molding the resulting mixture.
  • the molding can be carried out using a known method for molding tobacco shreds or tobacco powder (i.e., finely powdered tobacco shreds), such as compression molding or rolling molding.
  • tobacco shreds or tobacco powder i.e., finely powdered tobacco shreds
  • compression molding or rolling molding For example, ground tobacco shreds or tobacco residue can be used as the molding material.
  • tobacco residue obtained in the extraction step (S1) may be used as the tobacco residue.
  • the molding material may also contain additional components such as known binders (e.g., guar gum).
  • the above-mentioned flavor component adsorbent When the above-mentioned flavor component adsorbent is molded into a desired shape, it can be made easier to handle when incorporating it into a heated flavor inhaler. In addition, when the above-mentioned flavor component adsorbent is molded into a desired shape, it can be made less likely to fall off the heated flavor inhaler after being incorporated into the heated flavor inhaler.
  • the flavor molded body can be in any shape, for example, a tablet shape, a sheet shape, a granule shape, a fiber shape, etc.
  • the product obtained by molding may be used as the flavor source of the heated flavor inhaler in its original size, or the product obtained by molding may be cut into any size and the cut pieces may be used as the flavor source of the heated flavor inhaler.
  • the flavor molded body may be used alone as a flavor source for a heated flavor inhaler, or may be mixed with a tobacco filler that is typically used in heated flavor inhalers and used as a flavor source.
  • the flavor molded body can be produced by mixing the above-mentioned flavor component adsorbent with tobacco residue, glycerol, guar gum, and water, molding the resulting mixture into a sheet shape, and drying by heating.
  • the product obtained by molding the sheet-shaped flavor molded body may be used as the flavor source for a heated flavor inhaler in its original size, or the sheet-shaped flavor molded body may be cut into pieces of any size and the cut pieces may be used as the flavor source for a heated flavor inhaler.
  • the above-mentioned flavor component adsorbent can contain flavor components produced by yeast in addition to flavor components derived from tobacco materials. Therefore, when a flavor shaped body is manufactured using the above-mentioned flavor component adsorbent and the flavor shaped body is incorporated into a heated flavor inhaler, an enhanced flavor can be provided to the user (see Examples 1 and 3 described below).
  • Non-combustion heating type flavor inhaler The above-mentioned "flavor component adsorbent" or the above-mentioned “flavor shaped body” can be incorporated into any non-combustion heating type flavor inhaler. That is, according to another aspect, there is provided a non-combustion heating type flavor inhaler including a flavor source containing the above-mentioned "flavor component adsorbent” and a heater for heating the flavor source. According to yet another aspect, there is provided a non-combustion heating type flavor inhaler including a flavor source containing the above-mentioned "flavor shaped body” and a heater for heating the flavor source.
  • a non-combustion heating type flavor inhaler is a flavor inhaler that provides a tobacco flavor to a user by heating a flavor source such as a tobacco filler or a tobacco flavor liquid without burning it.
  • a non-combustion heating type flavor inhaler is also simply referred to as a "heating type flavor inhaler.”
  • Examples of non-combustion heating type flavor inhalers include: A carbon heat source type flavor inhaler that heats a tobacco filler with the combustion heat of a carbon heat source (see, for example, WO2006/073065); An electrically heated flavor inhaler including a tobacco stick containing a tobacco filler and a heating device for electrically heating the tobacco stick (see, for example, WO2010/110226); or a liquid atomization flavor inhaler that generates an aerosol by heating a liquid aerosol source with a heater and inhales a flavor derived from the tobacco filler together with the aerosol (see, for example, WO2015/046385). etc.
  • a flavor generating article including a flavor source containing the above-mentioned "flavor component adsorbent” or the above-mentioned “flavor molded body” and a wrapping paper wrapped around the flavor source; and a heater for heating the flavor source contained in the flavor generating article.
  • a flavor generating article is provided that includes a flavor source including the above-mentioned "flavor component adsorbent” or the above-mentioned "flavor molded body” and a wrapping paper wrapped around the flavor source.
  • the flavor generating article is also called a tobacco stick.
  • the flavor generating article may further include a filter on the downstream side of the flavor source (i.e., on the mouth side).
  • a flavor source including the above-mentioned “flavor component adsorbent" or the above-mentioned “flavor molded body”; a liquid storage section that stores a liquid aerosol source for supplying to the flavor source; and a heater that heats the flavor source to which the aerosol source is supplied, thereby atomizing the aerosol source and releasing a flavor component from the flavor source.
  • the non-combustion heating type flavor inhaler is composed of an aerosol generating device 100 and a flavor generating article 200.
  • Fig. 4A is a schematic front view of an example of the aerosol generating device.
  • Fig. 4B is a schematic top view of the aerosol generating device shown in Fig. 4A.
  • Fig. 4C is a schematic bottom view of the aerosol generating device shown in Fig. 4A.
  • Fig. 5 is a schematic side cross-sectional view of an example of the flavor generating article.
  • Fig. 6 is a cross-sectional view taken along line III-III of the aerosol generating device shown in Fig. 4B.
  • the drawings may include an X-Y-Z Cartesian coordinate system.
  • the Z axis faces vertically upward
  • the X-Y plane is arranged to cut the aerosol generating device 100 horizontally
  • the Y axis is arranged to extend from the front to the back of the aerosol generating device 100.
  • the Z axis can also be referred to as the insertion direction of the flavor generating article contained in the chamber 150 of the atomizing unit 130 described below, or the axial direction of the chamber 150.
  • the X axis is a direction perpendicular to the Y axis and the Z axis, and the X axis and the Y axis can also be referred to as the radial direction perpendicular to the axial direction of the chamber 150, or the radial direction of the chamber 150.
  • the aerosol generating device 100 is configured to generate an aerosol containing a flavor by heating a stick-shaped flavor generating product having a flavor source that includes the above-mentioned "flavor component adsorbent" or the above-mentioned "flavor molded body.”
  • the aerosol generating device 100 has an outer housing 101 (corresponding to an example of a housing), a slide cover 102, and a switch unit 103.
  • the outer housing 101 constitutes the outermost housing of the aerosol generating device 100 and has a size that fits in the user's hand. When the user uses the flavor inhaler, the user can hold the aerosol generating device 100 in his/her hand and inhale the aerosol.
  • the outer housing 101 may be formed by assembling multiple members.
  • the outer housing 101 is made of resin, for example, and in particular, may be formed of polycarbonate (PC), ABS (Acrylonitrile-Butadiene-Styrene) resin, PEEK (Polyetheretherketone) or a polymer alloy containing multiple types of polymers, or a metal such as aluminum.
  • PC polycarbonate
  • ABS Acrylonitrile-Butadiene-Styrene
  • PEEK Polyetheretherketone
  • a polymer alloy containing multiple types of polymers or a metal such as aluminum.
  • the outer housing 101 has an opening (not shown) for receiving a flavor-generating article, and the slide cover 102 is slidably attached to the outer housing 101 to close this opening.
  • the slide cover 102 is configured to be movable along the outer surface of the outer housing 101 between a closed position (position shown in Figures 4A and 4B) in which the opening of the outer housing 101 is closed, and an open position (position shown in Figure 6) in which the opening is open.
  • a user can manually operate the slide cover 102 to move the slide cover 102 between the closed position and the open position. This makes it possible to permit or restrict access of the flavor-generating article to the inside of the aerosol generating device 100.
  • the switch unit 103 is used to switch the operation of the aerosol generating device 100 on and off.
  • a user can insert a flavor generating article into the aerosol generating device 100 and operate the switch unit 103 to supply power from a power source (see reference numeral 121 in FIG. 6) to a heater (see reference numeral 140 in FIG. 6), thereby heating the flavor generating article without burning it.
  • the switch unit 103 may be a switch provided outside the outer housing 101, or may be a switch located inside the outer housing 101. When the switch is located inside the outer housing 101, the switch is indirectly pressed by pressing the switch unit 103 on the surface of the outer housing 101. In this example, an example in which the switch of the switch unit 103 is located inside the outer housing 101 will be described.
  • the aerosol generating device 100 may further have a terminal (not shown).
  • the terminal may be an interface that connects the aerosol generating device 100 to, for example, an external power source. If the power source provided in the aerosol generating device 100 is a rechargeable battery, connecting the external power source to the terminal allows the external power source to pass current through the power source and charge the power source. Also, connecting a data transmission cable to the terminal may enable data related to the operation of the aerosol generating device 100 to be transmitted to an external device.
  • FIG. 5 is a schematic side cross-sectional view of an example of a flavor generating article 200.
  • the aerosol generating device 100 and the flavor generating article 200 form a flavor inhaler.
  • the flavor generating article 200 has a smokable article 201, a tubular member 204, a hollow filter portion 206, and a filter portion 205.
  • the smokable article 201 is wrapped in a first wrapping paper 202.
  • the tubular member 204, hollow filter portion 206, and filter portion 205 are wrapped in a second wrapping paper 203 that is different from the first wrapping paper 202.
  • the second wrapping paper 203 also wraps a portion of the first wrapping paper 202 that wraps the smokable article 201. This connects the tubular member 204, hollow filter portion 206, and filter portion 205 to the smokable article 201.
  • the second wrapping paper 203 may be omitted, and the tubular member 204, hollow filter portion 206, and filter portion 205 may be connected to the smokable article 201 using the first wrapping paper 202.
  • a lip release agent 207 is applied to the outer surface of the second wrapping paper 203 near the end on the filter portion 205 side to make it easier for the user to release their lips from the second wrapping paper 203.
  • the portion of the flavor generating article 200 to which the lip release agent 207 is applied functions as the mouthpiece of the flavor generating article 200.
  • the smokable article 201 includes the above-mentioned "flavor component adsorbent" or the above-mentioned “flavor molded body” as a flavor source.
  • the "flavor component adsorbent" or the “flavor molded body” may be used alone as a flavor source for a heated flavor inhaler, or may be mixed with a tobacco filler that is normally used in a heated flavor inhaler and used as a flavor source.
  • a tobacco filler that is normally used in a heated flavor inhaler and used as a flavor source.
  • one flavor molded body may be used as a flavor source for a heated flavor inhaler, or multiple flavor molded bodies may be used as a flavor source for a heated flavor inhaler.
  • the product obtained by molding may be used as the flavor source for a heated flavor inhaler without changing its size, or the sheet-shaped flavor molded body may be cut into any size and the cut pieces may be used as a flavor source for a heated flavor inhaler.
  • the first wrapping paper 202 that wraps the smokable article 201 may be a breathable sheet member.
  • the tubular member 204 may be a paper tube or a hollow filter.
  • the flavor generating article 200 includes the smokable article 201, the tubular member 204, the hollow filter portion 206, and the filter portion 205, but the configuration of the flavor generating article 200 is not limited to this.
  • the hollow filter portion 206 may be omitted, and the tubular member 204 and the filter portion 205 may be disposed adjacent to each other.
  • FIG. 6 is a cross-sectional view taken along line III-III of the aerosol generating device 100 shown in FIG. 4B.
  • an inner housing 110 (corresponding to an example of a housing) is provided inside the outer housing 101 of the aerosol generating device 100.
  • the inner housing 110 is made of resin, for example, and may be formed of polycarbonate (PC), ABS (Acrylonitrile-Butadiene-Styrene) resin, PEEK (Polyetheretherketone) or a polymer alloy containing multiple types of polymers, or a metal such as aluminum. From the viewpoint of heat resistance and strength, the inner housing 110 is preferably made of PEEK.
  • a power supply unit 120 and an atomization unit 130 are provided in the internal space of the inner housing 110.
  • the power supply unit 120 has a power supply 121.
  • the power supply 121 can be, for example, a rechargeable battery or a non-rechargeable battery.
  • the power supply 121 is electrically connected to the atomization unit 130. This allows the power supply 121 to supply power to the atomization unit 130 so as to appropriately heat the flavor generating article 200.
  • the atomization section 130 has a metallic chamber 150 (corresponding to an example of a cylindrical section) that extends in the insertion direction (Z-axis direction) of the flavor generating article 200, a heater 140 that covers part of the chamber 150, a heat insulating section 132, and a substantially cylindrical insertion guide member 134 (corresponding to an example of a guide section) that abuts against the opening of the chamber 150.
  • the chamber 150 is configured to surround the periphery of the flavor generating article 200.
  • the heater 140 is configured to include a heating section that contacts the outer peripheral surface of the chamber 150 and heats the flavor generating article 200 inserted into the chamber 150.
  • a bottom member 136 (corresponding to an example of an abutment portion) is provided at the bottom of the chamber 150.
  • the bottom member 136 abuts against the flavor generating article 200 inserted into the chamber 150 in the insertion direction of the flavor generating article 200, and can function as a stopper to position the flavor generating article 200.
  • the chamber 150 and the bottom member 136 form a storage portion that stores at least a portion of the flavor generating article 200.
  • the bottom member 136 can be formed, for example, from a resin material.
  • the bottom member 136 has an uneven surface with which the flavor generating article 200 abuts, and can define a first air flow path that can supply air to the air intake of the flavor generating article 200 (i.e., communicates with the flavor generating article 200 stored in the storage portion).
  • the bottom member 136 is made of resin, for example, and may be made of polycarbonate (PC), ABS (Acrylonitrile-Butadiene-Styrene) resin, PEEK (Polyether Ether Ketone), a polymer alloy containing multiple types of polymers, or a metal such as aluminum. Note that the bottom member 136 is preferably made of a material with low thermal conductivity to prevent heat from being transferred to the insulating portion 132, etc.
  • the insulating section 132 is generally cylindrical and is arranged to cover the chamber 150.
  • the insulating section 132 may include, for example, an aerogel sheet.
  • the insertion guide member 134 is provided between the slide cover 102 in the closed position and the chamber 150.
  • the insertion guide member 134 may be made of, for example, a resin, and may be formed in particular from polycarbonate (PC), ABS (Acrylonitrile-Butadiene-Styrene) resin, PEEK (Polyether Ether Ketone), or a polymer alloy containing multiple types of polymers.
  • the insertion guide member 134 may be formed from metal, glass, ceramic, or the like. From the viewpoint of heat resistance, it is preferable that the insertion guide member 134 is PEEK.
  • the insertion guide member 134 communicates with the outside of the aerosol generating device 100, and guides the insertion of the flavor generating article 200 into the chamber 150 by inserting the flavor generating article 200 into the insertion guide member 134.
  • the flavor generating article 200 can be easily inserted into the chamber 150.
  • the aerosol generating device 100 further has a first holding part 137 and a second holding part 138 that hold both ends of the chamber 150 and the insulating part 132.
  • the first holding part 137 is positioned so as to hold the ends of the chamber 150 and the insulating part 132 on the negative Z-axis side.
  • the second holding part 138 is positioned so as to hold the ends of the chamber 150 and the insulating part 132 on the slide cover 102 side (positive Z-axis side).
  • FIG. 7 is a perspective view showing an example of a non-combustion heating type flavor inhaler.
  • Fig. 8 is a perspective view of a power supply unit in the non-combustion heating type flavor inhaler of Fig. 7.
  • Fig. 9 is a cross-sectional view of the non-combustion heating type flavor inhaler of Fig. 7.
  • Fig. 10 is a block diagram showing the main configuration of the power supply unit in the non-combustion heating type flavor inhaler of Fig. 7.
  • the non-combustion heating type flavor inhaler 1 (hereinafter simply referred to as the "heating type flavor inhaler 1") shown in Figures 7 to 10 has a rod shape extending along a specific direction (hereinafter referred to as the longitudinal direction A).
  • the heating type flavor inhaler 1 has a power supply unit 10 and a cartridge 20 provided in this order along the longitudinal direction A.
  • the cartridge 20 is detachable from the power supply unit 10. In other words, the cartridge 20 is replaceable.
  • the power supply unit 10 accommodates a power supply 12, a charger 13, a control unit 50, various sensors, etc. inside a cylindrical power supply unit case 11.
  • the power supply 12 is a rechargeable secondary battery, and is preferably a lithium ion secondary battery.
  • a discharge terminal 41 is provided on the top portion 11a located at one end (cartridge 20 side) of the power supply unit case 11 in the longitudinal direction A.
  • the discharge terminal 41 is provided so as to protrude from the upper surface of the top portion 11a toward the cartridge 20, and is configured to be electrically connectable to the load 21 of the cartridge 20.
  • an air supply section 42 that supplies air to the load 21 of the cartridge 20 is provided on the upper surface of the top section 11a, near the discharge terminal 41.
  • the bottom portion 11b located at the other end of the power supply unit case 11 in the longitudinal direction A (opposite the cartridge 20), is provided with a charging terminal (not shown) that can be electrically connected to an external power source that can charge the power supply 12.
  • an operation unit 14 that can be operated by the user is provided on the side of the top part 11a of the power supply unit case 11.
  • the operation unit 14 is composed of a button switch, a touch panel, etc., and is used to start/shut off the control unit 50 and various sensors according to the user's intention to use the device.
  • the control unit 50 is connected to various sensor devices such as the charger 13, the operation unit 14, the inhalation sensor 15 that detects the puffing (inhalation) action, the voltage sensor 16 that measures the voltage of the power source 12, the temperature sensor 17 that detects the temperature, and the memory 18 that stores the number of puffing actions or the time that electricity is applied to the load 21, and performs various controls of the heated flavor inhaler 1.
  • the inhalation sensor 15 may be composed of a condenser microphone, a pressure sensor, etc.
  • the control unit 50 is specifically a processor (MCU: microcontroller unit). More specifically, the structure of this processor is an electric circuit that combines circuit elements such as semiconductor elements.
  • the cartridge 20 is provided with a reservoir 23 for storing a liquid aerosol source 22 inside a cylindrical cartridge case 27, an electrical load 21 for atomizing the aerosol source 22, a wick 24 for drawing the aerosol source from the reservoir 23 to the load 21, and an aerosol flow path 25 through which the aerosol generated by atomizing the aerosol source 22 flows toward the suction port 26A.
  • the reservoir 23 is partitioned to surround the aerosol flow path 25 and stores the liquid aerosol source 22.
  • the aerosol source is a liquid for forming an aerosol.
  • propylene glycol, glycerin, 1,3-propanediol, diacetin, polyethylene glycol, or a mixture of these can be used as the aerosol source.
  • the reservoir 23 may contain a porous body such as a resin web or cotton, and the porous body may be impregnated with the aerosol source 22.
  • the reservoir 23 may not contain a porous body such as a resin web or cotton, and may store only the aerosol source 22.
  • the reservoir 23 may also contain a tobacco flavor liquid or additional flavor components (e.g., nicotine or flavor) in addition to the aerosol source 22.
  • the wick 24 contains the above-mentioned "flavor component adsorbent" or the above-mentioned “flavor molded body” as a flavor source.
  • the wick 24 draws up the aerosol source 22 from the reservoir 23 using capillary action.
  • the aerosol source 22 penetrates the wick 24, the aerosol source 22 functions as an extraction solvent, and the flavor components are extracted from the "flavor component adsorbent" or "flavor molded body" contained in the wick 24.
  • the aerosol source containing the flavor components is then atomized (aerosolized) by the heat generated by the load 21, and the flavor can be provided to the user.
  • the wick 24 may be composed of a combination of a liquid-retaining material such as glass fiber and a "flavor component adsorbent" or a "flavor molded body", or it may be composed of only a "flavor component adsorbent” or a "flavor molded body".
  • the "flavor component adsorbent" or the “flavor molded body” may constitute a part of the wick 24, or may constitute the entire wick 24.
  • the flavor component adsorbent or flavor molded body may be incorporated into a bundle of glass fibers, and this may be used as the wick 24.
  • a sheet-shaped flavor molded body may be cut to a size suitable for the wick and stacked (i.e., a stack of sheet-shaped molded bodies) and used as the wick 24.
  • a sheet-shaped flavor molded body may be wound into a spiral shape or folded into an accordion-like shape and used as the wick 24.
  • a sheet-shaped flavor molded body may be cut into fibers, and the resulting fibrous cut pieces may be bundled together (i.e., a bundle of fibrous cut pieces) and used as the wick 24.
  • Load 21 atomizes aerosol source 22 without combustion by power supplied from power source 12 via discharge terminal 41.
  • Load 21 is composed of an electric heating wire (coil) wound at a predetermined pitch.
  • load 21 may be any element capable of atomizing aerosol source 22 to generate aerosol, such as a heating element or ultrasonic generator. Examples of heating elements include a heating resistor, a ceramic heater, and an induction heating heater.
  • the aerosol flow path 25 is located downstream of the load 21 and on the center line L of the power supply unit 10.
  • air flowing in from an air intake (not shown) provided in the power supply unit case 11 passes through the vicinity of the load 21 of the cartridge 20 from the air supply section 42.
  • the load 21 atomizes the aerosol source 22 that has been drawn in or moved from the reservoir 23 by the wick 24.
  • the atomized aerosol flows through the aerosol flow path 25 together with the air flowing in from the air intake, and is supplied to the mouthpiece 26A.
  • the mouthpiece 26A is provided with a gas outlet 26B that connects the internal space of the cartridge case 27 with the space outside the heated flavor inhaler 1. During inhalation, an aerosol containing tobacco flavor components is discharged from the heated flavor inhaler 1 through this gas outlet 26B.
  • the heated flavor inhaler 1 is also provided with an alarm unit 45 that notifies various pieces of information.
  • the alarm unit 45 may be composed of a light-emitting element, a vibration element, or a sound output element.
  • the alarm unit 45 may also be a combination of two or more elements selected from the light-emitting element, the vibration element, and the sound output element.
  • the alarm unit 45 may be provided in either the power supply unit 10 or the cartridge 20, but is preferably provided in the power supply unit 10 in order to shorten the wires from the power supply 12.
  • the alarm unit 45 may be provided around the operating unit 14, and may be configured so that the surrounding area of the operating unit 14 is translucent and emits light using a light-emitting element such as an LED.
  • [A3] The method according to [A1] or [A2], wherein the adsorption is carried out by contacting a gas containing the flavor component with the adsorbent.
  • [A4] The method according to any one of [A1] to [A3], wherein the adsorption is carried out by passing a gas containing the flavor component through a column container filled with the adsorbent.
  • [A5] The method according to [A1] or [A2], wherein the adsorption is carried out by passing a gas containing the flavor components through water containing the adsorbent, and then recovering the adsorbent from the water.
  • [A6] The method according to [A5], wherein the passing is carried out by bubbling the gas through the water.
  • [A7] The method according to [A5] or [A6], wherein the passing is carried out by bubbling the gas into the water through a porous body (preferably a porous filter).
  • [A8] The method according to any one of [A5] to [A7], wherein the passing is carried out by bubbling the gas into the water in which a plurality of beads are dispersed.
  • [A11] The method according to any one of [A1] to [A10], wherein the heating is carried out by heating the yeast-containing culture liquid at a temperature of 80 to 130°C, preferably 90 to 130°C, more preferably 90 to 110°C.
  • [A12] The method according to any one of [A1] to [A11], wherein the heating is carried out for 30 to 120 minutes, preferably 40 to 90 minutes.
  • [A13] The method according to any one of [A1] to [A12], wherein the adsorbent is a porous material.
  • [A14] The method according to any one of [A1] to [A13], wherein the adsorbent is in the form of particles.
  • [A15] The method according to [A14], wherein the particles have a particle size of 200 to 1000 ⁇ m.
  • [A16] The method according to any one of [A1] to [A15], wherein the adsorbent is activated carbon.
  • [A17] The method according to any one of [A1] to [A16], wherein the tobacco material is tobacco shreds.
  • the aqueous solvent is water or aqueous ethanol, preferably water, more preferably water at 20 to 70° C.
  • the yeast is at least one kind of yeast selected from the group consisting of yeasts of the genus Yarrowia, yeasts of the genus Lipomyces, yeasts of the genus Saccharomyces, yeasts of the genus Cyberlindnera, and yeasts of the genus Wickerhamomyces.
  • [B1] A flavor component adsorbent obtained by the method according to any one of [A1] to [A19].
  • [B2] The flavor component adsorbent according to [B1], wherein the flavor component adsorbent is in the form of particles.
  • [C1] A flavor molded product comprising the flavor component adsorbent according to [B1] or [B2] and a molding material.
  • [C2] The flavored molded product according to [C1], wherein the molding material is ground tobacco shreds or tobacco residue.
  • [C3] The flavor molded body according to [C2], wherein the molding material further contains a binder.
  • [D1] Producing a flavor component adsorbent by the method according to any one of [A1] to [A19]; mixing the flavor component adsorbent with a molding material, and molding the resulting mixture.
  • [D2] The method according to [D1], wherein the molding material is ground tobacco shreds or tobacco residue.
  • [D3] The method according to [D2], wherein the molding material further comprises a binder.
  • [C4] A flavor molded product obtained by the method according to any one of [D1] to [D3].
  • [C5] The flavor molded product according to any one of [C1] to [C4], wherein the flavor molded product has a tablet shape or a sheet shape.
  • [E1] A flavor source comprising the flavor component adsorbent according to [B1] or [B2] or the flavor molded product according to any one of [C1] to [C5]; and a heater for heating the flavor source.
  • [F1] A flavor source comprising the flavor component adsorbent according to [B1] or [B2] or the flavor molded product according to any one of [C1] to [C5]; and a wrapping paper wrapped around the flavor source.
  • the flavor generating article according to [F1] further comprising a filter on the mouthpiece side.
  • [E2] A flavor generating article according to [F1] or [F2], and a heater for heating the flavor source contained in the flavor generating article.
  • [E3] Further comprising a liquid storage section that stores a liquid aerosol source to be supplied to the flavor source, The heater heats the flavor source to which the aerosol source is supplied, thereby atomizing the aerosol source and releasing a flavor component from the flavor source.
  • the non-combustion heating type flavor inhaler according to [E1].
  • Example 1 In Example 1, the molded flavor bodies were evaluated by sensory evaluation.
  • Cultivation step (S2) Yeast of the genus Yarrowia (Yarrowia lipolytica) was added to 3 mL of the obtained tobacco extract to a concentration of 105 cells/mL, and the yeast was cultured in the tobacco extract. The culture was performed under aerobic conditions at 28°C for 24 hours by shaking culture (240 rpm). The "mixture of yeast and tobacco extract" obtained after the culture is called a "yeast-containing culture solution.”
  • Heating step (S3) The yeast-containing culture liquid was heated in a container equipped with a heater at 130° C. for 1 hour, thereby generating a “gas containing flavor components.”
  • Gas phase adsorption step (S4) Activated carbon (powder) (Fujifilm Wako Pure Chemical Corporation, product code: 037-02115) was packed in a glass column in an amount of 10% by mass relative to the tobacco material to prepare a column packed with activated carbon particles.
  • the activated carbon particles had a particle size in the range of 200 to 1000 ⁇ m.
  • the gas generated in the heating step (S3) was passed through this column (see FIG. 2). The activated carbon particles were then collected to obtain "flavor component adsorbent 1A".
  • a flavor molded body 1A was prepared as follows. The residue remaining after heating the yeast-containing culture solution in the heating step (S3) was dissolved in water again. Specifically, the residue was dissolved in water using 30 mL of water per 100 mL of the yeast-containing culture solution before heating. This resulted in a "heated yeast-containing culture solution.”
  • the tobacco residue obtained in the extraction process (S1), the heated yeast-containing culture liquid, glycerol, and guar gum were added to the flavor component adsorbent 1A, kneaded, and molded into a sheet.
  • the molded sheet was dried in a hot air oven at 70°C for 15 minutes, and then conditioned for 48 hours under conditions of 22°C and 60% RH. This resulted in the "flavor molded body 1A.”
  • the composition of the flavor molded body 1A is shown below. The composition is expressed on a dry weight basis. Flavor component adsorbent 1A 7.6 [mass%] Tobacco residue + yeast-containing culture solution after heating 68.4 [mass%] Glycerol 15.0 [mass%] Guar gum 9.0 [mass %].
  • the tobacco residue obtained in the extraction process (S1), the heated yeast-containing culture liquid, glycerol, and guar gum were mixed and molded into a sheet.
  • the molded sheet was dried in a hot air oven at 70°C for 15 minutes, and then conditioned for 48 hours under conditions of 22°C and 60% RH. This resulted in "flavor molded product 1B.”
  • composition of the flavor molded body 1B is shown below.
  • the composition is expressed on a dry weight basis.
  • the flavor molded product 1A was cut into pieces, and the resulting cut pieces were used for sensory evaluation. Flue-cured tobacco shreds to which 12% by mass of glycerol had been added and the shredded flavor molded product 1A were mixed in a mass ratio of 66:34 to prepare a smokable article 1A. The smokable article 1A was used to produce a flavor-generating article (tobacco stick 1A) shown in FIG. 5.
  • flavor molded product 1B was shredded, and the resulting shredded product was used for sensory evaluation. Flue-cured tobacco shreds to which 12% by mass of glycerol had been added were mixed with the shredded flavor molded product 1B in a mass ratio of 66:34 to prepare smokable article 1B. Smokable article 1B was used to produce a flavor-generating article (tobacco stick 1B) as shown in Figure 5.
  • Tobacco sticks 1A and 1B were smoked by a panel of experts using the aerosol generating device (product name: Ploom X (Japan Tobacco Inc.)) shown in Figures 4 and 6, and the aroma characteristics were evaluated by sensory evaluation. The sensory evaluation was performed by a panel of four experts.
  • Tobacco stick 1A A clear floral scent. A banana scent. A green scent, with a floral sweetness that stands out especially from the middle. An acidic smell that is different from the acetic smell. Low irritation. A fermented smell reminiscent of a silo. The floral scent could be felt even after the fifth puff.
  • Tobacco stick 1B Acidic smell. Slightly floral. Hay-like smell. Not too pungent. Slightly fishy smell.
  • the yeast-containing culture liquid after heating was incorporated into the flavor molded body 1A, but this was for the purpose of making a clearer comparison with the comparative example. Since most of the flavor components are contained in the flavor component adsorbent, it is not essential to incorporate the yeast-containing culture liquid after heating into the flavor molded body.
  • Example 2 In Example 2, the yeast-containing culture medium was adjusted to pH 10.5 between the culturing step (S2) and the heating step (S3), and the effect of this pH adjustment on the nicotine recovery rate was investigated.
  • Flavor Component Adsorbent 1A Flavor adsorbent 1A was prepared as described in Example 1.
  • Flavor component adsorbent 2A Flavor component adsorbent 2A was prepared in the same manner as flavor component adsorbent 1A, except that the yeast-containing culture liquid was adjusted to pH 10.5 between the culturing step (S2) and the heating step (S3).
  • the flavor component adsorbent 2A was prepared in the following manner.
  • the yeast-containing culture liquid obtained in the culture step (S2) was adjusted to a pH of 10.5 using a 2N aqueous solution of sodium hydroxide.
  • the yeast-containing culture liquid with a pH of 10.5 was heated in a container equipped with a heater at 130° C. for 1 hour. This generated a “gas containing flavor components.”
  • a glass column was filled with activated carbon (powder) (Fujifilm Wako Pure Chemical Corporation, product code: 037-02115) in an amount of 10% by mass relative to the tobacco material to prepare a column filled with activated carbon particles.
  • the gas generated in the heating step (S3) was passed through this column.
  • the activated carbon particles were then collected to obtain "flavor component adsorbent 2A".
  • the amount of nicotine adsorbed to the activated carbon particles (A 4 ) was calculated by the following formula 1.
  • the nicotine recovery rate could be significantly increased.
  • Example 3 In Examples 1 and 2, flavor components were recovered by gas phase adsorption, whereas in Example 3, flavor components were recovered by liquid phase adsorption.
  • Flavor Molded Product 3A Except for changing the gas phase adsorption step (S4) to a liquid phase adsorption step as described below, the flavor component adsorbent 3A was produced in the same manner as the flavor component adsorbent 1A of Example 1. Thereafter, the flavor component adsorbent 3A was molded to produce a flavor molded body 3A.
  • the flavor molded body 3A was produced by the following procedure.
  • Activated carbon (powder) (Fujifilm Wako Pure Chemical Corporation, product code: 037-02115) was suspended in ultrapure water in an amount of 10% by mass relative to the tobacco material to prepare a suspension of activated carbon particles. This suspension was then cooled using ice water.
  • the residue remaining after heating the yeast-containing culture liquid in the heating step (S3) was dissolved again in water. Specifically, the residue was dissolved in water using 30 mL of water for every 100 mL of the yeast-containing culture liquid before heating. This resulted in the "heated yeast-containing culture liquid".
  • the tobacco residue obtained in the extraction process (S1), the heated yeast-containing culture liquid, glycerol, and guar gum were added to flavor component adsorbent 3A, kneaded, and molded into a sheet.
  • the molded sheet was dried in a hot air oven at 70°C for 15 minutes, and then conditioned for 48 hours under conditions of 22°C and 60% RH. This resulted in "flavor molded body 3A.”
  • the composition of the flavor molded body 3A is shown below. The composition is expressed on a dry weight basis. Flavor component adsorbent 3A 7.6 [mass%] Tobacco residue + yeast-containing culture solution after heating 68.4 [mass%] Glycerol 15.0 [mass%] Guar gum 9.0 [mass %].
  • Flavor molded body 3B (Comparative example) Glycerol and guar gum were added to the tobacco material (i.e., ground flue-cured tobacco) used in the extraction step (S1) of Example 1, kneaded, and molded into a sheet. The molded sheet was dried in a hot air oven at 70°C for 15 minutes, and then conditioned for 48 hours under conditions of 22°C and 60% RH. This resulted in the "flavor molded product 3B".
  • composition of the flavor molded body 3B is shown below. The composition is expressed on a dry weight basis. Tobacco material 76.0 [mass%] Glycerol 15.0 [mass%] Guar gum 9.0 [mass %].
  • Flavor molded body 1B (Comparative example) Molded flavor body 1B was prepared as described in Example 1.
  • the flavor molded product 3A was cut and the obtained cut pieces were used for analyzing the flavor components.
  • the cut pieces of the flavor molded product 3A were heated at temperatures of 150°C, 200°C, and 250°C, and the flavor components specific to the tobacco fermentation liquid generated from the cut pieces were analyzed.
  • flavor molded product 3B was cut up and the resulting cut pieces were used for analyzing flavor components.
  • the cut pieces of flavor molded product 3B were heated at temperatures of 150°C, 200°C, and 250°C, and the flavor components specific to the tobacco fermentation liquid that emerged from the cut pieces were analyzed.
  • flavor molded product 1B was cut up and the resulting cut pieces were used for analyzing flavor components.
  • the cut pieces of flavor molded product 1B were heated at temperatures of 150°C, 200°C, and 250°C, and the flavor components specific to the tobacco fermentation liquid that emerged from the cut pieces were analyzed.
  • Ethyl acetate, isoamyl acetate, and phenethyl acetate were analyzed as flavor components specific to tobacco fermentation liquid. Specifically, 3 mg of cut material was subjected to TDU-GCMS (Thermal Desorption Unit-Gas Chromatography Mass Spectrometry), and the amount of the analyzed component was calculated from the ratio of the peak area value of the analyzed component to the peak area value of the internal standard (ISTD).
  • TDU-GCMS Thermal Desorption Unit-Gas Chromatography Mass Spectrometry
  • flavor molded body 3A When flavor molded body 3A was heated at temperatures of 150°C, 200°C, and 250°C, flavor components specific to tobacco fermentation liquid were detected at all heating temperatures. As the heating temperature increased, the amount of flavor components specific to tobacco fermentation liquid tended to increase (see Figure 12).
  • flavor molded body 3B was heated at temperatures of 150°C, 200°C, and 250°C, no flavor components specific to tobacco fermentation liquid were detected at any of the heating temperatures. Also, when flavor molded body 1B was heated at temperatures of 150°C, 200°C, and 250°C, only phenethyl acetate was detected in very small amounts at all heating temperatures (see Figure 13).
  • 2 flavor component adsorption system, 2X ... heating device, 2Y ... gas phase adsorption device, 2Z ... adsorption auxiliary device, 2A ... heater-equipped container, 2B ... yeast-containing culture liquid, 2C ... column container, 2D ... adsorbent, 2E ... container, 2F ... cooling liquid, 2G ... pump, 2H ... gas flow path, 2I ... gas flow path, 2J ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Tobacco Products (AREA)

Abstract

たばこ材料から前記たばこ材料に含まれる水溶性成分を水性溶媒で抽出して、たばこ抽出液を得ることと、酵母を前記たばこ抽出液中で培養して、酵母含有培養液(2B)を得ることと、前記酵母含有培養液を加熱して、前記酵母含有培養液から香味成分を気化させることと、前記香味成分を吸着材(2D, 3D)に吸着させることとを含む、香味成分吸着体の製造方法。

Description

香味成分吸着体およびその製造方法、香味成型体およびその製造方法、並びに非燃焼加熱型香味吸引器
 本発明は、香味成分吸着体およびその製造方法、香味成型体およびその製造方法、並びに非燃焼加熱型香味吸引器に関する。
 たばこ植物の葉は、収穫された後、農家での乾燥工程、その後の原料工場での1年ないし数年の長期熟成工程、およびその後の製造工場でのブレンドおよび裁刻など種々の加工処理を経た後に、シガレットなどの香味吸引器の製造に使用される。これら種々の加工処理工程を経ることにより、たばこ植物の葉は、香り豊かなたばこ材料となる。かかるたばこ材料は、たばこ植物の葉と区別して、「葉たばこ」と呼ばれる。葉たばこは、それ自体を香味吸引器の香味源として使用してもよいし、葉たばこからたばこ香味成分を抽出し、得られたたばこ抽出液を香味吸引器の香味源として使用してもよい。
 葉たばこには種々の香味成分が含まれているが、葉たばこやたばこ抽出液に対して、香味成分を増加させるための化学的処理や生物学的処理を行うことが知られている。例えば、特許文献1は、たばこ粒子から、加香された再構成たばこを調製する方法を開示し、この方法では、たばこ粒子を水で抽出して抽出液と残渣とを得て、その後、得られた抽出液を酵母で発酵させて発酵液を調製し、得られた残渣から再構成たばこを調製し、発酵液を再構成たばこに添加して、加香された再構成たばこを調製する。
米国特許第4895175号
 本発明は、増強した香味を提供することが可能な香味成分吸着体を提供することを目的とする。
 第1側面によれば、
 たばこ材料から前記たばこ材料に含まれる水溶性成分を水性溶媒で抽出して、たばこ抽出液を得ることと、
 酵母を前記たばこ抽出液中で培養して、酵母含有培養液を得ることと、
 前記酵母含有培養液を加熱して、前記酵母含有培養液から香味成分を気化させることと、
 前記香味成分を吸着材に吸着させることと
を含む、香味成分吸着体の製造方法が提供される。
 第2側面によれば、第1側面に係る方法により得られる香味成分吸着体が提供される。
 第3側面によれば、第2側面に係る香味成分吸着体と成型材料とを含む香味成型体が提供される。
 第4側面によれば、
 第1側面に係る方法により香味成分吸着体を製造することと、
 前記香味成分吸着体を成型材料と混合し、得られた混合物を成型することと
を含む、香味成型体の製造方法が提供される。
 第5側面によれば、
 第2側面に係る香味成分吸着体または第3側面に係る香味成型体を含む香味源と、
 前記香味源を加熱するヒータと
を備えた非燃焼加熱型香味吸引器が提供される。
 本発明によれば、増強した香味を提供することが可能な香味成分吸着体を提供することができる。
図1は、香味成分吸着体の製造方法の一例を示すフローチャートである。 図2は、香味成分吸着システムの一例を示す模式図である。 図3は、液相吸着装置の一例を示す模式図である。 図4Aは、エアロゾル生成装置の一例を示す概略正面図である。 図4Bは、図4Aに示すエアロゾル生成装置の概略上面図である。 図4Cは、図4Aに示すエアロゾル生成装置の概略底面図である。 図5は、香味発生物品の一例を示す概略側断面図である。 図6は、図4Bに示すエアロゾル生成装置のIII-III線に沿った断面図である。 図7は、非燃焼加熱型香味吸引器の一例を示す斜視図である。 図8は、図7の非燃焼加熱型香味吸引器における電源ユニットの斜視図である。 図9は、図7の非燃焼加熱型香味吸引器の断面図である。 図10は、図7の非燃焼加熱型香味吸引器における電源ユニットの要部構成を示すブロック図である。 図11は、ニコチン回収率を示すグラフである。 図12は、香味成分の分析結果を示すグラフである。 図13は、香味成分の分析結果を示すグラフである。
 以下、本発明を詳細に説明するが、以下の説明は、本発明を説明することを目的とし、本発明を限定することを意図しない。
 <1.香味成分吸着体の製造方法>
 香味成分吸着体の製造方法は、
 たばこ材料から前記たばこ材料に含まれる水溶性成分を水性溶媒で抽出して、たばこ抽出液を得ることと、
 酵母を前記たばこ抽出液中で培養して、酵母含有培養液を得ることと、
 前記酵母含有培養液を加熱して、前記酵母含有培養液から香味成分を気化させることと、
 前記香味成分を吸着材に吸着させることと
を含む。
 本明細書において、この方法で製造される「香味成分を吸着した吸着材」を、香味成分吸着体という。香味成分吸着体は、それ自体を非燃焼加熱型香味吸引器(以下、単に「加熱型香味吸引器」ともいう)に組み込んで使用してもよいし、あるいは、成型材料と組み合わせて成型体に加工し、得られた成型体を加熱型香味吸引器に組み込んで使用してもよい。
 以下、香味成分吸着体の製造方法を、図1を参照しながら、[抽出工程(S1)]、[培養工程(S2)]、[加熱工程(S3)]、[吸着材への吸着工程(S4)]の順に説明する。図1は、香味成分吸着体の製造方法の一例をフローチャートで示す。
 [抽出工程(S1)]
 抽出工程(S1)では、たばこ材料からたばこ材料に含まれる水溶性成分を水性溶媒で抽出して、たばこ抽出液を得る。抽出工程(S1)では、たばこ抽出液が得られるのと同時にたばこ残渣も得られる(図1参照)。
 「たばこ材料」は、燃焼型または加熱型の香味吸引器などのたばこ製品に配合される準備が整ったたばこ刻を使用することができる。「たばこ製品に配合される準備が整ったたばこ刻」とは、農家での乾燥工程、その後の原料工場での1年ないし数年の長期熟成工程、およびその後の製造工場でのブレンドおよび裁刻など種々の加工処理を経て、たばこ製品に配合される準備が整ったたばこ刻を指す。
 たばこ刻は、葉たばこの裁刻物である。たばこ刻は、除骨葉の刻、中骨の刻、再構成たばこ(すなわち、工場の作業工程で生じる葉屑、刻み屑、中骨屑、細粉などを再使用可能な形状に加工したたばこ材料)の刻、またはこれらの混合物のいずれであってもよい。たばこ刻は、粉砕し、得られた粉砕物を抽出工程(S1)のために使用してもよい。たばこ材料としてたばこ刻の粉砕物を使用すると、たばこ材料からの香味成分の抽出効率を高めることができる。これにより、最終的に得られる香味成分吸着体における香味成分の吸着量を増加させることができる。
 たばこ刻は、任意の品種のものを使用することができ、たとえば黄色種、バーレー種、オリエント種などのものを使用することができる。たばこ刻は、単一品種のものを使用してもよいし、異なる品種の混合物を使用してもよい。
 水性溶媒としては、水または含水エタノールを使用することができる。含水エタノールとしては、例えば、エタノールと水との体積比1:1の混合物を使用することができる。水性溶媒は、一般的には水であり、好ましくは室温(例えば、約20℃)~70℃の水である。水性溶媒は、例えば、たばこ材料に対して500~5000質量%の量で使用することができる。
 抽出は、例えば、たばこ材料を40~60℃の温水中で30~180分間浸漬するか、あるいは、たばこ材料を40~60℃の温水中で30~180分間振盪(例えば200rpm)することにより行うことができる。
 また、抽出は、複数回の抽出操作を繰り返すことにより行ってもよい。具体的には、たばこ材料からたばこ材料に含まれる水溶性成分を水性溶媒で抽出し、その後、得られたたばこ残渣を新たな水性溶媒に入れて2回目の抽出操作を行い、更に必要に応じて、新たな水性溶媒での抽出操作を繰り返すことにより、抽出を行ってもよい。
 抽出により、たばこ残渣とたばこ抽出液との混合物が得られる。たばこ抽出液は、たばこ材料に含まれる水溶性成分を含有する。「たばこ材料に含まれる水溶性成分」として、例えば、酵母の栄養源となる成分(例えば、糖類、アミノ酸、タンパク質、栄養塩類)や、たばこ香味に寄与する成分(例えば、有機酸、葉面樹脂、テルペノイド、ポリフェノール類)などが挙げられる。
 抽出の後、たばこ残渣とたばこ抽出液とは分離され、たばこ抽出液は、次の培養工程(S2)で酵母を培養するための培地として使用される。一方、たばこ残渣は、最終的に得られた香味成分吸着体と混合し、得られた混合物を成型体に加工するために使用することができる。例えば、たばこ残渣は、最終的に得られた香味成分吸着体と混合し、得られた混合物からシートたばこなどの成型体を作製するために使用してもよい。このように、たばこ残渣は、成型体を作製するための成型材料として使用することができる。
 [培養工程(S2)]
 培養工程(S2)では、抽出工程(S1)で得られたたばこ抽出液中で酵母を培養して、酵母含有培養液を得る(図1参照)。
 酵母は、たばこ抽出液中で培養した際に香味成分を生産することができれば、任意の種類の酵母を使用することができる。
 「香味成分」は、香りおよび/または風味を提供する成分を指す。「香味成分」は、それ自体が香りおよび/または風味を提供する成分であってもよいし、香味吸引器で加熱または燃焼されたときに香味成分に変換される前駆体であってもよい。
 香味成分としては、例えば、脂肪酸、酢酸エステル、脂肪酸エステル、有機酸、高級アルコール(例えば、炭素数8~22のアルコール)などが挙げられる。
 したがって、上述の香味成分を生産することが知られている酵母を、本発明の方法で使用することができる。
 脂肪酸を生産する酵母としては、Yarrowia属の酵母、例えばYarrowia alimentaria、Yarrowia bubula、Yarrowia deformans、Yarrowia divulgata、Yarrowia galli、Yarrowia hollandica、Yarrowia keelungensis、Yarrowia lipolytica、Yarrowia osloensis、Yarrowia parophoni、Yarrowia phangngaensis、Yarrowia porcina、Yarrowia yakushimensis;Lipomyces属の酵母、例えばLipomyces anomalus、Lipomyces arxii、Lipomyces chichibuensis、Lipomyces doorenjongii、Lipomyces japonicus、Lipomyces kockii、Lipomyces kononenkoae、Lipomyces lipofer、Lipomyces mesembrius、Lipomyces okinawensis、Lipomyces oligophaga、Lipomyces orientalis、Lipomyces smithiae、Lipomyces spencermartinsiae、Lipomyces starkeyiが挙げられる。
 酢酸エステル、脂肪酸エステル、または高級アルコールを生産する酵母としては、Saccharomyces属の酵母、例えばSaccharomyces cerevisiae、Saccharomyces paradoxus、Saccharomyces bayanus、Saccharomyces uvarum、Saccharomyces arboricola;Cyberlindnera属の酵母、例えばCyberlindnera jadinii、Cyberlindnera saturnus、Cyberlindnera fabianii、Cyberlindnera suaveolens、Cyberlindnera americana、Cyberlindnera xylosilytyca;Wickerhamomyces属の酵母、例えばWickerhamomyces anomalus、Wickerhamomyces ciferri、Wickerhamomyces canadensisが挙げられる。
 1種類の酵母がたばこ抽出液中で培養されてもよいし、2種類以上の酵母がたばこ抽出液中で培養されてもよい。また、酵母は、香味成分の生産量を増加するように遺伝的に改変された遺伝子組換え酵母であってもよい。
 酵母の培養条件は、特に限定されず、使用する酵母の生育および香味成分の生産に適した条件を適宜選択することができる。培養に先立って、酵母は、たばこ抽出液に、例えば10~108細胞/mLの濃度で添加することができる。培養は、例えば10~40℃で、例えば5~168時間にわたって行うことができる。
 たばこ抽出液は、酵母の栄養源となる成分や香味成分の原料となる成分が含まれており、酵母の生育および香味成分の生産に適した環境を提供することができる。このため、たばこ抽出液に追加の成分を添加する必要はない。ただし、本発明の方法は、たばこ抽出液に追加の成分を添加することを除外しない。
 酵母をたばこ抽出液中で培養した後に得られる、酵母とたばこ抽出液との混合物を、本明細書では「酵母含有培養液」と呼ぶ。酵母含有培養液は、「培養前の酵母とたばこ抽出液の混合物」と比べると、酵母が生産した香味成分の量が増加している。また、酵母含有培養液は、「培養前の酵母とたばこ抽出液の混合物」と比べると、酵母が生育や香味成分の生産のために消費した物質の量が減少している。
 [加熱工程(S3)]
 加熱工程(S3)では、培養工程(S2)で得られた酵母含有培養液を加熱して、酵母含有培養液から香味成分を気化させる(図1参照)。
 加熱は、例えば80~130℃、好ましくは90~130℃、より好ましくは90~110℃の温度で行うことができる。加熱は、例えば30~120分間、好ましくは40~90分間にわたって行うことができる。加熱工程(S3)において、酵母含有培養液の量は特に限定されないが、例えば10~1000mLの酵母含有培養液を加熱することができる。
 上記加熱温度で酵母含有培養液を加熱すると、脂肪酸、酢酸エステル、脂肪酸エステル、有機酸、高級アルコールなどの香味成分を酵母含有培養液から気化させることができるが、たばこ特異的ニトロソアミン(TSNA)は揮発性が低いため、酵母含有培養液から気化し難い。たばこ特異的ニトロソアミン(TSNA)は、4-(メチルニトロソアミノ)-1-(3-ピリジル)-1-ブタノン(NNK)、N’-ニトロソノルニコチン(NNN)、N’-ニトロソアナタビン(NAT)、およびN’-ニトロソアナバシン(NAB)の4成分を指す。とりわけ、NNK、NAT、およびNABは揮発性が低いため、上記加熱温度で酵母含有培養液を加熱した際に、酵母含有培養液から気化し難い。
 例えば、加熱工程(S3)は、図2に示す加熱装置2Xを用いて行うことができる。図2に示す加熱装置2Xは、ヒータ付き容器2Aとガス流路2Hとを備えている。
 ヒータ付き容器2Aは、酵母含有培養液2Bを収容するための容器本体とヒータとを備えている。例えば、ヒータ付き容器2Aは、内槽とジャケット槽(外槽)とからなる二重構造の容器本体と、ジャケット槽を加熱するヒータとを備えている。ヒータ付き容器2Aは、酵母含有培養液2Bを加熱して香味成分を気化させることができれば、その構造は特に限定されない。
 ガス流路2Hは、ヒータ付き容器2Aの上面に設けられたガス排出孔と、後続の気相吸着装置2Yのガス導入孔とを繋いでいる。
 ヒータ付き容器2A内で酵母含有培養液2Bが加熱されると、香味成分を含むガスが発生する。香味成分を含むガスは、ヒータ付き容器2Aの上面に設けられたガス排出孔からガス流路2Hを通って排出される。
 このように、加熱工程により、香味成分を含むガスが得られる。
 [吸着材への吸着工程(S4)]
 吸着工程(S4)では、加熱工程(S3)で得られたガスに含まれる香味成分を吸着材に吸着させる。これにより、香味成分吸着体が得られる(図1参照)。吸着工程(S4)を行うと、加熱工程(S3)で気化しなかった成分や、酵母含有培養液に含まれる酵母は除去される。
 この工程で使用される吸着材は、好ましくは多孔質材料である。多孔質材料は、微細な大きさの孔(すなわち細孔)を多数もつ材料を指す。多孔質材料としては、ミクロ孔(d<2nm)からメソ孔(2nm≦d≦50nm)、マクロ孔(50nm<d)までの広範囲にわたる細孔分布を示すもの、すなわち、ミクロ孔、メソ孔、およびマクロ孔を含む種々の大きさの細孔を有するものが好ましい。多孔質材料の細孔のサイズは、吸着可能な分子の分子量との間に相関関係があることが知られている。したがって、多孔質材料が、広範囲にわたる細孔分布を示すと、たばこ材料由来の種々の分子サイズの香味成分を細孔に吸着することができる。
 吸着材は、任意の形態を有することができ、例えば、粒子、シート、または繊維の形態を有することができる。吸着材は、好ましくは粒子の形態にある。吸着材は、多孔質材料であり、かつ粒子の形態を有することがより好ましい。すなわち、吸着材は、より好ましくは多孔質粒子である。吸着材粒子の粒径は、香味吸引器への組込み、ハンドリングし易さ、成型体への加工し易さなどを考慮して決定することができる。吸着材粒子は、例えば200~1000μmの粒径を有する。
 多孔質材料は、0.2~3.0mL/gの全細孔容積を有することが好ましい。多孔質材料は、0.4~1.5mL/gの全細孔容積を有することがより好ましい。また、多孔質材料は、ミクロ孔(d<2nm)、メソ孔(2nm≦d≦50nm)、およびマクロ孔(50nm<d)のすべての細孔を有することが好ましい。細孔容積は、JIS Z8831-2:2010およびJIS Z8831-3:2010に従って測定された値を指す。また、多孔質材料は500~2000m2/gのBET比表面積を有することが好ましい。多孔質材料は550~1000m2/gのBET比表面積を有することがより好ましい。BET比表面積は、JIS Z8830:2013に従って測定された値を指す。
 多孔質材料の例としては、活性炭、活性アルミナ、合成吸着剤、およびゼオライトが挙げられる。多孔質材料は、好ましくは活性炭である。活性炭は、たばこ材料由来の種々の分子サイズの香味成分を細孔に吸着することができる。多孔質材料は、1種類を使用してもよいし、細孔特性が異なる2種類以上のものを組み合わせて使用してもよい。
 活性炭は、任意の形態を有することができ、例えば、粒子、シート、または繊維の形態を有することができる。活性炭は、好ましくは粒子の形態にある。すなわち、吸着材は、好ましくは活性炭粒子である。活性炭粒子は、粒状活性炭とも呼ばれ、破砕状活性炭および造粒活性炭が含まれる。活性炭粒子は、例えば200~1000μmの粒径を有する。
 吸着工程(S4)は、加熱工程(S3)で得られたガスに含まれる香味成分を吸着材に吸着させることができれば、上述の吸着材を用いて公知の方法により行うことができる。例えば、吸着工程(S4)は、気相吸着または液相吸着により行うことができる。以下、気相吸着および液相吸着について説明する。
 (気相吸着)
 気相吸着は、加熱工程(S3)で得られたガスを、吸着材と接触させることにより行うことができる。気相吸着は、例えば、図2に示す香味成分吸着システムを用いて行うことができる。図2に示す香味成分吸着システム2は、加熱装置2Xと、気相吸着装置2Yと、吸着補助装置2Zとを備えている。
 加熱装置2Xは、上述のとおり、ヒータ付き容器2Aとガス流路2Hとを備えている。
 気相吸着装置2Yは、吸着材2Dと、吸着材2Dを収容するカラム容器2Cと、カラム容器2C内のガスを排出するガス流路2Iとを備えている。気相吸着装置2Yは、ガス流路2Hを介して加熱装置2Xと繋がっている。吸着材2Dは、上記で説明したものを使用することができる。吸着材2Dは、好ましくは活性炭粒子である。
 吸着補助装置2Zは、冷却液2Fと、冷却液2Fを収容する容器2Eと、容器2E内のガスを吸い上げるポンプ2Gと、ポンプ2Gと容器2Eとを繋ぐガス流路2Jとを備えている。吸着補助装置2Zは、ガス流路2Iを介して気相吸着装置2Yと繋がっている。ガス流路2Iの先端は、冷却液2Fに浸漬されている。
 加熱装置2Xで発生したガスは、ガス流路2Hを通って気相吸着装置2Y(具体的には、カラム容器2Cのガス導入孔)に入る。その後、ガスは、気相吸着装置2Yのカラム容器2Cを通過する。ここで、ガスに含まれる香味成分は吸着材2Dに吸着される。カラム容器2Cを通過したガス(すなわち、カラム溶出ガス)は、カラム容器2Cのガス排出孔からガス流路2Iを通って排出され、冷却液2F中にバブリングされる。冷却液2Fは、例えば水である。一方、ポンプ2Gは、容器2E内のガスを、ガス流路2Jを介して吸い上げる。ポンプ2Gは、カラム容器2Cを通過するガスの流れを促進することができる。これにより、加熱装置2Xで発生したガスがスムーズに気相吸着装置2Yに流れ、ガス中の香味成分を吸着材2Dに順次吸着させることができる。
 (液相吸着)
 液相吸着は、加熱工程(S3)で得られたガスを、吸着材を含む水に通過させ、その後、吸着材を水から回収することにより行うことができる。
 液相吸着では、まず、加熱工程(S3)で得られたガス(香味成分を含む)を、吸着材を含む水に通過させて、香味成分を吸着材に吸着させる。これにより、香味成分を吸着した吸着材(すなわち、香味成分吸着体)が、水中に得られる。
 吸着材は、上記で説明したものを使用することができる。吸着材は、好ましくは活性炭粒子である。吸着材は、水中に沈殿していてもよいし、浮遊していてもよい。この吸着工程において、水は、香味成分を、大気中に放出させることなく、水への溶解を介して効率良く吸着材に吸着させる役割を果たす。すなわち、水は、香味成分を一時的にトラップするためのトラップ溶媒としての役割を果たす。水は、特に限定されず、水道水、イオン交換水、蒸留水などを使用することができる。
 この吸着工程において、吸着材と水との質量比は、例えば1:0.5~1:20、好ましくは1:2~1:5とすることができる。
 トラップ溶媒として水が優れている理由を以下に説明する。 
 この吸着工程では、活性炭などの吸着材は、水中に含まれるが、非極性の性質を有するため、極性分子である水を吸着しにくい。このため、水をトラップ溶媒として使用した場合、吸着材が、香味成分を吸着する前に水を吸着することがほとんどなく、香味成分の吸着を妨げることがない。また、加熱工程(S3)で得られたガスに含まれる香味成分の多くは、非極性であるため、水に溶解しているよりも吸着材に吸着している方がエネルギー的に安定である。このため、香味成分は、水への溶解を介して吸着材に吸着されると、吸着材に吸着された状態で安定に維持される。これらの理由のため、水はトラップ溶媒として優れている。
 一方、トラップ溶媒として、加熱型香味吸引器のエアロゾル源として一般的に使用される溶媒(例えば、ポリエチレングリコールやグリセリン)や、先行技術文献(国際公開第2017/144705号)に記載されるエタノールなどを使用することも考えられる。しかし、ポリエチレングリコールやグリセリンをトラップ溶媒として使用した場合、活性炭などの吸着材は、香味成分を吸着する前にこれらの液体を吸着してしまい、香味成分を十分に吸着することができない。また、エタノールをトラップ溶媒として使用した場合、香味成分は、吸着材に吸着しているよりもエタノールに溶解している方がエネルギー的に安定であるため、香味成分を吸着材に十分に吸着させることができない。したがって、上記溶媒はトラップ溶媒として適していない。
 好ましくは、この吸着工程は、加熱工程(S3)で得られたガス(香味成分を含む)を、吸着材を含む水中にバブリングすることにより行うことができる。この吸着工程では、抽出工程(S1)で使用したたばこ材料10gあたり、例えば3~20mLの水を使用することができる。
 この吸着工程は、気体を液体に溶解させて捕集する装置を用いて行うことができる。この吸着工程は、例えば、図3に示す液相吸着装置を用いて行うことができる。
 図3に示す液相吸着装置3は、ガス流路2Hを介して、図2に示す加熱装置2Xと繋がっている。すなわち、図2に示す加熱装置2Xは、図2に示す気相吸着装置2Yの代わりに、図3に示す液相吸着装置3と繋がっていてもよい。
 図3に示すとおり、液相吸着装置3は、吸着材3Dを含む水3Eを収容するための内側容器3Aと、バブリングノズルとしての焼結フィルタ3Bと、内側容器3Aを収容するための外側容器3Cと、香味成分を含むガスを内側容器3Aに送るガス流路2Hと、内側容器3A内のガスを排出する排出ガス流路3Hとを備えている。
 水への溶解を介した吸着動作を以下に説明する。加熱工程(S3)で得られたガス(香味成分を含む)を、ガス流路2Hを通って、ガス流路2Hの先端に設けられた焼結フィルタ3Bまで送る。焼結フィルタ3Bは、多孔質構造を有し、吸着材3Dを含む水3Eに浸漬されている。このため、香味成分を含むガスは、吸着材3Dを含む水3Eにバブリングされる。これにより、香味成分を含むガスは、水3Eに溶解し、水3Eに含まれる吸着材3Dに吸着される。
 内側容器3Aには、吸着材3Dおよび水3Eに加えて、ガラスビーズ3Fが収容されている。このように、ガラスビーズ3Fの存在下でバブリングを行うと、香味成分が水3Eにトラップされ、吸着材3Dに吸着される効率を高めることができる。
 香味成分を含むガスが水3Eにバブリングされると、水3Eの温度が上昇する。このため、外側容器3Cに氷水3Gが収容されている。これにより、水3Eの温度が上昇するのを防ぐことができる。内側容器3A内で発生したガスは、排出ガス流路3Hを介して排出される。
 なお、この吸着工程は、加熱工程(S3)で得られたガス(香味成分を含む)を、水への溶解を介して、吸着材に吸着させることができれば、図3に示す液相吸着装置を用いて行うことに限定されない。
 上記の吸着工程により、香味成分を吸着した吸着材(すなわち、香味成分吸着体)が、水中に得られる。その後、香味成分吸着体を水から回収する。例えば、回収は、香味成分吸着体を含む水から水を吸い出すことにより行ってもよいし、香味成分吸着体を含む水をフィルタや篩などの濾材を通すことにより行ってもよい。
 回収後、香味成分吸着体を乾燥させてもよい。香味成分吸着体を乾燥させると、香味成分吸着体の表面に存在する水を除去することができる。これにより、香味成分吸着体が凝集しにくくなり、取り扱いやすくなる。乾燥は、香味成分吸着体に対して室温(例えば15~25℃の温度)で空気を送風することにより行ってもよいし、加熱乾燥により行ってもよい。加熱乾燥は、例えば、ヒータでの加熱または加熱空気の送風により行うことができる。乾燥を加熱乾燥により行う場合、例えば50~100℃の温度で行うことができる。このような温度での加熱は、吸着材に吸着している香味成分が吸着材から脱離するのを防ぐことができる。
 [任意の工程]
 上記方法は、培養工程(S2)と加熱工程(S3)との間に、酵母含有培養液をpH7以上に調整することを更に含んでいてもよい。酵母含有培養液のpHは、例えば7~11、好ましくは8~10.5、より好ましくは8~10に調整することができる。例えば、酵母含有培養液に水酸化ナトリウム水溶液を添加することにより、酵母含有培養液のpHを調整することができる。
 酵母含有培養液のpHを7以上に調整すると、その後の加熱工程および吸着工程でニコチンを効率的に回収することができる(後述の例2を参照)。
 [効果]
 上述のとおり、本発明の方法は、酵母をたばこ抽出液中で培養し、その後、酵母含有培養液を加熱して、酵母含有培養液から香味成分を気化させ、香味成分を吸着材に吸着させて回収する。このため、本発明の方法により得られる香味成分吸着体は、たばこ材料に由来する香味成分に加えて、酵母により生産された香味成分を含むことができる。したがって、かかる香味成分吸着体を加熱型香味吸引器に組み込んだ場合、増強した香味をユーザに提供することができる(後述の例1および例3を参照)。
 また、酢酸エステルなどの香味成分と比べて、たばこ特異的ニトロソアミン(TSNA)は揮発性が低いため、酵母含有培養液に含まれるTSNAは気化し難い。このため、本発明の方法により得られる香味成分吸着体は、低減した量のTSNAを含むことができる。
 加えて、本発明の方法は、たばこ抽出液(水をベースとする液体)を加熱して香味成分を気化させているだけで、香味成分を回収するために有機溶媒などの抽出溶媒を使用していない。このため、本発明の方法は、実施する上で安全性が高い上に、本発明の方法で得られた香味成分吸着体を香味吸引器に組み込んだ場合のユーザに対する安全性も高い。
 更に、本発明の方法は、香味成分を、香味成分吸着体(固体)の形態で回収し、香味成分を含有する液体の形態で回収しない。このため、本発明の方法で得られた香味成分吸着体は、そのまま(すなわち、液体を濃縮する手間もなく)香味吸引器に組み込むことができる。また、本発明の方法で得られた香味成分吸着体は、香味成分が吸着材に吸着しているため、香味成分が脱着しにくく、蔵置安定性が高い。
 <2.香味成分吸着体>
 別の側面によれば、上述の「香味成分吸着体の製造方法」により得られる香味成分吸着体が提供される。香味成分吸着体は、その製造方法から明らかなとおり、吸着材と、吸着材に吸着した香味成分とから構成される。香味成分吸着体は、吸着材と同様、任意の形態を有することができ、例えば、粒子、シート、または繊維の形態を有することができる。香味成分吸着体は、好ましくは粒子の形態を有する。香味成分吸着体は、粒子の形態を有する場合、例えば200~1000μmの粒径を有する。
 香味成分吸着体は、単独で、加熱型香味吸引器の香味源として用いてもよいし、加熱型香味吸引器で通常使用されるたばこ充填材と混ぜて香味源として用いてもよい。
 上述のとおり、本発明の方法により得られる香味成分吸着体は、たばこ材料に由来する香味成分に加えて、酵母により生産された香味成分を含むことができる。したがって、かかる香味成分吸着体を加熱型香味吸引器に組み込んだ場合、増強した香味をユーザに提供することができる。また、上述のとおり、本発明の方法により得られる香味成分吸着体は、低減した量のTSNAを含むことができる。
 <3.香味成型体およびその製造方法>
 上述の香味成分吸着体は、それ自体を加熱型香味吸引器に組み込んで使用してもよいし、あるいは、成型材料と組み合わせて成型体に加工し、得られた成型体を加熱型香味吸引器に組み込んで使用してもよい。
 したがって、別の側面によれば、上述の香味成分吸着体と成型材料とを含む香味成型体が提供される。
 更に別の側面によれば、上述の<1.香味成分吸着体の製造方法>の欄に記載の方法により香味成分吸着体を製造することと、前記香味成分吸着体を成型材料と混合し、得られた混合物を成型することとを含む、香味成型体の製造方法が提供される。具体的には、香味成型体の製造方法は、
 たばこ材料から前記たばこ材料に含まれる水溶性成分を水性溶媒で抽出して、たばこ抽出液を得ることと、
 酵母を前記たばこ抽出液中で培養して、酵母含有培養液を得ることと、
 前記酵母含有培養液を加熱して、前記酵母含有培養液から香味成分を気化させることと、
 前記香味成分を吸着材に吸着させて、香味成分吸着体を得ることと、
 前記香味成分吸着体を成型材料と混合し、得られた混合物を成型することと
を含む。
 成型は、たばこ刻やたばこ細粉(すなわち、たばこ刻の細粉化物)を成型するための公知の方法、例えば圧縮成型、圧延成型などを用いて行うことができる。成型材料としては、例えば、たばこ刻の粉砕物またはたばこ残渣を使用することができる。たばこ残渣は、抽出工程(S1)で得られたたばこ残渣を使用してもよい。また、成型材料は、公知のバインダー(例えばグアーガム)などの追加の成分を含んでいてもよい。
 更に別の側面によれば、上述の方法により得られる香味成型体が提供される。
 上述の香味成分吸着体を所望の形状に成型すると、加熱型香味吸引器への組込みの際の取り扱い易さを向上させることができる。また、上述の香味成分吸着体を所望の形状に成型すると、加熱型香味吸引器への組込み後に加熱型香味吸引器から脱落し難くすることができる。
 香味成型体は、任意の形状とすることができ、例えば、タブレット形状、シート形状、顆粒形状、繊維形状などとすることができる。香味成型体は、成型により得られた生成物をそのままのサイズで加熱型香味吸引器の香味源として用いてもよいし、成型により得られた生成物を任意の大きさに裁刻して、裁刻物を加熱型香味吸引器の香味源として用いてもよい。
 また、香味成型体は、単独で、加熱型香味吸引器の香味源として用いてもよいし、加熱型香味吸引器で通常使用されるたばこ充填材と混ぜて香味源として用いてもよい。
 一例によれば、香味成型体は、上述の香味成分吸着体と、たばこ残渣と、グリセロールと、グアーガムと、水とを混合し、得られた混合物をシート形状に成型し、加熱乾燥させることにより、製造することができる。シート形状の香味成型体は、成型により得られた生成物をそのままのサイズで加熱型香味吸引器の香味源として用いてもよいし、シート形状の香味成型体を任意の大きさに裁刻して、裁刻物を加熱型香味吸引器の香味源として用いてもよい。
 [効果]
 上述の香味成分吸着体は、たばこ材料に由来する香味成分に加えて、酵母により生産された香味成分を含むことができる。このため、上述の香味成分吸着体を用いて香味成型体を製造し、香味成型体を加熱型香味吸引器に組み込んだ場合、増強した香味をユーザに提供することができる(後述の例1および例3を参照)。
 <4.非燃焼加熱型香味吸引器>
 上述の「香味成分吸着体」または上述の「香味成型体」は、任意の非燃焼加熱型香味吸引器に組み込むことができる。すなわち、別の側面によれば、上述の「香味成分吸着体」を含む香味源と、前記香味源を加熱するヒータとを備えた非燃焼加熱型香味吸引器が提供される。更に別の側面によれば、上述の「香味成型体」を含む香味源と、前記香味源を加熱するヒータとを備えた非燃焼加熱型香味吸引器が提供される。
 非燃焼加熱型香味吸引器は、たばこ充填材やたばこ香味液などの香味源を燃焼させることなく加熱することによりたばこ香味をユーザに提供する香味吸引器である。非燃焼加熱型香味吸引器は、本明細書では、単に「加熱型香味吸引器」ともいう。非燃焼加熱型香味吸引器の例として、
 炭素熱源の燃焼熱でたばこ充填材を加熱する炭素熱源型香味吸引器(例えばWO2006/073065を参照);
 たばこ充填材を含むたばこスティックと、たばこスティックを電気加熱するための加熱デバイスとを備えた電気加熱型香味吸引器(例えばWO2010/110226を参照);または
 液状のエアロゾル源をヒータにより加熱してエアロゾルを発生させ、エアロゾルとともにたばこ充填材由来の香味を吸引する液体霧化型香味吸引器(例えばWO2015/046385を参照)
などが挙げられる。
 好ましい第1実施形態によれば、
 上述の「香味成分吸着体」または上述の「香味成型体」を含む香味源と、前記香味源の周囲に巻かれた巻紙とを備えた香味発生物品と、
 前記香味発生物品に含まれる前記香味源を加熱するヒータと
を備えた非燃焼加熱型香味吸引器が提供される。この実施形態によれば、上述の「香味成分吸着体」または上述の「香味成型体」を含む香味源と、前記香味源の周囲に巻かれた巻紙とを備えた香味発生物品が提供される。香味発生物品は、たばこスティックとも呼ばれる。香味発生物品は、香味源の下流側に(すなわち、吸口側に)フィルタを更に備えていてもよい。
 好ましい第2実施形態によれば、
 上述の「香味成分吸着体」または上述の「香味成型体」を含む香味源と、
 前記香味源へ供給するための液状のエアロゾル源を収容している液体収容部と、
 前記エアロゾル源が供給された前記香味源を加熱して、前記エアロゾル源を霧化させるとともに前記香味源から香味成分を放出させるヒータと
を備えた非燃焼加熱型香味吸引器が提供される。
 以下に、第1実施形態に係る非燃焼加熱型香味吸引器の例と、第2実施形態に係る非燃焼加熱型香味吸引器の例を、図面を参照しながら説明する。
 [第1実施形態に係る非燃焼加熱型香味吸引器の例]
 以下に、第1実施形態に係る非燃焼加熱型香味吸引器の例を、図4A、図4B、図4C、図5および図6を参照して説明する。この例において、非燃焼加熱型香味吸引器は、エアロゾル生成装置100と香味発生物品200とにより構成される。図4Aは、エアロゾル生成装置の一例の概略正面図である。図4Bは、図4Aに示すエアロゾル生成装置の概略上面図である。図4Cは、図4Aに示すエアロゾル生成装置の概略底面図である。図5は、香味発生物品の一例の概略側断面図である。図6は、図4Bに示すエアロゾル生成装置のIII-III線に沿った断面図である。
 図面には、説明の便宜のためにX-Y-Z直交座標系を付することがある。この座標系において、Z軸は鉛直上方を向いており、X-Y平面はエアロゾル生成装置100を水平方向に切断するように配置されており、Y軸はエアロゾル生成装置100の正面から裏面へ延出するように配置されている。Z軸は、後述する霧化部130のチャンバ150に収容される香味発生物品の挿入方向、またはチャンバ150の軸方向ということもできる。また、X軸は、Y軸およびZ軸に直交する方向であり、X軸およびY軸は、チャンバ150の軸方向に直交する半径方向、またはチャンバ150の半径方向ということもできる。
 エアロゾル生成装置100は、上述の「香味成分吸着体」または上述の「香味成型体」を含んだ香味源を有するスティック型の香味発生物品を加熱することで、香味を含むエアロゾルを生成するように構成される。
 図4A~4Cに示されるように、エアロゾル生成装置100は、アウタハウジング101(筐体の一例に相当する)と、スライドカバー102と、スイッチ部103と、を有する。アウタハウジング101は、エアロゾル生成装置100の最外のハウジングを構成し、ユーザの手に収まるようなサイズを有する。ユーザが香味吸引器を使用する際は、エアロゾル生成装置100を手で保持して、エアロゾルを吸引することができる。アウタハウジング101は、複数の部材を組み立てることによって構成されてもよい。アウタハウジング101は、例えば樹脂製であり、特に、ポリカーボネート(PC)、ABS(Acrylonitrile-Butadiene-Styrene)樹脂、PEEK(ポリエーテルエーテルケトン)または複数種類のポリマーを含有するポリマーアロイ等、あるいは、アルミ等の金属で形成され得る。
 アウタハウジング101は、香味発生物品を受け入れるための開口(図示しない)を有し、スライドカバー102は、この開口を閉じるようにアウタハウジング101にスライド可能に取り付けられる。具体的には、スライドカバー102は、アウタハウジング101の上記開口を閉鎖する閉位置(図4Aおよび図4Bに示す位置)と、上記開口を開放する開位置(図6に示す位置)との間を、アウタハウジング101の外表面に沿って移動可能に構成される。例えば、ユーザがスライドカバー102を手動で操作することにより、スライドカバー102を閉位置と開位置とに移動させることができる。これにより、エアロゾル生成装置100の内部への香味発生物品のアクセスを許可または制限することができる。
 スイッチ部103は、エアロゾル生成装置100の作動のオンとオフとを切り替えるために使用される。例えば、ユーザは、香味発生物品をエアロゾル生成装置100に挿入した状態でスイッチ部103を操作することで、電源(図6の符号121を参照)からヒータ(図6の符号140を参照)に電力が供給され、香味発生物品を燃焼させずに加熱することができる。なお、スイッチ部103は、アウタハウジング101の外部に設けられるスイッチであってもよいし、アウタハウジング101の内部に位置するスイッチであってもよい。スイッチがアウタハウジング101の内部に位置する場合、アウタハウジング101の表面のスイッチ部103を押下することで、間接的にスイッチが押下される。この例では、スイッチ部103のスイッチがアウタハウジング101の内部に位置する例を説明する。
 エアロゾル生成装置100はさらに、端子(図示しない)を有してもよい。端子は、エアロゾル生成装置100を例えば外部電源と接続するインターフェースであり得る。エアロゾル生成装置100が備える電源が充電式バッテリである場合は、端子に外部電源を接続することで、外部電源が電源に電流を流し、電源を充電することができる。また、端子にデータ送信ケーブルを接続することにより、エアロゾル生成装置100の作動に関連するデータを外部装置に送信できるようにしてもよい。
 次に、エアロゾル生成装置100で使用される香味発生物品について説明する。図5は、香味発生物品200の一例の概略側断面図である。この例では、エアロゾル生成装置100と香味発生物品200とにより香味吸引器が構成される。図5に示すように、香味発生物品200は、喫煙可能物201と、筒状部材204と、中空フィルタ部206と、フィルタ部205と、を有する。
 喫煙可能物201は、第1の巻紙202によって巻装される。筒状部材204、中空フィルタ部206、およびフィルタ部205は、第1の巻紙202とは異なる第2の巻紙203によって巻装される。第2の巻紙203は、喫煙可能物201を巻装する第1の巻紙202の一部も巻装する。これにより、筒状部材204、中空フィルタ部206、およびフィルタ部205と喫煙可能物201とが連結される。ただし、第2の巻紙203が省略され、第1の巻紙202を用いて筒状部材204、中空フィルタ部206、およびフィルタ部205と喫煙可能物201とが連結されてもよい。第2の巻紙203のフィルタ部205側の端部近傍の外面には、ユーザの唇を第2の巻紙203から離しやすくするためのリップリリース剤207が塗布される。香味発生物品200のリップリリース剤207が塗布される部分は、香味発生物品200の吸口として機能する。
 喫煙可能物201は、上述の「香味成分吸着体」または上述の「香味成型体」を香味源として含む。上述のとおり、「香味成分吸着体」や「香味成型体」は、単独で、加熱型香味吸引器の香味源として用いてもよいし、加熱型香味吸引器で通常使用されるたばこ充填材と混ぜて香味源として用いてもよい。例えば、タブレット形状の香味成型体の場合、1個の香味成型体を加熱型香味吸引器の香味源として用いてもよいし、複数個の香味成型体を加熱型香味吸引器の香味源として用いてもよい。シート形状の香味成型体の場合、成型により得られた生成物をそのままのサイズで加熱型香味吸引器の香味源として用いてもよいし、シート形状の香味成型体を任意の大きさに裁刻して、裁刻物を加熱型香味吸引器の香味源として用いてもよい。
 また、喫煙可能物201を巻く第1の巻紙202は、通気性を有するシート部材であり得る。筒状部材204は、紙管または中空フィルタであり得る。この例では、香味発生物品200は、喫煙可能物201、筒状部材204、中空フィルタ部206、およびフィルタ部205を備えているが、香味発生物品200の構成はこれに限られない。例えば、中空フィルタ部206が省略され、筒状部材204とフィルタ部205とが互いに隣接配置されてもよい。
 次に、エアロゾル生成装置100の内部構造について説明する。図6は、図4Bに示すエアロゾル生成装置100のIII-III線に沿った断面図である。図6に示すように、エアロゾル生成装置100のアウタハウジング101の内側には、インナハウジング110(筐体の一例に相当する)が設けられる。インナハウジング110は、例えば、樹脂製であり、特に、ポリカーボネート(PC)、ABS(Acrylonitrile-Butadiene-Styrene)樹脂、PEEK(ポリエーテルエーテルケトン)または複数種類のポリマーを含有するポリマーアロイ等、あるいは、アルミ等の金属で形成され得る。なお、耐熱性や強度の観点から、インナハウジング110は、PEEKであることが好ましい。インナハウジング110の内部空間には、電源部120と、霧化部130と、が設けられる。
 電源部120は、電源121を有する。電源121は、例えば、充電式バッテリまたは非充電式のバッテリであり得る。電源121は、霧化部130と電気的に接続される。これにより、電源121は、香味発生物品200を適切に加熱するように、霧化部130に電力を供給することができる。
 霧化部130は、図6に示すように、香味発生物品200の挿入方向(Z軸方向)に延びる金属製のチャンバ150(筒状部の一例に相当する)と、チャンバ150の一部を覆うヒータ140と、断熱部132と、チャンバ150の開口と当接する略筒状の挿入ガイド部材134(ガイド部の一例に相当する)と、を有する。チャンバ150は、香味発生物品200の周囲を取り囲むように構成される。ヒータ140は、チャンバ150の外周面に接触し、チャンバ150に挿入された香味発生物品200を加熱する加熱部を含むように構成される。
 また、図6に示すように、チャンバ150の底部には、底部材136(当接部の一例に相当する)が設けられる。底部材136は、チャンバ150に挿入された香味発生物品200と、香味発生物品200の挿入方向において当接し、香味発生物品200を位置決めするストッパとして機能し得る。ここで、チャンバ150と底部材136とにより、香味発生物品200の少なくとも一部を収容する収容部が構成される。底部材136は、例えば、樹脂材料により形成され得る。底部材136は、香味発生物品200が当接する面に凹凸を有し、香味発生物品200の空気取り込み口に空気を供給可能な(すなわち、収容部に収容された香味発生物品200に連通する)第1空気流路を画定し得る。底部材136は、例えば樹脂製であり、特に、ポリカーボネート(PC)、ABS(Acrylonitrile-Butadiene-Styrene)樹脂、PEEK(ポリエーテルエーテルケトン)または複数種類のポリマーを含有するポリマーアロイ等、あるいは、アルミ等の金属でから形成され得る。なお、底部材136は、断熱部132等に熱が伝わることを抑制するために、熱伝導率の小さい素材で形成されることが好ましい。
 断熱部132は、全体として略筒状であり、チャンバ150を覆うように配置される。断熱部132は、例えばエアロゲルシートを含み得る。挿入ガイド部材134は、閉位置にあるスライドカバー102とチャンバ150との間に設けられる。挿入ガイド部材134は、例えば樹脂製であり、特に、ポリカーボネート(PC)、ABS(Acrylonitrile-Butadiene-Styrene)樹脂、PEEK(ポリエーテルエーテルケトン)または複数種類のポリマーを含有するポリマーアロイ等から形成され得る。なお、挿入ガイド部材134は、金属やガラス、セラミック等で形成されてもよい。また、耐熱性の観点から、挿入ガイド部材134は、PEEKであることが好ましい。挿入ガイド部材134は、スライドカバー102が開位置にあるときに、エアロゾル生成装置100の外部と連通し、香味発生物品200を挿入ガイド部材134に挿入することで、チャンバ150への香味発生物品200の挿入を案内する。挿入ガイド部材134を設けることで、チャンバ150に香味発生物品200を容易に挿入することができる。
 エアロゾル生成装置100は、さらに、チャンバ150および断熱部132の両端を保持する、第1保持部137と、第2保持部138とを有する。第1保持部137は、チャンバ150および断熱部132のZ軸負方向側の端部を保持するように配置される。第2保持部138は、チャンバ150および断熱部132のスライドカバー102側(Z軸正方向側)の端部を保持するように配置される。
 [第2実施形態に係る非燃焼加熱型香味吸引器の例]
 以下に、第2実施形態に係る非燃焼加熱型香味吸引器の一例を、図7~10を参照して説明する。図7は、非燃焼加熱型香味吸引器の一例を示す斜視図である。図8は、図7の非燃焼加熱型香味吸引器における電源ユニットの斜視図である。図9は、図7の非燃焼加熱型香味吸引器の断面図である。図10は、図7の非燃焼加熱型香味吸引器における電源ユニットの要部構成を示すブロック図である。
 図7~10に示す非燃焼加熱型香味吸引器1(以下、単に「加熱型香味吸引器1」ともいう)は、所定方向(以下、長手方向Aと呼ぶ)に沿って延びる棒形状を有する。加熱型香味吸引器1は、図7に示すように、長手方向Aに沿って電源ユニット10と、カートリッジ20と、がこの順に設けられている。カートリッジ20は、電源ユニット10に対して着脱可能である。言い換えると、カートリッジ20は交換可能である。
 (電源ユニット)
 電源ユニット10は、図8および図9に示すように、円筒状の電源ユニットケース11の内部に電源12、充電器13、制御部50、各種センサ等を収容する。電源12は、充電可能な二次電池であり、好ましくは、リチウムイオン二次電池である。
 電源ユニットケース11の長手方向Aの一端側(カートリッジ20側)に位置するトップ部11aには、放電端子41が設けられる。放電端子41は、トップ部11aの上面からカートリッジ20に向かって突出するように設けられ、カートリッジ20の負荷21と電気的に接続可能に構成される。
 また、トップ部11aの上面には、放電端子41の近傍に、カートリッジ20の負荷21に空気を供給する空気供給部42が設けられている。
 電源ユニットケース11の長手方向Aの他端側(カートリッジ20と反対側)に位置するボトム部11bには、電源12を充電可能な外部電源と電気的に接続可能な充電端子(図示せず)が設けられる。
 また、電源ユニットケース11のトップ部11aの側面には、ユーザが操作可能な操作部14が設けられる。操作部14は、ボタン式のスイッチ、タッチパネル等から構成され、ユーザの使用意思を反映して制御部50および各種センサを起動/遮断する際等に利用される。
 制御部50は、図10に示すように、充電器13、操作部14、パフ(吸気)動作を検出する吸気センサ15、電源12の電圧を測定する電圧センサ16、温度を検出する温度センサ17等の各種センサ装置、およびパフ動作の回数または負荷21への通電時間等を記憶するメモリー18に接続され、加熱型香味吸引器1の各種の制御を行う。吸気センサ15は、コンデンサマイクロフォンや圧力センサ等から構成されていてもよい。制御部50は、具体的にはプロセッサ(MCU:マイクロコントローラユニット)である。このプロセッサの構造は、より具体的には、半導体素子などの回路素子を組み合わせた電気回路である。
 (カートリッジ)
 カートリッジ20は、図9に示すように、円筒状のカートリッジケース27の内部に、液状のエアロゾル源22を貯留するリザーバ23と、エアロゾル源22を霧化する電気的な負荷21と、リザーバ23から負荷21へエアロゾル源を引き込むウィック24と、エアロゾル源22が霧化されることで発生したエアロゾルが吸口26Aに向かって流れるエアロゾル流路25と、を備える。
 リザーバ23は、エアロゾル流路25の周囲を囲むように区画形成され、液状のエアロゾル源22を貯留する。エアロゾル源は、エアロゾルを形成するための液体である。エアロゾル源として、例えば、プロピレングリコール、グリセリン、1,3-プロパンジオール、ジアセチン、ポリエチレングリコール、またはこれらの混合液を使用することができる。リザーバ23には、樹脂ウェブや綿等の多孔体が収容され、且つ、エアロゾル源22が多孔体に含浸されていてもよい。リザーバ23には、樹脂ウェブまたは綿等の多孔体が収容されず、エアロゾル源22のみが貯留されていてもよい。また、リザーバ23は、エアロゾル源22に加えて、たばこ香味液や追加の香味成分(例えばニコチンや香料)を含んでいてもよい。
 ウィック24は、上述の「香味成分吸着体」または上述の「香味成型体」を香味源として含む。ウィック24は、毛管現象を利用してリザーバ23からエアロゾル源22を吸い上げる。エアロゾル源22がウィック24に浸透すると、エアロゾル源22が抽出溶媒として機能し、ウィック24に含まれる「香味成分吸着体」または「香味成型体」から香味成分が抽出される。その後、香味成分を含むエアロゾル源が、負荷21の発熱によって霧化(エアロゾル化)され、ユーザに香味を提供することができる。
 ウィック24は、ガラス繊維などの液保持部材と、「香味成分吸着体」または「香味成型体」との組み合わせによって構成されていてもよいし、「香味成分吸着体」または「香味成型体」のみから構成されていてもよい。すなわち、「香味成分吸着体」または「香味成型体」が、ウィック24の一部を構成していてもよいし、ウィック24の全部を構成していてもよい。
 例えば、香味成分吸着体や香味成型体をガラス繊維の束の中に組み込んで、これをウィック24として使用してもよい。あるいは、シート状の香味成型体を、ウィックに適したサイズに切断し積層したもの(即ち、シート状の成型体の積層体)をウィック24として使用してもよい。あるいは、シート状の香味成型体を、渦巻き状に巻いたものや、蛇腹状に折り畳んだものをウィック24として使用してもよい。あるいは、シート状の香味成型体を、繊維状に裁断し、得られた繊維状の裁断物を束ねることにより得られたもの(即ち、繊維状の裁断物の束)をウィック24として使用してもよい。
 負荷21は、電源12から放電端子41を介して供給される電力によって燃焼を伴わずにエアロゾル源22を霧化する。負荷21は、所定ピッチで巻き回される電熱線(コイル)によって構成されている。なお、負荷21は、エアロゾル源22を霧化してエアロゾルを発生可能な素子であればよく、例えば、発熱素子、又は超音波発生器である。発熱素子としては、発熱抵抗体、セラミックヒータ、および誘導加熱式のヒータ等が挙げられる。
 エアロゾル流路25は、負荷21の下流側であって、電源ユニット10の中心線L上に設けられる。
 加熱型香味吸引器1では、図9中、矢印Bで示すように、電源ユニットケース11に設けられた空気取込口(図示せず)から流入した空気が、空気供給部42からカートリッジ20の負荷21付近を通過する。負荷21は、ウィック24によってリザーバ23から引き込まれた又は移動させられたエアロゾル源22を霧化する。霧化されて発生したエアロゾルは、空気取込口から流入した空気と共にエアロゾル流路25を流れ、吸口26Aに供給される。
 吸口26Aには、カートリッジケース27の内部空間と加熱型香味吸引器1の外部の空間とを連絡するガス流出口26Bが設けられている。吸引時には、このガス流出口26Bを介して、加熱型香味吸引器1から、たばこ香味成分を含むエアロゾルが排出される。
 また、加熱型香味吸引器1には、各種情報を報知する報知部45が設けられている。報知部45は、発光素子によって構成されていてもよく、振動素子によって構成されていてもよく、音出力素子によって構成されていてもよい。また、報知部45は、発光素子、振動素子および音出力素子のうち、2以上の素子の組合せであってもよい。報知部45は、電源ユニット10およびカートリッジ20のいずれに設けられてもよいが、電源12からの導線を短くするため電源ユニット10に設けられることが好ましい。例えば、報知部45は、操作部14の周囲に設けられ、操作部14の周囲が透光性を有し、且つ、LED等の発光素子によって発光するように構成され得る。
 <5>好ましい実施形態
 以下に、好ましい実施形態をまとめて示す。
 [A1] たばこ材料から前記たばこ材料に含まれる水溶性成分を水性溶媒で抽出して、たばこ抽出液を得ることと、
 酵母を前記たばこ抽出液中で培養して、酵母含有培養液を得ることと、
 前記酵母含有培養液を加熱して、前記酵母含有培養液から香味成分を気化させることと、
 前記香味成分を吸着材に吸着させることと
を含む、香味成分吸着体の製造方法。
 [A2] 前記培養と前記加熱との間に、前記酵母含有培養液をpH7以上、好ましくはpH7~11、好ましくはpH8~10.5、より好ましくはpH8~10に調整することを更に含む[A1]に記載の方法。
 [A3] 前記吸着が、前記香味成分を含むガスを、前記吸着材と接触させることにより行われる[A1]または[A2]に記載の方法。
 [A4] 前記吸着が、前記香味成分を含むガスを、前記吸着材を充填したカラム容器を通過させることにより行われる[A1]~[A3]の何れか1に記載の方法。
 [A5] 前記吸着が、前記香味成分を含むガスを、前記吸着材を含む水に通過させ、その後、前記吸着材を水から回収することにより行われる[A1]または[A2]に記載の方法。
 [A6] 前記通過が、前記ガスを前記水にバブリングさせることにより行われる[A5]に記載の方法。
 [A7] 前記通過が、前記ガスを、前記水中に、多孔質体(好ましくは多孔質フィルタ)を経由してバブリングすることにより行われる[A5]または[A6]に記載の方法。
 [A8] 前記通過が、前記ガスを、複数のビーズが分散している前記水中にバブリングすることにより行われる[A5]~[A7]の何れか1に記載の方法。
 [A9] 前記ビーズが1~5mmの直径を有する[A8]に記載の方法。
 [A10] 前記回収後に、前記香味成分を吸着した前記吸着材を乾燥させることを更に含む[A5]~[A9]の何れか1に記載の方法。
 [A11] 前記加熱が、前記酵母含有培養液を、80~130℃、好ましくは90~130℃、より好ましくは90~110℃の温度で加熱することにより行われる[A1]~[A10]の何れか1に記載の方法。
 [A12] 前記加熱が、30~120分間、好ましくは40~90分間にわたって行われる[A1]~[A11]の何れか1に記載の方法。
 [A13] 前記吸着材が多孔質材料である[A1]~[A12]の何れか1に記載の方法。
 [A14] 前記吸着材が粒子の形態にある[A1]~[A13]の何れか1に記載の方法。
 [A15] 前記粒子が、200~1000μmの粒径を有する[A14]に記載の方法。
 [A16] 前記吸着材が活性炭である[A1]~[A15]の何れか1に記載の方法。
 [A17] 前記たばこ材料がたばこ刻である[A1]~[A16]の何れか1に記載の方法。
 [A18] 前記水性溶媒が、水または含水エタノール、好ましくは水、より好ましくは20~70℃の水である[A1]~[A17]の何れか1に記載の方法。
 [A19] 前記酵母が、ヤロウィア(Yarrowia)属の酵母、リポマイセス(Lipomyces)属の酵母、サッカロマイセス(Saccharomyces)属の酵母、サイバーリンドネラ(Cyberlindnera)属の酵母、およびウィッカーハモマイセス(Wickerhamomyces)属の酵母からなる群より選択される少なくとも1種類の酵母である[A1]~[A18]の何れか1に記載の方法。
 [B1] [A1]~[A19]の何れか1に記載の方法により得られる香味成分吸着体。
 [B2] 前記香味成分吸着体が粒子の形態にある[B1]に記載の香味成分吸着体。
 [C1] [B1]または[B2]に記載の香味成分吸着体と成型材料とを含む香味成型体。
 [C2] 前記成型材料が、たばこ刻の粉砕物またはたばこ残渣である[C1]に記載の香味成型体。
 [C3] 前記成型材料が、バインダーを更に含む[C2]に記載の香味成型体。
 [D1] [A1]~[A19]の何れか1に記載の方法により香味成分吸着体を製造することと、
 前記香味成分吸着体を成型材料と混合し、得られた混合物を成型することと
を含む、香味成型体の製造方法。
 [D2] 前記成型材料が、たばこ刻の粉砕物またはたばこ残渣である[D1]に記載の方法。
 [D3] 前記成型材料が、バインダーを更に含む[D2]に記載の方法。
 [C4] [D1]~[D3]の何れか1に記載の方法により得られる香味成型体。
 [C5] 前記香味成型体がタブレット形状またはシート形状を有する[C1]~[C4]の何れか1に記載の香味成型体。
 [E1] [B1]または[B2]に記載の香味成分吸着体または[C1]~[C5]の何れか1に記載の香味成型体を含む香味源と、
 前記香味源を加熱するヒータと
を備えた非燃焼加熱型香味吸引器。
 [F1] [B1]または[B2]に記載の香味成分吸着体または[C1]~[C5]の何れか1に記載の香味成型体を含む香味源と、
 前記香味源の周囲に巻かれた巻紙と
を備えた香味発生物品。
 [F2] 吸口側にフィルタを更に含む[F1]に記載の香味発生物品。
 [E2] [F1]または[F2]に記載の香味発生物品と、
 前記香味発生物品に含まれる前記香味源を加熱するヒータと
を備えた非燃焼加熱型香味吸引器。
 [E3] 前記香味源へ供給するための液状のエアロゾル源を収容している液体収容部を更に備え、
 前記ヒータが、前記エアロゾル源が供給された前記香味源を加熱して、前記エアロゾル源を霧化させるとともに前記香味源から香味成分を放出させる、
[E1]に記載の非燃焼加熱型香味吸引器。
 [例1]
 例1では、香味成型体を官能評価により評価した。
 1-1.香味成型体の作製方法
 (1)香味成分吸着体1Aの作製
 抽出工程(S1)
 黄色種の葉たばこを粉砕し、「たばこ材料」として使用した。黄色種の葉たばこの刻(100g)を粉砕器で100μm以下のサイズまで粉砕し、60℃の水600mLを加え、振盪(200rpm・2時間)した。これにより、葉たばこに含まれる水溶性成分を抽出した。その後、ろ過により固液分離した。これにより、たばこ抽出液およびたばこ残渣を得た。
 培養工程(S2)
 得られたたばこ抽出液3mLに、Yarrowia属の酵母(Yarrowia lipolytica)を105細胞/mLの濃度になるように添加し、酵母をたばこ抽出液中で培養した。培養は、好気条件下において、28℃で24時間にわたって、振盪培養(240rpm)により行った。培養後に得られた「酵母とたばこ抽出液との混合物」を「酵母含有培養液」と呼ぶ。
 加熱工程(S3)
 酵母含有培養液を、ヒータ付き容器において130℃で1時間加熱した。これにより「香味成分を含むガス」を発生させた。
 気相吸着工程(S4)
 たばこ材料に対して10質量%の量の活性炭(粉末)(Fujifilm Wako Pure Chemical Corporation,製品コード:037-02115)をガラスカラムに充填し、活性炭粒子を充填したカラムを準備した。活性炭粒子は、粒径が200~1000μmの範囲内であった。このカラムに、加熱工程(S3)で発生したガスを通過させた(図2参照)。その後、活性炭粒子を回収して、「香味成分吸着体1A」を得た。
 (2)香味成型体1Aの作製
 香味成分吸着体1Aを用いて、下記のとおり香味成型体1Aを作製した。
 加熱工程(S3)で酵母含有培養液を加熱した後に残った残存物を、再度水に溶解した。具体的には、加熱前の酵母含有培養液100mLに対して30mLの割合の水を使用して、残存物を水に溶解した。これにより、「加熱後の酵母含有培養液」を得た。
 香味成分吸着体1Aに、抽出工程(S1)で得たたばこ残渣と、加熱後の酵母含有培養液と、グリセロールと、グアーガムとを加え混錬し、シート状に成型した。シート状の成型体を70℃の熱風オーブンで15分乾燥させ、その後、22℃60%RHの条件下で48時間調和した。これにより「香味成型体1A」を得た。
 香味成型体1Aの組成を以下に示す。組成は、乾燥質量ベースで表す。
 香味成分吸着体1A           7.6[質量%]
 たばこ残渣+加熱後の酵母含有培養液  68.4[質量%]
 グリセロール             15.0[質量%]
 グアーガム               9.0[質量%]。
 (3)香味成型体1Bの作製(比較例)
 培養工程(S2)で得られた酵母含有培養液を、ヒータ付き容器において130℃で1時間加熱した。これにより、酵母含有培養液を濃縮した。加熱後に残った残存物を、再度水に溶解した。具体的には、加熱前の酵母含有培養液100mLに対して30mLの割合の水を使用して、残存物を水に溶解した。これにより、「加熱後の酵母含有培養液」を得た。
 抽出工程(S1)で得たたばこ残渣と、加熱後の酵母含有培養液と、グリセロールと、グアーガムとを混錬し、シート状に成型した。シート状の成型体を70℃の熱風オーブンで15分乾燥させ、その後、22℃60%RHの条件下で48時間調和した。これにより「香味成型体1B」を得た。
 香味成型体1Bの組成を以下に示す。組成は、乾燥質量ベースで表す。
 たばこ残渣+加熱後の酵母含有培養液  76.0[質量%]
 グリセロール             15.0[質量%]
 グアーガム               9.0[質量%]。
 1-2.官能評価の方法
 香味成型体1Aを裁刻し、得られた裁刻物を官能評価に用いた。12質量%のグリセロールを添加した黄色種のたばこ刻と、香味成型体1Aの裁刻物とを66:34の質量比で混合し、喫煙可能物1Aを調製した。喫煙可能物1Aを使用して、図5に示す香味発生物品(たばこスティック1A)を作製した。
 同様に、香味成型体1Bを裁刻し、得られた裁刻物を官能評価に用いた。12質量%のグリセロールを添加した黄色種のたばこ刻と、香味成型体1Bの裁刻物とを66:34の質量比で混合し、喫煙可能物1Bを調製した。喫煙可能物1Bを使用して、図5に示す香味発生物品(たばこスティック1B)を作製した。
 たばこスティック1Aおよび1Bを、図4および6に示すエアロゾル生成装置(商品名:Ploom X(日本たばこ産業株式会社))で専門パネルが喫煙し、香りの特徴を官能評価により評価した。官能評価は、専門パネル4人で行った。
 1-3.官能評価の結果
 たばこスティック1Aおよび1Bの香りの特徴は、以下のとおりであった。
 たばこスティック1A:
 明確な花様の香り。バナナ様の香り。グリーンな香気、中盤から特にフローラルな甘さが目立つ。酢酸臭とは異なる酸臭。低刺激。サイロを想起させる発酵臭。フローラルな香気が5パフ目以降も感じられた。
 たばこスティック1B:
 酸臭。微かにフローラルな香り。干し草様の香り。刺激は少なかった。やや生臭かった。
 上記結果は、本発明の方法に従って作製された香味成型体が、加熱型香味吸引器において増強した香味をユーザに提供できることを示す。
 なお、上記実験において、加熱後の酵母含有培養液を香味成型体1Aに組み込んだが、これは、比較例との対比を明確にすることを目的としている。香味成分の多くは、香味成分吸着体に含まれるため、加熱後の酵母含有培養液を香味成型体に組み込むことは必須ではない。
 [例2]
 例2では、酵母含有培養液を、培養工程(S2)と加熱工程(S3)の間にpH10.5に調整し、このpH調整がニコチン回収率に及ぼす効果を調べた。
 2-1.香味成分吸着体の作製方法
 (1)香味成分吸着体1A
 例1で記載したとおり香味成分吸着体1Aを作製した。
 (2)香味成分吸着体2A
 酵母含有培養液を、培養工程(S2)と加熱工程(S3)の間にpH10.5に調整したこと以外は、香味成分吸着体1Aと同様の手順で香味成分吸着体2Aを作製した。
 具体的には、以下の手順で香味成分吸着体2Aを作製した。
 培養工程(S2)で得られた酵母含有培養液を、2N水酸化ナトリウム水溶液を用いてpHが10.5になるように調整した。pH10.5の酵母含有培養液を、ヒータ付き容器において130℃で1時間加熱した。これにより「香味成分を含むガス」を発生させた。
 たばこ材料に対して10質量%の量の活性炭(粉末)(Fujifilm Wako Pure Chemical Corporation,製品コード:037-02115)をガラスカラムに充填し、活性炭粒子を充填したカラムを準備した。このカラムに、加熱工程(S3)で発生したガスを通過させた。その後、活性炭粒子を回収して、「香味成分吸着体2A」を得た。
 2-2.ニコチン回収率の取得方法
 カラムを通過したガス(すなわち、カラム溶出ガス)を回収し、カラム溶出ガス中に含まれるニコチンの量(A)をGC-FID(Gas Chromatography-Flame Ionization Detector)を用いて測定した。また、加熱工程(S3)前の酵母含有培養液に含まれるニコチンの量(A)を同様に測定した。更に、酵母含有培養液を加熱工程(S3)で加熱した後に残った残存物に含まれるニコチンの量(A)を同様に測定した。
 以下の式1により、活性炭粒子に吸着されたニコチンの量(A)を算出した。また、以下の式2により、ニコチン回収率を算出した。
 式1:活性炭粒子に吸着されたニコチンの量(A)=A-A-A
 式2:ニコチン回収率[%]=(A/A)×100。
 2-3.ニコチン回収率の結果
 ニコチン回収率の結果を図11に示す。図11において、香味成分吸着体1Aのニコチン回収率を「例1」として示し、香味成分吸着体2Aのニコチン回収率を「例2」として示す。
 酵母含有培養液を、培養工程(S2)と加熱工程(S3)の間にpH10.5に調整すると、ニコチン回収率を大幅に上昇させることができた。
 [例3]
 例1および例2では、気相吸着により香味成分の回収を行ったが、例3では、液相吸着により香味成分の回収を行った。
 3-1.香味成型体の作製方法
 (1)香味成型体3A
 気相吸着工程(S4)を、以下のとおり液相吸着工程に変更したこと以外は、例1の香味成分吸着体1Aと同様の手順で香味成分吸着体3Aを作製した。その後、香味成分吸着体3Aを成型して、香味成型体3Aを作製した。
 具体的には、以下の手順で香味成型体3Aを作製した。
 たばこ材料に対して10質量%の量の活性炭(粉末)(Fujifilm Wako Pure Chemical Corporation,製品コード:037-02115)を超純水に懸濁し、活性炭粒子の懸濁液を調製した。この懸濁液を、氷水を用いて冷却した。
 加熱工程(S3)で発生したガスを、氷冷している懸濁液にバブリングした(図3参照)。その後、懸濁液から活性炭粒子を回収して「香味成分吸着体3A」を得た。
 加熱工程(S3)で酵母含有培養液を加熱した後に残った残存物を、再度水に溶解した。具体的には、加熱前の酵母含有培養液100mLに対して30mLの割合の水を使用して、残存物を水に溶解した。これにより、「加熱後の酵母含有培養液」を得た。
 香味成分吸着体3Aに、抽出工程(S1)で得たたばこ残渣と、加熱後の酵母含有培養液と、グリセロールと、グアーガムとを加え混錬し、シート状に成型した。シート状の成型体を70℃の熱風オーブンで15分乾燥させ、その後、22℃60%RHの条件下で48時間調和した。これにより「香味成型体3A」を得た。
 香味成型体3Aの組成を以下に示す。組成は、乾燥質量ベースで表す。 
 香味成分吸着体3A           7.6[質量%]
 たばこ残渣+加熱後の酵母含有培養液  68.4[質量%]
 グリセロール             15.0[質量%]
 グアーガム               9.0[質量%]。
 (2)香味成型体3B(比較例)
 例1の抽出工程(S1)で使用したたばこ材料(すなわち、黄色種の葉たばこの粉砕物)に、グリセロールとグアーガムとを加え混錬し、シート状に成型した。シート状の成型体を70℃の熱風オーブンで15分乾燥させ、その後、22℃60%RHの条件下で48時間調和した。これにより「香味成型体3B」を得た。
 香味成型体3Bの組成を以下に示す。組成は、乾燥質量ベースで表す。
 たばこ材料      76.0[質量%]
 グリセロール     15.0[質量%]
 グアーガム       9.0[質量%]。
 (3)香味成型体1B(比較例)
 例1で記載したとおり香味成型体1Bを作製した。
 3-2.香味成分の分析方法
 香味成型体3Aを裁刻し、得られた裁刻物を香味成分の分析に用いた。香味成型体3Aの裁刻物を150℃、200℃、250℃の各温度で加熱し、裁刻物から発生するたばこ発酵液特有の香味成分を分析した。
 同様に、香味成型体3Bを裁刻し、得られた裁刻物を香味成分の分析に用いた。香味成型体3Bの裁刻物を150℃、200℃、250℃の各温度で加熱し、裁刻物から発生するたばこ発酵液特有の香味成分を分析した。
 同様に、香味成型体1Bを裁刻し、得られた裁刻物を香味成分の分析に用いた。香味成型体1Bの裁刻物を150℃、200℃、250℃の各温度で加熱し、裁刻物から発生するたばこ発酵液特有の香味成分を分析した。
 たばこ発酵液特有の香味成分としては、酢酸エチル(Ethyl Acetate)、酢酸イソアミル(Isoamyl acetate)、酢酸フェネチル(Phenethyl acetate)を分析した。具体的には、3mgの裁刻物をTDU-GCMS(Thermal Desorption Unit-Gas Chromatography Mass Spectrometry)に供し、分析対象成分のピーク面積値と内部標準物質(ISTD)のピーク面積値の比から、分析対象成分の量を算出した。
 3-3.香味成分の分析結果
 香味成型体3Aの香味成分の分析結果を図12に示す。また、香味成型体1Bの香味成分の分析結果を図13に示す。香味成型体3Bの香味成分の分析結果は、分析対象成分のピークが検出されなかったため図示しない。
 香味成型体3Aを150℃、200℃、250℃の各温度で加熱すると、全ての加熱温度でたばこ発酵液特有の香味成分が検出された。加熱温度が高くなると、たばこ発酵液特有の香味成分の量が増加する傾向がみられた(図12参照)。
 一方、香味成型体3Bを150℃、200℃、250℃の各温度で加熱した場合、いずれの加熱温度においても、たばこ発酵液特有の香味成分は検出されなかった。また、香味成型体1Bを150℃、200℃、250℃の各温度で加熱した場合、全ての加熱温度において、酢酸フェネチルのみがごく少ない量で検出された(図13参照)。
 これらの結果は、本発明の香味成型体が、加熱型香味吸引器において増強した香味をユーザに提供できることを示す。
 2…香味成分吸着システム、2X…加熱装置、2Y…気相吸着装置、2Z…吸着補助装置、2A…ヒータ付き容器、2B…酵母含有培養液、2C…カラム容器、2D…吸着材、2E…容器、2F…冷却液、2G…ポンプ、2H…ガス流路、2I…ガス流路、2J…ガス流路、
 3…液相吸着装置、3A…内側容器、3B…焼結フィルタ、3C…外側容器、3D…吸着材、3E…水、3F…ガラスビーズ、3G…氷水、3H…排出ガス流路、
 1…非燃焼加熱型香味吸引器、10…電源ユニット、20…カートリッジ、11…電源ユニットケース、11a…トップ部、11b…ボトム部、12…電源、13…充電器、14…操作部、15…吸気センサ、16…電圧センサ、17…温度センサ、18…メモリー、21…負荷、22…エアロゾル源、23…リザーバ、24…ウィック、25…エアロゾル流路、26A…吸口、26B…ガス流出口、27…カートリッジケース、41…放電端子、42…空気供給部、45…報知部、50…制御部、
 100…エアロゾル生成装置、101…アウタハウジング、102…スライドカバー、103…スイッチ部、110…インナハウジング、120…電源部、121…電源、130…霧化部、132…断熱部、134…挿入ガイド部材、136…底部材、137…第1保持部、138…第2保持部、140…ヒータ、150…チャンバ、200…香味発生物品、201…喫煙可能物、202…第1の巻紙、203…第2の巻紙、204…筒状部材、205…フィルタ部、206…中空フィルタ部、207…リップリリース剤。
 

Claims (12)

  1.  たばこ材料から前記たばこ材料に含まれる水溶性成分を水性溶媒で抽出して、たばこ抽出液を得ることと、
     酵母を前記たばこ抽出液中で培養して、酵母含有培養液を得ることと、
     前記酵母含有培養液を加熱して、前記酵母含有培養液から香味成分を気化させることと、
     前記香味成分を吸着材に吸着させることと
    を含む、香味成分吸着体の製造方法。
  2.  前記培養と前記加熱との間に、前記酵母含有培養液をpH7以上に調整することを更に含む請求項1に記載の方法。
  3.  前記吸着が、前記香味成分を含むガスを、前記吸着材と接触させることにより行われる請求項1または2に記載の方法。
  4.  前記吸着が、前記香味成分を含むガスを、前記吸着材を含む水に通過させ、その後、前記吸着材を水から回収することにより行われる請求項1または2に記載の方法。
  5.  前記加熱が、前記酵母含有培養液を、80~130℃の温度で加熱することにより行われる請求項1~4の何れか1項に記載の方法。
  6.  前記吸着材が多孔質材料である請求項1~5の何れか1項に記載の方法。
  7.  前記吸着材が粒子の形態にある請求項1~6の何れか1項に記載の方法。
  8.  請求項1~7の何れか1項に記載の方法により得られる香味成分吸着体。
  9.  請求項8に記載の香味成分吸着体と成型材料とを含む香味成型体。
  10.  前記成型材料が、たばこ刻の粉砕物またはたばこ残渣である請求項9に記載の香味成型体。
  11.  請求項1~7の何れか1項に記載の方法により香味成分吸着体を製造することと、
     前記香味成分吸着体を成型材料と混合し、得られた混合物を成型することと
    を含む、香味成型体の製造方法。
  12.  請求項8に記載の香味成分吸着体または請求項9または10に記載の香味成型体を含む香味源と、
     前記香味源を加熱するヒータと
    を備えた非燃焼加熱型香味吸引器。
     
PCT/JP2022/041007 2022-11-02 2022-11-02 香味成分吸着体およびその製造方法、香味成型体およびその製造方法、並びに非燃焼加熱型香味吸引器 WO2024095398A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041007 WO2024095398A1 (ja) 2022-11-02 2022-11-02 香味成分吸着体およびその製造方法、香味成型体およびその製造方法、並びに非燃焼加熱型香味吸引器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041007 WO2024095398A1 (ja) 2022-11-02 2022-11-02 香味成分吸着体およびその製造方法、香味成型体およびその製造方法、並びに非燃焼加熱型香味吸引器

Publications (1)

Publication Number Publication Date
WO2024095398A1 true WO2024095398A1 (ja) 2024-05-10

Family

ID=90929971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041007 WO2024095398A1 (ja) 2022-11-02 2022-11-02 香味成分吸着体およびその製造方法、香味成型体およびその製造方法、並びに非燃焼加熱型香味吸引器

Country Status (1)

Country Link
WO (1) WO2024095398A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895175A (en) * 1986-04-07 1990-01-23 Ltr Industries Method for the preparation of aromatized reconstituted tobacco
WO2018037562A1 (ja) * 2016-08-26 2018-03-01 日本たばこ産業株式会社 非燃焼型香味吸引器
JP2019507592A (ja) * 2016-02-25 2019-03-22 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 揮発分を含むプレベイパー製剤を製造する方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895175A (en) * 1986-04-07 1990-01-23 Ltr Industries Method for the preparation of aromatized reconstituted tobacco
JP2019507592A (ja) * 2016-02-25 2019-03-22 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 揮発分を含むプレベイパー製剤を製造する方法
WO2018037562A1 (ja) * 2016-08-26 2018-03-01 日本たばこ産業株式会社 非燃焼型香味吸引器

Similar Documents

Publication Publication Date Title
US11478016B2 (en) Aerosol generating material and devices including the same
KR102143214B1 (ko) 흡입 가능한 매체를 생성하기 위한 디바이스에 사용하기 위한 조성물
US11623053B2 (en) Component for an aerosol-generating apparatus
US11000064B2 (en) Tobacco product compositions and delivery system
US10681937B2 (en) Fibrous filtration material for electronic smoking article
CN109922674A (zh) 烟草混合物
CN109922673A (zh) 烟草混合物
EP3711494A1 (en) Method for manufacturing fragrance-carrying tobacco filler, fragrance-carrying tobacco filler, and heating type flavor inhaler
WO2020058881A1 (en) Flavorants for smoking articles
WO2024095398A1 (ja) 香味成分吸着体およびその製造方法、香味成型体およびその製造方法、並びに非燃焼加熱型香味吸引器
WO2023175850A1 (ja) 香味成分吸着体およびその製造方法、香味成型体およびその製造方法、非燃焼加熱型香味吸引器、並びに香味発生物品
WO2023157247A1 (ja) たばこ香味液の製造方法、たばこ香味液、再生たばこ材料、および香味吸引器
CN113873906A (zh) 气溶胶生成
WO2023145009A1 (ja) たばこ充填材および非燃焼加熱型香味吸引器
WO2024034013A1 (ja) たばこ成形体およびその製造方法
US20240041093A1 (en) Tobacco-flavored liquid manufacturing method, tobacco-flavored liquid, and flavor inhaler
TW201924544A (zh) 擔持有香料之煙草填充材的製造方法、擔持有香料之煙草填充材及加熱型香味吸嚐器