WO2023187880A1 - ステータ、電動機、圧縮機、冷凍サイクル装置、およびステータの製造方法 - Google Patents

ステータ、電動機、圧縮機、冷凍サイクル装置、およびステータの製造方法 Download PDF

Info

Publication number
WO2023187880A1
WO2023187880A1 PCT/JP2022/014913 JP2022014913W WO2023187880A1 WO 2023187880 A1 WO2023187880 A1 WO 2023187880A1 JP 2022014913 W JP2022014913 W JP 2022014913W WO 2023187880 A1 WO2023187880 A1 WO 2023187880A1
Authority
WO
WIPO (PCT)
Prior art keywords
notch
core
stator
slots
shortest distance
Prior art date
Application number
PCT/JP2022/014913
Other languages
English (en)
French (fr)
Inventor
智希 増子
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2024510574A priority Critical patent/JPWO2023187880A1/ja
Priority to PCT/JP2022/014913 priority patent/WO2023187880A1/ja
Publication of WO2023187880A1 publication Critical patent/WO2023187880A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • the present disclosure relates to a stator, an electric motor, a compressor, a refrigeration cycle device, and a method for manufacturing a stator.
  • the stator of the electric motor has a stator core made of laminated core sheets.
  • the core sheet is formed by punching out a magnetic steel sheet.
  • Patent Document 1 discloses a stator core in which five notches are formed on the outer periphery of the stator core in order to reduce the material cost of the core sheet.
  • Patent No. 4717089 (see Figures 6-7)
  • the outer periphery of the stator core is fixed to the shell of the compressor. Therefore, depending on the arrangement of the notch, magnetic flux may leak from the stator core to the shell, which may reduce motor efficiency.
  • the present disclosure aims to reduce material costs and suppress a decrease in motor efficiency.
  • the stator of the present disclosure is a stator core having an outer periphery extending in the circumferential direction centered on a central axis and a plurality of slots arranged in the circumferential direction, the outer periphery being fixed inside a cylindrical shell. It has a stator core. A first notch, two second notches, and two third notches are formed on the outer periphery of the stator core. The two second notches are formed on both sides of the first notch in the circumferential direction, and the center of the first notch and the center of each second notch in the circumferential direction are at the center. Makes a 90 degree angle to the axis.
  • the two third notches are formed on both sides of a straight line passing through the central axis and the center of the first notch.
  • a first contact portion that contacts the shell is formed between the two third notches.
  • the shortest distance from the first contact part to the slot closest to the first contact part among the plurality of slots is set as D1, and from each third notch part to the third notch part among the plurality of slots. If the shortest distance to the nearest slot is D2, 1.00 ⁇ D1/D2 ⁇ 1.60 holds true.
  • the first notch, the second notch, and the third notch are formed on the outer periphery of the stator core, material waste is avoided in the punching process of the core sheet that constitutes the stator core. and material costs can be reduced. Moreover, since the shortest distances D1 and D2 satisfy 1.00 ⁇ D1/D2 ⁇ 1.60, magnetic flux leakage to the shell can be reduced and iron loss can be reduced. That is, it is possible to reduce material costs and suppress a decrease in motor efficiency.
  • FIG. 1 is a cross-sectional view showing an electric motor of Embodiment 1.
  • FIG. 1 is a cross-sectional view showing a rotor of Embodiment 1.
  • FIG. 3 is a diagram for explaining the arrangement of notches in the stator core of the first embodiment. 3 is a flowchart showing a method for manufacturing the electric motor of Embodiment 1.
  • FIG. FIG. 2 is a plan view showing an electromagnetic steel sheet from which the core sheet of Embodiment 1 is punched.
  • FIG. 3 is a cross-sectional view showing an electric motor of a comparative example. It is a top view which shows the electromagnetic steel plate from which the core sheet of a comparative example is punched. It is a graph showing the relationship between D1/D2 and iron loss.
  • FIGS 9A and 9B are diagrams showing analysis results of magnetic flux distribution in the stator core corresponding to points A and B in FIG. 8.
  • FIG. It is a graph showing the relationship between D4/D3, iron loss, and the amount of steel plate used.
  • 11 are diagrams (A), (B), and (C) showing analysis results of magnetic flux distribution in the stator core corresponding to points A, B, and C in FIG. 10.
  • FIG. It is a graph showing the relationship between D4/D3, iron loss, and the amount of steel plate used.
  • 13 are diagrams (A), (B), and (C) showing analysis results of magnetic flux distribution in the stator core corresponding to points A, B, and C in FIG. 12.
  • FIG. It is a graph showing the relationship between D4/D3, iron loss, and the amount of steel plate used.
  • FIGS. 14A, 14B, and 14C are diagrams illustrating analysis results of magnetic flux distribution within the stator core corresponding to points A, B, and C in FIG. 14.
  • FIG. FIG. 3 is a diagram showing a compressor according to a second embodiment. It is a figure which shows the refrigeration cycle apparatus of Embodiment 3.
  • FIG. 1 is a sectional view showing the electric motor 3 of the first embodiment.
  • the electric motor 3 of the first embodiment is, for example, incorporated into a compressor 500 (FIG. 16).
  • the electric motor 3 has a rotatable rotor 5 and an annular stator 1 surrounding the rotor 5. An air gap is provided between the stator 1 and the rotor 5.
  • FIG. 1 is a cross section perpendicular to the axial direction.
  • FIG. 2 is a sectional view showing the rotor 5.
  • the rotor 5 has a rotor core 50 and a permanent magnet 55 embedded in the rotor core 50.
  • the rotor core 50 has a cylindrical shape centered on the central axis Ax.
  • the rotor core 50 is made by laminating a plurality of core sheets in the axial direction and fixing them integrally by caulking, rivets, or the like.
  • the core sheet is, for example, an electromagnetic steel plate.
  • the thickness of the core sheet is, for example, 0.1 to 1.0 mm.
  • a center hole 53 is formed at the radial center of the rotor core 50.
  • a shaft 60 is fixed to the center hole 53 by press fitting.
  • the central axis of the shaft 60 is the aforementioned central axis Ax.
  • the rotor core 50 has a plurality of magnet insertion holes 51 along its outer periphery.
  • six magnet insertion holes 51 are arranged at equal intervals in the circumferential direction.
  • One permanent magnet 55 is arranged in each magnet insertion hole 51.
  • One permanent magnet 55 constitutes one magnetic pole. Since the number of permanent magnets 55 is six, the number of poles of the rotor 5 is six. However, the number of poles of the rotor 5 is not limited to six, but may be two or more. Alternatively, two or more permanent magnets 55 may be arranged in one magnet insertion hole 51, and one magnetic pole may be configured by the two or more permanent magnets 55.
  • each magnet insertion hole 51 is the polar center C.
  • the magnet insertion hole 51 extends here in a direction perpendicular to a straight line passing through the polar center C and the central axis Ax (i.e., the polar center line), but extends in a V-shape convex inward in the radial direction. You may do so.
  • the space between adjacent magnet insertion holes 51 is a pole-to-pole portion M.
  • the permanent magnet 55 has a flat plate shape, and has a width in the circumferential direction and a thickness in the radial direction.
  • the permanent magnet 55 is a rare earth magnet, more specifically a neodymium rare earth magnet containing neodymium (Nd), iron (Fe), and boron (B).
  • the permanent magnet 55 is magnetized in its thickness direction. Permanent magnets 55 adjacent to each other in the circumferential direction have magnetization directions opposite to each other.
  • Flux barriers 52 are formed at both circumferential ends of the magnet insertion hole 51, respectively.
  • the flux barrier 52 is a gap that extends radially from the circumferential end of the magnet insertion hole 51 toward the outer periphery of the rotor core 50 .
  • the flux barrier 52 functions to reduce leakage magnetic flux between adjacent magnetic poles.
  • a through hole may be formed radially inward of the magnet insertion hole 51 of the rotor core 50.
  • the through hole is used as a passage for the refrigerant of the compressor or as a hole for inserting a rivet or the like.
  • the number and arrangement of through holes are arbitrary.
  • the stator 1 includes an annular stator core 10 centered around a central axis Ax, and a coil 20 wound around the stator core 10.
  • the stator core 10 is made by laminating a plurality of core sheets in the axial direction and fixing them together by caulking or the like.
  • the core sheet is, for example, an electromagnetic steel plate.
  • the thickness of the core sheet is, for example, 0.1 to 1.0 mm.
  • the stator core 10 has an annular core back 11 and a plurality of teeth 12 extending radially inward from the core back 11.
  • the outer circumference of the core back 11 fits into the inner circumferential surface of the cylindrical shell 40.
  • Shell 40 is part of a closed container 507 of compressor 500 (FIG. 16).
  • the teeth 12 are formed at equal intervals in the circumferential direction.
  • the teeth 12 have a tooth tip portion 12a facing the rotor 5 on the inside in the radial direction.
  • the number of teeth 12 is 18 here, but it may be 2 or more.
  • a slot 13 is formed between adjacent teeth 12.
  • the slot 13 has a slot opening 13a adjacent to the tooth tip 12a of the tooth 12, and extends radially outward from the slot opening 13a.
  • the number of slots 13 is the same as the number of teeth 12, which is 18 here.
  • a coil 20 is accommodated in the slot 13 .
  • the coil 20 is wound around the teeth 12 via an insulating part (not shown), and is housed in the slot 13.
  • the coil 20 may be wound by distributed winding or concentrated winding.
  • the coil 20 is made of copper wire or aluminum wire.
  • the insulating section provided between the coil 20 and the teeth 12 is made of resin such as PBT (polybutylene terephthalate) or PET (polyethylene terephthalate). Alternatively, an insulating film may be used.
  • notches are formed in the circumferential direction on the outer periphery of the core back 11. More specifically, one notch 21, two notches 22, and two notches 23 are formed on the outer periphery of the core back 11.
  • the notches 21, 22, and 23 all extend linearly in a plane perpendicular to the central axis Ax. In other words, the notches 21, 22, and 23 are all flat surfaces parallel to the central axis Ax.
  • FIG. 3 is a diagram for explaining the arrangement of the notches 21, 22, and 23 in the stator core 10.
  • the notch portion 21 is formed at one location on the outer periphery of the core back 11 (here, on the lower side in FIG. 3).
  • the cutout portions 22 are formed on both sides of the cutout portion 21 in the circumferential direction.
  • the circumferential center 21a of the notch 21 and the circumferential center 22a of the notch 22 form an angle of 90 degrees with respect to the central axis Ax.
  • the straight line L1 passing through the center 21a of the notch 21 and the central axis Ax is orthogonal to the straight line L2 passing through the center 22a of the notch 22 and the central axis Ax.
  • the notch 23 is formed on the opposite side of the notch 21 with the center axis Ax in between. Further, the notch portions 23 are formed on both sides of a straight line L1 passing through the center 21a of the notch portion 21 and the central axis Ax.
  • the circumferential center 22a of the notch 22 and the circumferential center 23a of the notch 23 form an angle of 60 degrees with respect to the central axis Ax.
  • the angle is not limited to 60 degrees, and may be less than 90 degrees.
  • the notch 21 is also referred to as a "first notch”
  • the notch 22 is also referred to as a “second notch”
  • the notch 23 is also referred to as a "third notch.”
  • a contact portion 15 is formed between the notch portion 21 and the notch portion 22 on the outer periphery of the core back 11 .
  • a contact portion 16 is formed between the notch portion 22 and the notch portion 23.
  • a contact portion 17 is formed between the two notches 23 .
  • the contact portions 15, 16, and 17 are contact surfaces that come into contact with the inner peripheral surface of the shell 40.
  • the contact portions 15, 16, and 17 all extend in an arc shape in a plane perpendicular to the central axis Ax. In other words, the contact portions 15, 16, and 17 are all part of a cylindrical surface centered on the central axis Ax.
  • One contact portion 15, 16 is formed on each side of the straight line L1.
  • One contact portion 17 is formed on the straight line L1.
  • the contact portion 17 is also referred to as a “first contact portion”.
  • the contact portion 16 is also referred to as a “second contact portion”, and the contact portion 15 is also referred to as a “third contact portion”.
  • the shortest distance from the contact part 17 to the slot 13 closest to this contact part 17 is defined as D1. Note that the shortest distance from the contact portion 15 to the slot 13 closest to the contact portion 15 is equal to the above-mentioned D1. Further, the shortest distance from the contact portion 16 to the slot 13 closest to the contact portion 16 is also equal to the above-mentioned D1.
  • the shortest distance from the notch 23 to the slot 13 closest to the notch 23 is defined as D2.
  • the shortest distance from the notch 22 to the slot 13 closest to the notch 22 is defined as D3.
  • the shortest distance from the notch 21 to the slot 13 closest to the notch 21 is defined as D4.
  • the contact portions 15, 16, and 17 form an arc of a circle centered on the central axis Ax, whereas the cutout portions 21, 22, and 23 correspond to the chords of the circle. Therefore, the shortest distances D2, D3, and D4 are all shorter than the shortest distance D1.
  • the shortest distance D1 and the shortest distance D2 satisfy 1.00 ⁇ D1/D2 ⁇ 1.60. The reason will be explained later.
  • FIG. 4 is a flowchart showing a method for manufacturing the electric motor 3.
  • a core sheet 101 for the stator core 10 is punched out of an electromagnetic steel sheet using a press machine (step S100).
  • the shape of the core sheet 101 is similar to the shape of the stator core 10 described with reference to FIGS. 1 and 3.
  • FIG. 5 is a diagram showing an electromagnetic steel sheet 100 from which a core sheet 101 is punched.
  • the electromagnetic steel sheet 100 is a strip-shaped steel sheet that is long in one direction, and has a width W1 in a direction perpendicular to the longitudinal direction.
  • the core sheet 101 is punched out from the electromagnetic steel sheet 100 in 2N rows (N is an integer).
  • N is an integer.
  • the core sheets 101 belonging to the same row are punched out so that the notches 22 face each other.
  • the distance between the centers of core sheets 101 belonging to the same row is referred to as pitch P1.
  • the core sheets 101 in the first row and the core sheets 101 in the second row are punched out with their positions shifted by half of the pitch P1 (ie, P1/2) in the longitudinal direction of the electromagnetic steel sheet 100.
  • the core sheet 101 in the first row and the core sheet 101 in the second row are in a positional relationship that is reversed by 180 degrees.
  • the notch portion 23 of the first row core sheet 101 and the notch portion 23 of the second row core sheet 101 are in a positional relationship facing each other.
  • the notch portion 21 of each core sheet 101 faces the width direction end portion 100E of the electromagnetic steel sheet 100.
  • the notch 23 of the first row core sheet 101 and the notch 23 of the second row core sheet 101 face each other, and since these notches 23 are linear, the first row The center of the second row core sheet 101 and the center of the second row core sheet 101 can be made closer to each other in the width direction when punching is performed. Therefore, the width W1 of the electromagnetic steel sheet 100 can be narrowed.
  • the core sheet 101 is punched out in two rows from the electromagnetic steel sheet 100, but when punching out four or more rows, that is, when N is 2 or more, the core sheet 101 is punched out in two rows as shown in FIG.
  • a core sheet 101 is punched out into a pattern in which N sets are arranged in the width direction.
  • the core sheet 101 for the stator core 10 is punched out from the electromagnetic steel sheet 100, but the core sheet for the rotor core 50 may be punched out from the inner area of the core sheet 101. In this way, material costs can be further reduced.
  • Step S101 in FIG. 4 After punching out the core sheet 101 from the electromagnetic steel sheet 100 in this manner, the core sheets 101 are laminated in the axial direction and fixed by caulking or the like to form the stator core 10 (step S101 in FIG. 4). After that, an insulating part (not shown) is formed on the stator core 10 (step S102), and the coil 20 is wound around it (step S103). Thereby, the stator 1 is completed. Steps S100 to S103 correspond to the method for manufacturing the stator 1.
  • the rotor 5 is manufactured in parallel with steps S100 to S103.
  • a core sheet for the rotor core 50 is punched out of an electromagnetic steel sheet (step S200). Note that this step can be omitted if the core sheet for the rotor core 50 is punched out from the electromagnetic steel sheet 100 shown in FIG. 5 together with the core sheet 101 for the stator core 10.
  • the core sheets are stacked in the axial direction and fixed by caulking or the like to form the rotor core 50 (step S201).
  • the permanent magnet 55 is attached to the magnet insertion hole 51 of the rotor core 50 (step S202).
  • a balance weight may be attached if necessary. Thereby, the rotor 5 is completed.
  • the rotor 5 assembled in this way is assembled inside the stator 1 (step S104). As a result, the electric motor 3 is completed.
  • the electric motor 3 is fixed inside the shell 40 by shrink fitting or the like. Specifically, the electric motor 3 is inserted inside the shell 40 whose inner diameter has been expanded by heating, and then cooled. Thereby, the contact portions 15 , 16 , 17 on the outer periphery of the stator core 10 are fixed to the inside of the shell 40 .
  • FIG. 6 is a diagram showing an electric motor 3C of a comparative example.
  • the electric motor 3C of the comparative example has four notches 25 on the outer periphery of the stator core 10.
  • the notches 25 are formed at equal intervals in the circumferential direction.
  • the circumferential centers 25a of adjacent notches 25 form an angle of 90 degrees with respect to the central axis Ax.
  • An arcuate contact portion 18 is formed between the notches 25 adjacent in the circumferential direction. That is, four contact portions 18 are formed at equal intervals in the circumferential direction.
  • the electric motor 3C of the comparative example is configured similarly to the electric motor 3 of the first embodiment.
  • FIG. 7 is a plan view showing an electromagnetic steel sheet 110 from which a core sheet 102 constituting a stator core 10 of a comparative example is punched. As shown in FIG. 7, the core sheet 102 is punched out from an electromagnetic steel sheet 110 in two rows.
  • the core sheets 102 belonging to the same row are punched out so that the notches 25 face each other.
  • the distance between the centers of core sheets 102 belonging to the same row is referred to as pitch P2.
  • the core sheets 102 in the first row and the core sheets 102 in the second row are punched out with their positions shifted by half of the pitch P2 (ie, P2/2) in the longitudinal direction of the electromagnetic steel sheet 110.
  • the contact portion 18 of the first row core sheet 102 and the contact portion 18 of the second row core sheet 102 face each other, and these contact portions 18 have an arc shape. Therefore, it is difficult to reduce the distance in the width direction between the center of the core sheet 102 in the first row and the center of the core sheet 102 in the second row.
  • the core sheets 101 face each other, it is possible to shorten the distance in the width direction between the center of the core sheet 101 in the first row and the center of the core sheet 101 in the second row. As a result, the width W1 of the electromagnetic steel sheet 100 can be narrowed, and material costs can be reduced.
  • the distances D2, D3, and D4 from the notches 23, 22, and 21 to the slot 13 are shorter than the shortest distance D1 from the contact portion 17 to the slot 13. If the distances D2, D3, and D4 are too short, the core back 11 will have a narrow portion in the radial direction, causing concentration of magnetic flux. When magnetic flux concentration occurs in the core back 11, magnetic flux leaks to the shell 40, which may increase iron loss.
  • the ratio D1/D2 between the shortest distance D1 and the shortest distance D2 was changed, and changes in iron loss in the shell 40 were investigated.
  • FIG. 8 is a graph showing changes in iron loss when the ratio D1/D2 between the shortest distance D1 and the shortest distance D2 is changed.
  • the horizontal axis represents D1/D2, and the vertical axis represents iron loss in the shell 40.
  • the outer diameter of the stator core 10 was set to 159.5 mm, the shortest distance D1 was set to 14.95, and the shortest distance D2 was changed from 6.45 mm to 14.95 mm.
  • the shortest distances D3 and D4 were both the same as the shortest distance D2.
  • the ratio D1/D2 between the shortest distance D1 and the shortest distance D2 is within the range of 1.00 ⁇ D1/D2 ⁇ 1.60. It turns out that is desirable.
  • FIG. 10 is a graph showing changes in iron loss when the ratio D4/D3 between the shortest distance D4 and the shortest distance D3 is changed when D2>D4.
  • the horizontal axis shows D4/D3, the left vertical axis shows the iron loss in the shell 40, and the right vertical axis shows the amount of steel plate used.
  • the amount of steel sheet used represents the rate of change ((W1-W2)/W2) in the width W1 (FIG. 5) of the electromagnetic steel sheet with respect to the width W2 (FIG. 7) of the electromagnetic steel sheet of the comparative example.
  • the outer diameter of the stator core 10 is 159.5 mm
  • the shortest distance D1 is 14.95 mm
  • the shortest distance D2 is 8.45 mm
  • the shortest distance D4 is 7.45 mm
  • the shortest distance D3 is 6.45 mm, 7.45 mm
  • the lengths are changed to 8.45mm, 9.45mm, and 10.45mm.
  • the ratio D2/D4 between the shortest distance D2 and the shortest distance D4 is 1.13.
  • the amount of steel plate used increases once D4/D3 increases from 0.617 to 0.700, and then decreases when D4/D3 exceeds 0.700. Over the entire range of D4/D3, the amount of steel plate used was smaller than in the comparative example, and the yield was improved.
  • the horizontal axis shows D4/D3
  • the left vertical axis shows the iron loss in the shell 40
  • the right vertical axis shows the amount of steel plate used.
  • the amount of steel plate used is as described with reference to FIG. 10.
  • the outer diameter of the stator core 10 is 159.5 mm
  • the shortest distance D1 is 14.95
  • the shortest distance D2 is 8.45
  • the shortest distance D4 is 8.45
  • the shortest distance D3 is 6.45 mm, 7.45 mm
  • the lengths are changed to 8.45mm, 9.45mm, and 10.45mm.
  • the amount of steel plate used decreases as D4/D3 increases. Over the entire range of D4/D3, the amount of steel plate used was smaller than in the comparative example, and the yield was improved.
  • FIG. 14 is a graph showing changes in iron loss when the ratio D4/D3 between the shortest distance D4 and the shortest distance D3 is changed when D2 ⁇ D4.
  • the horizontal axis shows D4/D3
  • the left vertical axis shows the iron loss in the shell 40
  • the right vertical axis shows the amount of steel plate used.
  • the amount of steel plate used is as described with reference to FIG. 10.
  • the outer diameter of the stator core 10 is 159.5 mm
  • the shortest distance D1 is 14.95
  • the shortest distance D2 is 8.45
  • the shortest distance D4 is 10.45
  • the shortest distance D3 is 6.45 mm, 7.45 mm
  • the lengths are changed to 8.45mm, 9.45mm, and 10.45mm.
  • the amount of steel plate used decreases as D4/D3 increases. Over the entire range of D4/D3, the amount of steel plate used was smaller than in the comparative example, and the yield was improved.
  • the stator 1 of the first embodiment has a notch 21 as a first notch and two notches 22 as a second notch on the outer periphery of the stator core 10. , and two notches 23 as third notches.
  • the cutout portions 22 are formed on both sides of the cutout portion 21 in the circumferential direction, and the centers 21a and 22a of the cutout portions 21 and 22 form an angle of 90 degrees with respect to the central axis Ax.
  • the notch portions 23 are formed on both sides of a straight line L1 passing through the center axis Ax and the center 21a of the notch portion 21, and a contact portion 17 as a first contact portion is formed between these two notch portions 23. has been done. If the shortest distance from the contact portion 17 to the slot 13 is D1, and the shortest distance from the cutout portion 23 to the slot 13 is D2, 1.00 ⁇ D1/D2 ⁇ 1.60 holds true.
  • the core sheets 101 constituting the stator core 10 can be punched out from the electromagnetic steel sheet 100 in 2N rows with a narrow width W1, and material costs can be reduced. Moreover, since the shortest distances D1 and D2 satisfy 1.00 ⁇ D1/D2 ⁇ 1.60, magnetic flux leakage to the shell can be reduced and iron loss can be reduced. That is, material costs can be reduced while suppressing a decrease in motor efficiency.
  • the slot 13 is located radially inside the center 17a of the contact portion 17 (that is, on the central axis Ax side), the shortest distance from the notch portions 23 on both sides of the contact portion 17 to the slot 13 can be increased. The effect of reducing magnetic flux leakage to the shell 40 can be enhanced.
  • the teeth 12 are located radially inside the circumferential center 22a of the notch 22, the shortest distance from the notch 22 to the slot 13 can be increased, reducing magnetic flux leakage to the shell 40. The effect can be increased.
  • the teeth 12 are located radially inside the circumferential center 23a of the notch 23, the shortest distance from the notch 23 to the slot 13 can be increased, reducing magnetic flux leakage to the shell 40. The effect can be increased.
  • the method for manufacturing the stator 1 of the first embodiment includes a step of punching out a core sheet 101 from an electromagnetic steel sheet 100, a step of laminating the core sheets 101 to form the stator core 10, and a step of winding the coil 20 around the stator core 10. has.
  • the core sheet 101 is punched out from the electromagnetic steel sheet 100 in 2N rows (N is an integer) at a constant pitch P in each row, and the core sheet 101 in the first row and the core in the second row are punched out. Punching is performed so that the sheet 102 is shifted by half the pitch P. Therefore, the core sheet 101 can be punched out from the electromagnetic steel sheet 100 having a narrow width W1, and the material cost can be reduced.
  • punching is performed so that the notch part 23 of the first row core sheet 101 and the notch part 23 of the second row core sheet 101 face each other.
  • the distance in the width direction between the center of the core sheet 101 in the row and the center of the core sheet 101 in the second row can be shortened, and the width W1 of the electromagnetic steel sheet 100 can be narrowed. Thereby, the effect of reducing material costs can be enhanced.
  • a compressor 500 according to the second embodiment includes the electric motor 3 according to the first embodiment.
  • FIG. 16 is a sectional view showing the compressor 500.
  • the compressor 500 is a scroll compressor here, but is not limited to this.
  • the compressor 500 includes an airtight container 507, a compression mechanism 505 disposed in the airtight container 507, an electric motor 3 that drives the compression mechanism 505, a shaft 60 that connects the compression mechanism 505 and the electric motor 3, and a shaft 60.
  • a subframe 508 that supports the lower end of the.
  • the compression mechanism 505 includes a fixed scroll 501 having a spiral portion, an oscillating scroll 502 having a spiral portion that forms a compression chamber between the spiral portion of the fixed scroll 501, and a compliance frame 503 that holds the upper end of the shaft 60. and a guide frame 504 that is fixed to the closed container 507 and holds the compliance frame 503.
  • a suction pipe 510 that penetrates the closed container 507 is press-fitted into the fixed scroll 501. Further, the closed container 507 is provided with a discharge pipe 511 that discharges the high-pressure refrigerant gas discharged from the fixed scroll 501 to the outside. This discharge pipe 511 communicates with an opening (not shown) provided between the compression mechanism 505 of the closed container 507 and the electric motor 3.
  • the electric motor 3 is fixed to the closed container 507 by fitting the stator 1 into the closed container 507.
  • the configuration of the electric motor 3 is as described above.
  • a glass terminal 509 for supplying power to the electric motor 3 is fixed to the closed container 507 by welding.
  • the compressor 500 includes the electric motor 3 of Embodiment 1, which is low cost and has high motor efficiency, the manufacturing cost of the compressor 500 can be reduced and the operating efficiency can be increased.
  • Refrigeration cycle apparatus 400 according to the third embodiment includes compressor 500 according to the second embodiment.
  • FIG. 17 is a diagram showing a refrigeration cycle device 400.
  • the refrigeration cycle device 400 is, for example, an air conditioner, but is not limited thereto.
  • the refrigeration cycle device 400 shown in FIG. 17 includes a compressor 401, a condenser 402 that condenses refrigerant, a pressure reducing device 403 that reduces the pressure of the refrigerant, and an evaporator 404 that evaporates the refrigerant.
  • Compressor 401, condenser 402, and pressure reducing device 403 are provided in indoor unit 410, and evaporator 404 is provided in outdoor unit 420.
  • the compressor 401, condenser 402, pressure reducing device 403, and evaporator 404 are connected by a refrigerant pipe 407, and constitute a refrigerant circuit.
  • Compressor 401 is composed of compressor 500 shown in FIG. 16.
  • the refrigeration cycle device 400 also includes an outdoor blower 405 facing the condenser 402 and an indoor fan 406 facing the evaporator 404.
  • the operation of the refrigeration cycle device 400 is as follows.
  • the compressor 401 compresses the sucked refrigerant and sends it out as high-temperature, high-pressure refrigerant gas.
  • the condenser 402 exchanges heat between the refrigerant sent out from the compressor 401 and the outdoor air sent by the outdoor blower 405, condenses the refrigerant, and sends it out as a liquid refrigerant.
  • the pressure reducing device 403 expands the liquid refrigerant sent out from the condenser 402 and sends it out as a low-temperature, low-pressure liquid refrigerant.
  • the evaporator 404 exchanges heat between the low-temperature, low-pressure liquid refrigerant sent out from the pressure reducing device 403 and indoor air, evaporates the refrigerant, and sends it out.
  • the air from which heat has been removed by the evaporator 404 is supplied into the room, which is the space to be air-conditioned, by the indoor blower 406.
  • the compressor 401 of the refrigeration cycle device 400 includes the electric motor 3 of the first embodiment, which is low cost and has high motor efficiency, the manufacturing cost of the refrigeration cycle device 400 can be reduced and the operating efficiency can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

ステータは、中心軸を中心とする周方向に延在する外周と、周方向に配列された複数のスロットとを有するステータコアであって、外周が円筒状のシェルの内側に固定されたステータコアを有する。ステータコアの外周には、第1の切欠き部と、2つの第2の切欠き部と、2つの第3の切欠き部とが形成されている。2つの第2の切欠き部は、第1の切欠き部の周方向の両側に形成され、第1の切欠き部の中心と各第2の切欠き部の周方向の中心とは、中心軸に対して90度の角度をなす。2つの第3の切欠き部は、中心軸と第1の切欠き部の中心とを通る直線の両側に形成されている。2つの第3の切欠き部の間に、シェルに接触する第1の接触部が形成されている。第1の接触部から、複数のスロットのうち第1の接触部に最も近いスロットまでの最短距離をD1とし、各第3の切欠き部から、複数のスロットのうち第3の切欠き部に最も近いスロットまでの最短距離をD2とすると、1.00≦D1/D2≦1.60が成立する。

Description

ステータ、電動機、圧縮機、冷凍サイクル装置、およびステータの製造方法
 本開示は、ステータ、電動機、圧縮機、冷凍サイクル装置、およびステータの製造方法に関する。
 電動機のステータは、コアシートを積層したステータコアを有する。コアシートは、電磁鋼板からの打ち抜きによって形成される。特許文献1には、コアシートの材料コストを低減するため、ステータコアの外周に5つの切欠き部を形成したものが開示されている。
特許第4717089号(図6~7参照)
 ここで、圧縮機に用いられる電動機では、ステータコアの外周が圧縮機のシェルに固定される。そのため、切欠き部の配置によってはステータコアからシェルへの磁束漏れが発生し、電動機効率が低下する可能性がある。
 本開示は、材料コストを低減し、且つ電動機効率の低下を抑えることを目的とする。
 本開示のステータは、中心軸を中心とする周方向に延在する外周と、周方向に配列された複数のスロットとを有するステータコアであって、外周が円筒状のシェルの内側に固定されたステータコアを有する。ステータコアの外周には、第1の切欠き部と、2つの第2の切欠き部と、2つの第3の切欠き部とが形成されている。2つの第2の切欠き部は、第1の切欠き部の周方向の両側に形成され、第1の切欠き部の中心と各第2の切欠き部の周方向の中心とは、中心軸に対して90度の角度をなす。2つの第3の切欠き部は、中心軸と第1の切欠き部の中心とを通る直線の両側に形成されている。2つの第3の切欠き部の間に、シェルに接触する第1の接触部が形成されている。第1の接触部から、複数のスロットのうち第1の接触部に最も近いスロットまでの最短距離をD1とし、各第3の切欠き部から、複数のスロットのうち第3の切欠き部に最も近いスロットまでの最短距離をD2とすると、1.00≦D1/D2≦1.60が成立する。
 本開示では、ステータコアの外周に第1の切欠き部、第2の切欠き部、および第3の切欠き部が形成されているため、ステータコアを構成するコアシートの打ち抜き工程で材料の無駄を低減し、材料コストを低減することができる。また、最短距離D1,D2が1.00≦D1/D2≦1.60を満足するため、シェルへの磁束漏れを低減し、鉄損を低減することができる。すなわち、材料コストを低減し、且つ電動機効率の低下を抑えることができる。
実施の形態1の電動機を示す断面図である。 実施の形態1のロータを示す断面図である。 実施の形態1のステータコアにおける切欠き部の配置を説明するための図である。 実施の形態1の電動機の製造方法を示すフローチャートである。 実施の形態1のコアシートが打ち抜かれる電磁鋼板を示す平面図である。 比較例の電動機を示す断面図である。 比較例のコアシートが打ち抜かれる電磁鋼板を示す平面図である。 D1/D2と鉄損との関係を示すグラフである。 図8の点A,Bに対応する、ステータコア内の磁束分布の解析結果を示す図(A),(B)である。 D4/D3と鉄損および鋼板使用量との関係を示すグラフである。 図10の点A,B,Cに対応する、ステータコア内の磁束分布の解析結果を示す図(A),(B),(C)である。 D4/D3と鉄損および鋼板使用量との関係を示すグラフである。 図12の点A,B,Cに対応する、ステータコア内の磁束分布の解析結果を示す図(A),(B),(C)である。 D4/D3と鉄損および鋼板使用量との関係を示すグラフである。 図14の点A,B,Cに対応する、ステータコア内の磁束分布の解析結果を示す図(A),(B),(C)である。 実施の形態2の圧縮機を示す図である。 実施の形態3の冷凍サイクル装置を示す図である。
実施の形態1.
<電動機の構成>
 図1は、実施の形態1の電動機3を示す断面図である。実施の形態1の電動機3は、例えば、圧縮機500(図16)に組み込まれるものである。電動機3は、回転可能なロータ5と、ロータ5を囲む環状のステータ1とを有する。ステータ1とロータ5との間には、エアギャップが設けられている。
 以下では、ロータ5の回転中心である中心軸Axの方向を「軸方向」と称する。中心軸Axを中心とする周方向を「周方向」と称する。中心軸Axを中心とする径方向を「径方向」と称する。なお、図1は、軸方向に直交する断面である。
<ロータの構成>
 図2は、ロータ5を示す断面図である。ロータ5は、ロータコア50と、ロータコア50に埋め込まれた永久磁石55とを有する。ロータコア50は、中心軸Axを中心とする円筒形状を有する。ロータコア50は、複数枚のコアシートを軸方向に積層し、カシメまたはリベット等により一体的に固定したものである。コアシートは、例えば電磁鋼板である。コアシートの板厚は、例えば0.1~1.0mmである。
 ロータコア50の径方向中心には、中心孔53が形成されている。中心孔53には、シャフト60が圧入によって固定されている。シャフト60の中心軸は、上述した中心軸Axである。
 ロータコア50は、その外周に沿って複数の磁石挿入孔51を有する。ここでは、6個の磁石挿入孔51が周方向に等間隔に配置されている。それぞれの磁石挿入孔51には、永久磁石55が1つずつ配置されている。
 1つの永久磁石55は、1磁極を構成する。永久磁石55の数は6個であるため、ロータ5の極数は6である。但し、ロータ5の極数は6に限らず、2以上であればよい。また、1つの磁石挿入孔51に2つ以上の永久磁石55を配置し、当該2つ以上の永久磁石55によって1磁極を構成してもよい。
 各磁石挿入孔51の周方向中心は、極中心Cである。磁石挿入孔51は、ここでは極中心Cと中心軸Axとを通る直線(すなわち極中心線)に直交する方向に延在しているが、径方向内側に凸となるV字状に延在していてもよい。隣り合う磁石挿入孔51の間は、極間部Mである。
 永久磁石55は平板状であり、周方向に幅を有し、径方向に厚さを有する。永久磁石55は希土類磁石であり、より具体的には、ネオジム(Nd)、鉄(Fe)およびボロン(B)を含有するネオジム希土類磁石である。永久磁石55は、その厚さ方向に着磁されている。周方向に隣り合う永久磁石55は、磁化方向が互いに反対方向である。
 磁石挿入孔51の周方向の両端には、フラックスバリア52がそれぞれ形成されている。フラックスバリア52は、磁石挿入孔51の周方向端部からロータコア50の外周に向けて径方向に延在する空隙である。フラックスバリア52は、隣り合う磁極間の漏れ磁束を低減する作用を奏する。
 なお、図示は省略するが、ロータコア50の磁石挿入孔51よりも径方向内側に、貫通穴を形成してもよい。貫通穴は、圧縮機の冷媒の通路、あるいはリベット等の挿通穴として使用される。貫通穴の数および配置は、任意である。
<ステータの構成>
 図1に示すように、ステータ1は、中心軸Axを中心とする環状のステータコア10と、ステータコア10に巻き付けられたコイル20とを有する。ステータコア10は、複数枚のコアシートを軸方向に積層し、カシメ等により一体的に固定したものである。コアシートは、例えば電磁鋼板である。コアシートの板厚は、例えば0.1~1.0mmである。
 ステータコア10は、環状のコアバック11と、コアバック11から径方向内側に延在する複数のティース12とを有する。コアバック11の外周は、円筒状のシェル40の内周面に嵌合している。シェル40は、圧縮機500(図16)の密閉容器507の一部である。
 ティース12は、周方向に等間隔に形成されている。ティース12は、その径方向内側に、ロータ5に対向する歯先部12aを有する。ティース12の数は、ここでは18であるが、2以上であればよい。
 隣り合うティース12の間には、スロット13が形成されている。スロット13は、ティース12の歯先部12aに隣接するスロット開口13aを有し、当該スロット開口13aから径方向外側に延在している。スロット13の数は、ティース12の数と同じであり、ここでは18個である。スロット13には、コイル20が収容される。
 コイル20は、図示しない絶縁部を介してティース12に巻き付けられ、スロット13内に収容される。コイル20の巻き付け方法は、分布巻でもよく、集中巻でもよい。コイル20は、銅線またはアルミニウム線で構成されている。
 コイル20とティース12との間に設けられる絶縁部は、PBT(ポリブチレンテレフタレート)、またはPET(ポリエチレンテレフタレート)等の樹脂で構成される。また、絶縁フィルムを用いてもよい。
 コアバック11の外周には、周方向に5つの切欠き部が形成されている。より具体的には、コアバック11の外周には、1つの切欠き部21と、2つの切欠き部22と、2つの切欠き部23とが形成されている。
 切欠き部21,22,23はいずれも、中心軸Axに直交する面において直線状に延在している。言い換えると、切欠き部21,22,23はいずれも、中心軸Axに平行な平坦面である。
 図3は、ステータコア10における切欠き部21,22,23の配置を説明するための図である。切欠き部21は、コアバック11の外周の1箇所(ここでは図3の下側)に形成されている。
 切欠き部22は、切欠き部21の周方向両側に形成されている。切欠き部21の周方向の中心21aと、切欠き部22の周方向の中心22aとは、中心軸Axに対して90度の角度をなしている。言い換えると、切欠き部21の中心21aと中心軸Axとを通る直線L1と、切欠き部22の中心22aと中心軸Axとを通る直線L2とは、直交する。
 切欠き部23は、中心軸Axを挟んで切欠き部21と反対側に形成されている。また、切欠き部23は、切欠き部21の中心21aと中心軸Axとを通る直線L1を挟んで両側に形成されている。
 なお、図3に示した例では、切欠き部22の周方向の中心22aと、切欠き部23の周方向の中心23aとは、中心軸Axに対して60度の角度をなしている。但し、60度に限らず、90度未満であればよい。
 切欠き部21は「第1の切欠き部」、切欠き部22は「第2の切欠き部」、切欠き部23は「第3の切欠き部」とも称する。
 コアバック11の外周において、切欠き部21と切欠き部22との間には、接触部15が形成されている。切欠き部22と切欠き部23との間には、接触部16が形成されている。2つの切欠き部23の間には、接触部17が形成されている。接触部15,16,17は、シェル40の内周面に接触する接触面である。
 接触部15,16,17はいずれも、中心軸Axに直交する面において円弧状に延在している。言い換えると、接触部15,16,17はいずれも、中心軸Axを中心とする円筒面の一部である。
 接触部15,16は直線L1の両側にそれぞれ1つずつ形成されている。接触部17は、直線L1上に1つ形成されている。接触部17は、「第1の接触部」とも称する。接触部16は「第2の接触部」とも称し、接触部15は「第3の接触部」とも称する。
 接触部17から、この接触部17に最も近いスロット13までの最短距離を、D1とする。なお、接触部15から、この接触部15に最も近いスロット13までの最短距離は、上記のD1に等しい。また、接触部16から、この接触部16に最も近いスロット13までの最短距離も、上記のD1に等しい。
 一方、切欠き部23から、この切欠き部23に最も近いスロット13までの最短距離を、D2とする。切欠き部22から、この切欠き部22に最も近いスロット13までの最短距離を、D3とする。切欠き部21から、この切欠き部21に最も近いスロット13までの最短距離を、D4とする。
 接触部15,16,17は中心軸Axを中心とする円の円弧をなしているのに対し、切欠き部21,22,23は当該円の弦に相当する。そのため、最短距離D2,D3,D4はいずれも、最短距離D1よりも短い。
 最短距離D1および最短距離D2は、1.00≦D1/D2≦1.60を満足する。理由については、後述する。
<製造方法>
 次に、電動機3の製造方法について説明する。図4は、電動機3の製造方法を示すフローチャートである。まず、プレス加工装置により、電磁鋼板からステータコア10用のコアシート101を打ち抜く(ステップS100)。コアシート101の形状は、図1,3を参照して説明したステータコア10の形状と同様である。
 図5は、コアシート101が打ち抜かれる電磁鋼板100を示す図である。図5に示すように、電磁鋼板100は一方向に長い帯状鋼板であり、長手方向に直交する方向に幅W1を有する。
 コアシート101は、電磁鋼板100から2N列(Nは整数)に打ち抜かれる。図5では、電磁鋼板100からコアシート101を2列に打ち抜く場合(すなわちN=1の場合)を示しているが、4列あるいは6列等に打ち抜いてもよい。
 同一列に属するコアシート101は、切欠き部22同士が対向するように打ち抜かれる。同一列に属するコアシート101の中心間距離を、ピッチP1と称する。1列目のコアシート101と2列目のコアシート101とは、電磁鋼板100の長手方向に、上記ピッチP1の半分(すなわちP1/2)だけ位置をずらして打ち抜かれる。
 1列目のコアシート101と2列目のコアシート101とは、180度反転した位置関係にある。言い換えると、1列目のコアシート101の切欠き部23と、2列目のコアシート101の切欠き部23とが対向する位置関係にある。各コアシート101の切欠き部21は、電磁鋼板100の幅方向端部100Eに対向する。
 このように、1列目のコアシート101の切欠き部23と、2列目のコアシート101の切欠き部23とが対向し、これらの切欠き部23が直線状であるため、1列目のコアシート101の中心と2列目のコアシート101の中心とを幅方向に接近させて打ち抜くことができる。そのため、電磁鋼板100の幅W1を狭くすることができる。
 なお、図5に示した例では、電磁鋼板100からコアシート101を2列に打ち抜いているが、4列以上に打ち抜く場合、すなわちNが2以上の場合には、図5に示した2列のコアシート101を幅方向にN組だけ並べたパターンに打ち抜く。
 また、図5に示した例では、電磁鋼板100からステータコア10用のコアシート101を打ち抜いているが、コアシート101の内側のエリアからロータコア50用のコアシートを打ち抜いてもよい。このようにすれば、材料コストをさらに低減することができる。
 このようにして電磁鋼板100からコアシート101を打ち抜いたのち、コアシート101を軸方向に積層してカシメ等により固定し、ステータコア10を形成する(図4のステップS101)。その後、ステータコア10に図示しない絶縁部を形成し(ステップS102)、コイル20を巻き付ける(ステップS103)。これにより、ステータ1が完成する。ステップS100~S103は、ステータ1の製造方法に相当する。
 このステップS100~S103と平行して、ロータ5を製造する。まず、電磁鋼板からロータコア50用のコアシートを打ち抜く(ステップS200)。なお、図5に示した電磁鋼板100から、ステータコア10用のコアシート101と共にロータコア50用のコアシートを打ち抜く場合には、このステップを省略することができる。
 次に、コアシートを軸方向に積層してカシメ等により固定し、ロータコア50を形成する(ステップS201)。その後、ロータコア50の磁石挿入孔51に永久磁石55を取り付ける(ステップS202)。必要に応じてバランスウェイトを取り付けてもよい。これにより、ロータ5が完成する。
 このようにして組み立てたロータ5を、ステータ1の内側に組み込む(ステップS104)。これにより、電動機3が完成する。
 電動機3の完成後、シェル40の内側に電動機3を焼嵌め等により固定する。具体的には、加熱により内径を拡大したシェル40の内側に電動機3を挿入し、その後冷却する。これにより、シェル40の内側に、ステータコア10の外周の接触部15,16,17が固定される。
<比較例>
 次に、実施の形態1の電動機3と対比される比較例の電動機3Cについて説明する。図6は、比較例の電動機3Cを示す図である。比較例の電動機3Cは、ステータコア10の外周に4つの切欠き部25を有する。切欠き部25は、周方向に等間隔に形成されている。隣り合う切欠き部25の周方向の中心25aは、中心軸Axに対して90度の角度をなしている。
 周方向に隣り合う切欠き部25の間には、円弧状の接触部18が形成される。すなわち、4つの接触部18が、周方向に等間隔に形成されている。その他の点では、比較例の電動機3Cは、実施の形態1の電動機3と同様に構成されている。
 図7は、比較例のステータコア10を構成するコアシート102が打ち抜かれる電磁鋼板110を示す平面図である。図7に示すように、コアシート102は、電磁鋼板110から2列に打ち抜かれる。
 同一列に属するコアシート102は、切欠き部25同士が対向するように打ち抜かれる。同一列に属するコアシート102の中心間距離を、ピッチP2と称する。1列目のコアシート102と2列目のコアシート102とは、電磁鋼板110の長手方向に、上記ピッチP2の半分(すなわちP2/2)だけ位置をずらして打ち抜かれる。
 比較例では、1列目のコアシート102の接触部18と、2列目のコアシート102の接触部18とが互いに対向し、これらの接触部18は円弧状である。そのため、1列目のコアシート102の中心と2列目のコアシート102の中心との幅方向の距離を狭めることが難しい。
 これに対し、実施の形態1では、図5に示したように1列目のコアシート101の直線状の切欠き部23と、2列目のコアシート101の直線状の切欠き部23とが対向するため、1列目のコアシート101の中心と2列目のコアシート101の中心との幅方向距離を短くすることができる。その結果、電磁鋼板100の幅W1を狭くし、材料コストを低減することができる。
<D1/D2の最適範囲>
 ここで、上記の通り、切欠き部23,22,21からスロット13までの距離D2,D3,D4は、接触部17からスロット13までの最短距離D1よりも短い。距離D2,D3,D4が短すぎると、コアバック11に径方向幅が狭い箇所が生じ、磁束の集中が生じる。コアバック11で磁束の集中が生じると、シェル40への磁束漏れが生じ、鉄損が増加する可能性がある。
 そこで、ここでは、最短距離D1と最短距離D2との比D1/D2を変化させ、シェル40における鉄損の変化を調べた。最短距離D3,D4は、最短距離D2と同じに設定している(D2=D3=D4)。
 図8は、最短距離D1と最短距離D2との比D1/D2を変化させたときの鉄損の変化を示すグラフである。横軸はD1/D2を示し、縦軸はシェル40における鉄損を示す。鉄損は、D1/D2=1.60のときの鉄損を基準(100%)とした相対値で表している。
 解析では、ステータコア10の外径を159.5mm、最短距離D1を14.95として、最短距離D2を6.45mmから14.95mmまで変化させた。最短距離D3,D4はいずれも、最短距離D2と同じとした。
 図8に示すように、D1/D2が増加すると、これに伴って鉄損も増加する。特に、D1/D2が1.00から1.60までは鉄損の増加が直線に近く、傾きも緩やかであるのに対し、D1/D2が1.60を超えてからの増加率が大きくなっている。D1/D2=1.60となる点Aは、曲率が変化する点に相当する。
 図9(A)は、D1/D2=1.60(図8の点A)の場合のステータコア10における磁束分布の解析結果を示す図である。図9(B)は、D1/D2=1.79(図8の点B)の場合のステータコア10における磁束分布の解析結果を示す図である。
 D1/D2=1.60の場合(図9(A))には、シェル40への磁束漏れは生じないか、生じたとしてもシェル40の有意な鉄損増加を生じないレベルである。一方、D1/D2=1.79の場合(図9(B))、シェル40への磁束漏れは、例えば符号E1で示すように、シェル40の有意な鉄損増加を生じるレベルである。
 これは、D1/D2が大きいほど、切欠き部23を形成した部分でコアバック11の幅が狭くなるため、当該部分で磁束の集中が生じ、磁束の一部がシェル40に流れたことによるものである。
 図8および図9(A),(B)に示した結果から、最短距離D1と最短距離D2との比D1/D2は、1.00≦D1/D2≦1.60の範囲内にあることが望ましいことが分かる。
<D4/D3の最適範囲>
 次に、切欠き部21からスロット13までの最短距離D4と、切欠き部22からスロット13までの最短距離D3との比D4/D3について説明する。上記の図8に示した解析では、切欠き部21,22,23からスロット13までの最短距離D4,D3,D2を等しく設定したが、ここでは、切欠き部21からスロット13までの最短距離D4と、切欠き部23からスロット13までの最短距離D2との大小に応じて、D2>D4の場合と、D2=D4の場合と、D2<D4の場合とに分けて解析を行っている。
 図10は、D2>D4の場合に、最短距離D4と最短距離D3との比D4/D3を変化させたときの鉄損の変化を示すグラフである。横軸はD4/D3を示し、左の縦軸はシェル40における鉄損を示し、右の縦軸は鋼板使用量を示す。鉄損は、D4/D3=1.00のときの鉄損を基準(100%)とした相対値で表す。鋼板使用量は、比較例の電磁鋼板の幅W2(図7)に対し、電磁鋼板の幅W1(図5)の変化の割合((W1-W2)/W2)を表す。
 解析では、ステータコア10の外径を159.5mm、最短距離D1を14.95mm、最短距離D2を8.45mm、最短距離D4を7.45mmとして、最短距離D3を6.45mm、7.45mm、8.45mm、9.45mm、10.45mmと変化させている。最短距離D2と最短距離D4との比D2/D4は、1.13である。
 図10に示すように、D4/D3が増加すると、これに伴って鉄損も増加する。特に、D4/D3が0.882を超えてからの鉄損の増加率が大きい。言い換えると、D4/D3が0.617から0.882までの曲線の曲率よりも、D4/D3が0.882を超えてからの曲線の曲率が大きい。D4/D3=0.882となる点Bは、曲率の変化点に相当する。
 鋼板使用量は、D4/D3が0.617から0.700にかけて一旦増加したのち、D4/D3=0.700を超えると減少する。D4/D3の全範囲に亘って比較例よりも鋼板使用量が少なく、歩留まりは向上している。
 図11(A)は、D4/D3=0.778(図10の点A)の場合のステータコア10における磁束分布の解析結果を示す図である。図11(B)は、D4/D3=0.882(図10の点B)の場合のステータコア10における磁束分布の解析結果を示す図である。図11(C)は、D4/D3=1.000(図10の点C)の場合のステータコア10における磁束分布の解析結果を示す図である。
 D4/D3=0.778の場合(図11(A))およびD4/D3=0.882の場合(図11(B))には、シェル40への磁束漏れは生じないか、生じたとしてもシェル40の有意な鉄損増加を生じないレベルである。一方、D4/D3=0.1000の場合(図11(C))には、シェル40への磁束漏れは、例えば符号E1,E2で示すように、シェル40の有意な鉄損増加を生じるレベルである。
 これは、D2>D4のため、切欠き部22を形成した部分でコアバック11の幅が狭く、またD4/D3が大きくなるほど、切欠き部22を形成した部分でコアバック11の幅が狭くなるため、これらの部分で磁束の集中が生じ、磁束の一部がシェル40に流れたことによるものである。
 図10および図11(A),(B),(C)に示した結果から、D2>D4の場合には、最短距離D4と最短距離D3との比D4/D3は、0.617≦D4/D3≦0.882の範囲内にあることが望ましいことが分かる。
 図12は、D2=D4の場合に、最短距離D4と最短距離D3との比D4/D3を変化させたときの鉄損の変化を示すグラフである。横軸はD4/D3を示し、左の縦軸はシェル40における鉄損を示し、右の縦軸は鋼板使用量を示す。鉄損は、D4/D3=1.000のときの鉄損を基準(100%)とした相対値で表す。鋼板使用量については、図10を参照して説明した通りである。
 解析では、ステータコア10の外径を159.5mm、最短距離D1を14.95、最短距離D2を8.45、最短距離D4を8.45とし、最短距離D3を6.45mm、7.45mm、8.45mm、9.45mm、10.45mmと変化させている。
 図12に示すように、D4/D3が増加すると、これに伴って鉄損も増加する。特に、D4/D3が1.000を超えてからの鉄損の増加率が大きい。言い換えると、D4/D3が0.809から1.000までの曲線の曲率よりも、D4/D3が1.000を超えてからの曲線の曲率が大きい。D4/D3=1.000となる点Bは、曲率が変化する点に相当する。
 鋼板使用量は、D4/D3が増加するほど減少する。D4/D3の全範囲に亘って比較例よりも鋼板使用量が少なく、歩留まりは向上している。
 図13(A)は、D4/D3=0.894(図12の点A)の場合のステータコア10における磁束分布の解析結果を示す図である。図13(B)は、D4/D3=1.000(図12の点B)の場合のステータコア10における磁束分布の解析結果を示す図である。図13(C)は、D4/D3=1.134(図12の点C)の場合のステータコア10における磁束分布の解析結果を示す図である。
 D4/D3=0.894の場合(図13(A))およびD4/D3=1.000の場合(図13(B))には、シェル40への磁束漏れは生じないか、生じたとしてもシェル40の有意な鉄損増加を生じないレベルである。一方、D4/D3=1.134の場合(図13(C))には、シェル40への磁束漏れは、例えば符号E1で示すように、シェル40における有意な鉄損増加を生じるレベルである。
 これは、D4/D3が大きくなるほど、切欠き部22を形成した部分でコアバック11の幅が狭くなるため、この部分で磁束の集中が生じ、磁束の一部がシェル40に流れたことによるものである。
 図12および図13(A),(B),(C)に示した結果から、D2=D4の場合には、最短距離D4と最短距離D3との比D4/D3は、0.809≦D4/D3≦1.000の範囲内にあることが望ましいことが分かる。
 図14は、D2<D4の場合に、最短距離D4と最短距離D3との比D4/D3を変化させた場合の鉄損の変化を示すグラフである。横軸はD4/D3を示し、左の縦軸はシェル40における鉄損を示し、右の縦軸は鋼板使用量を示す。鉄損は、D4/D3=1.237のときの鉄損を基準(100%)とした相対値で表す。鋼板使用量については、図10を参照して説明した通りである。
 解析では、ステータコア10の外径を159.5mm、最短距離D1を14.95、最短距離D2を8.45、最短距離D4を10.45とし、最短距離D3を6.45mm、7.45mm、8.45mm、9.45mm、10.45mmと変化させている。
 図14に示すように、D4/D3が増加すると、これに伴って鉄損も増加する。特に、D4/D3が1.237を超えてからの鉄損の増加率が大きい。言い換えると、D4/D3が0.904から1.237までの曲線の曲率よりも、D4/D3が1.237を超えてからの曲線の曲率が大きい。D4/D3=1.237となる点Bは、曲率が変化する点に相当する。
 鋼板使用量は、D4/D3が増加するほど減少する。D4/D3の全範囲に亘って比較例よりも鋼板使用量が少なく、歩留まりは向上している。
 図15(A)は、D4/D3=1.104(図14の点A)の場合のステータコア10における磁束分布の解析結果を示す図である。図15(B)は、D4/D3=1.237(図14の点B)の場合のステータコア10における磁束分布の解析結果を示す図である。図15(C)は、D4/D3=1.403(図14の点C)の場合のステータコア10における磁束分布の解析結果を示す図である。
 D4/D3=1.104の場合(図15(A))およびD4/D3=1.237の場合(図15(B))には、シェル40への磁束漏れが生じないか、生じたとしてもシェル40の有意な鉄損増加を生じないレベルである。一方、D4/D3=1.403の場合(図15(C))には、シェル40への磁束漏れは、例えば符号E1で示すように、シェル40の有意な鉄損増加を生じるレベルである。
 これは、D4/D3が大きくなるほど、切欠き部22を形成した部分でコアバック11の幅が狭くなるため、この部分で磁束の集中が生じ、磁束の一部がシェル40に流れたことによるものである。
 図14および図15(A),(B),(C)に示した結果から、D2<D4の場合には、最短距離D4と最短距離D3との比D4/D3は、0.904≦D4/D3≦1.237の範囲内にあることが望ましいことが分かる。
 なお、図10,12,14を参照して説明した解析は、最短距離D2,D3,D4のうち最も長いものをDmaxとし、最も短いものをDminとすると、0≦{(D1/Dmmin)-(D1/Dmax)}≦0.8872を満足する範囲で行っている。
<実施の形態の効果>
 以上説明したように、実施の形態1のステータ1は、ステータコア10の外周に、第1の切欠き部としての切欠き部21と、第2の切欠き部としての2つの切欠き部22と、第3の切欠き部としての2つの切欠き部23とを有する。切欠き部22は、切欠き部21の周方向両側に形成され、切欠き部21,22の中心21a,22aは中心軸Axに対して90度の角度をなしている。切欠き部23は、中心軸Axと切欠き部21の中心21aとを通る直線L1の両側に形成され、これら2つの切欠き部23の間に第1の接触部としての接触部17が形成されている。接触部17からスロット13までの最短距離をD1とし、切欠き部23からスロット13までの最短距離をD2とすると、1.00≦D1/D2≦1.60が成立する。
 このように構成されているため、ステータコア10を構成するコアシート101を、電磁鋼板100から狭い幅W1で2N列に打ち抜くことができ、材料コストを低減することができる。また、最短距離D1,D2が1.00≦D1/D2≦1.60を満足するため、シェルへの磁束漏れを低減し、鉄損を低減することができる。すなわち、電動機効率の低下を抑えながら、材料コストを低減することができる。
 また、切欠き部22からスロット13までの最短距離をD3とし、切欠き部21からスロット13までの最短距離をD4とすると、D2>D4、および0.617≦D4/D3≦0.882が成り立つため、より効果的に材料コストを低減し、また電動機効率の低下を抑えることができる。
 また、D2=D4、および0.809≦D4/D3≦1.000が成り立つ場合にも、より効果的に材料コストを低減し、また電動機効率の低下を抑えることができる。
 また、D2<D4、および0.904≦D4/D3≦1.237が成り立つ場合にも、より効果的に材料コストを低減し、また電動機効率の低下を抑えることができる。
 また、接触部17の中心17aの径方向内側(すなわち中心軸Ax側)にスロット13が位置するため、接触部17の両側の切欠き部23からスロット13までの最短距離を広げることができ、シェル40への磁束漏れを低減する効果を高めることができる。
 また、切欠き部22の周方向の中心22aの径方向内側にティース12が位置するため、切欠き部22からスロット13までの最短距離を広げることができ、シェル40への磁束漏れを低減する効果を高めることができる。
 また、切欠き部23の周方向の中心23aの径方向内側にティース12が位置するため、切欠き部23からスロット13までの最短距離を広げることができ、シェル40への磁束漏れを低減する効果を高めることができる。
 また、実施の形態1のステータ1の製造方法は、電磁鋼板100からコアシート101を打ち抜く工程と、コアシート101を積層してステータコア10を形成する工程と、ステータコア10にコイル20を巻き付ける工程とを有する。また、コアシート101を打ち抜く工程では、電磁鋼板100から2N列(Nは整数)に且つ各列において一定のピッチPでコアシート101を打ち抜き、1列目のコアシート101と2列目のコアシート102とがピッチPの半分だけずれるように打ち抜きを行う。そのため、幅W1の狭い電磁鋼板100からコアシート101を打ち抜くことができ、材料コストを低減することができる。
 特に、上記のコアシート101の打ち抜き工程では、1列目のコアシート101の切欠き部23と、2列目のコアシート101の切欠き部23とが対向するように打ち抜きを行うため、1列目のコアシート101の中心と、2列目のコアシート101の中心との幅方向の距離を短くすることができ、電磁鋼板100の幅W1を狭くすることができる。これにより、材料コストの低減効果を高めることができる。
実施の形態2.
 次に、実施の形態2の圧縮機500について説明する。実施の形態2の圧縮機500は、実施の形態1の電動機3を備えたものである。図16は、圧縮機500を示す断面図である。圧縮機500は、圧縮機500は、ここではスクロール圧縮機であるが、これに限定されるものではない。
 圧縮機500は、密閉容器507と、密閉容器507内に配設された圧縮機構505と、圧縮機構505を駆動する電動機3と、圧縮機構505と電動機3とを連結するシャフト60と、シャフト60の下端部を支持するサブフレーム508とを備えている。
 圧縮機構505は、渦巻部分を有する固定スクロール501と、固定スクロール501の渦巻部分との間に圧縮室を形成する渦巻部分を有する揺動スクロール502と、シャフト60の上端部を保持するコンプライアンスフレーム503と、密閉容器507に固定されてコンプライアンスフレーム503を保持するガイドフレーム504とを備える。
 固定スクロール501には、密閉容器507を貫通する吸入管510が圧入されている。また、密閉容器507には、固定スクロール501から吐出される高圧の冷媒ガスを外部に吐出する排出管511が設けられている。この排出管511は、密閉容器507の圧縮機構505と電動機3との間に設けられた図示しない開口部に連通している。
 電動機3は、ステータ1を密閉容器507に嵌め込むことにより密閉容器507に固定されている。電動機3の構成は、上述した通りである。密閉容器507には、電動機3に電力を供給するガラス端子509が溶接により固定されている。
 電動機3が回転すると、その回転が揺動スクロール502に伝達され、揺動スクロール502が揺動する。揺動スクロール502が揺動すると、揺動スクロール502の渦巻部分と固定スクロール501の渦巻部分とで形成される圧縮室の容積が変化する。そして、吸入管510から冷媒ガスを吸入し、圧縮して、排出管511から吐出する。
 圧縮機500は、低コストで電動機効率の高い実施の形態1の電動機3を備えているため、圧縮機500の製造コストを低減し、また運転効率を高めることができる。
実施の形態3.
 次に、実施の形態3の冷凍サイクル装置400について説明する。実施の形態3の冷凍サイクル装置400は、実施の形態2の圧縮機500を備えている。図17は、冷凍サイクル装置400を示す図である。冷凍サイクル装置400は、例えば空気調和装置であるが、これに限定されるものではない。
 図17に示した冷凍サイクル装置400は、圧縮機401と、冷媒を凝縮する凝縮器402と、冷媒を減圧する減圧装置403と、冷媒を蒸発させる蒸発器404とを備える。圧縮機401、凝縮器402および減圧装置403は室内機410に設けられ、蒸発器404は室外機420に設けられる。
 圧縮機401、凝縮器402、減圧装置403および蒸発器404は、冷媒配管407によって連結され、冷媒回路を構成している。圧縮機401は、図16に示した圧縮機500で構成される。冷凍サイクル装置400は、また、凝縮器402に対向する室外送風機405と、蒸発器404に対向する室内送風機406とを備える。
 冷凍サイクル装置400の動作は、次の通りである。圧縮機401は、吸入した冷媒を圧縮して高温高圧の冷媒ガスとして送り出す。凝縮器402は、圧縮機401から送り出された冷媒と、室外送風機405により送られた室外空気との熱交換を行い、冷媒を凝縮して液冷媒として送り出す。減圧装置403は、凝縮器402から送り出された液冷媒を膨張させて、低温低圧の液冷媒として送り出す。
 蒸発器404は、減圧装置403から送り出された低温低圧の液冷媒と室内空気との熱交換を行い、冷媒を蒸発させて送り出す。蒸発器404で熱が奪われた空気は、室内送風機406により、空調対象空間である室内に供給される。
 冷凍サイクル装置400の圧縮機401は、低コストで電動機効率の高い実施の形態1の電動機3を備えるため、冷凍サイクル装置400の製造コストを低減し、また運転効率を高めることができる。
 以上、望ましい実施の形態について具体的に説明したが、本開示は上記の実施の形態に限定されるものではなく、各種の改良または変形を行なうことができる。
 1 ステータ、 3 電動機、 5 ロータ、 10 ステータコア、 11 コアバック、 12 ティース、 13 スロット、 15 接触部(第3の接触部)、 16 接触部(第2の接触部)、 17 接触部(第1の接触部)、 20 コイル、 21 切欠き部(第1の切欠き部)、 21a,22a,23a 中心、 22 切欠き部(第2の切欠き部)、 23 切欠き部(第3の切欠き部)、 40 シェル、 50 ロータコア、 51 磁石挿入孔、 55 永久磁石、 100 電磁鋼板、 101 コアシート、 102 コアシート、 110 電磁鋼板、 400 冷凍サイクル装置、 401 圧縮機、 402 凝縮器、 403 減圧装置、 404 蒸発器、 410 室内機、 420 室外機、 500 圧縮機、 505 圧縮機構、 507 密閉容器。
 

Claims (12)

  1.  中心軸を中心とする周方向に延在する外周と、前記周方向に配列された複数のスロットとを有し、前記外周が円筒状のシェルの内側に固定されたステータコアを有し、
     前記ステータコアの前記外周には、第1の切欠き部と、2つの第2の切欠き部と、2つの第3の切欠き部とが形成され、
     前記2つの第2の切欠き部は、前記第1の切欠き部の前記周方向の両側に形成され、前記第1の切欠き部の前記中心と各第2の切欠き部の前記周方向の中心とは、前記中心軸に対して90度の角度をなし、
     前記2つの第3の切欠き部は、前記中心軸と前記第1の切欠き部の前記中心とを通る直線の両側に形成され、前記2つの第3の切欠き部の間に、前記シェルに接触する第1の接触部が形成され、
     前記第1の接触部から、前記複数のスロットのうち前記第1の接触部に最も近いスロットまでの最短距離をD1とし、
     各第3の切欠き部から、前記複数のスロットのうち前記第3の切欠き部に最も近いスロットまでの最短距離をD2とすると、
     1.00≦D1/D2≦1.60
    が成立するステータ。
  2.  各第2の切欠き部から、前記複数のスロットのうち前記第2の切欠き部に最も近いスロットまでの最短距離をD3とし、
     前記第1の切欠き部から、前記複数のスロットのうち前記第1の切欠き部に最も近いスロットまでの最短距離をD4とすると、
     D2>D4、および0.617≦D4/D3≦0.882が成り立つ
     請求項1に記載のステータ。
  3.  各第2の切欠き部から、前記複数のスロットのうち前記第2の切欠き部に最も近いスロットまでの最短距離をD3とし、
     前記第1の切欠き部から、前記複数のスロットのうち前記第1の切欠き部に最も近いスロットまでの最短距離をD4とすると、
     D2=D4、および0.809≦D4/D3≦1.000が成り立つ
     請求項1に記載のステータ。
  4.  各第2の切欠き部から、前記複数のスロットのうち前記第2の切欠き部に最も近いスロットまでの最短距離をD3とし、
     前記第1の切欠き部から、前記複数のスロットのうち前記第1の切欠き部に最も近いスロットまでの最短距離をD4とすると、
     D2<D4、および0.904≦D4/D3≦1.237が成り立つ
     請求項1に記載のステータ。
  5.  前記第1の接触部の前記周方向の中心に対して前記中心軸の側に、前記複数のスロットのうちの別の1つが位置する
     請求項1から4までの何れか1項に記載のステータ。
  6.  各第2の切欠き部の前記周方向の中心に対して前記中心軸の側に、前記複数のスロットのうちの2つのスロットの間に形成されたティースが位置する
     請求項1から5までのいずれか1項に記載のステータ。
  7.  各第3の切欠き部の前記周方向の中心に対して前記中心軸の側に、前記複数のスロットのうちの2つのスロットの間に形成されたティースが位置する
     請求項1から6までのいずれか1項に記載のステータ。
  8.  請求項1から7までの何れか1項に記載のステータと、
     前記ステータの内側に配置されたロータと
     を有する電動機。
  9.  請求項8に記載の電動機と、
     前記電動機によって駆動される圧縮機構と、
     前記電動機および前記圧縮機構を囲む前記シェルと
     を有する圧縮機。
  10.  請求項9に記載の圧縮機と、凝縮器と、減圧装置と、蒸発器とを有する
     冷凍サイクル装置。
  11.  請求項1から7までの何れか1項に記載のステータの製造方法であって、
     電磁鋼板からコアシートを打ち抜く工程と、
     前記コアシートを積層して前記ステータコアを形成する工程と、
     前記ステータコアにコイルを巻き付ける工程と
     を有し、
     前記コアシートを打ち抜く工程では、前記電磁鋼板から2N列(Nは整数)に且つ各列において一定のピッチPで前記コアシートを打ち抜き、1列目の前記コアシートと2列目の前記コアシートとが前記ピッチPの半分だけずれるように打ち抜きを行う
     ステータの製造方法。
  12.  前記コアシートを打ち抜く工程では、前記1列目の前記コアシートの前記第3の切欠き部と、前記2列目の前記コアシートの前記第3の切欠き部とが対向するように打ち抜きを行う
     請求項11に記載のステータの製造方法。
PCT/JP2022/014913 2022-03-28 2022-03-28 ステータ、電動機、圧縮機、冷凍サイクル装置、およびステータの製造方法 WO2023187880A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024510574A JPWO2023187880A1 (ja) 2022-03-28 2022-03-28
PCT/JP2022/014913 WO2023187880A1 (ja) 2022-03-28 2022-03-28 ステータ、電動機、圧縮機、冷凍サイクル装置、およびステータの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014913 WO2023187880A1 (ja) 2022-03-28 2022-03-28 ステータ、電動機、圧縮機、冷凍サイクル装置、およびステータの製造方法

Publications (1)

Publication Number Publication Date
WO2023187880A1 true WO2023187880A1 (ja) 2023-10-05

Family

ID=88199656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014913 WO2023187880A1 (ja) 2022-03-28 2022-03-28 ステータ、電動機、圧縮機、冷凍サイクル装置、およびステータの製造方法

Country Status (2)

Country Link
JP (1) JPWO2023187880A1 (ja)
WO (1) WO2023187880A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285444A (ja) * 1991-03-12 1992-10-09 Fujitsu General Ltd 電動機の固定子鉄心
JPH11125183A (ja) * 1997-10-23 1999-05-11 Matsushita Refrig Co Ltd 密閉型電動圧縮機
JP2009247079A (ja) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp 固定子鉄心及び電動機の固定子及び電動機
JP4717089B2 (ja) * 2008-02-14 2011-07-06 三菱電機株式会社 電動機の固定子及び電動機及び圧縮機及び送風機
WO2019073509A1 (ja) * 2017-10-10 2019-04-18 三菱電機株式会社 固定子、電動機、圧縮機、空気調和装置および固定子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285444A (ja) * 1991-03-12 1992-10-09 Fujitsu General Ltd 電動機の固定子鉄心
JPH11125183A (ja) * 1997-10-23 1999-05-11 Matsushita Refrig Co Ltd 密閉型電動圧縮機
JP4717089B2 (ja) * 2008-02-14 2011-07-06 三菱電機株式会社 電動機の固定子及び電動機及び圧縮機及び送風機
JP2009247079A (ja) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp 固定子鉄心及び電動機の固定子及び電動機
WO2019073509A1 (ja) * 2017-10-10 2019-04-18 三菱電機株式会社 固定子、電動機、圧縮機、空気調和装置および固定子の製造方法

Also Published As

Publication number Publication date
JPWO2023187880A1 (ja) 2023-10-05

Similar Documents

Publication Publication Date Title
JP6656428B2 (ja) 固定子、電動機、圧縮機、および冷凍空調装置
JP6689449B2 (ja) 回転子、電動機、圧縮機、送風機、および空気調和装置
CN109565191B (zh) 电动机、压缩机及制冷空调装置
WO2019215865A1 (ja) ロータ、電動機、圧縮機および空気調和装置
WO2019073509A1 (ja) 固定子、電動機、圧縮機、空気調和装置および固定子の製造方法
JP7237178B2 (ja) ロータ、電動機、圧縮機、及び空気調和機
CN109417320B (zh) 转子、电动机、送风机、压缩机以及空气调节装置
JP6961106B2 (ja) 回転子、電動機、圧縮機、空気調和装置および回転子の製造方法
US11888353B2 (en) Motor, compressor, and air conditioner
WO2023187880A1 (ja) ステータ、電動機、圧縮機、冷凍サイクル装置、およびステータの製造方法
WO2020089994A1 (ja) 固定子、電動機、圧縮機、空気調和装置および固定子の製造方法
CN113812069A (zh) 电动机、压缩机、空调装置及电动机的制造方法
WO2023037438A1 (ja) ロータ、モータ、圧縮機および冷凍サイクル装置
WO2023112078A1 (ja) ステータ、モータ、圧縮機および冷凍サイクル装置
JP7256432B1 (ja) 回転子、モータ、圧縮機および空気調和装置
WO2023248466A1 (ja) ステータ、電動機、圧縮機、冷凍サイクル装置および電動機の製造方法
US20240120787A1 (en) Motor, compressor, and refrigeration cycle apparatus
JP7258140B2 (ja) 回転子、電動機、圧縮機、及び空気調和機
WO2023148953A1 (ja) ロータ、電動機、送風機、空気調和装置および電動機の製造方法
WO2023085216A1 (ja) 回転子、モータ、圧縮機および空気調和装置
WO2024004202A1 (ja) 固定子、電動機、圧縮機および冷凍サイクル装置
WO2020059056A1 (ja) ステータ、電動機、圧縮機および空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024510574

Country of ref document: JP

Kind code of ref document: A