WO2023185926A1 - 信息反馈方法、接收方法、装置、设备和存储介质 - Google Patents

信息反馈方法、接收方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2023185926A1
WO2023185926A1 PCT/CN2023/084705 CN2023084705W WO2023185926A1 WO 2023185926 A1 WO2023185926 A1 WO 2023185926A1 CN 2023084705 W CN2023084705 W CN 2023084705W WO 2023185926 A1 WO2023185926 A1 WO 2023185926A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication data
perceptual
measurement result
feedback
signal
Prior art date
Application number
PCT/CN2023/084705
Other languages
English (en)
French (fr)
Inventor
姚健
姜大洁
李娜
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023185926A1 publication Critical patent/WO2023185926A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • This application belongs to the field of communication technology, and specifically relates to an information feedback method, receiving method, device, equipment and storage medium.
  • Perception capability that is, one or more devices with perception capabilities can sense the orientation, distance and/or speed of target objects through the transmission and reception of wireless signals, or detect and detect target objects, events or environments, etc. Tracking, identification or imaging, etc.
  • Perception capability that is, one or more devices with perception capabilities can sense the orientation, distance and/or speed of target objects through the transmission and reception of wireless signals, or detect and detect target objects, events or environments, etc. Tracking, identification or imaging, etc.
  • those skilled in the art are still in the discussion stage on how to implement perceptual measurement technology. That is to say, how to implement perceptual measurement is still a technical problem to be solved.
  • Embodiments of the present application provide an information feedback method, receiving method, device, equipment and storage medium, which can solve the technical problem of how to implement perceptual measurement.
  • the first aspect provides an information feedback method, including:
  • the first device indicates feedback information to the second device, where the feedback information is used to indicate at least one of the following:
  • the perceptual measurement result is a measurement result of perceptual measurement of the first signal received by the first device.
  • the second aspect provides a method of obtaining information, including:
  • the second device obtains feedback information indicated by the first device, where the feedback information is used to indicate at least one of the following:
  • the perceptual measurement result is a measurement result of perceptual measurement of the first signal received by the first device.
  • an information feedback device including:
  • An indication module configured to indicate feedback information to the second device, where the feedback information is used to indicate at least one of the following:
  • the perceptual measurement result is a measurement result of perceptual measurement of the first signal received by the first device.
  • an information acquisition device including:
  • Obtaining module configured for the second device to obtain feedback information indicated by the first device, where the feedback information is used to indicate at least one of the following:
  • the perceptual measurement result is a measurement result of perceptual measurement of the first signal received by the first device.
  • a communication device is provided.
  • the communication device is a first device and includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are used by the processor.
  • the processor is executed, the steps of the information feedback method provided by the embodiments of the present application are implemented.
  • a communication device is provided.
  • the communication device is a first device and includes a processor and a communication interface.
  • the communication interface is used for the first device to indicate feedback information to the second device.
  • the feedback information Used to indicate at least one of the following: the validity of the perceptual measurement results and the correctness of the communication data reception; the reason why the perceptual measurement results are invalid; the parameter configuration of the first signal; wherein the perceptual measurement results are all received by the first device.
  • the measurement result of the perceptual measurement of the first signal used to indicate at least one of the following: the validity of the perceptual measurement results and the correctness of the communication data reception; the reason why the perceptual measurement results are invalid; the parameter configuration of the first signal; wherein the perceptual measurement results are all received by the first device.
  • the measurement result of the perceptual measurement of the first signal used to indicate at least one of the following: the validity of the perceptual measurement results and the correctness of the communication data reception; the reason why the perceptual measurement results are invalid;
  • a communication device is provided.
  • the communication device is a second device and includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are used by the processor.
  • the processor is executed, the steps of the information acquisition method provided by the embodiments of the present application are implemented.
  • a communication device is provided.
  • the communication device is a second device and includes a processor and a communication interface, wherein the communication interface is used to obtain feedback information indicated by the first device, and the feedback information is used to Indicates at least one of the following: validity of the perceptual measurement result and correctness of communication data reception; reason for invalid perceptual measurement result; parameter configuration of the first signal; wherein the perceptual measurement result is the response to the first signal received by the first device.
  • a signal is the measurement result of a perceptual measurement.
  • an information feedback system including: a first device and a second device, the terminal can be used to perform the steps of the information feedback method as described in the first aspect, and the network side device can be used to perform as mentioned in the second aspect Steps to obtain information.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the information feedback method as described in the first aspect are implemented, or Implement the steps of the information acquisition method described in the second aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement as described in the first aspect
  • the steps of the information feedback method, or the computer program/program product is executed by at least one processor to implement the steps of the information acquisition method as described in the second aspect.
  • the first device indicates feedback information to the second device, and the feedback information is used to indicate at least one of the following: validity of the perceptual measurement results and correctness of communication data reception; reasons for invalid perceptual measurement results; first signal Parameter configuration; wherein the perceptual measurement result is a measurement result of perceptual measurement of the first signal received by the first device.
  • the first device feeds back perceptual measurement related information to the second device to implement perceptual measurement.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is a schematic diagram of wireless sensing provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of another wireless sensing provided by an embodiment of the present application.
  • Figure 4 is a flow chart of an information feedback method provided by an embodiment of the present application.
  • Figure 5 is a flow chart of an information acquisition method provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of an information feedback method provided by an embodiment of the present application.
  • FIGS 7 to 13 are schematic diagrams of feedback information formats provided by embodiments of the present application.
  • Figure 14 is a structural diagram of an information feedback device provided by an embodiment of the present application.
  • Figure 15 is a structural diagram of an information acquisition device provided by an embodiment of the present application.
  • Figure 16 is a structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 17 is a structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 18 is a structural diagram of another communication device provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes terminals, network side equipment and core network equipment.
  • the terminal may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • palmtop computer a netbook
  • super computer a super computer.
  • Mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (AR)/virtual reality (VR) equipment, robots, wearable devices ( Wearable Device), vehicle user equipment (VUE), pedestrian terminal (Pedestrian User Equipment, PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal Terminal devices such as computers (PCs), teller machines or self-service machines, wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces , smart anklets, smart anklets, etc.), smart wristbands, smart clothing, etc. It should be noted that the embodiments of this application do not limit the specific type of terminal.
  • the network side equipment may include access network equipment or core network equipment, where the access network equipment may also be called wireless access network equipment, radio access network (Radio Access Network, RAN), radio access network function or radio access network equipment.
  • Access network equipment may include base stations, Wireless Local Area Networks (WLAN) access points or WiFi nodes, etc.
  • WLAN Wireless Local Area Networks
  • the base stations may be called Node B, Evolved Node B (eNB), access point, base transceiver station ( Base Transceiver Station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B-node, home evolved B-node, transmitter Transmission Reception Point (TRP), Access Point (AP), Relay, Reconfigurable Intelligence Surface (RIS) or some other appropriate term in the field, as long as To achieve the same technical effect, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
  • Core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Services Discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data warehousing (Unified Data Repository, UDR), home subscriber server (Home Subscriber Server, HSS), centralized network configuration ( Centralized network configuration, CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), application function (Application Function, AF), etc.
  • MME mobility management entities
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • network-side devices and terminals have sensing capabilities and can sense the orientation, distance, speed and other information of target objects through the sending and receiving of wireless signals, or detect and track target objects, events or environments, etc. , recognition, imaging, etc.
  • the perception categories can be as shown in Table 1 below:
  • embodiments of the present application can be applied to integrated communication and radar communication sensing fusion application scenarios.
  • the joint design in this scenario includes spectrum coexistence, that is, the two systems work independently, allowing information exchange to reduce mutual interference.
  • the receiving end is shared, at this time, the transmitting end of the two systems sends their own signal waveforms.
  • the waveforms of the two systems require It has orthogonality so that it does not affect the respective reception and detection; when the transmitter is shared, the transmitter transmits a joint waveform of radar and communication; when the transceiver is shared, the two systems share resources on both sides of the transmitter and receiver, which also requires Use joint waveforms or waveforms with orthogonal relationships.
  • the above application scenario of integrated communication perception and fusion of communication and radar is an example of the application scenario of the embodiment of the present application, and the corresponding scenario is not limited in the embodiment of the present application.
  • the base station when sensing, it can be based on single-station mode sensing, that is, the transmitter and receiver are co-located.
  • the transmitter transmits the sensing signal, and then receives the echo signal and analyzes it to extract the sensing parameters.
  • the base station serves as the sender and receiver of sensing signals, and the terminal or other object serves as the sensing target; it can also be based on dual-station or multi-station mode sensing, that is, the sending and receiving are not co-located, the sending end transmits the sensing signal, and other receiving ends Receive and analyze, and extract sensing parameters.
  • base station 1 serves as the sensing signal transmitter
  • the terminal or base station 2 serves as the sensing signal receiving end.
  • the communication system can jointly transmit modulation symbols carrying information and pilot symbols used for channel estimation, focusing on decoding performance.
  • the channel estimation algorithm only needs to estimate a composite channel with limited unknown parameters, usually with Improving throughput and transmission reliability is the optimization goal.
  • the performance indicators of concern are generally spectrum efficiency, channel capacity, signal-to-noise ratio (SNR), signal-to-interference plus noise ratio (Signal-to-Interference plus Noise Ratio) , SINR), bit error probability (Bit Error Ratio, BER), block error rate (Block Error Rate, BLER), symbol error rate (symbol error rate, SER), etc. There is no need to consider information carrying issues during the signal transmission process of the sensing system.
  • Optimized or unmodulated transmitted signals are usually used.
  • the focus can be on the changes brought by the sensing target to the transmitted signal, that is, the response characteristics.
  • the optimization goal is usually to improve the accuracy of parameter estimation.
  • Perfectance measures may be fuzzy functions, Cramero’s ,lower bound, root mean square error, mutual information, ,rate-distortion function, radar estimation rate, Welch’s ,lower bound and some metrics related to the sensing ,scenario and requirements.
  • wireless communication signals and wireless sensing signals will be supported at the same time, and the integrated design of communication and sensing functions will be realized through communication and sensing integration means such as signal joint design and/or hardware sharing. While transmitting information, it has the ability to sense or provide sensing services. In this way, through the integration of synaesthesia (communication and perception), we can achieve the effects of saving costs, reducing equipment size, reducing equipment power consumption, improving spectrum efficiency, reducing mutual interference between synaesthesia, and improving system performance.
  • synaesthesia communication and perception
  • synaesthesia integration may include but is not limited to at least one of the following:
  • the same network provides communication services and sensing services
  • the same terminal provides communication services and perception services
  • the same spectrum provides communication services and sensing services
  • the integrated synaesthesia integration service is completed in the same radio transmission, that is, the joint design of communication signals and perception signals.
  • perceptual measurement can use dedicated perceptual signals, or multiplex communication signals, such as data and/or pilots.
  • the use of perceptual measurement signals can be determined by the sender. Instruct the receiver, such as the base station, to instruct the terminal which type of signal to use for sensing measurements.
  • Figure 4 is a flow chart of an information feedback method provided by an embodiment of the present application. As shown in Figure 4, it includes the following steps, including:
  • Step 401 The first device indicates feedback information to the second device, where the feedback information is used to indicate at least one of the following:
  • the perceptual measurement result is a measurement result of perceptual measurement of the first signal received by the first device.
  • the above-mentioned first device may be a network-side device or terminal
  • the above-mentioned second device may be a sensing network function and/or sensing network element of the core network, or may be a network-side device or terminal.
  • the first signal may be a communication signal, such as a reference signal, a synchronization signal or a data signal.
  • the first signal may also be a dedicated sensing signal, such as a radar pulse signal or Frequency Modulated Continuous Wave (FMCW). Signal.
  • FMCW Frequency Modulated Continuous Wave
  • the sending and receiving of the first signal may include the following methods:
  • Network side device A sends the first signal, and network side device B receives the first signal; wherein network side device B serves as the first device, network side device A serves as the second device, or network side device A and network side device B At least one item is used as the first equipment, and the core network is used as the second equipment;
  • the network side device sends the first signal, and the terminal receives the first signal; wherein the terminal serves as the first device, the network side device serves as the second device, or at least one of the network side device and the terminal serves as the first device, and the core network serves as the third device.
  • Equipment
  • the network side equipment collects itself spontaneously; among them, the network side equipment serves as the first device and the core network serves as the second device;
  • the terminal spontaneously receives and receives data; in which, the terminal serves as the first device and the network side device serves as the second device, or the terminal serves as the first device and the core network serves as the second device;
  • the terminal sends and the network side device receives; among them, the network side device serves as the first device and the core network serves as the second device;
  • Terminal A sends and terminal B receives; wherein, terminal B serves as the first device and terminal A serves as the second device, or terminal A or terminal B serves as the first device, and the access network side device of terminal A or terminal B serves as the second device.
  • Device, or terminal A or terminal B serves as the first device, and the core network serves as the second device.
  • first signal sending device in the embodiment of the present application may be multiple devices, and the first signal receiving device may be multiple devices.
  • the first device may indicate the feedback information to the second device by the first device sending the feedback information to the second device, or the first device may indicate the feedback information to the second device in an implicit manner, and the feedback information may be Indicate at least one of the following explicitly or implicitly:
  • each perceptual measurement result or each perception measurement result validity indication is associated with one or more perception measurements, wherein one perception measurement may be a measurement based on one or more first signals.
  • the criteria for valid or invalid sensing measurement results may be configured by the network device and/or defined by the protocol, or the criteria for valid or invalid sensing measurement results may be determined by being associated with sensing measurement quantities or sensing requirements or sensing services.
  • the above communication data reception correctness is used to indicate that the communication data is received correctly (Acknowledgement, ACK) or received incorrectly (Negative Acknowledgment, NACK).
  • the above-mentioned reason why the perception measurement result is invalid is used to represent information about the reason why the perception measurement result is invalid.
  • the parameter configuration of the first signal may be a parameter configuration recommended or expected by the first device for sending the first signal, and the parameter configuration may be used to improve the validity of the perception measurement results corresponding to the first signal.
  • the above steps can be used to feed back to the second device at least one of the validity of the perceptual measurement results and the correctness of the communication data reception, the reason for the invalid perceptual measurement results, and the parameter configuration of the first signal suggested by the first device. , to achieve perceptual measurement and improve the working performance of the equipment.
  • the content indicated by the above-mentioned feedback information also includes using the second device that receives the feedback information to further process the perceptual measurement results or adjust the signal configuration, thereby improving the perceptual measurement performance.
  • the content indicated by the above feedback information can assist the party receiving the perceptual measurement results to further process the perceptual measurement results, or adjust the configuration of the perceptual measurement signals, thereby obtaining better perceptual measurement performance.
  • the feedback information includes an indication bit
  • the indication bit is at least one bit used to indicate the validity of the perceptual measurement result and the correctness of the communication data reception.
  • the above indication bits may be jointly or independently coded to indicate the validity of the perceptual measurement results and the correctness of the communication data reception.
  • the indication bits are 2 bits, wherein: the 2 bits respectively indicate the validity of the perceptual measurement results and the correctness of the communication data reception; or the 2 bits indicate the perceptual measurement results in a joint encoding manner. Validity and correctness of communication data reception.
  • each bit can indicate the validity of the perceptual measurement result and the correctness of the communication data reception.
  • Joint coding or independent coding can be used.
  • the independent coding rate can be different to meet different priority or importance requirements.
  • One bit indicates the validity of the perception measurement result, for example, "0" indicates that the perception measurement result is invalid, "1" indicates that the perception measurement result is valid; the other 1 bit indicates the correctness of communication data reception, that is, ACK/NACK, for example, "0” Indicates communication data reception error (NACK), "1" indicates communication data reception is correct (ACK).
  • the above 2 bits indicate the validity of the perceptual measurement results and the correctness of the communication data reception in a joint encoding manner.
  • the 2 bits jointly indicate the validity of the perceptual measurement results and the correctness of the communication data reception.
  • Joint encoding is used, that is, a total of 4 states. In particular, for example, the situation where the communication data is received incorrectly but the sensing measurement results are valid may not exist. Then the 2-bit value corresponding to this state (that is, the communication data is received incorrectly and the sensing measurement results are valid) can be Reserved. , for example: as shown in the following table:
  • 2 bits can be used to accurately indicate the validity of the perceptual measurement result and the correctness of the communication data reception.
  • the indication bit is 1 bit, and the 1 bit indicates the validity of the perceptual measurement result and the correctness of the communication data reception.
  • 1 bit is used to indicate the validity of the sensing measurement results and the correctness of communication data reception to save signaling overhead. For example: use the logical AND result of 1-bit perception measurement result validity and communication data reception correctness indication information, where "0" indicates communication data reception error (NACK) or invalid perception measurement result, "1" indicates communication data reception is correct (ACK) and the sensing measurement results are valid.
  • the indication bit is 1 bit, used to indicate a communication data reception error, and the sensing measurement result is invalid;
  • the indication bits are 2 bits, of which 1 bit indicates that the communication data is received correctly, and the other 1 bit indicates the validity of the perceptual measurement result;
  • the first signal is a communication data signal.
  • 1 bit or 2 bits can be flexibly used to save signaling overhead. For example: when the communication data is received incorrectly, it is expressed by 1 bit, and "0" indicates that the communication data is received incorrectly (NACK) and the sensing measurement result is invalid; when the communication data is received correctly, it is expressed by 2 bits, of which 1 bit is "1" which indicates communication. The data is received correctly (ACK), and the other 1 bit is used to indicate whether the perceptual measurement result is valid.
  • the communication data reception correctness indication and the perceptual measurement result validity indication need to be encoded independently.
  • the indication bits are m+1 bits, and m is an integer greater than 1, where:
  • m bits indicate the validity level of the sensing measurement results, and 1 bit indicates the correctness of communication data reception;
  • the m+1 bits indicate the perceptual measurement result validity level and communication data reception correctness in a jointly encoded manner.
  • the validity level of the above-mentioned perceptual measurement results can be, and different levels correspond to different signal qualities.
  • the signal quality can include: SNR, Reference Signal Received Power (RSRP), Received Signal Strength Indication (Received Signal Strength Indication, RSSI) and signal-to-noise ratio; or, the validity level of the above-mentioned perceptual measurement results can be, different levels correspond to different perceptual performance indicators; or, the validity level of the above-mentioned perceptual measurement results can be, different levels correspond to different measurements Result validity threshold, for example: suppose there are two thresholds, including three levels, one level means invalid, another level means valid against the first threshold but invalid according to the second threshold, and one level means valid according to the second threshold (Assuming the second threshold requirement is higher).
  • the validity of the perception measurement results can be divided into different levels, thereby improving the feedback effect of the validity of the perception measurement results, and m bits and 1 bit can respectively indicate the validity of the perception measurement results and communication data. Reception correctness, m+1 bits can also be used to jointly indicate the validity of the sensing measurement results and communication Data reception correctness.
  • the first device indicates feedback information to the second device, including:
  • the first device indicates the feedback information to the second device through Discontinuous Transmission (DTX).
  • DTX Discontinuous Transmission
  • the above-mentioned DTX may be feedback DTX when the first device does not detect the first signal or when at least one of the SNR, RSRP, RSSI and signal-to-noise ratio of the detected first signal does not meet the threshold requirements, that is, when the specified No signal is sent on the time-frequency resource of the feedback channel to indicate feedback information to the second device.
  • the feedback information can be indicated to the second device through DTX, thereby saving transmission overhead. For example: when the perception measurement result is valid, the feedback information is sent on the first feedback resource used to indicate the validity of the perception measurement result; when the communication data is received correctly, the feedback information is sent on the third feedback resource used to indicate the correctness of the communication data reception. Feedback information is sent on the second feedback resource to indicate the communication data reception error to the second device through DTX.
  • the reason why the perceptual measurement result is invalid is at least one of the following:
  • the quality of the first signal detected by the first device does not meet the threshold requirement
  • the perception measurement results obtained by the first device do not meet the perception requirements
  • the first device does not demodulate the data correctly
  • the first device When the feedback time point of the feedback information arrives, the first device does not obtain the perception measurement result.
  • the quality of the first signal detected by the first device does not meet the threshold requirement.
  • At least one of SNR, RSRP, RSSI and signal-to-noise ratio threshold of the first signal detected by the first device does not meet the threshold requirement.
  • the receiving end may first measure only at least one of SNR, RSRP, RSSI and signal-to-noise ratio, and then measure specific perceptual measurement quantities if the threshold is reached.
  • the perceptual measurement result obtained by the first device does not meet the perceptual requirements.
  • the perceptual performance index corresponding to the perceptual measurement result calculated by the first device does not meet the requirements.
  • the perceptual SNR is lower than a preset threshold value.
  • the above-mentioned first device does not demodulate the data correctly.
  • it adopts the method of demodulating first and then estimating the sensing parameters. If the communication demodulation is wrong, the sensing measurement results will be affected and become unreliable, that is, the sensing The measurement result is invalid.
  • the failure of the first device to obtain the perception measurement result when the feedback time point of the feedback information arrives may be that the receiving end fails to obtain the perception measurement result when the feedback time point arrives, for example, the processing of the perception measurement result times out.
  • the parameter configuration includes at least one of the following:
  • Waveform subcarrier interval, guard interval, bandwidth, burst duration, time domain interval, transmitted signal Power, signal format, signal direction, time resources, frequency domain resources, quasi co-location (Quasi co-location, QCL) relationship.
  • the above waveforms may include: Orthogonal frequency division multiplex (OFDM), Single-carrier Frequency-Division Multiple Access (SC-FDMA) SC-FDMA, Orthogonal time-frequency space ( Orthogonal Time Frequency Space, OTFS), Frequency Modulated Continuous Wave (FMCW) or pulse signal, etc.
  • OFDM Orthogonal frequency division multiplex
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • OFDM Orthogonal frequency division multiplex
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • OFDM Orthogonal time-frequency space
  • OTFS Orthogonal Time Frequency Space
  • FMCW Frequency Modulated Continuous Wave
  • the above-mentioned subcarrier spacing may be the subcarrier spacing of the OFDM system, such as 30KHz or 15KHz.
  • the above-mentioned guard interval can be the time interval from the time when the signal ends sending to the time when the latest echo signal of the signal is received; this parameter is proportional to the maximum sensing distance, for example, it can be calculated by 2dmax/c, dmax is the maximum Sensing distance (belonging to sensing requirements), for example, for spontaneous self-received sensing signals, dmax represents the maximum distance from the sensing signal transceiver point to the signal transmitting point; in some cases, OFDM signal cyclic prefix (CP) can play a role The role of the minimum guard interval; c is the speed of light.
  • CP OFDM signal cyclic prefix
  • the above bandwidth can be inversely proportional to the distance resolution, for example, it can be obtained by c/2/delta_d, where delta_d is the distance resolution (belonging to the perception requirements).
  • the above burst duration can be inversely proportional to the rate resolution (belonging to the sensing requirements).
  • This parameter is the time span of the sensing signal, mainly for calculating the Doppler frequency offset; this parameter can be calculated through c/2/delta_v/fc; where, delta_v is the speed resolution; fc is the signal carrier frequency or the center frequency of the signal.
  • the above time domain interval can be calculated by c/2/fc/v_range; where v_range is the maximum rate minus the minimum speed (belonging to the sensing requirements); this parameter is the time interval between two adjacent sensing signals.
  • the above-mentioned transmit signal power can take a value every 2dBm from -20dBm to 23dBm.
  • this is just an example and can be set according to actual needs.
  • the above signal formats can detect reference signals (Sounding Reference Signal, SRS), demodulation reference signals (Demodulation Reference Signal, DMRS), positioning reference signals (Positioning Reference Signal, PRS), etc., or other predefined signals, and related sequences format and other information.
  • reference signals Sounding Reference Signal, SRS
  • demodulation reference signals Demodulation Reference Signal, DMRS
  • positioning reference signals Positioning Reference Signal, PRS
  • PRS Positioning Reference Signal
  • the above-mentioned signal direction may be the direction of the sensing signal or beam information.
  • the above time resources may include the time slot index where the sensing signal is located or the symbol index of the time slot; the time resources are divided into two types, one is a one-time time resource, for example, one symbol sends an omnidirectional first signal; one is a one-time resource.
  • the above-mentioned frequency resources may include the center frequency point of the sensing signal, bandwidth, resource block (RB) or subcarrier, etc.
  • the above-mentioned QCL relationship may include: each resource among the multiple resources included in the sensing signal and a Synchronization Signal Block (SSB) QCL, and the QCL includes Type A, B, C or D.
  • SSB Synchronization Signal Block
  • the second device can adjust the configuration of the sensing measurement signal, thereby Obtain better perceptual measurement performance.
  • the feedback information is also used to indicate at least one of the following:
  • the identification information of the first signal associated with the perceptual measurement result to indicate which one or several first signals correspond to the perceptual measurement result validity that the perceptual measurement result validity indication information indicates, it is possible to indicate the specific first signal. The validity of a signal's perceived measurement results to achieve precise indications.
  • the above-mentioned perceptual measurement identification information may indicate which perceptual measurement result validity indication information indicates the validity of the perceptual measurement result corresponding to which perceptual measurement result, and the perceptual measurement may be a measurement based on one or more first signals, such that Validity of perceptual measurement results indicating specific perceptual measurements can be implemented to achieve precise indications.
  • Indicating the above-mentioned perceptual measurement results may indicate specific perceptual measurement results.
  • the feedback information indicates that the perceptual measurement result is valid
  • the feedback information indicates the perceptual measurement result
  • the feedback information indicates at least one of the following:
  • the feedback information includes the perception measurement result, so as to save transmission overhead.
  • the feedback information includes the reason for the invalid perceptual measurement result and the parameter configuration of the first signal.
  • the feedback information when the perceptual measurement result is valid, includes a first indication bit of communication data reception correctness, and also includes at least one of the following:
  • the feedback information includes at least one of the above items only when the perceptual measurement result is valid, so as to achieve the effect of saving signaling overhead. It should be noted that when the perceptual measurement result is valid, if the feedback information includes the first indication bit of the correctness of communication data reception, it is implicitly indicated that the perceptual measurement result is valid, that is, the indication information that the perceptual measurement result is valid does not need to be included.
  • the feedback information when the measurement result is invalid, only contains the communication data reception correctness indication.
  • the feedback information when the perceptual measurement result is invalid, includes a second indication bit of the correctness of communication data reception, the second indication bit is used to indicate the correctness of communication data reception, and implicitly indicates that the perceptual measurement result is invalid.
  • the feedback information when the perceptual measurement result is invalid, includes a third indication bit of communication data reception correctness, and also includes at least one of the following:
  • the feedback information includes a fourth indication bit of communication data reception correctness, the fourth indication bit is used to indicate the communication data reception correctness, and implicitly indicates that the perceptual measurement result is valid.
  • the feedback information includes at least one of the indication information of the validity of the perceptual measurement result, the reason for the invalid perceptual measurement result, and the parameter configuration of the first signal,
  • the feedback information only includes the fourth indication bit of the correctness of communication data reception to save transmission overhead.
  • the method before the first device indicates feedback information to the second device, the method further includes:
  • the first device receives first indication information sent by the second device, and the first indication information is used to indicate at least one of the following:
  • the above-mentioned whether the validity feedback of the perception measurement results is required may be to indicate whether validity feedback of all or part of the perception measurement results within a certain period of time (for example, from the current moment to the termination of the perception service) is required.
  • the above-mentioned rules for the validity of perceptual measurement results and the correctness feedback of communication data reception may include at least one of the following:
  • the above-mentioned feedback timing may represent the time length between the feedback time point and the reference time point (for example, the sending/ending time of the first signal or the control information of the first signal).
  • the above-mentioned feedback resource may indicate a physical uplink control channel (PUCCH) and/or a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH), which is equivalent to the first feedback information Corresponding specific time-frequency domain resources.
  • PUCCH physical uplink control channel
  • PUSCH Physical Uplink Shared Channel
  • the above feedback methods may include:
  • Event-triggered feedback for example, feedback information is only sent when the perceptual measurement result is invalid or valid as described in the previous embodiment
  • Periodically trigger feedback for example: the first device sends the first feedback information at a certain period;
  • the message triggers feedback, for example: the first device sends the first feedback information according to the instruction message of the second device.
  • the above joint feedback configuration or instructions may include:
  • the priority of the feedback indicating the validity of the sensing measurement results and the correctness of receiving communication data can be associated with the feedback delay requirement, or the priority of the feedback indicating the validity of the sensing measurement results and correctness of receiving communication data can be related to the sensing service/communication service Priority association, which priority can affect the format of the first feedback information, such as the order of feedback on the validity of perceptual measurement results and feedback on the correctness of communication data reception, the code rate in independent encoding, etc.
  • the criteria for judging the validity of the above-mentioned perceptual measurement results may include at least one of the following:
  • the first signal is a communication data signal, whether the first device demodulates the data correctly;
  • the above criteria for judging the validity of the perceptual measurement results can be specifically referred to the corresponding descriptions of the previous embodiments, which will not be described again here.
  • the criteria may also include first signal quality threshold information and perceptual measurement result performance index requirement information.
  • At least one of the above-mentioned sensing measurement quantities, sensing requirements and sensing services can be used to indirectly indicate the criteria for judging the validity of the sensing measurement results of the first device.
  • the criteria for valid or invalid sensing measurement results can be associated with At least one of perceived measurement quantity, perceived demand and perceived business.
  • the method before the first device indicates feedback information to the second device, the method further includes:
  • the first device receives second indication information sent by the second device, and the second indication information is used to indicate at least one of the following:
  • QoS Quality of service
  • the configuration information of the communication data signal for perceptual measurement may be communication data signal time domain resource configuration, frequency domain resource configuration, etc.
  • the accuracy of the first device's perception measurement can be improved through the above indication information of whether to allow perceptual measurement based on communication data symbols, and the accuracy of the first device's perceptual measurement can also be improved through the above configuration information of the communication data signal for perceptual measurement.
  • the above perceived QoS information may include at least one of the following:
  • Perception/synaesthesia integrated service priority perception resolution requirements, perception accuracy or perception error requirements, perception delay budget, maximum perception range requirements, continuous perception capability requirements, perception update frequency requirements, detection probability, False alarm probability, missed detection probability requirements, etc.
  • the first device can decide on its own whether to specifically use the sensing signal or data and which data symbol to use based on the QoS information, thereby improving the flexibility of sensing measurement.
  • the first device indicates feedback information to the second device, and the feedback information is used to indicate at least one of the following: validity of the perceptual measurement results and correctness of communication data reception; reasons for invalid perceptual measurement results; first signal Parameter configuration; wherein the perceptual measurement result is a measurement result of perceptual measurement of the first signal received by the first device.
  • the first device feeds back perceptual measurement related information to the second device to implement perceptual measurement.
  • Figure 5 is a flow chart of an information acquisition method provided by an embodiment of the present application. As shown in Figure 5, it includes the following steps:
  • Step 501 The second device obtains feedback information indicated by the first device, where the feedback information is used to indicate at least one of the following:
  • the perceptual measurement result is a measurement result of perceptual measurement of the first signal received by the first device.
  • the feedback information includes an indication bit, where the indication bit is at least one bit used to indicate the validity of the perceptual measurement result and the correctness of the communication data reception.
  • the indication bits are 2 bits, wherein: the 2 bits respectively indicate the validity of the perceptual measurement result and the correctness of the communication data reception; or the 2 bits indicate the validity of the perceptual measurement result and the correctness of the communication data reception in a joint encoding manner. Correctness of communication data reception;
  • the indication bit is 1 bit, and the 1 bit indicates the validity of the perceptual measurement result and the correctness of the communication data reception.
  • the indication bit is 1 bit, used to indicate communication data reception error, and the sensing measurement result is invalid;
  • the indication bits are 2 bits, of which 1 bit indicates that the communication data is received correctly, and the other 1 bit indicates the validity of the perceptual measurement result;
  • the first signal is a communication data signal.
  • the indication bits are m+1 bits, and m is an integer greater than 1, where:
  • m bits indicate the validity level of the sensing measurement results, and 1 bit indicates the correctness of communication data reception;
  • the m+1 bits indicate the perceptual measurement result validity level and communication data reception correctness in a jointly encoded manner.
  • the second device obtains feedback information indicated by the first device, including:
  • the second device obtains the feedback information by discontinuously sending DTX by the first device.
  • the reason why the perceptual measurement result is invalid is at least one of the following:
  • the quality of the first signal detected by the first device does not meet the threshold requirement
  • the perception measurement results obtained by the first device do not meet the perception requirements
  • the first device does not demodulate the data correctly
  • the first device When the feedback time point of the feedback information arrives, the first device does not obtain the sensing measurement result.
  • the parameter configuration includes at least one of the following:
  • Waveform subcarrier interval, guard interval, bandwidth, burst duration, time domain interval, transmitted signal power, signal format, signal direction, time resources, frequency domain resources, quasi-co-located QCL relationship.
  • the feedback information is also used to indicate at least one of the following:
  • the feedback information indicates that the perceptual measurement result is valid
  • the feedback information indicates the perceptual measurement result
  • the feedback information indicates at least one of the following:
  • the feedback information when the perceptual measurement result is valid, includes a first indication bit of communication data reception correctness, and also includes at least one of the following:
  • the feedback information includes a second indication bit of communication data reception correctness, the second indication bit is used to indicate the communication data reception correctness, and implicitly indicates that the perceptual measurement result is invalid.
  • the feedback information when the perceptual measurement result is invalid, includes a third indication bit of communication data reception correctness, and also includes at least one of the following:
  • the feedback information includes a fourth indication bit of communication data reception correctness, the fourth indication bit is used to indicate the communication data reception correctness, and implicitly indicates that the perceptual measurement result is valid.
  • the method before the second device obtains the feedback information indicated by the first device, the method further includes:
  • the second device sends first indication information to the first device, where the first indication information is used to indicate at least one of the following:
  • the rules for perception measurement result validity and communication data reception correctness feedback include at least one of the following:
  • the criteria for judging the validity of the perceptual measurement results include at least one of the following:
  • the first signal is a communication data signal, whether the first device demodulates the data correctly;
  • the method before the second device obtains the feedback information indicated by the first device, the method further includes:
  • the second indication information sent by the second device to the first device is used to indicate at least one of the following:
  • this embodiment is an implementation of the second device corresponding to the embodiment shown in Figure 4.
  • This embodiment mainly describes the format of feedback information, which may be as follows:
  • each time the validity indication of a single perceptual measurement result and the single communication data reception correctness indication are fed back as shown in Figure 6, where each perceptual measurement result (or each perceptual measurement result validity indication) is associated with one Or multiple sensing measurements are associated, and the one sensing measurement may be a measurement based on one or more first signals.
  • the feedback information format can be as follows:
  • Method 1 Feedback that the measurement result is valid or the measurement result is invalid + the communication data is received correctly or incorrectly;
  • Each 1 bit indicates the validity of the perceptual measurement result and the correctness of the communication data reception.
  • Joint coding or independent coding can be used.
  • the independent coding code rate can be different to meet different priority or importance requirements: 1 bit indicates the perceptual measurement. Result validity: For example, "0" indicates that the perception measurement result is invalid, "1" indicates that the perception measurement result is valid; the other 1 bit indicates the correctness of communication data reception, that is, ACK/NACK: For example, “0" indicates communication data reception error ( NACK), "1" indicates that the communication data is received correctly (ACK); or
  • 2 bits jointly indicate the validity of the perception measurement results and the correctness of the communication data reception, using joint coding, that is, a total of 4 states.
  • this state (communication
  • the 2-bit value corresponding to the data reception error and the sensing measurement result is valid) can be reserved, for example, as shown in Table 1 above.
  • 1 bit can be fed back, such as the logical AND result of the validity of the perception measurement result and the communication data reception correctness indication information: "0" means communication data reception error (NACK) or the perception measurement result is invalid, "1” means The communication data is received correctly (ACK) and the sensing measurement results are valid;
  • the first signal is a communication data signal
  • 1 bit or 2 bits can also be fed back, as follows:
  • the communication data When the communication data is received correctly, it is represented by 2 bits, of which 1 bit is "1" indicating that the communication data is received correctly (ACK), and the other 1 bit is used to indicate whether the perception measurement result is valid.
  • the communication data reception correctness indication and the perception measurement result are valid.
  • the sex indication needs to be encoded independently, and the communication data reception correctness indication comes first.
  • m+1 (m>1) bits can be fed back.
  • it can be divided into three states: invalid, the first threshold is valid but invalid according to the second threshold, and the second threshold is valid (assuming the second threshold is higher), which is similar to the situation represented by 2 bits.
  • m bits and 1 bit can be used to indicate the validity of the sensing measurement results and the number of communications respectively.
  • m+1 bits can also be used to jointly indicate the validity of the perception measurement results and the communication data reception correctness;
  • DTX can be used to indicate that the feedback measurement result is valid or the measurement result is invalid + the communication data is received correctly or incorrectly.
  • the first device does not detect the first signal or detects the first signal SNR, RSRP, RSSI, or the signal is miscellaneous.
  • DTX is fed back, that is, no signal is sent on the designated feedback channel time-frequency resource, that is, DTX can be used to indirectly feedback the reason for invalid sensing measurement results at this time);
  • DTX can be used to add an indication state (the corresponding time-frequency domain of the validity indication of the perceptual measurement results and the corresponding indication of the communication data reception correctness) using DTX. No signal is sent on the feedback resource); when the validity of the perceptual measurement results and the correctness of the communication data reception are jointly coded, an indication state can also be added by using DTX as a whole (on the time-frequency domain feedback resource corresponding to the joint coding information No signaling is performed).
  • Method 2 feedback valid measurement results + perception measurement results + communication data reception correctness or feedback measurement results invalid + communication data reception correctness. The details can be as follows:
  • the feedback "1" indicates that the perception result is valid, and the perception measurement result is fed back, as well as the communication data reception correctness indication; when the perception measurement result is invalid, the feedback "0" indicates that the perception result is invalid, and the communication data is fed back Receive correctness.
  • One format may be: feeding back the sensing measurement results when indicating the validity of the sensing measurement results, and then feeding back the communication data reception correctness indication, for example, as shown in Figure 7 or 8.
  • One format may be: first feeding back the perception measurement result validity indication and communication data reception correctness indication, and then feeding back the perception measurement result, for example: as shown in Figure 8 or 9.
  • the above feedback format can also be such that the communication data reception correctness indication comes first, and the perception measurement result validity indication and perception measurement results follow. For example, information with high priority is placed in the front, and when the importance of communication feedback is When it is higher, communication is placed in the front, otherwise perception is placed in the front.
  • Method 3 Feedback valid measurement results + perception measurement results + communication data reception correctness indication or feedback measurement results invalid + invalid reason + communication data reception correctness indication.
  • the feedback "1" indicates that the perception result is valid, and the perception measurement result is fed back, as well as the communication data reception correctness indication; when the perception measurement result is invalid, the feedback "0" indicates that the perception result is invalid, and the perception measurement is fed back Reasons for invalid results, and feedback communication data reception correctness indication.
  • One format may be: feedback the perception measurement result when the validity indication of the perception measurement result is fed back, and then feedback the communication data reception correctness indication, for example as shown in Figure 10 or Figure 11 .
  • the above feedback format can also be that the communication data reception correctness indication comes first, and the perception measurement result validity indication and the perception measurement result or invalid reason follow.
  • the information with high priority is placed in the front, and when the communication feedback When the importance is higher, communication is placed first, otherwise perception is placed first.
  • Method 4 feedback measurement results are valid + perception measurement results + communication data reception correctness indication or feedback measurement results are invalid + recommended first signal parameter configuration + communication data reception correctness indication, the details can be as follows:
  • the feedback "1" indicates that the perception result is valid, as well as the communication data reception correctness indication, and the perception measurement result is fed back; when the perception measurement result is invalid, the feedback "0" indicates that the perception result is invalid, and the feedback suggestion is A signal parameter configuration, and feedback communication data reception correctness indication.
  • Method 5 feedback valid measurement results + perception measurement results + communication data reception correctness indication or feedback measurement results invalid + invalid reason + recommended first signal parameter configuration + communication data reception correctness indication, the details can be as follows:
  • the feedback "1" indicates that the perception result is valid, and the perception measurement result is fed back, as well as the communication data reception correctness indication; when the perception measurement result is invalid, the feedback "0" indicates that the perception result is invalid, and the perception measurement is fed back.
  • the invalid reasons and the suggested first signal parameter configuration can also be determined according to the importance. sequence, and both can be encoded independently.
  • Method 6 Feedback that the measurement result is valid + communication data reception correctness indication or feedback measurement result is invalid + invalid reason + communication data reception correctness indication.
  • the feedback "1" indicates that the perception result is valid, and the communication data reception correctness indication is fed back; when the perception measurement result is invalid, the feedback "0" indicates that the perception measurement result is invalid, and the reason for the invalid perception measurement result is fed back, and Communication data reception correctness indication.
  • Method 7 Feedback measurement results are valid + communication data reception correctness indication or feedback measurement results are invalid + recommended first signal parameter configuration + communication data reception correctness indication, the details can be as follows:
  • Method 8 Feedback measurement results are valid + communication data reception correctness indication or feedback measurement results are invalid + invalid reason + recommended first signal parameter configuration + communication data reception correctness indication, the details can be as follows:
  • the feedback "1" indicates that the perception result is valid, and the communication data reception correctness indication is fed back; when the perception measurement result is invalid, the feedback "0" indicates that the perception measurement result is invalid, and the reasons and suggestions for the invalid perception measurement result are fed back First signal parameter configuration, and feedback communication data reception correctness indication.
  • Method 9 Only when the perception measurement result is valid, feedback the perception measurement result is valid and/or the perception measurement result + communication data reception correctness indication; when the measurement result is invalid, only the communication data reception correctness indication is fed back.
  • Method 10 Only when the sensing measurement results are invalid, feedback the invalid sensing measurement results and/or invalid reasons and/or recommended first signal parameter configuration + communication data reception correctness indication; when the measurement results are valid, only feedback the communication data reception correctness indication .
  • the sensing measurement results, sensing requirements and sensing services can be defined as follows:
  • the above-mentioned perceptual measurement results are the measurement results associated with the perceptual measurement quantity, that is, the value of the measurement quantity. Specifically, they may include at least one of the following:
  • Original channel information compressed quantized information of channel matrix H or H, channel state information (Channel State Information, CSI), such as the amplitude of the frequency domain channel response, or the square sum/or phase of the frequency domain channel response amplitude, or the frequency
  • CSI Channel State Information
  • the I and Q signal characteristics of the domain channel response such as the amplitude or the square of the amplitude of the I and/or Q signals;
  • Spectral information channel power-delay profile (PDP), Doppler power spectrum, power azimuth spectrum (PAS), pseudo-spectrum information (such as Multiple Signal Classification (MUSIC) spectrum ), time delay-Doppler two-dimensional spectrum, time delay-Doppler-angle three-dimensional spectrum;
  • PDP channel power-delay profile
  • PAS power azimuth spectrum
  • MUSIC pseudo-spectrum information
  • Multipath information power, phase, delay, and angle information of each path in the multipath channel (including at least the first reach path, Line of Sight (LOS) path, first-order reflection path, and multi-order reflection path);
  • LOS Line of Sight
  • Angle information arrival angle, departure angle (including terminal side angle information, base station side angle information and reflection point angle information);
  • the projection operation can be I*cos(theta)+Q*sin(theta), where theta is a certain angle value, different theta corresponds to different projections, I represents the I-channel data, and Q represents the Q-channel data), the amplitude ratio or amplitude difference of the received signals of the first antenna and the second antenna, the phase difference of the signals of the first antenna and the second antenna, and the delay difference of the signals of the first antenna and the second antenna;
  • Target parameter information determined based on original channel information Doppler spread, Doppler frequency shift, maximum delay spread, angle spread, coherence bandwidth, and coherence time.
  • the above-mentioned measured quantities it also includes new measured quantities generated by operations based on two or more of the above-mentioned measured quantities.
  • the above perceived demand information may include at least one of the following:
  • Perception business types such as intrusion detection, trajectory tracking, environment reconstruction, breathing detection, action recognition, etc.
  • Sensing area for example, sensing area geographical coordinates, sensing area length, width, height, distance, angle range, etc.
  • the type of sensing target such as cars, motorcycles, pedestrians, etc., indicates the moving speed range of the sensing target and the reflected power level of wireless signals;
  • Sensing/synaesthesia integrated QoS for example, sensing/synaesthesia integrated service priority, sensing resolution requirements, sensing accuracy or sensing error requirements, sensing delay budget, maximum sensing range requirements, continuous sensing capability requirements , Perception update frequency requirements, detection probability, false alarm probability, missed detection probability requirements, etc.;
  • Communication QoS for synesthesia integrated services, such as communication delay budget, false alarm rate, etc.
  • Sensing target density within the sensing area is Sensing target density within the sensing area.
  • the above sensing services may be but are not limited to at least one of the following:
  • Object feature detection Information that can reflect the attributes or status of the target object, which can be at least one of the following: the existence of the target object, the position of the target object, the speed of the target object, the acceleration of the target object, the material of the target object, the target The shape of the object, the category of the target object, the radar cross section (RCS) of the target object, polarization scattering characteristics, etc.;
  • Event detection Information related to the target event, that is, information that can be detected/perceived when the target event occurs, can be: fall detection, intrusion detection, quantity statistics, indoor positioning, gesture recognition, lip recognition, gait recognition, Expression recognition, breathing monitoring, heart rate monitoring, sound source discrimination, etc.;
  • Environmental detection humidity, brightness, temperature and humidity, atmospheric pressure, air quality, weather conditions, topography, building/vegetation distribution, people statistics, crowd density, vehicle density, etc.
  • the criteria for judging whether the perceptual measurement results are valid may include at least one of the following:
  • the first signal quality detected by the receiving end (including at least one of SNR, RSRP, RSSI, and signal-to-noise ratio) meets the threshold requirements;
  • the perceptual performance indicators can be at least one of the following:
  • Perception accuracy/perception error sensing resolution, sensing range, sensing delay, detection probability, false alarm probability, number of targets detected simultaneously, signal to clutter ratio, signal side lobe characteristics (signal main lobe side lobe ratio), peak average Ratio (Peak to Average Power Ratio, PAPR), variance, standard deviation, the ratio of the target sensing signal component to other sensing signal components, for example, the amplitude corresponding to the sample point with the largest Doppler domain amplitude in breathing detection is used as the target sensing component, That is to say, the sample point with the largest amplitude is considered to be the sample point corresponding to the respiratory frequency; the amplitudes corresponding to other sample points except the sample point with the largest amplitude are regarded as other sensory signal components.
  • the receiving end demodulates the data correctly and performs sensing based on the communication data, adopts the method of demodulating first and then estimating the sensing parameters. If the communication demodulation is wrong, the sensing measurement results will be affected and become unreliable;
  • the receiving end successfully obtains the sensing measurement results when the feedback time point arrives, for example, whether the processing of the sensing measurement results times out.
  • the perceptual measurement result When the perceptual measurement result satisfies at least one of the above, the perceptual measurement result is considered valid, otherwise it is considered invalid. For example, if the first and second items are satisfied, that is, when the first signal quality reaches the threshold requirement and the perceptual measurement result meets the perceptual requirement, the perceptual measurement result is considered valid.
  • the first device performs perceptual measurement according to the instruction information related to the perceptual measurement signal configuration, provides feedback on the validity of the perceptual measurement results and the correctness of the communication data reception, and evaluates the perceptual measurement results and perceptual data based on the validity of the perceptual measurement results.
  • Figure 14 is a structural diagram of an information feedback device provided by an embodiment of the present application. As shown in Figure 14, it includes:
  • Instruction module 1401 configured to indicate feedback information to the second device, where the feedback information is used to indicate at least one of the following:
  • the perceptual measurement result is a measurement result of perceptual measurement of the first signal received by the first device.
  • the feedback information includes an indication bit, where the indication bit is at least one bit used to indicate the validity of the perceptual measurement result and the correctness of the communication data reception.
  • the indication bits are 2 bits, wherein: the 2 bits respectively indicate the validity of the perceptual measurement result and the correctness of the communication data reception; or the 2 bits indicate the validity of the perceptual measurement result and the correctness of the communication data reception in a joint encoding manner. Correctness of communication data reception;
  • the indication bit is 1 bit, and the 1 bit indicates the validity of the perceptual measurement result and the correctness of the communication data reception.
  • the indication bit is 1 bit, used to indicate communication data reception error, and the sensing measurement result is invalid;
  • the indication bits are 2 bits, of which 1 bit indicates that the communication data is received correctly, and the other 1 bit indicates the validity of the perceptual measurement result;
  • the first signal is a communication data signal.
  • the indication bits are m+1 bits, and m is an integer greater than 1, where:
  • m bits indicate the validity level of the sensing measurement results, and 1 bit indicates the correctness of communication data reception;
  • the m+1 bits indicate the perceptual measurement result validity level and communication data reception correctness in a jointly encoded manner.
  • the indication module 1401 is configured to indicate the feedback information to the second device by sending DTX discontinuously.
  • the reason why the perceptual measurement result is invalid is at least one of the following:
  • the quality of the first signal detected by the first device does not meet the threshold requirement
  • the perception measurement results obtained by the first device do not meet the perception requirements
  • the first device does not demodulate the data correctly
  • the first device When the feedback time point of the feedback information arrives, the first device does not obtain the sensing measurement result.
  • the parameter configuration includes at least one of the following:
  • Waveform subcarrier interval, guard interval, bandwidth, burst duration, time domain interval, transmitted signal power, signal format, signal direction, time resources, frequency domain resources, quasi-co-located QCL relationship.
  • the feedback information is also used to indicate at least one of the following:
  • the feedback information indicates that the perceptual measurement result is valid
  • the feedback information indicates the perceptual measurement result
  • the feedback information indicates at least one of the following:
  • the feedback information when the perceptual measurement result is valid, includes a first indication bit of communication data reception correctness, and also includes at least one of the following:
  • the feedback information includes a second indication bit of communication data reception correctness, the second indication bit is used to indicate the communication data reception correctness, and implicitly indicates that the perceptual measurement result is invalid.
  • the feedback information when the perceptual measurement result is invalid, includes a third indication bit of communication data reception correctness, and also includes at least one of the following:
  • the feedback information includes a fourth indication bit of communication data reception correctness, the fourth indication bit is used to indicate the communication data reception correctness, and implicitly indicates that the perceptual measurement result is valid.
  • the device also includes:
  • a first receiving module configured to receive first indication information sent by the second device, where the first indication information is used to indicate at least one of the following:
  • the rules for perception measurement result validity and communication data reception correctness feedback include at least one of the following:
  • the criteria for judging the validity of the perceptual measurement results include at least one of the following:
  • the first signal is a communication data signal, whether the first device demodulates the data correctly;
  • the device also includes:
  • a second receiving module configured for the first device to receive second indication information sent by the second device, where the second indication information is used to indicate at least one of the following:
  • the above information feedback device can realize perceptual measurement.
  • the information feedback device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device can be a terminal or
  • the terminal may include but is not limited to the types of terminals listed in the embodiments of this application.
  • Other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in this embodiment of the application.
  • the information feedback device provided by the embodiment of the present application can implement each process implemented by the method embodiment shown in Figure 4 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • Figure 15 is a structural diagram of an information acquisition device provided by an embodiment of the present application. As shown in Figure 15, it includes:
  • Obtaining module 1501 is used by the second device to obtain feedback information indicated by the first device, where the feedback information is used to indicate at least one of the following:
  • the perceptual measurement result is a measurement result of perceptual measurement of the first signal received by the first device.
  • the feedback information includes an indication bit, where the indication bit is at least one bit used to indicate the validity of the perceptual measurement result and the correctness of the communication data reception.
  • the indication bits are 2 bits, wherein: the 2 bits respectively indicate the validity of the perceptual measurement result and the correctness of the communication data reception; or the 2 bits indicate the validity of the perceptual measurement result and the correctness of the communication data reception in a joint encoding manner. Correctness of communication data reception;
  • the indication bit is 1 bit, and the 1 bit indicates the validity of the perceptual measurement result and the correctness of the communication data reception.
  • the indication bit is 1 bit, used to indicate communication data reception error, and the sensing measurement result is invalid;
  • the indication bits are 2 bits, of which 1 bit indicates that the communication data is received correctly, and the other 1 bit indicates the validity of the perceptual measurement result;
  • the first signal is a communication data signal.
  • the indication bits are m+1 bits, and m is an integer greater than 1, where:
  • m bits indicate the validity level of the sensing measurement results, and 1 bit indicates the correctness of communication data reception;
  • the m+1 bits indicate the perceptual measurement result validity level and communication data reception correctness in a jointly encoded manner.
  • the obtaining module 1501 is configured to obtain the feedback information by discontinuously sending DTX by the first device.
  • the reason why the perceptual measurement result is invalid is at least one of the following:
  • the quality of the first signal detected by the first device does not meet the threshold requirement
  • the perception measurement results obtained by the first device do not meet the perception requirements
  • the first device does not demodulate the data correctly
  • the first device When the feedback time point of the feedback information arrives, the first device does not obtain the sensing measurement result.
  • the parameter configuration includes at least one of the following:
  • Waveform subcarrier interval, guard interval, bandwidth, burst duration, time domain interval, transmitted signal power, signal format, signal direction, time resources, frequency domain resources, quasi-co-located QCL relationship.
  • the feedback information is also used to indicate at least one of the following:
  • the feedback information indicates that the perceptual measurement result is valid
  • the feedback information indicates the perceptual measurement result
  • the feedback information indicates at least one of the following:
  • the feedback information when the perceptual measurement result is valid, includes a first indication bit of communication data reception correctness, and also includes at least one of the following:
  • the feedback information includes a second indication bit of communication data reception correctness, the second indication bit is used to indicate the communication data reception correctness, and implicitly indicates that the perceptual measurement result is invalid.
  • the feedback information when the perceptual measurement result is invalid, includes a third indication bit of communication data reception correctness, and also includes at least one of the following:
  • the feedback information includes a fourth indication ratio of communication data reception correctness.
  • the fourth indication bit is used to indicate the correctness of communication data reception, and implicitly indicates that the perceptual measurement result is valid.
  • the device also includes:
  • a first sending module configured to send first indication information to the first device, where the first indication information is used to indicate at least one of the following:
  • the rules for perception measurement result validity and communication data reception correctness feedback include at least one of the following:
  • the criteria for judging the validity of the perceptual measurement results include at least one of the following:
  • the first signal is a communication data signal, whether the first device demodulates the data correctly;
  • the device also includes:
  • the second sending module is used to send second indication information to the first device, where the second indication information is used to indicate at least one of the following:
  • the above information acquisition device can realize perceptual measurement.
  • the information acquisition device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a network-side device, or may be other devices besides the network-side device.
  • network side devices may include but are not limited to the types of network side devices listed in the embodiments of this application.
  • Other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in this embodiment of the application. .
  • the information acquisition device provided by the embodiment of the present application can implement each process implemented by the method embodiment shown in Figure 5 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 1600, which includes a processor 1601 and a memory 1602.
  • the memory 1602 stores programs or instructions that can be run on the processor 1601, such as , when the communication device 1600 is the first device, when the program or instruction is executed by the processor 1601, each step of the above information feedback method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 1600 is the second device, when the program or instruction is executed by the processor 1601, each step of the above information acquisition method embodiment is implemented, and the same technical effect can be achieved. To avoid duplication, the details are not repeated here.
  • An embodiment of the present application also provides a communication device.
  • the communication device is a first device and includes a processor and a communication interface.
  • the communication interface is used by the first device to indicate feedback information to the second device.
  • the feedback information is used to indicate At least one of the following: validity of perceptual measurement results and correctness of communication data reception; reasons for invalid perceptual measurement results; parameter configuration of the first signal; wherein the perceptual measurement results are the first signals received by the first device.
  • the signal is the measurement result of the perceptual measurement.
  • This first device embodiment corresponds to the above-mentioned first device-side method embodiment. Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this first device embodiment, and can achieve the same technical effect.
  • FIG. 17 is a schematic diagram of the hardware structure of a communication device that implements an embodiment of the present application.
  • the communication device 1700 is a first device, including but not limited to: radio frequency unit 1701, network module 1702, audio output unit 1703, input unit 1704, sensor 1705, display unit 1706, user input unit 1707, interface unit 1708, memory 1709 and At least some components of processor 1710 and the like.
  • the communication device 1700 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 1710 through a power management system, thereby managing charging, discharging, and function through the power management system. Consumption management and other functions.
  • the terminal structure shown in FIG. 17 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 1704 may include a graphics processing unit (Graphics Processing Unit, GPU) 17041 and a microphone 17042.
  • the graphics processing unit 17041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 1706 may include a display panel 17061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1707 includes a touch panel 17071 and at least one of other input devices 17072 . Touch panel 17071, also known as touch screen.
  • the touch panel 17071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 17072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 1701 after receiving downlink data from the network side device, the radio frequency unit 1701 can transmit it to the processor 1710 for processing; in addition, the radio frequency unit 1701 can send uplink data to the network side device.
  • the radio frequency unit 1701 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 1709 may be used to store software programs or instructions as well as various data.
  • Memory 1709 may primarily include storage A first storage area for programs or instructions and a second storage area for storing data, where the first storage area can store an operating system, an application program or instructions required for at least one function (such as a sound playback function, an image playback function, etc.), etc. .
  • memory 1709 may include volatile memory or nonvolatile memory, or memory 1709 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory Synchronous DRAM, SDRAM
  • Double data rate synchronous dynamic random access memory Double Data Rate SDRAM, DDRSDRAM
  • Enhanced SDRAM, ESDRAM synchronous link dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • the processor 1710 may include one or more processing units; optionally, the processor 1710 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 1710.
  • the radio frequency unit 1701 is used to indicate feedback information to the second device, where the feedback information is used to indicate at least one of the following:
  • the perceptual measurement result is a measurement result of perceptual measurement of the first signal received by the first device.
  • the feedback information includes an indication bit, where the indication bit is at least one bit used to indicate the validity of the perceptual measurement result and the correctness of the communication data reception.
  • the indication bits are 2 bits, wherein: the 2 bits respectively indicate the validity of the perceptual measurement result and the correctness of the communication data reception; or the 2 bits indicate the validity of the perceptual measurement result and the correctness of the communication data reception in a joint encoding manner. Correctness of communication data reception;
  • the indication bit is 1 bit, and the 1 bit indicates the validity of the perceptual measurement result and the correctness of the communication data reception.
  • the indication bit is 1 bit, used to indicate communication data reception error, and the sensing measurement result is invalid;
  • the indication bits are 2 bits, of which 1 bit indicates that the communication data is received correctly, and the other 1 bit indicates the validity of the perceptual measurement result;
  • the first signal is a communication data signal.
  • the indication bits are m+1 bits, and m is an integer greater than 1, where:
  • m bits indicate the validity level of the sensing measurement results, and 1 bit indicates the correctness of communication data reception;
  • the m+1 bits indicate the perceptual measurement result validity level and communication data reception correctness in a jointly encoded manner.
  • the first device indicates feedback information to the second device, including:
  • the first device indicates the feedback information to the second device by sending DTX discontinuously.
  • the reason why the perceptual measurement result is invalid is at least one of the following:
  • the quality of the first signal detected by the first device does not meet the threshold requirement
  • the perception measurement results obtained by the first device do not meet the perception requirements
  • the first device does not demodulate the data correctly
  • the first device When the feedback time point of the feedback information arrives, the first device does not obtain the sensing measurement result.
  • the parameter configuration includes at least one of the following:
  • Waveform subcarrier interval, guard interval, bandwidth, burst duration, time domain interval, transmitted signal power, signal format, signal direction, time resources, frequency domain resources, quasi-co-located QCL relationship.
  • the feedback information is also used to indicate at least one of the following:
  • the feedback information indicates that the perceptual measurement result is valid
  • the feedback information indicates the perceptual measurement result
  • the feedback information indicates at least one of the following:
  • the feedback information when the perceptual measurement result is valid, includes a first indication bit of communication data reception correctness, and also includes at least one of the following:
  • the feedback information includes a second indication bit of communication data reception correctness, the second indication bit is used to indicate the communication data reception correctness, and implicitly indicates that the perceptual measurement result is invalid.
  • the feedback information when the perceptual measurement result is invalid, includes a third indication bit of communication data reception correctness, and also includes at least one of the following:
  • the feedback information includes a fourth indication bit of communication data reception correctness, the fourth indication bit is used to indicate the communication data reception correctness, and implicitly indicates that the perceptual measurement result is valid.
  • the radio frequency unit 1701 is also used to:
  • the rules for perception measurement result validity and communication data reception correctness feedback include at least one of the following:
  • the criteria for judging the validity of the perceptual measurement results include at least one of the following:
  • the first signal is a communication data signal, whether the first device demodulates the data correctly;
  • the radio frequency unit 1701 is also used to:
  • the first device is used as a terminal for illustration.
  • the above-mentioned first device can implement perceptual measurement.
  • An embodiment of the present application also provides a communication device, which is a second device and includes a processor and a communication interface, wherein the communication interface is used to obtain feedback information indicated by the first device, and the feedback information is used to Indicates at least one of the following: validity of the perceptual measurement result and correctness of communication data reception; reason for invalid perceptual measurement result; parameter configuration of the first signal; wherein the perceptual measurement result is the response to the first signal received by the first device.
  • a signal is the measurement result of a perceptual measurement.
  • This second equipment embodiment corresponds to the above-mentioned second equipment method embodiment. Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this second equipment embodiment, and can achieve the same technical effect.
  • the communication device 1800 includes: an antenna 1801, a radio frequency device 1802, a baseband device 1803, a processor 1804 and a memory 1805.
  • Antenna 1801 is connected to radio frequency device 1802.
  • the radio frequency device 1802 receives information through the antenna 1801 and sends the received information to the baseband device 1803 for processing.
  • the baseband device 1803 processes the information to be sent and sends it to the radio frequency device 1802.
  • the radio frequency device 1802 processes the received information and then sends it out through the antenna 1801.
  • the method performed by the communication device in the above embodiment can be implemented in the baseband device 1803, which includes a baseband processor.
  • the baseband device 1803 may include, for example, at least one baseband board, which is provided with multiple chips, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the communication device may also include a network interface 1806, such as a common public radio interface (CPRI).
  • a network interface 1806 such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the communication device 1800 of the embodiment of the present invention also includes: instructions or programs stored in the memory 1805 and executable on the processor 1804.
  • the processor 1804 calls the instructions or programs in the memory 1805 to execute the modules shown in Figure 14 The implementation method and achieve the same technical effect will not be repeated here to avoid repetition.
  • the radio frequency device 1802 is used to obtain feedback information indicated by the first device, where the feedback information is used to indicate at least one of the following:
  • the perceptual measurement result is a measurement result of perceptual measurement of the first signal received by the first device.
  • the feedback information includes an indication bit, where the indication bit is at least one bit used to indicate the validity of the perceptual measurement result and the correctness of the communication data reception.
  • the indication bits are 2 bits, wherein: the 2 bits respectively indicate the validity of the perceptual measurement result and the correctness of the communication data reception; or the 2 bits indicate the validity of the perceptual measurement result and the correctness of the communication data reception in a joint encoding manner. Correctness of communication data reception;
  • the indication bit is 1 bit, and the 1 bit indicates the validity of the perceptual measurement result and the correctness of the communication data reception.
  • the indication bit is 1 bit, used to indicate communication data reception error, and the sensing measurement result is invalid;
  • the indication bits are 2 bits, of which 1 bit indicates that the communication data is received correctly, and the other 1 bit indicates the validity of the perceptual measurement result;
  • the first signal is a communication data signal.
  • the indication bits are m+1 bits, and m is an integer greater than 1, where:
  • m bits indicate the validity level of the sensing measurement results, and 1 bit indicates the correctness of communication data reception;
  • the m+1 bits indicate the perceptual measurement result validity level and communication data reception correctness in a jointly encoded manner.
  • the second device obtains feedback information indicated by the first device, including:
  • the second device obtains the feedback information by discontinuously sending DTX by the first device.
  • the reason why the perceptual measurement result is invalid is at least one of the following:
  • the quality of the first signal detected by the first device does not meet the threshold requirement
  • the perception measurement results obtained by the first device do not meet the perception requirements
  • the first device does not demodulate the data correctly
  • the first device When the feedback time point of the feedback information arrives, the first device does not obtain the sensing measurement result.
  • the parameter configuration includes at least one of the following:
  • Waveform subcarrier interval, guard interval, bandwidth, burst duration, time domain interval, transmitted signal power, signal format, signal direction, time resources, frequency domain resources, quasi-co-located QCL relationship.
  • the feedback information is also used to indicate at least one of the following:
  • the feedback information indicates that the perceptual measurement result is valid
  • the feedback information indicates the perceptual measurement result
  • the feedback information indicates at least one of the following:
  • the feedback information when the perceptual measurement result is valid, includes a first indication bit of communication data reception correctness, and also includes at least one of the following:
  • the feedback information includes a second indication bit of communication data reception correctness, the second indication bit is used to indicate the communication data reception correctness, and implicitly indicates that the perceptual measurement result is invalid.
  • the feedback information when the perceptual measurement result is invalid, includes a third indication bit of communication data reception correctness, and also includes at least one of the following:
  • the feedback information includes a fourth indication bit of communication data reception correctness, the fourth indication bit is used to indicate the communication data reception correctness, and implicitly indicates that the perceptual measurement result is valid.
  • the radio frequency device 1802 is also used to:
  • first indication information Send first indication information to the first device, where the first indication information is used to indicate at least one of the following:
  • the rules for perception measurement result validity and communication data reception correctness feedback include at least one of the following:
  • the criteria for judging the validity of the perceptual measurement results include at least one of the following:
  • the first signal is a communication data signal, whether the first device demodulates the data correctly;
  • the radio frequency device 1802 is also used to:
  • Second indication information sent to the first device is used to indicate at least one of the following:
  • the second device is used as a network-side device for illustration.
  • the above-mentioned second device can implement perceptual measurement.
  • Embodiments of the present application also provide a readable storage medium, with a program or instructions stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above-mentioned information feedback method or information acquisition method embodiment is implemented. And can achieve the same technical effect. To avoid repetition, they will not be described again here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above information feedback method or information acquisition.
  • Each process of the method embodiment can achieve the same technical effect, so to avoid repetition, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above information feedback method or information.
  • Each process of the method embodiment is obtained and can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • Embodiments of the present application also provide an information feedback system, including: a first device and a second device.
  • the terminal can be used to perform the steps of the above information feedback method.
  • the network side device can be used to perform the above information acquisition method. step.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信息反馈方法、接收方法、装置、设备和存储介质,属于通信技术领域,本申请实施例的信息反馈方法包括:第一设备向第二设备指示反馈信息,所述反馈信息用于指示如下至少一项:感知测量结果有效性和通信数据接收正确性;感知测量结果无效原因;第一信号的参数配置;其中,所述感知测量结果为对所述第一设备接收的所述第一信号进行感知测量的测量结果。

Description

信息反馈方法、接收方法、装置、设备和存储介质
相关申请的交叉引用
本申请主张在2022年3月31日在中国提交的中国专利申请No.202210344601.9的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种信息反馈方法、接收方法、装置、设备和存储介质。
背景技术
未来移动通信系统(例如超5代移动通信系统(Beyond 5th Generation Mobile Communication Technology,B5G)或第六代移动通信系统(6G))除了具备通信能力外,还将具备感知能力。感知能力,即具备感知能力的一个或多个设备,能够通过无线信号的发送和接收,来感知目标物体的方位、距离和/或速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别或成像等。但目前本领域技术人员对于如何实现感知测量技术还处于讨论阶段,也就是说,如何实现感知测量还属于一个待解决的技术问题。
发明内容
本申请实施例提供一种信息反馈方法、接收方法、装置、设备和存储介质,能够解决如何实现感知测量的技术问题。
第一方面,提供了一种信息反馈方法,包括:
第一设备向第二设备指示反馈信息,所述反馈信息用于指示如下至少一项:
感知测量结果有效性和通信数据接收正确性;
感知测量结果无效原因;
第一信号的参数配置;
其中,所述感知测量结果为对所述第一设备接收的所述第一信号进行感知测量的测量结果。
第二方面,提供了一种信息获取方法,包括:
第二设备获取第一设备指示的反馈信息,所述反馈信息用于指示如下至少一项:
感知测量结果有效性和通信数据接收正确性;
感知测量结果无效原因;
第一信号的参数配置;
其中,所述感知测量结果为对所述第一设备接收的所述第一信号进行感知测量的测量结果。
第三方面,提供了一种信息反馈装置,包括:
指示模块,用于向第二设备指示反馈信息,所述反馈信息用于指示如下至少一项:
感知测量结果有效性和通信数据接收正确性;
感知测量结果无效原因;
第一信号的参数配置;
其中,所述感知测量结果为对所述第一设备接收的所述第一信号进行感知测量的测量结果。
第四方面,提供了一种信息获取装置,包括:
获取模块,用于第二设备获取第一设备指示的反馈信息,所述反馈信息用于指示如下至少一项:
感知测量结果有效性和通信数据接收正确性;
感知测量结果无效原因;
第一信号的参数配置;
其中,所述感知测量结果为对所述第一设备接收的所述第一信号进行感知测量的测量结果。
第五方面,提供了一种通信设备,所述通信设备为第一设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如本申请实施例提供的信息反馈方法的步骤。
第六方面,提供了一种通信设备,所述通信设备为第一设备,包括处理器及通信接口,其中,所述通信接口用于第一设备向第二设备指示反馈信息,所述反馈信息用于指示如下至少一项:感知测量结果有效性和通信数据接收正确性;感知测量结果无效原因;第一信号的参数配置;其中,所述感知测量结果为对所述第一设备接收的所述第一信号进行感知测量的测量结果。
第七方面,提供了一种通信设备,所述通信设备为第二设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如本申请实施例提供的信息获取方法的步骤。
第八方面,提供了一种通信设备,所述通信设备为第二设备,包括处理器及通信接口,其中,所述通信接口用于获取第一设备指示的反馈信息,所述反馈信息用于指示如下至少一项:感知测量结果有效性和通信数据接收正确性;感知测量结果无效原因;第一信号的参数配置;其中,所述感知测量结果为对所述第一设备接收的所述第一信号进行感知测量的测量结果。
第九方面,提供了一种信息反馈系统,包括:第一设备及第二设备,所述终端可用于执行如第一方面所述的信息反馈方法的步骤,所述网络侧设备可用于执行如第二方面所述 的信息获取方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的信息反馈方法的步骤,或者实现如第二方面所述的信息获取方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的信息反馈方法,或实现如第二方面所述的信息获取方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的信息反馈方法的步骤,或者所述计算机程序/程序产品被至少一个处理器执行以实现如第二方面所述的信息获取方法的步骤。
本申请实施例中,第一设备向第二设备指示反馈信息,所述反馈信息用于指示如下至少一项:感知测量结果有效性和通信数据接收正确性;感知测量结果无效原因;第一信号的参数配置;其中,所述感知测量结果为对所述第一设备接收的所述第一信号进行感知测量的测量结果。这样第一设备向第二设备反馈感知测量的相关信息,以实现感知测量。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例提供的一种无线感知的示意图;
图3是本申请实施例提供的另一种无线感知的示意图;
图4是本申请实施例提供的一种信息反馈方法的流程图;
图5是本申请实施例提供的一种信息获取方法的流程图;
图6是本申请实施例提供的一种信息反馈方法的示意图;
图7至13是本申请实施例提供的反馈信息格式的示意图;
图14是本申请实施例提供的一种信息反馈装置的结构图;
图15是本申请实施例提供的一种信息获取装置的结构图;
图16是本申请实施例提供的一种通信设备的结构图;
图17是本申请实施例提供的另一种通信设备的结构图;
图18是本申请实施例提供的另一种通信设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端、网络侧设备和核心网设备。
本申请实施例中,终端可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端的具体类型。
网络侧设备可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Networks,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发 送接收点(Transmission Reception Point,TRP)、接入点(Access Point,AP)、中继(Relay)、智能反射表面(Reconfigurable Intelligence Surface,RIS)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
本申请实施例中,网络侧设备和终端具备感知能力,能够通过无线信号的发送和接收,来感知目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等。例如:在一些场景或者实施方式中,感知类别可以如下表1所示:
表1
需要说明的是,上述表1所示的感知类别仅是一个举例说明,本申请实施例中对感知测量的类别并不作限定。
另外,本申请实施例可以应用于通信与雷达的一体化的通信感知融合应用场景,在该场景的联合设计包括频谱共存,即两系统独立工作,可以允许信息交换以降低互相之间的干扰。在接收端共享的情况下,此时两系统发端发送各自的信号波形,两系统的波形需要 具备正交性,从而不影响各自的接收检测;在发送端共享的情况下,发送端发射雷达与通信的联合波形;在收发端共享的情况下,两系统收发两侧进行资源共享,同样需要使用联合波形或者存在正交关系的波形。需要说明的是,上述通信与雷达的一体化的通信感知融合应用场景为本申请实施例应用场景的一个举例,本申请实施例中对对应场景不作限定。
本申请实施例中,在进行感知时,可以是基于单站模式的感知,即收发共址,发送端发射感知信号,然后自己接收回波信号并进行分析,提取感知参数,例如,如图2所示,基站作为感知信号的发送端与接收端,终端或其他物体作为感知目标;也可以是基于双站或者多站模式的感知,即收发不共址,发送端发射感知信号,其他接收端进行接收并分析,提取感知参数,例如,如图3所示,基站1作为感知信号发送端,终端或者基站2作为感知信号接收端。
本申请实施例中,通信系统可以将承载信息的调制符号与用于信道估计的导频符号联合发送,重点关注译码性能,其信道估计算法仅需估计具有有限未知参数的复合信道,通常以提高吞吐量和传输可靠性为优化目标,关注的性能指标一般是频谱效率、信道容量、信噪比(Signal-to-noise ratio,SNR)、信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)、比特出错概率(Bit Error Ratio,BER)、误块率(Block Error Rate,BLER)、误码率(symbol error rate,SER)等。而感知系统信号发送过程中无需考虑信息承载问题,通常使用优化或未经调制的发射信号,可以重点关注感知目标对发射信号带来的改变,即响应特性,通常以提高参数估计精度为优化目标,性能衡量指标可能是模糊函数、克拉美罗下界、均方根误差、互信息、率失真函数、雷达估计速率、韦尔奇下界以及一些与感知场景和需求相关联的指标。
本申请实施例中,在一些场景或者实施方式中,将同时支持无线通信信号和无线感知信号,通过信号联合设计和/或硬件共享等通信感知一体化手段,实现通信和感知功能一体化设计,在进行信息传递的同时,具备感知能力或者提供感知服务。这样通过通感(通信和感知)一体化可以达到节约成本、减小设备尺寸、降低设备功耗、提升频谱效率、减小通感间的互干扰和提升系统性能等效果。
另外,通感一体化可以包括但不限于如下至少一种:
同一网络提供通信服务和感知服务;
同一终端提供通信服务和感知服务;
同一频谱提供通信服务和感知服务;
同一次无线电发射中完成集成的通感一体化服务,即通信信号和感知信号的联合设计。
本申请实施例中,对于通感融合或通感一体化场景,感知测量可以使用专用感知信号,也可以复用通信信号,例如数据和/或导频,关于感知测量信号的使用可以由发送方指示接收方,例如基站指示终端使用那种类型的信号进行感知测量。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的一种信息反馈方法、接收方法、装置、设备和存储介质进行详细地说明。
请参见图4,图4是本申请实施例提供的一种信息反馈方法的流程图,如图4所示,包括以下步骤,包括:
步骤401、第一设备向第二设备指示反馈信息,所述反馈信息用于指示如下至少一项:
感知测量结果有效性和通信数据接收正确性;
感知测量结果无效原因;
第一信号的参数配置;
其中,所述感知测量结果为对所述第一设备接收的所述第一信号进行感知测量的测量结果。
上述第一设备可以是网络侧设备或终端,上述第二设备可以是核心网的感知网络功能和/或感知网元,也可以是网络侧设备或终端。
本申请实施例中,第一信号可以是通信信号,例如参考信号、同步信号或数据信号,第一信号也可以是专用感知信号,例如雷达脉冲信号或调频连续波(Frequency Modulated Continuous Wave,FMCW)信号。
其中,第一信号的收发可以包括下几种方式:
网络侧设备A发第一信号,网络侧设备B收第一信号;其中,网络侧设备B作为第一设备,网络侧设备A作为第二设备,或者网络侧设备A和网络侧设备B中的至少一项作为第一设备,核心网作为第二设备;
网络侧设备发第一信号,终端收第一信号;其中,终端作为第一设备,网络侧设备作为第二设备,或者网络侧设备和终端中的至少一项作为第一设备,核心网作为第二设备;
网络侧设备自发自收;其中,网络侧设备作为第一设备,核心网作为第二设备;
终端自发自收;其中,终端作为第一设备,网络侧设备作为第二设备,或者,终端作为第一设备,核心网作为第二设备;
终端发,网络侧设备收;其中,网络侧设备作为第一设备,核心网作为第二设备;
终端A发,终端B收;其中,终端B作为第一设备,终端A作为第二设备,或者,终端A或者终端B作为第一设备,终端A或者终端B的接入网络侧设备作为第二设备,或者,终端A或者终端B作为第一设备,核心网作为第二设备。
需要说明的是,本申请实施例中的第一信号发送设备可以是多个设备,第一信号接收设备可以是多个设备。
上述第一设备向第二设备指示反馈信息可以是,第一设备向第二设备发送反馈信息,或者可以是第一设备通过隐式的方式向第二设备指示反馈信息,且上述反馈信息可以是通过显式或者隐式的方式指示如下至少一项:
感知测量结果有效性和通信数据接收正确性;
感知测量结果无效原因;
第一信号的参数配置。
上述感知测量结果有效性用于表示感知测量结果有效或者无效,且每个感知测量结果 或每个感知测量结果有效性指示与一次或多次感知测量相关联,其中,一次感知测量可以是基于一个或多个第一信号的测量。
另外,感知测量结果有效或无效的准则可以是网络设备配置的和/或协议定义的,或者感知测量结果有效或无效的准则由关联到感知测量量或感知需求或感知业务确定。
上述通信数据接收正确性用于表示通信数据接收正确(Acknowledgement,ACK)或者接收错误(Negative Acknowledgement,NACK)。
上述感知测量结果无效原因用于表示感知测量结果无效的原因信息。
上述第一信号的参数配置可以是,第一设备建议或者期望的发送第一信号的参数配置,该参数配置可以用于提高第一信号对应的感知测量结果的有效性。
本申请实施例中,通过上述步骤可以实现向第二设备反馈感知测量结果有效性和通信数据接收正确性、感知测量结果无效原因和第一设备建议的第一信号的参数配置的中至少一项,以实现感知测量,提升了设备的工作性能。
另外,本申请实施例中,上述反馈信息指示的内容还有利用接收反馈信息的第二设备对感知测量结果进行进一步处理或调整信号配置,从而提升感知测量性能。或者,上述反馈信息指示的内容可以辅助接收感知测量结果的一方对感知测量结果进行进一步处理,或者调整感知测量信号的配置,从而获得更好的感知测量性能。
作为一种可选的实施方式,所述反馈信息包括指示比特,所述指示比特为至少一个比特,用于指示感知测量结果有效性和通信数据接收正确性。
上述指示比特可以采用联合或者独立编码的方式指示感知测量结果有效性和通信数据接收正确性。
在一种实现方式中,所述指示比特为2比特,其中:所述2比特分别指示感知测量结果有效性和通信数据接收正确性;或者,所述2比特以联合编码的方式指示感知测量结果有效性和通信数据接收正确性。
该实现方式中,可以是每1比特分别指示感知测量结果有效性和通信数据接收正确性,可以采用联合编码或独立编码,其中,独立编码码率可以不同,可以满足不同优先级或重要性需求。其中1比特指示感知测量结果有效性,例如,“0”表示感知测量结果无效,“1”表示感知测量结果有效;另1比特表示通信数据接收正确性,即ACK/NACK,例如,“0”表示通信数据接收错误(NACK),“1”表示通信数据接收正确(ACK)。
该实现方式中,上述2比特以联合编码的方式指示感知测量结果有效性和通信数据接收正确性可以是,2比特共同指示感知测量结果有效性和通信数据接收正确性,采用联合编码,即一共4种状态,特别的,例如通信数据接收错误但感知测量结果有效的情况可能不存在,则该状态(即通信数据接收错误且感知测量结果有效)对应的2比特取值可以是保留(Reserved),例如:如下表所示:

该实施方式中,通过2比特可以准确地指示感知测量结果有效性和通信数据接收正确性。
在一种实现方式中,所述指示比特为1比特,所述1比特指示感知测量结果有效性和通信数据接收正确性。
该实现方式中,采用1比特指示感知测量结果有效性和通信数据接收正确性,以节约信令开销。例如:采用1比特感知测量结果有效性与通信数据接收正确性指示信息的逻辑与结果,其中,“0”表示通信数据接收错误(NACK)或感知测量结果无效,“1”表示通信数据接收正确(ACK)且感知测量结果有效。
在一种实现方式中,在通信数据接收错误的情况下,所述指示比特为1比特,用于指示通信数据接收错误,且感知测量结果无效;
在通信数据接收正确的情况下,所述指示比特为2比特,其中1比特指示通信数据接收正确,另1比特指示感知测量结果有效性;
其中,所述第一信号为通信数据信号。
该实现方式中,可以灵活地采用1比特或者2比特,以节约信令开销。例如:当通信数据接收错误时采用1比特表示,“0”表示通信数据接收错误(NACK)且感知测量结果无效;当通信数据接收正确时采用2比特表示,其中1比特为“1”表示通信数据接收正确(ACK),另1比特用于指示感知测量结果是否有效,通信数据接收正确性指示与感知测量结果有效性指示需要独立编码。
在一种实现方式中,所述指示比特为m+1比特,m为大于1的整数,其中:
m比特指示感知测量结果有效性等级,1比特指示通信数据接收正确性;或者
所述m+1比特以联合编码的方式指示感知测量结果有效性等级和通信数据接收正确性。
其中,上述感知测量结果有效性等级可以是,不同等级对应不同信号质量,该信号质量可以包括:SNR、参考信号接收功率(Reference Signal Received Power,RSRP)、接收信号强度指示(Received Signal Strength Indication,RSSI)和信号杂波比等中至少一项;或者,上述感知测量结果有效性等级可以是,不同等级对应不同感知性能指标;或者,上述感知测量结果有效性等级可以是,不同等级对应不同测量结果有效性阈值,例如:假设有两个阈值,其中,包括三个等级,一个等级表示无效,另一个等级表示针对第一阈值有效但按照第二阈值无效,还有一个等级表示第二阈值有效(假设第二阈值要求更高)。
该实施方式中,可以实现将感知测量结果的有效性分为不同的等级,从而可以提高感知测量结果有效性的反馈效果,以及可以实现m比特和1比特分别指示感知测量结果有效性和通信数据接收正确性,也可以利用m+1比特共同指示感知测量结果有效性和通信 数据接收正确性。
作为一种可选的实施方式,所述第一设备向第二设备指示反馈信息,包括:
所述第一设备通过非连续发送(Discontinuous Transmission,DTX),向第二设备指示所述反馈信息。
其中,上述DTX可以是,第一设备没有检测到第一信号或检测到的第一信号的SNR,RSRP、RSSI和信号杂波比中的至少一项不满足门限要求时反馈DTX,即在指定的反馈信道时频资源上不进行信号发送,以达到向第二设备指示反馈信息。
例如:在感知测量结果无效的情况下,在用于指示感知测量结果有效性的第一反馈资源上不发送信号,以通过DTX向第二设备指示感知测量结果无效;和/或,
在通信数据接收错误的情况下,在用于指示通信数据接收正确性的第二反馈资源上不发送信号,以通过DTX向第二设备指示通信数据接收错误。
该实施方式中,可以实现通过DTX向第二设备指示所述反馈信息,从而节约传输开销。例如:在感知测量结果有效的情况下,在用于指示感知测量结果有效性的第一反馈资源上发送反馈信息;在通信数据接收正确的情况下,在用于指示通信数据接收正确性的第二反馈资源上发送反馈信息,以通过DTX向第二设备指示通信数据接收错误。
作为一种可选的实施方式,所述感知测量结果无效原因如下至少一项:
所述第一设备检测的所述第一信号的质量未达到门限要求;
所述第一设备获得的感知测量结果不满足感知要求;
在所述第一信号为通信数据信号的情况下,所述第一设备未正确解调数据;
在所述反馈信息的反馈时间点到达时,所述第一设备未获取到感知测量结果。
上述第一设备检测的所述第一信号的质量未达到门限要求可以是,第一设备检测的第一信号的SNR、RSRP、RSSI和信号杂波比门限中的至少一项未达到门限要求。另外,在测量过程中可以是接收端可以先只测量SNR、RSRP、RSSI和信号杂波比中的至少一项,如果达到门限再测量具体的感知测量量。
上述第一设备获得的感知测量结果不满足感知要求可以是,第一设备计算出的感知测量结果对应的感知性能指标不满足要求,例如感知SNR低于预设门限值。
上述第一设备未正确解调数据可以是,在基于通信数据做感知时,采用先解调再估计感知参数的方式,若通信解调错误,感知测量结果受到影响,变得不可靠,即感知测量结果无效。
上述在所述反馈信息的反馈时间点到达时,所述第一设备未获取到感知测量结果可以是,反馈时间点到达时接收端未能获取感知测量结果,例如感知测量结果处理超时。
该实施方式中可以实现,向第二设备指示感知测量结果无效的具体原因,以进一步提高反馈效果。
作为一种可选的实施方式,所述参数配置包括如下至少一项:
波形、子载波间隔、保护间隔、带宽、突发(burst)持续时间、时域间隔、发送信号 功率、信号格式、信号方向、时间资源、频域资源、准共址(Quasi co-location,QCL)关系。
上述波形可以包括:正交频分复用(Orthogonal frequency division multiplex,OFDM)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)SC-FDMA,正交时频空间(Orthogonal Time Frequency Space,OTFS)、调频连续波(Frequency Modulated Continuous Wave,FMCW)或者脉冲信号等。
上述子载波间隔可以是OFDM系统的子载波间隔30KHz或者15KHz等。
上述保护间隔可以是从信号结束发送时刻到该信号的最迟回波信号被接收的时刻之间的时间间隔;该参数正比于最大感知距离,例如,可以通过2dmax/c计算得到,dmax是最大感知距离(属于感知需求),如对于自发自收的感知信号,dmax代表感知信号收发点到信号发射点的最大距离;在某些情况下,OFDM信号循环前缀(Cyclic prefix,CP)可以起到最小保护间隔的作用;c是光速。
上述带宽可以反比于距离分辨率,例如:可以通过c/2/delta_d得到,其中delta_d是距离分辨率(属于感知需求)。
上述burst持续时间可以反比于速率分辨率(属于感知需求),该参数是感知信号的时间跨度,主要为了计算多普勒频偏;该参数可通过c/2/delta_v/fc计算得到;其中,delta_v是速度分辨率;fc是信号载频或者信号的中心频点。
上述时域间隔可通过c/2/fc/v_range计算得到;其中,v_range是最大速率减去最小速度(属于感知需求);该参数是相邻的两个感知信号之间的时间间隔。
上述发送信号功率可以是从-20dBm到23dBm每隔2dBm取一个值,当然,这里仅是一种举例,具体可以根据实际需求设定。
上述信号格式可以探测参考信号(Sounding Reference Signal,SRS),解调参考信号(Demodulation Reference Signal,DMRS),定位参考信号(Positioning Reference Signal,PRS)等,或者其他预定义的信号,以及相关的序列格式等信息。
上述信号方向可以是感知信号的方向或者波束信息。
上述时间资源可以包括感知信号所在的时隙索引或者时隙的符号索引;其中,时间资源分为两种,一种是一次性的时间资源,例如一个符号发送一个全向的第一信号;一种是非一次性的时间资源,例如多组周期性的时间资源或者不连续的时间资源(可包含开始时间和结束时间),每一组周期性的时间资源发送同一方向的感知信号,不同组的周期性时间资源上的波束方向不同。
上述频率资源可以包括感知信号的中心频点,带宽,资源块(Resource block,RB)或者子载波等。
上述QCL关系可以包括:感知信号包括的多个资源中每个资源与一个同步信号块(Synchronization Signal Block,SSB)QCL,QCL包括Type A,B,C或者D。
该实施方式中,通过上述参数配置可以使得第二设备调整感知测量信号的配置,从而 获得更好的感知测量性能。
作为一种可选的实施方式,所述反馈信息还用于指示如下至少一项:
与感知测量结果关联的第一信号的标识信息;
感知测量标识信息;
感知测量结果。
通过上述与感知测量结果关联的第一信号的标识信息指示该感知测量结果有效性指示信息指示的是哪一个或哪几个第一信号对应的感知测量结果有效性,这样可以实现指示具体的第一信号的感知测量结果有效性,以实现精确的指示。
通过上述感知测量标识信息可以指示该感知测量结果有效性指示信息指示的是哪一次感知测量对应的感知测量结果的有效性,所述感知测量可以是基于一个或多个第一信号的测量,这样可以实现指示具体的感知测量的感知测量结果有效性,以实现精确的指示。
指示上述感知测量结果可以实现指示具体的感知测量结果。
作为一种可选的实施方式,在所述反馈信息指示感知测量结果有效的情况下,所述反馈信息指示感知测量结果;
和/或,
在所述反馈信息指示感知测量结果无效的情况下,所述反馈信息指示如下至少一项:
感知测量结果无效原因;
第一信号的参数配置。
该实施方式中,可以实现仅当反馈信息指示感知测量结果有效时,反馈信息中才包含感知测量结果,以节约传输开销。
以及可以实现仅当反馈信息指示感知测量结果无效时,反馈信息中才包含感知测量结果无效原因和第一信号的参数配置。
作为一种可选的实施方式,在感知测量结果有效的情况下,所述反馈信息包括通信数据接收正确性的第一指示比特,以及还包括如下至少一项:
感知测量结果有效的指示信息:
与感知测量结果关联的第一信号的标识信息;
感知测量标识信息;
感知测量结果。
该实施方式中,可以实现仅在感知测量结果有效时,反馈信息中包含上述至少一项,以达到节约信令开销的效果。需要说明的是,在感知测量结果有效的情况下如果反馈信息包括通信数据接收正确性的第一指示比特,则隐式指示感知测量结果有效,即可以不包括感知测量结果有效的指示信息,
在另一些实施方式中,当测量结果无效时反馈信息中仅包含通信数据接收正确性指示。例如:在感知测量结果无效的情况下,所述反馈信息包括通信数据接收正确性的第二指示比特,所述第二指示比特用于指示通信数据接收正确性,以及隐式指示感知测量结果无效。
作为一种可选的实施方式,在感知测量结果无效的情况下,所述反馈信息包括通信数据接收正确性的第三指示比特,以及还包括如下至少一项:
感知测量结果无效的指示信息;
感知测量结果无效原因的指示信息;
第一信号的参数配置;
和/或,
在感知测量结果有效的情况下,所述反馈信息包括通信数据接收正确性的第四指示比特,所述第四指示比特用于指示通信数据接收正确性,以及隐式指示感知测量结果有效。
该实施方式中,可以实现仅当反馈信息指示感知测量结果无效时,反馈信息中才包含感知测量结果有效性的指示信息、感知测量结果无效原因和第一信号的参数配置中的至少一项,在感知测量结果有效的情况下,反馈信息仅包括通信数据接收正确性的第四指示比特,以节约传输开销。
作为一种可选的实施方式,所述第一设备向第二设备指示反馈信息之前,所述方法还包括:
所述第一设备接收所述第二设备发送的第一指示信息,所述第一指示信息用于指示如下至少一项:
是否需要感知测量结果有效性反馈;
感知测量结果有效性和通信数据接收正确性反馈的规则;
感知测量结果有效性判断的准则;
感知测量量;
感知需求;
感知业务。
上述是否需要感知测量结果有效性反馈可以是,指示某段时间内(例如从当前时刻到感知业务终止)全部或部分感知测量结果是否需要进行有效性反馈。
其中,上述感知测量结果有效性和通信数据接收正确性反馈的规则可以包括如下至少一项:
反馈定时;
反馈资源;
反馈方式;
联合反馈配置或者指示;
反馈信息格式。
其中,上述反馈定时可以表示反馈的时间点到参考时间点(例如第一信号或者第一信号的控制信息的发送/结束时间)之间的时间长度。
上述反馈资源可以指示物理上行控制信道(Physical Uplink Control Channel,PUCCH)和/或物理上行共享信道(Physical Uplink Shared Channel,PUSCH),相当于第一反馈信息 对应的具体时频域资源。
上述反馈方式可以包括:
事件触发反馈,例如前面实施方式描述的仅在感知测量结果无效或有效时发送反馈信息;
周期性触发反馈,例如:第一设备按一定周期发送第一反馈信息;
消息触发反馈,例如:第一设备根据第二设备的指示消息发送第一反馈信息。
上述联合反馈配置或指示可以包括:
是否允许感知测量结果有效性和通信数据接收正确性指示联合反馈;
感知测量结果有效性和通信数据接收正确性指示反馈的优先级,可以与反馈时延要求关联,或者,感知测量结果有效性和通信数据接收正确性指示反馈的优先级可以与感知业务/通信业务优先级关联,该优先级可以影响第一反馈信息的格式,例如感知测量结果有效性反馈和通信数据接收正确性反馈的先后顺序、独立编码时的码率等。
其中,上述感知测量结果有效性判断的准则可以包括如下至少一项:
所述第一设备检测到的所述第一信号的质量是否达到门限要求;
所述第一设备获得的感知测量结果是否满足感知需求;
在所述第一信号为通信数据信号的情况下,所述第一设备是否正确解调数据;
在所述反馈信息的反馈时间点到达时,所述第一设备是否获取到感知测量结果。
上述感知测量结果有效性判断的准则可以具体参见前面实施方式的相应说明,此处不作赘述,以及还可以包括第一信号质量门限信息和感知测量结果性能指标要求信息。
上述感知测量量、感知需求和感知业务中的至少一项可以用于间接指示第一设备感知测量结果有效性判断的准则,如前面实施方式所述的感知测量结果有效或无效的准则可以关联到感知测量量、感知需求和感知业务中的至少一项。
作为一种可选的实施方式,所述第一设备向第二设备指示反馈信息之前,所述方法还包括:
所述第一设备接收所述第二设备发送的第二指示信息,所述第二指示信息用于指示如下至少一项:
是否允许基于通信数据符号进行感知测量的指示信息;
感知测量的通信数据信号的配置信息;
感知服务质量(Quality of Service,QoS)信息。
其中,上述感知测量的通信数据信号的配置信息可以是,通信数据信号时域资源配置、频域资源配置等。
通过上述是否允许基于通信数据符号进行感知测量的指示信息可以提高第一设备感知测量的准确性,通过上述感知测量的通信数据信号的配置信息也可以提高第一设备感知测量的准确性。
上述感知QoS信息可以包括如下至少一项:
感知/通感一体化业务优先级、感知分辨率的要求、感知精度或感知误差的要求、感知延时预算、最大感知范围的要求、连续感知能力的要求、感知更新频率的要求、检测概率、虚警概率、漏检概率要求等。
这样第一设备可以根据该QoS信息自行决定具体使用感知信号或数据,以及使用哪个数据符号,从而提高感知测量的灵活性。
本申请实施例中,第一设备向第二设备指示反馈信息,所述反馈信息用于指示如下至少一项:感知测量结果有效性和通信数据接收正确性;感知测量结果无效原因;第一信号的参数配置;其中,所述感知测量结果为对所述第一设备接收的所述第一信号进行感知测量的测量结果。这样第一设备向第二设备反馈感知测量的相关信息,以实现感知测量。
请参见图5,图5是本申请实施例提供的一种信息获取方法的流程图,如图5所示,包括以下步骤:
步骤501、第二设备获取第一设备指示的反馈信息,所述反馈信息用于指示如下至少一项:
感知测量结果有效性和通信数据接收正确性;
感知测量结果无效原因;
第一信号的参数配置;
其中,所述感知测量结果为对所述第一设备接收的所述第一信号进行感知测量的测量结果。
可选地,所述反馈信息包括指示比特,所述指示比特为至少一个比特,用于指示感知测量结果有效性和通信数据接收正确性。
可选地,所述指示比特为2比特,其中:所述2比特分别指示感知测量结果有效性和通信数据接收正确性;或者,所述2比特以联合编码的方式指示感知测量结果有效性和通信数据接收正确性;
或者,
所述指示比特为1比特,所述1比特指示感知测量结果有效性和通信数据接收正确性。
可选地,在通信数据接收错误的情况下,所述指示比特为1比特,用于指示通信数据接收错误,且感知测量结果无效;
在通信数据接收正确的情况下,所述指示比特为2比特,其中1比特指示通信数据接收正确,另1比特指示感知测量结果有效性;
其中,所述第一信号为通信数据信号。
可选地,所述指示比特为m+1比特,m为大于1的整数,其中:
m比特指示感知测量结果有效性等级,1比特指示通信数据接收正确性;或者
所述m+1比特以联合编码的方式指示感知测量结果有效性等级和通信数据接收正确性。
可选地,所述第二设备获取第一设备指示的反馈信息,包括:
所述第二设备通过所述第一设备的非连续发送DTX获取所述反馈信息。
可选地,在感知测量结果无效的情况下,在用于指示感知测量结果有效性的第一反馈资源上不发送信号,以通过DTX向第二设备指示感知测量结果无效;和/或,
在通信数据接收错误的情况下,在用于指示通信数据接收正确性的第二反馈资源上不发送信号,以通过DTX向第二设备指示通信数据接收错误。
可选地,所述感知测量结果无效原因如下至少一项:
所述第一设备检测的所述第一信号的质量未达到门限要求;
所述第一设备获得的感知测量结果不满足感知要求;
在所述第一信号为通信数据信号的情况下,所述第一设备未正确解调数据;
在所述反馈信息的反馈时间点到达时,所述第一设备未获取到感知测量结果。
可选地,所述参数配置包括如下至少一项:
波形、子载波间隔、保护间隔、带宽、突发burst持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频域资源、准共址QCL关系。
可选地,所述反馈信息还用于指示如下至少一项:
与感知测量结果关联的第一信号的标识信息;
感知测量标识信息;
感知测量结果。
可选地,在所述反馈信息指示感知测量结果有效的情况下,所述反馈信息指示感知测量结果;
和/或,
在所述反馈信息指示感知测量结果无效的情况下,所述反馈信息指示如下至少一项:
感知测量结果无效原因;
第一信号的参数配置。
可选地,在感知测量结果有效的情况下,所述反馈信息包括通信数据接收正确性的第一指示比特,以及还包括如下至少一项:
感知测量结果有效的指示信息:
与感知测量结果关联的第一信号的标识信息;
感知测量标识信息;
感知测量结果;
和/或,
在感知测量结果无效的情况下,所述反馈信息包括通信数据接收正确性的第二指示比特,所述第二指示比特用于指示通信数据接收正确性,以及隐式指示感知测量结果无效。
可选地,在感知测量结果无效的情况下,所述反馈信息包括通信数据接收正确性的第三指示比特,以及还包括如下至少一项:
感知测量结果无效的指示信息:
感知测量结果无效原因的指示信息;
第一信号的参数配置;
和/或,
在感知测量结果有效的情况下,所述反馈信息包括通信数据接收正确性的第四指示比特,所述第四指示比特用于指示通信数据接收正确性,以及隐式指示感知测量结果有效。
可选地,所述第二设备获取第一设备指示的反馈信息之前,所述方法还包括:
所述第二设备向所述第一设备发送第一指示信息,所述第一指示信息用于指示如下至少一项:
是否需要感知测量结果有效性反馈;
感知测量结果有效性和通信数据接收正确性反馈的规则;
感知测量结果有效性判断的准则;
感知测量量;
感知需求;
感知业务。
可选地,所述感知测量结果有效性和通信数据接收正确性反馈的规则包括如下至少一项:
反馈定时;
反馈资源;
反馈方式;
联合反馈配置或者指示;
反馈信息格式;
和/或
所述感知测量结果有效性判断的准则包括如下至少一项:
所述第一设备检测到的所述第一信号的质量是否达到门限要求;
所述第一设备获得的感知测量结果是否满足感知需求;
在所述第一信号为通信数据信号的情况下,所述第一设备是否正确解调数据;
在所述反馈信息的反馈时间点到达时,所述第一设备是否获取到感知测量结果。
可选地,所述第二设备获取第一设备指示的反馈信息之前,所述方法还包括:
所述第二设备向所述第一设备发送的第二指示信息,所述第二指示信息用于指示如下至少一项:
是否允许基于通信数据符号进行感知测量的指示信息;
感知测量的通信数据信号的配置信息;
感知服务质量QoS信息。
需要说明的是,本实施例作为与图4所示的实施例中对应的第二设备的实施方式,其具体的实施方式可以参见图4所示的实施例的相关说明,以为避免重复说明,本实施例不 再赘述。
下面通过多个实施例对本申请实施例提供的方法进行举例说明:
实施例一:
该实施例主要描述反馈信息的格式,具体可以如下:
该实施例,每次反馈单个感知测量结果的有效性指示和单个通信数据接收正确性指示,如图6所示,其中,每个感知测量结果(或每个感知测量结果有效性指示)与一次或多次感知测量相关联,所述一次感知测量可以是基于一个或多个第一信号的测量。
反馈信息格式可以如下方式:
方式一、反馈测量结果有效或者测量结果无效+通信数据接收正确或错误;
在方式一中,可以反馈2比特,具体如下:
每1比特分别指示感知测量结果有效性和通信数据接收正确性,可以采用联合编码或独立编码,其中,独立编码码率可以不同,可以满足不同优先级或重要性需求:其中1比特指示感知测量结果有效性:例如,“0”表示感知测量结果无效,“1”表示感知测量结果有效;另1比特表示通信数据接收正确性,即ACK/NACK:例如,“0”表示通信数据接收错误(NACK),“1”表示通信数据接收正确(ACK);或者
2比特共同指示感知测量结果有效性和通信数据接收正确性,采用联合编码,即一共4种状态,特别的,例如通信数据接收错误但感知测量结果有效的情况可能不存在,则该状态(通信数据接收错误且感知测量结果有效)对应的2比特取值可以是reserved,例如上述表1所示。
在方式一中,可以反馈1比特,例如感知测量结果有效性与通信数据接收正确性指示信息的逻辑与结果:“0”表示通信数据接收错误(NACK)或感知测量结果无效,“1”表示通信数据接收正确(ACK)且感知测量结果有效;
在方式一中,如果是基于通信数据的感知,即第一信号为通信数据信号,还可以反馈1比特或2比特,具体如下:
当通信数据接收错误时采用1比特表示,“0”表示通信数据接收错误(NACK)且感知测量结果无效;
当通信数据接收正确时采用2比特表示,其中1比特为“1”表示通信数据接收正确(ACK),另1比特用于指示感知测量结果是否有效,通信数据接收正确性指示与感知测量结果有效性指示需要独立编码,且通信数据接收正确性指示在前。
在方式一中,可以反馈m+1(m>1)比特,例如将感知测量结果的有效性分为x个不同的等级(对应于有效性相关的x个状态,则需要m=ceil(log2(x))比特表示),即测量结果对应的第一信号质量(SNR、RSRP、RSSI、信号杂波比等)或感知性能指标不同,或者用于判断测量结果有效性的阈值有多个,(假设有两个阈值)那就可以分为无效,第一阈值有效但按照第二阈值无效,第二阈值有效(假设第二阈值要求更高)三个状态,与2比特表示的情况相似,可以利用m比特和1比特分别指示感知测量结果有效性和通信数 据接收正确性,也可以利用m+1比特共同指示感知测量结果有效性和通信数据接收正确性;
在方式一中,可以通过DTX指示反馈测量结果有效或者测量结果无效+通信数据接收正确或错误,例如第一设备没有检测到第一信号或检测到的第一信号SNR,RSRP,RSSI,信号杂波比中的至少一项不满足门限要求时反馈DTX,即在指定的反馈信道时频资源上不进行信号发送,即此时可以利用DTX间接反馈感知测量结果无效原因);
具体的,当感知测量结果有效性与通信数据接收正确性独立编码时,可以分别利用DTX的方式增加一种指示状态(感知测量结果有效性指示与通信数据接收正确性指示各自对应的时频域反馈资源上不进行信号发送);当感知测量结果有效性与通信数据接收正确性联合编码时,也可以整体利用利用DTX的方式增加一种指示状态(联合编码信息对应的时频域反馈资源上不进行信号发送)。
方式二、反馈测量结果有效+感知测量结果+通信数据接收正确性或者反馈测量结果无效+通信数据接收正确性,具体可以如下:
当感知测量结果有效时,反馈“1”表示感知结果有效,并反馈感知测量结果,以及通信数据接收正确性指示;当感知测量结果无效时,反馈“0”表示感知结果无效,以及反馈通信数据接收正确性。
一种格式可以是:反馈感知测量结果有效性指示时反馈感知测量结果,然后反馈通信数据接收正确性指示,例如:如图7或8所示。
一种格式可以是:先反馈感知测量结果有效性指示和通信数据接收正确性指示,然后反馈感知测量结果,例如:如图8或9所示。
需要说明的是,上述反馈格式也可以是通信数据接收正确性指示在前,感知测量结果有效性指示及感知测量结果在后,例如:将优先级高的信息放在前面,当通信反馈重要性更高时通信放在前面,反之感知放在前面。
方式三、反馈测量结果有效+感知测量结果+通信数据接收正确性指示或者反馈测量结果无效+无效原因+通信数据接收正确性指示,具体可以如下:
当感知测量结果有效时,反馈“1”表示感知结果有效,并反馈感知测量结果,以及通信数据接收正确性指示;当感知测量结果无效时,反馈“0”表示感知结果无效,并反馈感知测量结果无效原因,以及反馈通信数据接收正确性指示。
一种格式可以是:反馈感知测量结果有效性指示时反馈感知测量结果,然后反馈通信数据接收正确性指示,例如图10或图11所示。
还可以先反馈感知测量结果有效性指示和通信数据接收正确性指示,然后反馈感知测量结果,例如图12或图13所示。
需要说明的是,上述反馈格式也可以是通信数据接收正确性指示在前,感知测量结果有效性指示及感知测量结果或无效原因在后,如将优先级高的信息放在前面,当通信反馈重要性更高时通信放在前面,反之感知放在前面。
方式四、反馈测量结果有效+感知测量结果+通信数据接收正确性指示或者反馈测量结果无效+建议第一信号参数配置+通信数据接收正确性指示,具体可以如下:
当感知测量结果有效时,反馈“1”表示感知结果有效,以及通信数据接收正确性指示,并反馈感知测量结果;当感知测量结果无效时,反馈“0”表示感知结果无效,并反馈建议第一信号参数配置,以及反馈通信数据接收正确性指示。
具体格式可以参见上述方式三中的格式,其中无效原因替换为建议第一信号参数配置。
方式五、反馈测量结果有效+感知测量结果+通信数据接收正确性指示或者反馈测量结果无效+无效原因+建议第一信号参数配置+通信数据接收正确性指示,具体可以如下:
当感知测量结果有效时,反馈“1”表示感知结果有效,并反馈感知测量结果,以及通信数据接收正确性指示;当感知测量结果无效时,反馈“0”表示感知结果无效,并反馈感知测量结果无效原因以及建议第一信号参数配置,以及通信数据接收正确性指示。
具体格式可以参见上述方式三中的格式,其中无效原因替换为无效原因+建议第一信号参数配置。
其中,除了通信数据接收正确性指示和感知测量结果有效性指示及感知测量结果或无效原因可以根据所述反馈优先级确定先后顺序,无效原因和建议第一信号参数配置也可以根据重要性确定先后顺序,且两者可以采取独立编码的方式。
方式六、反馈测量结果有效+通信数据接收正确性指示或者反馈测量结果无效+无效原因+通信数据接收正确性指示,具体可以如下:
当感知测量结果有效时,反馈“1”表示感知结果有效,以及反馈通信数据接收正确性指示;当感知测量结果无效时,反馈“0”表示感知结果无效,并反馈感知测量结果无效原因,以及通信数据接收正确性指示。
具体格式可以参见上述方式三中的格式,其中感知测量结果有效时不再反馈感知测量结果。
方式七、反馈测量结果有效+通信数据接收正确性指示或者反馈测量结果无效+建议第一信号参数配置+通信数据接收正确性指示,具体可以如下:
当感知测量结果有效时,反馈“1”表示感知结果有效,以及反馈通信数据接收正确性指示;当感知测量结果无效时,反馈“0”表示感知测量结果无效,并反馈建议第一信号参数配置,以及反馈通信数据接收正确性指示。
具体格式可以参见上述方式三中的格式,其中感知测量结果有效时不再反馈感知测量结果,无效原因替换为建议第一信号参数配置。
方式八、反馈测量结果有效+通信数据接收正确性指示或者反馈测量结果无效+无效原因+建议第一信号参数配置+通信数据接收正确性指示,具体可以如下:
当感知测量结果有效时,反馈“1”表示感知结果有效,以及反馈通信数据接收正确性指示;当感知测量结果无效时,反馈“0”表示感知结果无效,并反馈感知测量结果无效原因以及建议第一信号参数配置,以及反馈通信数据接收正确性指示。
具体格式可以参见上述方式五中的格式,其中感知测量结果有效时不再反馈感知测量结果。
方式九、仅在感知测量结果有效时,反馈感知测量结果有效和/或感知测量结果+通信数据接收正确性指示;测量结果无效时仅反馈通信数据接收正确性指示。
方式十、仅在感知测量结果无效时,反馈感知测量结果无效和/或无效原因和/或建议第一信号参数配置+通信数据接收正确性指示;测量结果有效时仅反馈通信数据接收正确性指示。
另外,本申请实施例中,感知测量结果、感知需求和感知业务可以定义如下:
上述感知测量结果是与感知测量量关联的测量结果,即测量量的值,具体的可以包括如下至少一项:
原始信道信息:信道矩阵H或H的压缩量化信息、信道状态信息(Channel State Information,CSI),例如频域信道响应的幅度,或者频域信道响应的幅度的平方和/或相位,或者是频域信道响应的I路与Q路信号特征,例如I路和/或Q路信号的幅度或者幅度的平方;
信号强度信息:RSRP、RSSI;
谱信息:信道功率时延谱(Power-delay profile,PDP)、多普勒功率谱、功率角度谱(power azimuth spectrum,PAS)、伪谱信息(例如多重信号分类(Multiple Signal Classification,MUSIC)谱)、时延-多普勒二维谱、时延-多普勒-角度三维谱;
多径信息:多径信道中各条径(至少包括首达径、视距(Lline Of Sight,LOS)径、一阶反射径、多阶反射径)的功率、相位、时延、角度信息;
角度信息:到达角、离开角(包括终端侧角度信息、基站侧角度信息与反射点角度信息);
不同天线对应信号的差别信息:第一天线与第二天线的频域信道响应的商或共轭乘(或第一天线与第二天线的频域信道响应的商或共轭乘的幅度或相位,或第一天线与第二天线的频域信道响应的商或共轭乘的I路或Q路,或第一天线与第二天线的频域信道响应的商或共轭乘的I路或Q路的投影运算,投影运算可以是I*cos(theta)+Q*sin(theta),其中theta为某一角度值,不同的theta对应不同的投影,I代表I路数据,Q代表Q路数据)、第一天线与第二天线的接收信号的幅度比或幅度差、第一天线与第二天线信号的相位差、第一天线与第二天线信号的时延差;
基于原始信道信息确定的目标参数信息:多普勒扩展、多普勒频移、最大时延扩展、角度扩展、相干带宽、相干时间。
除上述测量量外,还包括基于上述测量量中的两个或两个以上进行运算生成的新的测量量。
上述感知需求信息可以包括以下至少一项:
感知业务类型,例如,入侵检测、轨迹追踪、环境重构、呼吸检测、动作识别等;
感知区域,例如,感知区域地理坐标、感知区域长、宽、高、距离、角度范围等;
感知目标类型,例如汽车、摩托车、行人等等,侧面指示了感知目标移动速度范围、对无线信号反射功率等级;
感知/通感一体化QoS,例如,感知/通感一体化业务优先级、感知分辨率的要求、感知精度或感知误差的要求、感知延时预算、最大感知范围的要求、连续感知能力的要求、感知更新频率的要求、检测概率、虚警概率、漏检概率要求等;
通信QoS(针对通感一体化业务),例如通信延时预算、误报率等;
感知区域内感知目标数量;
感知区域内感知目标密度。
上述感知业务可以是但不限于以下至少一项:
物体特征检测:能够反映目标物体的属性或所处状态的信息,可以为以下至少一项:目标物体的存在、目标物体的位置、目标物体的速度、目标物体的加速度、目标物体的材料、目标物体的形状、目标物体的类别、目标物体的雷达散射截面积(Radar Cross Section,RCS),极化散射特性等;
事件检测:与目标事件有关的信息,即在目标事件发生时能够检测/感知到的信息,可以为:跌倒检测、入侵检测、数量统计、室内定位、手势识别、唇语识别、步态识别、表情识别、呼吸监测、心率监测、声源分辨等;
环境检测:湿度、亮度、温度湿度、大气压强、空气质量、天气情况、地形地貌、建筑/植被分布、人数统计、人群密度、车辆密度等。
本申请实施例中,判断感知测量结果是否有效的准则可以包括如下至少一项:
接收端检测的第一信号质量(至少包括SNR,RSRP,RSSI,信号杂波比中的一项)是否达到门限要求;
接收端获得的感知测量结果是否满足感知需求,即计算出的感知测量结果对应的感知性能指标是否满足要求,其中,所述感知性能指标可以是至少以下一项:
感知精度/感知误差,感知分辨率,感知范围,感知时延,检测概率,虚警概率,同时检测目标个数,信号杂波比,信号旁瓣特征(信号主瓣旁瓣比),峰均比(Peak to Average Power Ratio,PAPR),方差,标准差,目标感知信号分量与其他感知信号分量之比,例如呼吸检测中多普勒域幅度最大的样值点对应的幅度作为目标感知分量,即认为,该幅度最大的样值点为呼吸频率对应的样值点;除所述幅度最大的样值点外的其他样值点对应的幅度作为其他感知信号分量。
接收端是否正确解调数据,基于通信数据做感知,采用先解调再估计感知参数的方式,若通信解调错误,感知测量结果受到影响,变得不可靠;
反馈时间点到达时接收端是否成功获取感知测量结果,例如感知测量结果处理是否超时。
当所述感知测量结果至少满足以上一项时,认为感知测量结果有效,否则认为无效, 例如满足第一项和第二项,即当第一信号质量达到门限要求且感知测量结果满足感知需求时认为感知测量结果有效。
本申请实施例中,第一设备根据感知测量信号配置相关的指示信息进行感知测量,对感知测量结果有效性以及通信数据接收正确性进行反馈,并根据感知测量结果有效性对感知测量结果、感知测量结果无效的原因以及建议的感知测量信号配置等信息进行反馈。根据感知测量结果的有效性以及通信数据接收正确性确定反馈格式,可以有效减小开销,辅助接收感知测量结果的一方对感知测量结果进行进一步处理,或者调整感知测量信号的配置,从而获得更好的感知测量性能。
请参见图14,图14是本申请实施例提供的一种信息反馈装置的结构图,如图14所示,包括:
指示模块1401,用于向第二设备指示反馈信息,所述反馈信息用于指示如下至少一项:
感知测量结果有效性和通信数据接收正确性;
感知测量结果无效原因;
第一信号的参数配置;
其中,所述感知测量结果为对所述第一设备接收的所述第一信号进行感知测量的测量结果。
可选地,所述反馈信息包括指示比特,所述指示比特为至少一个比特,用于指示感知测量结果有效性和通信数据接收正确性。
可选地,所述指示比特为2比特,其中:所述2比特分别指示感知测量结果有效性和通信数据接收正确性;或者,所述2比特以联合编码的方式指示感知测量结果有效性和通信数据接收正确性;
或者,
所述指示比特为1比特,所述1比特指示感知测量结果有效性和通信数据接收正确性。
可选地,在通信数据接收错误的情况下,所述指示比特为1比特,用于指示通信数据接收错误,且感知测量结果无效;
在通信数据接收正确的情况下,所述指示比特为2比特,其中1比特指示通信数据接收正确,另1比特指示感知测量结果有效性;
其中,所述第一信号为通信数据信号。
可选地,所述指示比特为m+1比特,m为大于1的整数,其中:
m比特指示感知测量结果有效性等级,1比特指示通信数据接收正确性;或者
所述m+1比特以联合编码的方式指示感知测量结果有效性等级和通信数据接收正确性。
可选地,所述指示模块1401用于:通过非连续发送DTX,向第二设备指示所述反馈信息。
可选地,在感知测量结果无效的情况下,在用于指示感知测量结果有效性的第一反馈资源上不发送信号,以通过DTX向第二设备指示感知测量结果无效;和/或,
在通信数据接收错误的情况下,在用于指示通信数据接收正确性的第二反馈资源上不发送信号,以通过DTX向第二设备指示通信数据接收错误。
可选地,所述感知测量结果无效原因如下至少一项:
所述第一设备检测的所述第一信号的质量未达到门限要求;
所述第一设备获得的感知测量结果不满足感知要求;
在所述第一信号为通信数据信号的情况下,所述第一设备未正确解调数据;
在所述反馈信息的反馈时间点到达时,所述第一设备未获取到感知测量结果。
可选地,所述参数配置包括如下至少一项:
波形、子载波间隔、保护间隔、带宽、突发burst持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频域资源、准共址QCL关系。
可选地,所述反馈信息还用于指示如下至少一项:
与感知测量结果关联的第一信号的标识信息;
感知测量标识信息;
感知测量结果。
可选地,在所述反馈信息指示感知测量结果有效的情况下,所述反馈信息指示感知测量结果;
和/或,
在所述反馈信息指示感知测量结果无效的情况下,所述反馈信息指示如下至少一项:
感知测量结果无效原因;
第一信号的参数配置。
可选地,在感知测量结果有效的情况下,所述反馈信息包括通信数据接收正确性的第一指示比特,以及还包括如下至少一项:
感知测量结果有效的指示信息:
与感知测量结果关联的第一信号的标识信息;
感知测量标识信息;
感知测量结果;
和/或,
在感知测量结果无效的情况下,所述反馈信息包括通信数据接收正确性的第二指示比特,所述第二指示比特用于指示通信数据接收正确性,以及隐式指示感知测量结果无效。
可选地,在感知测量结果无效的情况下,所述反馈信息包括通信数据接收正确性的第三指示比特,以及还包括如下至少一项:
感知测量结果无效的指示信息:
感知测量结果无效原因的指示信息;
第一信号的参数配置;
和/或,
在感知测量结果有效的情况下,所述反馈信息包括通信数据接收正确性的第四指示比特,所述第四指示比特用于指示通信数据接收正确性,以及隐式指示感知测量结果有效。
可选地,所述装置还包括:
第一接收模块,用于接收所述第二设备发送的第一指示信息,所述第一指示信息用于指示如下至少一项:
是否需要感知测量结果有效性反馈;
感知测量结果有效性和通信数据接收正确性反馈的规则;
感知测量结果有效性判断的准则;
感知测量量;
感知需求;
感知业务。
可选地,所述感知测量结果有效性和通信数据接收正确性反馈的规则包括如下至少一项:
反馈定时;
反馈资源;
反馈方式;
联合反馈配置或者指示;
反馈信息格式;
和/或
所述感知测量结果有效性判断的准则包括如下至少一项:
所述第一设备检测到的所述第一信号的质量是否达到门限要求;
所述第一设备获得的感知测量结果是否满足感知需求;
在所述第一信号为通信数据信号的情况下,所述第一设备是否正确解调数据;
在所述反馈信息的反馈时间点到达时,所述第一设备是否获取到感知测量结果。
可选地,所述装置还包括:
第二接收模块,用于所述第一设备接收所述第二设备发送的第二指示信息,所述第二指示信息用于指示如下至少一项:
是否允许基于通信数据符号进行感知测量的指示信息;
感知测量的通信数据信号的配置信息;
感知服务质量QoS信息。
上述信息反馈装置可以实现感知测量。
本申请实施例中的信息反馈装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。例如:该电子设备可以是终端,也可以 为除终端之外的其他设备。示例性的,终端可以包括但不限于本申请实施例所列举的终端的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的信息反馈装置能够实现图4所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
请参见图15,图15是本申请实施例提供的一种信息获取装置的结构图,如图15所示,包括:
获取模块1501,用于第二设备获取第一设备指示的反馈信息,所述反馈信息用于指示如下至少一项:
感知测量结果有效性和通信数据接收正确性;
感知测量结果无效原因;
第一信号的参数配置;
其中,所述感知测量结果为对所述第一设备接收的所述第一信号进行感知测量的测量结果。
可选地,所述反馈信息包括指示比特,所述指示比特为至少一个比特,用于指示感知测量结果有效性和通信数据接收正确性。
可选地,所述指示比特为2比特,其中:所述2比特分别指示感知测量结果有效性和通信数据接收正确性;或者,所述2比特以联合编码的方式指示感知测量结果有效性和通信数据接收正确性;
或者,
所述指示比特为1比特,所述1比特指示感知测量结果有效性和通信数据接收正确性。
可选地,在通信数据接收错误的情况下,所述指示比特为1比特,用于指示通信数据接收错误,且感知测量结果无效;
在通信数据接收正确的情况下,所述指示比特为2比特,其中1比特指示通信数据接收正确,另1比特指示感知测量结果有效性;
其中,所述第一信号为通信数据信号。
可选地,所述指示比特为m+1比特,m为大于1的整数,其中:
m比特指示感知测量结果有效性等级,1比特指示通信数据接收正确性;或者
所述m+1比特以联合编码的方式指示感知测量结果有效性等级和通信数据接收正确性。
可选地,所述获取模块1501用于:通过所述第一设备的非连续发送DTX获取所述反馈信息。
可选地,在感知测量结果无效的情况下,在用于指示感知测量结果有效性的第一反馈资源上不发送信号,以通过DTX向第二设备指示感知测量结果无效;和/或,
在通信数据接收错误的情况下,在用于指示通信数据接收正确性的第二反馈资源上不 发送信号,以通过DTX向第二设备指示通信数据接收错误。
可选地,所述感知测量结果无效原因如下至少一项:
所述第一设备检测的所述第一信号的质量未达到门限要求;
所述第一设备获得的感知测量结果不满足感知要求;
在所述第一信号为通信数据信号的情况下,所述第一设备未正确解调数据;
在所述反馈信息的反馈时间点到达时,所述第一设备未获取到感知测量结果。
可选地,所述参数配置包括如下至少一项:
波形、子载波间隔、保护间隔、带宽、突发burst持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频域资源、准共址QCL关系。
可选地,所述反馈信息还用于指示如下至少一项:
与感知测量结果关联的第一信号的标识信息;
感知测量标识信息;
感知测量结果。
可选地,在所述反馈信息指示感知测量结果有效的情况下,所述反馈信息指示感知测量结果;
和/或,
在所述反馈信息指示感知测量结果无效的情况下,所述反馈信息指示如下至少一项:
感知测量结果无效原因;
第一信号的参数配置。
可选地,在感知测量结果有效的情况下,所述反馈信息包括通信数据接收正确性的第一指示比特,以及还包括如下至少一项:
感知测量结果有效的指示信息:
与感知测量结果关联的第一信号的标识信息;
感知测量标识信息;
感知测量结果;
和/或,
在感知测量结果无效的情况下,所述反馈信息包括通信数据接收正确性的第二指示比特,所述第二指示比特用于指示通信数据接收正确性,以及隐式指示感知测量结果无效。
可选地,在感知测量结果无效的情况下,所述反馈信息包括通信数据接收正确性的第三指示比特,以及还包括如下至少一项:
感知测量结果无效的指示信息:
感知测量结果无效原因的指示信息;
第一信号的参数配置;
和/或,
在感知测量结果有效的情况下,所述反馈信息包括通信数据接收正确性的第四指示比 特,所述第四指示比特用于指示通信数据接收正确性,以及隐式指示感知测量结果有效。
可选地,所述装置还包括:
第一发送模块,用于向所述第一设备发送第一指示信息,所述第一指示信息用于指示如下至少一项:
是否需要感知测量结果有效性反馈;
感知测量结果有效性和通信数据接收正确性反馈的规则;
感知测量结果有效性判断的准则;
感知测量量;
感知需求;
感知业务。
可选地,所述感知测量结果有效性和通信数据接收正确性反馈的规则包括如下至少一项:
反馈定时;
反馈资源;
反馈方式;
联合反馈配置或者指示;
反馈信息格式;
和/或
所述感知测量结果有效性判断的准则包括如下至少一项:
所述第一设备检测到的所述第一信号的质量是否达到门限要求;
所述第一设备获得的感知测量结果是否满足感知需求;
在所述第一信号为通信数据信号的情况下,所述第一设备是否正确解调数据;
在所述反馈信息的反馈时间点到达时,所述第一设备是否获取到感知测量结果。
可选地,所述装置还包括:
第二发送模块,用于向所述第一设备发送的第二指示信息,所述第二指示信息用于指示如下至少一项:
是否允许基于通信数据符号进行感知测量的指示信息;
感知测量的通信数据信号的配置信息;
感知服务质量QoS信息。
上述信息获取装置可以实现感知测量。
本申请实施例中的信息获取装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。例如:该电子设备可以是网络侧设备,也可以为除网络侧设备之外的其他设备。示例性的,网络侧设备可以包括但不限于本申请实施例所列举的网络侧设备的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的信息获取装置能够实现图5所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图16所示,本申请实施例还提供一种通信设备1600,包括处理器1601和存储器1602,存储器1602上存储有可在所述处理器1601上运行的程序或指令,例如,该通信设备1600为第一设备时,该程序或指令被处理器1601执行时实现上述信息反馈方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1600为第二设备时,该程序或指令被处理器1601执行时实现上述信息获取方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种通信设备,该通信设备为第一设备,包括处理器和通信接口,所述通信接口用于第一设备向第二设备指示反馈信息,所述反馈信息用于指示如下至少一项:感知测量结果有效性和通信数据接收正确性;感知测量结果无效原因;第一信号的参数配置;其中,所述感知测量结果为对所述第一设备接收的所述第一信号进行感知测量的测量结果。该第一设备实施例与上述第一设备侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该第一设备实施例中,且能达到相同的技术效果。具体地,图17为实现本申请实施例的一种通信设备的硬件结构示意图。
该通信设备1700为第一设备,包括但不限于:射频单元1701、网络模块1702、音频输出单元1703、输入单元1704、传感器1705、显示单元1706、用户输入单元1707、接口单元1708、存储器1709以及处理器1710等中的至少部分部件。
本领域技术人员可以理解,通信设备1700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图17中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1704可以包括图形处理单元(Graphics Processing Unit,GPU)17041和麦克风17042,图形处理单元17041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1706可包括显示面板17061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板17061。用户输入单元1707包括触控面板17071以及其他输入设备17072中的至少一种。触控面板17071,也称为触摸屏。触控面板17071可包括触摸检测装置和触摸控制器两个部分。其他输入设备17072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1701接收来自网络侧设备的下行数据后,可以传输给处理器1710进行处理;另外,射频单元1701可以向网络侧设备发送上行数据。通常,射频单元1701包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1709可用于存储软件程序或指令以及各种数据。存储器1709可主要包括存储 程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1709可以包括易失性存储器或非易失性存储器,或者,存储器1709可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1709包括但不限于这些和任意其它适合类型的存储器。
处理器1710可包括一个或多个处理单元;可选地,处理器1710集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1710中。
其中,射频单元1701,用于向第二设备指示反馈信息,所述反馈信息用于指示如下至少一项:
感知测量结果有效性和通信数据接收正确性;
感知测量结果无效原因;
第一信号的参数配置;
其中,所述感知测量结果为对所述第一设备接收的所述第一信号进行感知测量的测量结果。
可选地,所述反馈信息包括指示比特,所述指示比特为至少一个比特,用于指示感知测量结果有效性和通信数据接收正确性。
可选地,所述指示比特为2比特,其中:所述2比特分别指示感知测量结果有效性和通信数据接收正确性;或者,所述2比特以联合编码的方式指示感知测量结果有效性和通信数据接收正确性;
或者,
所述指示比特为1比特,所述1比特指示感知测量结果有效性和通信数据接收正确性。
可选地,在通信数据接收错误的情况下,所述指示比特为1比特,用于指示通信数据接收错误,且感知测量结果无效;
在通信数据接收正确的情况下,所述指示比特为2比特,其中1比特指示通信数据接收正确,另1比特指示感知测量结果有效性;
其中,所述第一信号为通信数据信号。
可选地,所述指示比特为m+1比特,m为大于1的整数,其中:
m比特指示感知测量结果有效性等级,1比特指示通信数据接收正确性;或者
所述m+1比特以联合编码的方式指示感知测量结果有效性等级和通信数据接收正确性。
可选地,所述第一设备向第二设备指示反馈信息,包括:
所述第一设备通过非连续发送DTX,向第二设备指示所述反馈信息。
可选地,在感知测量结果无效的情况下,在用于指示感知测量结果有效性的第一反馈资源上不发送信号,以通过DTX向第二设备指示感知测量结果无效;和/或,
在通信数据接收错误的情况下,在用于指示通信数据接收正确性的第二反馈资源上不发送信号,以通过DTX向第二设备指示通信数据接收错误。
可选地,所述感知测量结果无效原因如下至少一项:
所述第一设备检测的所述第一信号的质量未达到门限要求;
所述第一设备获得的感知测量结果不满足感知要求;
在所述第一信号为通信数据信号的情况下,所述第一设备未正确解调数据;
在所述反馈信息的反馈时间点到达时,所述第一设备未获取到感知测量结果。
可选地,所述参数配置包括如下至少一项:
波形、子载波间隔、保护间隔、带宽、突发burst持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频域资源、准共址QCL关系。
可选地,所述反馈信息还用于指示如下至少一项:
与感知测量结果关联的第一信号的标识信息;
感知测量标识信息;
感知测量结果。
可选地,在所述反馈信息指示感知测量结果有效的情况下,所述反馈信息指示感知测量结果;
和/或,
在所述反馈信息指示感知测量结果无效的情况下,所述反馈信息指示如下至少一项:
感知测量结果无效原因;
第一信号的参数配置。
可选地,在感知测量结果有效的情况下,所述反馈信息包括通信数据接收正确性的第一指示比特,以及还包括如下至少一项:
感知测量结果有效的指示信息:
与感知测量结果关联的第一信号的标识信息;
感知测量标识信息;
感知测量结果;
和/或,
在感知测量结果无效的情况下,所述反馈信息包括通信数据接收正确性的第二指示比特,所述第二指示比特用于指示通信数据接收正确性,以及隐式指示感知测量结果无效。
可选地,在感知测量结果无效的情况下,所述反馈信息包括通信数据接收正确性的第三指示比特,以及还包括如下至少一项:
感知测量结果无效的指示信息:
感知测量结果无效原因的指示信息;
第一信号的参数配置;
和/或,
在感知测量结果有效的情况下,所述反馈信息包括通信数据接收正确性的第四指示比特,所述第四指示比特用于指示通信数据接收正确性,以及隐式指示感知测量结果有效。
可选地,所述向第二设备指示反馈信息之前,射频单元1701还用于:
接收所述第二设备发送的第一指示信息,所述第一指示信息用于指示如下至少一项:
是否需要感知测量结果有效性反馈;
感知测量结果有效性和通信数据接收正确性反馈的规则;
感知测量结果有效性判断的准则;
感知测量量;
感知需求;
感知业务。
可选地,,所述感知测量结果有效性和通信数据接收正确性反馈的规则包括如下至少一项:
反馈定时;
反馈资源;
反馈方式;
联合反馈配置或者指示;
反馈信息格式;
和/或
所述感知测量结果有效性判断的准则包括如下至少一项:
所述第一设备检测到的所述第一信号的质量是否达到门限要求;
所述第一设备获得的感知测量结果是否满足感知需求;
在所述第一信号为通信数据信号的情况下,所述第一设备是否正确解调数据;
在所述反馈信息的反馈时间点到达时,所述第一设备是否获取到感知测量结果。
可选地,所述第一设备向第二设备指示反馈信息之前,射频单元1701还用于:
接收所述第二设备发送的第二指示信息,所述第二指示信息用于指示如下至少一项:
是否允许基于通信数据符号进行感知测量的指示信息;
感知测量的通信数据信号的配置信息;
感知服务质量QoS信息。
需要说明的是,本实施例是以第一设备为终端进行举例说明。
上述第一设备可以实现感知测量。
本申请实施例还提供一种通信设备,所述通信设备为第二设备,包括处理器及通信接口,其中,所述通信接口用于获取第一设备指示的反馈信息,所述反馈信息用于指示如下至少一项:感知测量结果有效性和通信数据接收正确性;感知测量结果无效原因;第一信号的参数配置;其中,所述感知测量结果为对所述第一设备接收的所述第一信号进行感知测量的测量结果。该第二设备实施例与上述第二设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该第二设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种通信设备,该通信设备为第二设备。如图18所示,该通信设备1800包括:天线1801、射频装置1802、基带装置1803、处理器1804和存储器1805。天线1801与射频装置1802连接。在上行方向上,射频装置1802通过天线1801接收信息,将接收的信息发送给基带装置1803进行处理。在下行方向上,基带装置1803对要发送的信息进行处理,并发送给射频装置1802,射频装置1802对收到的信息进行处理后经过天线1801发送出去。
以上实施例中通信设备执行的方法可以在基带装置1803中实现,该基带装置1803包括基带处理器。
基带装置1803例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图18所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1805连接,以调用存储器1805中的程序,执行以上方法实施例中所示的网络设备操作。
该通信设备还可以包括网络接口1806,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的通信设备1800还包括:存储在存储器1805上并可在处理器1804上运行的指令或程序,处理器1804调用存储器1805中的指令或程序执行图14所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
其中,射频装置1802用于获取第一设备指示的反馈信息,所述反馈信息用于指示如下至少一项:
感知测量结果有效性和通信数据接收正确性;
感知测量结果无效原因;
第一信号的参数配置;
其中,所述感知测量结果为对所述第一设备接收的所述第一信号进行感知测量的测量结果。
可选地,所述反馈信息包括指示比特,所述指示比特为至少一个比特,用于指示感知测量结果有效性和通信数据接收正确性。
可选地,所述指示比特为2比特,其中:所述2比特分别指示感知测量结果有效性和通信数据接收正确性;或者,所述2比特以联合编码的方式指示感知测量结果有效性和通信数据接收正确性;
或者,
所述指示比特为1比特,所述1比特指示感知测量结果有效性和通信数据接收正确性。
可选地,在通信数据接收错误的情况下,所述指示比特为1比特,用于指示通信数据接收错误,且感知测量结果无效;
在通信数据接收正确的情况下,所述指示比特为2比特,其中1比特指示通信数据接收正确,另1比特指示感知测量结果有效性;
其中,所述第一信号为通信数据信号。
可选地,所述指示比特为m+1比特,m为大于1的整数,其中:
m比特指示感知测量结果有效性等级,1比特指示通信数据接收正确性;或者
所述m+1比特以联合编码的方式指示感知测量结果有效性等级和通信数据接收正确性。
可选地,所述第二设备获取第一设备指示的反馈信息,包括:
所述第二设备通过所述第一设备的非连续发送DTX获取所述反馈信息。
可选地,在感知测量结果无效的情况下,在用于指示感知测量结果有效性的第一反馈资源上不发送信号,以通过DTX向第二设备指示感知测量结果无效;和/或,
在通信数据接收错误的情况下,在用于指示通信数据接收正确性的第二反馈资源上不发送信号,以通过DTX向第二设备指示通信数据接收错误。
可选地,所述感知测量结果无效原因如下至少一项:
所述第一设备检测的所述第一信号的质量未达到门限要求;
所述第一设备获得的感知测量结果不满足感知要求;
在所述第一信号为通信数据信号的情况下,所述第一设备未正确解调数据;
在所述反馈信息的反馈时间点到达时,所述第一设备未获取到感知测量结果。
可选地,所述参数配置包括如下至少一项:
波形、子载波间隔、保护间隔、带宽、突发burst持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频域资源、准共址QCL关系。
可选地,所述反馈信息还用于指示如下至少一项:
与感知测量结果关联的第一信号的标识信息;
感知测量标识信息;
感知测量结果。
可选地,在所述反馈信息指示感知测量结果有效的情况下,所述反馈信息指示感知测量结果;
和/或,
在所述反馈信息指示感知测量结果无效的情况下,所述反馈信息指示如下至少一项:
感知测量结果无效原因;
第一信号的参数配置。
可选地,在感知测量结果有效的情况下,所述反馈信息包括通信数据接收正确性的第一指示比特,以及还包括如下至少一项:
感知测量结果有效的指示信息:
与感知测量结果关联的第一信号的标识信息;
感知测量标识信息;
感知测量结果;
和/或,
在感知测量结果无效的情况下,所述反馈信息包括通信数据接收正确性的第二指示比特,所述第二指示比特用于指示通信数据接收正确性,以及隐式指示感知测量结果无效。
可选地,在感知测量结果无效的情况下,所述反馈信息包括通信数据接收正确性的第三指示比特,以及还包括如下至少一项:
感知测量结果无效的指示信息:
感知测量结果无效原因的指示信息;
第一信号的参数配置;
和/或,
在感知测量结果有效的情况下,所述反馈信息包括通信数据接收正确性的第四指示比特,所述第四指示比特用于指示通信数据接收正确性,以及隐式指示感知测量结果有效。
可选地,所述获取第一设备指示的反馈信息之前,射频装置1802还用于:
向所述第一设备发送第一指示信息,所述第一指示信息用于指示如下至少一项:
是否需要感知测量结果有效性反馈;
感知测量结果有效性和通信数据接收正确性反馈的规则;
感知测量结果有效性判断的准则;
感知测量量;
感知需求;
感知业务。
可选地,所述感知测量结果有效性和通信数据接收正确性反馈的规则包括如下至少一项:
反馈定时;
反馈资源;
反馈方式;
联合反馈配置或者指示;
反馈信息格式;
和/或
所述感知测量结果有效性判断的准则包括如下至少一项:
所述第一设备检测到的所述第一信号的质量是否达到门限要求;
所述第一设备获得的感知测量结果是否满足感知需求;
在所述第一信号为通信数据信号的情况下,所述第一设备是否正确解调数据;
在所述反馈信息的反馈时间点到达时,所述第一设备是否获取到感知测量结果。
可选地,所述获取第一设备指示的反馈信息之前,射频装置1802还用于:
向所述第一设备发送的第二指示信息,所述第二指示信息用于指示如下至少一项:
是否允许基于通信数据符号进行感知测量的指示信息;
感知测量的通信数据信号的配置信息;
感知服务质量QoS信息。
需要说明的是,本实施例是以第二设备为网络侧设备进行举例说明。
上述第二设备可以实现感知测量。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述信息反馈方法或者信息获取方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述信息反馈方法或者信息获取方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述信息反馈方法或者信息获取方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种信息反馈系统,包括:第一设备及第二设备,所述终端可用于执行上述信息反馈方法的步骤,所述网络侧设备可用于执行如上述信息获取方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除 在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (31)

  1. 一种信息反馈方法,包括:
    第一设备向第二设备指示反馈信息,所述反馈信息用于指示如下至少一项:
    感知测量结果有效性和通信数据接收正确性;
    感知测量结果无效原因;
    第一信号的参数配置;
    其中,所述感知测量结果为对所述第一设备接收的所述第一信号进行感知测量的测量结果。
  2. 如权利要求1所述的方法,其中,所述反馈信息包括指示比特,所述指示比特为至少一个比特,用于指示感知测量结果有效性和通信数据接收正确性。
  3. 如权利要求2所述的方法,其中,所述指示比特为2比特,其中:所述2比特分别指示感知测量结果有效性和通信数据接收正确性;或者,所述2比特以联合编码的方式指示感知测量结果有效性和通信数据接收正确性;
    或者,
    所述指示比特为1比特,所述1比特指示感知测量结果有效性和通信数据接收正确性。
  4. 如权利要求2所述的方法,其中,在通信数据接收错误的情况下,所述指示比特为1比特,用于指示通信数据接收错误,且感知测量结果无效;
    在通信数据接收正确的情况下,所述指示比特为2比特,其中1比特指示通信数据接收正确,另1比特指示感知测量结果有效性;
    其中,所述第一信号为通信数据信号。
  5. 如权利要求2所述的方法,其中,所述指示比特为m+1比特,m为大于1的整数,其中:
    m比特指示感知测量结果有效性等级,1比特指示通信数据接收正确性;或者
    所述m+1比特以联合编码的方式指示感知测量结果有效性等级和通信数据接收正确性。
  6. 如权利要求1所述的方法,其中,所述第一设备向第二设备指示反馈信息,包括:
    所述第一设备通过非连续发送DTX,向第二设备指示所述反馈信息。
  7. 如权利要求6所述的方法,其中,在感知测量结果无效的情况下,在用于指示感知测量结果有效性的第一反馈资源上不发送信号,以通过DTX向第二设备指示感知测量结果无效;和/或,
    在通信数据接收错误的情况下,在用于指示通信数据接收正确性的第二反馈资源上不发送信号,以通过DTX向第二设备指示通信数据接收错误。
  8. 如权利要求1至7中任一项所述的方法,其中,所述感知测量结果无效原因如下至少一项:
    所述第一设备检测的所述第一信号的质量未达到门限要求;
    所述第一设备获得的感知测量结果不满足感知要求;
    在所述第一信号为通信数据信号的情况下,所述第一设备未正确解调数据;
    在所述反馈信息的反馈时间点到达时,所述第一设备未获取到感知测量结果。
  9. 如权利要求1至7中任一项所述的方法,其中,所述参数配置包括如下至少一项:
    波形、子载波间隔、保护间隔、带宽、突发burst持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频域资源、准共址QCL关系。
  10. 如权利要求1至7中任一项所述的方法,其中,所述反馈信息还用于指示如下至少一项:
    与感知测量结果关联的第一信号的标识信息;
    感知测量标识信息;
    感知测量结果。
  11. 如权利要求1至7中任一项所述的方法,其中,在所述反馈信息指示感知测量结果有效的情况下,所述反馈信息指示感知测量结果;
    和/或,
    在所述反馈信息指示感知测量结果无效的情况下,所述反馈信息指示如下至少一项:
    感知测量结果无效原因;
    第一信号的参数配置。
  12. 如权利要求1至7中任一项所述的方法,其中,在感知测量结果有效的情况下,所述反馈信息包括通信数据接收正确性的第一指示比特,以及还包括如下至少一项:
    感知测量结果有效的指示信息:
    与感知测量结果关联的第一信号的标识信息;
    感知测量标识信息;
    感知测量结果;
    和/或,
    在感知测量结果无效的情况下,所述反馈信息包括通信数据接收正确性的第二指示比特,所述第二指示比特用于指示通信数据接收正确性,以及隐式指示感知测量结果无效。
  13. 如权利要求1至7中任一项所述的方法,其中,在感知测量结果无效的情况下,所述反馈信息包括通信数据接收正确性的第三指示比特,以及还包括如下至少一项:
    感知测量结果无效的指示信息:
    感知测量结果无效原因的指示信息;
    第一信号的参数配置;
    和/或,
    在感知测量结果有效的情况下,所述反馈信息包括通信数据接收正确性的第四指示比特,所述第四指示比特用于指示通信数据接收正确性,以及隐式指示感知测量结果有效。
  14. 如权利要求1至7中任一项所述的方法,其中,所述第一设备向第二设备指示反馈信息之前,所述方法还包括:
    所述第一设备接收所述第二设备发送的第一指示信息,所述第一指示信息用于指示如下至少一项:
    是否需要感知测量结果有效性反馈;
    感知测量结果有效性和通信数据接收正确性反馈的规则;
    感知测量结果有效性判断的准则;
    感知测量量;
    感知需求;
    感知业务。
  15. 如权利要求14所述的方法,其中,所述感知测量结果有效性和通信数据接收正确性反馈的规则包括如下至少一项:
    反馈定时;
    反馈资源;
    反馈方式;
    联合反馈配置或者指示;
    反馈信息格式;
    和/或
    所述感知测量结果有效性判断的准则包括如下至少一项:
    所述第一设备检测到的所述第一信号的质量是否达到门限要求;
    所述第一设备获得的感知测量结果是否满足感知需求;
    在所述第一信号为通信数据信号的情况下,所述第一设备是否正确解调数据;
    在所述反馈信息的反馈时间点到达时,所述第一设备是否获取到感知测量结果。
  16. 如权利要求1至7中任一项所述的方法,其中,所述第一设备向第二设备指示反馈信息之前,所述方法还包括:
    所述第一设备接收所述第二设备发送的第二指示信息,所述第二指示信息用于指示如下至少一项:
    是否允许基于通信数据符号进行感知测量的指示信息;
    感知测量的通信数据信号的配置信息;
    感知服务质量QoS信息。
  17. 一种信息获取方法,包括:
    第二设备获取第一设备指示的反馈信息,所述反馈信息用于指示如下至少一项:
    感知测量结果有效性和通信数据接收正确性;
    感知测量结果无效原因;
    第一信号的参数配置;
    其中,所述感知测量结果为对所述第一设备接收的所述第一信号进行感知测量的测量结果。
  18. 如权利要求17所述的方法,其中,所述反馈信息包括指示比特,所述指示比特为至少一个比特,用于指示感知测量结果有效性和通信数据接收正确性。
  19. 如权利要求18所述的方法,其中,所述指示比特为2比特,其中:所述2比特分别指示感知测量结果有效性和通信数据接收正确性;或者,所述2比特以联合编码的方式指示感知测量结果有效性和通信数据接收正确性;
    或者,
    所述指示比特为1比特,所述1比特指示感知测量结果有效性和通信数据接收正确性。
  20. 如权利要求18所述的方法,其中,在通信数据接收错误的情况下,所述指示比特为1比特,用于指示通信数据接收错误,且感知测量结果无效;
    在通信数据接收正确的情况下,所述指示比特为2比特,其中1比特指示通信数据接收正确,另1比特指示感知测量结果有效性;
    其中,所述第一信号为通信数据信号。
  21. 如权利要求18所述的方法,其中,所述指示比特为m+1比特,m为大于1的整数,其中:
    m比特指示感知测量结果有效性等级,1比特指示通信数据接收正确性;或者
    所述m+1比特以联合编码的方式指示感知测量结果有效性等级和通信数据接收正确性。
  22. 如权利要求18所述的方法,其中,所述第二设备获取第一设备指示的反馈信息,包括:
    所述第二设备通过所述第一设备的非连续发送DTX获取所述反馈信息。
  23. 如权利要求22所述的方法,其中,在感知测量结果无效的情况下,在用于指示感知测量结果有效性的第一反馈资源上不发送信号,以通过DTX向第二设备指示感知测量结果无效;和/或,
    在通信数据接收错误的情况下,在用于指示通信数据接收正确性的第二反馈资源上不发送信号,以通过DTX向第二设备指示通信数据接收错误。
  24. 如权利要求17至23中任一项所述的方法,其中,所述反馈信息还用于指示如下至少一项:
    与感知测量结果关联的第一信号的标识信息;
    感知测量标识信息;
    感知测量结果。
  25. 如权利要求17至23中任一项所述的方法,其中,所述第二设备获取第一设备指示的反馈信息之前,所述方法还包括:
    所述第二设备向所述第一设备发送第一指示信息,所述第一指示信息用于指示如下至 少一项:
    是否需要感知测量结果有效性反馈;
    感知测量结果有效性和通信数据接收正确性反馈的规则;
    感知测量结果有效性判断的准则;
    感知测量量;
    感知需求;
    感知业务。
  26. 如权利要求17至23中任一项所述的方法,其中,所述第二设备获取第一设备指示的反馈信息之前,所述方法还包括:
    所述第二设备向所述第一设备发送的第二指示信息,所述第二指示信息用于指示如下至少一项:
    是否允许基于通信数据符号进行感知测量的指示信息;
    感知测量的通信数据信号的配置信息;
    感知服务质量QoS信息。
  27. 一种信息反馈装置,包括:
    指示模块,用于向第二设备指示反馈信息,所述反馈信息用于指示如下至少一项:
    感知测量结果有效性和通信数据接收正确性;
    感知测量结果无效原因;
    第一信号的参数配置;
    其中,所述感知测量结果为对第一设备接收的所述第一信号进行感知测量的测量结果。
  28. 一种信息获取装置,包括:
    获取模块,用于获取第一设备指示的反馈信息,所述反馈信息用于指示如下至少一项:
    感知测量结果有效性和通信数据接收正确性;
    感知测量结果无效原因;
    第一信号的参数配置;
    其中,所述感知测量结果为对所述第一设备接收的所述第一信号进行感知测量的测量结果。
  29. 一种通信设备,所述通信设备为第一设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求1至16任一项所述的信息反馈方法的步骤。
  30. 一种通信设备,所述通信设备为第二设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求17至26任一项所述的信息获取方法的步骤。
  31. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1至16任一项所述的信息反馈方法的步骤,或者实现 如权利要求17至26任一项所述的信息获取方法的步骤。
PCT/CN2023/084705 2022-03-31 2023-03-29 信息反馈方法、接收方法、装置、设备和存储介质 WO2023185926A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210344601.9A CN116939682A (zh) 2022-03-31 2022-03-31 信息反馈方法、接收方法、装置、设备和存储介质
CN202210344601.9 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023185926A1 true WO2023185926A1 (zh) 2023-10-05

Family

ID=88199310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084705 WO2023185926A1 (zh) 2022-03-31 2023-03-29 信息反馈方法、接收方法、装置、设备和存储介质

Country Status (2)

Country Link
CN (1) CN116939682A (zh)
WO (1) WO2023185926A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118019049A (zh) * 2022-11-10 2024-05-10 维沃移动通信有限公司 测量信息反馈方法、接收方法及通信设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106209193A (zh) * 2016-08-19 2016-12-07 西华大学 基于压缩感知大规模mimo系统的csi反馈方法
CN112398600A (zh) * 2019-08-12 2021-02-23 华为技术有限公司 一种通信方法及设备
CN113115341A (zh) * 2021-04-15 2021-07-13 成都极米科技股份有限公司 一种协商无线感知进程的方法、装置、设备及存储介质
WO2022021811A1 (zh) * 2020-07-31 2022-02-03 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
CN115802386A (zh) * 2022-11-30 2023-03-14 宜宾市极米光电有限公司 感知测量方法、装置、电子设备和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106209193A (zh) * 2016-08-19 2016-12-07 西华大学 基于压缩感知大规模mimo系统的csi反馈方法
CN112398600A (zh) * 2019-08-12 2021-02-23 华为技术有限公司 一种通信方法及设备
WO2022021811A1 (zh) * 2020-07-31 2022-02-03 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
CN113115341A (zh) * 2021-04-15 2021-07-13 成都极米科技股份有限公司 一种协商无线感知进程的方法、装置、设备及存储介质
CN115802386A (zh) * 2022-11-30 2023-03-14 宜宾市极米光电有限公司 感知测量方法、装置、电子设备和存储介质

Also Published As

Publication number Publication date
CN116939682A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
US20230345409A1 (en) Positioning method on sidelink, terminal, and network side device
US11782121B2 (en) Method and device for positioning utilizing beam information
WO2022253183A1 (zh) 一种信号传输方法、装置、设备及系统
WO2023185926A1 (zh) 信息反馈方法、接收方法、装置、设备和存储介质
US20240155394A1 (en) Sensing method and apparatus, terminal, and network device
WO2023274029A1 (zh) 通信感知方法、装置及网络设备
WO2023093646A1 (zh) 无线感知方法、装置、网络侧设备和终端
US20240151815A1 (en) Positioning of passive internet of things (iot) devices
WO2023093644A1 (zh) 无线感知方法、装置、网络侧设备和终端
WO2023185919A1 (zh) 指示信息发送方法、接收方法、装置、设备和存储介质
WO2023185921A1 (zh) 信息指示方法、指示获取方法、装置、设备和存储介质
WO2023185910A1 (zh) 信息指示方法、接收方法、装置、设备和存储介质
CN112469131B (zh) 一种配置srs资源符号数的方法及终端设备
WO2024099125A1 (zh) 测量信息反馈方法、接收方法及通信设备
WO2024099126A1 (zh) 测量信息发送方法、接收方法及通信设备
WO2023226826A1 (zh) 感知方法、装置及通信设备
WO2023169544A1 (zh) 质量信息确定方法、装置、终端及存储介质
WO2023186098A1 (zh) 感知信号处理方法、设备及可读存储介质
WO2024061065A1 (zh) 前导码发送方法、终端及存储介质
WO2024051545A1 (zh) 测量信息发送方法、接收方法及通信设备
WO2023231844A1 (zh) 感知测量方法、装置、设备、终端和存储介质
WO2023186123A1 (zh) 感知信号处理方法、设备及可读存储介质
EP4376469A1 (en) Sensing signal measurement method and apparatus, network device, and terminal
WO2023169562A1 (zh) 多天线通感一体化系统isac的功率分配方法及设备
WO2024051619A1 (zh) 切换处理方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778291

Country of ref document: EP

Kind code of ref document: A1