WO2023185919A1 - 指示信息发送方法、接收方法、装置、设备和存储介质 - Google Patents

指示信息发送方法、接收方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2023185919A1
WO2023185919A1 PCT/CN2023/084671 CN2023084671W WO2023185919A1 WO 2023185919 A1 WO2023185919 A1 WO 2023185919A1 CN 2023084671 W CN2023084671 W CN 2023084671W WO 2023185919 A1 WO2023185919 A1 WO 2023185919A1
Authority
WO
WIPO (PCT)
Prior art keywords
perceptual
validity
bits
measurement results
indication
Prior art date
Application number
PCT/CN2023/084671
Other languages
English (en)
French (fr)
Inventor
姚健
姜大洁
李娜
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023185919A1 publication Critical patent/WO2023185919A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to an instruction information sending method, receiving method, device, equipment and storage medium.
  • Perception capability that is, one or more devices with perception capabilities can sense the orientation, distance and/or speed of target objects through the transmission and reception of wireless signals, or detect and detect target objects, events or environments, etc. Tracking, identification or imaging, etc.
  • Perception capability that is, one or more devices with perception capabilities can sense the orientation, distance and/or speed of target objects through the transmission and reception of wireless signals, or detect and detect target objects, events or environments, etc. Tracking, identification or imaging, etc.
  • those skilled in the art are still in the discussion stage on how to implement perceptual measurement technology. That is to say, how to implement perceptual measurement is still a technical problem to be solved.
  • the embodiments of the present application provide an instruction information sending method, receiving method, device, equipment and storage medium, which can solve the technical problem of how to implement perceptual measurement.
  • the first aspect provides a method for sending instruction information, including:
  • the first device sends first indication information to the second device.
  • the first indication information is used to indicate the validity of m sensing measurement results and the correctness of n communication data receptions.
  • m and n are positive integers, and m+n> 2;
  • the m perceptual measurement results corresponding to the validity of the m perceptual measurement results are the measurement results of perceptual measurement of the target signal received by the first device.
  • a method for receiving instruction information including:
  • the second device receives the first indication information sent by the first device, the first indication information is used to indicate the validity of m sensing measurement results and the correctness of n communication data reception, m+n>2;
  • the m perceptual measurement results corresponding to the validity of the m perceptual measurement results are the measurement results of perceptual measurement of the target signal received by the first device.
  • an instruction information sending device including:
  • a sending module configured to send first indication information to the second device.
  • the first indication information is used to indicate the validity of m sensing measurement results and the correctness of n communication data receptions.
  • m and n are positive integers, and m+ n>2;
  • the m perceptual measurement results corresponding to the validity of the m perceptual measurement results are the measurement results of perceptual measurement of the target signal received by the first device.
  • an indication information receiving device including:
  • a receiving module configured to receive first indication information sent by the first device, where the first indication information is used to indicate the validity of m sensing measurement results and the correctness of n communication data reception, m+n>2;
  • the m perceptual measurement results corresponding to the validity of the m perceptual measurement results are the measurement results of perceptual measurement of the target signal received by the first device.
  • a communication device is provided.
  • the communication device is a first device and includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are used by the processor.
  • the processor is executed, the steps of the instruction information sending method provided by the embodiments of the present application are implemented.
  • a communication device is provided.
  • the communication device is a first device and includes a processor and a communication interface.
  • the communication interface is used to send first indication information to a second device.
  • the first indication The information is used to indicate the validity of m perception measurement results and the correctness of n communication data reception.
  • m and n are positive integers, and m+n>2; where the m perception corresponding to the validity of the m perception measurement results are
  • the measurement result is a measurement result of perceptual measurement of the target signal received by the first device.
  • a communication device is provided.
  • the communication device is a second device and includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are used by the processor.
  • the processor is executed, the steps of the instruction information receiving method provided by the embodiments of the present application are implemented.
  • a communication device is provided.
  • the communication device is a second device and includes a processor and a communication interface, wherein the communication interface is used to receive first indication information sent by the first device, and the first The indication information is used to indicate the validity of m perceptual measurement results and the correctness of n communication data reception, m+n>2; wherein, the m perceptual measurement results corresponding to the validity of the m perceptual measurement results are for the first A device receives the target signal and performs the measurement result of the perceptual measurement.
  • an instruction information transmission system including: a first device and a second device.
  • the terminal can be used to perform the steps of the instruction information sending method as described in the first aspect.
  • the network side device can be used to The steps of the instruction information receiving method described in the second aspect are performed.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the instruction information sending method as described in the first aspect are implemented. Or implement the steps of the instruction information receiving method described in the second aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect.
  • a computer program/program product is provided, the computer program/program product being stored in In the storage medium, the computer program/program product is executed by at least one processor to implement the steps of the instruction information sending method as described in the first aspect, or the computer program/program product is executed by at least one processor to implement as The steps of the instruction information receiving method described in the second aspect.
  • the first device sends first indication information to the second device.
  • the first indication information is used to indicate the validity of m perception measurement results and the correctness of n communication data receptions.
  • m and n are positive integers. , and m+n>2; wherein, the m perceptual measurement results corresponding to the validity of the m perceptual measurement results are the measurement results of perceptual measurement of the target signal received by the first device.
  • the first device indicates to the second device the validity of m perceptual measurement results and the correct reception of n communication data, so as to implement perceptual measurement.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is a schematic diagram of wireless sensing provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of another wireless sensing provided by an embodiment of the present application.
  • Figure 4 is a flow chart of a method for sending instruction information provided by an embodiment of the present application.
  • Figure 5 is a flow chart of a method for receiving instruction information provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of a method for sending instruction information provided by an embodiment of the present application.
  • Figure 7 is a structural diagram of an instruction information sending device provided by an embodiment of the present application.
  • Figure 8 is a structural diagram of an instruction information receiving device provided by an embodiment of the present application.
  • Figure 9 is a structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 10 is a structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 11 is a structural diagram of another communication device provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes terminals, network side equipment and core network equipment.
  • the terminal may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • palmtop computer a netbook
  • super computer a super computer.
  • Mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (AR)/virtual reality (VR) equipment, robots, wearable devices ( Wearable Device), vehicle user equipment (VUE), pedestrian terminal (Pedestrian User Equipment, PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal Terminal devices such as computers (PCs), teller machines or self-service machines, wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces , smart anklets, smart anklets, etc.), smart wristbands, smart clothing, etc. It should be noted that the embodiments of this application do not limit the specific type of terminal.
  • Network-side equipment may include access network equipment or core network equipment, where access network equipment may also be called wireless access network equipment, radio access network (Radio Access Network, RAN), radio access network function or wireless access network equipment.
  • Access network equipment can include base stations, Wireless Local Area Networks (WLAN) access points or WiFi nodes, etc.
  • WLAN Wireless Local Area Networks
  • the base station can be called Node B, Evolved Node B (eNB), access point, base transceiver station ( Base Transceiver Station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B-node, home evolved B-node, sending and receiving point ( Transmission Reception Point (TRP), Access Point (AP), Relay, Reconfigurable Intelligence Surface (RIS), or some other appropriate term in the field, as long as it reaches the same technology Effect, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
  • Core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Server Discovery Function (EASDF), Unified Data Management (UDM), Unified Data Repository , UDR), Home Subscriber Server (HSS), Centralized network configuration (CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), binding support function (Binding Support Function, BSF), application function (Application Function, AF), etc.
  • MME mobility management entities
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control Function
  • PCF Policy and Charging Rules Function
  • EASDF Edge Application
  • network-side devices and terminals have sensing capabilities and can sense the orientation, distance, speed and other information of target objects through the sending and receiving of wireless signals, or detect and track target objects, events or environments, etc. , recognition, imaging, etc.
  • the perception categories can be as shown in Table 1 below:
  • embodiments of the present application can be applied to integrated communication and radar communication sensing fusion application scenarios.
  • the joint design in this scenario includes spectrum coexistence, that is, the two systems work independently, allowing information exchange to reduce mutual interference.
  • the transmitting end of the two systems sends their own signal waveforms.
  • the waveforms of the two systems need to be orthogonal so as not to affect their respective reception and detection; when the transmitting end is shared, the transmitting end transmits radar and Joint waveform for communication; when the transceiver and receiver are shared, the transceiver and receiver sides of the two systems share resources. It is also necessary to use a joint waveform or a waveform with an orthogonal relationship.
  • the above application scenario of integrated communication perception and fusion of communication and radar is an example of the application scenario of the embodiment of the present application, and the corresponding scenario is not limited in the embodiment of the present application.
  • the base station serves as the sender and receiver of the sensing signal
  • the terminal or other object serves as the sensing target
  • the base station serves as the sender and receiver of the sensing signal
  • the terminal or other object serves as the sensing target
  • the sender transmits the sensing signal
  • other receivers receive it
  • analyze and propose Taking sensing parameters, for example, as shown in Figure 3, base station 1 serves as the sensing signal transmitter, and the terminal or base station 2 serves as the sensing signal receiving end.
  • the communication system can jointly transmit modulation symbols carrying information and pilot symbols used for channel estimation, focusing on decoding performance.
  • the channel estimation algorithm only needs to estimate a composite channel with limited unknown parameters, usually with Improving throughput and transmission reliability is the optimization goal.
  • the performance indicators of concern are generally spectrum efficiency, channel capacity, signal-to-noise ratio (SNR), signal-to-interference plus noise ratio (Signal-to-Interference plus Noise Ratio) , SINR), bit error probability (Bit Error Ratio, BER), block error rate (Block Error Rate, BLER), bit error rate (Symbol Error Rate, SER), etc. There is no need to consider information carrying issues during the signal transmission process of the sensing system.
  • Optimized or unmodulated transmitted signals are usually used.
  • the focus can be on the changes brought by the sensing target to the transmitted signal, that is, the response characteristics.
  • the optimization goal is usually to improve the accuracy of parameter estimation.
  • Perfectance measures may be fuzzy functions, Cramero’s ,lower bound, root mean square error, mutual information, ,rate-distortion function, radar estimation rate, Welch’s ,lower bound and some metrics related to the sensing ,scenario and requirements.
  • wireless communication signals and wireless sensing signals will be supported at the same time, and the integrated design of communication and sensing functions will be realized through communication and sensing integration means such as signal joint design and/or hardware sharing. While transmitting information, it has the ability to sense or provide sensing services. In this way, through the integration of synaesthesia (communication and perception), effects such as cost savings, equipment size reduction, equipment power consumption reduction, spectral efficiency improvement, mutual interference reduction between synaesthesia, and system performance improvement can be achieved.
  • synaesthesia communication and perception
  • effects such as cost savings, equipment size reduction, equipment power consumption reduction, spectral efficiency improvement, mutual interference reduction between synaesthesia, and system performance improvement can be achieved.
  • synaesthesia integration may include but is not limited to at least one of the following:
  • the same network provides communication services and sensing services
  • the same terminal provides communication services and perception services
  • the same spectrum provides communication services and sensing services
  • the integrated synaesthesia integration service is completed in the same radio transmission, that is, the joint design of communication signals and perception signals.
  • perceptual measurement can use dedicated perceptual signals, or multiplex communication signals, such as data and/or pilots.
  • the use of perceptual measurement signals can be determined by the sender. Instruct the receiver, such as the base station, to instruct the terminal which type of signal to use for sensing measurements.
  • Figure 4 is a flow chart of a method for sending instruction information provided by an embodiment of the present application. As shown in Figure 4, it includes the following steps, including:
  • Step 401 The first device sends first indication information to the second device.
  • the first indication information is used to indicate the validity of m sensing measurement results and the correctness of n communication data receptions.
  • m and n are positive integers, and m +n>2;
  • the m perceptual measurement results corresponding to the validity of the m perceptual measurement results are the measurement results of perceptual measurement of the target signal received by the first device.
  • the above-mentioned first device may be a network-side device or terminal
  • the above-mentioned second device may be a sensing network function and/or sensing network element of the core network, or may be a network-side device or terminal.
  • the target signal may be a communication signal, such as a reference signal, a synchronization signal or a data signal, or the target signal may be a dedicated sensing signal, such as a radar pulse signal or a Frequency Modulated Continuous Wave (FMCW) signal.
  • a communication signal such as a reference signal, a synchronization signal or a data signal
  • the target signal may be a dedicated sensing signal, such as a radar pulse signal or a Frequency Modulated Continuous Wave (FMCW) signal.
  • FMCW Frequency Modulated Continuous Wave
  • the sending and receiving of target signals can include the following methods:
  • Network-side device A sends a target signal
  • network-side device B receives a target signal
  • network-side device B serves as the first device
  • network-side device A serves as the second device
  • at least one of network-side device A and network-side device B The item serves as the first device
  • the core network serves as the second device
  • the network side device sends the target signal and the terminal receives the target signal; wherein the terminal serves as the first device and the network side device serves as the second device, or at least one of the network side device and the terminal serves as the first device and the core network serves as the second device ;
  • the network side equipment collects itself spontaneously; among them, the network side equipment serves as the first device and the core network serves as the second device;
  • the terminal spontaneously receives and receives data; in which, the terminal serves as the first device and the network side device serves as the second device, or the terminal serves as the first device and the core network serves as the second device;
  • the terminal sends and the network side device receives; among them, the network side device serves as the first device and the core network serves as the second device;
  • Terminal A sends and terminal B receives; wherein, terminal B serves as the first device and terminal A serves as the second device, or terminal A or terminal B serves as the first device, and the access network side device of terminal A or terminal B serves as the second device.
  • Device, or terminal A or terminal B serves as the first device, and the core network serves as the second device.
  • target signal sending device in the embodiment of the present application may be multiple devices, and the target signal receiving device may be multiple devices.
  • the first indication information may explicitly or implicitly indicate the validity of m perception measurement results and the correctness of n communication data receptions.
  • the validity of the m perceptual measurement results may be a validity indication of the m perceptual measurement results.
  • Each perceptual measurement result validity is used to indicate whether the corresponding perceptual measurement result is valid or invalid, and each perceptual measurement result or each perceptual measurement result is invalid.
  • a perception measurement result validity indication is associated with one or more perception measurements, wherein one perception measurement may be a measurement based on one or more target signals.
  • the criteria for valid or invalid sensing measurement results may be configured by the network device and/or defined by the protocol, or the criteria for valid or invalid sensing measurement results may be determined by being associated with sensing measurement quantities or sensing requirements or sensing services.
  • n communication data reception correctness may be n communication data reception correctness indications, each indication indicating the reception correctness of one or more data transmissions, for example: n communication data reception confirmation information, such as n communication data Correct reception (Acknowledgement, ACK), or n reception errors (Negative Acknowledgement, NACK), or the total number of ACKs and NACKs is n.
  • n communication data reception confirmation information such as n communication data Correct reception (Acknowledgement, ACK), or n reception errors (Negative Acknowledgement, NACK), or the total number of ACKs and NACKs is n.
  • the first device can indicate to the second device the validity of m perceptual measurement results and the correctness of n communication data receptions, so as to realize perceptual measurement and improve the working performance of the device. And since m+n>2, multiple feedback results can be indicated at one time to save transmission overhead.
  • the content indicated by the above-mentioned first indication information also includes using the second device that receives the first indication information to further process the perceptual measurement results or adjust the signal configuration, thereby improving the perceptual measurement performance. or, The content indicated by the above-mentioned first indication information can assist the party receiving the perceptual measurement results to further process the perceptual measurement results, or adjust the configuration of the perceptual measurement signals, thereby obtaining better perceptual measurement performance.
  • the first indication information includes an indication bit
  • the indication bit is at least one bit used to indicate the validity of m perceptual measurement results and the correctness of n communication data reception.
  • the above indication bits may be jointly or independently coded to indicate the validity of m perceptual measurement results and the correctness of n communication data reception.
  • the indication bits are m+n bits, where:
  • n bits indicate the correctness of n communication data reception
  • 2x bits among the m+n bits indicate the validity of x perceptual measurement results and the correctness of x communication data reception in a joint encoding manner.
  • the m-x bits among the m+n bits indicate m-x
  • the validity of perceptual measurement results when x is less than n, n-x bits in the m+n bits indicate the validity of n-x perceptual measurement results;
  • x is a positive integer, and x is less than or equal to m, x is less than or equal to n .
  • m bits and n bits respectively indicate the validity of m perception measurement results and the correctness of n communication data reception.
  • Joint coding or independent coding can be used.
  • the independent coding code rate can be different to meet different priority or importance requirements.
  • m bits indicate the validity of m perception measurement results. For each 1 bit in the m bits, "0" indicates that the perception measurement results are invalid, “1” indicates that the perception measurement results are valid; n bits indicate that n communication data are received. Correctness, that is, indicates n ACK/NACKs. For example, for each 1 bit in the n bits, "0" indicates that the communication data is received incorrectly (NACK), and "1" indicates that the communication data is received correctly (ACK).
  • the validity of the x perceptual measurement results and the x communication data reception correctness mentioned above may be that among the m perceptual measurement result validity and the n communication data reception correctness, there are x associated perceptual measurement result validity and communication data reception.
  • Correctness indication so that 2x bits can be used to indicate the validity of x perceptual measurement results and the correctness of x communication data reception in a joint encoding manner. Among them, every 2 bits associated with the 2x bits jointly indicate the validity of the perception measurement results and the correctness of the communication data reception. Joint coding is used, that is, every 2 bits represent 4 states. In particular, for example, the communication data is received incorrectly but the perception measurement results are incorrect. A valid situation may not exist, so the 2-bit value corresponding to this state (communication data reception error and sensing measurement result is valid) can be Reserved, for example: as shown in Table 2 below:
  • the remaining mx bits and nx bits can respectively indicate the validity of the sensing measurement results and the correctness of the communication data reception.
  • Bits for the validity of measurement results and/or the correctness of communication data reception that is, when x is less than m, the mx bits among the m+n bits indicate the validity of mx sensing measurement results, when x is less than n,
  • the nx bit indication among the m+n bits Validity of nx perceptual measurements.
  • m+n bits can accurately indicate the validity of the perceptual measurement result and the correctness of communication data reception.
  • the indication bit is 2 bits, and the first value of the first bit among the 2 bits indicates that at least one of the validity of the m perceptual measurement results is invalid, and the first bit The second value indicates that all the m perception measurement results are valid; the first value of the second bit in the 2 bits indicates that at least one of the n communication data reception correctness is a reception error, The second value of the second bit among the 2 bits indicates that the reception correctness of the n pieces of communication data is correct.
  • a logical AND result of m bits used to indicate the validity of m perceptual measurement results may be used, in which 1 bit is used to indicate the validity of m perceptual measurement results. For example: “0" indicates that at least one of the m perceptual measurement results is invalid, and “1" indicates that m perceptual measurement results are all valid.
  • the other 1 bit is used as the logical AND result of n bits used to indicate the correctness of n communication data reception. For example: “0” indicates that there is at least 1 reception error indication (NACK) in the n communication data reception correctness indications, " 1” indicates that n communication data reception correctness indications are all reception correctness indications (ACK).
  • NACK reception error indication
  • signaling overhead can be saved by using 2 bits.
  • the indication bit is 1 bit
  • the second value of the first bit indicates that all the m perception measurement results are valid, and the n communication data reception correctnesses are all valid.
  • the first value of the 1 bit indicates at least one of the following:
  • At least one of the m perceptual measurement result validity is invalid, and at least one of the n communication data reception correctnesses is a reception error.
  • 1 bit is used as the logical AND result of m bits used for the validity of m perceptual measurement results and n bits used to indicate the correctness of communication data reception. For example: “0" indicates that among the m perceptual measurement results At least 1 is invalid, and/or, there is at least 1 reception error indication (NACK) among the n communication data reception correctness indications. “1” means that the m sensing measurement results are all valid and the n communication data reception correctness indications are all valid. To receive correct indication (ACK).
  • signaling overhead can be saved by using 1 bit.
  • the indication bits are m+n-x bits, where: x bits in the m+n-x bits respectively indicate x joint indications, and each joint indication is 1 perceptual measurement result validity and 1 Joint indication of communication data reception correctness.
  • x is less than m
  • m-x bits among the m+n-x bits indicate the validity of m-x perception measurement results.
  • n-x bits indicate the validity of n-x perception measurement results;
  • x is a positive integer, and x is less than or equal to m, x is less than or equal to n.
  • each 1 bit in the x comparison represents A 2-bit logical AND result used to indicate the validity of the associated perceptual measurement results and the correctness of the communication data reception; for example: each 1 bit in the x bits is used to indicate the validity of the associated perceptual measurement results and the correctness of the communication data reception. For example, "0" indicates that the communication data is received incorrectly (NACK) or the perception measurement result is invalid; "1" indicates that the communication data is received correctly (ACK) and the perception measurement result is valid.
  • the remaining m-x bits and n-x bits respectively indicate the validity of the perceptual measurement results and the correctness of the communication data reception.
  • Bits for the validity of the perceptual measurement results and/or the correctness of the communication data reception that is, when x is less than m, the m-x bits among the m+n-x bits indicate the validity of m-x perceptual measurement results, when x is less than n , n-x bits among the m+n-x bits indicate the validity of n-x perception measurement results.
  • signaling overhead can be saved by using m+n-x bits.
  • the indication bits include x bit groups, the x bit groups respectively indicate x joint indications, each joint indication is 1 perception measurement result validity and 1 communication data reception correctness joint instructions;
  • the x bit groups include at least one of the following:
  • the indication bits also include m-x bits, indicating the validity of m-x perception measurement results
  • the indication bits also include n-x bits, indicating the validity of n-x perception measurement results
  • x is a positive integer, and x is less than or equal to m, and x is less than or equal to n.
  • each bit group determines whether to use 1 bit or 2 bits based on the correctness of communication data reception, for example:
  • the communication data When the communication data is received correctly, it is expressed using 2 bits, of which 1 bit is "1" indicating that the communication data is received correctly (ACK), and the other 1 bit is used to indicate whether the perception measurement result is valid.
  • the communication data reception correctness indication and the perception measurement result validity indication adopt independent coding, and the communication data reception correctness indication comes first.
  • 1 bit or 2 bits can be flexibly used to save signaling overhead.
  • the indication bits are mxu+n bits, where the mxu bits respectively indicate the validity levels of m perceptual measurement results, and the n bits indicate the reception correctness of n communication data.
  • the validity level of the above-mentioned perceptual measurement results may be, and different levels correspond to different signal qualities.
  • the signal quality may include: SNR, Reference Signal Received Power (RSRP), Received Signal Strength Indication. RSSI) and signal-to-noise ratio; or, the validity level of the above-mentioned perceptual measurement results can be that different levels correspond to different perceptual performance indicators; or, the above
  • the validity level of the perceptual measurement results can be that different levels correspond to different validity thresholds of the measurement results. For example, suppose there are two thresholds, including three levels. One level indicates invalid, and the other level indicates that it is valid but valid for the first threshold. According to the second threshold being invalid, there is also a level indicating that the second threshold is valid (assuming the second threshold requirement is higher).
  • the validity of the perceptual measurement results can be divided into different levels, thereby improving the feedback effect of the validity of the perceptual measurement results, and mxu bits and n bits can respectively indicate the validity of the perceptual measurement results and m Correctness of n communication data reception.
  • the first indication information is also used to indicate at least one of the following:
  • the reason why the perceptual measurement result is invalid may be information about the reason why the perceptual measurement result is invalid, which is indicated as invalid among the validity of the m perceptual measurement results.
  • the parameter configuration of the target signal may be the parameter configuration of the target signal recommended or expected by the first device, and may be the parameter configuration of the target signal corresponding to the perceptual measurement result indicated as invalid among the validity of the m perceptual measurement results. Parameter configuration can be used to improve the effectiveness of the perceptual measurement results corresponding to the target signal.
  • the second device that receives the first information can be used to further process the perceptual measurement results or adjust the signal configuration, thereby improving perceptual measurement performance.
  • at least one of the above invalid causes and parameter configurations can assist the party receiving the perception measurement results to further process the perception measurement results, or adjust the configuration of the perception measurement signals, thereby obtaining better perception measurement performance.
  • the reason why the perceptual measurement result is invalid is at least one of the following:
  • the quality of the target signal detected by the first device does not reach the threshold requirement
  • the perception measurement results obtained by the first device do not meet the perception requirements
  • the first device does not demodulate the data correctly
  • the first device When the feedback time point of the first indication information arrives, the first device does not obtain the sensing measurement result.
  • the quality of the target signal detected by the first device does not meet the threshold requirement.
  • At least one of SNR, RSRP, RSSI and signal-to-noise ratio threshold of the target signal detected by the first device does not meet the threshold requirement.
  • the receiving end may first measure only at least one of SNR, RSRP, RSSI and signal-to-noise ratio, and then measure specific perceptual measurement quantities if the threshold is reached.
  • the perceptual measurement result obtained by the first device does not meet the perceptual requirements.
  • the perceptual performance index corresponding to the perceptual measurement result calculated by the first device does not meet the requirements.
  • the perceptual SNR is lower than a preset threshold value.
  • the above-mentioned first device does not demodulate the data correctly.
  • it adopts the method of demodulating first and then estimating the sensing parameters. If the communication demodulation is wrong, the sensing measurement results will be affected and become unreliable, that is, the sensing The measurement result is invalid.
  • the failure of the first device to obtain the sensing measurement result when the feedback time point of the first indication information arrives may be that the receiving end fails to obtain the sensing measurement result when the feedback time point arrives, for example, the processing of the sensing measurement result times out.
  • the parameter configuration includes at least one of the following:
  • Waveform Waveform, subcarrier interval, guard interval, bandwidth, burst duration, time domain interval, transmitted signal power, signal format, signal direction, time resources, frequency domain resources, quasi co-location (QCL) )relation.
  • QCL quasi co-location
  • the above waveforms may include: Orthogonal frequency division multiplex (OFDM), Single-carrier Frequency-Division Multiple Access (SC-FDMA) SC-FDMA, Orthogonal time-frequency space ( Orthogonal Time Frequency Space, OTFS), Frequency Modulated Continuous Wave (FMCW) or pulse signal, etc.
  • OFDM Orthogonal frequency division multiplex
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • OFDM Orthogonal frequency division multiplex
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • OFDM Orthogonal time-frequency space
  • OTFS Orthogonal Time Frequency Space
  • FMCW Frequency Modulated Continuous Wave
  • the above-mentioned subcarrier spacing may be the subcarrier spacing of the OFDM system, such as 30KHz or 15KHz.
  • the above-mentioned guard interval can be the time interval from the time when the signal ends sending to the time when the latest echo signal of the signal is received; this parameter is proportional to the maximum sensing distance, for example, it can be calculated by 2dmax/c, dmax is the maximum Sensing distance (belonging to sensing requirements), for example, for spontaneous self-received sensing signals, dmax represents the maximum distance from the sensing signal transceiver point to the signal transmitting point; in some cases, OFDM signal cyclic prefix (CP) can play a role The role of the minimum guard interval; c is the speed of light.
  • CP OFDM signal cyclic prefix
  • the above bandwidth can be inversely proportional to the distance resolution. For example, it can be obtained by c/2/delta_d, where delta_d is the distance resolution (belonging to the perception requirements).
  • the above burst duration can be inversely proportional to the rate resolution (belonging to the sensing requirements).
  • This parameter is the time span of the sensing signal, mainly for calculating the Doppler frequency offset; this parameter can be calculated through c/2/delta_v/fc; where, delta_v is the speed resolution; fc is the signal carrier frequency or the center frequency of the signal.
  • the above time domain interval can be calculated by c/2/fc/v_range; where v_range is the maximum rate minus the minimum speed (belonging to the sensing requirements); this parameter is the time interval between two adjacent sensing signals.
  • the above-mentioned transmit signal power can take a value every 2dBm from -20dBm to 23dBm.
  • this is just an example and can be set according to actual needs.
  • the above signal formats can detect reference signals (Sounding Reference Signal, SRS), demodulation reference signals (Demodulation Reference Signal, DMRS), positioning reference signals (Positioning Reference Signal, PRS), etc., or other predefined signals, and related sequences format and other information.
  • reference signals Sounding Reference Signal, SRS
  • demodulation reference signals Demodulation Reference Signal, DMRS
  • positioning reference signals Positioning Reference Signal, PRS
  • PRS Positioning Reference Signal
  • the above-mentioned signal direction may be the direction of the sensing signal or beam information.
  • the above time resources may include the time slot index where the sensing signal is located or the symbol index of the time slot; among them, time resources are divided into two types, one is a one-time time resource, for example, one symbol transmits an omnidirectional target signal; It is a non-disposable time resource, such as multiple groups of periodic time resources or discontinuous time resources (can include start time and end time). Each group of periodic time resources sends sensing signals in the same direction, and different groups of periods The beam directions on the sexual time resources are different.
  • the above-mentioned frequency resources may include the center frequency point of the sensing signal, bandwidth, resource block (RB) or subcarrier, etc.
  • the above-mentioned QCL relationship may include: each resource among multiple resources included in the sensing signal and a synchronization signal block (SSB) QCL, and the QCL includes Type A, B, C or D.
  • SSB synchronization signal block
  • the second device can adjust the configuration of the perceptual measurement signal, thereby obtaining better perceptual measurement performance.
  • the first indication information is also used to indicate at least one of the following:
  • the identification information of the target signal associated with the perceptual measurement results may include: the identification information of the target signal associated with the perceptual measurement results respectively corresponding to the validity of the m perceptual measurement results.
  • the above-mentioned perceptual measurement identification information may include: perceptual measurement identification information respectively corresponding to the validity of m perceptual measurement results.
  • the above-mentioned perceptual measurement results may include: perceptual measurement results respectively corresponding to the validity of m perceptual measurement results.
  • the identification information of the target signal associated with the perceptual measurement result indicates which perceptual measurement result validity indication information indicates which target signal or target signals correspond to the perceptual measurement result validity. In this way, it is possible to indicate the specific target signal. Perceive the validity of measurement results for accurate instructions.
  • the above-mentioned perceptual measurement identification information can indicate the validity of the perceptual measurement result corresponding to which perceptual measurement the perceptual measurement result validity indication information indicates.
  • the perceptual measurement can be a measurement based on one or more target signals. In this way, Validation of perceptual measurement results indicating specific perceptual measurements is achieved to achieve precise indications.
  • Indicating the above-mentioned perceptual measurement results may indicate specific perceptual measurement results.
  • the feedback information of the first indication information may include at least one of the following:
  • the number of bits in the first indication information indicating the parameter configuration of the proposed target signal is the number of bits in the first indication information indicating the parameter configuration of the proposed target signal.
  • the second device can accurately obtain the content indicated by the first indication information from the first indication information.
  • the first indication information indicates the first perception measurement result
  • the first perception measurement result The result validity is the validity of one perceptual measurement result among the m perceptual measurement result validity
  • the first indication information indicates at least one of the following:
  • the second perceptual measurement result is one of the m perceptual measurement results
  • the first indication information indicates at least one of the following:
  • the validity of the third perceptual measurement result is the validity of one of the m perceptual measurement results.
  • the first indication information indicates at least one of the following:
  • the fourth perceptual measurement result is one of the m perceptual measurement results
  • the first indication information does not indicate relevant information of the fifth perceptual measurement result
  • the fifth perceptual measurement result is one of the m perceptual measurement results
  • the first indication information does not indicate relevant information of the sixth perceptual measurement result
  • the sixth perceptual measurement result is one of the m perceptual measurement results.
  • the first indication information contains the first perception measurement result to save signaling. overhead.
  • the first indication information sent by the second device to the first device contains the perceptual measurement result validity indication of the perceptual measurement result and/or the perceptual measurement result and/or is related to the perceptual measurement result.
  • the associated target signal identification information and/or perceptual measurement identification information, and when the measurement result is invalid, the first indication information does not include relevant feedback information of the first perceptual measurement result, so as to save signaling overhead.
  • the first indication information sent by the second device to the first device only when a certain sensing measurement result is invalid.
  • the perceptual measurement result validity indication and/or the reason for the invalid perceptual measurement result and/or the recommended target signal parameter configuration are included in the perceptual measurement result, and when the measurement result is valid, the first indication information does not contain the relevant feedback information of the perceptual measurement result. , to save signaling overhead.
  • the first indication information contains the reason for the invalid perceptual measurement result of the perceptual measurement result and/or the suggested target.
  • the method before the first device indicates the first indication information to the second device, the method further includes:
  • the first device receives second indication information sent by the second device, and the second indication information is used to indicate at least one of the following:
  • the above-mentioned whether the validity feedback of the perception measurement results is required may be to indicate whether validity feedback of all or part of the perception measurement results within a certain period of time (for example, from the current moment to the termination of the perception service) is required.
  • the above-mentioned feedback configuration of the validity of the perception measurement results and the correctness of communication data reception may indicate how to feedback the validity of the perception measurement results and the correctness of communication data reception.
  • it may include at least one of the following:
  • the first indicates the information format.
  • the above-mentioned feedback timing may represent the time length between the feedback time point and the reference time point (such as the sending/ending time of the target signal or the control information of the target signal).
  • the above feedback resources may indicate the Physical Uplink Control Channel (PUCCH) and/or the Physical Uplink Shared Channel (PUSCH), which is equivalent to the specific time and frequency domain resources corresponding to the first indication information.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the above feedback methods may include:
  • Event-triggered feedback for example, the first indication information is only sent when the perceptual measurement result is invalid or valid as described in the previous embodiment
  • Periodically trigger feedback for example: the first device sends the first instruction information at a certain period;
  • Message triggers feedback for example: the first device sends the first instruction information according to the instruction message of the second device.
  • the above joint feedback configuration or instructions may include:
  • the priority of the feedback indicating the validity of the sensing measurement results and the correctness of receiving communication data can be associated with the feedback delay requirement, or the priority of the feedback indicating the validity of the sensing measurement results and correctness of receiving communication data can be related to the sensing service/communication service Priority association, which priority can affect the format of the first indication information, such as the order of feedback on the validity of perceptual measurement results and feedback on the correctness of communication data reception, the code rate in independent encoding, etc.
  • the criteria for judging the validity of the above-mentioned perceptual measurement results include at least one of the following:
  • the target signal is a communication data signal, whether the first device demodulates the data correctly;
  • the criteria for judging the validity of the above-mentioned perceptual measurement results can be specifically referred to the corresponding descriptions of the previous embodiments, which will not be described in detail here.
  • the criteria may also include target signal quality threshold information and perceptual measurement result performance index requirement information.
  • At least one of the above-mentioned sensing measurement quantities, sensing requirements and sensing services can be used to indirectly indicate the criteria for judging the validity of the sensing measurement results of the first device.
  • the criteria for valid or invalid sensing measurement results can be associated with At least one of perceived measurement quantity, perceived demand and perceived business.
  • the method before the first device indicates the first indication information to the second device, the method further includes:
  • the first device receives third indication information sent by the second device, and the third indication information is used to indicate at least one of the following:
  • QoS Quality of service
  • the configuration information of the communication data signal for perceptual measurement may be communication data signal time domain resource configuration, frequency domain resource configuration, etc.
  • the accuracy of the first device's perception measurement can be improved through the above indication information of whether to allow perceptual measurement based on communication data symbols, and the accuracy of the first device's perceptual measurement can also be improved through the above configuration information of the communication data signal for perceptual measurement.
  • the above perceived QoS information may include at least one of the following:
  • Perception/synaesthesia integrated service priority perception resolution requirements, perception accuracy or perception error requirements, perception delay budget, maximum perception range requirements, continuous perception capability requirements, perception update frequency requirements, detection probability, False alarm probability, missed detection probability requirements, etc.
  • the first device can decide on its own whether to specifically use the sensing signal or data and which data symbol to use based on the QoS information, thereby improving the flexibility of sensing measurement.
  • the first device sends first indication information to the second device, and the first indication information is used to indicate Indicates the validity of m perceptual measurement results and the correctness of n communication data reception, m and n are positive integers, and m+n>2; where, the m perceptual measurement results corresponding to the validity of the m perceptual measurement results are Measurement results of perceptual measurements on the target signal received by the first device.
  • the first device indicates to the second device the validity of m perceptual measurement results and the correct reception of n communication data, so as to implement perceptual measurement.
  • Figure 5 is a flow chart of a method for receiving indication information provided by an embodiment of the present application. As shown in Figure 5, it includes the following steps:
  • Step 501 The second device receives the first indication information sent by the first device.
  • the first indication information is used to indicate the validity of m sensing measurement results and the correctness of n communication data reception, m+n>2;
  • the m perceptual measurement results corresponding to the validity of the m perceptual measurement results are the measurement results of perceptual measurement of the target signal received by the first device.
  • the first indication information includes an indication bit, and the indication bit is at least one bit used to indicate the validity of m perceptual measurement results and the correctness of n communication data reception.
  • the indication bits are m+n bits, where:
  • n bits indicate the correctness of n communication data reception
  • 2x bits among the m+n bits indicate the validity of x perceptual measurement results and the correctness of x communication data reception in a joint encoding manner.
  • the m-x bits among the m+n bits indicate m-x
  • the validity of perceptual measurement results when x is less than n, n-x bits in the m+n bits indicate the validity of n-x perceptual measurement results;
  • x is a positive integer, and x is less than or equal to m, x is less than or equal to n .
  • the indication bit is 2 bits, the first value of the first bit among the 2 bits indicates that at least one of the validity of the m perceptual measurement results is invalid, and the second value of the first bit indicates that at least one of the validity of the m perceptual measurement results is invalid.
  • the value indicates that all the m perception measurement results are valid;
  • the first value of the second bit among the 2 bits indicates that at least one of the n communication data reception correctness is a reception error, and the 2
  • the second value of the second bit in the bit indicates that the reception correctness of the n communication data is correct;
  • the indication bit is 1 bit, and the second value of the first bit indicates that all the m perception measurement results are valid, and the n communication data reception correctness is correct, and the 1
  • the first value of the bit indicates at least one of the following:
  • At least one of the m perceptual measurement result validity is invalid, and at least one of the n communication data reception correctnesses is a reception error.
  • the indication bits are m+n-x bits, where: x bits in the m+n-x bits respectively indicate x joint indications, and each joint indication is 1 perception measurement result validity and 1 communication data reception. Joint indication of correctness, when x is less than m, m-x bits among the m+n-x bits indicate the validity of m-x perception measurement results, when x is less than n, n-x bits among the m+n-x bits indicate Validity of n-x sensory measurement results; x is a positive integer, and x is less than or equal to m, x is less than or equal to n.
  • the indication bits include x bit groups, the x bit groups respectively indicate x joint indications, each A joint indication is a joint indication of the validity of the perceptual measurement results and the correctness of the communication data received;
  • the x bit groups include at least one of the following:
  • the indication bits also include m-x bits, indicating the validity of m-x perception measurement results
  • the indication bits also include n-x bits, indicating the validity of n-x perception measurement results
  • x is a positive integer, and x is less than or equal to m, and x is less than or equal to n.
  • the indication bits are mxu+n bits, where the mxu bits respectively indicate the validity levels of m perceptual measurement results, and the n bits indicate the reception correctness of n communication data.
  • the first indication information is also used to indicate at least one of the following:
  • the reason why the perceptual measurement result is invalid is at least one of the following:
  • the quality of the target signal detected by the first device does not reach the threshold requirement
  • the perception measurement results obtained by the first device do not meet the perception requirements
  • the first device does not demodulate the data correctly
  • the first device When the feedback time point of the first indication information arrives, the first device does not obtain the sensing measurement result.
  • the parameter configuration includes at least one of the following:
  • Waveform subcarrier interval, guard interval, bandwidth, burst duration, time domain interval, transmitted signal power, signal format, signal direction, time resources, frequency domain resources, quasi-co-located QCL relationship.
  • the first indication information is also used to indicate at least one of the following:
  • the feedback information of the first indication information includes at least one of the following:
  • the number of bits in the first indication information indicating the parameter configuration of the proposed target signal is the number of bits in the first indication information indicating the parameter configuration of the proposed target signal.
  • the first indication information indicates the first perception measurement result
  • the validity of the first perception measurement result is the validity of the first perception measurement result.
  • the first indication information indicates at least one of the following:
  • the second perceptual measurement result is one of the m perceptual measurement results
  • the first indication information indicates at least one of the following:
  • the validity of the third perceptual measurement result is the validity of one of the m perceptual measurement results.
  • the first indication information indicates at least one of the following:
  • the fourth perceptual measurement result is one of the m perceptual measurement results
  • the first indication information does not indicate relevant information of the fifth perceptual measurement result
  • the fifth perceptual measurement result is one of the m perceptual measurement results.
  • the method before the second device receives the first indication information sent by the first device, the method further includes:
  • the second device sends second indication information to the first device, and the second indication information is used to indicate at least one of the following:
  • the feedback configuration of the validity of the perception measurement results and the correctness of communication data reception includes at least one of the following:
  • the criteria for judging the validity of the perceptual measurement results include at least one of the following:
  • the target signal is a communication data signal, whether the first device demodulates the data correctly;
  • the method before the second device receives the first indication information sent by the first device, the method further includes:
  • the second device sends third indication information to the first device, where the third indication information is used to indicate at least one of the following:
  • this embodiment is an implementation of the second device corresponding to the embodiment shown in Figure 4.
  • the relevant description of the embodiment shown in Figure 4 please refer to the relevant description of the embodiment shown in Figure 4 to avoid repeated description. No further details will be given in this embodiment.
  • This embodiment mainly describes the format of the first indication information, specifically as follows:
  • each perceptual measurement result (or each perceptual measurement result validity indication) is associated with one or more perceptual measurements, and one perceptual measurement may be a measurement based on one or more target signals.
  • the first indication information format may include the following:
  • Method 1 Feedback that the measurement result is valid or the measurement result is invalid + the communication data is received correctly or incorrectly.
  • the details can be as follows:
  • m+n bits can be fed back, for example:
  • m bits and n bits respectively indicate the validity of the perception measurement results and the correctness of communication data reception.
  • Joint coding or independent coding can be used.
  • the independent coding code rates can be different to meet different priority or importance requirements.
  • m bits indicate the validity of the perception measurement results. For example, for each 1 bit in the m bits, "0" indicates that the perception measurement results are invalid, "1" indicates that the perception measurement results are valid;
  • n bits indicate the correctness of communication data reception, that is ACK/NACK: For example, for every 1 bit among n bits, "0" indicates that the communication data is received incorrectly (NACK), and "1" indicates that the communication data is received correctly (ACK).
  • Correctness indication (a total of 2xx bits), in which every 2 bits associated jointly indicate the validity of the perception measurement results and the correctness of the communication data reception. Joint coding is used, that is, every 2 bits represent 4 states. In particular, such as communication data reception The situation of error but valid sensing measurement result may not exist, then the 2-bit value corresponding to this state (communication data reception error and sensing measurement result is valid) may be reserved, as detailed in Table 2 above.
  • m-x bits and n-x bits respectively indicate the validity of the perception measurement results and the correctness of communication data reception.
  • the details are as shown in Table 3 below:
  • the order of the joint coding indication information, the perceptual measurement result validity indication information, and the communication data reception correctness indication information is not limited. For example, it can be determined according to the feedback priority. For details, please refer to the previous embodiment. Note accordingly, and the three can be coded independently.
  • 1 bit is the logical AND result of m bits used to indicate the validity of m perceptual measurement results
  • 0 indicates that at least 1 of the m perceptual measurement results is invalid
  • 1 indicates that m sensing measurement results are all valid
  • the other 1 bit is the logical AND result of n bits used to indicate the correctness of n communication data reception.
  • 0 indicates that there is at least 1 reception among the n communication data reception correctness indications.
  • Error indication (NACK) "1” indicates that n communication data reception correctness indications are all reception correct indications (ACK).
  • 1 bit can be fed back, for example, the logical AND result of m bits indicating the validity of the perceptual measurement results and n bits indicating the correctness of the communication data reception: "0" indicates that at least 1 of the m perceptual measurement results is invalid or There is at least 1 reception error indication (NACK) among the n communication data reception correctness indications. "1" indicates that the m sensing measurement results are all valid and the n communication data reception correctness indications are all reception correct indications (ACK).
  • NACK reception error indication
  • m+n-x bits can be fed back.
  • communication data reception correctness indication (a total of 2x bits), where every 2 associated bits are logically ANDed to obtain x bits: each 1 bit in the Correctness: "0" indicates that the communication data is received incorrectly (NACK) or the perception measurement result is invalid, "1" indicates that the communication data is received correctly (ACK) and the perception measurement result is valid.
  • the joint coding indication information is 1 bit.
  • the x perceptual measurement result validity indications are perceptual measurement result validity indications based on communication data, that is, the target signal is a communication data signal, in which every 2 bits associated can also use 1 bit Or 2-bit representation, the specific method is as follows:
  • the communication data When the communication data is received correctly, it is expressed using 2 bits, of which 1 bit is "1" indicating that the communication data is received correctly (ACK), and the other 1 bit is used to indicate whether the perception measurement result is valid.
  • the communication data reception correctness indication and the perception measurement result validity indication can be coded independently, with the communication data reception correctness indication coming first.
  • the second device first decodes the communication data reception correctness indication information to obtain n pieces of communication data reception correctness indication information, and how many reception correctness indications (ACK) exist among the x pieces of communication reception correctness indication information associated with perception. ), so that the number of validity indication bits of the subsequent perceptual measurement results can be determined.
  • mxu+n (m>1) bits can be fed back, specifically the validity corresponding to m perceptual measurement results.
  • the validity of the perceptual measurement results is divided into different levels, that is, the target signal quality (SNR, RSRP, RSSI, signal-to-noise ratio, etc.) or perceptual performance indicators corresponding to the measurement results are different, or it is used to judge the validity of the measurement results.
  • thresholds There are multiple thresholds, (assuming there are two thresholds), then they can be divided into three states: invalid, the first threshold is valid but invalid according to the second threshold, and the second threshold is valid (assuming the second threshold is higher), which can be used
  • the mxu bits and n bits respectively indicate the validity of the perception measurement results and the correctness of communication data reception;
  • 1+n bits can be fed back, where 1 bit can be the logical AND result of m perceptual measurement result validity indication bits, where "0" indicates that at least one perceptual measurement result is invalid, and "1" indicates that m perceptual measurement result validity indication bits are invalid.
  • the perceptual measurement results are all valid, or when more than x (x ⁇ m) of the m perceptual measurement results are valid, "1” is fed back, otherwise "0" is fed back, and the other n bits are n communication data reception correctness indication bits;
  • m+1 bits can be fed back, where m bits are m perceptual measurement result validity indication bits, and the other 1 bit is the logical AND of n communication data reception correctness indication bits.
  • Method 2 feedback measurement results are valid + perception measurement results + communication data reception correctness indication or feedback measurement results are invalid + communication data reception correctness indication, the details can be as follows:
  • the format may include the following:
  • the perception measurement results can be fed back each time the validity indication is fed back, and then the communication data reception correctness indication can be fed back, for example, as shown in Table 7 below:
  • n-bit validity indication can be fed back first, then the perception measurement result is fed back, and then the communication data reception correctness indication is fed back, for example, as shown in Table 8 below:
  • the feedback format of the above-mentioned first indication information can also be that the communication data reception correctness indication comes first, and the perceptual measurement result validity indication and the perceptual measurement result follow. For example, information with high priority is placed in the front. When communication feedback is of higher importance, communication is placed first, otherwise perception is placed first.
  • the perceptual measurement result validity indication bits and the communication data reception correctness indication bits can also be combined and fed back according to the description in the first method; or the perceptual measurement result validity indication can be represented by multiple bits.
  • the number of bits for each perception measurement result is fixed, and can be agreed upon by both the sending and receiving parties (specified by the protocol), or the perception measurement results can be indicated by the sender of the first indication information.
  • the m-bit validity indication comes first and the sensing result comes after.
  • the validity indication and the sensing result can be encoded separately.
  • the second device first detects the previous m-bit validity indication and then knows the following The number of sensing results is determined. At this time, the receiving end only needs to know the number of bits of each sensing measurement result to decode it correctly. The following feedback on the reasons for invalid sensing measurement results and recommended target signal parameter configuration are the same.
  • Method 3 Feedback valid measurement results + perception measurement results + communication data reception correctness indication or feedback measurement results invalid + invalid reason + communication data reception correctness indication.
  • the format may include the following:
  • the perception measurement result or invalid reason can be fed back each time the validity indication is fed back, and then the communication data reception correctness indication can be fed back, for example, as shown in Table 10 below:
  • the m-bit validity indication can be fed back first, then the sensing measurement results and invalid reasons are fed back in sequence, and then the communication data reception correctness indication is fed back, for example, as shown in Table 11 below:
  • the communication data reception correctness indication can also be placed before or after the perception measurement result validity indication, or both can be fed back alternately, and then the perception measurement results and invalid reasons can be fed back in sequence.
  • the reasons, for example: are as shown in Table 12 below:
  • the communication data reception correctness indication can also be placed before or after the perception measurement result validity indication, or both can be fed back alternately, and then the perception measurement results and invalid reasons can be fed back respectively. For example: when communication feedback is of higher importance, communication is placed first, otherwise perception is placed first. In addition, the following is the same for the perception measurement results, invalid reasons, and the sequence of recommended target signal parameter configurations.
  • the perceptual measurement result validity indication bits and the communication data reception correctness indication bits can be combined and fed back as described in Mode 1; or the perceptual measurement result validity indication can be represented by multiple bits.
  • the number of invalid reasons for feedback can be less than the number of invalid perceptual measurement results, because the same invalid reasons can be fed back only once or only some of the invalid reasons for invalid perceptual measurement results can be fed back.
  • Feedback of sensing measurement results and invalid reasons can save feedback overhead, but since the number of bits of the first indication information is uncertain at this time, it is necessary to indicate the total number of feedback bits or the number of invalid reasons fed back, otherwise the receiving end may not be able to respond to the first indication information bits. An indication that the message was correctly decoded.
  • the following involves feedback on the reasons why the perception measurement results are invalid.
  • Method 4 feedback measurement results are valid + perception measurement results + communication data reception correctness indication or feedback measurement results are invalid + suggested target signal parameter configuration + communication data reception correctness indication, the details can be as follows:
  • the feedback "1" indicates that the perception result is valid, and the perception measurement result is fed back, as well as the communication data reception correctness indication is fed back; when the perception measurement result is invalid, the feedback "0" indicates that the perception result is invalid, and suggestions are fed back Target signal parameter configuration, and feedback communication data reception correctness indication.
  • the specific format can be as in method three above, in which the invalid reason is replaced with the recommended target signal parameter configuration.
  • the number of recommended parameter configurations fed back can be less than the number of invalid perception measurement results, because the same recommended parameter configuration can be fed back only once or only part of the recommended parameter configurations can be fed back, for example, recommended parameter configuration 1 If the bandwidth is 100MHz and the recommended parameter configuration 2 is 120MHz bandwidth, select only the recommended parameter configuration 2 to be fed back.
  • feedback overhead can be saved.
  • the number of bits of the first indication information is uncertain at this time, the total number of feedback bits or the number of feedback recommended target signal parameter configurations can be indicated. number to avoid that the second device may not be able to correctly decode the first indication information.
  • the following feedback related to the recommended target signal parameter configuration is the same.
  • Method 5 Feedback valid measurement results + perception measurement results + communication data reception correctness indication or feedback measurement results invalid + invalid reason + recommended target signal parameter configuration + communication data reception correctness indication, the details can be as follows:
  • the specific format is the above method three, in which the invalid reason is replaced by the invalid reason + the recommended target signal parameter configuration.
  • the perception measurement results or invalid reasons can be sequenced according to the feedback priority, the invalid reasons and the recommended target signal parameter configuration can also be sequenced according to importance. , at this time the two can be encoded independently.
  • Method 6 Feedback that the measurement result is valid + communication data reception correctness indication or feedback measurement result is invalid + invalid reason + communication data reception correctness indication.
  • the feedback "1" indicates that the perception result is valid, and the communication data reception correctness indication is fed back; when the perception measurement result is invalid, the feedback "0" indicates that the perception measurement result is invalid, and the reason for the invalid perception measurement result is fed back, and Feedback communication data reception correctness indication.
  • the specific format is as in method three above, in which the perceptual measurement results are no longer fed back when the perceptual measurement results are valid.
  • Method 7 Feedback measurement results are valid + communication data reception correctness indication or feedback measurement results are invalid + recommended target signal parameter configuration + communication data reception correctness indication, the details can be as follows:
  • the specific format is as in method 3 above, in which the sensing measurement results are no longer fed back when the sensing measurement results are valid, and the reason for the invalidity is replaced by the recommended target signal parameter configuration.
  • Method 8 Feedback valid measurement results + communication data reception correctness indication or feedback measurement results invalid + invalid reason + recommended target signal parameter configuration + communication data reception correctness indication, the details can be as follows:
  • the specific format is the above-mentioned method five, in which the perceptual measurement results are no longer fed back when the perceptual measurement results are valid.
  • the first indication information sent by the first device to the second device includes the perception measurement result validity indication of the first perception measurement result and/or the perception measurement result and/or the perception measurement result and/or the perception measurement result.
  • the first indication information sent by the first device to the second device includes the perceptual measurement result validity indication of the first perceptual measurement result and/or the reason for the invalid perceptual measurement result and/or the recommended target.
  • the sensing measurement results, sensing requirements and sensing services can be defined as follows:
  • the above-mentioned perceptual measurement results are the measurement results associated with the perceptual measurement quantity, that is, the value of the measurement quantity. Specifically, they may include at least one of the following:
  • Original channel information compressed quantized information of channel matrix H or H, channel state information (Channel State Information, CSI), such as the amplitude of the frequency domain channel response, or the square sum/or phase of the frequency domain channel response amplitude, or the frequency
  • CSI Channel State Information
  • the I and Q signal characteristics of the domain channel response such as the amplitude or the square of the amplitude of the I and/or Q signals;
  • Spectral information channel power-delay profile (PDP), Doppler power spectrum, power azimuth spectrum (PAS), pseudo-spectrum information (such as MUSIC spectrum), delay-Doppler II Dimensional spectrum, time delay-Doppler-angle three-dimensional spectrum;
  • PDP channel power-delay profile
  • PAS power azimuth spectrum
  • pseudo-spectrum information such as MUSIC spectrum
  • delay-Doppler II Dimensional spectrum time delay-Doppler-angle three-dimensional spectrum
  • Multipath information power, phase, delay, and angle information of each path in the multipath channel (including at least the first reach path, LOS path, first-order reflection path, and multi-order reflection path);
  • Angle information arrival angle, departure angle (including terminal side angle information, base station side angle information and reflection point angle information);
  • the projection operation can be I*cos(theta)+Q*sin(theta), where theta is a certain angle value, different theta corresponds to different projections, I represents the I-channel data, and Q represents the Q-channel data), the amplitude ratio or amplitude difference of the received signals of the first antenna and the second antenna, the phase difference of the signals of the first antenna and the second antenna, and the delay difference of the signals of the first antenna and the second antenna;
  • Target parameter information determined based on original channel information Doppler spread, Doppler frequency shift, maximum delay spread, angle spread, coherence bandwidth, and coherence time.
  • the above-mentioned measured quantities it also includes new measured quantities generated by operations based on two or more of the above-mentioned measured quantities.
  • the above perceived demand information may include at least one of the following:
  • Perception business types such as intrusion detection, trajectory tracking, environment reconstruction, breathing detection, action recognition, etc.
  • Sensing area for example, sensing area geographical coordinates, sensing area length, width, height, distance, angle range, etc.
  • the type of sensing target such as cars, motorcycles, pedestrians, etc., indicates the moving speed range of the sensing target and the reflected power level of wireless signals;
  • Sensing/synaesthesia integrated QoS for example, sensing/synaesthesia integrated service priority, sensing resolution requirements, sensing accuracy or sensing error requirements, sensing delay budget, maximum sensing range requirements, continuous sensing capability requirements , Perception update frequency requirements, detection probability, false alarm probability, missed detection probability requirements, etc.;
  • Communication QoS for synesthesia integrated services, such as communication delay budget, false alarm rate, etc.
  • Sensing target density within the sensing area is Sensing target density within the sensing area.
  • the above sensing services may be but are not limited to at least one of the following:
  • Object feature detection Information that can reflect the attributes or status of the target object, which can be at least one of the following: the existence of the target object, the position of the target object, the speed of the target object, the acceleration of the target object, the material of the target object, the target The shape of the object, the category of the target object, the radar cross section (RCS) of the target object, polarization scattering characteristics, etc.;
  • Event detection Information related to the target event, that is, information that can be detected/perceived when the target event occurs, can be: fall detection, intrusion detection, quantity statistics, indoor positioning, gesture recognition, lip recognition, gait recognition, Expression recognition, breathing monitoring, heart rate monitoring, sound source discrimination, etc.;
  • Environmental detection humidity, brightness, temperature and humidity, atmospheric pressure, air quality, weather conditions, topography, building/vegetation distribution, people statistics, crowd density, vehicle density, etc.
  • the criteria for judging whether the perceptual measurement results are valid may include at least one of the following:
  • the first signal quality detected by the receiving end (including at least one of SNR, RSRP, RSSI, and signal-to-noise ratio) meets the threshold requirements;
  • the perceptual performance indicators can be at least one of the following:
  • Perception accuracy/perception error sensing resolution, sensing range, sensing delay, detection probability, false alarm probability, number of targets detected simultaneously, signal to clutter ratio, signal side lobe characteristics (signal main lobe side lobe ratio), peak average Ratio PAPR, variance, standard deviation, the ratio of the target sensing signal component to other sensing signal components.
  • the amplitude corresponding to the sample point with the largest Doppler domain amplitude is regarded as the target sensing component, that is, the sample with the largest amplitude is considered
  • the value points are sample points corresponding to the respiratory frequency; the amplitudes corresponding to other sample points except the sample point with the largest amplitude are used as other sensory signal components.
  • the receiving end demodulates the data correctly and performs sensing based on the communication data, adopts the method of demodulating first and then estimating the sensing parameters. If the communication demodulation is wrong, the sensing measurement results will be affected and become unreliable;
  • the receiving end successfully obtains the sensing measurement results when the feedback time point arrives, for example, whether the processing of the sensing measurement results times out.
  • the perceptual measurement result When the perceptual measurement result satisfies at least one of the above items, the perceptual measurement result is considered valid, otherwise it is considered invalid, for example, when the first and second items are met, that is, when the first signal quality reaches the threshold requirement and the perceptual measurement result meets the perceptual requirements.
  • the perceptual measurement results were considered valid.
  • the first device performs perceptual measurement according to the instruction information related to perceptual measurement signal configuration, provides feedback on the validity of n perceptual measurement results and the correctness of m communication data reception, and performs perceptual measurement based on the validity of perceptual measurement results. Measurement results, reasons for invalid sensing measurement results, and recommended sensing measurement signal configurations are fed back. Determining the feedback format based on the validity of the perception measurement results and the correctness of the communication data reception can effectively reduce the overhead and assist the party receiving the perception measurement results to further process the perception measurement results or adjust the configuration of the perception measurement signals to obtain better results. perceptual measurement performance.
  • Figure 7 is a structural diagram of an instruction information sending device provided by an embodiment of the present application. As shown in Figure 7 indication, including:
  • Sending module 701 configured to send first indication information to the second device, where the first indication information is used to indicate the validity of m sensing measurement results and the correctness of n communication data reception, m and n are positive integers, and m +n>2;
  • the m perceptual measurement results corresponding to the validity of the m perceptual measurement results are the measurement results of perceptual measurement of the target signal received by the first device.
  • the first indication information includes an indication bit, and the indication bit is at least one bit used to indicate the validity of m perceptual measurement results and the correctness of n communication data reception.
  • the indication bits are m+n bits, where:
  • n bits indicate the correctness of n communication data reception
  • 2x bits among the m+n bits indicate the validity of x perceptual measurement results and the correctness of x communication data reception in a joint encoding manner.
  • the m-x bits among the m+n bits indicate m-x
  • the validity of perceptual measurement results when x is less than n, n-x bits in the m+n bits indicate the validity of n-x perceptual measurement results;
  • x is a positive integer, and x is less than or equal to m, x is less than or equal to n .
  • the indication bit is 2 bits, the first value of the first bit among the 2 bits indicates that at least one of the validity of the m perceptual measurement results is invalid, and the second value of the first bit indicates that at least one of the validity of the m perceptual measurement results is invalid.
  • the value indicates that all the m perception measurement results are valid;
  • the first value of the second bit among the 2 bits indicates that at least one of the n communication data reception correctness is a reception error, and the 2
  • the second value of the second bit in the bit indicates that the reception correctness of the n communication data is correct;
  • the indication bit is 1 bit, and the second value of the first bit indicates that all the m perception measurement results are valid, and the n communication data reception correctness is correct, and the 1
  • the first value of the bit indicates at least one of the following:
  • At least one of the m perceptual measurement result validity is invalid, and at least one of the n communication data reception correctnesses is a reception error.
  • the indication bits are m+n-x bits, where: x bits in the m+n-x bits respectively indicate x joint indications, and each joint indication is 1 perception measurement result validity and 1 communication data reception. Joint indication of correctness, when x is less than m, m-x bits among the m+n-x bits indicate the validity of m-x perception measurement results, when x is less than n, n-x bits among the m+n-x bits indicate Validity of n-x sensory measurement results; x is a positive integer, and x is less than or equal to m, x is less than or equal to n.
  • the indication bits include x bit groups, the x bit groups respectively indicate x joint indications, each joint indication is a joint indication of the validity of the perceptual measurement result and the correctness of the communication data reception. ;
  • the x bit groups include at least one of the following:
  • the indication bits also include m-x bits, indicating the validity of m-x perception measurement results
  • the indication bits also include n-x bits, indicating the validity of n-x perception measurement results
  • x is a positive integer, and x is less than or equal to m, and x is less than or equal to n.
  • the indication bits are mxu+n bits, where the mxu bits respectively indicate the validity levels of m perceptual measurement results, and the n bits indicate the reception correctness of n communication data.
  • the first indication information is also used to indicate at least one of the following:
  • the reason why the perceptual measurement result is invalid is at least one of the following:
  • the quality of the target signal detected by the first device does not reach the threshold requirement
  • the perception measurement results obtained by the first device do not meet the perception requirements
  • the first device does not demodulate the data correctly
  • the first device When the feedback time point of the first indication information arrives, the first device does not obtain the sensing measurement result.
  • the parameter configuration includes at least one of the following:
  • Waveform subcarrier interval, guard interval, bandwidth, burst duration, time domain interval, transmitted signal power, signal format, signal direction, time resources, frequency domain resources, quasi-co-located QCL relationship.
  • the first indication information is also used to indicate at least one of the following:
  • the feedback information of the first indication information includes at least one of the following:
  • the number of bits in the first indication information indicating the parameter configuration of the proposed target signal is the number of bits in the first indication information indicating the parameter configuration of the proposed target signal.
  • the The first indication information indicates a first perceptual measurement result
  • the validity of the first perceptual measurement result is the validity of one perceptual measurement result among the m perceptual measurement result validity
  • the first indication information indicates at least one of the following:
  • the second perceptual measurement result is one of the m perceptual measurement results
  • the first indication information indicates at least one of the following:
  • the validity of the third perceptual measurement result is the validity of one of the m perceptual measurement results.
  • the first indication information indicates at least one of the following:
  • the fourth perceptual measurement result is one of the m perceptual measurement results
  • the first indication information does not indicate relevant information of the fifth perceptual measurement result
  • the fifth perceptual measurement result is one of the m perceptual measurement results
  • the first indication information does not indicate relevant information of the sixth perceptual measurement result
  • the sixth perceptual measurement result is one of the m perceptual measurement results.
  • the device also includes:
  • a first receiving module configured to receive second indication information sent by the second device, where the second indication information is used to indicate at least one of the following:
  • the feedback configuration of the validity of the perception measurement results and the correctness of the communication data reception includes at least one of the following:
  • the criteria for judging the validity of the perceptual measurement results include at least one of the following:
  • the target signal is a communication data signal, whether the first device demodulates the data correctly;
  • the device also includes:
  • the second receiving module receives the third indication information sent by the second device, where the third indication information is used to indicate at least one of the following:
  • the above indication information sending device can implement perceptual measurement.
  • the instruction information sending device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than a terminal.
  • the terminal may include but is not limited to the types of terminals listed in the embodiments of this application.
  • Other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiments of this application.
  • the instruction information sending device provided by the embodiment of the present application can implement each process implemented by the method embodiment shown in Figure 4 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • Figure 8 is a structural diagram of an instruction information receiving device provided by an embodiment of the present application. As shown in Figure 8, it includes:
  • the receiving module 801 is configured to receive first indication information sent by the first device, where the first indication information is used to indicate the validity of m perception measurement results and the correctness of n communication data reception, m+n>2;
  • the m perceptual measurement results corresponding to the validity of the m perceptual measurement results are the measurement results of perceptual measurement of the target signal received by the first device.
  • the first indication information includes an indication bit, and the indication bit is at least one bit used to indicate the validity of m perceptual measurement results and the correctness of n communication data reception.
  • the indication bits are m+n bits, where:
  • n bits indicate the correctness of n communication data reception
  • 2x bits among the m+n bits indicate the validity of x perceptual measurement results and the correctness of x communication data reception in a joint encoding manner.
  • the m-x bits among the m+n bits indicate m-x The validity of the perceptual measurement results.
  • the n-x bits in the m+n bits indicate the validity of the n-x perceptual measurement results;
  • x is a positive integer, and x is less than or equal to m, and x is less than or equal to n. .
  • the indication bit is 2 bits, the first value of the first bit among the 2 bits indicates that at least one of the validity of the m perceptual measurement results is invalid, and the second value of the first bit indicates that at least one of the validity of the m perceptual measurement results is invalid.
  • the value indicates that all the m perception measurement results are valid;
  • the first value of the second bit among the 2 bits indicates that at least one of the n communication data reception correctness is a reception error, and the 2
  • the second value of the second bit in the bit indicates that the reception correctness of the n communication data is correct;
  • the indication bit is 1 bit, and the second value of the first bit indicates that all the m perception measurement results are valid, and the n communication data reception correctness is correct, and the 1
  • the first value of the bit indicates at least one of the following:
  • At least one of the m perceptual measurement result validity is invalid, and at least one of the n communication data reception correctnesses is a reception error.
  • the indication bits are m+n-x bits, where: x bits in the m+n-x bits respectively indicate x joint indications, and each joint indication is 1 perception measurement result validity and 1 communication data reception. Joint indication of correctness, when x is less than m, m-x bits among the m+n-x bits indicate the validity of m-x perception measurement results, when x is less than n, n-x bits among the m+n-x bits indicate Validity of n-x sensory measurement results; x is a positive integer, and x is less than or equal to m, x is less than or equal to n.
  • the indication bits include x bit groups, the x bit groups respectively indicate x joint indications, and each joint indication is a joint indication of the validity of the perceptual measurement result and the correctness of the communication data reception. ;
  • the x bit groups include at least one of the following:
  • the indication bits also include mx bits, indicating the validity of mx perception measurement results
  • the indication bits also include n-x bits, indicating the validity of n-x perception measurement results
  • x is a positive integer, and x is less than or equal to m, and x is less than or equal to n.
  • the indication bits are mxu+n bits, where the mxu bits respectively indicate the validity levels of m perceptual measurement results, and the n bits indicate the reception correctness of n communication data.
  • the first indication information is also used to indicate at least one of the following:
  • the reason why the perceptual measurement result is invalid is at least one of the following:
  • the quality of the target signal detected by the first device does not reach the threshold requirement
  • the perception measurement results obtained by the first device do not meet the perception requirements
  • the first device does not demodulate the data correctly
  • the first device When the feedback time point of the first indication information arrives, the first device does not obtain the sensing measurement result.
  • the parameter configuration includes at least one of the following:
  • Waveform subcarrier interval, guard interval, bandwidth, burst duration, time domain interval, transmitted signal power, signal format, signal direction, time resources, frequency domain resources, quasi-co-located QCL relationship.
  • the first indication information is also used to indicate at least one of the following:
  • the feedback information of the first indication information includes at least one of the following:
  • the number of bits in the first indication information indicating the parameter configuration of the proposed target signal is the number of bits in the first indication information indicating the parameter configuration of the proposed target signal.
  • the first indication information indicates the first perception measurement result
  • the validity of the first perception measurement result is the validity of the first perception measurement result.
  • the first indication information indicates at least one of the following:
  • the second perceptual measurement result is one of the m perceptual measurement results
  • the first indication information indicates at least one of the following:
  • the validity of the third perceptual measurement result is the validity of one of the m perceptual measurement results.
  • the first indication information indicates at least one of the following:
  • the fourth perceptual measurement result is one of the m perceptual measurement results
  • the first indication information does not indicate relevant information of the fifth perceptual measurement result
  • the fifth perceptual measurement result is one of the m perceptual measurement results.
  • the device also includes:
  • a first sending module configured to send second indication information to the first device, where the second indication information is used to indicate at least one of the following:
  • the feedback configuration of the validity of the perception measurement results and the correctness of communication data reception includes at least one of the following:
  • the criteria for judging the validity of the perceptual measurement results include at least one of the following:
  • the target signal is a communication data signal, whether the first device demodulates the data correctly;
  • the device also includes:
  • the second sending module is configured to send third indication information to the first device, where the third indication information is used to indicate at least one of the following:
  • the above indication information receiving device can implement perceptual measurement.
  • the instruction information receiving device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a network-side device, or may be other devices besides the network-side device.
  • network-side devices may include but are not limited to the types of network-side devices listed in the embodiments of this application.
  • Other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiments of this application. .
  • the instruction information receiving device provided by the embodiment of the present application can implement each process implemented by the method embodiment shown in Figure 5 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 900, which includes a processor 901 and a memory 902.
  • the memory 902 stores programs or instructions that can be run on the processor 901, such as , when the communication device 900 is the first device, when the program or instruction is executed by the processor 901, each step of the above instruction information sending method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 900 is a second device, when the program or instruction is executed by the processor 901, each step of the above-mentioned instruction information receiving method embodiment is implemented, and the same technical effect can be achieved. To avoid duplication, the details are not repeated here.
  • An embodiment of the present application also provides a communication device.
  • the communication device is a first device and includes a processor and a communication interface.
  • the communication interface is used to send first instruction information to a second device.
  • the first instruction information is used to Indicates the validity of m perceptual measurement results and the correctness of n communication data reception, m and n are positive integers, and m+n>2; where, the m perceptual measurement results corresponding to the validity of the m perceptual measurement results are Measurement results of perceptual measurements on the target signal received by the first device.
  • This first device embodiment corresponds to the above-mentioned first device-side method embodiment.
  • FIG. 10 is a schematic diagram of the hardware structure of a communication device that implements an embodiment of the present application.
  • the communication device 1000 is a first device, including but not limited to: radio frequency unit 1001, network module 1002, audio output unit 1003, input unit 1004, sensor 1005, display unit 1006, user input unit 1007, interface unit 1008, memory 1009 and At least some components of the processor 1010 and the like.
  • the communication device 1000 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 1010 through a power management system, thereby managing charging, discharging, and function through the power management system. Consumption management and other functions.
  • the terminal structure shown in FIG. 10 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 1004 may include a graphics processing unit (Graphics Processing Unit, GPU) 10041 and a microphone 10042.
  • the graphics processing unit 10041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 1006 may include a display panel 10061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1007 includes at least one of a touch panel 10071 and other input devices 10072 .
  • Touch panel 10071 also known as touch screen.
  • the touch panel 10071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 10072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 1001 after receiving downlink data from the network side device, can transmit it to the processor 1010 for processing; in addition, the radio frequency unit 1001 can send uplink data to the network side device.
  • the radio frequency unit 1001 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • Memory 1009 may be used to store software programs or instructions as well as various data.
  • the memory 1009 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 1009 may include volatile memory or nonvolatile memory, or memory 1009 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus
  • the processor 1010 may include one or more processing units; optionally, the processor 1010 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 1010.
  • the radio frequency unit 1001 is used to send first indication information to the second device.
  • the first indication information is used to indicate the validity of m perception measurement results and the correctness of n communication data reception.
  • m and n are positive integers, And m+n>2;
  • the m perceptual measurement results corresponding to the validity of the m perceptual measurement results are the measurement results of perceptual measurement of the target signal received by the first device.
  • the first indication information includes an indication bit, and the indication bit is at least one bit used to indicate the validity of m perceptual measurement results and the correctness of n communication data reception.
  • the indication bits are m+n bits, where:
  • n bits indicate the correctness of n communication data reception
  • 2x bits among the m+n bits indicate the validity of x perceptual measurement results and the correctness of x communication data reception in a joint encoding manner.
  • the m-x bits among the m+n bits indicate m-x
  • the validity of perceptual measurement results when x is less than n, n-x bits in the m+n bits indicate the validity of n-x perceptual measurement results;
  • x is a positive integer, and x is less than or equal to m, x is less than or equal to n .
  • the indication bit is 2 bits, the first value of the first bit among the 2 bits indicates that at least one of the validity of the m perceptual measurement results is invalid, and the second value of the first bit indicates that at least one of the validity of the m perceptual measurement results is invalid.
  • the value indicates that all the m perception measurement results are valid;
  • the first value of the second bit among the 2 bits indicates that at least one of the n communication data reception correctness is a reception error, and the 2
  • the second value of the second bit in the bit indicates that the reception correctness of the n communication data is correct;
  • the indication bit is 1 bit, and the second value of the first bit indicates that all the m perception measurement results are valid, and the n communication data reception correctness is correct, and the 1
  • the first value of the bit indicates at least one of the following:
  • At least one of the m perceptual measurement result validity is invalid, and at least one of the n communication data reception correctnesses is a reception error.
  • the indication bits are m+n-x bits, where: x bits in the m+n-x bits respectively indicate x joint indications, and each joint indication is 1 perception measurement result validity and 1 communication data reception. Joint indication of correctness, when x is less than m, m-x bits among the m+n-x bits indicate the validity of m-x perception measurement results, when x is less than n, n-x bits among the m+n-x bits indicate Validity of n-x sensory measurement results; x is a positive integer, and x is less than or equal to m, x is less than or equal to n.
  • the indication bits include x bit groups, the x bit groups respectively indicate x joint indications, each joint indication is a joint indication of the validity of the perceptual measurement result and the correctness of the communication data reception. ;
  • the x bit groups include at least one of the following:
  • the indication bits also include m-x bits, indicating the validity of m-x perception measurement results
  • the indication bits also include n-x bits, indicating the validity of n-x perception measurement results
  • x is a positive integer, and x is less than or equal to m, and x is less than or equal to n.
  • the indication bits are mxu+n bits, where the mxu bits respectively indicate the validity levels of m perceptual measurement results, and the n bits indicate the reception correctness of n communication data.
  • the first indication information is also used to indicate at least one of the following:
  • the reason why the perceptual measurement result is invalid is at least one of the following:
  • the quality of the target signal detected by the first device does not reach the threshold requirement
  • the perception measurement results obtained by the first device do not meet the perception requirements
  • the first device does not demodulate the data correctly
  • the first device When the feedback time point of the first indication information arrives, the first device does not obtain the sensing measurement result.
  • the parameter configuration includes at least one of the following:
  • Waveform subcarrier interval, guard interval, bandwidth, burst duration, time domain interval, transmitted signal power, signal format, signal direction, time resources, frequency domain resources, quasi-co-located QCL relationship.
  • the first indication information is also used to indicate at least one of the following:
  • the feedback information of the first indication information includes at least one of the following:
  • the number of bits in the first indication information indicating the parameter configuration of the proposed target signal is the number of bits in the first indication information indicating the parameter configuration of the proposed target signal.
  • the first indication information indicates the first perceptual measurement result
  • the validity of the first perceptual measurement result is the The validity of one of the m perceptual measurement result validity
  • the first indication information indicates at least one of the following:
  • the second perceptual measurement result is one of the m perceptual measurement results
  • the first indication information indicates at least one of the following:
  • the validity of the third perceptual measurement result is the validity of one of the m perceptual measurement results.
  • the first indication information indicates at least one of the following:
  • the fourth perceptual measurement result is one of the m perceptual measurement results
  • the first indication information does not indicate relevant information of the fifth perceptual measurement result
  • the fifth perceptual measurement result is one of the m perceptual measurement results
  • the first indication information does not indicate relevant information of the sixth perceptual measurement result
  • the sixth perceptual measurement result is one of the m perceptual measurement results.
  • the radio frequency unit 1001 before sending the first indication information to the second device, the radio frequency unit 1001 is also used to:
  • the feedback configuration of the validity of the perception measurement results and the correctness of communication data reception includes at least one of the following:
  • the criteria for judging the validity of the perceptual measurement results include at least one of the following:
  • the target signal is a communication data signal, whether the first device demodulates the data correctly;
  • the radio frequency unit 1001 before sending the first indication information to the second device, the radio frequency unit 1001 is also used to:
  • the first device is used as a terminal for illustration.
  • the above-mentioned first device can implement perceptual measurement.
  • An embodiment of the present application also provides a communication device, which is a second device and includes a processor and a communication interface, wherein the communication interface is used to receive first instruction information sent by the first device, and the first The indication information is used to indicate the validity of m perceptual measurement results and the correctness of n communication data reception, m+n>2; wherein, the m perceptual measurement results corresponding to the validity of the m perceptual measurement results are for the first A device receives the target signal and performs the measurement result of the perceptual measurement.
  • This second equipment embodiment corresponds to the above-mentioned second equipment method embodiment. Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this second equipment embodiment, and can achieve the same technical effect.
  • the communication device 1100 includes: an antenna 1101, a radio frequency device 1102, a baseband device 1103, a processor 1104 and a memory 1105.
  • the antenna 1101 is connected to the radio frequency device 1102.
  • the radio frequency device 1102 passes through the antenna 1101 receives information and sends the received information to the baseband device 1103 for processing.
  • the baseband device 1103 processes the information to be sent and sends it to the radio frequency device 1102.
  • the radio frequency device 1102 processes the received information and then sends it out through the antenna 1101.
  • the method performed by the communication device in the above embodiment can be implemented in the baseband device 1103, which includes a baseband processor.
  • the baseband device 1103 may include, for example, at least one baseband board, which is provided with multiple chips, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the communication device may also include a network interface 1106, such as a common public radio interface (CPRI).
  • a network interface 1106 such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the communication device 1100 in the embodiment of the present application also includes: instructions or programs stored in the memory 1105 and executable on the processor 1104.
  • the processor 1104 calls the instructions or programs in the memory 1105 to execute the modules shown in Figure 7 The implementation method and achieve the same technical effect will not be repeated here to avoid repetition.
  • the radio frequency device 1102 is used to receive the first indication information sent by the first device, the first indication information is used to indicate the validity of m perception measurement results and the correctness of n communication data reception, m+n>2;
  • the m perceptual measurement results corresponding to the validity of the m perceptual measurement results are the measurement results of perceptual measurement of the target signal received by the first device.
  • the first indication information includes an indication bit, and the indication bit is at least one bit used to indicate the validity of m perceptual measurement results and the correctness of n communication data reception.
  • the indication bits are m+n bits, where:
  • n bits indicate the correctness of n communication data reception
  • 2x bits among the m+n bits indicate the validity of x perceptual measurement results and the correctness of x communication data reception in a joint encoding manner.
  • the m-x bits among the m+n bits indicate m-x
  • the validity of perceptual measurement results when x is less than n, n-x bits in the m+n bits indicate the validity of n-x perceptual measurement results;
  • x is a positive integer, and x is less than or equal to m, x is less than or equal to n .
  • the indication bit is 2 bits, the first value of the first bit among the 2 bits indicates that at least one of the validity of the m perceptual measurement results is invalid, and the second value of the first bit indicates that at least one of the validity of the m perceptual measurement results is invalid.
  • the value indicates that all the m perception measurement results are valid;
  • the first value of the second bit among the 2 bits indicates that at least one of the n communication data reception correctness is a reception error, and the 2
  • the second value of the second bit in the bit indicates that the reception correctness of the n communication data is correct;
  • the indication bit is 1 bit, and the second value of the first bit indicates that all the m perception measurement results are valid, and the n communication data reception correctness is correct, and the 1
  • the first value of the bit indicates at least one of the following:
  • At least one of the m perceptual measurement result validity is invalid, and the n communication data reception correctness is At least one was a receive error.
  • the indication bits are m+n-x bits, where: x bits in the m+n-x bits respectively indicate x joint indications, and each joint indication is 1 perception measurement result validity and 1 communication data reception. Joint indication of correctness, when x is less than m, m-x bits among the m+n-x bits indicate the validity of m-x perception measurement results, when x is less than n, n-x bits among the m+n-x bits indicate Validity of n-x sensory measurement results; x is a positive integer, and x is less than or equal to m, x is less than or equal to n.
  • the indication bits include x bit groups, the x bit groups respectively indicate x joint indications, each joint indication is a joint indication of the validity of the perceptual measurement result and the correctness of the communication data reception. ;
  • the x bit groups include at least one of the following:
  • the indication bits also include m-x bits, indicating the validity of m-x perception measurement results
  • the indication bits also include n-x bits, indicating the validity of n-x perception measurement results
  • x is a positive integer, and x is less than or equal to m, and x is less than or equal to n.
  • the indication bits are mxu+n bits, where the mxu bits respectively indicate the validity levels of m perceptual measurement results, and the n bits indicate the reception correctness of n communication data.
  • the first indication information is also used to indicate at least one of the following:
  • the reason why the perceptual measurement result is invalid is at least one of the following:
  • the quality of the target signal detected by the first device does not reach the threshold requirement
  • the perception measurement results obtained by the first device do not meet the perception requirements
  • the first device does not demodulate the data correctly
  • the first device When the feedback time point of the first indication information arrives, the first device does not obtain the sensing measurement result.
  • the parameter configuration includes at least one of the following:
  • Waveform subcarrier interval, guard interval, bandwidth, burst duration, time domain interval, transmitted signal power, signal format, signal direction, time resources, frequency domain resources, quasi-co-located QCL relationship.
  • the first indication information is also used to indicate at least one of the following:
  • the feedback information of the first indication information includes at least one of the following:
  • the number of bits in the first indication information indicating the parameter configuration of the proposed target signal is the number of bits in the first indication information indicating the parameter configuration of the proposed target signal.
  • the first indication information indicates the first perception measurement result
  • the validity of the first perception measurement result is the validity of the first perception measurement result.
  • the first indication information indicates at least one of the following:
  • the second perceptual measurement result is one of the m perceptual measurement results
  • the first indication information indicates at least one of the following:
  • the validity of the third perceptual measurement result is the validity of one of the m perceptual measurement results.
  • the first indication information indicates at least one of the following:
  • the fourth perceptual measurement result is one of the m perceptual measurement results
  • the first indication information does not indicate relevant information of the fifth perceptual measurement result
  • the fifth perceptual measurement result is one of the m perceptual measurement results.
  • the radio frequency device 1102 before receiving the first indication information sent by the first device, the radio frequency device 1102 is also used to:
  • the feedback configuration of the validity of the perception measurement results and the correctness of communication data reception includes at least one of the following:
  • the criteria for judging the validity of the perceptual measurement results include at least one of the following:
  • the target signal is a communication data signal, whether the first device demodulates the data correctly;
  • the radio frequency device 1102 before receiving the first indication information sent by the first device, the radio frequency device 1102 is also used to:
  • the second device is used as a network-side device for illustration.
  • the above-mentioned second device can implement perceptual measurement.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each of the above-mentioned instruction information sending method or instruction information receiving method embodiments is implemented.
  • the process can achieve the same technical effect. To avoid repetition, it will not be described again here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes Computer-readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disks or optical disks, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above instruction information sending method or instructions.
  • Each process of the information receiving method embodiment can achieve the same technical effect, so to avoid duplication, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above instruction information sending method or
  • Each process of the embodiment of the instruction information receiving method can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • Embodiments of the present application also provide an information feedback system, including: a first device and a second device.
  • the terminal can be used to perform the steps of the above instruction information sending method, and the network side device can be used to perform the above instruction information receiving. Method steps.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种指示信息发送方法、接收方法、装置、设备和存储介质,属于通信技术领域,本申请实施例的指示信息发送方法包括:第一设备向第二设备发送第一指示信息,所述第一指示信息用于指示m个感知测量结果有效性和n个通信数据接收正确性,m和n为正整数,且m+n>2;其中,所述m个感知测量结果有效性对应的m个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。

Description

指示信息发送方法、接收方法、装置、设备和存储介质
相关申请的交叉引用
本申请主张在2022年3月31日在中国提交的中国专利申请No.202210346402.1的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种指示信息发送方法、接收方法、装置、设备和存储介质。
背景技术
未来移动通信系统(例如超5代移动通信系统(Beyond 5th Generation Mobile Communication Technology,B5G)或第六代移动通信系统(6G))除了具备通信能力外,还将具备感知能力。感知能力,即具备感知能力的一个或多个设备,能够通过无线信号的发送和接收,来感知目标物体的方位、距离和/或速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别或成像等。但目前本领域技术人员对于如何实现感知测量技术还处于讨论阶段,也就是说,如何实现感知测量还属于一个待解决的技术问题。
发明内容
本申请实施例提供一种指示信息发送方法、接收方法、装置、设备和存储介质,能够解决如何实现感知测量的技术问题。
第一方面,提供了一种指示信息发送方法,包括:
第一设备向第二设备发送第一指示信息,所述第一指示信息用于指示m个感知测量结果有效性和n个通信数据接收正确性,m和n为正整数,且m+n>2;
其中,所述m个感知测量结果有效性对应的m个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
第二方面,提供了一种指示信息接收方法,包括:
第二设备接收第一设备发送的第一指示信息,所述第一指示信息用于指示m个感知测量结果有效性和n个通信数据接收正确性,m+n>2;
其中,所述m个感知测量结果有效性对应的m个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
第三方面,提供了一种指示信息发送装置,包括:
发送模块,用于向第二设备发送第一指示信息,所述第一指示信息用于指示m个感知测量结果有效性和n个通信数据接收正确性,m和n为正整数,且m+n>2;
其中,所述m个感知测量结果有效性对应的m个感知测量结果为对第一设备接收的目标信号进行感知测量的测量结果。
第四方面,提供了一种指示信息接收装置,包括:
接收模块,用于接收第一设备发送的第一指示信息,所述第一指示信息用于指示m个感知测量结果有效性和n个通信数据接收正确性,m+n>2;
其中,所述m个感知测量结果有效性对应的m个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
第五方面,提供了一种通信设备,所述通信设备为第一设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如本申请实施例提供的指示信息发送方法的步骤。
第六方面,提供了一种通信设备,所述通信设备为第一设备,包括处理器及通信接口,其中,所述通信接口用于向第二设备发送第一指示信息,所述第一指示信息用于指示m个感知测量结果有效性和n个通信数据接收正确性,m和n为正整数,且m+n>2;其中,所述m个感知测量结果有效性对应的m个感知测量结果为对第一设备接收的目标信号进行感知测量的测量结果。
第七方面,提供了一种通信设备,所述通信设备为第二设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如本申请实施例提供的指示信息接收方法的步骤。
第八方面,提供了一种通信设备,所述通信设备为第二设备,包括处理器及通信接口,其中,所述通信接口用于接收第一设备发送的第一指示信息,所述第一指示信息用于指示m个感知测量结果有效性和n个通信数据接收正确性,m+n>2;其中,所述m个感知测量结果有效性对应的m个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
第九方面,提供了一种指示信息传输系统,包括:第一设备及第二设备,所述终端可用于执行如第一方面所述的指示信息发送方法的步骤,所述网络侧设备可用于执行如第二方面所述的指示信息接收方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的指示信息发送方法的步骤,或者实现如第二方面所述的指示信息接收方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的指示信息发送方法,或实现如第二方面所述的指示信息接收方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在 存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的指示信息发送方法的步骤,或者所述计算机程序/程序产品被至少一个处理器执行以实现如第二方面所述的指示信息接收方法的步骤。
本申请实施例中,第一设备向第二设备发送第一指示信息,所述第一指示信息用于指示m个感知测量结果有效性和n个通信数据接收正确性,m和n为正整数,且m+n>2;其中,所述m个感知测量结果有效性对应的m个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。这样第一设备向第二设备指示m个感知测量结果有效性和n个通信数据接收正确,以实现感知测量。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例提供的一种无线感知的示意图;
图3是本申请实施例提供的另一种无线感知的示意图;
图4是本申请实施例提供的一种指示信息发送方法的流程图;
图5是本申请实施例提供的一种指示信息接收方法的流程图;
图6是本申请实施例提供的一种指示信息发送方法的示意图;
图7是本申请实施例提供的一种指示信息发送装置的结构图;
图8是本申请实施例提供的一种指示信息接收装置的结构图;
图9是本申请实施例提供的一种通信设备的结构图;
图10是本申请实施例提供的另一种通信设备的结构图;
图11是本申请实施例提供的另一种通信设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码 分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端、网络侧设备和核心网设备。
本申请实施例中,终端可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端的具体类型。
网络侧设备可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Networks,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)、接入点(Access Point,AP)、中继(Relay)、智能反射表面(Reconfigurable Intelligence Surface,RIS)或所述领域中其他某个合适的术语,只要到达相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、 策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
本申请实施例中,网络侧设备和终端具备感知能力,能够通过无线信号的发送和接收,来感知目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等。例如:在一些场景或者实施方式中,感知类别可以如下表1所示:
表1:
需要说明的是,上述表1所示的感知类别仅是一个举例说明,本申请实施例中对感知测量的类别并不作限定。
另外,本申请实施例可以应用于通信与雷达的一体化的通信感知融合应用场景,在该场景的联合设计包括频谱共存,即两系统独立工作,可以允许信息交换以降低互相之间的干扰。在接收端共享的情况下,此时两系统发端发送各自的信号波形,两系统的波形需要具备正交性,从而不影响各自的接收检测;在发送端共享的情况下,发送端发射雷达与通信的联合波形;在收发端共享的情况下,两系统收发两侧进行资源共享,同样需要使用联合波形或者存在正交关系的波形。需要说明的是,上述通信与雷达的一体化的通信感知融合应用场景为本申请实施例应用场景的一个举例,本申请实施例中对对应场景不作限定。
本申请实施例中,在进行感知时,可以是基于单站模式的感知,即收发共址,发送端发射感知信号,然后自己接收回波信号并进行分析,提取感知参数,例如图2所示,基站作为感知信号的发送端与接收端,终端或其他物体作为感知目标;也可以是基于双站或者多站模式的感知,即收发不共址,发送端发射感知信号,其他接收端进行接收并分析,提 取感知参数,例如如图3所示,基站1作为感知信号发送端,终端或者基站2作为感知信号接收端。
本申请实施例中,通信系统可以将承载信息的调制符号与用于信道估计的导频符号联合发送,重点关注译码性能,其信道估计算法仅需估计具有有限未知参数的复合信道,通常以提高吞吐量和传输可靠性为优化目标,关注的性能指标一般是频谱效率、信道容量、信噪比(Signal-to-noise ratio,SNR)、信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)、比特出错概率(Bit Error Ratio,BER)、误块率(Block Error Rate,BLER)、误码率(Symbol Error Rate,SER)等。而感知系统信号发送过程中无需考虑信息承载问题,通常使用优化或未经调制的发射信号,可以重点关注感知目标对发射信号带来的改变,即响应特性,通常以提高参数估计精度为优化目标,性能衡量指标可能是模糊函数、克拉美罗下界、均方根误差、互信息、率失真函数、雷达估计速率、韦尔奇下界以及一些与感知场景和需求相关联的指标。
本申请实施例中,在一些场景或者实施方式中,将同时支持无线通信信号和无线感知信号,通过信号联合设计和/或硬件共享等通信感知一体化手段,实现通信和感知功能一体化设计,在进行信息传递的同时,具备感知能力或者提供感知服务。这样通过通感(通信和感知)一体化可以到达节约成本、减小设备尺寸、降低设备功耗、提升频谱效率、减小通感间的互干扰和提升系统性能等效果。
另外,通感一体化可以包括但不限于如下至少一种:
同一网络提供通信服务和感知服务;
同一终端提供通信服务和感知服务;
同一频谱提供通信服务和感知服务;
同一次无线电发射中完成集成的通感一体化服务,即通信信号和感知信号的联合设计。
本申请实施例中,对于通感融合或通感一体化场景,感知测量可以使用专用感知信号,也可以复用通信信号,例如数据和/或导频,关于感知测量信号的使用可以由发送方指示接收方,例如基站指示终端使用那种类型的信号进行感知测量。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的一种指示信息发送方法、接收方法、装置、设备和存储介质进行详细地说明。
请参见图4,图4是本申请实施例提供的一种指示信息发送方法的流程图,如图4所示,包括以下步骤,包括:
步骤401、第一设备向第二设备发送第一指示信息,所述第一指示信息用于指示m个感知测量结果有效性和n个通信数据接收正确性,m和n为正整数,且m+n>2;
其中,所述m个感知测量结果有效性对应的m个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
上述第一设备可以是网络侧设备或终端,上述第二设备可以是核心网的感知网络功能和/或感知网元,也可以是网络侧设备或终端。
本申请实施例中,目标信号可以是通信信号,例如参考信号、同步信号或数据信号,目标信号也可以是专用感知信号,例如雷达脉冲信号或调频连续波(Frequency Modulated Continuous Wave,FMCW)信号。
其中,目标信号的收发可以包括下几种方式:
网络侧设备A发目标信号,网络侧设备B收目标信号;其中,网络侧设备B作为第一设备,网络侧设备A作为第二设备,或者网络侧设备A和网络侧设备B中的至少一项作为第一设备,核心网作为第二设备;
网络侧设备发目标信号,终端收目标信号;其中,终端作为第一设备,网络侧设备作为第二设备,或者网络侧设备和终端中的至少一项作为第一设备,核心网作为第二设备;
网络侧设备自发自收;其中,网络侧设备作为第一设备,核心网作为第二设备;
终端自发自收;其中,终端作为第一设备,网络侧设备作为第二设备,或者,终端作为第一设备,核心网作为第二设备;
终端发,网络侧设备收;其中,网络侧设备作为第一设备,核心网作为第二设备;
终端A发,终端B收;其中,终端B作为第一设备,终端A作为第二设备,或者,终端A或者终端B作为第一设备,终端A或者终端B的接入网络侧设备作为第二设备,或者,终端A或者终端B作为第一设备,核心网作为第二设备。
需要说明的是,本申请实施例中的目标信号发送设备可以是多个设备,目标信号接收设备可以是多个设备。
所述第一指示信息可以显式或者隐式指示m个感知测量结果有效性和n个通信数据接收正确性。
上述m个感知测量结果有效性可以是,m个感知测量结果的有效性指示,每个上述感知测量结果有效性用于表示对应的感知测量结果的有效或者无效,且每个感知测量结果或每个感知测量结果有效性指示与一次或多次感知测量相关联,其中,一次感知测量可以是基于一个或多个目标信号的测量。
另外,感知测量结果有效或无效的准则可以是网络设备配置的和/或协议定义的,或者感知测量结果有效或无效的准则由关联到感知测量量或感知需求或感知业务确定。
上述n个通信数据接收正确性可以是,n个通信数据接收正确性指示,每个指示表示一次或者多次数据传输的接收正确性,例如:n个通信数据接收确认信息,如n个通信数据接收正确(Acknowledgement,ACK),或者n个接收错误(Negative Acknowledgement,NACK),或者ACK和NACK的总个数为n。
本申请实施例中,通过上述步骤可以实现第一设备向第二设备指示m个感知测量结果有效性和n个通信数据接收正确性,以实现感知测量,提升了设备的工作性能。且由于m+n>2这样可以实现一次指示多个反馈结果,以节约传输开销。
另外,本申请实施例中,上述第一指示信息指示的内容还有利用接收第一指示信息的第二设备对感知测量结果进行进一步处理或调整信号配置,从而提升感知测量性能。或者, 上述第一指示信息指示的内容可以辅助接收感知测量结果的一方对感知测量结果进行进一步处理,或者调整感知测量信号的配置,从而获得更好的感知测量性能。
作为一种可选的实施方式,所述第一指示信息包括指示比特,所述指示比特为至少一个比特,用于指示m个感知测量结果有效性和n个通信数据接收正确性。
上述指示比特可以采用联合或者独立编码的方式指示m个感知测量结果有效性和n个通信数据接收正确性。
在一种实现方式中,所述指示比特为m+n比特,其中:
m比特指示m个感知测量结果有效性,n比特指示n个通信数据接收正确性;或者,
所述m+n比特中2x比特以联合编码的方式指示x个感知测量结果有效性和x个通信数据接收正确性,在x小于m的情况下,所述m+n比特中m-x比特指示m-x个感知测量结果有效性,在x小于n的情况下,所述m+n比特中n-x比特指示n-x个感知测量结果有效性;x为正整数,且x小于或者等于m,x小于或者等于n。
上述m比特和n比特分别指示m个感知测量结果有效性和n个通信数据接收正确性,可以采用联合编码或独立编码,其中,独立编码码率可以不同,可以满足不同优先级或重要性需求。另外,m比特指示m个感知测量结果有效性可以是,对于m比特中的每1比特,“0”表示感知测量结果无效,“1”表示感知测量结果有效;n比特表示n个通信数据接收正确性,即指示n个ACK/NACK,例如,对于n比特中的每1比特,“0”表示通信数据接收错误(NACK),“1”表示通信数据接收正确(ACK)。
上述x个感知测量结果有效性和x个通信数据接收正确性可以是,m个感知测量结果有效性与n个通信数据接收正确性中存在x个相关联的感知测量结果有效性和通信数据接收正确性指示,这样可以采用2x比特以联合编码的方式指示x个感知测量结果有效性和x个通信数据接收正确性。其中,2x比特中相关联的每2比特共同指示感知测量结果有效性和通信数据接收正确性,采用联合编码,即每2比特表示4种状态,特别的,例如通信数据接收错误但感知测量结果有效的情况可能不存在,则该状态(通信数据接收错误且感知测量结果有效)对应的2比特取值可以是保留(Reserved),例如:如下表2所示:
表2:
剩余的m-x比特和n-x比特可以分别指示感知测量结果有效性和通信数据接收正确性,其中,当存在如下情况:x=m、x=n、x=m=n时,可以不存在单独指示感知测量结果有效性和/或通信数据接收正确性的比特,即在x小于m的情况下,所述m+n比特中m-x比特指示m-x个感知测量结果有效性,在x小于n的情况下,所述m+n比特中n-x比特指示 n-x个感知测量结果有效性。
该实施方式中,通过m+n比特可以准确地指示感知测量结果有效性和通信数据接收正确性。
在一种实现方式中,所述指示比特为2比特,所述2比特中的第一比特的第一取值指示所述m个感知测量结果有效性中至少一个为无效,所述第一比特的第二取值指示所述m个感知测量结果有效性全部为有效;所述2比特中的第二比特的第一取值指示所述n个通信数据接收正确性中至少一个为接收错误,所述2比特中的第二比特的第二取值指示所述n个通信数据接收正确性都为接收正确。
该实现方式中,可以是采用其中1比特为用于指示m个感知测量结果有效性的m比特的逻辑与结果,例如:“0”表示m个感知测量结果中至少一个无效,“1”表示m个感知测量结果均有效。采用另1比特为用于指示n个通信数据接收正确性的n比特的逻辑与结果,例如:“0”表示n个通信数据接收正确性指示中至少存在1个接收错误指示(NACK),“1”表示n个通信数据接收正确性指示均为接收正确指示(ACK)。
该实施方式中,通过2比特可以节约信令开销。
在一种实现方式中,所述指示比特为1比特,所述第一比特的第二取值指示所述m个感知测量结果有效性全部为有效,且所述n个通信数据接收正确性都为接收正确,所述1比特第一取值指示如下至少一项:
所述m个感知测量结果有效性中至少一个为无效,所述n个通信数据接收正确性中至少一个为接收错误。
该实现方式中,采用1比特为用于m个感知测量结果有效性的m比特和用于指示通信数据接收正确性的n比特的逻辑与结果,例如:“0”表示m个感知测量结果中至少1个无效,和/或,n个通信数据接收正确性指示中至少存在1个接收错误指示(NACK),“1”表示m个感知测量结果均有效且n个通信数据接收正确性指示均为接收正确指示(ACK)。
该实施方式中,通过1比特可以节约信令开销。
在一种实现方式中,所述指示比特为m+n-x比特,其中:所述m+n-x比特中x比特分别指示x个联合指示,每个联合指示为1个感知测量结果有效性和1个通信数据接收正确性的联合指示,在x小于m的情况下,所述m+n-x比特中m-x比特指示m-x个感知测量结果有效性,在x小于n的情况下,所述m+n-x比特中n-x比特指示n-x个感知测量结果有效性;x为正整数,且x小于或者等于m,x小于或者等于n。
该实现方式中,可以是m个感知测量结果有效性与n个通信数据接收正确性指示中存在x个相关联的感知测量结果有效性和通信数据接收正确性指示,x比较中每1比特表示用于指示相关联的感知测量结果有效性和通信数据接收正确性的2比特的逻辑与结果;例如:x比特中的每1比特用于指示相关联的感知测量结果有效性和通信数据接收正确性,如“0”表示通信数据接收错误(NACK)或感知测量结果无效,“1”表示通信数据接收正确(ACK)且感知测量结果有效。
剩余的m-x比特和n-x比特分别指示感知测量结果有效性和通信数据接收正确性,当存在如下情况:x=m<n、x=n<m、x=m=n时,可以不存在单独指示感知测量结果有效性和/或通信数据接收正确性的比特,即在x小于m的情况下,所述m+n-x比特中m-x比特指示m-x个感知测量结果有效性,在x小于n的情况下,所述m+n-x比特中n-x比特指示n-x个感知测量结果有效性。
该实施方式中,通过m+n-x比特可以节约信令开销。
在一种实现方式中,所述指示比特包括x个比特组,所述x个比特组分别指示x个联合指示,每个联合指示为1个感知测量结果有效性和1个通信数据接收正确性的联合指示;
所述x个比特组包括如下至少一项:
为1个比特的比特组,为1个比特的比特组指示:对应的联合指示中的通信数据接收正确性为错误接收,且感知测量结果有效性为无效;
为2个比特的比特组,为2个比特的比特组中的1比特指示:对应的联合指示中的通信数据接收正确性为正确接收,另1比特指示:对应的联合指示中的感知测量结果有效性;
在x小于m的情况下,所述指示比特还包括m-x比特,指示m-x个感知测量结果有效性;
在x小于n的情况下,所述指示比特还包括n-x比特,指示n-x个感知测量结果有效性;
x为正整数,且x小于或者等于m,x小于或者等于n。
该实现方式中,m个感知测量结果有效性与n个通信数据接收正确性指示中存在x个相关联的感知测量结果有效性和通信数据接收正确性指示,这x个感知测量结果有效性指示基于通信数据的感知测量结果有效性进行指示。具体可以是为目标信号为通信数据信号的情况下,每个比特组根据通信数据接收正确性来决定采用1比特还是2比特,例如:
当通信数据接收错误时采用1比特表示,“0”表示通信数据接收错误(NACK)且感知测量结果无效;
当通信数据接收正确时采用2比特表示,其中1比特为“1”表示通信数据接收正确(ACK),另1比特用于指示感知测量结果是否有效。
另外,该实现方式中,通信数据接收正确性指示与感知测量结果有效性指示采用独立编码,且通信数据接收正确性指示在前。
该实现方式中,可以灵活地采用1比特或者2比特,以节约信令开销。
在一种实现方式中,所述指示比特为mⅹu+n比特,其中,mⅹu比特分别指示m个感知测量结果有效性的等级,n比特比特指示n个通信数据接收正确性。
其中,上述感知测量结果有效性等级可以是,不同等级对应不同信号质量,该信号质量可以包括:SNR、参考信号接收功率(Reference Signal Received Power,RSRP)、接收信号强度指示(Received Signal Strength Indication,RSSI)和信号杂波比等中至少一项;或者,上述感知测量结果有效性等级可以是,不同等级对应不同感知性能指标;或者,上 述感知测量结果有效性等级可以是,不同等级对应不同测量结果有效性阈值,例如:假设有两个阈值,其中,包括三个等级,一个等级表示无效,另一个等级表示针对第一阈值有效但按照第二阈值无效,还有一个等级表示第二阈值有效(假设第二阈值要求更高)。
该实施方式中,可以实现将感知测量结果的有效性分为不同的等级,从而可以提高感知测量结果有效性的反馈效果,以及可以实现mⅹu比特和n比特分别m个指示感知测量结果有效性和n个通信数据接收正确性。
作为一种可选的实施方式,所述第一指示信息还用于指示如下至少一项:
感知测量结果无效原因;
目标信号的参数配置。
其中,上述感知测量结果无效原因可以是,上述m个感知测量结果有效性中表示为无效的感知测量结果无效的原因信息。
上述目标信号的参数配置可以是,第一设备建议或者期望的目标信号的参数配置,且可以是上述m个感知测量结果有效性中表示为无效的感知测量结果对应的目标信号的参数配置,该参数配置可以用于提高目标信号对应的感知测量结果的有效性。
该实施方式,通过反馈上述无效原因和参数配置中的至少一项,可以有利用接收第一信息的第二设备对感知测量结果进行进一步处理或调整信号配置,从而提升感知测量性能。或者,上述无效原因和参数配置中的至少一项可以辅助接收感知测量结果的一方对感知测量结果进行进一步处理,或者调整感知测量信号的配置,从而获得更好的感知测量性能。
可选地,所述感知测量结果无效原因如下至少一项:
所述第一设备检测的所述目标信号的质量未到达门限要求;
所述第一设备获得的感知测量结果不满足感知要求;
在所述目标信号为通信数据信号的情况下,所述第一设备未正确解调数据;
在所述第一指示信息的反馈时间点到达时,所述第一设备未获取到感知测量结果。
上述第一设备检测的所述目标信号的质量未达到门限要求可以是,第一设备检测的目标信号的SNR、RSRP、RSSI和信号杂波比门限中的至少一项未达到门限要求。另外,在测量过程中可以是接收端可以先只测量SNR、RSRP、RSSI和信号杂波比中的至少一项,如果达到门限再测量具体的感知测量量。
上述第一设备获得的感知测量结果不满足感知要求可以是,第一设备计算出的感知测量结果对应的感知性能指标不满足要求,例如感知SNR低于预设门限值。
上述第一设备未正确解调数据可以是,在基于通信数据做感知时,采用先解调再估计感知参数的方式,若通信解调错误,感知测量结果受到影响,变得不可靠,即感知测量结果无效。
上述在所述第一指示信息的反馈时间点到达时,所述第一设备未获取到感知测量结果可以是,反馈时间点到达时接收端未能获取感知测量结果,例如感知测量结果处理超时。
可选地,所述参数配置包括如下至少一项:
波形、子载波间隔、保护间隔、带宽、突发(burst)持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频域资源、准共址(Quasi co-location,QCL)关系。
上述波形可以包括:正交频分复用(Orthogonal frequency division multiplex,OFDM)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)SC-FDMA,正交时频空间(Orthogonal Time Frequency Space,OTFS)、调频连续波(Frequency Modulated Continuous Wave,FMCW)或者脉冲信号等。
上述子载波间隔可以是OFDM系统的子载波间隔30KHz或者15KHz等。
上述保护间隔可以是从信号结束发送时刻到该信号的最迟回波信号被接收的时刻之间的时间间隔;该参数正比于最大感知距离,例如,可以通过2dmax/c计算得到,dmax是最大感知距离(属于感知需求),如对于自发自收的感知信号,dmax代表感知信号收发点到信号发射点的最大距离;在某些情况下,OFDM信号循环前缀(Cyclic prefix,CP)可以起到最小保护间隔的作用;c是光速。
上述带宽可以反比于距离分辨率,例如:可以通过c/2/delta_d得到,其中delta_d是距离分辨率(属于感知需求)。
上述burst持续时间可以反比于速率分辨率(属于感知需求),该参数是感知信号的时间跨度,主要为了计算多普勒频偏;该参数可通过c/2/delta_v/fc计算得到;其中,delta_v是速度分辨率;fc是信号载频或者信号的中心频点。
上述时域间隔可通过c/2/fc/v_range计算得到;其中,v_range是最大速率减去最小速度(属于感知需求);该参数是相邻的两个感知信号之间的时间间隔。
上述发送信号功率可以是从-20dBm到23dBm每隔2dBm取一个值,当然,这里仅是一种举例,具体可以根据实际需求设定。
上述信号格式可以探测参考信号(Sounding Reference Signal,SRS),解调参考信号(Demodulation Reference Signal,DMRS),定位参考信号(Positioning Reference Signal,PRS)等,或者其他预定义的信号,以及相关的序列格式等信息。
上述信号方向可以是感知信号的方向或者波束信息。
上述时间资源可以包括感知信号所在的时隙索引或者时隙的符号索引;其中,时间资源分为两种,一种是一次性的时间资源,例如一个符号发送一个全向的目标信号;一种是非一次性的时间资源,例如多组周期性的时间资源或者不连续的时间资源(可包含开始时间和结束时间),每一组周期性的时间资源发送同一方向的感知信号,不同组的周期性时间资源上的波束方向不同。
上述频率资源可以包括感知信号的中心频点,带宽,资源块(Resource block,RB)或者子载波等。
上述QCL关系可以包括:感知信号包括的多个资源中每个资源与一个同步信号块(Synchronization Signal Block,SSB)QCL,QCL包括Type A,B,C或者D。
该实施方式中,通过上述参数配置可以使得第二设备调整感知测量信号的配置,从而获得更好的感知测量性能。
作为一种可选的实施方式,所述第一指示信息还用于指示如下至少一项:
与感知测量结果关联的目标信号的标识信息;
感知测量标识信息;
感知测量结果;
所述第一指示信息的反馈信息。
上述与感知测量结果关联的目标信号的标识信息可以包括:分别与m个感知测量结果有效性对应的感知测量结果关联的目标信号的标识信息。
上述感知测量标识信息可以包括:分别与m个感知测量结果有效性对应的感知测量标识信息。
上述感知测量结果可以包括:分别与m个感知测量结果有效性对应的感知测量结果。
通过上述与感知测量结果关联的目标信号的标识信息指示该感知测量结果有效性指示信息指示的是哪一个或哪几个目标信号对应的感知测量结果有效性,这样可以实现指示具体的目标信号的感知测量结果有效性,以实现精确的指示。
通过上述感知测量标识信息可以指示该感知测量结果有效性指示信息指示的是哪一次感知测量对应的感知测量结果的有效性,所述感知测量可以是基于一个或多个目标信号的测量,这样可以实现指示具体的感知测量的感知测量结果有效性,以实现精确的指示。
指示上述感知测量结果可以实现指示具体的感知测量结果。
其中,第一指示信息的反馈信息可以包括如下至少一项:
所述第一指示信息的总比特数;
所述第一指示信息对应的有效感知测量结果的个数;
所述第一指示信息对应的无效感知测量结果的个数;
所述第一指示信息中指示的感知测量结果的个数;
所述第一指示信息中指示的无效原因的个数;
所述第一指示信息中指示的建议的目标信号的参数配置的个数;
所述第一指示信息中指示感知测量结果的比特数;
所述第一指示信息中指示无效原因的比特数;
所述第一指示信息中指示建议的目标信号的参数配置的比特数。
通过上述反馈信息可以让第二设备准确地第一指示信息获取第一指示信息所指示的内容。
作为一种可选的实施方式,在所述第一指示信息指示的第一感知测量结果有效性为有效的情况下,所述第一指示信息指示第一感知测量结果,所述第一感知测量结果有效性为所述m个感知测量结果有效性中的一个感知测量结果有效性;
和/或,
在第二感知测量结果有效的情况下,所述第一指示信息指示如下至少一项:
所述第二感知测量结果的感知测量结果有效性:
与所述第二感知测量结果关联的目标信号的标识信息;
所述第二感知测量结果的感知测量标识信息;
所述第二感知测量结果;
所述第二感知测量结果为所述m个感知测量结果中的一个;
和/或,
在所述第一指示信息指示的第三感知测量结果有效性为无效的情况下,所述第一指示信息指示如下至少一项:
第三感知测量结果的无效原因的指示信息;
目标信号的参数配置;
其中,所述第三感知测量结果有效性为所述m个感知测量结果有效性中的一个感知测量结果有效性
和/或,
在第四感知测量结果无效的情况下,所述第一指示信息指示如下至少一项:
所述第四感知测量结果的感知测量结果有效性:
所述第四感知测量结果的无效原因的指示信息;
目标信号的参数配置;
其中,所述第四感知测量结果为所述m个感知测量结果中的一个感知测量结果;
和/或,
在第五感知测量结果有效的情况下,所述第一指示信息不指示所述第五感知测量结果的相关信息;
其中,所述第五感知测量结果为所述m个感知测量结果中的一个感知测量结果;
和/或,
在第六感知测量结果有效的情况下,所述第一指示信息不指示所述第六感知测量结果的相关信息;
其中,所述第六感知测量结果为所述m个感知测量结果中的一个感知测量结果。
该实施方式中,可以实现仅当第一指示信息中某一感知测量结果的感知测量结果有效性指示信息指示感知测量结果有效时,第一指示信息中包含第一感知测量结果,以节约信令开销。
以及可以实现仅在感知测量结果有效时,第二设备向第一设备发送的第一指示信息中包含该感知测量结果的感知测量结果有效性指示和/或感知测量结果和/或与感知测量结果关联的目标信号标识信息和/或感知测量标识信息,而测量结果无效时第一指示信息中不包含第一感知测量结果的相关反馈信息,以节约信令开销。
以及可以实现仅在某感知测量结果无效时,第二设备向第一设备发送的第一指示信息 中包含该感知测量结果的感知测量结果有效性指示和/或感知测量结果无效原因和/或建议目标信号参数配置,而测量结果有效时第一指示信息中不包含该感知测量结果的相关反馈信息,以节约信令开销。
以及可以实现仅当第一指示信息中某感知测量结果的感知测量结果有效性指示信息指示感知测量结果无效时,第一指示信息中包含该感知测量结果的感知测量结果无效原因和/或建议目标信号参数配置,以节约信令开销。
作为一种可选的实施方式,所述第一设备向第二设备指示第一指示信息之前,所述方法还包括:
所述第一设备接收所述第二设备发送的第二指示信息,所述第二指示信息用于指示如下至少一项:
是否需要感知测量结果有效性反馈;
感知测量结果有效性和通信数据接收正确性的反馈配置;
感知测量结果有效性判断的准则;
感知测量量;
感知需求;
感知业务。
上述是否需要感知测量结果有效性反馈可以是,指示某段时间内(例如从当前时刻到感知业务终止)全部或部分感知测量结果是否需要进行有效性反馈。
其中,上述感知测量结果有效性和通信数据接收正确性的反馈配置可以表示如何反馈感知测量结果有效性和通信数据接收正确性,例如:可以包括如下至少一项:
反馈定时;
反馈资源;
反馈方式;
联合反馈配置或者指示;
第一指示信息格式。
其中,上述反馈定时可以表示反馈的时间点到参考时间点(例如目标信号或者目标信号的控制信息的发送/结束时间)之间的时间长度。
上述反馈资源可以指示物理上行控制信道(Physical Uplink Control Channel,PUCCH)和/或物理上行共享信道(Physical Uplink Shared Channel,PUSCH),相当于第一指示信息对应的具体时频域资源。
上述反馈方式可以包括:
事件触发反馈,例如前面实施方式描述的仅在感知测量结果无效或有效时发送第一指示信息;
周期性触发反馈,例如:第一设备按一定周期发送第一指示信息;
消息触发反馈,例如:第一设备根据第二设备的指示消息发送第一指示信息。
上述联合反馈配置或指示可以包括:
是否允许感知测量结果有效性和通信数据接收正确性指示联合反馈;
感知测量结果有效性和通信数据接收正确性指示反馈的优先级,可以与反馈时延要求关联,或者,感知测量结果有效性和通信数据接收正确性指示反馈的优先级可以与感知业务/通信业务优先级关联,该优先级可以影响第一指示信息的格式,例如感知测量结果有效性反馈和通信数据接收正确性反馈的先后顺序、独立编码时的码率等。
上述感知测量结果有效性判断的准则包括如下至少一项:
所述第一设备检测到的所述目标信号的质量是否到达门限要求;
所述第一设备获得的感知测量结果是否满足感知需求;
在所述目标信号为通信数据信号的情况下,所述第一设备是否正确解调数据;
在所述第一指示信息的反馈时间点到达时,所述第一设备是否获取到感知测量结果。
上述感知测量结果有效性判断的准则可以具体参见前面实施方式的相应说明,此处不作赘述,以及还可以包括目标信号质量门限信息和感知测量结果性能指标要求信息。
上述感知测量量、感知需求和感知业务中的至少一项可以用于间接指示第一设备感知测量结果有效性判断的准则,如前面实施方式所述的感知测量结果有效或无效的准则可以关联到感知测量量、感知需求和感知业务中的至少一项。
作为一种可选的实施方式所述第一设备向第二设备指示第一指示信息之前,所述方法还包括:
所述第一设备接收所述第二设备发送的第三指示信息,所述第三指示信息用于指示如下至少一项:
是否允许基于通信数据符号进行感知测量的指示信息;
感知测量的通信数据信号的配置信息;
感知服务质量(Quality of Service,QoS)信息。
其中,上述感知测量的通信数据信号的配置信息可以是,通信数据信号时域资源配置、频域资源配置等。
通过上述是否允许基于通信数据符号进行感知测量的指示信息可以提高第一设备感知测量的准确性,通过上述感知测量的通信数据信号的配置信息也可以提高第一设备感知测量的准确性。
上述感知QoS信息可以包括如下至少一项:
感知/通感一体化业务优先级、感知分辨率的要求、感知精度或感知误差的要求、感知延时预算、最大感知范围的要求、连续感知能力的要求、感知更新频率的要求、检测概率、虚警概率、漏检概率要求等。
这样第一设备可以根据该QoS信息自行决定具体使用感知信号或数据,以及使用哪个数据符号,从而提高感知测量的灵活性。
本申请实施例中,第一设备向第二设备发送第一指示信息,所述第一指示信息用于指 示m个感知测量结果有效性和n个通信数据接收正确性,m和n为正整数,且m+n>2;其中,所述m个感知测量结果有效性对应的m个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。这样第一设备向第二设备指示m个感知测量结果有效性和n个通信数据接收正确,以实现感知测量。
请参见图5,图5是本申请实施例提供的一种指示信息接收方法的流程图,如图5所示,包括以下步骤:
步骤501、第二设备接收第一设备发送的第一指示信息,所述第一指示信息用于指示m个感知测量结果有效性和n个通信数据接收正确性,m+n>2;
其中,所述m个感知测量结果有效性对应的m个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
可选地,所述第一指示信息包括指示比特,所述指示比特为至少一个比特,用于指示m个感知测量结果有效性和n个通信数据接收正确性。
可选地,所述指示比特为m+n比特,其中:
m比特指示m个感知测量结果有效性,n比特指示n个通信数据接收正确性;或者,
所述m+n比特中2x比特以联合编码的方式指示x个感知测量结果有效性和x个通信数据接收正确性,在x小于m的情况下,所述m+n比特中m-x比特指示m-x个感知测量结果有效性,在x小于n的情况下,所述m+n比特中n-x比特指示n-x个感知测量结果有效性;x为正整数,且x小于或者等于m,x小于或者等于n。
可选地,所述指示比特为2比特,所述2比特中的第一比特的第一取值指示所述m个感知测量结果有效性中至少一个为无效,所述第一比特的第二取值指示所述m个感知测量结果有效性全部为有效;所述2比特中的第二比特的第一取值指示所述n个通信数据接收正确性中至少一个为接收错误,所述2比特中的第二比特的第二取值指示所述n个通信数据接收正确性都为接收正确;
或者,
所述指示比特为1比特,所述第一比特的第二取值指示所述m个感知测量结果有效性全部为有效,且所述n个通信数据接收正确性都为接收正确,所述1比特第一取值指示如下至少一项:
所述m个感知测量结果有效性中至少一个为无效,所述n个通信数据接收正确性中至少一个为接收错误。
可选地,所述指示比特为m+n-x比特,其中:所述m+n-x比特中x比特分别指示x个联合指示,每个联合指示为1个感知测量结果有效性和1个通信数据接收正确性的联合指示,在x小于m的情况下,所述m+n-x比特中m-x比特指示m-x个感知测量结果有效性,在x小于n的情况下,所述m+n-x比特中n-x比特指示n-x个感知测量结果有效性;x为正整数,且x小于或者等于m,x小于或者等于n。
可选地,所述指示比特包括x个比特组,所述x个比特组分别指示x个联合指示,每 个联合指示为1个感知测量结果有效性和1个通信数据接收正确性的联合指示;
所述x个比特组包括如下至少一项:
为1个比特的比特组,为1个比特的比特组指示:对应的联合指示中的通信数据接收正确性为错误接收,且感知测量结果有效性为无效;
为2个比特的比特组,为2个比特的比特组中的1比特指示:对应的联合指示中的通信数据接收正确性为正确接收,另1比特指示:对应的联合指示中的感知测量结果有效性;
在x小于m的情况下,所述指示比特还包括m-x比特,指示m-x个感知测量结果有效性;
在x小于n的情况下,所述指示比特还包括n-x比特,指示n-x个感知测量结果有效性;
x为正整数,且x小于或者等于m,x小于或者等于n。
可选地,所述指示比特为mⅹu+n比特,其中,mⅹu比特分别指示m个感知测量结果有效性的等级,n比特比特指示n个通信数据接收正确性。
可选地,所述第一指示信息还用于指示如下至少一项:
感知测量结果无效原因;
目标信号的参数配置。
可选地,所述感知测量结果无效原因如下至少一项:
所述第一设备检测的所述目标信号的质量未到达门限要求;
所述第一设备获得的感知测量结果不满足感知要求;
在所述目标信号为通信数据信号的情况下,所述第一设备未正确解调数据;
在所述第一指示信息的反馈时间点到达时,所述第一设备未获取到感知测量结果。
可选地,所述参数配置包括如下至少一项:
波形、子载波间隔、保护间隔、带宽、突发burst持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频域资源、准共址QCL关系。
可选地,所述第一指示信息还用于指示如下至少一项:
与感知测量结果关联的目标信号的标识信息;
感知测量标识信息;
感知测量结果;
所述第一指示信息的反馈信息。
可选地,所述第一指示信息的反馈信息包括如下至少一项:
所述第一指示信息的总比特数;
所述第一指示信息对应的有效感知测量结果的个数;
所述第一指示信息对应的无效感知测量结果的个数;
所述第一指示信息中指示的感知测量结果的个数;
所述第一指示信息中指示的无效原因的个数;
所述第一指示信息中指示的建议的目标信号的参数配置的个数;
所述第一指示信息中指示感知测量结果的比特数;
所述第一指示信息中指示无效原因的比特数;
所述第一指示信息中指示建议的目标信号的参数配置的比特数。
可选地,在所述第一指示信息指示的第一感知测量结果有效性为有效的情况下,所述第一指示信息指示第一感知测量结果,所述第一感知测量结果有效性为所述m个感知测量结果有效性中的一个感知测量结果有效性;
和/或,
在第二感知测量结果有效的情况下,所述第一指示信息指示如下至少一项:
所述第二感知测量结果的感知测量结果有效性:
与所述第二感知测量结果关联的目标信号的标识信息;
所述第二感知测量结果的感知测量标识信息;
所述第二感知测量结果;
所述第二感知测量结果为所述m个感知测量结果中的一个;
和/或,
在所述第一指示信息指示的第三感知测量结果有效性为有效的情况下,所述第一指示信息指示如下至少一项:
第三感知测量结果的无效原因的指示信息;
目标信号的参数配置;
其中,所述第三感知测量结果有效性为所述m个感知测量结果有效性中的一个感知测量结果有效性
和/或,
在第四感知测量结果无效的情况下,所述第一指示信息指示如下至少一项:
所述第四感知测量结果的感知测量结果有效性:
所述第四感知测量结果的无效原因的指示信息;
目标信号的参数配置;
其中,所述第四感知测量结果为所述m个感知测量结果中的一个感知测量结果;
和/或,
在第五感知测量结果有效的情况下,所述第一指示信息不指示所述第五感知测量结果的相关信息;
其中,所述第五感知测量结果为所述m个感知测量结果中的一个感知测量结果。
可选地,所述第二设备接收第一设备发送的第一指示信息之前,所述方法还包括:
所述第二设备向所述第一设备发送第二指示信息,所述第二指示信息用于指示如下至少一项:
是否需要感知测量结果有效性反馈;
感知测量结果有效性和通信数据接收正确性的反馈配置;
感知测量结果有效性判断的准则;
感知测量量;
感知需求;
感知业务。
可选地,所述感知测量结果有效性和通信数据接收正确性的反馈配置包括如下至少一项:
反馈定时;
反馈资源;
反馈方式;
联合反馈配置或者指示;
第一指示信息格式;
和/或
所述感知测量结果有效性判断的准则包括如下至少一项:
所述第一设备检测到的所述目标信号的质量是否到达门限要求;
所述第一设备获得的感知测量结果是否满足感知需求;
在所述目标信号为通信数据信号的情况下,所述第一设备是否正确解调数据;
在所述第一指示信息的反馈时间点到达时,所述第一设备是否获取到感知测量结果。
可选地,所述第二设备接收第一设备发送的第一指示信息之前,所述方法还包括:
所述第二设备向所述第一设备发送第三指示信息,所述第三指示信息用于指示如下至少一项:
是否允许基于通信数据符号进行感知测量的指示信息;
感知测量的通信数据信号的配置信息;
感知服务质量QoS信息。
需要说明的是,本实施例作为与图4所示的实施例中对应的第二设备的实施方式,其具体的实施方式可以参见图4所示的实施例的相关说明,以为避免重复说明,本实施例不再赘述。
下面通过多个实施例对本申请实施例提供的方法进行举例说明:
实施例一:
该实施例主要描述第一指示信息的格式,具体如下:
该实施例每次反馈m个感知测量结果的有效性指示和n个通信数据接收正确性指示,如图6所示,分别对应m>1,n=1,以及m=1,n>1,以及m>1,n>1的三种情况。其中,每个感知测量结果(或每个感知测量结果有效性指示)与一次或多次感知测量相关联,一次感知测量可以是基于一个或多个目标信号的测量。
该实施例,第一指示信息格式可以包括如下:
方式一、反馈测量结果有效或者测量结果无效+通信数据接收正确或错误,具体可以下:
在方式一中,可以反馈m+n比特,例如:
一种情况下,m比特和n比特分别指示感知测量结果有效性和通信数据接收正确性,可以采用联合编码或独立编码,其中,独立编码码率可以不同,可以满足不同优先级或重要性需求;其中m比特指示感知测量结果有效性,例如,对于m比特中的每1比特,“0”表示感知测量结果无效,“1”表示感知测量结果有效;n比特表示通信数据接收正确性,即ACK/NACK:例如,对于n比特中的每1比特,“0”表示通信数据接收错误(NACK),“1”表示通信数据接收正确(ACK)。
在另一种情况下,m个感知测量结果有效性与n个通信数据接收正确性指示中存在x(x<=m且x<=n)个相关联的感知测量结果有效性和通信数据接收正确性指示(共2ⅹx比特),其中相关联的每2比特共同指示感知测量结果有效性和通信数据接收正确性,采用联合编码,即每2比特表示4种状态,特别的,例如通信数据接收错误但感知测量结果有效的情况可能不存在,则该状态(通信数据接收错误且感知测量结果有效)对应的2比特取值可以是保留,具体如上述表2。
剩余的m-x比特和n-x比特分别指示感知测量结果有效性和通信数据接收正确性,具体可以如下表3所示:
表3:
需要注意的是,联合编码指示信息、感知测量结果有效性指示信息、通信数据接收正确性指示信息三者的先后顺序不限制,例如可以根据反馈优先级确定,该优先级具体参见前面实施例的相应说明,且三者可以是独立编码的。
特别的,当存在如下情况:x=m、x=n、x=m=n时,可以不存在单独指示感知测量结果有效性和/或通信数据接收正确性的比特,可以如表4至6所示:
表4:x=m<n:
表5:x=n<m:
表6:x=m=n:
在方式一中,可以反馈反馈2比特,例如其中1比特为用于指示m个感知测量结果有效性的m比特的逻辑与结果,“0”表示m个感知测量结果中至少1个无效,“1”表示m个感知测量结果均有效;另1比特为用于指示n通信数据接收正确性的n比特的逻辑与结果,“0”表示n个通信数据接收正确性指示中至少存在1个接收错误指示(NACK),“1”表示n个通信数据接收正确性指示均为接收正确指示(ACK)。
另外,对于指示感知测量结果有效性的1比特,还可以是:当m个感知测量结果中超过x(x<=m,当x=m时,效果等同逻辑与)个有效时反馈“1”,否则反馈“0”。
在方式一中,可以反馈1比特,例如指示感知测量结果有效性的m比特和指示通信数据接收正确性的n比特的逻辑与结果:“0”表示m个感知测量结果中至少1个无效或n个通信数据接收正确性指示中至少存在1个接收错误指示(NACK),“1”表示m个感知测量结果均有效且n个通信数据接收正确性指示均为接收正确指示(ACK)。
在方式一中,可以反馈m+n-x比特,m个感知测量结果有效性与n个通信数据接收正确性指示中存在x(x<=m且x<=n)个相关联的感知测量结果有效性和通信数据接收正确性指示(共2x比特),其中相关联的每2比特进行逻辑与得到x比特:x比特中的每1比特用于指示相关联的感知测量结果有效性和通信数据接收正确性:“0”表示通信数据接收错误(NACK)或感知测量结果无效,“1”表示通信数据接收正确(ACK)且感知测量结果有效。
其中,剩余的m-x比特和n-x比特分别指示感知测量结果有效性和通信数据接收正确性;特别的,当存在如下情况:x=m<n、x=n<m、x=m=n时,可以不存在单独指示感知测量结果有效性和/或通信数据接收正确性的比特,具体的格式可以参考上述表3至表6所示的格式,且联合编码指示信息为1比特。
在方式一中,如果m个感知测量结果有效性与n个通信数据接收正确性指示中存在x(x<=m且x<=n)个相关联的感知测量结果有效性和通信数据接收正确性指示(共2ⅹx比特),所述x个感知测量结果有效性指示是基于通信数据的感知测量结果有效性指示,即目标信号为通信数据信号,其中相关联的每2比特还可以采用1比特或2比特表示,具体方法如下:
当通信数据接收错误时采用1比特表示,“0”表示通信数据接收错误(NACK)且感知测量结果无效;
当通信数据接收正确时采用2比特表示,其中1比特为“1”表示通信数据接收正确(ACK),另1比特用于指示感知测量结果是否有效。
另外,通信数据接收正确性指示与感知测量结果有效性指示可以独立编码,且通信数据接收正确性指示在前。例如:第二设备先对通信数据接收正确性指示信息解码,得到n个通信数据接收正确性指示信息,以及其中与感知关联的x个通信接收正确性指示信息中存在多少个接收正确指示(ACK),这样可以确定后面的感知测量结果有效性指示比特数。
在方式一中,可以反馈mⅹu+n(m>1)比特,具体可以是对应m个感知测量结果的有效性,每个感知测量结果的有效性采用u比特表示,对应于有效性相关的v个状态,则需要u=ceil(log2(v))比特表示。例如:将感知测量结果的有效性分为不同的等级,即测量结果对应的目标信号质量(SNR、RSRP、RSSI、信号杂波比等)或感知性能指标不同,或者用于判断测量结果有效性的阈值有多个,(假设有两个阈值)那就可以分为无效,第一阈值有效但按照第二阈值无效,第二阈值有效(假设第二阈值要求更高)三个状态,可以利用mⅹu比特和n比特分别指示感知测量结果有效性和通信数据接收正确性;
在方式一中,可以反馈1+n比特,其中1比特可以是m个感知测量结果有效性指示比特的逻辑与结果,其中,“0”表示至少一个感知测量结果无效,“1”表示m个感知测量结果均有效,或者,当m个感知测量结果中超过x(x<m)个有效时反馈“1”,否则反馈“0”,另n比特为n个通信数据接收正确性指示比特;
在方式一中,可以反馈m+1比特,其中m比特是m个感知测量结果有效性指示比特,另1比特为n个通信数据接收正确性指示比特的逻辑与。
方式二、反馈测量结果有效+感知测量结果+通信数据接收正确性指示或者反馈测量结果无效+通信数据接收正确性指示,具体可以如下:
当感知测量结果有效时,反馈“1”表示感知结果有效,并反馈感知测量结果,以及反馈通信数据接收正确性指示;当感知测量结果无效时,反馈“0”表示感知结果无效,以及反馈通信数据接收正确性指示。具体的,格式可以包括如下:
在一种情况下,可以每次反馈有效性指示时反馈感知测量结果,然后反馈通信数据接收正确性指示,例如如下表7所示:
表7:
在一种情况下,可以先反馈n比特有效性指示,然后反馈感知测量结果,然后反馈通信数据接收正确性指示,例如如下表8所示:
表8:
在一种情况下,还可以先反馈感知测量结果有效性指示和通信数据接收正确性指
示,然后反馈感知测量结果,例如如下表9所示:
表9:
需要说明的是,上述第一指示信息的反馈格式也可以是通信数据接收正确性指示在前,感知测量结果有效性指示及感知测量结果在后,例如:将优先级高的信息放在前面,当通信反馈重要性更高时通信放在前面,反之感知放在前面。
进一步的,在方式二中,还可以根据方式一中的描述,对感知测量结果有效性指示比特以及通信数据接收正确性指示比特进行合并反馈;或者感知测量结果有效性指示采用多比特表示。
需要注意的是,在反馈感知测量结果时,每个感知测量结果的比特数是固定的,可以是收发双方约定好的(协议规定的),或者由第一指示信息的发送方指示感知测量结果的比特数/第一指示信息的比特数。特别的,对于方式二中的一些情况,m比特有效性指示在前,感知结果在后,有效性指示和感知结果可以分开编码,第二设备先检测前面的m比特有效性指示,就知道后面的感知结果个数了,此时接收端只需要知道每个感知测量结果的比特数即可正确解码。以下对于感知测量结果无效原因和建议目标信号参数配置的反馈同理。
方式三、反馈测量结果有效+感知测量结果+通信数据接收正确性指示或者反馈测量结果无效+无效原因+通信数据接收正确性指示,具体可以如下:
当感知测量结果有效时,反馈“1”表示感知结果有效,并反馈感知测量结果,以及反馈通信数据接收正确性指示;当感知测量结果无效时,反馈“0”表示感知结果无效,并反馈感知测量结果无效原因,以及反馈通信数据接收正确性指示。具体的,格式可以包括如下:
在一种情况下,可以每次反馈有效性指示时反馈感知测量结果或无效原因,然后反馈通信数据接收正确性指示,例如如下表10所示:
表10:
在一种情况下,可以先反馈m比特有效性指示,然后按顺序反馈感知测量结果和无效原因,然后反馈通信数据接收正确性指示,例如如下表11所示:
表11:
在方式三中,也可以将通信数据接收正确性指示放在感知测量结果有效性指示之前或之后或两者交替反馈,然后按顺序反馈感知测量结果和无效原因。
在方式三中,还可以将感知测量结果有效时的感知测量结果和感知测量结果无效时的 无效原因分别反馈,然后反馈通信数据接收正确性指示,假设有效的感知测量结果为x个,无效的感知测量结果为y个,则反馈x个感知测量结果和p(p<=y)个无效原因,例如:,例如如下表12所示:
表12:
需要说明的是,也可以将重要性高或时延要求高的信息放在前面,例如感知测量结果重要性更高,则将感知测量结果放在前,还可以选择将感知测量结果独立编码。
或者,也可以是无效原因在前,感知测量结果在后。还可以将通信数据接收正确性指示放在感知测量结果有效性指示之前或之后或两者交替反馈,然后分别反馈感知测量结果和无效原因。例如:当通信反馈重要性更高时通信放在前,反之感知放在前,另外,以下涉及到感知测量结果、无效原因、建议目标信号参数配置先后顺序的情况同理。
进一步的,还可以方式一中的描述,对感知测量结果有效性指示比特以及通信数据接收正确性指示比特进行合并反馈;或者感知测量结果有效性指示采用多比特表示。
需要说明的是,反馈的无效原因个数可以少于无效的感知测量结果个数,因为相同的无效原因可以只反馈一次或者只选择部分无效感知测量结果的无效原因进行反馈,相比于按顺序反馈感知测量结果和无效原因的方式可以节省反馈开销,但是由于此时第一指示信息比特数不确定,需要指示出反馈的总比特数或反馈的无效原因个数,否则接收端可能无法对第一指示信息正确解码。另外,以下涉及到感知测量结果无效原因反馈同理。
方式四、反馈测量结果有效+感知测量结果+通信数据接收正确性指示或者反馈测量结果无效+建议目标信号参数配置+通信数据接收正确性指示,具体可以如下:
当感知测量结果有效时,反馈“1”表示感知结果有效,并反馈感知测量结果,以及反馈通信数据接收正确性指示;当感知测量结果无效时,反馈“0”表示感知结果无效,并反馈建议目标信号参数配置,以及反馈通信数据接收正确性指示。
具体格式可以如上述方式三,其中无效原因替换为建议目标信号参数配置。
需要说明的是,反馈的建议参数配置个数可以少于无效的感知测量结果个数,因为可以将相同的建议参数配置可以只反馈一次或者只选择部分建议参数配置进行反馈,例如建议参数配置1为100MHz带宽,建议参数配置2为120MHz带宽,则选择只反馈建议参数配置2。相比于按顺序反馈感知测量结果和建议参数配置的方式可以节省反馈开销,但是由于此时第一指示信息比特数不确定,可以指示出反馈的总比特数或反馈的建议目标信号参数配置个数,以避免第二设备可能无法对第一指示信息正确解码。另外,以下涉及到建议目标信号参数配置的反馈同理。
方式五、反馈测量结果有效+感知测量结果+通信数据接收正确性指示或者反馈测量结果无效+无效原因+建议目标信号参数配置+通信数据接收正确性指示,具体可以如下:
当感知测量结果有效时,反馈“1”表示感知结果有效,并反馈感知测量结果,以及反 馈通信数据接收正确性指示;当感知测量结果无效时,反馈“0”表示感知结果无效,并反馈感知测量结果无效原因以及建议目标信号参数配置,以及反馈通信数据接收正确性指示。
具体格式上述方式三,其中无效原因替换为无效原因+建议目标信号参数配置。
另外,除了通信数据接收正确性指示和感知测量结果有效性指示及感知测量结果或无效原因可以根据所述反馈优先级确定先后顺序,无效原因和建议目标信号参数配置也可以根据重要性确定先后顺序,此时两者可以采取独立编码的方式。
方式六、反馈测量结果有效+通信数据接收正确性指示或者反馈测量结果无效+无效原因+通信数据接收正确性指示,具体可以如下:
当感知测量结果有效时,反馈“1”表示感知结果有效,以及反馈通信数据接收正确性指示;当感知测量结果无效时,反馈“0”表示感知结果无效,并反馈感知测量结果无效原因,以及反馈通信数据接收正确性指示。
具体格式如上述方式三,其中感知测量结果有效时不再反馈感知测量结果。
方式七、反馈测量结果有效+通信数据接收正确性指示或者反馈测量结果无效+建议目标信号参数配置+通信数据接收正确性指示,具体可以如下:
当感知测量结果有效时,反馈“1”表示感知结果有效,以及反馈通信数据接收正确性指示;当感知测量结果无效时,反馈“0”表示感知结果无效,并反馈建议目标信号参数配置,以及反馈通信数据接收正确性指示。
具体格式如上述方式三,其中感知测量结果有效时不再反馈感知测量结果,无效原因替换为建议目标信号参数配置。
方式八、反馈测量结果有效+通信数据接收正确性指示或者反馈测量结果无效+无效原因+建议目标信号参数配置+通信数据接收正确性指示,具体可以如下:
当感知测量结果有效时,反馈“1”表示感知结果有效,以及反馈通信数据接收正确性指示;当感知测量结果无效时,反馈“0”表示感知结果无效,并反馈建议目标信号参数配置,以及反馈通信数据接收正确性指示。
具体格式上述方式五,其中感知测量结果有效时不再反馈感知测量结果。
另外,仅在第一感知测量结果有效时,第一设备向第二设备发送的第一指示信息中包含第一感知测量结果的感知测量结果有效性指示和/或感知测量结果和/或与感知测量结果关联的目标信号标识信息和/或感知测量标识信息;测量结果无效时第一指示信息中不包含第一感知测量结果的相关反馈信息,所述第一感知测量结果是m个感知测量结果中的1个。
仅在第一感知测量结果无效时,第一设备向第二设备发送的第一指示信息中包含第一感知测量结果的感知测量结果有效性指示和/或感知测量结果无效原因和/或建议目标信号参数配置;测量结果有效时第一指示信息中不包含第一感知测量结果的相关反馈信息,所述第一感知测量结果是m个感知测量结果中的1个。
另外,本申请实施例中,感知测量结果、感知需求和感知业务可以定义如下:
上述感知测量结果是与感知测量量关联的测量结果,即测量量的值,具体的可以包括如下至少一项:
原始信道信息:信道矩阵H或H的压缩量化信息、信道状态信息(Channel State Information,CSI),例如频域信道响应的幅度,或者频域信道响应的幅度的平方和/或相位,或者是频域信道响应的I路与Q路信号特征,例如I路和/或Q路信号的幅度或者幅度的平方;
信号强度信息:RSRP、RSSI;
谱信息:信道功率时延谱(Power-delay profile,PDP)、多普勒功率谱、功率角度谱(power azimuth spectrum,PAS)、伪谱信息(例如MUSIC谱)、时延-多普勒二维谱、时延-多普勒-角度三维谱;
多径信息:多径信道中各条径(至少包括首达径、LOS径、一阶反射径、多阶反射径)的功率、相位、时延、角度信息;
角度信息:到达角、离开角(包括终端侧角度信息、基站侧角度信息与反射点角度信息);
不同天线对应信号的差别信息:第一天线与第二天线的频域信道响应的商或共轭乘(或第一天线与第二天线的频域信道响应的商或共轭乘的幅度或相位,或第一天线与第二天线的频域信道响应的商或共轭乘的I路或Q路,或第一天线与第二天线的频域信道响应的商或共轭乘的I路或Q路的投影运算,投影运算可以是I*cos(theta)+Q*sin(theta),其中theta为某一角度值,不同的theta对应不同的投影,I代表I路数据,Q代表Q路数据)、第一天线与第二天线的接收信号的幅度比或幅度差、第一天线与第二天线信号的相位差、第一天线与第二天线信号的时延差;
基于原始信道信息确定的目标参数信息:多普勒扩展、多普勒频移、最大时延扩展、角度扩展、相干带宽、相干时间。
除上述测量量外,还包括基于上述测量量中的两个或两个以上进行运算生成的新的测量量。
上述感知需求信息可以包括以下至少一项:
感知业务类型,例如,入侵检测、轨迹追踪、环境重构、呼吸检测、动作识别等;
感知区域,例如,感知区域地理坐标、感知区域长、宽、高、距离、角度范围等;
感知目标类型,例如汽车、摩托车、行人等等,侧面指示了感知目标移动速度范围、对无线信号反射功率等级;
感知/通感一体化QoS,例如,感知/通感一体化业务优先级、感知分辨率的要求、感知精度或感知误差的要求、感知延时预算、最大感知范围的要求、连续感知能力的要求、感知更新频率的要求、检测概率、虚警概率、漏检概率要求等;
通信QoS(针对通感一体化业务),例如通信延时预算、误报率等;
感知区域内感知目标数量;
感知区域内感知目标密度。
上述感知业务可以是但不限于以下至少一项:
物体特征检测:能够反映目标物体的属性或所处状态的信息,可以为以下至少一项:目标物体的存在、目标物体的位置、目标物体的速度、目标物体的加速度、目标物体的材料、目标物体的形状、目标物体的类别、目标物体的雷达散射截面积(Radar Cross Section,RCS),极化散射特性等;
事件检测:与目标事件有关的信息,即在目标事件发生时能够检测/感知到的信息,可以为:跌倒检测、入侵检测、数量统计、室内定位、手势识别、唇语识别、步态识别、表情识别、呼吸监测、心率监测、声源分辨等;
环境检测:湿度、亮度、温度湿度、大气压强、空气质量、天气情况、地形地貌、建筑/植被分布、人数统计、人群密度、车辆密度等。
本申请实施例中,判断感知测量结果是否有效的准则可以包括如下至少一项:
接收端检测的第一信号质量(至少包括SNR,RSRP,RSSI,信号杂波比中的一项)是否达到门限要求;
接收端获得的感知测量结果是否满足感知需求,即计算出的感知测量结果对应的感知性能指标是否满足要求,其中,所述感知性能指标可以是至少以下一项:
感知精度/感知误差,感知分辨率,感知范围,感知时延,检测概率,虚警概率,同时检测目标个数,信号杂波比,信号旁瓣特征(信号主瓣旁瓣比),峰均比PAPR,方差,标准差,目标感知信号分量与其他感知信号分量之比,例如呼吸检测中多普勒域幅度最大的样值点对应的幅度作为目标感知分量,即认为,该幅度最大的样值点为呼吸频率对应的样值点;除所述幅度最大的样值点外的其他样值点对应的幅度作为其他感知信号分量。
接收端是否正确解调数据,基于通信数据做感知,采用先解调再估计感知参数的方式,若通信解调错误,感知测量结果受到影响,变得不可靠;
反馈时间点到达时接收端是否成功获取感知测量结果,例如感知测量结果处理是否超时。
当所述感知测量结果至少满足以上一项时,认为感知测量结果有效,否则认为无效,例如满足第一项和第二项,即当第一信号质量达到门限要求且感知测量结果满足感知需求时认为感知测量结果有效。
本申请实施例中,第一设备根据感知测量信号配置相关的指示信息进行感知测量,对n个感知测量结果有效性以及m个通信数据接收正确性进行反馈,并根据感知测量结果有效性对感知测量结果、感知测量结果无效的原因以及建议的感知测量信号配置等信息进行反馈。根据感知测量结果的有效性以及通信数据接收正确性确定反馈格式,可以有效减小开销,辅助接收感知测量结果的一方对感知测量结果进行进一步处理,或者调整感知测量信号的配置,从而获得更好的感知测量性能。
请参见图7,图7是本申请实施例提供的一种指示信息发送装置的结构图,如图7所 示,包括:
发送模块701,用于向第二设备发送第一指示信息,所述第一指示信息用于指示m个感知测量结果有效性和n个通信数据接收正确性,m和n为正整数,且m+n>2;
其中,所述m个感知测量结果有效性对应的m个感知测量结果为对第一设备接收的目标信号进行感知测量的测量结果。
可选地,所述第一指示信息包括指示比特,所述指示比特为至少一个比特,用于指示m个感知测量结果有效性和n个通信数据接收正确性。
可选地,所述指示比特为m+n比特,其中:
m比特指示m个感知测量结果有效性,n比特指示n个通信数据接收正确性;或者,
所述m+n比特中2x比特以联合编码的方式指示x个感知测量结果有效性和x个通信数据接收正确性,在x小于m的情况下,所述m+n比特中m-x比特指示m-x个感知测量结果有效性,在x小于n的情况下,所述m+n比特中n-x比特指示n-x个感知测量结果有效性;x为正整数,且x小于或者等于m,x小于或者等于n。
可选地,所述指示比特为2比特,所述2比特中的第一比特的第一取值指示所述m个感知测量结果有效性中至少一个为无效,所述第一比特的第二取值指示所述m个感知测量结果有效性全部为有效;所述2比特中的第二比特的第一取值指示所述n个通信数据接收正确性中至少一个为接收错误,所述2比特中的第二比特的第二取值指示所述n个通信数据接收正确性都为接收正确;
或者,
所述指示比特为1比特,所述第一比特的第二取值指示所述m个感知测量结果有效性全部为有效,且所述n个通信数据接收正确性都为接收正确,所述1比特第一取值指示如下至少一项:
所述m个感知测量结果有效性中至少一个为无效,所述n个通信数据接收正确性中至少一个为接收错误。
可选地,所述指示比特为m+n-x比特,其中:所述m+n-x比特中x比特分别指示x个联合指示,每个联合指示为1个感知测量结果有效性和1个通信数据接收正确性的联合指示,在x小于m的情况下,所述m+n-x比特中m-x比特指示m-x个感知测量结果有效性,在x小于n的情况下,所述m+n-x比特中n-x比特指示n-x个感知测量结果有效性;x为正整数,且x小于或者等于m,x小于或者等于n。
可选地,所述指示比特包括x个比特组,所述x个比特组分别指示x个联合指示,每个联合指示为1个感知测量结果有效性和1个通信数据接收正确性的联合指示;
所述x个比特组包括如下至少一项:
为1个比特的比特组,为1个比特的比特组指示:对应的联合指示中的通信数据接收正确性为错误接收,且感知测量结果有效性为无效;
为2个比特的比特组,为2个比特的比特组中的1比特指示:对应的联合指示中的通 信数据接收正确性为正确接收,另1比特指示:对应的联合指示中的感知测量结果有效性;
在x小于m的情况下,所述指示比特还包括m-x比特,指示m-x个感知测量结果有效性;
在x小于n的情况下,所述指示比特还包括n-x比特,指示n-x个感知测量结果有效性;
x为正整数,且x小于或者等于m,x小于或者等于n。
可选地,所述指示比特为mⅹu+n比特,其中,mⅹu比特分别指示m个感知测量结果有效性的等级,n比特比特指示n个通信数据接收正确性。
可选地,所述第一指示信息还用于指示如下至少一项:
感知测量结果无效原因;
目标信号的参数配置。
可选地,所述感知测量结果无效原因如下至少一项:
所述第一设备检测的所述目标信号的质量未到达门限要求;
所述第一设备获得的感知测量结果不满足感知要求;
在所述目标信号为通信数据信号的情况下,所述第一设备未正确解调数据;
在所述第一指示信息的反馈时间点到达时,所述第一设备未获取到感知测量结果。
可选地,所述参数配置包括如下至少一项:
波形、子载波间隔、保护间隔、带宽、突发burst持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频域资源、准共址QCL关系。
可选地,所述第一指示信息还用于指示如下至少一项:
与感知测量结果关联的目标信号的标识信息;
感知测量标识信息;
感知测量结果;
所述第一指示信息的反馈信息。
可选地,所述第一指示信息的反馈信息包括如下至少一项:
所述第一指示信息的总比特数;
所述第一指示信息对应的有效感知测量结果的个数;
所述第一指示信息对应的无效感知测量结果的个数;
所述第一指示信息中指示的感知测量结果的个数;
所述第一指示信息中指示的无效原因的个数;
所述第一指示信息中指示的建议的目标信号的参数配置的个数;
所述第一指示信息中指示感知测量结果的比特数;
所述第一指示信息中指示无效原因的比特数;
所述第一指示信息中指示建议的目标信号的参数配置的比特数。
可选地,在所述第一指示信息指示的第一感知测量结果有效性为有效的情况下,所述 第一指示信息指示第一感知测量结果,所述第一感知测量结果有效性为所述m个感知测量结果有效性中的一个感知测量结果有效性;
和/或,
在第二感知测量结果有效的情况下,所述第一指示信息指示如下至少一项:
所述第二感知测量结果的感知测量结果有效性:
与所述第二感知测量结果关联的目标信号的标识信息;
所述第二感知测量结果的感知测量标识信息;
所述第二感知测量结果;
所述第二感知测量结果为所述m个感知测量结果中的一个;
和/或,
在所述第一指示信息指示的第三感知测量结果有效性为无效的情况下,所述第一指示信息指示如下至少一项:
第三感知测量结果的无效原因的指示信息;
目标信号的参数配置;
其中,所述第三感知测量结果有效性为所述m个感知测量结果有效性中的一个感知测量结果有效性
和/或,
在第四感知测量结果无效的情况下,所述第一指示信息指示如下至少一项:
所述第四感知测量结果的感知测量结果有效性:
所述第四感知测量结果的无效原因的指示信息;
目标信号的参数配置;
其中,所述第四感知测量结果为所述m个感知测量结果中的一个感知测量结果;
和/或,
在第五感知测量结果有效的情况下,所述第一指示信息不指示所述第五感知测量结果的相关信息;
其中,所述第五感知测量结果为所述m个感知测量结果中的一个感知测量结果;
和/或,
在第六感知测量结果有效的情况下,所述第一指示信息不指示所述第六感知测量结果的相关信息;
其中,所述第六感知测量结果为所述m个感知测量结果中的一个感知测量结果。
可选地,所述装置还包括:
第一接收模块,用于接收所述第二设备发送的第二指示信息,所述第二指示信息用于指示如下至少一项:
是否需要感知测量结果有效性反馈;
感知测量结果有效性和通信数据接收正确性的反馈配置;
感知测量结果有效性判断的准则;
感知测量量;
感知需求;
感知业务。
可选地,所述感知测量结果有效性和通信数据接收正确性的反馈配置包括如下至少一项:
反馈定时;
反馈资源;
反馈方式;
联合反馈配置或者指示;
第一指示信息格式;
和/或
所述感知测量结果有效性判断的准则包括如下至少一项:
所述第一设备检测到的所述目标信号的质量是否到达门限要求;
所述第一设备获得的感知测量结果是否满足感知需求;
在所述目标信号为通信数据信号的情况下,所述第一设备是否正确解调数据;
在所述第一指示信息的反馈时间点到达时,所述第一设备是否获取到感知测量结果。
可选地,所述装置还包括:
第二接收模块,接收所述第二设备发送的第三指示信息,所述第三指示信息用于指示如下至少一项:
是否允许基于通信数据符号进行感知测量的指示信息;
感知测量的通信数据信号的配置信息;
感知服务质量QoS信息。
上述指示信息发送装置可以实现感知测量。
本申请实施例中的指示信息发送装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。例如:该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于本申请实施例所列举的终端的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的指示信息发送装置能够实现图4所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
请参见图8,图8是本申请实施例提供的一种指示信息接收装置的结构图,如图8所示,包括:
接收模块801,用于接收第一设备发送的第一指示信息,所述第一指示信息用于指示m个感知测量结果有效性和n个通信数据接收正确性,m+n>2;
其中,所述m个感知测量结果有效性对应的m个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
可选地,所述第一指示信息包括指示比特,所述指示比特为至少一个比特,用于指示m个感知测量结果有效性和n个通信数据接收正确性。
可选地,所述指示比特为m+n比特,其中:
m比特指示m个感知测量结果有效性,n比特指示n个通信数据接收正确性;或者,
所述m+n比特中2x比特以联合编码的方式指示x个感知测量结果有效性和x个通信数据接收正确性,在x小于m的情况下,所述m+n比特中m-x比特指示m-x个感知测量结果有效性,在x小于n的情况下,所述m+n比特中n-x比特指示n-x个感知测量结果有效性;x为正整数,且x小于或者等于m,x小于或者等于n。
可选地,所述指示比特为2比特,所述2比特中的第一比特的第一取值指示所述m个感知测量结果有效性中至少一个为无效,所述第一比特的第二取值指示所述m个感知测量结果有效性全部为有效;所述2比特中的第二比特的第一取值指示所述n个通信数据接收正确性中至少一个为接收错误,所述2比特中的第二比特的第二取值指示所述n个通信数据接收正确性都为接收正确;
或者,
所述指示比特为1比特,所述第一比特的第二取值指示所述m个感知测量结果有效性全部为有效,且所述n个通信数据接收正确性都为接收正确,所述1比特第一取值指示如下至少一项:
所述m个感知测量结果有效性中至少一个为无效,所述n个通信数据接收正确性中至少一个为接收错误。
可选地,所述指示比特为m+n-x比特,其中:所述m+n-x比特中x比特分别指示x个联合指示,每个联合指示为1个感知测量结果有效性和1个通信数据接收正确性的联合指示,在x小于m的情况下,所述m+n-x比特中m-x比特指示m-x个感知测量结果有效性,在x小于n的情况下,所述m+n-x比特中n-x比特指示n-x个感知测量结果有效性;x为正整数,且x小于或者等于m,x小于或者等于n。
可选地,所述指示比特包括x个比特组,所述x个比特组分别指示x个联合指示,每个联合指示为1个感知测量结果有效性和1个通信数据接收正确性的联合指示;
所述x个比特组包括如下至少一项:
为1个比特的比特组,为1个比特的比特组指示:对应的联合指示中的通信数据接收正确性为错误接收,且感知测量结果有效性为无效;
为2个比特的比特组,为2个比特的比特组中的1比特指示:对应的联合指示中的通信数据接收正确性为正确接收,另1比特指示:对应的联合指示中的感知测量结果有效性;
在x小于m的情况下,所述指示比特还包括m-x比特,指示m-x个感知测量结果有效性;
在x小于n的情况下,所述指示比特还包括n-x比特,指示n-x个感知测量结果有效性;
x为正整数,且x小于或者等于m,x小于或者等于n。
可选地,所述指示比特为mⅹu+n比特,其中,mⅹu比特分别指示m个感知测量结果有效性的等级,n比特比特指示n个通信数据接收正确性。
可选地,所述第一指示信息还用于指示如下至少一项:
感知测量结果无效原因;
目标信号的参数配置。
可选地,所述感知测量结果无效原因如下至少一项:
所述第一设备检测的所述目标信号的质量未到达门限要求;
所述第一设备获得的感知测量结果不满足感知要求;
在所述目标信号为通信数据信号的情况下,所述第一设备未正确解调数据;
在所述第一指示信息的反馈时间点到达时,所述第一设备未获取到感知测量结果。
可选地,所述参数配置包括如下至少一项:
波形、子载波间隔、保护间隔、带宽、突发burst持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频域资源、准共址QCL关系。
可选地,所述第一指示信息还用于指示如下至少一项:
与感知测量结果关联的目标信号的标识信息;
感知测量标识信息;
感知测量结果;
所述第一指示信息的反馈信息。
可选地,所述第一指示信息的反馈信息包括如下至少一项:
所述第一指示信息的总比特数;
所述第一指示信息对应的有效感知测量结果的个数;
所述第一指示信息对应的无效感知测量结果的个数;
所述第一指示信息中指示的感知测量结果的个数;
所述第一指示信息中指示的无效原因的个数;
所述第一指示信息中指示的建议的目标信号的参数配置的个数;
所述第一指示信息中指示感知测量结果的比特数;
所述第一指示信息中指示无效原因的比特数;
所述第一指示信息中指示建议的目标信号的参数配置的比特数。
可选地,在所述第一指示信息指示的第一感知测量结果有效性为有效的情况下,所述第一指示信息指示第一感知测量结果,所述第一感知测量结果有效性为所述m个感知测量结果有效性中的一个感知测量结果有效性;
和/或,
在第二感知测量结果有效的情况下,所述第一指示信息指示如下至少一项:
所述第二感知测量结果的感知测量结果有效性:
与所述第二感知测量结果关联的目标信号的标识信息;
所述第二感知测量结果的感知测量标识信息;
所述第二感知测量结果;
所述第二感知测量结果为所述m个感知测量结果中的一个;
和/或,
在所述第一指示信息指示的第三感知测量结果有效性为有效的情况下,所述第一指示信息指示如下至少一项:
第三感知测量结果的无效原因的指示信息;
目标信号的参数配置;
其中,所述第三感知测量结果有效性为所述m个感知测量结果有效性中的一个感知测量结果有效性
和/或,
在第四感知测量结果无效的情况下,所述第一指示信息指示如下至少一项:
所述第四感知测量结果的感知测量结果有效性:
所述第四感知测量结果的无效原因的指示信息;
目标信号的参数配置;
其中,所述第四感知测量结果为所述m个感知测量结果中的一个感知测量结果;
和/或,
在第五感知测量结果有效的情况下,所述第一指示信息不指示所述第五感知测量结果的相关信息;
其中,所述第五感知测量结果为所述m个感知测量结果中的一个感知测量结果。
可选地,所述装置还包括:
第一发送模块,用于向所述第一设备发送第二指示信息,所述第二指示信息用于指示如下至少一项:
是否需要感知测量结果有效性反馈;
感知测量结果有效性和通信数据接收正确性的反馈配置;
感知测量结果有效性判断的准则;
感知测量量;
感知需求;
感知业务。
可选地,所述感知测量结果有效性和通信数据接收正确性的反馈配置包括如下至少一项:
反馈定时;
反馈资源;
反馈方式;
联合反馈配置或者指示;
第一指示信息格式;
和/或
所述感知测量结果有效性判断的准则包括如下至少一项:
所述第一设备检测到的所述目标信号的质量是否到达门限要求;
所述第一设备获得的感知测量结果是否满足感知需求;
在所述目标信号为通信数据信号的情况下,所述第一设备是否正确解调数据;
在所述第一指示信息的反馈时间点到达时,所述第一设备是否获取到感知测量结果。
可选地,所述装置还包括:
第二发送模块,用于向所述第一设备发送第三指示信息,所述第三指示信息用于指示如下至少一项:
是否允许基于通信数据符号进行感知测量的指示信息;
感知测量的通信数据信号的配置信息;
感知服务质量QoS信息。
上述指示信息接收装置可以实现感知测量。
本申请实施例中的指示信息接收装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。例如:该电子设备可以是网络侧设备,也可以为除网络侧设备之外的其他设备。示例性的,网络侧设备可以包括但不限于本申请实施例所列举的网络侧设备的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的指示信息接收装置能够实现图5所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图9所示,本申请实施例还提供一种通信设备900,包括处理器901和存储器902,存储器902上存储有可在所述处理器901上运行的程序或指令,例如,该通信设备900为第一设备时,该程序或指令被处理器901执行时实现上述指示信息发送方法实施例的各个步骤,且能达到相同的技术效果。该通信设备900为第二设备时,该程序或指令被处理器901执行时实现上述指示信息接收方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种通信设备,该通信设备为第一设备,包括处理器和通信接口,所述通信接口用于向第二设备发送第一指示信息,所述第一指示信息用于指示m个感知测量结果有效性和n个通信数据接收正确性,m和n为正整数,且m+n>2;其中,所述m个感知测量结果有效性对应的m个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。该第一设备实施例与上述第一设备侧方法实施例对应,上述方法 实施例的各个实施过程和实现方式均可适用于该第一设备实施例中,且能达到相同的技术效果。具体地,图10为实现本申请实施例的一种通信设备的硬件结构示意图。
该通信设备1000为第一设备,包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009以及处理器1010等中的至少部分部件。
本领域技术人员可以理解,通信设备1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图10中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理单元(Graphics Processing Unit,GPU)10041和麦克风10042,图形处理单元10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1006可包括显示面板10061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板10061。用户输入单元1007包括触控面板10071以及其他输入设备10072中的至少一种。触控面板10071,也称为触摸屏。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其他输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1001接收来自网络侧设备的下行数据后,可以传输给处理器1010进行处理;另外,射频单元1001可以向网络侧设备发送上行数据。通常,射频单元1001包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1009可用于存储软件程序或指令以及各种数据。存储器1009可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1009可以包括易失性存储器或非易失性存储器,或者,存储器1009可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1009包括但不限于这些和任意其它适合类型的存储器。
处理器1010可包括一个或多个处理单元;可选地,处理器1010集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
其中,射频单元1001,用于向第二设备发送第一指示信息,所述第一指示信息用于指示m个感知测量结果有效性和n个通信数据接收正确性,m和n为正整数,且m+n>2;
其中,所述m个感知测量结果有效性对应的m个感知测量结果为对第一设备接收的目标信号进行感知测量的测量结果。
可选地,所述第一指示信息包括指示比特,所述指示比特为至少一个比特,用于指示m个感知测量结果有效性和n个通信数据接收正确性。
可选地,所述指示比特为m+n比特,其中:
m比特指示m个感知测量结果有效性,n比特指示n个通信数据接收正确性;或者,
所述m+n比特中2x比特以联合编码的方式指示x个感知测量结果有效性和x个通信数据接收正确性,在x小于m的情况下,所述m+n比特中m-x比特指示m-x个感知测量结果有效性,在x小于n的情况下,所述m+n比特中n-x比特指示n-x个感知测量结果有效性;x为正整数,且x小于或者等于m,x小于或者等于n。
可选地,所述指示比特为2比特,所述2比特中的第一比特的第一取值指示所述m个感知测量结果有效性中至少一个为无效,所述第一比特的第二取值指示所述m个感知测量结果有效性全部为有效;所述2比特中的第二比特的第一取值指示所述n个通信数据接收正确性中至少一个为接收错误,所述2比特中的第二比特的第二取值指示所述n个通信数据接收正确性都为接收正确;
或者,
所述指示比特为1比特,所述第一比特的第二取值指示所述m个感知测量结果有效性全部为有效,且所述n个通信数据接收正确性都为接收正确,所述1比特第一取值指示如下至少一项:
所述m个感知测量结果有效性中至少一个为无效,所述n个通信数据接收正确性中至少一个为接收错误。
可选地,所述指示比特为m+n-x比特,其中:所述m+n-x比特中x比特分别指示x个联合指示,每个联合指示为1个感知测量结果有效性和1个通信数据接收正确性的联合指示,在x小于m的情况下,所述m+n-x比特中m-x比特指示m-x个感知测量结果有效性,在x小于n的情况下,所述m+n-x比特中n-x比特指示n-x个感知测量结果有效性;x为正整数,且x小于或者等于m,x小于或者等于n。
可选地,所述指示比特包括x个比特组,所述x个比特组分别指示x个联合指示,每个联合指示为1个感知测量结果有效性和1个通信数据接收正确性的联合指示;
所述x个比特组包括如下至少一项:
为1个比特的比特组,为1个比特的比特组指示:对应的联合指示中的通信数据接收正确性为错误接收,且感知测量结果有效性为无效;
为2个比特的比特组,为2个比特的比特组中的1比特指示:对应的联合指示中的通信数据接收正确性为正确接收,另1比特指示:对应的联合指示中的感知测量结果有效性;
在x小于m的情况下,所述指示比特还包括m-x比特,指示m-x个感知测量结果有效性;
在x小于n的情况下,所述指示比特还包括n-x比特,指示n-x个感知测量结果有效性;
x为正整数,且x小于或者等于m,x小于或者等于n。
可选地,所述指示比特为mⅹu+n比特,其中,mⅹu比特分别指示m个感知测量结果有效性的等级,n比特比特指示n个通信数据接收正确性。
可选地,所述第一指示信息还用于指示如下至少一项:
感知测量结果无效原因;
目标信号的参数配置。
可选地,所述感知测量结果无效原因如下至少一项:
所述第一设备检测的所述目标信号的质量未到达门限要求;
所述第一设备获得的感知测量结果不满足感知要求;
在所述目标信号为通信数据信号的情况下,所述第一设备未正确解调数据;
在所述第一指示信息的反馈时间点到达时,所述第一设备未获取到感知测量结果。
可选地,所述参数配置包括如下至少一项:
波形、子载波间隔、保护间隔、带宽、突发burst持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频域资源、准共址QCL关系。
可选地,所述第一指示信息还用于指示如下至少一项:
与感知测量结果关联的目标信号的标识信息;
感知测量标识信息;
感知测量结果;
所述第一指示信息的反馈信息。
可选地,所述第一指示信息的反馈信息包括如下至少一项:
所述第一指示信息的总比特数;
所述第一指示信息对应的有效感知测量结果的个数;
所述第一指示信息对应的无效感知测量结果的个数;
所述第一指示信息中指示的感知测量结果的个数;
所述第一指示信息中指示的无效原因的个数;
所述第一指示信息中指示的建议的目标信号的参数配置的个数;
所述第一指示信息中指示感知测量结果的比特数;
所述第一指示信息中指示无效原因的比特数;
所述第一指示信息中指示建议的目标信号的参数配置的比特数。
可选地,在所述第一指示信息指示的第一感知测量结果有效性为有效的情况下,所述第一指示信息指示第一感知测量结果,所述第一感知测量结果有效性为所述m个感知测量结果有效性中的一个感知测量结果有效性;
和/或,
在第二感知测量结果有效的情况下,所述第一指示信息指示如下至少一项:
所述第二感知测量结果的感知测量结果有效性:
与所述第二感知测量结果关联的目标信号的标识信息;
所述第二感知测量结果的感知测量标识信息;
所述第二感知测量结果;
所述第二感知测量结果为所述m个感知测量结果中的一个;
和/或,
在所述第一指示信息指示的第三感知测量结果有效性为无效的情况下,所述第一指示信息指示如下至少一项:
第三感知测量结果的无效原因的指示信息;
目标信号的参数配置;
其中,所述第三感知测量结果有效性为所述m个感知测量结果有效性中的一个感知测量结果有效性
和/或,
在第四感知测量结果无效的情况下,所述第一指示信息指示如下至少一项:
所述第四感知测量结果的感知测量结果有效性:
所述第四感知测量结果的无效原因的指示信息;
目标信号的参数配置;
其中,所述第四感知测量结果为所述m个感知测量结果中的一个感知测量结果;
和/或,
在第五感知测量结果有效的情况下,所述第一指示信息不指示所述第五感知测量结果的相关信息;
其中,所述第五感知测量结果为所述m个感知测量结果中的一个感知测量结果;
和/或,
在第六感知测量结果有效的情况下,所述第一指示信息不指示所述第六感知测量结果的相关信息;
其中,所述第六感知测量结果为所述m个感知测量结果中的一个感知测量结果。
可选地,向第二设备发送第一指示信息之前,射频单元1001还用于:
接收所述第二设备发送的第二指示信息,所述第二指示信息用于指示如下至少一项:
是否需要感知测量结果有效性反馈;
感知测量结果有效性和通信数据接收正确性的反馈配置;
感知测量结果有效性判断的准则;
感知测量量;
感知需求;
感知业务。
可选地,所述感知测量结果有效性和通信数据接收正确性的反馈配置包括如下至少一项:
反馈定时;
反馈资源;
反馈方式;
联合反馈配置或者指示;
第一指示信息格式;
和/或
所述感知测量结果有效性判断的准则包括如下至少一项:
所述第一设备检测到的所述目标信号的质量是否到达门限要求;
所述第一设备获得的感知测量结果是否满足感知需求;
在所述目标信号为通信数据信号的情况下,所述第一设备是否正确解调数据;
在所述第一指示信息的反馈时间点到达时,所述第一设备是否获取到感知测量结果。
可选地,向第二设备发送第一指示信息之前,射频单元1001还用于:
接收所述第二设备发送的第三指示信息,所述第三指示信息用于指示如下至少一项:
是否允许基于通信数据符号进行感知测量的指示信息;
感知测量的通信数据信号的配置信息;
感知服务质量QoS信息。
需要说明的是,本实施例是以第一设备为终端进行举例说明。
上述第一设备可以实现感知测量。
本申请实施例还提供一种通信设备,所述通信设备为第二设备,包括处理器及通信接口,其中,所述通信接口用于接收第一设备发送的第一指示信息,所述第一指示信息用于指示m个感知测量结果有效性和n个通信数据接收正确性,m+n>2;其中,所述m个感知测量结果有效性对应的m个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。该第二设备实施例与上述第二设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该第二设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种通信设备,该通信设备为第二设备。如图11所示,该通信设备1100包括:天线1101、射频装置1102、基带装置1103、处理器1104和存储器1105。天线1101与射频装置1102连接。在上行方向上,射频装置1102通过天线 1101接收信息,将接收的信息发送给基带装置1103进行处理。在下行方向上,基带装置1103对要发送的信息进行处理,并发送给射频装置1102,射频装置1102对收到的信息进行处理后经过天线1101发送出去。
以上实施例中通信设备执行的方法可以在基带装置1103中实现,该基带装置1103包括基带处理器。
基带装置1103例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图11所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1105连接,以调用存储器1105中的程序,执行以上方法实施例中所示的网络设备操作。
该通信设备还可以包括网络接口1106,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的通信设备1100还包括:存储在存储器1105上并可在处理器1104上运行的指令或程序,处理器1104调用存储器1105中的指令或程序执行图7所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
其中,射频装置1102用于接收第一设备发送的第一指示信息,所述第一指示信息用于指示m个感知测量结果有效性和n个通信数据接收正确性,m+n>2;
其中,所述m个感知测量结果有效性对应的m个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
可选地,所述第一指示信息包括指示比特,所述指示比特为至少一个比特,用于指示m个感知测量结果有效性和n个通信数据接收正确性。
可选地,所述指示比特为m+n比特,其中:
m比特指示m个感知测量结果有效性,n比特指示n个通信数据接收正确性;或者,
所述m+n比特中2x比特以联合编码的方式指示x个感知测量结果有效性和x个通信数据接收正确性,在x小于m的情况下,所述m+n比特中m-x比特指示m-x个感知测量结果有效性,在x小于n的情况下,所述m+n比特中n-x比特指示n-x个感知测量结果有效性;x为正整数,且x小于或者等于m,x小于或者等于n。
可选地,所述指示比特为2比特,所述2比特中的第一比特的第一取值指示所述m个感知测量结果有效性中至少一个为无效,所述第一比特的第二取值指示所述m个感知测量结果有效性全部为有效;所述2比特中的第二比特的第一取值指示所述n个通信数据接收正确性中至少一个为接收错误,所述2比特中的第二比特的第二取值指示所述n个通信数据接收正确性都为接收正确;
或者,
所述指示比特为1比特,所述第一比特的第二取值指示所述m个感知测量结果有效性全部为有效,且所述n个通信数据接收正确性都为接收正确,所述1比特第一取值指示如下至少一项:
所述m个感知测量结果有效性中至少一个为无效,所述n个通信数据接收正确性中 至少一个为接收错误。
可选地,所述指示比特为m+n-x比特,其中:所述m+n-x比特中x比特分别指示x个联合指示,每个联合指示为1个感知测量结果有效性和1个通信数据接收正确性的联合指示,在x小于m的情况下,所述m+n-x比特中m-x比特指示m-x个感知测量结果有效性,在x小于n的情况下,所述m+n-x比特中n-x比特指示n-x个感知测量结果有效性;x为正整数,且x小于或者等于m,x小于或者等于n。
可选地,所述指示比特包括x个比特组,所述x个比特组分别指示x个联合指示,每个联合指示为1个感知测量结果有效性和1个通信数据接收正确性的联合指示;
所述x个比特组包括如下至少一项:
为1个比特的比特组,为1个比特的比特组指示:对应的联合指示中的通信数据接收正确性为错误接收,且感知测量结果有效性为无效;
为2个比特的比特组,为2个比特的比特组中的1比特指示:对应的联合指示中的通信数据接收正确性为正确接收,另1比特指示:对应的联合指示中的感知测量结果有效性;
在x小于m的情况下,所述指示比特还包括m-x比特,指示m-x个感知测量结果有效性;
在x小于n的情况下,所述指示比特还包括n-x比特,指示n-x个感知测量结果有效性;
x为正整数,且x小于或者等于m,x小于或者等于n。
可选地,所述指示比特为mⅹu+n比特,其中,mⅹu比特分别指示m个感知测量结果有效性的等级,n比特比特指示n个通信数据接收正确性。
可选地,所述第一指示信息还用于指示如下至少一项:
感知测量结果无效原因;
目标信号的参数配置。
可选地,所述感知测量结果无效原因如下至少一项:
所述第一设备检测的所述目标信号的质量未到达门限要求;
所述第一设备获得的感知测量结果不满足感知要求;
在所述目标信号为通信数据信号的情况下,所述第一设备未正确解调数据;
在所述第一指示信息的反馈时间点到达时,所述第一设备未获取到感知测量结果。
可选地,所述参数配置包括如下至少一项:
波形、子载波间隔、保护间隔、带宽、突发burst持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频域资源、准共址QCL关系。
可选地,所述第一指示信息还用于指示如下至少一项:
与感知测量结果关联的目标信号的标识信息;
感知测量标识信息;
感知测量结果;
所述第一指示信息的反馈信息。
可选地,所述第一指示信息的反馈信息包括如下至少一项:
所述第一指示信息的总比特数;
所述第一指示信息对应的有效感知测量结果的个数;
所述第一指示信息对应的无效感知测量结果的个数;
所述第一指示信息中指示的感知测量结果的个数;
所述第一指示信息中指示的无效原因的个数;
所述第一指示信息中指示的建议的目标信号的参数配置的个数;
所述第一指示信息中指示感知测量结果的比特数;
所述第一指示信息中指示无效原因的比特数;
所述第一指示信息中指示建议的目标信号的参数配置的比特数。
可选地,在所述第一指示信息指示的第一感知测量结果有效性为有效的情况下,所述第一指示信息指示第一感知测量结果,所述第一感知测量结果有效性为所述m个感知测量结果有效性中的一个感知测量结果有效性;
和/或,
在第二感知测量结果有效的情况下,所述第一指示信息指示如下至少一项:
所述第二感知测量结果的感知测量结果有效性:
与所述第二感知测量结果关联的目标信号的标识信息;
所述第二感知测量结果的感知测量标识信息;
所述第二感知测量结果;
所述第二感知测量结果为所述m个感知测量结果中的一个;
和/或,
在所述第一指示信息指示的第三感知测量结果有效性为有效的情况下,所述第一指示信息指示如下至少一项:
第三感知测量结果的无效原因的指示信息;
目标信号的参数配置;
其中,所述第三感知测量结果有效性为所述m个感知测量结果有效性中的一个感知测量结果有效性
和/或,
在第四感知测量结果无效的情况下,所述第一指示信息指示如下至少一项:
所述第四感知测量结果的感知测量结果有效性:
所述第四感知测量结果的无效原因的指示信息;
目标信号的参数配置;
其中,所述第四感知测量结果为所述m个感知测量结果中的一个感知测量结果;
和/或,
在第五感知测量结果有效的情况下,所述第一指示信息不指示所述第五感知测量结果的相关信息;
其中,所述第五感知测量结果为所述m个感知测量结果中的一个感知测量结果。
可选地,接收第一设备发送的第一指示信息之前,射频装置1102还用于:
向所述第一设备发送第二指示信息,所述第二指示信息用于指示如下至少一项:
是否需要感知测量结果有效性反馈;
感知测量结果有效性和通信数据接收正确性的反馈配置;
感知测量结果有效性判断的准则;
感知测量量;
感知需求;
感知业务。
可选地,所述感知测量结果有效性和通信数据接收正确性的反馈配置包括如下至少一项:
反馈定时;
反馈资源;
反馈方式;
联合反馈配置或者指示;
第一指示信息格式;
和/或
所述感知测量结果有效性判断的准则包括如下至少一项:
所述第一设备检测到的所述目标信号的质量是否到达门限要求;
所述第一设备获得的感知测量结果是否满足感知需求;
在所述目标信号为通信数据信号的情况下,所述第一设备是否正确解调数据;
在所述第一指示信息的反馈时间点到达时,所述第一设备是否获取到感知测量结果。
可选地,接收第一设备发送的第一指示信息之前,射频装置1102还用于:
向所述第一设备发送第三指示信息,所述第三指示信息用于指示如下至少一项:
是否允许基于通信数据符号进行感知测量的指示信息;
感知测量的通信数据信号的配置信息;
感知服务质量QoS信息。
需要说明的是,本实施例是以第二设备为网络侧设备进行举例说明。
上述第二设备可以实现感知测量。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述指示信息发送方法或者指示信息接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括 计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述指示信息发送方法或者指示信息接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述指示信息发送方法或者指示信息接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种信息反馈系统,包括:第一设备及第二设备,所述终端可用于执行上述指示信息发送方法的步骤,所述网络侧设备可用于执行如上述指示信息接收方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (33)

  1. 一种指示信息发送方法,包括:
    第一设备向第二设备发送第一指示信息,所述第一指示信息用于指示m个感知测量结果有效性和n个通信数据接收正确性,m和n为正整数,且m+n>2;
    其中,所述m个感知测量结果有效性对应的m个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
  2. 如权利要求1所述的方法,其中,所述第一指示信息包括指示比特,所述指示比特为至少一个比特,用于指示m个感知测量结果有效性和n个通信数据接收正确性。
  3. 如权利要求2所述的方法,其中,所述指示比特为m+n比特,其中:
    m比特指示m个感知测量结果有效性,n比特指示n个通信数据接收正确性;或者,
    所述m+n比特中2x比特以联合编码的方式指示x个感知测量结果有效性和x个通信数据接收正确性,在x小于m的情况下,所述m+n比特中m-x比特指示m-x个感知测量结果有效性,在x小于n的情况下,所述m+n比特中n-x比特指示n-x个感知测量结果有效性;x为正整数,且x小于或者等于m,x小于或者等于n。
  4. 如权利要求2所述的方法,其中,所述指示比特为2比特,所述2比特中的第一比特的第一取值指示所述m个感知测量结果有效性中至少一个为无效,所述第一比特的第二取值指示所述m个感知测量结果有效性全部为有效;所述2比特中的第二比特的第一取值指示所述n个通信数据接收正确性中至少一个为接收错误,所述2比特中的第二比特的第二取值指示所述n个通信数据接收正确性都为接收正确;
    或者,
    所述指示比特为1比特,所述第一比特的第二取值指示所述m个感知测量结果有效性全部为有效,且所述n个通信数据接收正确性都为接收正确,所述1比特第一取值指示如下至少一项:
    所述m个感知测量结果有效性中至少一个为无效,所述n个通信数据接收正确性中至少一个为接收错误。
  5. 如权利要求2所述的方法,其中,所述指示比特为m+n-x比特,其中:所述m+n-x比特中x比特分别指示x个联合指示,每个联合指示为1个感知测量结果有效性和1个通信数据接收正确性的联合指示,在x小于m的情况下,所述m+n-x比特中m-x比特指示m-x个感知测量结果有效性,在x小于n的情况下,所述m+n-x比特中n-x比特指示n-x个感知测量结果有效性;x为正整数,且x小于或者等于m,x小于或者等于n。
  6. 如权利要求2所述的方法,其中,所述指示比特包括x个比特组,所述x个比特组分别指示x个联合指示,每个联合指示为1个感知测量结果有效性和1个通信数据接收正确性的联合指示;
    所述x个比特组包括如下至少一项:
    为1个比特的比特组,为1个比特的比特组指示:对应的联合指示中的通信数据接收正确性为错误接收,且感知测量结果有效性为无效;
    为2个比特的比特组,为2个比特的比特组中的1比特指示:对应的联合指示中的通信数据接收正确性为正确接收,另1比特指示:对应的联合指示中的感知测量结果有效性;
    在x小于m的情况下,所述指示比特还包括m-x比特,指示m-x个感知测量结果有效性;
    在x小于n的情况下,所述指示比特还包括n-x比特,指示n-x个感知测量结果有效性;
    x为正整数,且x小于或者等于m,x小于或者等于n。
  7. 如权利要求2所述的方法,其中,所述指示比特为mⅹu+n比特,其中,mⅹu比特分别指示m个感知测量结果有效性的等级,n比特比特指示n个通信数据接收正确性。
  8. 如权利要求1至7中任一项所述的方法,其中,所述第一指示信息还用于指示如下至少一项:
    感知测量结果无效原因;
    目标信号的参数配置。
  9. 如权利要求8所述的方法,其中,所述感知测量结果无效原因如下至少一项:
    所述第一设备检测的所述目标信号的质量未到达门限要求;
    所述第一设备获得的感知测量结果不满足感知要求;
    在所述目标信号为通信数据信号的情况下,所述第一设备未正确解调数据;
    在所述第一指示信息的反馈时间点到达时,所述第一设备未获取到感知测量结果。
  10. 如权利要求8所述的方法,其中,所述参数配置包括如下至少一项:
    波形、子载波间隔、保护间隔、带宽、突发burst持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频域资源、准共址QCL关系。
  11. 如权利要求1至8中任一项所述的方法,其中,所述第一指示信息还用于指示如下至少一项:
    与感知测量结果关联的目标信号的标识信息;
    感知测量标识信息;
    感知测量结果;
    所述第一指示信息的反馈信息。
  12. 如权利要求11所述的方法,其中,所述第一指示信息的反馈信息包括如下至少一项:
    所述第一指示信息的总比特数;
    所述第一指示信息对应的有效感知测量结果的个数;
    所述第一指示信息对应的无效感知测量结果的个数;
    所述第一指示信息中指示的感知测量结果的个数;
    所述第一指示信息中指示的无效原因的个数;
    所述第一指示信息中指示的建议的目标信号的参数配置的个数;
    所述第一指示信息中指示感知测量结果的比特数;
    所述第一指示信息中指示无效原因的比特数;
    所述第一指示信息中指示建议的目标信号的参数配置的比特数。
  13. 如权利要求1至8中任一项所述的方法,其中,在所述第一指示信息指示的第一感知测量结果有效性为有效的情况下,所述第一指示信息指示第一感知测量结果,所述第一感知测量结果有效性为所述m个感知测量结果有效性中的一个感知测量结果有效性;
    和/或,
    在第二感知测量结果有效的情况下,所述第一指示信息指示如下至少一项:
    所述第二感知测量结果的感知测量结果有效性:
    与所述第二感知测量结果关联的目标信号的标识信息;
    所述第二感知测量结果的感知测量标识信息;
    所述第二感知测量结果;
    所述第二感知测量结果为所述m个感知测量结果中的一个;
    和/或,
    在所述第一指示信息指示的第三感知测量结果有效性为无效的情况下,所述第一指示信息指示如下至少一项:
    第三感知测量结果的无效原因的指示信息;
    目标信号的参数配置;
    其中,所述第三感知测量结果有效性为所述m个感知测量结果有效性中的一个感知测量结果有效性
    和/或,
    在第四感知测量结果无效的情况下,所述第一指示信息指示如下至少一项:
    所述第四感知测量结果的感知测量结果有效性:
    所述第四感知测量结果的无效原因的指示信息;
    目标信号的参数配置;
    其中,所述第四感知测量结果为所述m个感知测量结果中的一个感知测量结果;
    和/或,
    在第五感知测量结果有效的情况下,所述第一指示信息不指示所述第五感知测量结果的相关信息;
    其中,所述第五感知测量结果为所述m个感知测量结果中的一个感知测量结果;
    和/或,
    在第六感知测量结果有效的情况下,所述第一指示信息不指示所述第六感知测量结果的相关信息;
    其中,所述第六感知测量结果为所述m个感知测量结果中的一个感知测量结果。
  14. 如权利要求1至8中任一项所述的方法,其中,所述第一设备向第二设备指示第一指示信息之前,所述方法还包括:
    所述第一设备接收所述第二设备发送的第二指示信息,所述第二指示信息用于指示如下至少一项:
    是否需要感知测量结果有效性反馈;
    感知测量结果有效性和通信数据接收正确性的反馈配置;
    感知测量结果有效性判断的准则;
    感知测量量;
    感知需求;
    感知业务。
  15. 如权利要求14所述的方法,其中,所述感知测量结果有效性和通信数据接收正确性的反馈配置包括如下至少一项:
    反馈定时;
    反馈资源;
    反馈方式;
    联合反馈配置或者指示;
    第一指示信息格式;
    和/或
    所述感知测量结果有效性判断的准则包括如下至少一项:
    所述第一设备检测到的所述目标信号的质量是否到达门限要求;
    所述第一设备获得的感知测量结果是否满足感知需求;
    在所述目标信号为通信数据信号的情况下,所述第一设备是否正确解调数据;
    在所述第一指示信息的反馈时间点到达时,所述第一设备是否获取到感知测量结果。
  16. 如权利要求1至8中任一项所述的方法,其中,所述第一设备向第二设备指示第一指示信息之前,所述方法还包括:
    所述第一设备接收所述第二设备发送的第三指示信息,所述第三指示信息用于指示如下至少一项:
    是否允许基于通信数据符号进行感知测量的指示信息;
    感知测量的通信数据信号的配置信息;
    感知服务质量QoS信息。
  17. 一种指示信息接收方法,包括:
    第二设备接收第一设备发送的第一指示信息,所述第一指示信息用于指示m个感知测量结果有效性和n个通信数据接收正确性,m+n>2;
    其中,所述m个感知测量结果有效性对应的m个感知测量结果为对所述第一设备接 收的目标信号进行感知测量的测量结果。
  18. 如权利要求17所述的方法,其中,所述第一指示信息包括指示比特,所述指示比特为至少一个比特,用于指示m个感知测量结果有效性和n个通信数据接收正确性。
  19. 如权利要求18所述的方法,其中,所述指示比特为m+n比特,其中:
    m比特指示m个感知测量结果有效性,n比特指示n个通信数据接收正确性;或者,
    所述m+n比特中2x比特以联合编码的方式指示x个感知测量结果有效性和x个通信数据接收正确性,在x小于m的情况下,所述m+n比特中m-x比特指示m-x个感知测量结果有效性,在x小于n的情况下,所述m+n比特中n-x比特指示n-x个感知测量结果有效性;x为正整数,且x小于或者等于m,x小于或者等于n。
  20. 如权利要求18所述的方法,其中,所述指示比特为2比特,所述2比特中的第一比特的第一取值指示所述m个感知测量结果有效性中至少一个为无效,所述第一比特的第二取值指示所述m个感知测量结果有效性全部为有效;所述2比特中的第二比特的第一取值指示所述n个通信数据接收正确性中至少一个为接收错误,所述2比特中的第二比特的第二取值指示所述n个通信数据接收正确性都为接收正确;
    或者,
    所述指示比特为1比特,所述第一比特的第二取值指示所述m个感知测量结果有效性全部为有效,且所述n个通信数据接收正确性都为接收正确,所述1比特第一取值指示如下至少一项:
    所述m个感知测量结果有效性中至少一个为无效,所述n个通信数据接收正确性中至少一个为接收错误。
  21. 如权利要求18所述的方法,其中,所述指示比特为m+n-x比特,其中:所述m+n-x比特中x比特分别指示x个联合指示,每个联合指示为1个感知测量结果有效性和1个通信数据接收正确性的联合指示,在x小于m的情况下,所述m+n-x比特中m-x比特指示m-x个感知测量结果有效性,在x小于n的情况下,所述m+n-x比特中n-x比特指示n-x个感知测量结果有效性;x为正整数,且x小于或者等于m,x小于或者等于n。
  22. 如权利要求18所述的方法,其中,所述指示比特包括x个比特组,所述x个比特组分别指示x个联合指示,每个联合指示为1个感知测量结果有效性和1个通信数据接收正确性的联合指示;
    所述x个比特组包括如下至少一项:
    为1个比特的比特组,为1个比特的比特组指示:对应的联合指示中的通信数据接收正确性为错误接收,且感知测量结果有效性为无效;
    为2个比特的比特组,为2个比特的比特组中的1比特指示:对应的联合指示中的通信数据接收正确性为正确接收,另1比特指示:对应的联合指示中的感知测量结果有效性;
    在x小于m的情况下,所述指示比特还包括m-x比特,指示m-x个感知测量结果有效性;
    在x小于n的情况下,所述指示比特还包括n-x比特,指示n-x个感知测量结果有效性;
    x为正整数,且x小于或者等于m,x小于或者等于n。
  23. 如权利要求18所述的方法,其中,所述指示比特为mⅹu+n比特,其中,mⅹu比特分别指示m个感知测量结果有效性的等级,n比特比特指示n个通信数据接收正确性。
  24. 如权利要求17至23中任一项所述的方法,其中,所述第一指示信息还用于指示如下至少一项:
    感知测量结果无效原因;
    目标信号的参数配置。
  25. 如权利要求17至23中任一项所述的方法,其中,所述第一指示信息还用于指示如下至少一项:
    与感知测量结果关联的目标信号的标识信息;
    感知测量标识信息;
    感知测量结果;
    所述第一指示信息的反馈信息。
  26. 如权利要求17至23中任一项所述的方法,其中,在所述第一指示信息指示的第一感知测量结果有效性为有效的情况下,所述第一指示信息指示第一感知测量结果,所述第一感知测量结果有效性为所述m个感知测量结果有效性中的一个感知测量结果有效性;
    和/或,
    在第二感知测量结果有效的情况下,所述第一指示信息指示如下至少一项:
    所述第二感知测量结果的感知测量结果有效性:
    与所述第二感知测量结果关联的目标信号的标识信息;
    所述第二感知测量结果的感知测量标识信息;
    所述第二感知测量结果;
    所述第二感知测量结果为所述m个感知测量结果中的一个;
    和/或,
    在所述第一指示信息指示的第三感知测量结果有效性为有效的情况下,所述第一指示信息指示如下至少一项:
    第三感知测量结果的无效原因的指示信息;
    目标信号的参数配置;
    其中,所述第三感知测量结果有效性为所述m个感知测量结果有效性中的一个感知测量结果有效性
    和/或,
    在第四感知测量结果无效的情况下,所述第一指示信息指示如下至少一项:
    所述第四感知测量结果的感知测量结果有效性:
    所述第四感知测量结果的无效原因的指示信息;
    目标信号的参数配置;
    其中,所述第四感知测量结果为所述m个感知测量结果中的一个感知测量结果;
    和/或,
    在第五感知测量结果有效的情况下,所述第一指示信息不指示所述第五感知测量结果的相关信息;
    其中,所述第五感知测量结果为所述m个感知测量结果中的一个感知测量结果。
  27. 如权利要求17至23中任一项所述的方法,其中,所述第二设备接收第一设备发送的第一指示信息之前,所述方法还包括:
    所述第二设备向所述第一设备发送第二指示信息,所述第二指示信息用于指示如下至少一项:
    是否需要感知测量结果有效性反馈;
    感知测量结果有效性和通信数据接收正确性的反馈配置;
    感知测量结果有效性判断的准则;
    感知测量量;
    感知需求;
    感知业务。
  28. 如权利要求17至23中任一项所述的方法,其中,所述第二设备接收第一设备发送的第一指示信息之前,所述方法还包括:
    所述第二设备向所述第一设备发送第三指示信息,所述第三指示信息用于指示如下至少一项:
    是否允许基于通信数据符号进行感知测量的指示信息;
    感知测量的通信数据信号的配置信息;
    感知服务质量QoS信息。
  29. 一种指示信息发送装置,包括:
    发送模块,用于向第二设备发送第一指示信息,所述第一指示信息用于指示m个感知测量结果有效性和n个通信数据接收正确性,m和n为正整数,且m+n>2;
    其中,所述m个感知测量结果有效性对应的m个感知测量结果为对第一设备接收的目标信号进行感知测量的测量结果。
  30. 一种指示信息接收装置,包括:
    接收模块,用于接收第一设备发送的第一指示信息,所述第一指示信息用于指示m个感知测量结果有效性和n个通信数据接收正确性,m+n>2;
    其中,所述m个感知测量结果有效性对应的m个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
  31. 一种通信设备,所述通信设备为第一设备,包括处理器和存储器,所述存储器存 储可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求1至16任一项所述的指示信息发送方法的步骤。
  32. 一种通信设备,所述通信设备为第二设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求17至28任一项所述的指示信息接收方法的步骤。
  33. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1至16任一项所述的指示信息发送方法的步骤,或者实现如权利要求17至28任一项所述的指示信息接收方法的步骤。
PCT/CN2023/084671 2022-03-31 2023-03-29 指示信息发送方法、接收方法、装置、设备和存储介质 WO2023185919A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210346402.1A CN116939685A (zh) 2022-03-31 2022-03-31 指示信息发送方法、接收方法、装置、设备和存储介质
CN202210346402.1 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023185919A1 true WO2023185919A1 (zh) 2023-10-05

Family

ID=88199299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084671 WO2023185919A1 (zh) 2022-03-31 2023-03-29 指示信息发送方法、接收方法、装置、设备和存储介质

Country Status (2)

Country Link
CN (1) CN116939685A (zh)
WO (1) WO2023185919A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112188542A (zh) * 2019-07-03 2021-01-05 上海诺基亚贝尔股份有限公司 交叉链路干扰测量条件报告
CN113840303A (zh) * 2020-06-24 2021-12-24 维沃移动通信有限公司 测量指示方法、终端及网络侧设备
WO2022029196A1 (en) * 2020-08-05 2022-02-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Devices for measuring and/or reporting in a wireless communication network
WO2022029197A1 (en) * 2020-08-05 2022-02-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Interference detection and handling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112188542A (zh) * 2019-07-03 2021-01-05 上海诺基亚贝尔股份有限公司 交叉链路干扰测量条件报告
CN113840303A (zh) * 2020-06-24 2021-12-24 维沃移动通信有限公司 测量指示方法、终端及网络侧设备
WO2022029196A1 (en) * 2020-08-05 2022-02-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Devices for measuring and/or reporting in a wireless communication network
WO2022029197A1 (en) * 2020-08-05 2022-02-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Interference detection and handling

Also Published As

Publication number Publication date
CN116939685A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
CN113366901B (zh) 用于基于coreset的信道测量和报告的方法和装置
US11659426B2 (en) Systems and methods for prioritizing channel state information reports
US20180352464A1 (en) Method for scheduling resources in unlicensed frequency band, base station and terminal
CN108633075A (zh) 基站、用户装置、用于基站的传输控制方法以及用于用户装置的数据传输方法
US20230345409A1 (en) Positioning method on sidelink, terminal, and network side device
CN107359966B (zh) 一种信号的发射方法及通信设备
US20220191789A1 (en) Control Channel Monitoring in a Wireless Communication System
EP3908846A1 (en) Method and device for positioning utilizing beam information
WO2020207333A1 (zh) 链路失败恢复的方法和装置
CN108650066A (zh) 用户装置及基站
WO2023185926A1 (zh) 信息反馈方法、接收方法、装置、设备和存储介质
KR20190086250A (ko) 차세대 통신 시스템에서 빔 정보 보고 방법 및 장치
CN106797280A (zh) 一种数据传输方法、系统及终端
CN116368939A (zh) 一种通信方法及通信装置
WO2023185919A1 (zh) 指示信息发送方法、接收方法、装置、设备和存储介质
WO2023185921A1 (zh) 信息指示方法、指示获取方法、装置、设备和存储介质
CN108183768B (zh) 数据传输方法及相关设备
WO2023185910A1 (zh) 信息指示方法、接收方法、装置、设备和存储介质
CN112469131B (zh) 一种配置srs资源符号数的方法及终端设备
CN112312441B (zh) 一种通信方法和通信装置
WO2024099126A1 (zh) 测量信息发送方法、接收方法及通信设备
WO2024099125A1 (zh) 测量信息反馈方法、接收方法及通信设备
WO2023169544A1 (zh) 质量信息确定方法、装置、终端及存储介质
WO2023226826A1 (zh) 感知方法、装置及通信设备
WO2022206908A1 (zh) 上行传输方法、装置、终端、网络侧设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778284

Country of ref document: EP

Kind code of ref document: A1