WO2023184726A1 - 基于伏安循环法监控深镀能力的方法 - Google Patents

基于伏安循环法监控深镀能力的方法 Download PDF

Info

Publication number
WO2023184726A1
WO2023184726A1 PCT/CN2022/099833 CN2022099833W WO2023184726A1 WO 2023184726 A1 WO2023184726 A1 WO 2023184726A1 CN 2022099833 W CN2022099833 W CN 2022099833W WO 2023184726 A1 WO2023184726 A1 WO 2023184726A1
Authority
WO
WIPO (PCT)
Prior art keywords
actual
plating
deep plating
deep
curve
Prior art date
Application number
PCT/CN2022/099833
Other languages
English (en)
French (fr)
Inventor
余锦玉
杨海云
纪成光
袁继旺
张志远
Original Assignee
生益电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 生益电子股份有限公司 filed Critical 生益电子股份有限公司
Publication of WO2023184726A1 publication Critical patent/WO2023184726A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Definitions

  • This application relates to the technical field of PCB (Printed Circuit Boards), such as a method for monitoring deep plating capability based on voltammetric cycle method.
  • PCB Printed Circuit Boards
  • Electroplating is an electrochemical process that causes an oxidation-reduction reaction in the plating solution under the action of an external current.
  • additives are often added to the plating solution. Commonly used additives include brighteners, wetting agents and leveling agents. The concentration of the additives will affect the deep plating ability to a certain extent.
  • the following methods are mainly used to monitor the stability of the deep plating ability of copper-plated products: using a CVS (Cyclic Voltammetry Stripping) analyzer to analyze the concentration of organic additives in the plating solution, and at the same time, the production line products Metallographic sections are regularly sampled to obtain the deep plating capability status of the actual product. Then engineers combine the additive concentration analyzed by the CVS analyzer and the actual deep plating capability status of the production line products to determine whether the plating solution needs to be adjusted, and then make corresponding adjustments. Additive concentration adjustment operation to maintain the stability of deep plating capabilities.
  • CVS Chemical Voltammetry Stripping
  • CVS can analyze the stability of the bath liquid and quantify the results.
  • the results obtained by CVS's accurate analysis can be used as a basis for adding additives, helping engineers better control the electroplating process.
  • the above method also has certain drawbacks:
  • This application provides a method for monitoring deep plating capability based on voltammetry cycle method to overcome the defects of related technologies such as difficulty of manual analysis, high cost and high hidden dangers to product quality.
  • a method for monitoring deep plating capability based on voltammetric cycle method including:
  • the standard curve reflects the corresponding relationship between deep plating capability and cathode current, and different standard curves correspond to electroplated products in different plate thickness ranges;
  • the actual cathode current is obtained from the CVS machine, and the actual deep plating capability is determined based on the reference curve.
  • the method also includes:
  • the additive includes at least one of a brightener and a leveling agent and wetting agent.
  • the method for adjusting the additive concentration of the plating solution includes:
  • the reference curve and the target deep plating capability threshold determine the cathode current reference range that can achieve the actual deep plating capability not lower than the target deep plating capability threshold
  • the brightener is added, the leveling agent is stopped, or the brightener is added first and then the leveling agent is stopped.
  • the addition of the brightener is stopped, the leveling agent is replenished, or the brightener is first stopped and then added. Leveling agent.
  • the method for adjusting the additive concentration of the plating solution also includes:
  • the method of adding/stopping the brightener is: adding/stopping the brightener until the middle value of the brightener concentration reference range;
  • the method of adding/stopping the leveling agent is: adding/stopping the leveling agent until the middle value of the leveling agent concentration reference range.
  • the reference range of the cathode current is 2.0mA ⁇ 3.5mA
  • the reference range of the brightener concentration is 0.7ml/l ⁇ 1.3ml/l
  • the reference range of the leveler concentration is 7.5ml/l ⁇ 9.0 ml/l.
  • the method further includes: during the analysis process, obtaining an actual anode polarization curve from the CVS machine, and determining whether the plating solution is contaminated based on the actual anode polarization curve.
  • the method for determining whether the plating solution is contaminated includes:
  • the method of drawing the standard curve includes:
  • the standard curve is drawn by combining the relationship between cathode current, conductivity, product pore diameter, product plate thickness and potential coefficient and the deep plating capability.
  • TP deep plating ability
  • K conductivity (immobile)
  • D product pore diameter (calculated according to the most difficult one)
  • I cathode current
  • L product plate thickness
  • potential coefficient
  • linear correspondence. relation.
  • the additive concentration of the plating solution can be adjusted automatically.
  • a standard curve reflecting the corresponding relationship between deep plating capability and cathode current is drawn in advance, and the standard curve that matches the current electroplating product is selected as a reference curve, and then based on the cathode current obtained from the current analysis of the plating solution, it can be simply , quickly and accurately determine the actual deep plating capability that the plating solution can exert when plating current electroplating products, thereby achieving accurate monitoring of deep plating capabilities.
  • the embodiments of this application can not only greatly save manpower and material resources, improve the accuracy of monitoring, but also detect problems in time, reduce hysteresis, and greatly improve the accuracy of monitoring. Improve the stability of deep plating capabilities of copper-plated products.
  • Figure 1 is a working schematic diagram of the existing CVS machine analysis tank
  • Figure 2 is a flow chart of a method for monitoring deep plating capability based on voltammetric cycle method provided by the embodiment of the present application.
  • Figure 3 is a standard curve reflecting the corresponding relationship between deep plating capability and cathode current provided by the embodiment of the present application.
  • Figure 4 is a normal anode polarization curve provided by an embodiment of the present application.
  • Figure 5 is an abnormal anode polarization curve provided by an embodiment of the present application.
  • the analysis process of the CVS machine is realized through an electrochemical tank with three electrodes (working electrode, reference electrode, and auxiliary electrode).
  • the current on the working electrode will scan at a fixed rate between the set positive and negative voltages, causing the working electrode to cycle to the anode or cathode, and the metal in the bath will be continuously stripped. or deposited on the working electrode.
  • the plating speed can be calculated by the current required to strip the metal from the working electrode. According to the relationship between the stripping current and the characteristics of the additive, the additive can be calculated. Ingredients, the final test results are expressed in concentration ml/l.
  • the CVS machine actually determines the effective concentrations of different types of additives in the plating solution by measuring the effects of additives with different characteristics and concentrations on the plating speed.
  • the size of the cathode current refers to the amount of electricity passing through the cathode per unit time.
  • the cathode current is directly proportional to the electricity passing through the cathode, that is, the cathode current The larger it is, the more electricity passes through the cathode, and the higher the theoretical plating efficiency is.
  • the actual plating effect on the cathode may not be positively correlated. High plating efficiency may be reflected on the cathode plate surface or in the cathode hole.
  • the deep plating ability is weak; when the high electroplating efficiency is reflected in the cathode hole, the deep plating ability is strong. Because the cathode plate has differences in plate thickness, hole diameter, and pattern distribution, these differences will lead to high and low current density areas on the cathode plate surface. Under certain cathode and anode distance conditions, different products have different deep plating capabilities. This application uses actual test data to calculate the optimal cathode current range when the deep plating capabilities of products with different plate thicknesses meet the requirements. In addition to the additive concentration, the data output by the current CVS machine during the analysis and testing process also includes data such as cathode current, anode current, and electricity. However, these data have not yet been effectively utilized.
  • This application provides a method for monitoring deep plating capability based on voltammetric cycle method, including:
  • Step 101 Provide at least one standard curve that reflects the corresponding relationship between deep plating capability and cathode current, and different standard curves correspond to electroplated products in different plate thickness ranges.
  • Figure 3 shows multiple standard curves, respectively corresponding to electroplated products with a plate thickness of 3.0-4.0mm, electroplated products with a plate thickness of 4.0mm-5.0mm, and electroplated products with a plate thickness of 5.0mm-6.0mm. Electroplating products, electroplating products with plate thickness of 6.0mm-7.0mm, electroplating products with plate thickness of 7.0mm-8.0mm.
  • Figure 3 can be divided into the following three grayscale areas according to the deep plating capability from high to low: The first-level standard area (that is, the actual deep plating capacity is far more than the target deep plating capacity threshold, the deep plating ability is excellent), the second-level standard area (that is, the actual deep plating capacity is higher than but close to the target deep plating capacity threshold, and the deep plating ability is good) and Unqualified area (that is, the actual deep plating capability is lower than the adjacent target deep plating capability threshold, and the deep plating capability is poor).
  • the first-level standard area that is, the actual deep plating capacity is far more than the target deep plating capacity threshold, the deep plating ability is excellent
  • the second-level standard area that is, the actual deep plating capacity is higher than but close to the target deep plating capacity threshold, and the deep plating ability is good
  • Unqualified area that is, the actual deep plating capability is lower than the adjacent target deep plating capability threshold, and the deep plating capability is poor.
  • a method of drawing a standard curve may include: drawing a standard curve based on the relationship between cathode current, conductivity, product pore diameter, product plate thickness, potential coefficient and deep plating capability.
  • the standard curve is drawn according to the relationship TP ⁇ (KD/IL2) Calculated), I represents the cathode current, L represents the product plate thickness, ⁇ represents the potential coefficient, and ⁇ represents the linear correspondence.
  • Step 102 Select the corresponding standard curve according to the plate thickness of the current electroplated product as a reference curve.
  • Step 103 Extract the plating solution of the current electroplating product and use a CVS machine to analyze the plating solution. During the analysis process, the actual cathode current is obtained from the CVS machine and the actual deep plating capability is determined based on the reference curve.
  • the embodiments of this application pre-draw a standard curve reflecting the corresponding relationship between deep plating capability and cathode current, and select the standard curve that matches the current electroplating product as a reference curve, and then based on the current cathode current obtained from the analysis of the plating solution, It can simply, quickly and accurately determine the actual deep plating capability that the plating solution can exert when plating current electroplating products, thereby achieving accurate monitoring of deep plating capabilities.
  • the embodiments of this application can not only greatly save manpower and material resources, improve the accuracy of monitoring, but also detect problems in time, reduce hysteresis, and greatly improve the accuracy of monitoring. Improve the stability of deep plating capabilities of copper-plated products.
  • Step 104 Determine whether the actual deep plating capability is lower than the preset target deep plating capability threshold. Based on the determination result that the actual deep plating capability is lower than the preset target deep plating capability threshold, adjust the additive concentration of the plating solution. Until the actual deep plating capability is not lower than the target threshold.
  • this step can adopt the method of automatically adjusting the additive concentration of the plating solution so that the actual deep plating capability meets the set standards.
  • a CVS machine needs to be used to repeatedly collect data on the actual cathode current.
  • the actual deep plating capability corresponding to the actual cathode current is not lower than the target deep plating capability threshold, it means that the actual cathode current is If the deep plating capacity meets the standard, the additive concentration adjustment operation can be stopped.
  • additives include brighteners, leveling agents and wetting agents.
  • the leveling agent is mainly electrochemically adsorbed and adsorbed in the high potential area of the cathode. The electron adsorption competes with Cu 2+ , thereby slowing down the Cu deposition rate in the high potential area and making the thickness of surface copper and hole copper close to each other.
  • the main function of the brightener is to refine the copper grains, that is, to make the copper surface bright.
  • Wetting agent its function is to promote the leveling agent and brightener to be better dissolved in the plating solution, and improve the dispersion ability of the plating solution. Its macromolecular multi-functional group structural characteristics can be combined with Cu + and Cl - to form a long molecular chain film. , hindering Cu + from obtaining electrons on the cathode surface to form Cu deposition.
  • any one of the additives can be selected for adjustment, and the adjustment purpose can be achieved to a certain extent.
  • brighteners and levelers are subject to greater electrochemical effects, while wetting agents are less subject to electrochemical effects because of their physical effects. Therefore, in order to ensure the adjustment effect, only at least one of the brightener and leveling agent can be adjusted. concentration.
  • the following additive concentration adjustment method can be used:
  • the reference curve and the target deep plating capability threshold determine the cathode current reference range that can achieve the actual deep plating capability not lower than the target deep plating capability threshold
  • the addition of brightener is stopped, the leveling agent is added, or the brightening agent is stopped first and then the leveling agent is added.
  • the method of adjusting the additive concentration further includes:
  • the brightener concentration reference range and the leveling agent concentration reference range can be obtained through repeated statistical analysis of test data, which can be used as an auxiliary judgment basis for additive concentration adjustment to narrow the adjustment range, achieve effective adjustment, and improve adjustment efficiency.
  • the cathode current reference range is 2.0mA ⁇ 3.5mA
  • the brightener concentration reference range is 0.7ml/l ⁇ 1.3ml/l
  • the leveler concentration reference range is 7.5ml/l ⁇ 9.0ml/l.
  • the adjustment frequency and analysis frequency of the brightener concentration and leveling agent concentration can be flexibly set according to actual needs.
  • the adjustment frequency of the brightener concentration is 150ml/300Ah (Ah: ampere hour)
  • the analysis frequency is 1 time/0.5h
  • the adjustment frequency of the leveler concentration is an adjustment frequency of 75ml/700Ah (Ah: ampere hour)
  • the analysis The frequency is 1 time/2h.
  • the method for monitoring deep plating capability based on voltammetric cycle method may also include: during the analysis of the plating solution, obtaining the actual anode polarization curve from the CVS machine, and judging based on the actual anode polarization curve. Whether the plating solution is contaminated.
  • a method for determining whether the plating solution is contaminated includes: providing a reference anode polarization curve, which is analyzed and obtained by a CVS machine when the plating solution is in a pollution-free state; and comparing the actual anode polarization curve with Referring to the comparison of the anode polarization curves, it is judged whether the actual anode polarization curve is abnormal based on the difference in slope of the curves, and it is judged that the plating solution is contaminated based on the abnormal judgment result of the actual anode polarization curve.
  • the slope of the anode polarization curve is the change value of the anode current/the change value of the voltage (equivalent to I/ ⁇ ).
  • Figure 4 shows the slope change pattern of the normal anode polarization curve: the positive value gradually increases at first, and when the current reaches the peak value, the slope becomes negative and gradually increases;
  • Figure 5 shows the slope of the abnormal anode polarization curve. Change pattern: first the positive value gradually increases, when the current reaches the peak value, the slope begins to become a negative value, then suddenly becomes a positive value, and then suddenly becomes a negative value and gradually decreases.
  • the embodiment of the present application Based on the difference in slope changes between the normal polarization curve and the abnormal polarization curve, the embodiment of the present application identifies whether the slope is normal by setting a certain regular function, so as to determine whether the polarization curve is abnormal. After automatically identifying contamination in the plating solution, an alarm can be automatically issued to alert engineers.
  • the embodiment of the present application adopts a method of identification based on the anode polarization curve, which can detect problems in time to avoid the mixing of affected problematic products. Qualified products lead to batch scrapping, which greatly improves product quality traceability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

一种基于伏安循环法监控深镀能力的方法,包括:提供至少一条标准曲线,标准曲线反映深镀能力与阴极电流的对应关系,且不同标准曲线对应不同板厚区间的电镀产品;根据当前电镀产品的板厚选取对应的标准曲线,作为参考曲线;提取当前电镀产品的镀液并利用CVS机对镀液分析,在分析过程中从CVS机获取实际阴极电流,依据参考曲线确定实际深镀能力。

Description

基于伏安循环法监控深镀能力的方法
本申请要求在2022年03月31日提交中国专利局、申请号为202210335146.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及PCB(Printed Circuit Boards,印制电路板)技术领域,例如一种基于伏安循环法监控深镀能力的方法。
背景技术
随着5G产品的快速发展和应用推广,印制电路板向高速高密设计趋势越发明显,如通讯领域已经成熟的56G速率核心网交换机及路由器板厚4.5mm,通孔纵横比30∶1,兼有1-4层的深微盲孔设计。目前该类产品正逐步突破112G的速率,其设计布局更加密集,其相关工艺制作难度也越大,对于湿流程镀铜的深镀能力的稳定性维护瓶颈更加突出。
电镀是在外加电流的作用下,使镀液发生氧化还原反应的一种电化学过程。为确保电镀涂层表面的平整性,往往需要在镀液中添加添加剂,其中常用的添加剂有光亮剂、湿润剂和整平剂,添加剂的浓度在一定程度上会影响深镀能力。
相关技术中,针对镀铜产品的深镀能力稳定性的监控,主要采用以下方法:利用CVS(Cyclic Voltammetry Stripping,循环伏安剥离)分析仪分析镀液中有机添加剂的浓度,同时对产线产品定期抽样制作金相切片以获取实际产品的深镀能力状态,然后工程师结合CVS分析仪分析的添加剂浓度和产线产品的实际深镀能力状态来判断是否需要对镀液进行调整,进而进行相应的添加剂浓度调整操作,以维护深镀能力的稳定。
CVS能够分析槽液稳定性并将结果量化,CVS精确分析所得的结果,可以用来作为添加剂的添加依据,帮助工程师更好地控制电镀工艺。但是,上述方法也存在一定弊端:
首先是需要人工来根据产线产品的实际深镀能力状态判断当前的添加剂浓度是否合适,进而分析判断添加剂浓度的调整幅度,难度较高,准确率较低;
其次是实际产品的切片分析操作需要耗费大量的人力物力资源,并且对产线问题的识别存在滞后性,当工程师通过上述方法发现问题时,实际产线的问题产品已经出至下一甚至更远工艺流程,对于批量大的产品挑选识别出问题板十分困难,通常只能直接批量报废以免问题漏至客户端,因此该方法目前存在 重大产品品质隐患。
发明内容
本申请提供一种基于伏安循环法监控深镀能力的方法,以克服相关技术存在的人工分析难度大、成本高及产品品质隐患高的缺陷。
本申请采用以下技术方案:
一种基于伏安循环法监控深镀能力的方法,包括:
提供至少一条标准曲线,所述标准曲线反映深镀能力与阴极电流的对应关系,且不同所述标准曲线对应不同板厚区间的电镀产品;
根据当前电镀产品的板厚选取对应的标准曲线,作为参考曲线;
提取当前电镀产品的镀液并利用CVS机对所述镀液分析,在分析过程中从所述CVS机获取实际阴极电流,依据所述参考曲线确定实际深镀能力。
可选的,所述方法还包括:
判断所述实际深镀能力是否低于预设的目标深镀能力阈值,基于所述实际深镀能力低于预设的目标深镀能力阈值的判定结果,对所述镀液的添加剂浓度进行调整,直至所述实际深镀能力不低于所述目标深镀能力阈值;所述添加剂包括光亮剂、整平剂湿润剂中的至少一个。
可选的,所述对镀液的添加剂浓度进行调整的方法包括:
根据所述参考曲线以及所述目标深镀能力阈值,确定能够实现实际深镀能力不低于目标深镀能力阈值的阴极电流参考范围;
在所述实际阴极电流低于所述阴极电流参考范围中的最低电流阈值的情况下,则补加所述光亮剂、停加所述整平剂或者先补加所述光亮剂再停加所述整平剂;
在所述实际阴极电流高于所述阴极电流参考范围中的最高电流阈值的情况下,则停加所述光亮剂、补加所述整平剂或者先停加所述光亮剂再补加所述整平剂。
可选的,所述对镀液的添加剂浓度进行调整的方法还包括:
获得能够实现实际阴极电流不超出所述阴极电流参考范围的光亮剂浓度参 考范围和整平剂浓度参考范围;
补加/停加所述光亮剂的方式为:补加/停加所述光亮剂直至所述光亮剂浓度参考范围的中值;
补加/停加所述整平剂的方式为:补加/停加所述整平剂直至所述整平剂浓度参考范围的中值。
可选的,所述阴极电流参考范围为2.0mA~3.5mA,所述光亮剂浓度参考范围为0.7ml/l~1.3ml/l,所述整平剂浓度参考范围为7.5ml/l~9.0ml/l。
可选的,还包括:在所述分析过程中,从所述CVS机获取实际阳极极化曲线,根据所述实际阳极极化曲线判断所述镀液是否发生污染。
可选的,所述判断所述镀液是否发生污染的方法包括:
提供参考阳极极化曲线,所述参考阳极极化曲线由所述CVS机在所述镀液处于无污染状态时分析获得;
将所述实际阳极极化曲线与所述参考阳极极化曲线对比,根据曲线斜率差异判断所述实际阳极极化曲线是否异常,基于所述实际阳极极化曲线异常的判断结果判定所述镀液发生污染。
可选的,所述标准曲线的绘制方法包括:
结合阴极电流、电导率、产品孔径、产品板厚和电位系数与所述深镀能力的关系来绘制所述标准曲线。
可选的,根据关系式TP~(KD/IL2)×μ来绘制所述标准曲线;
其中,TP表示深镀能力,K表示电导率(不动),D表示产品孔径(按照最难的来算),I表示阴极电流,L表示产品板厚,μ表示电位系数,~表示线性对应关系。
可选的,自动化实现对所述镀液的添加剂浓度的调整。
本申请实施例通过预先绘制反映深镀能力与阴极电流对应关系的标准曲线,并选取其中与当前电镀产品匹配的标准曲线作为参考曲线,继而根据当前针对镀液分析获得的阴极电流,即可简单、快速且精准地确定应用该镀液对当前电镀产品电镀时所能发挥出的实际深镀能力,从而实现深镀能力的精准监控。与传统的人工切片分析的方式相比较,由于能够实现自动在线实时监控,因此 本申请实施例不仅可以大大节省人力物力成本,提高监控的准确度,而且可以及时的发现问题,降低滞后性,大大提升镀铜产品深镀能力的稳定性。
附图说明
下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为现有的CVS机分析槽的工作示意图;
图2为本申请实施例提供的基于伏安循环法监控深镀能力的方法流程图。
图3为本申请实施例提供的反映深镀能力与阴极电流的对应关系的标准曲线。
图4为本申请实施例提供的正常阳极极化曲线。
图5为本申请实施例提供的异常阳极极化曲线。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本申请一部分实施例,而非全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
请参阅图1所示的CVS机分析槽工作示意图,CVS机的分析过程是通过一个带有三个电极(工作电极、参比电极、辅助电极)的电化学槽来实现的。在CVS测试过程中,工作电极上的电流会在设定的正负电压之间以固定的速率进行扫描,使得工作电极循环的切换为阳极或阴极,进而槽液中的金属会不断的被剥离或沉积在工作电极上。
由于不同特性、不同浓度的添加剂最终会影响金属沉积的速率,而电镀速度可以通过从工作电极上剥离金属所需要的电流来计算,根据剥离电流和添加剂的特性之间的关系也就可以计算添加剂的成分,最后的测试结果以浓度ml/l来表现。CVS机实际就是根据测量不同特性、不同浓度的添加剂对电镀速度的影响,从而确定镀液中不同类添加剂的有效浓度。
本申请经过长期且深入的研究分析发现,阴极电流与深镀能力具有一定的相关性,阴极电流大小指单位时间内在阴极通过的电量的多少,阴极电流与阴极通过的电量呈正比,即阴极电流越大,阴极通过的电量越多,理论电镀效率 也越高。但实际体现阴极上的电镀效果未必成正相关,电镀效率高可能体现在阴极板面,也可能体现阴极孔中。在电镀效率高体现在阴极板面时,则深镀能力弱,在电镀效率高体现在阴极孔内时,则深镀能力强。因为阴极板具有板厚、孔径以及图形分布等差异,此差异会导致阴极板面有高低电流密度区域之分,在一定的阴阳极距离条件下,不同产品其深镀能力不同。本申请通过测试实际数据统计出不同板厚产品深镀能力满足要求时所对应的最佳阴极电流区间。而目前的CVS机在分析测试过程中分析输出的数据除了添加剂浓度以外,还包括阴极电流、阳极电流、电量等数据,而目前这些数据尚未进行有效利用。
基于此,请参阅图2,本申请提供了一种基于伏安循环法监控深镀能力的方法,包括:
步骤101、提供至少一条标准曲线,该标准曲线反映深镀能力与阴极电流的对应关系,且不同标准曲线对应不同板厚区间的电镀产品。
由于板厚是深镀能力的重要影响因素之一,因此本申请实施例针对位于不同板厚区间的电镀产品分别绘制对应的标准曲线。
示例性的,图3中示出了多条标准曲线,分别对应于板厚为3.0-4.0mm的电镀产品、板厚为4.0mm-5.0mm的电镀产品、板厚为5.0mm-6.0mm的电镀产品、板厚为6.0mm-7.0mm的电镀产品、板厚为7.0mm-8.0mm的电镀产品。
以设定的深镀能力最低标准(下文简称为目标深镀能力阈值)为70%为例,为方便区分,可以按照深镀能力由高至低将图3划分为以下三个灰度区域:一级标准区(即实际深镀能力远超过目标深镀能力阈值,深镀能力优)、二级标准区(即实际深镀能力高于但临近目标深镀能力阈值,深镀能力良)和不合格区(即实际深镀能力低于临近目标深镀能力阈值,深镀能力差)。
在一实施例中,标准曲线的绘制方法可包括:结合阴极电流、电导率、产品孔径、产品板厚和电位系数与深镀能力的关系来绘制标准曲线。示例性的,根据关系式TP~(KD/IL2)×μ来绘制所述标准曲线;其中,TP表示深镀能力,K表示电导率(不动),D表示产品孔径(按照最难的来算),I表示阴极电流,L表示产品板厚,μ表示电位系数,~表示线性对应关系。
步骤102、根据当前电镀产品的板厚选取对应的标准曲线,作为参考曲线。
在执行后续的深镀能力监控操作前,需要先确定当前电镀产品的板厚,根据该板厚所位区间来选取匹配的标准曲线作为参考曲线,以确保监控结果的准确性。
步骤103、提取当前电镀产品的镀液并利用CVS机对镀液分析,在分析过程中从CVS机获取实际阴极电流,依据参考曲线确定实际深镀能力。
继续以图3为例,可以理解的是,根据所选取的参考曲线以及实际阴极电流,可以快速准确的确定当前的实际深镀能力。
综上,本申请实施例通过预先绘制反映深镀能力与阴极电流对应关系的标准曲线,并选取其中与当前电镀产品匹配的标准曲线作为参考曲线,继而根据当前针对镀液分析获得的阴极电流,即可简单、快速且精准地确定应用该镀液对当前电镀产品电镀时所能发挥出的实际深镀能力,从而实现深镀能力的精准监控。与传统的人工切片分析的方式相比较,由于能够实现自动在线实时监控,因此本申请实施例不仅可以大大节省人力物力成本,提高监控的准确度,而且可以及时的发现问题,降低滞后性,大大提升镀铜产品深镀能力的稳定性。
上述方法中,在确定实际深镀能力后,还可包括:
步骤104、判断实际深镀能力是否低于预设的目标深镀能力阈值,基于所述实际深镀能力低于预设的目标深镀能力阈值的判定结果,对镀液的添加剂浓度进行调整,直至实际深镀能力不低于目标阈值。
为实现深镀能力的稳定性,本步骤可采用自动调整镀液的添加剂浓度的方式,来使得实际深镀能力满足设定标准。
可以理解的是,在添加剂浓度的调整过程中,需要利用CVS机反复的进行实际阴极电流的数据采集,当实际阴极电流所对应的实际深镀能力不低于目标深镀能力阈值时,说明实际深镀能力符合标准,即可停止添加剂浓度的调整操作。
需要说明的是,添加剂包括光亮剂、整平剂和湿润剂。整平剂主要为电化学吸附,在阴极的高电位区域吸附,对电子吸附与Cu 2+形成竞争作用,从而实现高电位区域的Cu沉积速率减慢,使得面铜与孔铜厚度接近。光亮剂主要作用为铜晶粒的细化剂,即使得铜面实现光亮。湿润剂,其作用是促进整平剂和光亮剂更好地溶解在镀液中,提高镀液的分散能力,其大分子多官能团结构特性,可与Cu +和Cl -结合形成长分子链薄膜,阻碍Cu +在阴极面获得电子形成Cu沉积。
在调整添加剂浓度时,可以选取其中的任意一种添加剂进行调整,均能够在一定程度上达到调整目的。但是,由于光亮剂和整平剂受电化学作用较大,而湿润剂因属于物理作用而受电化学作用较小,因此,为了确保调整效果,可仅调整光亮剂和整平剂中至少一个的浓度。
在一种可选的实施方式中,可采用以下添加剂浓度调整方法:
根据参考曲线以及目标深镀能力阈值,确定能够实现实际深镀能力不低于目标深镀能力阈值的阴极电流参考范围;
在实际阴极电流低于阴极电流参考范围中的最低电流阈值的情况下,则补加光亮剂、停加整平剂或者先补加光亮剂再停加整平剂;
在实际阴极电流高于阴极电流参考范围中的最高电流阈值的情况下,则停加光亮剂、补加整平剂或者先停加光亮剂再补加整平剂。
应用该添加剂浓度调整方法时,在单独调整一种添加剂浓度(例如:仅补加或停加光亮剂、仅补加/停加整平剂)无法达到所需调整效果的情况下,可选择先调整光亮剂再调整整平剂的方式,这是由于与整平剂相比较而言,光亮剂的消耗比较快,比较容易控制,通过优先调整光亮剂的方式可以快速的达到调整目的。
在一实施例中,为了提高调整效率,对添加剂浓度进行调整的方法还包括:
获得能够实现实际阴极电流不超出所述阴极电流参考范围的光亮剂浓度参考范围和整平剂浓度参考范围;补加/停加光亮剂的方式为:补加/停加光亮剂直至光亮剂浓度参考范围的中值;补加/停加整平剂的方式为:补加/停加整平剂直至整平剂浓度参考范围的中值。
在步骤中,光亮剂浓度参考范围和整平剂浓度参考范围,可以通过反复的试验数据统计分析获得,作为添加剂浓度调整的辅助判断依据,以缩小调整幅度,实现有效调整,提高调整效率。
示例性的,阴极电流参考范围为2.0mA~3.5mA,光亮剂浓度参考范围为0.7ml/l~1.3ml/l,整平剂浓度参考范围为7.5ml/l~9.0ml/l。
在实际操作中,光亮剂浓度和整平剂浓度的调整频率、分析频率可以根据实际需求来灵活设定。示例性的:光亮剂浓度的调整频率150ml/300Ah(Ah:安培小时),分析频率为1次/0.5h,整平剂浓度的调整频率为调整频率75ml/700Ah(Ah:安培小时),分析频率为1次/2h。
此外,本申请实施例提供的基于伏安循环法监控深镀能力的方法,还可以包括:在对镀液的分析过程中,从CVS机获取实际阳极极化曲线,根据实际阳极极化曲线判断镀液是否发生污染。
在一实施例中,判断镀液是否发生污染的方法包括:提供参考阳极极化曲线,该参考阳极极化曲线由CVS机在镀液处于无污染状态时分析获得;将实际阳极极化曲线与参考阳极极化曲线对比,根据曲线斜率差异判断实际阳极极化曲线是否异常,基于所述实际阳极极化曲线异常的判断结果判定镀液发生污染。
阳极极化曲线的斜率为阳极电流的变化值/电压的变化值(相当于I/Ω)。图4所示为正常阳极极化曲线的斜率变化规律:先为正值逐渐增大,当电流到达峰值后,斜率变成负值逐渐增大;图5所示为异常阳极极化曲线的斜率变化 规律:先为正值逐渐增大,当电流到达峰值后,斜率则开始变为负值,然后突然变为正值,又突然变为负值逐渐减小。依据正常极化曲线和异常极化曲线的斜率变化差异,本申请实施例通过设定一定规律的函数来识别斜率是否正常,即可判断极化曲线是否异常。在自动识别出镀液发生污染后,可自动发出报警提示工程师。
与相关技术中根据产线输出的电镀产品品质来判断镀液是否污染的方式相比,本申请实施例采用根据阳极极化曲线来识别的方式,可及时发现问题以避免受影响的问题产品混入合格产品中而导致批量报废,大大提升了产品品质追溯能力。

Claims (10)

  1. 一种基于伏安循环法监控深镀能力的方法,包括:
    提供至少一条标准曲线,所述标准曲线反映深镀能力与阴极电流的对应关系,且不同所述标准曲线对应不同板厚区间的电镀产品;
    根据当前电镀产品的板厚选取对应的标准曲线,作为参考曲线;
    提取当前电镀产品的镀液并利用CVS机对所述镀液分析,在分析过程中从所述CVS机获取实际阴极电流,依据所述参考曲线确定实际深镀能力。
  2. 根据权利要求1所述的基于伏安循环法监控深镀能力的方法,还包括:
    判断所述实际深镀能力是否低于预设的目标深镀能力阈值,基于所述实际深镀能力低于预设的目标深镀能力阈值的判定结果,对所述镀液的添加剂浓度进行调整,直至所述实际深镀能力不低于所述目标深镀能力阈值;所述添加剂包括光亮剂、整平剂和湿润剂中的至少一个。
  3. 根据权利要求2所述的基于伏安循环法监控深镀能力的方法,其中,所述对所述镀液的添加剂浓度进行调整,包括:
    根据所述参考曲线以及所述目标深镀能力阈值,确定能够实现实际深镀能力不低于目标深镀能力阈值的阴极电流参考范围;
    在所述实际阴极电流低于所述阴极电流参考范围中的最低电流阈值的情况下,补加所述光亮剂、停加所述整平剂或者先补加所述光亮剂再停加所述整平剂;
    在所述实际阴极电流高于所述阴极电流参考范围中的最高电流阈值的情况下,则停加所述光亮剂、补加所述整平剂或者先停加所述光亮剂再补加所述整平剂。
  4. 根据权利要求3所述的基于伏安循环法监控深镀能力的方法,其中,所述对所述镀液的添加剂浓度进行调整,还包括:
    获得能够实现实际阴极电流不超出所述阴极电流参考范围的光亮剂浓度参考范围和整平剂浓度参考范围;
    补加/停加所述光亮剂的方式为:补加/停加所述光亮剂直至所述光亮剂浓度参考范围的中值;
    补加/停加所述整平剂的方式为:补加/停加所述整平剂直至所述整平剂浓度参考范围的中值。
  5. 根据权利要求4所述的基于伏安循环法监控深镀能力的方法,其中,所述阴极电流参考范围为2.0mA~3.5mA,所述光亮剂浓度参考范围为0.7ml/l~ 1.3ml/l,所述整平剂浓度参考范围为7.5ml/l~9.0ml/l。
  6. 根据权利要求1所述的基于伏安循环法监控深镀能力的方法,还包括:在所述分析过程中,从所述CVS机获取实际阳极极化曲线,根据所述实际阳极极化曲线判断所述镀液是否发生污染。
  7. 根据权利要求6所述的基于伏安循环法监控深镀能力的方法,其中,所述判断所述镀液是否发生污染,包括:
    提供参考阳极极化曲线,所述参考阳极极化曲线由所述CVS机在所述镀液处于无污染状态时分析获得;
    将所述实际阳极极化曲线与所述参考阳极极化曲线对比,根据曲线斜率差异判断所述实际阳极极化曲线是否异常,基于所述实际阳极极化曲线异常的判断结果,判定所述镀液发生污染。
  8. 根据权利要求1所述的基于伏安循环法监控深镀能力的方法,其中,所述标准曲线通过如下方式绘制:
    结合阴极电流、电导率、产品孔径、产品板厚和电位系数与所述深镀能力的关系来绘制所述标准曲线。
  9. 根据权利要求8所述的基于伏安循环法监控深镀能力的方法,其中,所述绘制所述标准曲线,包括:根据关系式TP~(KD/IL2)×μ来绘制所述标准曲线;
    其中,TP表示深镀能力,K表示电导率(不动),D表示产品孔径(按照最难的来算),I表示阴极电流,L表示产品板厚,μ表示电位系数,~表示线性对应关系。
  10. 根据权利要求2所述的基于伏安循环法监控深镀能力的方法,其中,所述对所述镀液的添加剂浓度进行调整,包括:自动化实现对所述镀液的添加剂浓度的调整。
PCT/CN2022/099833 2022-03-31 2022-06-20 基于伏安循环法监控深镀能力的方法 WO2023184726A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210335146.6A CN114705747A (zh) 2022-03-31 2022-03-31 一种基于伏安循环法监控深镀能力的方法
CN202210335146.6 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023184726A1 true WO2023184726A1 (zh) 2023-10-05

Family

ID=82170868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099833 WO2023184726A1 (zh) 2022-03-31 2022-06-20 基于伏安循环法监控深镀能力的方法

Country Status (2)

Country Link
CN (1) CN114705747A (zh)
WO (1) WO2023184726A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114705747A (zh) * 2022-03-31 2022-07-05 生益电子股份有限公司 一种基于伏安循环法监控深镀能力的方法
CN115261963A (zh) * 2022-09-27 2022-11-01 南通如东依航电子研发有限公司 一种用于pcb板深镀能力提高的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769179A (en) * 1972-01-19 1973-10-30 Kewanee Oil Co Copper plating process for printed circuits
CN1266487A (zh) * 1998-05-01 2000-09-13 塞米图尔公司 测量电镀浴中的添加剂浓度
US20050247577A1 (en) * 2004-05-04 2005-11-10 Eci Technology, Inc. Detection of an unstable additive breakdown product in a plating bath
CN1764746A (zh) * 2003-03-25 2006-04-26 凸版印刷株式会社 电镀铜液的分析方法、其分析装置和半导体产品的制造方法
JP2009242876A (ja) * 2008-03-31 2009-10-22 Ne Chemcat Corp めっきつきまわり評価装置および評価方法
JP2018104760A (ja) * 2016-12-26 2018-07-05 新日鐵住金株式会社 シリコンめっき方法及びシリコンめっき金属板の製造方法
CN108760821A (zh) * 2018-06-04 2018-11-06 电子科技大学 一种电镀添加剂的定性和定量分析方法
CN111077435A (zh) * 2020-01-09 2020-04-28 惠州市大亚湾科翔科技电路板有限公司 一种印制电路板孔铜异常监控方法
CN114214712A (zh) * 2021-12-31 2022-03-22 生益电子股份有限公司 一种电镀装置
CN114705747A (zh) * 2022-03-31 2022-07-05 生益电子股份有限公司 一种基于伏安循环法监控深镀能力的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769179A (en) * 1972-01-19 1973-10-30 Kewanee Oil Co Copper plating process for printed circuits
CN1266487A (zh) * 1998-05-01 2000-09-13 塞米图尔公司 测量电镀浴中的添加剂浓度
CN1764746A (zh) * 2003-03-25 2006-04-26 凸版印刷株式会社 电镀铜液的分析方法、其分析装置和半导体产品的制造方法
US20050247577A1 (en) * 2004-05-04 2005-11-10 Eci Technology, Inc. Detection of an unstable additive breakdown product in a plating bath
JP2009242876A (ja) * 2008-03-31 2009-10-22 Ne Chemcat Corp めっきつきまわり評価装置および評価方法
JP2018104760A (ja) * 2016-12-26 2018-07-05 新日鐵住金株式会社 シリコンめっき方法及びシリコンめっき金属板の製造方法
CN108760821A (zh) * 2018-06-04 2018-11-06 电子科技大学 一种电镀添加剂的定性和定量分析方法
CN111077435A (zh) * 2020-01-09 2020-04-28 惠州市大亚湾科翔科技电路板有限公司 一种印制电路板孔铜异常监控方法
CN114214712A (zh) * 2021-12-31 2022-03-22 生益电子股份有限公司 一种电镀装置
CN114705747A (zh) * 2022-03-31 2022-07-05 生益电子股份有限公司 一种基于伏安循环法监控深镀能力的方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Master's Thesis", 1 May 2017, JIANGXI UNIVERSITY OF SCIENCE AND TECHNOLOGY, CN, article LEI, KEWU: "Printed Circuit Board Vertical High-speed Copper Plating Additive and Performance Research", pages: 1 - 63, XP009549520 *
BEN‐PORAT MORDECHAI, YAHALOM JOSEPH, RUBIN ELIEZER: "Current Distribution during Electroplating Within a Tubular Electrode of High Ohmic Resistance", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, ELECTROCHEMICAL SOCIETY., vol. 130, no. 3, 1 March 1983 (1983-03-01), pages 559 - 567, XP093096695, ISSN: 0013-4651, DOI: 10.1149/1.2119751 *
DENG WEN; LIU ZHAOLIN; GUO HETONG: "Bright Acid Copper Plating on Printed Circuit Board", DIAN DU YU TU SHI = ELECTROPLATING & FINISHING, GUANGDONG QINGGONG DIANDU XUEHUI, CN, vol. 15, no. 3, 31 December 1996 (1996-12-31), CN , pages 4 - 8, XP009549265, ISSN: 1004-227X *
LUO, BIN; AN, MAO-ZHONG; WANG, CHENG-YONG; LIU, JIN-FENG: "Application of Polarization Curves in PCB Plating", DIAN DU YU HUAN BAO= ELECTROPLATING AND POLLUTION CONTROL : EPC / SHANG HAI SHI QING GONG YE YAN JIU SUO; QUAN GUO QING GONG HUAN BAO XUE HUI, CN, vol. 29, no. 1, 31 January 2009 (2009-01-31), CN , pages 13 - 16, XP009549817, ISSN: 1000-4742 *
NIKOLOVA, M. ; WATKOWSKI, J. ; DESALVO, D. ; BLAKE, R.: "High-temperature acid Copper process for plating through-holes", METAL FINISHING : DEVOTED EXCLUSIVELY TO METALLIC SURFACE TREATMENTS, ELSEVIER, NEW YORK, NY., US, vol. 107, no. 3, 1 March 2009 (2009-03-01), US , pages 17 - 20, XP026108237, ISSN: 0026-0576, DOI: 10.1016/S0026-0576(09)00013-0 *
OHBA M.; SCARAZZATO T.; ESPINOSA D.C.R.; PANOSSIAN Z.: "Study of metal electrodeposition by means of simulated and experimental polarization curves: Zinc deposition on steel electrodes", ELECTROCHIMICA ACTA, ELSEVIER, AMSTERDAM, NL, vol. 309, 1 January 1900 (1900-01-01), AMSTERDAM, NL , pages 86 - 103, XP085676413, ISSN: 0013-4686, DOI: 10.1016/j.electacta.2019.04.074 *
XIANG JING; LIU LU; YANG WENYAO; XU YONGGANG; SHENG WENJING; RUAN HAIBO; WANG CHONG; CHEN YUANMING; HE WEI ;ZHAO YONG: "Effects of organic Additives on Electrochemical Behavior of Copper Electrodeposition in Sulfate Electrolyte and Surface State of Copper Coating", ELECTROPLATING & FINISHING, CN, vol. 39, no. 23, 31 December 2020 (2020-12-31), CN, pages 1615 - 1619, XP009549264, ISSN: 1004-227X *
YOON YOUNG; KIM HYEONSU; KIM TAE YOUNG; LEE KYU HWAN; CHOE SEUNGHOE; KIM JAE JEONG: "Selective determination of PEG-PPG concentration in Cu plating bath with cyclic voltammetry stripping using iodide ion", ELECTROCHIMICA ACTA, ELSEVIER, AMSTERDAM, NL, vol. 339, 17 February 2020 (2020-02-17), AMSTERDAM, NL , XP086125453, ISSN: 0013-4686, DOI: 10.1016/j.electacta.2020.135916 *

Also Published As

Publication number Publication date
CN114705747A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
WO2023184726A1 (zh) 基于伏安循环法监控深镀能力的方法
US6749739B2 (en) Detection of suppressor breakdown contaminants in a plating bath
US7291253B2 (en) Detection of an unstable additive breakdown product in a plating bath
CN110455904A (zh) 一种铜箔电解液中光亮剂的定量分析方法
CN101470097B (zh) 一种电镀液中有机添加剂浓度的测定方法
US7186326B2 (en) Efficient analysis of organic additives in an acid copper plating bath
CN108760821B (zh) 一种电镀添加剂的定性和定量分析方法
CN110220964A (zh) 电解铜箔的铜电解液中氯离子的测量方法
JP3897936B2 (ja) 硫酸銅めっき液中のレベラー濃度測定方法
JP2002506531A (ja) 電気メッキ浴中の添加物の測定法
CN113447556B (zh) 一种铜电解精炼中电解液质量的分析方法
CN103728352A (zh) 铜互连电镀添加剂的评价方法
CN103698384B (zh) 深孔镀铜加速剂的测量方法
CN111521645B (zh) 一种锌电积过程中对阴阳极实时在线测量的装置
JP6011874B2 (ja) めっき液に含まれる抑制剤の評価方法
BG108395A (bg) Метод за подобряване качеството на катодите при електролиза
CN117007102A (zh) 一种电镀添加剂的定量分析方法和系统
CN111624136A (zh) 一种检测电池浆料稳定性和粘度的方法
CN104962957B (zh) 一种检测电解铜箔用阳极条电位变化的方法
CN219162263U (zh) 一种pcb制作过程中电镀快速夹导电性快速检测装置
TWI777746B (zh) 鋁合金陽極處理硫酸電解液分析系統
CN109100598B (zh) 用于流水线式镁电解槽单槽运行状态的判定方法
CN115078488B (zh) 一种铜电解精炼中有机添加剂的定量分析方法
CN100430528C (zh) 高速连续电镀不溶性阳极导电面烧蚀在线识别方法
CN114894878A (zh) 一种测定酸性镀铜液中抑制剂浓度的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934549

Country of ref document: EP

Kind code of ref document: A1