WO2023184645A1 - 一种全等轴晶构件及激光增材制造全等轴晶构件的方法 - Google Patents

一种全等轴晶构件及激光增材制造全等轴晶构件的方法 Download PDF

Info

Publication number
WO2023184645A1
WO2023184645A1 PCT/CN2022/091372 CN2022091372W WO2023184645A1 WO 2023184645 A1 WO2023184645 A1 WO 2023184645A1 CN 2022091372 W CN2022091372 W CN 2022091372W WO 2023184645 A1 WO2023184645 A1 WO 2023184645A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
fully
additive manufacturing
laser
equiaxed crystal
Prior art date
Application number
PCT/CN2022/091372
Other languages
English (en)
French (fr)
Inventor
李加强
赵玉伟
朱刚贤
石世宏
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023184645A1 publication Critical patent/WO2023184645A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/364Process control of energy beam parameters for post-heating, e.g. remelting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present application relates to the field of additive manufacturing, and in particular to a fully equiaxed crystal component and a method for laser additive manufacturing of a fully equiaxed crystal component.
  • Additive manufacturing also known as 3D printing, is a mold-less rapid near-net shape advanced manufacturing technology with typical digital characteristics from digital models to entities. This manufacturing technology provides important support for the innovative design, combined manufacturing, repair and remanufacturing of parts with complex geometric features and high performance requirements, and is especially suitable for small batch customized production.
  • Laser additive manufacturing technology is a process method that is widely researched and applied among many additive manufacturing technologies. It is a metal additive manufacturing technology that is widely used in aerospace and mold manufacturing and repair.
  • the macroscopic grain morphology of metal additive manufacturing is mainly columnar grains that grow epitaxially along the deposition direction, causing the components to exhibit obvious anisotropy in mechanical properties.
  • Isometric grain morphology is an important means to suppress the anisotropic characteristics of mechanical properties.
  • a solid laser beam is generally used to clad and deposit multiple single-pass single-layer cladding layers on the substrate.
  • Different deposition parameters are used during the deposition of each cladding layer, and then according to each cladding layer Two sets of deposition parameters are selected for the height of the cladding equiaxed grains, and the two sets of different deposition parameters are used to alternately deposit, so that the equiaxed grains in the molten pool formed by the solid laser beam are partially retained without being remelted, or During the solid laser deposition process, the structure of equiaxed grains is obtained by adding heterogeneous nucleating agents.
  • the additive manufacturing process is relatively complex, the process stability is poor, the internal quality of the formed parts is uncontrollable, and the size of the formed equiaxed grains is not uniform.
  • the equiaxed grain size changes when the parameters are changed, and the interaction parameters are difficult to determine for different materials.
  • the addition of external nucleating agents will change the original material composition, and the impact on the reliability of the performance is unknown.
  • the purpose of this application is to provide a fully equiaxed crystal component and a method for laser additive manufacturing of a fully equiaxed crystal component to simplify the additive manufacturing process of equiaxed materials and solve the problem of difficulty in obtaining fully equiaxed crystal in the existing technology. technical problem.
  • this application provides a method for laser additive manufacturing of fully equiaxed crystal components, including:
  • the additive powder melts synchronously in the molten pool formed under the annular light spot and solidifies as the annular light spot leaves.
  • a cladding layer is deposited on the surface of the substrate to obtain a fully equiaxed crystal structure inside. components; the duty cycle of the annular light spot is between 0.3 and 0.9.
  • the method before coaxially transporting the additive powder to the substrate through the inside of the hollow conical laser beam, the method further includes:
  • the additive powder is dried.
  • the substrate is a substrate with an equiaxed crystal structure.
  • placing the substrate on the workbench also includes:
  • the substrate is cleaned to remove impurities on the surface of the substrate.
  • the workbench is placed in a box filled with inert gas.
  • the oxygen content in the box is less than 1000 ppm.
  • the method further includes:
  • the present application also provides a fully equiaxed crystal component, which is produced by any one of the above laser additive manufacturing methods for fully equiaxed crystal components.
  • This application provides a method for laser additive manufacturing of fully equiaxed crystal components, which includes: placing a substrate on a workbench; using a hollow conical laser beam to scan and illuminate the substrate, and passing the hollow conical laser beam through The additive powder is coaxially transported to the substrate internally; the additive powder is synchronously melted in the molten pool formed under the annular light spot, solidifies as the annular light spot leaves, and is cladded and deposited on the surface of the substrate The cladding layer is cladded to obtain a component with a fully equiaxed crystal structure inside; the duty cycle of the annular light spot is between 0.3 and 0.9.
  • the method in this application uses a hollow conical laser beam to scan and illuminate the substrate after placing the substrate on the workbench, forming an annular spot on the surface of the substrate.
  • the duty cycle of the annular spot is between 0.3 and 0.9, and the laser energy is concentrated in the annular spot.
  • Within the annular area of the light spot there is no energy input into the hollow area inside the annular light spot.
  • the annular light spot forms a molten pool in the irradiated area, the hollow area also melts immediately due to heat conduction.
  • the temperature distribution in the entire molten pool tends to be uniform, and the additive powder It is transported to the substrate coaxially with the hollow conical laser beam and melted in the molten pool.
  • the melted additive powder solidifies rapidly to form a cladding layer with a fully equiaxed crystal structure.
  • a component with a fully equiaxed crystal structure is obtained, and the preparation of fully equiaxed grains for laser additive manufacturing is achieved, and the obtained equiaxed grains are evenly distributed in size, without the need for additional nucleation agents or frequent parameter adjustment during the forming process.
  • the manufacturing process It is simple, has a wide process parameter window, and the forming process is stable.
  • this application also provides a fully equiaxed crystal component.
  • Figure 1 is a schematic diagram of the process of manufacturing equiaxed crystal structure materials using laser additive manufacturing technology in the prior art
  • Figure 2 is a flow chart of a method for laser additive manufacturing of fully equiaxed crystal components provided by an embodiment of the present application
  • Figure 3(a) is a schematic diagram of the process of manufacturing equiaxed crystal structure materials using laser additive manufacturing technology according to the embodiment of the present application;
  • Figure 3(b) is a top view of an annular spot formed by a hollow conical laser beam on a substrate according to the embodiment of the present application;
  • Figure 4 is a schematic cross-sectional view of a hollow conical laser beam in this application.
  • Figure 5 is a schematic diagram of the metallographic sample made from the cladding layer in this application and the microstructure observation surface;
  • Figure 6(a) is a scanning image of the microstructure morphology of the longitudinal section (X0Z plane) of the sample obtained by solid spot laser deposition in the prior art;
  • Figure 6(b) is a scanned image of the microstructure morphology of the longitudinal section (X0Z plane) of a single-wall sample deposited by the method of laser additive manufacturing of fully equiaxed crystal components in this application;
  • Figure 6(c) is a schematic diagram of the three-dimensional tissue characteristics obtained by traditional solid spot laser deposition
  • Figure 6(d) is a schematic diagram showing the characteristics of the three-dimensional structure produced by the laser additive manufacturing method of the present application.
  • Equiaxed crystals The grains with small size differences in each direction are called equiaxed crystals, and their properties are almost isotropic.
  • the schematic diagram of the current process of manufacturing equiaxed crystal structure materials using laser additive manufacturing technology is shown in Figure 1.
  • the laser beam used is a solid laser beam 1.
  • the channel of the additive powder 2 is located around the solid laser beam 1 and toward the substrate 3.
  • the additive powder 2 is transported on the surface, and the additive powder 2 forms a molten pool 5 on the upper surface of the substrate 3 under the action of the solid laser beam 1, and then deposits a cladding layer 4 on the substrate 3.
  • multiple single-pass single-layer cladding layers 4 need to be cladded and deposited on the substrate 3.
  • Different deposition parameters are used in the deposition process of each cladding layer 4, and two different groups are selected.
  • the deposition parameters are alternately deposited to obtain materials with equiaxed grains. Due to the need to alternately use different additive manufacturing parameters, the additive manufacturing process is relatively complex, and it is difficult to determine the interaction parameters for different materials.
  • Step S101 Place the substrate on the workbench.
  • the substrate is not limited in this application and depends on the material of the component to be manufactured.
  • the substrate can be a substrate of other metal materials such as TC4 titanium alloy substrate, GH4169 high temperature alloy substrate, TC21 titanium alloy substrate, Ti60 alloy substrate, etc.
  • the substrate is a substrate with an equiaxed crystal structure, or a substrate without an equiaxed crystal structure.
  • the substrate is a substrate with an equiaxed crystal structure.
  • the difficulty of forming a cladding layer with an equiaxed crystal structure can be reduced, that is, the difficulty of forming a component with a full equiaxed crystal structure can be reduced.
  • the substrate When the substrate is not easily oxidized, such as 316L stainless steel substrate, 304 stainless steel substrate, etc., the substrate can be placed directly on the workbench and the cladding layer can be deposited in the air environment.
  • the material of the substrate is an easily oxidized material, such as titanium alloy, aluminum alloy, etc.
  • the workbench is placed in a box filled with inert gas to avoid oxidation of the substrate and additive powder during the manufacturing process.
  • Inert gases include but are not limited to argon and helium.
  • the purpose of filling the box with inert gas is to drive away the oxygen in the box.
  • the oxygen content in the box is less than 1000 ppm to avoid the adverse effects of oxygen on the cladding layer when depositing the cladding layer and improve the quality of the cladding layer. quality.
  • Step S102 Use a hollow cone-shaped laser beam to scan and illuminate the substrate, and coaxially transport additive powder to the substrate through the interior of the hollow cone-shaped laser beam; the melt formed by the additive powder under annular light spot irradiation Synchronous melting occurs in the pool and solidifies as the annular light spot leaves, and a cladding layer is deposited on the surface of the substrate to obtain a component with a full equiaxed crystal structure inside; the duty cycle of the annular light spot is 0.3 ⁇ 0.9.
  • the additive powder is selected according to the type of required component material, which is not limited in this application.
  • the additive powder is made of the same material as the substrate.
  • it can be TC4 titanium alloy, GH4169 high temperature alloy, TC21 titanium alloy, Ti60 alloy or other materials.
  • the structure of the component obtained in this application is a fully equiaxed crystal structure, and the equiaxed grain size distribution is relatively uniform. It is especially suitable for TC4 titanium alloy and GH4169 high-temperature alloy where it is difficult to equiax the grain shape of traditional laser additive manufacturing.
  • the schematic diagram of manufacturing the isometric component in this application is shown in Figure 3(a).
  • the incident beam is split by the reflecting conical mirror 7, and then reflected by the annular paraboloid to form a hollow conical laser beam.
  • the conveying pipe of the additive powder 2 is located in the middle of the hollow conical laser beam 6.
  • the additive powder 2 is coaxial with the hollow conical laser beam 6.
  • the light spot formed by the hollow conical laser beam 6 on the upper surface of the substrate 3 is a hollow annular light spot. .
  • the additive powder 2 is synchronously melted in the molten pool 5 formed under the annular light spot and solidifies as the annular light spot leaves, forming a cladding layer 4.
  • the formation direction of the cladding layer 4 on the upper surface of the substrate 3 is From left to right, that is, the moving direction of the optical head of the hollow conical laser beam 6 and the moving direction of the transportation pipe are from left to right; the duty cycle of the hollow annular light spot is the inner ring of the hollow conical laser beam 6 on the processing plane.
  • the ratio of the diameter D1 to the diameter D2 of the outer ring is shown in Figure 3(b).
  • the duty cycle is between 0.3 and 0.9.
  • the specific value of the duty cycle can be set by yourself.
  • the duty cycle can be 0.3, 0.35, 0.4, 0.5, 0.58, 0.7, 0.8, 0.85, 0.9, etc.
  • the cross-sectional schematic diagram of the hollow cone-shaped laser beam is shown in Figure 4.
  • the dotted line A represents the limit of the ending solid spot
  • the dotted line C represents the limit of the initial solid spot
  • the dotted line B represents the limit of the minimum solid spot, between the dotted line A and the dotted line C
  • the light spots in between are all solid light spots with no gaps.
  • the light used in the additive manufacturing process is light above the dotted line A and light below the dotted line C. It is preferred to use light above the dotted line A.
  • the deposition parameters of the cladding layer include but are not limited to laser power, scanning speed, lifting amount (scanning thickness), and powder feeding amount.
  • the deposition parameters are not specifically limited in this application.
  • the laser power can be between 2000W and 6000W.
  • scanning speed can be between 5mm/s and 15mm/s, for example, 5mm/s, 8mm/s, 10mm/s, 13mm/s, 15mm/s etc.
  • the lifting amount of a single layer can be between 0.3mm and 1mm, for example, 0.3mm, 0.6mm, 0.8mm, 0.9mm, 1mm, etc.
  • the number of cladding layers is not limited in this application, please depend on the situation.
  • the number of cladding layers can be 1 layer, 2 layers,..., etc. It should be pointed out that after the deposition is completed, the material needs to be cooled, and the substrate is removed after cooling to below 100°C.
  • a hollow conical laser beam is used to scan and illuminate the substrate, forming an annular spot on the surface of the substrate.
  • the duty cycle of the annular spot is between 0.3 and 0.9, and the laser energy is concentrated at the center of the annular spot.
  • the annular area there is no energy input into the hollow area inside the annular light spot.
  • the annular light spot forms a molten pool in the irradiated area, the hollow area also melts immediately due to heat conduction.
  • the temperature distribution in the entire molten pool tends to be uniform, and the additive powder passes through the
  • the hollow conical laser beam is coaxially delivered to the substrate and melted in the molten pool.
  • the melted additive powder solidifies rapidly to form a cladding layer with a fully equiaxed crystal structure, thus obtaining a Components with a fully equiaxed crystal structure realize the preparation of fully equiaxed grains by laser additive manufacturing, and the obtained equiaxed grains are evenly distributed in size.
  • the manufacturing process is simple.
  • the process parameter window is wide and the forming process is stable.
  • the method before coaxially transporting the additive powder to the substrate through the inside of the hollow conical laser beam, the method further includes:
  • the additive powder is dried.
  • the additive powder can be dried in a drying oven to remove the moisture in the additive powder, avoid the adverse effects of moisture on the cladding layer during the deposition process, and improve the quality of the cladding layer.
  • placing the substrate before the workbench further includes:
  • the substrate is cleaned to remove impurities on the surface of the substrate, thereby enhancing the bonding strength between the cladding layer and the substrate, and at the same time preventing impurities from contaminating the component components.
  • the hollow conical laser beam scanning is used Before irradiating the substrate, it also includes:
  • the substrate is preheated to reduce cracking of the components and improve the yield of the components.
  • Step 1 Prepare the TC4 titanium alloy substrate for laser internal powder feeding additive manufacturing. Clean the surface of the substrate with acetone and sandblast, and then place the substrate on the processing table together with the inert atmosphere protection box;
  • Step 2 Fill the protective box with inert gas argon until the oxygen content drops below 1000ppm;
  • Step 3 Prepare the additive powder used for laser internal powder feeding additive manufacturing, that is, TC4 titanium alloy powder, and dry it in a drying oven to remove moisture. Put the processed TC4 titanium alloy powder into the powder feeder;
  • Step 4 Set the powder feeding amount and powder feeding airflow of the powder feeder (the powder feeding amount is set to 5.7g/min, the powder feeding airflow is 25L/min), as well as the deposition parameters such as laser power, scanning speed, and duty cycle, and By adjusting the defocus of the cladding nozzle, a single-channel single-layer sample forming experiment was performed at different positions on the TC4 titanium alloy substrate. Argon gas was continuously filled in the inert atmosphere box before and during laser beam deposition. Specific laser process parameters As shown in Table 1 below;
  • Step 5 After the forming is completed, obtain the microstructure metallographic sample of the cross-section of the single-pass single-layer sample;
  • Step 6 use the deposition parameters to deposit 30 layers, and form a single-pass multi-layer sample in a sequential cycle;
  • Step 7 After the forming is completed, cool the sample to below 100°C in an inert atmosphere protection box, take it out, and prepare a metallographic sample to obtain a TC4 titanium alloy part with an equiaxed crystal microstructure inside. A metallographic sample is prepared and the microstructure of the longitudinal section of the cladding layer is observed. The obtained metallographic sample and the observation surface (longitudinal section of the cladding layer) 41 are shown in Figure 5 .
  • Figure 6(a) shows the microstructure morphology of the longitudinal section of the sample obtained by traditional solid spot laser deposition. It can be seen from Figure 6(a) that the main distribution of the longitudinal section of the cladding layer is columnar crystal structure; Figure 6(b) is a microstructure morphology diagram of the longitudinal section of the sample deposited by the method of laser additive manufacturing of fully equiaxed crystal components in this application.
  • Figure 6(b) shows the macro grain morphology of the cladding layer.
  • Figure 6(c) shows the characteristics of the three-dimensional structure obtained by traditional solid spot laser deposition.
  • Figure 6(d) shows the characteristics of the three-dimensional structure obtained by traditional solid spot laser deposition.
  • a schematic diagram of the characteristics of the three-dimensional tissue From Figure 6(c), it can be seen that the interior of the three-dimensional organization is mainly columnar.
  • Figure 6(d) is a schematic diagram of the characteristics of the three-dimensional tissue obtained in this application. From Figure 6(d), it can be seen that the structure obtained in this application The interior of the three-dimensional structure is relatively uniform equiaxed grains.
  • the present application also provides a fully equiaxed crystal component, which is produced by using the laser additive manufacturing method of a fully equiaxed crystal component described in any of the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Powder Metallurgy (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种全等轴晶构件及激光增材制造全等轴晶构件的方法,涉及增材制造领域,包括将基板置于工作台;采用中空锥形激光光束扫描照射基板,并通过中空锥形激光光束的内部向基板同轴输送增材粉末;增材粉末在环形光斑照射下形成的熔池内发生同步熔化并随着环形光斑的离开而凝固,在基板的表面熔覆沉积熔覆层,得到内部具有全等轴晶组织的构件;环形光斑的占空比在0.3~0.9之间。该方法通过调控激光光斑中空的环形光斑,占空比在0.3~0.9,并通过激光光束和增材粉末真正同轴的方式,实现激光增材制造沉积件全等轴晶粒的制备,工艺参数窗口较宽,等轴晶粒尺寸分布均匀,解决传统激光增材制造无法获得全等轴晶组织或需要复杂成形工艺组合的难题。

Description

一种全等轴晶构件及激光增材制造全等轴晶构件的方法
本申请要求于2022年03月29日提交中国专利局、申请号为202210319461.X、发明名称为“一种全等轴晶构件及激光增材制造全等轴晶构件的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及增材制造领域,特别是涉及一种全等轴晶构件及激光增材制造全等轴晶构件的方法。
背景技术
增材制造又称3D打印,是一种具有典型数字化特征的从数字化模型到实体的无模具快速近净成形先进制造技术。这项制造技术为具有复杂几何特征的、具有高性能需求有的零部件创新设计、组合制造、修复再制造等领域提供了重要的支撑,尤其适用于小批量定制化生产。激光增材制造技术是目前众多增材制造技术中研究和应用较多的一种工艺手段,在航空航天、模具制造修复中应用较为广泛的一种金属增材制造技术。
通过金属增材制造的宏观晶粒形貌主要为沿沉积方向呈外延生长的柱状晶粒,使得构件表现出明显的力学性能各向异性。晶粒形态等轴化是抑制力学性能各向异性特征的重要手段。。目前,在激光增材制造技术中,一般利用实心激光光束在基板上熔覆沉积多个单道单层熔覆层,每一道熔覆层沉积过程中采用不同的沉积参数,然后根据每个熔覆层的熔深等轴晶的高度选出两组沉积参数,利用该两组不同沉积参数交替沉积,使得实心激光光束形成的熔池内的等轴晶粒被部分保留而不被重熔,或者在实心激光沉积过程中通过添加异质形核剂从而得到等轴晶粒的组织。但是,由于在增材制造过程中需要交替使用不同的增材制造参数,导致增材制造过程相对复杂,工艺稳定性差,成形件内部质量不可控,形成的等轴晶粒的尺寸并不均匀,参数改变时等轴晶粒尺寸发生变化,并且对于不同材料交互参数难以确定。此外,外加形核剂会改变原始材料成分,对使用性能的可 靠性影响是未知的。
因此,如何解决上述技术问题应是本领域技术人员重点关注的。
发明内容
本申请的目的是提供一种全等轴晶构件及激光增材制造全等轴晶构件的方法,以简化等轴化材料的增材制造工艺,并解决现有技术难以获得全等轴晶的技术问题。
为解决上述技术问题,本申请提供一种激光增材制造全等轴晶构件的方法,包括:
将基板置于工作台;
采用中空锥形激光光束扫描照射所述基板,并通过所述中空锥形激光光束的内部向所述基板同轴输送增材粉末;
所述增材粉末在环形光斑照射下形成的熔池内发生同步熔化并随着所述环形光斑的离开而凝固,在所述基板的表面熔覆沉积熔覆层,得到内部具有全等轴晶组织的构件;所述环形光斑的占空比在0.3~0.9之间。
可选的,所述通过所述中空锥形激光光束的内部向所述基板同轴输送增材粉末之前,还包括:
烘干所述增材粉末。
可选的,所述基板为具有等轴晶组织的基板。
可选的,所述将基板置于工作台之前,还包括:
清洁所述基板,以去除所述基板表面的杂质。
可选的,当所述基板的材料为易氧化材质时,所述工作台置于充有惰性气体的箱体内。
可选的,所述箱体内氧气的含量小于1000ppm。
可选的,当所述基板的材料为易开裂材料时,所述采用中空锥形激光光束扫描照射所述基板之前,还包括:
预热所述基板。
本申请还提供一种全等轴晶构件,所述全等轴晶构件采用上述任一种所述的激光增材制造全等轴晶构件的方法制得。
本申请所提供的一种激光增材制造全等轴晶构件的方法,包括:将基板置于工作台;采用中空锥形激光光束扫描照射所述基板,并通过所述中空锥形激光光束的内部向所述基板同轴输送增材粉末;所述增材粉末在环形光斑照射下形成的熔池内发生同步熔化并随着所述环形光斑的离开而凝固,在所述基板的表面熔覆沉积熔覆层,得到内部具有全等轴晶组织的构件;所述环形光斑的占空比在0.3~0.9之间。
可见,本申请中方法在将基板置于工作台后,利用中空锥形激光光束扫描照射基板,在基板表面形成环形光斑,环形光斑的占空比在0.3~0.9之间,激光能量聚集在环形光斑的环形区域内,环形光斑内部的中空区域没有能量输入,当环形光斑在照射区域形成熔池后,由于热传导作用,中空区域也随即发生熔化,整个熔池内温度分布趋于均匀,增材粉末通过与中空锥形激光光束同轴的方式输送至基板并在熔池内熔化,当中空锥形激光光束离开后熔化的增材粉末发生快速凝固,形成具有全等轴晶组织的熔覆层,从而得到具有全等轴晶组织的构件,实现了激光增材制造全等轴晶粒的制备,并且得到的等轴晶粒尺寸分布均匀,无需额外形核剂或者成形过程中频繁调控参数,制造工艺简单,工艺参数窗口较宽,成形过程稳定。
此外,本申请还提供一种全等轴晶构件。
附图说明
为了更清楚的说明本申请实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中利用激光增材制造技术制造等轴晶组织材料的过程示意图;
图2为本申请实施例所提供的一种激光增材制造全等轴晶构件的方法的流程图;
图3(a)为本申请实施例利用激光增材制造技术制造等轴晶组织材料的过程示意图;
图3(b)为本申请实施例中空锥形激光光束在基板上形成的环形光斑的俯视图;
图4为本申请中空锥形激光光束的截面示意图;
图5为本申请由熔覆层制作的金相试样和显微组织观察面的示意图;
图6(a)为现有技术中实心光斑激光沉积得到的试样纵截面(X0Z面)显微组织形貌的扫描图;
图6(b)为本申请激光增材制造全等轴晶构件的方法沉积得到的单壁墙试样纵截面(X0Z面)显微组织形貌的扫描图;
图6(c)为传统实心光斑激光沉积得到的三维组织特征示意图;
图6(d)为本申请激光增材制造方法制得的三维组织的特征示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面结合附图和具体实施方式对本申请作进一步的详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
等轴晶:晶粒在各方向尺寸相差较小的晶粒叫等轴晶,其性能也近乎各向同性。
目前利用激光增材制造技术制造等轴晶组织材料的过程示意图如图1所示,使用的激光光束为实心激光光束1,增材粉末2的通道位于实心激光光束1的周围,向基板3上表面输送增材粉末2,增材粉末2在实心激光光束1的作用下在基板3上表面形成熔池5,进而在基板3上沉积形成熔覆层4。正如背景技术部分所述,在制造过程中需要在基板3上熔覆沉积多个单道单层熔覆层4,每一道熔覆层4沉积过程中采用不同的沉积参数,选出两组不同 沉积参数交替沉积得到等轴晶粒的材料。由于需要交替使用不同的增材制造参数,导致增材制造过程相对复杂,并且对于不同材料交互参数难以确定。
鉴于此,本申请提供了一种激光增材制造全等轴晶构件的方法,请参考图2,包括:
步骤S101:将基板置于工作台。
需要说明的是,本申请中对基板不做限定,根据需要制造的构件的材料而定。基板可以为TC4钛合金基板、GH4169高温合金基板、TC21钛合金基板、Ti60合金基板等其他金属材料的基板。
还需要说明的是,本申请对基板内部的晶体组织类型不做限定可自行选择。例如,所述基板为具有等轴晶组织的基板,或者为不具有等轴晶组织的基板。优选地,基板为具有等轴晶组织的基板,此时可以降低形成具有等轴晶组织的熔覆层的难度,即降低形成具有全等轴晶组织的构件的难度。
当基板不易氧化的基板时,例如316L不锈钢基板、304不锈钢基板等,直接将基板置于工作台上,在空气环境下即可沉积熔覆层。当所述基板的材料为易氧化材质时,例如钛合金、铝合金等,所述工作台置于充有惰性气体的箱体内,以避免在制造过程中基板和增材粉末发生氧化。惰性气体包括但不限于氩气、氦气。向箱体内充入惰性气体目的是驱赶箱体内的氧气,优选地,所述箱体内氧气的含量小于1000ppm,以避免在沉积熔覆层时氧气对熔覆层的不利影响,提升熔覆层的质量。
步骤S102:采用中空锥形激光光束扫描照射所述基板,并通过所述中空锥形激光光束的内部向所述基板同轴输送增材粉末;所述增材粉末在环形光斑照射下形成的熔池内发生同步熔化并随着所述环形光斑的离开而凝固,在所述基板的表面熔覆沉积熔覆层,得到内部具有全等轴晶组织的构件;所述环形光斑的占空比在0.3~0.9之间。
增材粉末根据需要的构件材料种类进行选择,本申请中不做限定,增材粉末与基板的材料相同,例如,可以为TC4钛合金、GH4169高温合金、TC21钛合金、Ti60合金或者其他材料。
需要强调的是,本申请中得到的构件的组织为全等轴晶组织,等轴晶粒尺寸分布比较均匀。尤其适用于传统激光增材制造晶粒形态等轴化困难的TC4钛合金和GH4169高温合金。
本申请中制造等轴化构件的示意图如图3(a)所示,入射光束经过反射锥镜7进行分光,继而通过环形抛物境反射形成中空锥形激光光束。增材粉末2的输送管道位于中空锥形激光光束6的中间,增材粉末2与中空锥形激光光束6同轴,中空锥形激光光束6在基板3上表面形成的光斑为中空的环形光斑。增材粉末2在环形光斑照射下形成的熔池5内发生同步熔化并随着环形光斑的离开而凝固,形成熔覆层4,图中熔覆层4在基板3上表面的形成方向为由左至右,也即中空锥形激光光束6的光头移动方向和输送管道的移动方向为由左至右;中空的环形光斑的占空比为中空锥形激光光束6在加工平面上内环的直径D1与外环的直径D2的比值,如图3(b)所示。
占空比在0.3~0.9之间,占空比的具体数值可以自行设置,例如,占空比可以为0.3、0.35、0.4、0.5、0.58、0.7、0.8、0.85、0.9等等。
中空锥形激光光束的截面示意图如图4所示,虚线A表示结束实心光斑所在的界限,虚线C表示初始实心光斑所在的界限,虚线B表示最小实心光斑所在的界限,在虚线A和虚线C之间的光斑均为实心光斑,不存在空隙。在增材制造过程中使用的光为虚线A以上的光和虚线C以下的光,优选使用虚线A以上的光。
熔覆层的沉积参数包括但不限于激光功率、扫描速度、抬升量(扫描厚度)、送粉量,本申请中对沉积参数不做具体限定,激光功率可以在2000W~6000W,例如,2000W、2500W、3000W、3500W、4000W、5000W、5500W、6000W等;扫描速度可以在5mm/s~15mm/s之间,例如,5mm/s、8mm/s、10mm/s、13mm/s、15mm/s等;单层抬升量可以在0.3mm~1mm,例如,0.3mm、0.6mm、0.8mm、0.9mm、1mm等。
需要说明的是,本申请中对熔覆层的层数不做限定,请视情况而定。例如,熔覆层的层数可以为1层,2层,…,等等。需要指出的是,当沉积完成后需要对材料进行冷却,待冷却到100℃以下后拿下基板。
本申请中方法在将基板置于工作台后,利用中空锥形激光光束扫描照 射基板,在基板表面形成环形光斑,环形光斑的占空比在0.3~0.9之间,激光能量聚集在环形光斑的环形区域内,环形光斑内部的中空区域没有能量输入,当环形光斑在照射区域形成熔池后,由于热传导作用,中空区域也随即发生熔化,整个熔池内温度分布趋于均匀,增材粉末通过与中空锥形激光光束同轴的方式输送至基板并在熔池内熔化,当中空锥形激光光束离开后熔化的增材粉末发生快速凝固,形成具有全等轴晶组织的熔覆层,从而得到具有全等轴晶组织的构件,实现了激光增材制造全等轴晶粒的制备,并且得到的等轴晶粒尺寸分布均匀,无需额外形核剂或者成形过程中频繁调控参数,制造工艺简单,工艺参数窗口较宽,成形过程稳定。
在上述实施例的基础上,在本申请的一个实施例中,所述通过所述中空锥形激光光束的内部向所述基板同轴输送增材粉末之前,还包括:
烘干所述增材粉末。
可以将增材粉末置于干燥箱中进行烘干,以去除增材粉末中的水分,避免水分在沉积过程对熔覆层造成不良影响,提升熔覆层的质量。
在上述任一实施例的基础上,在本申请的一个实施例中,所述将基板置于工作台之前,还包括:
清洁所述基板,以去除所述基板表面的杂质,进而增强熔覆层与基板之间的结合牢固性,同时避免杂质污染构件组成成分。
本申请中对清洁方式不做限定,视情况而定。例如,可以使用酒精、丙酮等溶液进行清洁,或者使用超声波清洁方式等等。
在上述任一实施例的基础上,在本申请的一个实施例中,当所述基板的材料为易开裂材料时,例如Inconel 625,Inconel 738LC高温合金等,所述采用中空锥形激光光束扫描照射所述基板之前,还包括:
预热所述基板,以降低构件发生开裂的情况,提升构件的良率。
下面以TC4钛合金这种难以在成形构件中获得等轴晶粒的合金为例, 对本申请中激光增材制造全等轴晶构件的方法进行阐述。
步骤1、准备激光内送粉增材制造所用TC4钛合金基板,将基板表面用丙酮清洗并喷砂处理,然后将基板连惰性气氛保护箱一同放入加工台上;
步骤2、向保护箱中充入惰性气体氩气,直到氧含量降低到1000ppm以下;
步骤3、准备激光内送粉增材制造所用增材粉末即TC4钛合金粉末,并在干燥箱中烘干以去除其中的水分,将处理好的TC4钛合金粉末放入送粉器中;
步骤4、设置好送粉器的送粉量和送粉气流(送粉量设置为5.7g/min,送粉气流为25L/min)以及激光功率、扫描速度、占空比等沉积参数,并通过调整熔覆喷头离焦量依次在TC4钛合金基板不同位置进行单道单层试样的成形实验,在激光光束沉积前和过程中在惰性气氛箱内不断充入氩气,具体激光工艺参数如下表1所示;
步骤5、成形完成后,获取单道单层试样横截面的显微组织金相试样;
步骤6、根据表1选择的不同占空比,使用沉积参数沉积30层,依次循环的方式进行单道多层试样的成形;
步骤7、成形完成后,在惰性气氛保护箱中将试样冷却至100℃以下,将其取出,制作金相试样,得到内部具有等轴晶显微组织形貌的TC4钛合金零件。制作金相试样并观察熔覆层纵截面的显微组织,得到的金相试样和观察面(熔覆层纵截面)41如图5所示。
表1
Figure PCTCN2022091372-appb-000001
传统实心光斑激光沉积得到的熔覆层侧表面显微组织形貌和表1中第3组试样的显微组织形貌的对比图如图6(a)和图6(b)所示,沉积方向相同,其中,图6(a)为传统实心光斑激光沉积得到的试样纵截面显微组织形貌图,由图6(a)可知,熔覆层纵截面主要分布为柱状晶组织;图6(b)为本申请激光增材制造全等轴晶构件的方法沉积得到的试样纵截面显微组织形貌图,由图6(b)可知,熔覆层宏观晶粒形貌为全等轴晶组织。传统实心光斑激光沉积得到的三维组织特征和本申请制得的三维组织的特征对比图如图6(c)和图6(d)所示,图6(c)为传统实心光斑激光沉积得到的三维组织特征示意图,由图6(c)可知,三维组织内部主要呈柱状形态,图6(d)为本申请制得的三维组织的特征示意图,由图6(d)可知,本申请中得到的三维组织内部为比较均匀的等轴晶粒。
本申请还提供一种全等轴晶构件,所述全等轴晶构件采用上述任一实施例所述的激光增材制造全等轴晶构件的方法制得。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应, 所以描述的比较简单,相关之处参见方法部分说明即可。
以上对本申请所提供的全等轴晶构件及激光增材制造全等轴晶构件的方法进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。

Claims (8)

  1. 一种激光增材制造全等轴晶构件的方法,其特征在于,包括:
    将基板置于工作台;
    采用中空锥形激光光束扫描照射所述基板,并通过所述中空锥形激光光束的内部向所述基板同轴输送增材粉末;
    所述增材粉末在环形光斑照射下形成的熔池内发生同步熔化并随着所述环形光斑的离开而凝固,在所述基板的表面熔覆沉积熔覆层,得到内部具有全等轴晶组织的构件;所述环形光斑的占空比在0.3~0.9之间。
  2. 如权利要求1所述的激光增材制造全等轴晶构件的方法,其特征在于,所述通过所述中空锥形激光光束的内部向所述基板同轴输送增材粉末之前,还包括:
    烘干所述增材粉末。
  3. 如权利要求1所述的激光增材制造全等轴晶构件的方法,其特征在于,所述基板为具有等轴晶组织的基板。
  4. 如权利要求1所述的激光增材制造全等轴晶构件的方法,其特征在于,所述将基板置于工作台之前,还包括:
    清洁所述基板,以去除所述基板表面的杂质。
  5. 如权利要求1所述的激光增材制造全等轴晶构件的方法,其特征在于,当所述基板的材料为易氧化材质时,所述工作台置于充有惰性气体的箱体内。
  6. 如权利要求5所述的激光增材制造全等轴晶构件的方法,其特征在于,所述箱体内氧气的含量小于1000ppm。
  7. 如权利要求1至6任一项所述的激光增材制造全等轴晶构件的方法,其特征在于,当所述基板的材料为易开裂材料时,所述采用中空锥形激光光束扫描照射所述基板之前,还包括:
    预热所述基板。
  8. 一种全等轴晶构件,其特征在于,所述全等轴晶构件采用如权利要求1至7任一项所述的激光增材制造全等轴晶构件的方法制得。
PCT/CN2022/091372 2022-03-29 2022-05-07 一种全等轴晶构件及激光增材制造全等轴晶构件的方法 WO2023184645A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210319461.X 2022-03-29
CN202210319461.XA CN115283692A (zh) 2022-03-29 2022-03-29 一种全等轴晶构件及激光增材制造全等轴晶构件的方法

Publications (1)

Publication Number Publication Date
WO2023184645A1 true WO2023184645A1 (zh) 2023-10-05

Family

ID=83820834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091372 WO2023184645A1 (zh) 2022-03-29 2022-05-07 一种全等轴晶构件及激光增材制造全等轴晶构件的方法

Country Status (2)

Country Link
CN (1) CN115283692A (zh)
WO (1) WO2023184645A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418350A (en) * 1992-01-07 1995-05-23 Electricite De Strasbourg (S.A.) Coaxial nozzle for surface treatment by laser irradiation, with supply of materials in powder form
CN101148760A (zh) * 2006-09-22 2008-03-26 苏州大学 激光加工成形制造光内送粉工艺与光内送粉喷头
CN101733550A (zh) * 2010-01-09 2010-06-16 苏州大学 一种送丝送粉复合激光熔覆成形方法及装置
US20180147668A1 (en) * 2016-11-28 2018-05-31 United Technologies Corporation Laser cladding system and method
CN111519183A (zh) * 2020-04-28 2020-08-11 苏州大学 激光超高速熔覆头、超高速熔覆系统及熔覆方法
CN111650756A (zh) * 2019-12-31 2020-09-11 南京中科煜宸激光技术有限公司 使用单激光光束实现双光斑复合能场的方法、装置、工艺及其应用
CN112872364A (zh) * 2021-01-11 2021-06-01 上海大学 一种静磁场下3D打印γ-TiAl合金的方法及其装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108620584B (zh) * 2018-04-03 2020-08-04 上海大学 全等轴晶金属构件的激光增材制造方法及其装置
CN109158600B (zh) * 2018-09-18 2020-06-05 西北工业大学 同步送粉激光增材制造光斑与粉斑相对位置自动匹配的装置及方法
CN109852967B (zh) * 2019-04-17 2021-01-19 中国人民解放军军事科学院国防科技创新研究院 细束流激光熔化沉积增材制造方法及其使用的激光加工头
CN110976865B (zh) * 2019-12-19 2022-08-12 西安增材制造国家研究院有限公司 一种激光同轴送粉增材制造的凝固组织和成形应力调控方法
CN113235084B (zh) * 2021-05-11 2022-11-11 苏州大学 一种实现环形中空偏焦激光的高速熔覆方法
CN113414405B (zh) * 2021-06-29 2022-11-11 西北工业大学 一种调节激光增材制造晶粒形貌的方法
CN113814413B (zh) * 2021-09-24 2024-04-05 武汉工程大学 激光增材制造无裂纹、强度和韧性可控的高温合金的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418350A (en) * 1992-01-07 1995-05-23 Electricite De Strasbourg (S.A.) Coaxial nozzle for surface treatment by laser irradiation, with supply of materials in powder form
CN101148760A (zh) * 2006-09-22 2008-03-26 苏州大学 激光加工成形制造光内送粉工艺与光内送粉喷头
CN101733550A (zh) * 2010-01-09 2010-06-16 苏州大学 一种送丝送粉复合激光熔覆成形方法及装置
US20180147668A1 (en) * 2016-11-28 2018-05-31 United Technologies Corporation Laser cladding system and method
CN111650756A (zh) * 2019-12-31 2020-09-11 南京中科煜宸激光技术有限公司 使用单激光光束实现双光斑复合能场的方法、装置、工艺及其应用
CN111519183A (zh) * 2020-04-28 2020-08-11 苏州大学 激光超高速熔覆头、超高速熔覆系统及熔覆方法
CN112872364A (zh) * 2021-01-11 2021-06-01 上海大学 一种静磁场下3D打印γ-TiAl合金的方法及其装置

Also Published As

Publication number Publication date
CN115283692A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
JP6494680B2 (ja) 光学的に透過性のスラグによる材料処理法
CN113427020B (zh) 一种基于多重扫描熔化的激光粉末床熔融增材制造方法
CN106583726B (zh) 激光多光束熔覆装置
CN113414405B (zh) 一种调节激光增材制造晶粒形貌的方法
US20140302247A1 (en) Method of forming densified layer in spray coating, and spray coating covering member
TWI405877B (zh) Single crystal manufacturing apparatus and manufacturing method thereof
CN111872386B (zh) 一种高强度铝镁合金的3d打印工艺方法
WO2015190323A1 (ja) ガラス材の製造方法及びガラス材の製造装置
WO2024012610A1 (zh) 一种激光增材制造用系统及增材制造方法
WO2023184645A1 (zh) 一种全等轴晶构件及激光增材制造全等轴晶构件的方法
US20210252642A1 (en) Additive manufacture
JP2004352609A (ja) 亀裂のない内面ガラス化されたSiO2坩堝の製造方法
JP7274816B2 (ja) 金スパッタリングターゲットとその製造方法
TWI752035B (zh) 金濺鍍靶材
CN107805840A (zh) 一种拉晶炉的拉晶机构
JP7077518B2 (ja) 非晶質薄膜の製造方法
Madarieta et al. Geometrical study of 5356 aluminium alloy by means of a concentric wire laser metal deposition
JP6147788B2 (ja) Cu−Ga合金スパッタリングターゲット
CN118595457A (zh) 一种超快激光粉床熔融增材制造难熔合金的工艺方法
JP4176978B2 (ja) 光ファイバ大型母材の製造方法
WO2016147265A1 (ja) 単結晶製造装置および単結晶製造方法
JP2007300028A (ja) 結晶性ケイ素薄膜の製造方法
JP2000128565A (ja) 光ファイバ母材の製造方法及び装置
JPH031528A (ja) 複合シリカ体及びその製造方法及び該シリカ体を用いた半導体製造治具
CN117600485A (zh) 一种激光-电弧复合增材制造制备钛合金零件的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934471

Country of ref document: EP

Kind code of ref document: A1