JP4176978B2 - 光ファイバ大型母材の製造方法 - Google Patents
光ファイバ大型母材の製造方法 Download PDFInfo
- Publication number
- JP4176978B2 JP4176978B2 JP2001276728A JP2001276728A JP4176978B2 JP 4176978 B2 JP4176978 B2 JP 4176978B2 JP 2001276728 A JP2001276728 A JP 2001276728A JP 2001276728 A JP2001276728 A JP 2001276728A JP 4176978 B2 JP4176978 B2 JP 4176978B2
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- glass layer
- fiber preform
- preform
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/02—Pure silica glass, e.g. pure fused quartz
- C03B2201/03—Impurity concentration specified
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
【発明の属する技術分野】
本発明は、主に光通信に使用される光ファイバおよび光ファイバの元となる光ファイバ母材およびその製造方法に関するものである。
【0002】
【背景技術】
光ファイバの元となる光ファイバ母材1は、図1に示すように、光ファイバのコアとなる中心層(コア母材)2の外周に、ガラス層3が形成されて成るものである。このような光ファイバ母材1を製造する工程では、例えば、まず、VAD法(気相軸付法)によって図2(a)に示すように中心層2を作る。次に、これを高温で脱水・焼結してガラス化する。そして、このガラス化した中心層2を延伸して当該中心層2の外径を均一化する。
【0003】
然る後に、例えばOVD法(Outer Vapor Deposition(外付け法))によって、図2(b)に示すように、その中心層2の周囲にクラッドとなるガラス層3を合成・堆積する。この状態のものを多孔質母材(スート)4と呼ぶ。
【0004】
その後、その多孔質母材4を高温に加熱し塩素ガスおよびヘリウムガスを用いて脱水や不純物の除去を行うと共に、焼結してガラス化する。このようにして、光ファイバ母材1を製造することができる。
【0005】
そして、例えば図3に示すような線引き装置5を利用して、光ファイバ母材1を線引きすることにより、光ファイバ6を製造することができる。なお、図3中の符号10は溶融炉を示し、符号11は加熱手段(例えばヒータ)を示し、符号12は、光ファイバ母材1の支持棒を示している。
【0006】
【発明が解決しようとする課題】
ところで、最近、光ファイバ6の生産性を向上させて光ファイバ6の製造コストを低減させるために、光ファイバ母材1を大型化して当該光ファイバ母材1から作り出される光ファイバ6の長さを長くすることが試みられている。例えば、従来の光ファイバ母材1は外径が60〜80mm程度で、長さが100cm程度であり、光ファイバ6の換算長で200〜300km程度を作り出すことができた。これに対して、例えば、光ファイバ母材1の外径を10cm以上にし、長さを140〜180cm程度にして光ファイバ母材1を大型化することにより、当該大型の光ファイバ母材1から、例えば長さ1000km以上の光ファイバ6を作り出すことができることとなる。
【0007】
しかしながら、大型の光ファイバ母材1を従来と同様にして製造すると、今までには見られなかった現象が発生する場合があることが分かった。その現象とは、光ファイバ母材1を線引きする際に光ファイバ母材1を加熱すると、その表面に、図3の領域Xに示されるような部位において、不要な結晶が析出するというものである。この現象が生じると、外径が不均一な光ファイバ6が製造されてしまって、品質の良い光ファイバ6を安定的に製造することができないという問題が発生した。
【0008】
この発明は上記課題を解決するために成されたものであり、その目的は、品質に優れた光ファイバを安定的に作り出すことができる光ファイバ母材およびその製造方法およびその光ファイバ母材を利用した光ファイバを提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、この発明は次に示す構成をもって前記課題を解決する手段としている。すなわち、第1の発明は、光ファイバのコアとなる中心層を形成し、その後、その中心層の外周にガラス層を形成して多孔質母材を作製し、次に、その多孔質母材を焼結して光ファイバ母材を製造する方法で、前記光ファイバ母材の外径が10 cm 以上である大型の光ファイバ母材と成す場合において、多孔質母材のガラス層において中心層側の密度を0.5g/ cm 3 以上、かつ、0.8g/ cm 3 以下に形成し、さらに、多孔質母材の中心層側から表面部分に向かって、少なくとも0.1g/ cm 3 以上多孔質母材の密度を低下させ、多孔質母材のガラス層における表面部分の密度を0.3g/ cm 3 以上、かつ、0.4g/ cm 3 以下に形成することを特徴としている。
【0010】
第2の発明は、光ファイバのコアとなる中心層を形成し、その後、酸水素火炎にガラス層の原料となる四塩化珪素ガスを、火炎温度を低下させるようなフッ素含有化合物ガスを含有させずに供給してOVD法により高温下で火炎加水分解してガラス微粒子を生成し、当該生成したガラス微粒子を前記中心層の外周に堆積させてガラス層を形成することによって多孔質母材を作製し、次に、その多孔質母材を焼結して光ファイバ母材を製造する方法で、前記光ファイバ母材の外径が10 cm 以上である大型の光ファイバ母材と成す場合において、少なくとも前記ガラス層の原料となるガスの噴出量と酸水素火炎の火力を設定することで、多孔質母材のガラス層において中心層側の密度を0.5g/ cm 3 以上、かつ、0.8g/ cm 3 以下に形成し、多孔質母材のガラス層における表面部分の密度を0.3g/ cm 3 以上、かつ、0.4g/ cm 3 以下に形成することを特徴としている。
【0015】
本発明者の分析によると、大型の光ファイバ母材の線引き工程において光ファイバ母材の表面に析出する不要な結晶はクリストバライトであることが分かった。そして、その結晶を調査したところ、主に、アルミニウムやチタンやバナジウムなどの金属の不純物が核となっていた。
【0016】
このことから、光ファイバ母材の表面部分の金属の不純物濃度と、クリストバライト発生の有無との関係を調べた。その結果、光ファイバ母材のガラス層の表面部分において、アルミニウムとチタンとバナジウムの合計不純物濃度が、0.2×103ng/cm3以上、かつ、16×103ng/cm3以下の範囲内であれば、光ファイバ母材を線引きする際に、光ファイバ母材の表面に不要な結晶(クリストバライト)が発生することを抑制できることが分かった。
【0017】
このような実験や分析の結果に基づいて、この発明において特徴的な構成が導き出された。この発明の構成を備えることによって、大型の光ファイバ母材を用いる場合にも、品質の良い光ファイバを安定的に製造することができることとなる。
【0018】
【発明の実施の形態】
以下に、この発明に係る実施形態例を図面に基づいて説明する。
【0019】
まず、本発明の光ファイバ大型母材の製造方法の一実施形態例を用いて製造される光ファイバ母材の一例について説明する。この光ファイバ母材は、図1に示されるように、光ファイバのコアとなる中心層2の外周にガラス層3が形成されて成るものであり、外径が10cm以上の大型の光ファイバ母材1と成している。
【0020】
この光ファイバ母材1において特徴的なことは、光ファイバ母材1のガラス層3の表面部分(例えば表面から20mmまでの部分)において、アルミニウム(Al)とチタン(Ti)とバナジウム(V)の合計不純物濃度(以下、合計不純物濃度と略して記す)が、0.2×103ng/cm3以上、かつ、16×103ng/cm3以下の範囲内となっていることである。
【0021】
光ファイバ母材1の表面部分の合計不純物濃度がそのような範囲内であることにより、光ファイバ母材1の線引き工程で、光ファイバ母材1の表面に不要な結晶(クリストバライト)が発生することを抑制できる。
【0022】
このように不要結晶の発生を抑制できる光ファイバ母材1の表面部分の合計不純物濃度は、本発明者の実験に基づいて得られたものである。その実験とは次に示すようなものである。
【0023】
まず、複数の大型の光ファイバ母材1に関し、それぞれ1本ずつ、表面部分を50%濃度のフッ酸を利用して溶かし、その溶液をICP質量分析した。その結果が表1に示されている。なお、表1において、A,Bは、結晶が発生しなかった光ファイバ母材1を示し、C,Dは、結晶が発生した光ファイバ母材1を示している。
【0024】
【表1】
【0025】
また、結晶有りの光ファイバ母材1に関し、結晶部分の分析精度を高めるために、結晶が発生した部位の表面部分を約2cm2剥ぎ取り、それの表面部分(約30μm程度の深さまでの部分)をフッ酸で溶解し、この溶液をICP質量分析した。この評価を2回行った。その結果が表2に示されている。
【0026】
【表2】
【0027】
表1、表2の実験結果を利用して、結晶無しの光ファイバ母材1に関し、計算によって光ファイバ母材1の表面部分における合計不純物濃度の平均値を求めた。つまり、表1に示される実験結果から、結晶有りの光ファイバ母材1における合計不純物濃度と、結晶無しの光ファイバ母材1における合計不純物濃度との比が分かる。また、表2の実験結果により、結晶有りの光ファイバ母材1の合計不純物濃度の平均値は、32×103ng/cm3である。これらのことから、結晶無しの光ファイバ母材1の表面部分における合計不純物濃度の平均値は、(0.32/18.14)×32×103=0.56×103(ng/cm3)と推定することができる。
【0028】
さらに、上記同様にして、実験結果を利用して、結晶無しの光ファイバ母材1における合計不純物濃度の範囲を計算すると、最小値は、(0.17/25.88)×32×103=0.21×103(ng/cm3)と推定することができる。また、最大値は、(0.46/10.39)×32×103=1.4×103(ng/cm3)と推定することができる。
【0029】
以上のような実験と計算の結果に基づいて、光ファイバ母材1の表面部分の合計不純物濃度が、0.2×103ng/cm3以上であり、かつ、16×103ng/cm3以下の範囲内であれば、光ファイバ母材1の線引き工程で光ファイバ母材1の表面に不要な結晶が析出するのを抑制できることを本発明者は導き出した。なお、上記範囲の最大値(16×103ng/cm3)は、結晶無しの光ファイバ母材1の表面部分の合計不純物濃度の平均値(0.56×103(ng/cm3))と、結晶有りの光ファイバ母材1の表面部分の合計不純物濃度の平均値(32×103(ng/cm3))との平均値である。
【0030】
ところで、光ファイバ母材1の製造工程では、前述したように、まず、図2(a)に示すような中心層2を形成し、その後、OVD法を利用して図2(b)に示すようにガラス層3を形成して多孔質母材4を作製する。そのガラス層3を形成する際には、例えば、図2(b)に示すように、バーナ8から酸素ガスと水素ガスを噴出して酸水素火炎9を作り出すと共に、この酸水素火炎9に、ガラス層3の原料となる例えば四塩化珪素のガスを供給する。これにより、その原料のガスが火炎加水分解してガラス微粒子(二酸化珪素)が生成され、このガラス微粒子が中心層2の外周に堆積してガラス層3が形成される。
【0031】
このガラス層3を形成するOVD設備では、作業空間が金属(例えばアルミニウムやチタンやバナジウムなど)から成る部材により囲まれている。酸水素火炎9は非常に高温であることから、この酸水素火炎9の熱によって上記金属の囲い部材が高温となり、この囲い部材のアルミニウムやチタンやバナジウムなどの金属の不純物が固相状あるいは気相状の形態でガラス層3の内部に入り込むと考えられている。
【0032】
このため、多孔質母材4を作製した後に、その多孔質母材4を高温に加熱し焼結(ガラス化)する焼結工程において、従来から、高温加熱によるガラス化と共に、塩素ガスを用いて多孔質母材4から金属などの不純物を除去することも行われていた。しかしながら、不純物除去が良好に行われず、これに起因して、前述したように、光ファイバ母材1の線引き工程で光ファイバ母材1の表面部分には不純物を核として結晶が析出する場合があった。
【0033】
そこで、本発明者は、多孔質母材4の焼結工程で不純物の除去が良好に行われない原因を探った。これにより、その不純物除去が良好に行われるか否かは、多孔質母材4のガラス層3の密度が大きく関与していることが分かった。すなわち、多孔質母材4のガラス層3の密度が低い場合には、多孔質母材4の焼結工程において、不純物を除去するための塩素ガスがガラス層3の内部に流れ、この高温の塩素ガスによって不純物が気相化されてガラス層3から除去される。これに対して、多孔質母材4のガラス層3の密度が高すぎると、塩素ガスがガラス層3の内部を流れることが難しくなり、ガラス層3から不純物を良好に除去することができないのではないかと考えられる。
【0034】
不純物除去の観点からだけで見れば、多孔質母材4のガラス層3の密度は低い方が好ましいが、ガラス層3の密度が低すぎると、その低密度のガラス層3を形成して多孔質母材4を作製した後の多孔質母材4の冷却時に、ガラス層3にクラックが発生し易くなる。クラックが発生すると、光ファイバ母材1全体が不良品になるという重大な問題が発生してしまう。
【0035】
このようなことを考慮して、本発明者は、多孔質母材4のガラス層3の密度と、焼結工程における不純物除去の良し悪しと、クラック発生の有無との関係を実験により調べた。この実験の結果、多孔質母材4のガラス層3の表面部分の密度が、0.3g/cm3以上、かつ、0.4g/cm3以下の範囲内であれば、クラック発生を防止でき、かつ、不純物の除去を良好に行うことができることが分かった。
【0036】
また、多孔質母材4のガラス層3の密度は、表面側から中心層2に向かうに従って高くなるものであり、ガラス層3の中心層2側の密度が、0.5g/cm3以上、かつ、0.8g/cm3以下の範囲内であることが好ましいことも分かった。ガラス層3の中心層2側の密度が低いと、ガラス層3が中心層2から剥離してしまうという問題が発生するが、ガラス層3の中心層2側の密度が、上記範囲内である場合には、中心層2からガラス層3が剥離する問題を防止することができる。
【0037】
以上のことから、光ファイバ大型母材の製造方法の実施形態例は、中心層2の外周にガラス層3を形成する際に、ガラス層3の表面部分の密度が、0.3g/cm3以上、かつ、0.4g/cm3以下の範囲内となり、かつ、ガラス層3の中心層2側の密度が、0.5g/cm3以上、かつ、0.8g/cm3以下の範囲内となるように、バーナ8からの原料ガスの噴出量や、酸水素火炎9の火力などを適宜に設定してガラス層3を形成することとした。
【0038】
図4は多孔質母材4の半径方向の密度分布をX線を利用して得たデータである。カーブ線A、Bは中心の原料供給ノズル径を小さくしたバーナ(以下、小径バーナと記す)を用いてガラス層3を作製した多孔質母材4のデータであり、カーブ線Cは中心の原料供給ノズル径を大きくしたバーナ(以下、大径バーナと記す)を用いてガラス層3を作製した多孔質母材4のデータである。大径バーナは、小径バーナよりも火力が強く、ガラス層3の密度が高くなり、カーブ線Cのもの(大径バーナを用いた多孔質母材4)は、ガラス層3の表面部分の密度が0.4g/cm3よりも高くなっている。このものは、焼結して光ファイバ母材1を製造し当該光ファイバ母材1を線引きしたときに、表面部分に不要な結晶が発生した。これに対して、カーブ線A,Bのものは、ガラス層3の表面部分の密度が0.4g/cm3以下であり、これらに関しては、光ファイバ母材1の線引き工程において表面に不要な結晶が発生しなかった。
【0039】
このように表面部分の密度が0.4g/cm3以下となるようにガラス層3を形成することによって、光ファイバ母材1の表面部分の合計不純物密度を、前記適切な0.2×103ng/cm3以上、かつ、16×103ng/cm3以下の範囲内にすることができ、これにより、光ファイバ母材1の線引き工程における結晶析出を防止することができる。
【0040】
そして、以上のような光ファイバ母材1を線引きして製造された光ファイバ6は、ガラス層3から作り出された部分の合計不純物密度が、光ファイバ母材1のガラス層3と同様に、0.2×103ng/cm3以上、かつ、16×103ng/cm3以下の範囲内となる。
【0041】
ところで、アルミニウムやチタンは大気中にあるので、多孔質母材4のガラス層3の表面部分に含有されるアルミニウムやチタンの量は僅かではあるが変動することが考えられる。このことから、バナジウム濃度のみを利用することも考えられる。前記実験結果から、結晶の析出を防止することができる光ファイバ母材1の表面部分のバナジウムの不純物濃度は、0.1×102ng/cm3以上、かつ、1.0×103ng/cm3以下の範囲内であることが分かる。また、このような不純物濃度を持つ光ファイバ母材1から製造された光ファイバ6も、同様に、光ファイバ6の表面部分はバナジウムの不純物濃度が、0.1×102ng/cm3以上、かつ、1.0×103ng/cm3以下の範囲内である。
【0042】
この実施形態例によれば、光ファイバ母材1は外径φが10cm以上の大型の光ファイバ母材と成し、この光ファイバ母材1の製造工程において、中心層2の外周にガラス層3を形成する際に、そのガラス層3の表面側の密度を、0.3g/cm3以上、かつ、0.4g/cm3以下の範囲内に形成した。このため、そのガラス層3の形成工程(OVD工程)の後工程である多孔質母材4の焼結工程において、不純物除去用の塩素ガスがガラス層3の内部を流れ易くなり、ガラス層3から不純物を良好に除去することができることとなる。
【0043】
この結果、製造された光ファイバ母材1はそのガラス層3の表面部分におけるアルミニウムとチタンとバナジウムの合計不純物濃度が、0.2×103ng/cm3以上、かつ、16×103ng/cm3以下の範囲内、あるいは、バナジウムの不純物濃度は、0.1×102ng/cm3以上、かつ、1.0×103ng/cm3以下の範囲内となる。
【0044】
これにより、この大型の光ファイバ母材1を線引きして光ファイバ6を製造する際に、光ファイバ母材1の表面に不要な結晶が析出することを防止することができる。これにより、外径変動が無く特性が良い光ファイバ6を安定的に製造することができることとなり、20m/s以上の高速線引きが可能となる。
【0045】
また、この実施形態例では、光ファイバ母材1の製造工程において、中心層2の周囲にガラス層3を形成する際に当該ガラス層3の表面側の密度を0.3g/cm3以上としたので、多孔質母材4の冷却時に、ガラス層3にクラックが発生するのを防止することができて、クラックに起因した光ファイバ母材1の不良発生を回避することができる。
【0046】
さらに、この実施形態例では、ガラス層3を形成する際に、ガラス層3の中心層2側の密度を0.5g/cm3以上、かつ、0.8g/cm3以下の範囲内に形成した。このため、ガラス層3が中心層2から剥離してしまうという問題を防止することができる。
【0047】
なお、この発明はこの実施形態例の形態に限定されるものではなく、様々な実施の形態を採り得る。例えば、この実施形態例では、中心層2の外周にガラス層3を形成する際に、図2(b)に示す例では、2本のバーナ8を利用しているが、このバーナ8の本数は数に限定されるものではない。
【0048】
【発明の効果】
この発明の光ファイバ大型母材の製造方法を用いて、外径が10cm以上の大型の光ファイバ母材を製造することにより、例えば、ガラス層の表面部分は、アルミニウムとチタンとバナジウムの合計不純物濃度が0.2×103ng/cm3以上、かつ、16×103ng/cm3以下の範囲内の光ファイバ大型母材、あるいは、ガラス層の表面部分は、バナジウムの不純物濃度が0.1×102ng/cm3以上、かつ、1.0×103ng/cm3以下の範囲内の光ファイバ大型母材を製造可能である。
【0049】
このようにガラス層の表面部分の不純物濃度を低くできると、光ファイバ母材を線引きして光ファイバを製造する際に、光ファイバ母材の表面に、不純物を核として不要な結晶が成長するのを防止することができる。したがって、外径が均一な光ファイバを安定的に製造することができることとなり、これに起因して高速線引きが可能となり、光ファイバの製造効率を飛躍的に向上させることができる。
【0050】
そして、このような発明の光ファイバ母材を利用して製造された光ファイバは、光ファイバ母材と同様な不純物濃度を有することになり、当該光ファイバは外径が均一で、品質が良く、信頼性を高めることができる。
【0051】
つまり、本発明の光ファイバ大型母材の製造方法によれば、その製造工程において、多孔質母材のガラス層における表面部分の密度を、0.3g/cm3以上、かつ、0.4g/cm3以下の範囲内に形成したので、多孔質母材の不純物除去工程において、ガラス層から不純物を良好に除去することができることとなり、この結果、多孔質母材を焼結して成る光ファイバ母材の表面部分の不純物濃度を、上記結晶析出を防止できる低い濃度にすることができる。
【0052】
また、多孔質母材のガラス層における中心層側の密度を0.5g/cm3以上、かつ、0.8g/cm3以下の範囲内に形成することにより、中心層からガラス層が剥離するという問題を防止することができる。
【図面の簡単な説明】
【図1】光ファイバ母材を説明するための図である。
【図2】光ファイバ母材の製造工程の一例を説明するための図である。
【図3】光ファイバ母材を線引きして光ファイバを製造する工程を説明するための図である。
【図4】多孔質母材における半径方向の密度分布の実験データを示すグラフである。
【符号の説明】
1 光ファイバ母材
2 中心層
3 ガラス層
4 多孔質母材
6 光ファイバ
Claims (2)
- 光ファイバのコアとなる中心層を形成し、
その後、その中心層の外周にガラス層を形成して多孔質母材を作製し、次に、その多孔質母材を焼結して光ファイバ母材を製造する方法で、前記光ファイバ母材の外径が10cm以上である大型の光ファイバ母材と成す場合において、
多孔質母材のガラス層において中心層側の密度を0.5g/cm3以上、かつ、0.8g/cm3以下に形成し、さらに、多孔質母材の中心層側から表面部分に向かって、少なくとも0.1g/cm3以上多孔質母材の密度を低下させ、多孔質母材のガラス層における表面部分の密度を0.3g/cm3以上、かつ、0.4g/cm3以下に形成することを特徴とした光ファイバ大型母材の製造方法。 - 光ファイバのコアとなる中心層を形成し、
その後、酸水素火炎にガラス層の原料となる四塩化珪素ガスを、火炎温度を低下させるようなフッ素含有化合物ガスを含有させずに供給してOVD法により高温下で火炎加水分解してガラス微粒子を生成し、当該生成したガラス微粒子を前記中心層の外周に堆積させてガラス層を形成することによって多孔質母材を作製し、次に、その多孔質母材を焼結して光ファイバ母材を製造する方法で、前記光ファイバ母材の外径が10cm以上である大型の光ファイバ母材と成す場合において、
少なくとも前記ガラス層の原料となるガスの噴出量と酸水素火炎の火力を設定することで、多孔質母材のガラス層において中心層側の密度を0.5g/cm3以上、かつ、0.8g/cm3以下に形成し、多孔質母材のガラス層における表面部分の密度を0.3g/cm3以上、かつ、0.4g/cm3以下に形成することを特徴とした光ファイバ大型母材の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001276728A JP4176978B2 (ja) | 2001-09-12 | 2001-09-12 | 光ファイバ大型母材の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001276728A JP4176978B2 (ja) | 2001-09-12 | 2001-09-12 | 光ファイバ大型母材の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003089542A JP2003089542A (ja) | 2003-03-28 |
JP4176978B2 true JP4176978B2 (ja) | 2008-11-05 |
Family
ID=19101387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001276728A Expired - Fee Related JP4176978B2 (ja) | 2001-09-12 | 2001-09-12 | 光ファイバ大型母材の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4176978B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4499025B2 (ja) * | 2005-12-06 | 2010-07-07 | 株式会社フジクラ | 石英ガラス多孔質母材の製造方法 |
-
2001
- 2001-09-12 JP JP2001276728A patent/JP4176978B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003089542A (ja) | 2003-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8375749B2 (en) | Method for fabricating porous silica preform | |
JP3387137B2 (ja) | ガラス母材の火炎研磨方法 | |
JPH06157058A (ja) | ガラス母材の火炎研磨方法 | |
JP5163416B2 (ja) | 多孔質ガラス母材の製造方法 | |
JP4176978B2 (ja) | 光ファイバ大型母材の製造方法 | |
JP2003171137A (ja) | 光ファイバ母材の製造方法 | |
JP2000095538A (ja) | 耐熱性誘電物体を含む物品を製造する方法 | |
JP7115095B2 (ja) | 光ファイバ用母材の製造方法 | |
US8037718B2 (en) | Method for manufacturing optical fiber preform | |
JP2003212550A (ja) | ガラス管の製造方法およびこれに用いられるターゲットロッド | |
JPH0327493B2 (ja) | ||
JP7571607B2 (ja) | 光ファイバの製造方法 | |
JP4429993B2 (ja) | 光ファイバ母材の製造方法 | |
JP3587032B2 (ja) | 光ファイバ母材の製造方法 | |
JP2003286033A (ja) | ガラス微粒子堆積体の製造方法及び製造装置 | |
JP2002362934A (ja) | 光ファイバ母材の製造装置とそれを用いた光ファイバ母材の製造方法 | |
JPH0585761A (ja) | 多孔質ガラス母材 | |
JP2003286034A (ja) | ガラス母材の製造方法 | |
JP2003335537A (ja) | 光ファイバ母材の製造方法およびこれを用いた光ファイバの製造方法 | |
JP2003171136A (ja) | 光ファイバ用多孔質材およびその製造方法、光ファイバ母材およびその製造方法 | |
JPH05116980A (ja) | 光フアイバ用プリフオーム母材の製造方法 | |
JP3998228B2 (ja) | 光ファイバ多孔質母材、光ファイバガラス母材並びにこれらの製造方法 | |
JPS5924097B2 (ja) | ガラス体の製造方法 | |
JP5907565B2 (ja) | 多孔質ガラス母材製造用のバーナ | |
JP4506681B2 (ja) | ガラス母材の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040421 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070130 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070402 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080430 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080530 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080715 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080805 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080821 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110829 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4176978 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110829 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120829 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120829 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130829 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |