WO2023182784A1 - 이차전지용 실링 갭 측정설비 및 측정방법 - Google Patents

이차전지용 실링 갭 측정설비 및 측정방법 Download PDF

Info

Publication number
WO2023182784A1
WO2023182784A1 PCT/KR2023/003749 KR2023003749W WO2023182784A1 WO 2023182784 A1 WO2023182784 A1 WO 2023182784A1 KR 2023003749 W KR2023003749 W KR 2023003749W WO 2023182784 A1 WO2023182784 A1 WO 2023182784A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing
distance
sealing gap
starting point
outer end
Prior art date
Application number
PCT/KR2023/003749
Other languages
English (en)
French (fr)
Inventor
오영주
이규상
이점열
김규형
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202380014247.6A priority Critical patent/CN118215819A/zh
Priority claimed from KR1020230036787A external-priority patent/KR20230137265A/ko
Publication of WO2023182784A1 publication Critical patent/WO2023182784A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sealing gap measurement equipment and measurement method for secondary batteries that can accurately measure the sealing gap located between the electrode assembly receiving portion of the pouch and the sealing portion.
  • secondary batteries refer to batteries that can be charged and discharged, unlike primary batteries that cannot be recharged. These secondary batteries are widely used in phones, laptop computers, camcorders, and electric vehicles.
  • the above secondary batteries are classified into can-type secondary batteries in which the electrode assembly is embedded in a metal can, pouch-type secondary batteries in which the electrode assembly is embedded in a pouch, and button-type secondary batteries in the shape of a coin.
  • the pouch-type secondary battery includes an electrode assembly and a pouch accommodating the electrode assembly.
  • the electrode assembly has a structure in which an anode and a cathode are alternately arranged with a separator interposed therebetween.
  • the pouch includes a receiving portion that accommodates the electrode assembly, and a sealing portion formed on an edge of the receiving portion to seal the receiving portion.
  • the secondary battery three of the four edges formed on the pouch in the assembly process are first sealed to form a sealing part, and the remaining edge formed in the pouch is sealed in a degassing process to form a sealing part.
  • the sealing portion formed on the pouch must be formed taking into account the overall width of the electrode assembly, insulation defects, and sealing defects.
  • the full width of the electrode assembly may include a sealing gap located between the receiving part and the sealing part.
  • the sealing gap is required to have a certain width to ensure safety. That is, the sealing gap has a width set according to the thickness of the receiving portion.
  • the sealing gap may have different values in the assembly process and the degas process. That is, during the assembly process, the inside of the accommodating part is filled with the electrode assembly, electrolyte, and gas, and during the degassing process, the gas inside the accommodating part is discharged, so a difference in the sealing gap may occur.
  • the difference in the sealing gap between the assembly process and the degassing process may cause defects in the sealing part folding process, and accordingly, it is necessary to accurately measure the sealing gap in the degassing process.
  • the sealing gap located between the receiving part of the pouch and the sealing part was measured using a steel ruler.
  • the steel ruler had a problem in that the measurement value varied depending on the number of measurements or each operator, making it difficult to accurately measure the sealing gap.
  • the object of the present invention is to provide a sealing gap measurement equipment and method for secondary batteries that can accurately measure the sealing gap located between the electrode assembly receiving portion of the pouch and the sealing portion.
  • the present invention provides a sealing gap measurement equipment for secondary batteries that measures a sealing gap located between an electrode assembly receiving portion of a pouch and a sealing portion, comprising: a first measuring device for obtaining an inner starting point and an outer end point of the sealing portion; An origin structure provided with a vertical reference surface corresponding to a point moving a preset first distance (X1) in the direction of the electrode assembly receiving portion from a first reference origin (O1) located between the inner starting point and the outer end point; a second measuring device for obtaining a second distance (X2) from the vertical reference plane to the electrode assembly receiving portion; and a control unit that obtains the sealing gap based on the first distance (X1), the second distance (X2), and the third distance (X3) from the inner starting point to the first reference origin (O1). there is.
  • the control unit may set the first reference origin between the inner starting point and the outer end point and obtain a third distance (X3) from the inner starting point to the first reference origin (O1).
  • the first measuring device includes: a first displacement sensor that measures the inner starting point and outer end point of the sealing portion by radiating a beam to one surface of the pouch; And it may include a second displacement sensor that measures the inner starting point and outer end point of the sealing part by irradiating a beam to the other surface of the pouch.
  • the control unit controls the inner starting point of the sealing part measured by the first displacement sensor and the second displacement sensor, respectively.
  • the point where the start point and the outer end point overlap can be set as the inner start point and outer end point of the sealing part.
  • the control unit may obtain the thickness of the sealing width based on the distance between the sealing width measured by the first displacement sensor and the sealing width measured by the second displacement sensor.
  • the second measuring device irradiates a beam toward the vertical reference plane to set the point where the vertical reference plane is located as the second reference origin (O2), and the electrode assembly receiving portion passes through the second reference origin (O2).
  • the second distance (X2) from the second reference origin (O2) to the electrode assembly accommodating part can be obtained by irradiating the beam.
  • the second measuring device may include a third displacement sensor that irradiates a beam toward the vertical reference surface and sets a point where the vertical reference surface is located as the second reference origin (O2).
  • the control unit may obtain a value obtained by subtracting the third distance (X3) from the sum of the first distance (X1) and the second distance (X2) as the sealing gap.
  • the second reference origin O2 may be set not to be located between the inner starting point and the outer end point of the sealing part.
  • the origin structure may further include a horizontal reference plane extending from the vertical reference plane in the sealing width direction and having a through hole through which the beam irradiated from the first displacement sensor passes.
  • the control unit may determine the product to be defective if the sealing gap measured by the second measuring device is smaller or larger than the previously input sealing gap.
  • a sealing gap measuring method for a secondary battery for measuring a sealing gap located between an electrode assembly receiving portion and a sealing portion of a pouch of the present invention comprising: a first measuring step of obtaining an inner starting point and an outer end point of the sealing portion; An origin setting step of setting a vertical reference plane corresponding to a point moved a preset first distance (X1) in the direction of the electrode assembly receiving portion from a first reference origin located between the inner starting point and the outer end point; A second measuring step of obtaining a second distance (X2) from the vertical reference plane to the electrode assembly receiving portion; And a sealing gap measurement step of obtaining the sealing gap based on the first distance (X1), the second distance (X2), and the third distance (X3) from the inner starting point to the first reference origin (O1). It can be included.
  • the first reference origin is set between the inner starting point and the outer end point, and then the third distance (X3) between the inner starting point and the first reference origin can be obtained.
  • the first measurement step includes: measuring the inner starting point and outer end point of the sealing portion by irradiating a beam to one surface of the pouch; a second process of measuring the inner starting point and outer end point of the sealing portion by irradiating a beam to the other side of the pouch; And if the inner starting point and the outer end point of the sealing part measured in the first process and the second process do not match, a third step that sets the point where the inner starting point and the outer end point of the sealing part overlap as the inner starting point and the outer end point of the sealing part. Additional processes may be included.
  • the first measurement step may further include a process of obtaining the thickness of the sealing width based on the distance between the sealing width measured by the first process and the sealing width measured by the second process.
  • the beam is irradiated toward the vertical reference plane to set the point where the vertical reference plane is located as the second reference origin (O2), and then the electrode assembly is set to pass through the second reference origin (O2).
  • a second distance (X2) from the second reference origin (O2) to the electrode assembly accommodating part may be obtained by radiating a beam to the receiving part.
  • the second reference origin O2 may be set not to be located between the inner starting point and the outer end point of the sealing part.
  • a value obtained by subtracting the third distance (X3) from the sum of the first distance (X1) and the second distance (X2) may be obtained as a sealing gap.
  • the sealing gap measurement step After the sealing gap measurement step is completed, it further includes an inspection step of determining whether the measured sealing gap is defective, and the inspection step determines that the measured sealing gap is defective if it is smaller or larger than the pre-entered sealing gap. You can.
  • the sealing gap measuring equipment for secondary batteries of the present invention includes a first measuring device and a second measuring device, so that it can accurately measure the sealing gap located between the electrode assembly receiving part of the pouch and the sealing part, and as a result, whether the sealing gap is defective. can be accurately determined.
  • FIG. 1 is a cross-sectional view showing a secondary battery of the present invention.
  • Figure 2 is a perspective view showing a sealing gap measurement equipment for secondary batteries according to the first embodiment of the present invention.
  • Figure 3 is a partial enlarged view of Figure 2.
  • Figure 4 is a front view of Figure 2.
  • Figure 5 is an explanatory diagram showing the state of sealing gap measurement using a sealing gap measuring equipment for secondary batteries according to the first embodiment of the present invention.
  • Figure 6 is a perspective view showing the origin structure of the sealing gap measurement equipment for secondary batteries according to the first embodiment of the present invention.
  • Figure 7 is an explanatory diagram showing the state of measuring the sealing width of the sealing gap measuring equipment for secondary batteries according to the first embodiment of the present invention.
  • Figure 8 is a flowchart showing a method of measuring a sealing gap for a secondary battery according to the first embodiment of the present invention.
  • Figure 9 is a schematic diagram showing the first measurement step.
  • Figure 10 is a schematic diagram showing the origin setting step and the second measurement step.
  • Figure 11 is a schematic diagram showing the sealing gap measurement step.
  • Figure 12 is a plan view showing a sealing gap measurement equipment for secondary batteries according to a second embodiment of the present invention.
  • FIG. 1 is a perspective view showing a secondary battery of the present invention.
  • the secondary battery 1 of the present invention includes an electrode assembly, an electrolyte (not shown), and a pouch 10 for accommodating the electrode assembly and the electrolyte.
  • the electrode assembly has a structure in which a plurality of electrodes and a plurality of separators are alternately arranged.
  • the plurality of electrodes may be an anode and a cathode, and the plurality of electrodes are provided with electrode tabs, and electrode leads are coupled to the electrode tabs.
  • the pouch 10 includes an electrode assembly receiving portion 11 that accommodates the electrode assembly, a gas pocket portion 12 that collects gas generated in the electrode assembly receiving portion 11, an electrode assembly receiving portion 11, and a gas pocket. It includes a sealing portion 13 that seals the portion 12, wherein the sealing portion 13 includes a sealing surface that seals the edges of the electrode assembly receiving portion 11 and the gas pocket portion 12, and an electrode assembly receiving portion. It includes a re-sealing surface that seals between the gas pocket portion and the gas pocket portion.
  • a sealing gap 14 is provided in the full width direction of the pouch 10 (left and right directions of the pouch as seen in FIG. 1) to prevent defects from occurring when sealing the pouch, and the sealing gap 14 is located at the electrode assembly receiving portion. It is located between (11) and the sealing part (13). In other words, the sealing gap 14 may be a free space that is not sealed.
  • the sealing gap 14 is required to have a certain width to ensure safety, and accordingly, it is necessary to measure whether the sealing gap secured in the pouch is accurately secured.
  • the sealing gap measurement equipment for secondary batteries according to the first embodiment of the present invention can be used.
  • Figure 2 is a perspective view showing a sealing gap measurement equipment for secondary batteries according to the first embodiment of the present invention
  • Figure 3 is a partial enlarged view of Figure 2
  • Figure 4 is a front view of Figure 2
  • Figure 5 is a view of the present invention.
  • It is an explanatory diagram showing the actual gap measurement state using the sealing gap measuring equipment for secondary batteries according to the first embodiment
  • Figure 6 is a perspective view showing the origin structure of the sealing gap measuring equipment for secondary batteries according to the first embodiment of the present invention
  • Figure 7 is an explanatory diagram showing the state of measuring the sealing width of the sealing gap measuring equipment for secondary batteries according to the first embodiment of the present invention.
  • the sealing gap measurement equipment for secondary batteries is for measuring the sealing gap located between the electrode assembly receiving part and the sealing part of the pouch.
  • the sealing gap measurement equipment for secondary batteries includes a first measurement device 100, an origin structure 200, and a second measurement device ( 300) and a control unit 400.
  • the first measuring device 100 is used to obtain the inner starting point and outer end point of the sealing part.
  • the first measuring device 100 obtains the sealing width S through the inner starting point (a) and the outer end point (b) of the sealing portion 13 provided in the pouch. And a first reference origin (O1) is set within the sealing width (S).
  • the sealing of the pouch is performed in the direction from the electrode assembly receiving part to the gas pocket part, and the point where the sealing starts is called the inner starting point (a), and the point where the sealing ends is called the outer end point (b).
  • the first measuring device 100 includes a first displacement sensor 110 and a second displacement sensor 120, and the first displacement sensor 110 and the second displacement sensor 120 are connected to the pouch 10.
  • the first displacement sensor 110 and the second displacement sensor 120 are provided to correspond to both sides (the top and bottom of the pouch as seen in FIG. 1), and the inner starting point (a) and the outer end point (b) of the sealing portion 13 are determined by irradiating a beam on the surface of the pouch. Measure each.
  • the first displacement sensor 110 and the second displacement sensor 120 obtain the sealing width (S) through the distance between the inner starting point (a) and the outer end point (b).
  • the first displacement sensor 110 and the second displacement sensor 120 generate a virtual horizontal line c to match the sealing surfaces formed on both surfaces of the pouch 10, and the virtual horizontal line c
  • the point that deviates from the horizontal line (c) is considered to be an area outside the seal, and the inner starting point (a) and outer end point (b) are designated.
  • the sealing width (S) can be calculated by measuring the distance between the inner starting point (a) and the outer end point (b).
  • first displacement sensor 110 and the second displacement sensor 120 may be line laser sensors.
  • a line laser sensor refers to a device that reads information such as letters and figures on the surface of paper or objects, such as scanners and facsimiles.
  • the first measuring device 100 may further include a first vertical moving member 130. That is, the first vertical movement member 130 moves the first and second displacement sensors 120 toward both surfaces of the pouch (the upper and lower surfaces of the pouch as seen in FIG. 2) or away from both surfaces of the pouch. The first and second displacement sensors 120 are moved. Accordingly, the first vertical moving member 130 can simultaneously move the first and second displacement sensors 120 in the direction toward the pouch or in the opposite direction, and as a result, the first and second displacement sensors 120 The distance can be adjusted so that the beam is accurately irradiated to the surface of the pouch.
  • the first measuring device 100 may further include a first full-width moving member 140. That is, the first full-width moving member 140 moves the first and second displacement sensors 120 in the full-width direction of the pouch (left and right directions of the pouch as seen in FIG. 2) so that the first and second displacement sensors 120 Can be placed on the sealing part of the pouch. Accordingly, the first and second displacement sensors 120 can be accurately positioned on the sealing part of the pouch, and as a result, the sealing width of the sealing part can be accurately measured.
  • the origin structure 200 provides a vertical reference surface corresponding to a point moved a preset first distance (X1) in the direction of the electrode assembly receiving portion from the first reference origin (O1) located between the inner starting point and the outer end point. do.
  • the origin structure 200 is used to set a second reference origin (O2) for measuring the sealing gap, and moves a first distance (X1) from the first reference origin (O1) in the direction of the electrode assembly accommodating part.
  • a vertical reference plane 210 disposed at one point is provided.
  • the origin structure 200 moves the vertical reference surface 210 horizontally a first distance (X1) from the first reference origin (O1) toward the electrode assembly receiving portion, and then moves the point to the second reference origin (O2). Set it.
  • the vertical reference surface 210 sets the second reference origin O2 at a point that is not located within the sealing width S. This is to prevent measurement errors from occurring due to the vertical reference plane when measuring the seal width through the first and second displacement sensors 110 and 120.
  • the origin structure 200 may further include a horizontal reference surface 220 for positioning the first and second displacement sensors 110 and 120 and the third displacement sensor 310 on the same vertical plane.
  • the horizontal reference surface 220 extends long from the bottom of the vertical reference surface 210 in the sealing width direction, and a through hole 221 through which the beam irradiated from the first displacement sensor 110 passes is formed. Accordingly, in the origin structure 200, the beam of the third displacement sensor 310 is irradiated to the vertical reference plane 210, and the beam of the first displacement sensor 110 is irradiated to the through hole of the horizontal reference plane 220. Accordingly, the first and second displacement sensors 120 and the third displacement sensor 310 can be adjusted to be located on the same line, and as a result, the occurrence of errors when measuring the seal width can be minimized.
  • the second measuring device 300 is used to obtain a second distance (X2) from the vertical reference plane to the electrode assembly receiving portion.
  • the second measuring device 300 includes a third displacement sensor 310, and the third displacement sensor 310 irradiates a beam toward the vertical reference plane 210 to measure the vertical reference plane 210.
  • the point where (210) is located is set as the second reference origin (O2), and a beam is radiated to the electrode assembly receiving portion 11 so as to pass through the second reference origin (O2) to reach the second reference origin (O2).
  • a second distance (X2) from to the electrode assembly receiving portion 11 is obtained.
  • the second measuring device 300 may further include a second vertical moving member 320.
  • the second vertical moving member 320 may raise or lower the third displacement sensor 310 so that the third displacement sensor 310 can irradiate the beam toward the vertical reference surface 210 of the origin structure 200. there is. Accordingly, the position of the third displacement sensor 310 can be accurately adjusted so that the beam of the third displacement sensor 310 is irradiated to the vertical reference surface 210 of the origin structure 200.
  • the second measuring device 300 may further include a second full-width moving member 250.
  • the second full-width moving member 250 may move the third displacement sensor 310 forward or backward toward the pouch in order to adjust the distance between the third displacement sensors 310 based on the vertical reference surface 210. there is. Accordingly, the distance between the vertical reference surface 210 and the third displacement sensor can be adjusted.
  • the control unit 400 is configured to obtain the sealing gap based on the first distance (X1), the second distance (X2), and the third distance (X3) from the inner starting point to the first reference origin (O1). .
  • control unit 400 sets the first reference origin (O1) between the inner starting point (a) and the outer end point (b), and sets the first reference origin (O1) from the inner starting point (a) to the first reference origin (O1).
  • Obtain the third distance (X3) of And the sealing gap can be obtained based on the first distance (X1), the second distance (X2), and the third distance (X3).
  • control unit 400 may obtain the sealing gap 14 by subtracting the third distance (X3) from the sum of the first distance (X1) and the second distance (X2).
  • control unit 400 may set the first reference origin O1 at the center point of the sealing width S. This means that the distance between the inner starting point and the first reference origin and the distance between the outer end point and the first reference origin are symmetrical, thereby increasing the efficiency of calculation.
  • the control unit 400 The point where the inner starting point (a) and the outer end point (b) of the sealing part 13, respectively measured by the first displacement sensor 110 and the second displacement sensor 120, overlap is the point of the sealing part 13. Set the inner starting point (a) and the outer end point (b).
  • control unit 400 controls the inner starting point (a1) and the outer end point (b2) measured by the first displacement sensor 110, the inner starting point (a2) measured by the second displacement sensor 120, and If the outer end point (b2) does not match, the point where the inner starting point and the outer end point of the sealing portion 13 measured by the first displacement sensor 110 and the second displacement sensor 120 overlap is located inside the sealing portion. Set as the starting point and outer end point.
  • the control unit 400 uses the overlapping inner starting point (a1) of the upper sealing surface among the inner starting point (a1) of the upper sealing surface and the inner starting point (a2) of the lower sealing surface as the inner starting point of the sealing part.
  • control unit 400 obtains the thickness of the sealing width based on the distance between the sealing width measured by the first displacement sensor 110 and the sealing width measured by the second displacement sensor 120. You can. Accordingly, the thickness of the sealing width can be accurately measured without separate equipment.
  • control unit 400 may determine the product to be defective if the sealing gap 14 measured by the second measuring device 300 is smaller or larger than the previously input sealing gap. Accordingly, it is possible to accurately measure and inspect whether the sealing gap located in the pouch is defective. Meanwhile, the input sealing gap can be set according to the size of the pouch and the capacity of the electrode assembly.
  • the sealing gap measurement equipment for secondary batteries according to the first embodiment of the present invention is provided in a pouch by including a first measuring device 100, an origin structure 200, a second measuring device 300, and a control unit 400.
  • the sealing gap can be accurately measured.
  • Figure 8 is a flowchart showing a method of measuring a sealing gap for a secondary battery according to the first embodiment of the present invention.
  • the method of measuring the sealing gap for a secondary battery according to the first embodiment of the present invention is for measuring the sealing gap located between the electrode assembly receiving part of the pouch and the sealing part, as shown in FIG. 8.
  • the method of measuring a sealing gap for a secondary battery according to the first embodiment of the present invention includes a first measurement step, an origin setting step, a second measurement step, and a sealing gap measurement step.
  • the first measurement step uses a first measurement device 100, and the first measurement device 100 includes a first displacement sensor 110 and a second displacement sensor 120.
  • the sealing width (S) is obtained through the inner starting point (a) and the outer end point (b) of the sealing portion 13 provided in the pouch.
  • a first reference origin (O1) is set within the sealing width.
  • the first measurement step is a first process of measuring the inner starting point and outer end point of the sealing portion by radiating a beam to one side of the pouch, and measuring the inner starting point and outer end point of the sealing portion by radiating a beam to the other side of the pouch. It includes a second process.
  • the first measurement step is to measure the inside of the sealing portion formed on both sides of the pouch through the first displacement sensor 110 and the second displacement sensor 120 provided on both surfaces of the pouch. Measure the starting point and outer end point.
  • the first displacement sensor 110 measures the inner starting point (a1) and the outer end point (b1) of the upper sealing surface formed on the upper surface of the pouch
  • the second displacement sensor 120 measures the lower sealing surface formed on the lower surface of the pouch.
  • the sealing width (S) is obtained by measuring the distance between the inner starting point and the outer end point of the sealing surface measured by the first and second displacement sensors 110 and 120.
  • a first reference origin (O1) is set within the sealing width (S).
  • the first reference origin can be set at the center point of the sealing width.
  • the point where the inner starting point and the outer end point of the sealing portion provided on both surfaces of the pouch overlap Set the inner starting point and outer end point of the sealing part.
  • the point where the inner starting point and the outer end point of the sealing part overlap is the inner starting point of the sealing part. It further includes a third process of setting the outer endpoint.
  • the inner starting point (a1) of the upper sealing surface is set among the inner starting point (a1) of the upper sealing surface and the inner starting point (a2) of the lower sealing surface
  • the upper sealing surface is Set the outer end point (b2) of the lower sealing surface among the outer end point (b1) and the outer end point (b2) of the lower sealing surface.
  • the first measurement step further includes a process of obtaining the thickness of the sealing width based on the distance between the sealing width measured by the first process and the sealing width measured by the second process. That is, the thickness of the sealing width can be obtained based on the distance between the sealing width measured by the first displacement sensor 110 and the sealing width measured by the second displacement sensor 120.
  • the first measurement step is to set the first reference origin (O1) between the inner starting point (a) and the outer end point (b), and then measure the distance between the inner starting point (a) and the first reference origin (O1). Gain 3 distance (X3).
  • the origin setting step uses the origin structure 200, and the origin structure 200 includes a vertical reference plane 210 and a horizontal reference plane 220.
  • the origin setting step is a preset first distance in the direction of the electrode assembly receiving portion from the first reference origin (O1) located between the inner starting point (a) and the outer end point (b), as shown in FIG. (X1) Set the vertical reference plane 210 corresponding to the moved point.
  • the beam irradiated from the first displacement sensor 110 passes through the through hole 221 formed in the horizontal reference surface 220 of the origin structure 200, and thus the first and second displacement sensors (110) (120) and the third displacement sensor 310, which will be described later, can be located in the same vertical plane.
  • the horizontal reference surface 220 extends long from the bottom of the vertical reference surface 210 in the sealing width direction. Accordingly, in the origin structure 200, the beam of the third displacement sensor 310 is irradiated to the vertical reference plane 210, and the beam of the first displacement sensor 110 is irradiated to the through hole of the horizontal reference plane 220. Accordingly, the first and second displacement sensors 120 and the third displacement sensor 310 can be adjusted to be located on the same line, and as a result, the occurrence of errors when measuring the seal width can be minimized.
  • the second measurement step uses a second measurement device 300, and the second measurement device 300 includes a third displacement sensor 310.
  • the second measurement step irradiates a beam toward the vertical reference surface 210 to set the point where the vertical reference surface 210 is located as the second reference origin (O2), and then sets the point where the vertical reference surface 210 is located as the second reference origin (O2).
  • a second distance (X2) from the second reference origin (O2) to the electrode assembly receiving portion (11) is obtained by radiating a beam to the electrode assembly receiving portion so as to pass through.
  • the second reference origin O2 is set not to be located between the inner starting point and the outer end point of the sealing part.
  • the sealing gap measurement step is based on the first distance (X1), the second distance (X2), and the third distance (X3) from the inner starting point to the first reference origin (O1). Thus, the sealing gap is obtained.
  • a value obtained by subtracting the third distance (X3) from the sum of the first distance (X1) and the second distance (X2) can be obtained as the sealing gap.
  • the sealing gap measuring step may further include an inspection process to determine whether the measured sealing gap is defective.
  • the inspection process determines it as defective if the measured sealing gap is smaller or larger than the pre-entered sealing gap.
  • the sealing gap measurement method for a secondary battery according to the first embodiment of the present invention can accurately measure the sealing gap and accurately inspect whether the sealing gap is defective.
  • the sealing gap measurement equipment 1000 for secondary batteries may include a first measurement device, an origin structure, a second measurement device, and a control unit.
  • the first measuring device, the origin structure, the second measuring device, and the control unit are in the first embodiment. It has the same configuration as the first measuring device, the origin structure, the second measuring device, and the control unit of the sealing gap measuring facility for secondary batteries, and therefore, overlapping descriptions will be omitted.
  • the sealing gap measurement equipment 1000 for secondary batteries includes a jig device 410 on which a pouch is placed, and the first and second measuring devices 100 and 300 in the full length direction of the pouch. It may further include a guide device 500 that moves the slide.
  • the jig device 410 fixes the pouch so that it does not move as the pouch is placed.
  • the guide device 500 moves the jig device 410 in the direction of the full length of the pouch to inspect the entire sealing gap formed in the pouch for defects. Meanwhile, the guide device 500 includes a guide rail 510 formed long in the direction of the full length of the pouch, and a guide member 520 that is movably coupled to the guide rail 510 and moves the jig device along the guide rail. do.
  • the sealing gap measuring equipment for secondary batteries can measure the entire sealing gap formed in the full length direction of the pouch, and as a result, can inspect whether the entire sealing gap is defective.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 파우치의 전극조립체 수용부와 실링부 사이에 위치한 실링 갭을 측정하는 이차전지용 실링 갭 측정설비로서, 상기 실링부의 내측 시작점과 외측 끝점을 획득하는 제1 측정장치; 상기 내측 시작점과 상기 외측 끝점 사이에 위치한 제1 기준 원점(O1)으로부터 상기 전극조립체 수용부 방향으로 기설정된 제1 거리(X1)를 이동한 지점에 대응되는 수직 기준면이 마련된 원점 구조물; 상기 수직 기준면으로부터 상기 전극조립체 수용부까지의 제2 거리(X2)를 획득하는 제2 측정장치; 및 상기 제1 거리(X1), 제2 거리(X2) 및 상기 내측 시작점에서 제1 기준 원점(O1)까지의 제3 거리(X3)를 기초로하여 상기 실링 갭을 획득하는 제어부를 포함한다.

Description

이차전지용 실링 갭 측정설비 및 측정방법
관련출원과의 상호인용
본 출원은 2022년 03월 21일자 한국특허출원 제10-2022-0035013호, 및 2023년 03월 21일자 한국특허출원 제10-2023-0036787호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 파우치의 전극조립체 수용부와 실링부 사이에 위치한 실링 갭을 정확히 측정할 수 있는 이차전지용 실링 갭 측정설비 및 측정방법에 관한 것이다.
일반적으로 이차전지(secondary battery)는 충전이 불가능한 일차 전지와는 달리 충전 및 방전이 가능한 전지를 말하며, 이러한 이차전지는 폰, 노트북 컴퓨터, 캠코더 및 전기자동차 등에 널리 사용되고 있다.
상기한 이차전지는, 전극조립체가 금속 캔에 내장되는 캔형 이차전지, 전극조립체가 파우치에 내장되는 파우치형 이차전지, 동전 형태를 가진 버튼형 이차전지로 분류된다.
상기 파우치형 이차전지는 전극조립체와, 상기 전극조립체를 수용하는 파우치를 포함한다. 상기 전극조립체는 분리막이 개재된 상태로 양극과 음극이 교대로 배치되는 구조를 가진다. 상기 파우치는 전극조립체를 수용하는 수용부와, 상기 수용부의 테두리에 형성되면서 상기 수용부를 밀봉하는 실링부를 포함한다.
한편, 이차전지는 조립공정에서 파우치에 형성된 4개의 테두리 중 3개의 테두리를 먼저 실링하여 실링부를 형성하고, 파우치에 형성된 나머지 1개의 테두리는 디가싱 공정에서 실링하여 실링부를 형성한다.
여기서 파우치에 형성되는 실링부는 전극조립체의 전폭, 절연 불량 및 실링 불량을 고려하여 형성되어야 한다. 한편, 전극조립체의 전폭은, 수용부로부터 실링부 사이에 위치한 실링 갭을 포함할 수 있다.
상기 실링 갭은 안전성 확보를 위해 일정 폭이 요구된다. 즉, 상기 실링 갭은 수용부의 두께에 따라 설정된 폭이 설정되어 있다. 특히, 실링 갭은 조립 공정과 디가스 공정에서 그 값이 서로 다를 수 있다. 즉, 조립 공정 시에는 수용부 내부에 전극조립체, 전해액 및 가스가 채워져 있고, 디가스 공정 시에는 수용부 내부의 가스가 배출되어 있어, 실링 갭의 차이가 발생할 수 있다.
여기서 조립공정과 디가싱 공정에서의 실링 갭 차이는 실링부 폴딩 공정에서 불량을 유발할 수 있으며, 이에 따라 디가싱 공정에서의 실링 갭을 정확하게 측정하는 것이 필요한 실정이다.
한편, 종래에는 파우치의 수용부와 실링부 사이에 위치한 실링 갭을 스틸 자를 사용하여 측정하였다. 그러나 스틸 자는 측정 횟수 또는 작업자마다 측정값이 달라지는 문제점이 있었으며, 이에 따라 실링 갭의 정확한 측정이 어려운 문제점이 있었다.
본 발명은 파우치의 전극조립체 수용부와 실링부 사이에 위치한 실링 갭을 정확히 측정할 수 있는 이차전지용 실링 갭 측정설비 및 측정방법을 제공하는 것을 과제로 한다.
본 발명은 파우치의 전극조립체 수용부와 실링부 사이에 위치한 실링 갭을 측정하는 이차전지용 실링 갭 측정설비로서, 상기 실링부의 내측 시작점과 외측 끝점을 획득하는 제1 측정장치; 상기 내측 시작점과 상기 외측 끝점 사이에 위치한 제1 기준 원점(O1)으로부터 상기 전극조립체 수용부 방향으로 기설정된 제1 거리(X1)를 이동한 지점에 대응되는 수직 기준면이 마련된 원점 구조물; 상기 수직 기준면으로부터 상기 전극조립체 수용부까지의 제2 거리(X2)를 획득하는 제2 측정장치; 및 상기 제1 거리(X1), 제2 거리(X2) 및 상기 내측 시작점에서 제1 기준 원점(O1)까지의 제3 거리(X3)를 기초로하여 상기 실링 갭을 획득하는 제어부를 포함할 수 있다.
상기 제어부는, 상기 내측 시작점과 상기 외측 끝점 사이에 상기 제1 기준 원점을 설정하고, 상기 내측 시작점에서 상기 제1 기준 원점(O1)까지의 제3 거리(X3)를 획득할 수 있다.
상기 제1 측정장치는, 상기 파우치의 일면에 빔을 조사하여 실링부의 내측 시작점과 외측 끝점을 측정하는 제1 변위센서; 및 상기 파우치의 타면에 빔을 조사하여 실링부의 내측 시작점과 외측 끝점을 측정하는 제2 변위센서를 포함할 수 있다.
상기 제어부는, 상기 제1 변위센서와 상기 제2 변위센서에 의해 측정된 실링부의 내측 시작점과 외측 끝점이 일치하지 않으면, 상기 제1 변위센서와 상기 제2 변위센서에 의해 각각 측정된 실링부의 내측 시작점과 외측 끝점이 중첩되는 지점을 실링부의 내측 시작점과 외측 끝점으로 설정할 수 있다.
상기 제어부는, 상기 제1 변위센서에 의해 측정된 실링폭과 상기 제2 변위센서에 의해 측정된 실링폭 사이의 거리를 기초로하여 실링폭의 두께를 획득할 수 있다.
상기 제2 측정장치는, 상기 수직 기준면을 향해 빔을 조사하여 상기 수직 기준면이 위치한 지점을 제2 기준 원점(O2)으로 설정하고, 상기 제2 기준 원점(O2)을 통과하도록 상기 전극조립체 수용부에 빔을 조사하여 상기 제2 기준 원점(O2)에서 상기 전극조립체 수용부까지의 제2 거리(X2)를 획득할 수 있다.
상기 제2 측정장치는, 상기 수직 기준면을 향해 빔을 조사하여 상기 수직 기준면이 위치한 지점을 제2 기준 원점(O2)으로 설정하는 제3 변위센서를 포함할 수 있다.
상기 제어부는, 상기 제1 거리(X1)와 제2 거리(X2)의 합에서 상기 제3 거리(X3)를 뺀 값을 실링 갭으로 획득할 수 있다.
상기 제2 기준 원점(O2)은 상기 실링부의 내측 시작점과 외측 끝점 사이에 위치하지 않게 설정될 수 있다.
상기 원점 구조물은, 상기 수직 기준면으로부터 상기 실링폭 방향으로 연장되고, 상기 제1 변위센서로부터 조사된 빔이 통과하는 관통구멍이 형성된 수평 기준면을 더 포함할 수 있다.
상기 제어부는, 상기 제2 측정장치에 의해 측정된 실링 갭이 미리 입력된 실링 갭 보다 작아지거나 또는 커지면 불량으로 판별할 수 있다.
한편, 본 발명의 파우치의 전극조립체 수용부와 실링부 사이에 위치한 실링 갭을 측정하는 이차전지용 실링 갭 측정방법으로서, 상기 실링부의 내측 시작점과 외측 끝점을 획득하는 제1 측정단계; 상기 내측 시작점과 외측 끝점 사이에 위치한 제1 기준 원점으로부터 상기 전극조립체 수용부 방향으로 기설정된 제1 거리(X1) 이동한 지점에 대응하는 수직 기준면을 설정하는 원점 설정단계; 상기 수직 기준면으로부터 상기 전극조립체 수용부까지의 제2 거리(X2)를 획득하는 제2 측정단계; 및 상기 제1 거리(X1), 제2 거리(X2) 및 상기 내측 시작점에서 제1 기준 원점(O1)까지의 제3 거리(X3)를 기초로하여 상기 실링 갭을 획득하는 실링 갭 측정단계를 포함할 수 있다.
상기 제1 측정단계는, 내측 시작점과 외측 끝점 사이에 상기 제1 기준 원점을 설정하고, 다음으로 내측 시작점과 제1 기준 원점까지의 제3 거리(X3)를 획득할 수 있다.
상기 제1 측정단계는, 상기 파우치의 일면에 빔을 조사하여 실링부의 내측 시작점과 외측 끝점을 측정하는 제1 공정; 상기 파우치의 타면에 빔을 조사하여 실링부의 내측 시작점과 외측 끝점을 측정하는 제2 공정; 및 상기 제1 공정과 상기 제2 공정에서 측정된 상기 실링부의 내측 시작점과 외측 끝점이 일치하지 않으면, 실링부의 내측 시작점과 외측 끝점이 중첩되는 지점을 실링부의 내측 시작점과 외측 끝점으로 설정하는 제3 공정을 더 포함할 수 있다.
상기 제1 측정단계는, 제1 공정에 의해 측정된 실링폭과 제2 공정에 의해 측정된 실링폭 사이의 거리를 기초로하여 실링폭의 두께를 획득하는 공정을 더 포함할 수 있다.
상기 제2 측정단계는, 상기 수직 기준면을 향해 빔을 조사하여 상기 수직 기준면이 위치한 지점을 제2 기준 원점(O2)으로 설정하고, 다음으로 상기 제2 기준 원점(O2)을 통과하도록 상기 전극조립체 수용부에 빔을 조사하여 상기 제2 기준 원점(O2)에서 상기 전극조립체 수용부까지의 제2 거리(X2)를 획득할 수 있다.
상기 제2 측정단계에서 상기 제2 기준 원점(O2)은 상기 실링부의 내측 시작점과 외측 끝점 사이에 위치하지 않게 설정할 수 있다.
상기 실링 갭 측정단계는, 상기 제1 거리(X1)와 제2 거리(X2)의 합에서 상기 제3 거리(X3)를 뺀 값을 실링 갭으로서 획득할 수 있다.
상기 실링 갭 측정단계가 완료된 후, 측정된 실링 갭의 불량여부를 판별하는 검사단계를 더 포함하고, 상기 검사단계는, 측정된 실링 갭이 미리 입력된 실링 갭 보다 작아지거나 또는 커지면 불량으로 판별할 수 있다.
본 발명의 이차전지용 실링 갭 측정설비는 제1 측정장치와 제2 측정장치를 포함함으로써 파우치의 전극조립체 수용부와 실링부 사이에 위치한 실링 갭을 정확하게 측정할 수 있고, 그 결과 실링 갭의 불량 여부를 정확히 판별할 수 있다.
도 1은 본 발명의 이차전지를 도시한 단면도.
도 2는 본 발명의 제1 실시예에 따른 이차전지용 실링 갭 측정설비를 도시한 사시도.
도 3은 도 2의 부분 확대도.
도 4는 도 2의 정면도.
도 5는 본 발명의 제1 실시예에 따른 이차전지용 실링 갭 측정설비를 이용한 실리 갭 측정상태를 나타낸 설명도.
도 6은 본 발명의 제1 실시예에 따른 이차전지용 실링 갭 측정설비의 원점 구조무을 도시한 사시도.
도 7은 본 발명의 제1 실시예에 따른 이차전지용 실링 갭 측정설비의 실링폭을 측정하는 상태를 나타낸 설명도.
도 8은 본 발명의 제1 실시예에 따른 이차전지용 실링 갭 측정방법을 나타낸 순서도.
도 9는 제1 측정단계를 나타낸 대략도.
도 10은 원점 설정단계 및 제2 측정단계를 나타낸 대략도.
도 11은 실링 갭 측정단계를 나타낸 대략도.
도 12는 본 발명의 제2 실시예에 따른 이차전지용 실링 갭 측정설비를 도시한 평면도.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
[본 발명의 이차전지]
도 1은 본 발명의 이차전지를 도시한 사시도이다.
본 발명의 이차전지(1)는 도 1을 참조하면, 전극조립체, 전해액(미도시), 전극조립체와 전해액을 수용하는 파우치(10)를 포함한다.
상기 전극조립체는 복수의 전극과 복수의 분리막이 교대로 배치되는 구조를 가진다. 상기 복수의 전극은 양극 및 음극일 수 있다, 그리고 복수의 전극에는 전극탭이 구비되고, 상기 전극탭에는 전극리드가 결합되어 있다.
상기 파우치(10)는 전극조립체를 수용하는 전극조립체 수용부(11)와, 전극조립체 수용부(11)에 발생한 가스를 포집하는 가스 포켓부(12), 전극조립체 수용부(11)와 가스 포켓부(12)를 실링하는 실링부(13)를 포함하며, 상기 실링부(13)는 전극조립체 수용부(11)와 가스 포켓부(12)의 테두리를 실링하는 실링면과, 전극조립체 수용부와 가스 포켓부 사이를 실링하는 리실링면을 포함한다.
한편, 파우치(10)의 전폭방향(도 1에서 보았을 때 파우치의 좌우방향)에는 파우치 실링시 불량 발생을 방지하기 위해 실링 갭(14)이 마련되며, 상기 실링 갭(14)은 전극조립체 수용부(11)와 실링부(13) 사이에 위치한다. 즉, 실링 갭(14)은 실링이 되지 않는 여유공간일 수 있다.
한편, 상기 실링 갭(14)은 안전성 확보를 위해 일정 폭이 요구되며, 이에 따라 파우치에 확보된 실링 갭이 정확히 확보되었는지 측정이 필요하다. 이때, 본 발명의 제1 실시예에 따른 이차전지용 실링 갭 측정설비를 사용할 수 있다.
이하, 본 발명의 제1 실시예에 따른 이차전지용 실링 갭 측정설비를 첨부된 도면을 참조하여 자세히 설명한다.
[본 발명의 제1 실시예에 따른 이차전지용 실링 갭 측정설비]
도 2는 본 발명의 제1 실시예에 따른 이차전지용 실링 갭 측정설비를 도시한 사시도이고, 도 3은 도 2의 부분 확대도이며, 도 4는 도 2의 정면도이고, 도 5는 본 발명의 제1 실시예에 따른 이차전지용 실링 갭 측정설비를 이용한 실리 갭 측정상태를 나타낸 설명도이며, 도 6은 본 발명의 제1 실시예에 따른 이차전지용 실링 갭 측정설비의 원점 구조물을 도시한 사시도이고, 도 7은 본 발명의 제1 실시예에 따른 이차전지용 실링 갭 측정설비의 실링폭을 측정하는 상태를 나타낸 설명도이다.
본 발명의 제1 실시예에 따른 이차전지용 실링 갭 측정설비는 파우치의 전극조립체 수용부와 실링부 사이에 위치한 실링 갭을 측정하기 위한 것이다.
즉, 본 발명의 제1 실시예에 따른 이차전지용 실링 갭 측정설비는 도 1 내지 도 4에 도시되어 있는 것과 같이, 제1 측정장치(100)와, 원점 구조물(200), 제2 측정장치(300) 및 제어부(400)를 포함할 수 있다.
제1 측정장치
제1 측정장치(100)는 실링부의 내측 시작점과 외측 끝점을 획득하기 위한 것이다.
즉, 제1 측정장치(100)는 상기 파우치에 구비된 실링부(13)의 내측 시작점(a)과 외측 끝점(b)을 통해 실링폭(S)을 획득한다. 그리고 상기 실링폭(S) 내에 제1 기준 원점(O1) 설정된다.
한편, 파우치의 실링은, 전극조립체 수용부에서 가스포켓부 방향으로 이루어지며, 실링이 시작되는 지점을 내측 시작점(a)이라 하고, 실링이 끝나는 지점을 외측 끝점(b)이라 한다.
일례로, 제1 측정장치(100)는 제1 변위센서(110)와 제2 변위센서(120)를 포함하고, 제1 변위센서(110)와 제2 변위센서(120)는 상기 파우치(10)를 기준으로 양쪽(도 1에서 보았을 때 파우치의 상부와 하부)에 대응되게 각각 구비되고, 파우치의 표면에 빔을 조사하여 실링부(13)의 내측 시작점(a)과 외측 끝점(b)을 각각 측정한다. 이에 따라 제1 변위센서(110)와 제2 변위센서(120)는 내측 시작점(a)과 외측 끝점(b) 사이의 거리를 통해 실링폭(S)을 획득한다.
여기서 제1 변위센서(110)와 제2 변위센서(120)는 도 7을 참조하면, 상기 파우치(10)의 양쪽 표면에 각각 형성된 실링 표면과 일치되게 가상 수평선(c)을 생성하고, 상기 가상 수평선(c)을 기준으로 벗어나는 지점을 실링 외 지역으로 간주하여 내측 시작점(a)과 외측 끝점(b)을 지정한다. 그리고 내측 시작점(a)과 외측 끝점(b) 사이의 거리를 측정하여 실링폭(S)을 계산할 수 있다.
한편, 제1 변위센서(110)와 상기 제2 변위센서(120)는 라인 레이저센서일 수 있다. 라인 레이저센서는 스캐너 및 팩시밀리 따위와 같이 종이 또는 물체 표면에 존재하는 문자와 도형 등의 정보를 판독하는 장치를 말한다.
한편, 제1 측정장치(100)는 제1 수직 이동부재(130)를 더 포함할 수 있다. 즉 제1 수직 이동부재(130)는 파우치의 양쪽 표면(도 2에서 보았을 때 파우치의 상면과 하면)을 향해 제1 및 제2 변위센서(120)를 이동시키거나 또는 파우치의 양쪽 표면으로부터 멀어지게 제1 및 제2 변위센서(120)를 이동시킨다. 이에 따라 제1 수직 이동부재(130)는 제1 및 제2 변위센서(120)를 파우치를 향하는 방향 또는 그의 반대방향으로 동시에 이동시킬 수 있으며, 그 결과 제1 및 제2 변위센서(120)의 빔이 파우치의 표면에 정확하게 조사되게 거리를 조절할 수 있다.
또한, 제1 측정장치(100)는 제1 전폭 이동부재(140)를 더 포함할 수 있다. 즉, 제1 전폭 이동부재(140)는 제1 및 제2 변위센서(120)를 파우치의 전폭방향(도 2에서 보았을 때 파우치의 좌우방향)으로 이동시켜서 제1 및 제2 변위센서(120)를 파우치의 실링부에 위치시킬 수 있다. 이에 따라 1 및 제2 변위센서(120)를 파우치의 실링부에 정확하게 위치시킬 수 있고, 그 결과 실링부의 실링폭을 정확하게 측정할 수 있다.
원점 구조물
원점 구조물(200)은 상기 내측 시작점과 상기 외측 끝점 사이에 위치한 제1 기준 원점(O1)으로부터 상기 전극조립체 수용부 방향으로 기설정된 제1 거리(X1)를 이동한 지점에 대응되는 수직 기준면을 마련한다.
즉, 원점 구조물(200)은 실링 갭 측정을 위한 제2 기준 원점(O2)을 설정하기 위한 것으로, 상기 제1 기준 원점(O1)에서 상기 전극조립체 수용부의 방향으로 제1 거리(X1)를 이동한 지점에 배치되는 수직 기준면(210)이 마련된다. 그리고 원점 구조물(200)은 수직 기준면(210)을 제1 기준 원점(O1)에서 상기 전극조립체 수용부를 향해 수평하게 제1 거리(X1) 이동시킨 다음, 그 지점을 제2 기준 원점(O2)으로 설정한다.
여기서 수직 기준면(210)은 상기 실링폭(S) 내에 위치하지 않는 지점에 제2 기준 원점(O2)을 설정한다. 이는 제1 및 제2 변위센서(110)(120)를 통해 실링폭 측정시 수직 기준면에 의해 측정 오류가 발생하는 것을 방지하기 위함이다.
특히 원점 구조물(200)은 제1 및 제2 변위센서(110)(120)와 제3 변위센서(310)를 동일한 수직면에 위치시키기 위한 수평 기준면(220)을 더 포함할 수 있다.
즉, 수평 기준면(220)은 상기 수직 기준면(210)의 하단으로부터 실링폭 방향으로 길게 연장되고, 상기 제1 변위센서(110)로부터 조사된 빔이 통과하는 관통구멍(221)이 형성된다. 이에 따라 원점 구조물(200)은 수직 기준면(210)에 제3 변위센서(310)의 빔이 조사되고, 수평 기준면(220)의 관통구멍에 제1 변위센서(110)의 빔이 조사된다. 이에 따라 제1 및 제2 변위센서(120)와 제3 변위센서(310)를 동일한 선상에 위치하게 조절할 수 있고, 그 결과 실링폭 측정시 오차 발생을 최소화할 수 있다.
제2 측정장치
제2 측정장치(300)는 상기 수직 기준면으로부터 상기 전극조립체 수용부까지의 제2 거리(X2)를 획득하기 위한 것이다.
즉, 제2 측정장치(300)는 도 5를 참조하면, 제3 변위센서(310)를 포함하고, 상기 제3 변위센서(310)는 수직 기준면(210)을 향해 빔을 조사하여 상기 수직 기준면(210)이 위치한 지점을 제2 기준 원점(O2)으로 설정하고, 상기 제2 기준 원점(O2)을 통과하도록 상기 전극조립체 수용부(11)에 빔을 조사하여 상기 제2 기준 원점(O2)에서 상기 전극조립체 수용부(11)까지의 제2 거리(X2)를 획득한다.
한편, 제2 측정장치(300)는 제2 수직 이동부재(320)를 더 포함할 수 있다. 상기 제2 수직 이동부재(320)는 원점 구조물(200)의 수직 기준면(210)을 향해 제3 변위센서(310)가 빔을 조사할 수 있도록 제3 변위센서(310)를 상승 또는 하강시킬 수 있다. 이에 따라 제3 변위센서(310)의 빔이 원점 구조물(200)의 수직 기준면(210)에 조사되게 제3 변위센서(310)의 위치를 정확하게 조절할 수 있다.
또한, 제2 측정장치(300)는 제2 전폭 이동부재(250)를 더 포함할 수 있다. 상기 제2 전폭 이동부재(250)는 수직 기준면(210)을 기준으로 제3 변위센서(310) 사이의 거리를 조절하기 위해 제3 변위센서(310)를 파우치를 향해 전진시키거나 또는 후진시킬 수 있다. 이에 따라 수직 기준면(210)과 제3 변위센서 사이의 거리를 조절할 수 있다.
제어부
제어부(400)는 제1 거리(X1), 제2 거리(X2) 및 상기 내측 시작점에서 제1 기준 원점(O1)까지의 제3 거리(X3)를 기초로하여 상기 실링 갭을 획득하기 위한 것이다.
즉, 제어부(400)는 상기 내측 시작점(a)과 상기 외측 끝점(b) 사이에 상기 제1 기준 원점(O1)을 설정하고, 상기 내측 시작점(a)에서 상기 제1 기준 원점(O1)까지의 제3 거리(X3)를 획득한다. 그리고 제1 거리(X1), 제2 거리(X2) 및 제3 거리(X3)를 기초로하여 상기 실링 갭을 획득할 수 있다.
일례로, 제어부(400)는 제1 거리(X1)와 제2 거리(X2)의 합에서 제3 거리(X3)를 뺀 값을 실링 갭(14)으로 획득할 수 있다.
한편, 제어부(400)는 상기 실링폭(S)의 중심점에 제1 기준 원점(O1)을 설정할 수 있다. 이는 내측 시작점에서 제1 기준 원점 사이의 거리, 외측 끝점에서 제1 기준 원점 사이의 거리가 대칭되며, 이에 따라 계산의 효율성을 높일 수 있다.
한편, 제어부(400)는 상기 제1 변위센서(110)와 상기 제2 변위센서(120)에 의해 측정된 실링부(13)의 내측 시작점(a)과 외측 끝점(b)이 일치하지 않으면, 상기 제1 변위센서(110)와 상기 제2 변위센서(120)에 의해 각각 측정된 실링부(13)의 내측 시작점(a)과 외측 끝점(b)이 중첩되는 지점을 실링부(13)의 내측 시작점(a)과 외측 끝점(b)으로 설정한다.
즉, 제어부(400)는 상기 제1 변위센서(110)에 의해 측정된 내측 시작점(a1) 및 외측 끝점(b2)과, 상기 제2 변위센서(120)에 의해 측정된 내측 시작점(a2) 및 외측 끝점(b2)이 일치하지 않으면, 상기 제1 변위센서(110)와 상기 제2 변위센서(120)에 의해 측정된 실링부(13)의 내측 시작점과 외측 끝점이 중첩되는 지점을 실링부의 내측 시작점과 외측 끝점으로 설정한다.
다시 말해, 제어부(400)는 도 5를 참조하면 상부 실링면의 내측 시작점(a1)과 하부 실링면의 내측 시작점(a2) 중 중첩되는 상면 실링면의 내측 시작점(a1)을 실링부의 내측 시작점으로 설정하고, 상부 실링면의 외측 끝점(b1)과 하부 실링면의 외측 끝점(b2) 중 중첩되는 하면 실링면의 외측 끝점(b2)을 실링부의 외측 끝점으로 설정한다. 이에 따라 실링폭(S)에 대한 측정 정확도를 높일 수 있다.
한편, 제어부(400)는 상기 제1 변위센서(110)에 의해 측정된 실링폭과 상기 제2 변위센서(120)에 의해 측정된 실링폭 사이의 거리를 기초로하여 실링폭의 두께를 획득할 수 있다. 이에 따라 별도의 장비 없이도 실링폭의 두께를 정확하게 측정할 수 있다.
한편, 제어부(400)는 제2 측정장치(300)에 의해 측정된 실링 갭(14)이 미리 입력된 실링 갭 보다 작아지거나 또는 커지면 불량으로 판별할 수 있다. 이에 따라 파우치에 위치한 실링 갭의 불량여부를 정확히 측정하고 검사할 수 있다. 한편, 입력된 실링 갭은 파우치의 크기 및 전극조립체의 용량에 따라 설정될 수 있다.
따라서 본 발명의 제1 실시예에 따른 이차전지용 실링 갭 측정설비는 제1 측정장치(100)와, 원점 구조물(200), 제2 측정장치(300) 및 제어부(400)를 포함함으로써 파우치에 구비된 실링 갭을 정확하게 측정할 수 있다.
이하, 본 발명의 제1 실시예에 따른 이차전지용 실링 갭 측정설비를 이용한 측정방법을 설명한다.
[본 발명의 제1 실시예에 따른 이차전지용 실링 갭 측정방법]
도 8은 본 발명의 제1 실시예에 따른 이차전지용 실링 갭 측정방법을 나타낸 순서도이다.
본 발명의 제1 실시예에 따른 이차전지용 실링 갭 측정방법은 도 8에 도시되어 있는 것과 같이, 파우치의 전극조립체 수용부와 실링부 사이에 위치한 실링 갭을 측정하기 위한 것이다.
즉, 본 발명의 제1 실시예에 따른 이차전지용 실링 갭 측정방법은 제1 측정단계, 원점 설정단계, 제2 측정단계, 및 실링 갭 측정단계를 포함한다.
제1 측정단계
제1 측정단계는 제1 측정장치(100)를 사용하며, 상기 제1 측정장치(100)는 제1 변위센서(110), 제2 변위센서(120)를 포함한다.
즉, 제1 측정단계는 도 9에 도시되어 있는 것과 같이, 상기 파우치에 구비된 실링부(13)의 내측 시작점(a)과 외측 끝점(b)을 통해 실링폭(S)을 획득한다. 다음으로 상기 실링폭 내에 제1 기준 원점(O1)을 설정한다.
다시 말해, 제1 측정단계는 상기 파우치의 일면에 빔을 조사하여 실링부의 내측 시작점과 외측 끝점을 측정하는 제1 공정, 및 상기 파우치의 타면에 빔을 조사하여 실링부의 내측 시작점과 외측 끝점을 측정하는 제2 공정을 포함한다.
보다 자세히 설명하면, 제1 측정단계는 도 7을 참조하면, 파우치의 양쪽 표면에 각각 구비된 제1 변위센서(110), 제2 변위센서(120)를 통해 상기 파우치의 양쪽에 형성된 실링부의 내측 시작점과 외측 끝점을 측정한다. 예로, 제1 변위센서(110)는 파우치의 상면에 형성된 상부 실링면의 내측 시작점(a1)과 외측 끝점(b1)을 측정하고, 제2 변위센서(120)는 파우치의 하면에 형성된 하부 실링면의 내측 시작점(a2)과 외측 끝점(b2)을 측정한다. 그리고 제1 및 제2 변위센서(110)(120)에 의해 측정된 실링면의 내측 시작점과 외측 끝점의 사이 거리를 측정하여 실링폭(S)을 획득한다. 다음으로 상기 실링폭(S) 내에서 제1 기준 원점(O1)을 설정한다.
여기서 상기 제1 기준 원점은 실링폭의 중심점에 설정할 수 있다.
한편, 제1 측정단계는, 상기 파우치의 양쪽 표면에 각각 구비된 실링부의 내측 시작점과 외측 끝점이 일치하지 않으면, 상기 파우치의 양쪽 표면에 각각 구비된 실링부의 내측 시작점과 외측 끝점이 중첩되는 지점을 실링부의 내측 시작점과 외측 끝점으로 설정한다.
즉, 제1 측정단계는, 상기 제1 공정과 상기 제2 공정에서 측정된 상기 실링부의 내측 시작점과 외측 끝점이 일치하지 않으면, 실링부의 내측 시작점과 외측 끝점이 중첩되는 지점을 실링부의 내측 시작점과 외측 끝점으로 설정하는 제3 공정을 더 포함한다.
예로, 제1 측정단계는, 도 7을 참조하면, 상부 실링면의 내측 시작점(a1)과 하부 실링면의 내측 시작점(a2) 중 상부 실링면의 내측 시작점(a1)을 설정하고, 상부 실링면의 외측 끝점(b1)과 하부 실링면의 외측 끝점(b2) 중 하부 실링면의 외측 끝점(b2)을 설정한다.
한편, 제1 측정단계는, 제1 공정에 의해 측정된 실링폭과 제2 공정에 의해 측정된 실링폭 사이의 거리를 기초로하여 실링폭의 두께를 획득하는 공정을 더 포함한다. 즉, 상기 제1 변위센서(110)에 의해 측정된 실링폭과 상기 제2 변위센서(120)에 의해 측정된 실링폭 사이의 거리를 기초로하여 실링폭의 두께를 획득할 수 있다.
한편, 제1 측정단계는, 내측 시작점(a)과 외측 끝점(b) 사이에 상기 제1 기준 원점(O1)을 설정한 후, 내측 시작점(a)과 제1 기준 원점(O1)까지의 제3 거리(X3)를 획득한다.
원점 설정단계
원점 설정단계는 원점 구조물(200)을 사용하며, 원점 구조물(200)은 수직 기준면(210)과 수평 기준면(220)을 포함한다.
즉, 원점 설정단계는 도 10에 도시되어 있는 것과 같이, 상기 내측 시작점(a)과 외측 끝점(b) 사이에 위치한 제1 기준 원점(O1)으로부터 상기 전극조립체 수용부 방향으로 기설정된 제1 거리(X1) 이동한 지점에 대응하는 수직 기준면(210)을 설정한다.
한편, 원점 설정단계는 상기 제1 변위센서(110)로부터 조사된 빔이 원점 구조물(200)의 수평 기준면(220)에 형성된 관통구멍(221)을 통과하며, 이에 따라 제1 및 제2 변위센서(110)(120)와 후술하는 제3 변위센서(310)를 동일한 수직면에 위치시킬 수 있다. 여기서 수평 기준면(220)은 상기 수직 기준면(210)의 하단으로부터 실링폭 방향으로 길게 연장된다. 이에 따라 원점 구조물(200)은 수직 기준면(210)에 제3 변위센서(310)의 빔이 조사되고, 수평 기준면(220)의 관통구멍에 제1 변위센서(110)의 빔이 조사된다. 이에 따라 제1 및 제2 변위센서(120)와 제3 변위센서(310)를 동일한 선상에 위치하게 조절할 수 있고, 그 결과 실링폭 측정시 오차 발생을 최소화할 수 있다.
제2 측정단계
제2 측정단계는 제2 측정장치(300)를 사용하며, 제2 측정장치(300)는 제3 변위센서(310)를 포함한다.
즉, 제2 측정단계는 상기 수직 기준면(210)을 향해 빔을 조사하여 상기 수직 기준면(210)이 위치한 지점을 제2 기준 원점(O2)으로 설정하고, 다음으로 상기 제2 기준 원점(O2)을 통과하도록 상기 전극조립체 수용부에 빔을 조사하여 상기 제2 기준 원점(O2)에서 상기 전극조립체 수용부(11)까지의 제2 거리(X2)를 획득한다.
상기 제2 측정단계에서 상기 제2 기준 원점(O2)은 실링부의 내측 시작점과 외측 끝점 사이에 위치하지 않게 설정한다.
실링 갭 측정단계
실링 갭 측정단계는 도 11에 도시되어 있는 것과 같이, 상기 제1 거리(X1), 제2 거리(X2) 및 상기 내측 시작점에서 제1 기준 원점(O1)까지의 제3 거리(X3)를 기초로하여 상기 실링 갭을 획득한다.
즉, 실링 갭 측정단계는 상기 제1 거리(X1)와 제2 거리(X2)의 합에서 상기 제3 거리(X3)를 뺀 값을 실링 갭으로서 획득할 수 있다.
한편, 상기 실링 갭 측정단계는 측정된 실링 갭의 불량여부를 판별하는 검사공정을 더 포함할 수 있다.
즉, 검사공정은 측정된 실링 갭이 미리 입력된 실링 갭 보다 작아지거나 또는 커지면 불량으로 판별한다.
따라서 본 발명의 제1 실시예에 따른 이차전지용 실링 갭 측정방법은 실링 갭을 정확히 측정할 수 있고, 실링 갭의 불량여부를 정확히 검사할 수 있다.
이하, 본 발명의 다른 실시예를 설명함에 있어 전술한 실시예와 동일한 구성을 가진 구성에 대해서는 동일한 구성부호를 사용하며, 중복되는 설명은 생략한다.
[본 발명의 제2 실시예에 따른 이차전지용 실링 갭 측정설비]
본 발명의 제2 실시예에 따른 이차전지용 실링 갭 측정설비(1000)는 도 12에 도시되어 있는 것과 같이, 제1 측정장치, 원점 구조물, 제2 측정장치, 및 제어부를 포함할 수 있다.
한편, 제1 측정장치, 원점 구조물, 제2 측정장치, 및 제어부는 제1 실시예에 따른 이차전지용 실링 갭 측정설비의 제1 측정장치, 원점 구조물, 제2 측정장치, 및 제어부와 동일한 구성을 가지며, 이에 따라 중복되는 설명은 생략한다.
여기서 본 발명의 제2 실시예에 따른 이차전지용 실링 갭 측정설비(1000)는 파우치가 배치되는 지그장치(410)와, 상기 제1 및 제2 측정장치(100)(300)를 파우치의 전장방향으로 슬라이드 이동시키는 가이드장치(500)를 더 포함할 수 있다.
상기 지그장치(410)는 파우치가 배치되면서 파우치가 움직이지 않게 고정한다.
상기 가이드장치(500)는 지그장치(410)를 파우치의 전장방향으로 이동시켜서 파우치에 형성된 실링 갭 전체의 불량여부를 검사한다. 한편, 가이드장치(500)는 파우치의 전장 방향으로 길게 형성된 가이드레일(510)과, 상기 가이드레일(510)에 이동 가능하게 결합되고 지그장치를 가이드레일을 따라 이동시키는 가이드부재(520)를 포함한다.
따라서 본 발명의 제2 실시예에 따른 이차전지용 실링 갭 측정설비는 파우치의 전장방향으로 형성된 실링 갭의 전체를 측정할 수 있고, 그 결과 실링 갭 전체의 불량여부를 검사할 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 다양한 실시 형태가 가능하다.
[부호의 설명]
O1: 제1기준 원점
O2: 제2 기준 원점
S: 실링폭
1: 이차전지
10: 파우치
11: 전극조립체 수용부
12: 가스 포켓부
13: 실링부
14: 실링 갭
100: 제1 측정장치
110: 제1 변위센서
120: 제2 변위센서
140: 제1 수직 이동부재
150: 제1 전폭 이동부재
200: 원점 구조물
210: 수직 기준면
220: 수평 기준면
221: 관통구멍
300: 제2 측정장치
310: 제3 변위센서
330: 제2 수직 이동부재
340: 제2 전폭 이동부재
400: 제어부
410: 지그장치
500: 가이드장치
510: 가이드레일
520: 가이드부재

Claims (19)

  1. 파우치의 전극조립체 수용부와 실링부 사이에 위치한 실링 갭을 측정하는 이차전지용 실링 갭 측정설비로서,
    상기 실링부의 내측 시작점과 외측 끝점을 획득하는 제1 측정장치;
    상기 내측 시작점과 상기 외측 끝점 사이에 위치한 제1 기준 원점(O1)으로부터 상기 전극조립체 수용부 방향으로 기설정된 제1 거리(X1)를 이동한 지점에 대응되는 수직 기준면이 마련된 원점 구조물;
    상기 수직 기준면으로부터 상기 전극조립체 수용부까지의 제2 거리(X2)를 획득하는 제2 측정장치; 및
    상기 제1 거리(X1), 제2 거리(X2) 및 상기 내측 시작점에서 제1 기준 원점(O1)까지의 제3 거리(X3)를 기초로하여 상기 실링 갭을 획득하는 제어부를 포함하는 이차전지용 실링 갭 측정설비.
  2. 청구항 1에 있어서,
    상기 제어부는,
    상기 내측 시작점과 상기 외측 끝점 사이에 상기 제1 기준 원점을 설정하고, 상기 내측 시작점에서 상기 제1 기준 원점(O1)까지의 제3 거리(X3)를 획득하는 이차전지용 실링 갭 측정설비.
  3. 청구항 1에 있어서,
    상기 제1 측정장치는,
    상기 파우치의 일면에 빔을 조사하여 실링부의 내측 시작점과 외측 끝점을 측정하는 제1 변위센서; 및
    상기 파우치의 타면에 빔을 조사하여 실링부의 내측 시작점과 외측 끝점을 측정하는 제2 변위센서를 포함하는 이차전지용 실링 갭 측정설비.
  4. 청구항 3에 있어서,
    상기 제어부는,
    상기 제1 변위센서와 상기 제2 변위센서에 의해 측정된 실링부의 내측 시작점과 외측 끝점이 일치하지 않으면, 상기 제1 변위센서와 상기 제2 변위센서에 의해 각각 측정된 실링부의 내측 시작점과 외측 끝점이 중첩되는 지점을 실링부의 내측 시작점과 외측 끝점으로 설정하는 이차전지용 실링 갭 측정설비.
  5. 청구항 3에 있어서,
    상기 제어부는,
    상기 제1 변위센서에 의해 측정된 실링폭과 상기 제2 변위센서에 의해 측정된 실링폭 사이의 거리를 기초로하여 실링폭의 두께를 획득하는 이차전지용 실링 갭 측정설비.
  6. 청구항 5에 있어서,
    상기 제2 측정장치는,
    상기 수직 기준면을 향해 빔을 조사하여 상기 수직 기준면이 위치한 지점을 제2 기준 원점(O2)으로 설정하고, 상기 제2 기준 원점(O2)을 통과하도록 상기 전극조립체 수용부에 빔을 조사하여 상기 제2 기준 원점(O2)에서 상기 전극조립체 수용부까지의 제2 거리(X2)를 획득하는 이차전지용 실링 갭 측정설비.
  7. 청구항 6에 있어서,
    상기 제2 측정장치는,
    상기 수직 기준면을 향해 빔을 조사하여 상기 수직 기준면이 위치한 지점을 제2 기준 원점(O2)으로 설정하는 제3 변위센서를 포함하는 이차전지용 실링 갭 측정설비.
  8. 청구항 1에 있어서,
    상기 제어부는,
    상기 제1 거리(X1)와 제2 거리(X2)의 합에서 상기 제3 거리(X3)를 뺀 값을 실링 갭으로 획득하는 이차전지용 실링 갭 측정설비.
  9. 청구항 6에 있어서,
    상기 제2 기준 원점(O2)은 상기 실링폭의 내에 위치하지 않게 설정되는 이차전지용 실링 갭 측정설비.
  10. 청구항 5에 있어서,
    상기 원점 구조물은,
    상기 수직 기준면으로부터 상기 실링폭 방향으로 연장되고, 상기 제1 변위센서로부터 조사된 빔이 통과하는 관통구멍이 형성된 수평 기준면을 더 포함하는 이차전지용 실링 갭 측정설비.
  11. 청구항 1에 있어서,
    상기 제어부는,
    상기 제2 측정장치에 의해 측정된 실링 갭이 미리 입력된 실링 갭 보다 작아지거나 또는 커지면 불량으로 판별하는 이차전지용 실링 갭 측정설비.
  12. 파우치의 전극조립체 수용부와 실링부 사이에 위치한 실링 갭을 측정하는 이차전지용 실링 갭 측정방법으로서,
    상기 실링부의 내측 시작점과 외측 끝점을 획득하는 제1 측정단계;
    상기 내측 시작점과 외측 끝점 사이에 위치한 제1 기준 원점으로부터 상기 전극조립체 수용부 방향으로 기설정된 제1 거리(X1) 이동한 지점에 대응하는 수직 기준면을 설정하는 원점 설정단계;
    상기 수직 기준면으로부터 상기 전극조립체 수용부까지의 제2 거리(X2)를 획득하는 제2 측정단계;
    상기 제1 거리(X1), 제2 거리(X2) 및 상기 내측 시작점에서 제1 기준 원점(O1)까지의 제3 거리(X3)를 기초로하여 상기 실링 갭을 획득하는 실링 갭 측정단계를 포함하는 이차전지용 실링 갭 측정방법.
  13. 청구항 12에 있어서,
    상기 제1 측정단계는,
    내측 시작점과 외측 끝점 사이에 상기 제1 기준 원점을 설정하고, 다음으로 내측 시작점과 제1 기준 원점까지의 제3 거리(X3)를 획득하는 이차전지용 실링 갭 측정방법.
  14. 청구항 12에 있어서,
    상기 제1 측정단계는,
    상기 파우치의 일면에 빔을 조사하여 실링부의 내측 시작점과 외측 끝점을 측정하는 제1 공정;
    상기 파우치의 타면에 빔을 조사하여 실링부의 내측 시작점과 외측 끝점을 측정하는 제2 공정; 및
    상기 제1 공정과 상기 제2 공정에서 측정된 상기 실링부의 내측 시작점과 외측 끝점이 일치하지 않으면, 실링부의 내측 시작점과 외측 끝점이 중첩되는 지점을 실링부의 내측 시작점과 외측 끝점으로 설정하는 제3 공정을 더 포함하는 이차전지용 실링 갭 측정방법.
  15. 청구항 14에 있어서,
    상기 제1 측정단계는,
    제1 공정에 의해 측정된 실링폭과 제2 공정에 의해 측정된 실링폭 사이의 거리를 기초로하여 실링폭의 두께를 획득하는 공정을 더 포함하는 이차전지용 실링 갭 측정방법.
  16. 청구항 12에 있어서,
    상기 제2 측정단계는,
    상기 수직 기준면을 향해 빔을 조사하여 상기 수직 기준면이 위치한 지점을 제2 기준 원점(O2)으로 설정하고, 다음으로 상기 제2 기준 원점(O2)을 통과하도록 상기 전극조립체 수용부에 빔을 조사하여 상기 제2 기준 원점(O2)에서 상기 전극조립체 수용부까지의 제2 거리(X2)를 획득하는 이차전지용 실링 갭 측정방법.
  17. 청구항 16에 있어서,
    상기 제2 측정단계에서 상기 제2 기준 원점(O2)은 상기 실링부의 내측 시작점과 외측 끝점 사이에 위치하지 않게 설정하는 이차전지용 실링 갭 측정방법.
  18. 청구항 12에 있어서,
    상기 실링 갭 측정단계는,
    상기 제1 거리(X1)와 제2 거리(X2)의 합에서 상기 제3 거리(X3)를 뺀 값을 실링 갭으로서 획득하는 이차전지용 실링 갭 측정방법.
  19. 청구항 12에 있어서,
    상기 실링 갭 측정단계가 완료된 후, 측정된 실링 갭의 불량여부를 판별하는 검사단계를 더 포함하고,
    상기 검사단계는, 측정된 실링 갭이 미리 입력된 실링 갭 보다 작아지거나 또는 커지면 불량으로 판별하는 이차전지용 실링 갭 측정방법.
PCT/KR2023/003749 2022-03-21 2023-03-21 이차전지용 실링 갭 측정설비 및 측정방법 WO2023182784A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380014247.6A CN118215819A (zh) 2022-03-21 2023-03-21 用于测量二次电池的密封间隙的设备和方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0035013 2022-03-21
KR20220035013 2022-03-21
KR1020230036787A KR20230137265A (ko) 2022-03-21 2023-03-21 이차전지용 실링 갭 측정설비 및 측정방법
KR10-2023-0036787 2023-03-21

Publications (1)

Publication Number Publication Date
WO2023182784A1 true WO2023182784A1 (ko) 2023-09-28

Family

ID=88101794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/003749 WO2023182784A1 (ko) 2022-03-21 2023-03-21 이차전지용 실링 갭 측정설비 및 측정방법

Country Status (1)

Country Link
WO (1) WO2023182784A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033459A (ja) * 2009-07-31 2011-02-17 Toppan Printing Co Ltd 包装袋のシール幅測定装置
KR102091768B1 (ko) * 2015-08-11 2020-03-20 주식회사 엘지화학 파우치 실링 갭 측정장치
KR102122292B1 (ko) * 2016-06-23 2020-06-12 주식회사 엘지화학 이차전지용 파우치 외장재 실링부 폭 측정 지그
KR20210065988A (ko) * 2018-09-27 2021-06-04 시케이디 가부시키가이샤 포장체의 제조 장치 및 포장체의 제조 방법
KR20210150106A (ko) * 2020-06-03 2021-12-10 현대자동차주식회사 이차전지의 실링부 두께 측정장치 및 이를 이용한 실링부의 두께 측정방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033459A (ja) * 2009-07-31 2011-02-17 Toppan Printing Co Ltd 包装袋のシール幅測定装置
KR102091768B1 (ko) * 2015-08-11 2020-03-20 주식회사 엘지화학 파우치 실링 갭 측정장치
KR102122292B1 (ko) * 2016-06-23 2020-06-12 주식회사 엘지화학 이차전지용 파우치 외장재 실링부 폭 측정 지그
KR20210065988A (ko) * 2018-09-27 2021-06-04 시케이디 가부시키가이샤 포장체의 제조 장치 및 포장체의 제조 방법
KR20210150106A (ko) * 2020-06-03 2021-12-10 현대자동차주식회사 이차전지의 실링부 두께 측정장치 및 이를 이용한 실링부의 두께 측정방법

Similar Documents

Publication Publication Date Title
WO2020213846A1 (ko) 와전류를 이용한 전지셀 내부의 균열 검사 방법 및 검사 장치
WO2019177288A1 (ko) 배터리 셀의 리크 검사 장치 및 리크 검사 방법
WO2017043890A1 (ko) 이차 전지의 못 관통 시험 장치 및 방법
WO2021177569A1 (ko) 박막 시편의 물성 평가방법 및 인장시험 테스트용 박막 시편
WO2021241960A1 (ko) 이차전지 제조방법 및 이차전지 제조장치
WO2021112481A1 (ko) 전극조립체 제조방법 및 제조장치, 그를 포함한 이차전지 제조방법
WO2022098096A1 (ko) 배터리 진단 장치 및 방법
WO2022035130A1 (ko) 배터리 관리 장치 및 방법
WO2017146369A1 (ko) 배터리 셀 및 이러한 배터리 셀의 제조 방법
WO2020106030A1 (ko) 이차전지셀 파우치성형모듈
WO2022145905A1 (ko) 전극시트의 불량 검출 시스템
WO2022191510A1 (ko) 전극 조립체의 제조 장치 및 전극 조립체의 제조 방법
WO2021246655A1 (ko) 배터리 상태 진단 장치 및 방법
WO2022080837A1 (ko) 배터리 진단 장치 및 방법
WO2023182784A1 (ko) 이차전지용 실링 갭 측정설비 및 측정방법
WO2020106031A1 (ko) 이차전지셀의 절연저항측정장치
WO2022260452A1 (ko) 원통형 이차전지용 용접 상태 검사장치 및 검사방법
WO2023167558A1 (ko) X선 검사 장치 및 x선 검사 방법
WO2016129888A1 (ko) 전지모듈 및 상호연결 어셈블리의 전압센싱부재에 제 1 및 제 2 전지셀들의 제 1 및 제 2 전기 단자들을 연결하는 방법
WO2022119226A1 (ko) 위치조절부를 포함하는 파우치형전지 실링장치 및 이를 이용한 파우치형전지 실링 방법
WO2016129889A1 (ko) 전지모듈 및 상호 연결 어셈블리의 제 1 전압 검출 부재 및 제 2 전압 검출 부재에 제 1 및 제 2 전지셀들의 제 1 및 제 2 전기 단자들을 연결하는 방법
WO2022050540A1 (ko) 배터리 관리 장치 및 방법
WO2022234956A1 (ko) 전지셀 제조 방법 및 제조 시스템
WO2022203265A1 (ko) 습윤 상태의 전극 시편에 대한 접착력 측정 시스템 및 이를 이용한 습윤 상태의 전극 시편에 대한 접착력 측정 방법
WO2023008637A1 (ko) 원형 배터리 검사장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23775280

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202380014247.6

Country of ref document: CN