WO2017043890A1 - 이차 전지의 못 관통 시험 장치 및 방법 - Google Patents

이차 전지의 못 관통 시험 장치 및 방법 Download PDF

Info

Publication number
WO2017043890A1
WO2017043890A1 PCT/KR2016/010101 KR2016010101W WO2017043890A1 WO 2017043890 A1 WO2017043890 A1 WO 2017043890A1 KR 2016010101 W KR2016010101 W KR 2016010101W WO 2017043890 A1 WO2017043890 A1 WO 2017043890A1
Authority
WO
WIPO (PCT)
Prior art keywords
short
secondary battery
circuit
voltage
nail
Prior art date
Application number
PCT/KR2016/010101
Other languages
English (en)
French (fr)
Inventor
임진형
서세욱
고요한
최용석
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201680022728.1A priority Critical patent/CN107533112B/zh
Priority to JP2018502813A priority patent/JP6621906B2/ja
Priority to US15/562,086 priority patent/US10451682B2/en
Priority to EP16844706.8A priority patent/EP3264514B1/en
Publication of WO2017043890A1 publication Critical patent/WO2017043890A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/488Cells or batteries combined with indicating means for external visualization of the condition, e.g. by change of colour or of light density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a nail penetration test apparatus and method of a secondary battery, and more particularly, it is possible to easily predict the change of the short-circuit current flowing inside when a nail penetrates the secondary battery using an equivalent circuit of the secondary battery.
  • the present invention relates to a nail penetration test apparatus and method.
  • a secondary battery may be a device that can be carried in a human hand such as a mobile phone, a laptop computer, a digital camera, a video camera, a tablet computer, a power tool, or the like;
  • Various electric drive power devices such as electric bicycles, electric motorcycles, electric vehicles, hybrid vehicles, electric boats, electric airplanes, and the like;
  • a power storage device used to store power generated by renewable energy or surplus generated power;
  • the field of use extends to an uninterruptible power supply for stably supplying power to various information communication devices including server computers and communication base stations.
  • the secondary battery has a structure in which an electrode assembly is sealed together with an electrolyte in an exterior material and two electrode terminals having different polarities are exposed to the outside.
  • the electrode assembly includes a plurality of unit cells, and the unit cells include a cathode plate and a cathode plate having at least porous separators interposed therebetween.
  • the negative electrode plate and the positive electrode plate are coated with an active material, and the secondary battery is charged or discharged by an electrochemical reaction between the active material and the electrolyte.
  • the secondary battery may penetrate through the outer material to the electrode plates of different polarities included in the electrode assembly when a large impact is applied from the pointed object of the metal material.
  • electrode plates of different polarities are electrically connected by a metal object, and a short circuit is formed, and a very large short circuit current flows within a few seconds between the metal object and the electrode plates penetrated therethrough.
  • a short-circuit current flows, a large amount of heat is generated in the electrode plates, and a large amount of gas is generated as the electrolyte rapidly decomposes due to this heat. Since the decomposition reaction of the electrolyte corresponds to an exothermic reaction, the temperature of the secondary battery rises locally rapidly around the point where the nail penetrates, and the air is burned while the secondary battery ignites.
  • Nail penetration test is to inject a secondary battery into a test device that can measure the temperature and voltage of the secondary battery, and then penetrate the secondary battery with a sharp metal nail of various diameters prepared intentionally. After measuring the temperature and voltage change of the secondary battery according to the diameter and the penetration rate of the nail, it is a test to visually check whether the secondary battery is ignited.
  • the conventional nail penetration test apparatus has a problem that a large number of secondary batteries need to be unnecessarily damaged in order to confirm that the secondary batteries do not ignite under any penetrating conditions.
  • the conventional nail penetration test apparatus has a limitation in accurately identifying the ignition mechanism when the secondary battery is penetrated by the metal object.
  • the present invention has been made under the background of the prior art as described above, the secondary battery which can predict the magnitude change of the short circuit current flowing inside the secondary battery in the nail penetration test of the secondary battery and can quantitatively analyze the heat generation characteristics at the nail penetration point.
  • An object of the present invention is to provide a nail penetration test apparatus and a method of the battery.
  • the nail penetration test apparatus of the secondary battery according to the present invention for achieving the above technical problem, the stage in which the secondary battery to be subjected to the nail penetration test is fixed; A nail penetrating portion including a nail for penetrating the secondary battery and a nail elevating means for elevating or lowering the nail; A voltage measurement unit coupled to an electrode of the secondary battery and repeatedly measuring a short circuit voltage of the secondary battery at a time interval during a nail penetration test; And a controller operatively coupled to the voltage measuring unit, wherein the control unit controls the nail penetrating unit to lower the nail to penetrate the secondary battery, and periodically receives a short circuit voltage from the voltage measuring unit. Whenever the short circuit voltage is input, a short circuit current is determined to form the input short circuit voltage between the outermost nodes of the equivalent circuit based on an equivalent circuit modeling the secondary battery, and a value for the determined short circuit current. Visually output the changes over time.
  • the equivalent circuit includes, as a plurality of circuit elements, an open voltage source whose voltage varies according to a series resistance, at least one RC circuit, and a state of charge of the secondary battery, the plurality of circuit elements being connected in series with each other. There may be.
  • the controller may determine the short-circuit current of the secondary battery by the following formula 1.
  • V short is a short circuit voltage measured by the voltage measuring unit
  • V RC is a voltage formed by the RC circuit
  • V OCV is an open circuit voltage according to a state of charge of a secondary battery
  • R 0 Is the resistance value of the series resistor
  • control unit may update the time of V RC of Equation (1) by Equation (2) below.
  • the nail penetration test apparatus of the secondary battery according to the present invention for achieving the above technical problem, the stage in which the secondary battery to be subjected to the nail penetration test is fixed; A nail penetrating portion including a nail for penetrating the secondary battery and a nail elevating means for elevating or lowering the nail; A voltage measurement unit coupled to an electrode of the secondary battery and repeatedly measuring a short circuit voltage of the secondary battery at a time interval during a nail penetration test; And a controller operatively coupled to the voltage measuring unit, wherein the control unit controls the nail penetrating unit to lower the nail to penetrate the secondary battery, and periodically receives a short circuit voltage from the voltage measuring unit. Whenever the short circuit voltage is input, a short circuit current is determined to form the input short circuit voltage between the outermost nodes of the equivalent circuit based on an equivalent circuit modeling the secondary battery, and a value for the determined short circuit current. Visually output the changes over time.
  • the equivalent circuit includes, as a plurality of circuit elements, an open voltage source whose voltage varies according to a series resistance, at least one RC circuit, and a state of charge of the secondary battery, the plurality of circuit elements being connected in series with each other. There may be.
  • the controller may determine the short-circuit current of the secondary battery by the following formula 1.
  • V short is a short circuit voltage measured by the voltage measuring unit
  • V RC is a voltage formed by the RC circuit
  • V OCV is an open circuit voltage according to a state of charge of a secondary battery
  • R 0 Is the resistance value of the series resistor
  • control unit may update the time of V RC of Equation (1) by Equation (2) below.
  • V RC [k + 1] V RC [k] e - ⁇ t / R * C + R (1- e - ⁇ t / R * C ) i short [k] --- 2
  • V RC [k] is the V RC value just before the time update
  • V RC [k + 1] is the time updated V RC value
  • ⁇ t is the time update period of V RC
  • R and C are the resistance and capacitance values of the resistor and the capacitor included in the RC circuit, respectively
  • i short is the estimated value of the short circuit current determined in the previous calculation period.
  • the controller may update the SOC which is the state of charge of the secondary battery according to Equation 3 below.
  • the controller may determine the open voltage V OCV of the secondary battery corresponding to the time updated charging state using the time updated charging state and a predefined “charge state-open voltage lookup table”.
  • SOC [k] is the charge state just before the time update
  • SOC [k + 1] is the time updated charge state
  • i short is the short- circuit current determined in the previous calculation period
  • ⁇ t is Is the time update period of the state of charge SOC
  • Q cell is the capacity of the secondary battery
  • the controller may determine R short , which is a short- circuit resistance of the point where the nail penetrates, by using Equation 4 below, and may visually output a change pattern of the short-circuit resistance over time.
  • R short is the short-circuit resistance at the point where the nail is penetrated
  • V short is the short-circuit voltage of the secondary battery measured periodically by the voltage measuring unit
  • i short is the short-circuit voltage of the secondary battery measured periodically.
  • the controller may determine the Q short which is a short Joule column generated at the point where the nail penetrates using Equation (5) below, and visually output a change pattern of the short Joule column over time.
  • V short is the short circuit voltage of the secondary battery periodically measured by the voltage measuring unit
  • i short is the short circuit voltage of the secondary battery measured periodically. Is the estimated value of the short circuit current corresponding to
  • the controller determines a Q cell, which is a series of resistance balances generated from the resistance characteristics of the secondary battery at the penetrating point of the secondary battery, by using Equation 6 below, and visually shows a change pattern of the resistance joule heat over time. You can output
  • V short is the short-circuit voltage of the secondary battery measured periodically by the voltage measuring unit, and i short is measured periodically Predicted short-circuit current corresponding to the short-circuit voltage of the secondary battery, V OCV is the predicted value of the open voltage according to the state of charge of the secondary battery)
  • the apparatus according to the invention further comprises a display unit operatively coupled with the control unit, the control unit in the group consisting of a short circuit voltage, a short circuit current, a short circuit resistor, a short joule column and a resistance joule column through the display unit. At least one selected change pattern over time may be visually output.
  • the apparatus according to the present invention further comprises a memory unit operatively coupled with the control unit, wherein the control unit stores data on a short circuit voltage, a short circuit, a current, a short circuit resistor, a short joule column, and a resistance joule column. Can be stored cumulatively.
  • Nail test method of the secondary battery according to the present invention for achieving the above technical problem, the step of fixing the secondary battery to the stage; Penetrating the secondary battery into the nail; Measuring the short-circuit voltage repeatedly at a time interval through the electrode of the secondary battery; Determining a short circuit current such that the measured short voltage is formed between the outermost nodes of the equivalent circuit based on an equivalent circuit modeling the secondary battery whenever a short circuit voltage is measured; And visually outputting a change pattern over time with respect to the determined short-circuit current.
  • the method according to the invention may further comprise the step of visually outputting the change pattern of the short circuit voltage over time.
  • the method according to the invention may further comprise the step of visually outputting the change pattern over time of the short circuit resistance determined from the short circuit voltage and the short circuit current.
  • the method according to the invention may further comprise visually outputting a change pattern over time for the short joule heat determined from the short circuit voltage and the short circuit current.
  • the method according to the present invention calculates the resistance joule heat using an open voltage calculated from the state of charge obtained by integrating the short circuit voltage, the short circuit current, and the short circuit current, and changes over time of the resistance joule heat. And visually outputting the aspect.
  • the technical problem can also be achieved by a computer-readable recording medium which records a nail penetration test method of a secondary battery according to the present invention.
  • the predicted short-circuit current can be used to quantitatively calculate the short-circuit resistance change at the point where the nail penetrates, the short-circuit joule heat, or the change in the resistance joule heat generated from the resistance of the secondary battery.
  • the present invention quantitatively investigates the thermal behavior of the penetration point, the cause of heat generation, and the change in the amount of heat when the secondary battery is penetrated by a sharp object, and further develops a cooling mechanism for the secondary battery penetration accident. It can be useful.
  • FIG. 1 is a block diagram schematically showing the configuration of a nail penetration test apparatus of a secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing an equivalent circuit of a secondary battery to be subjected to a nail penetration test.
  • 3 and 4 are flowcharts illustrating a process of determining, by a controller, a short circuit current flowing in the inside of a secondary battery immediately after a nail passes through the secondary battery using the equivalent circuit of FIG. 2.
  • V short short circuit voltage
  • i short predicted for 10 seconds using an equivalent circuit
  • R short short circuit resistance
  • FIG. 1 is a block diagram schematically illustrating a configuration of a nail penetration test apparatus 100 of a secondary battery according to an exemplary embodiment of the present invention.
  • the nail penetration test apparatus 100 includes a stage 110 on which a secondary battery B to be subjected to a nail penetration test is mounted.
  • the stage 110 may be installed on the support frame 111, and a through window 112 may be provided at a central portion thereof.
  • the through window 112 provides a space through which the peak of the nail 121 penetrates the secondary battery B.
  • the stage 110 may include a plurality of clamping means 113 for selectively fixing the secondary battery (B) to be subjected to the nail penetration test on the top.
  • the nail penetration test apparatus 100 further includes a nail penetrating portion 120 for penetrating the nail 121 having a sharp end portion through the secondary battery B on the upper portion of the stage 110.
  • the nail penetrating part 120 penetrates the nail 121 penetrating the secondary battery B and the secondary battery B fixed to the stage 110 by lowering the nail 121 at a high speed. And nail lifting means 122 for returning the nail 121 to its original position after the penetration test is complete.
  • the nail lifting means 122 is a fixed frame block 1221, the upper end of the nail 121 is fixed, and the lifting rail 1222, the fixed frame block 1221 is seated sliding sliding;
  • the present invention is not limited by the specific configuration of the nail lifting means 122, the linear motor 1223 can be replaced by a linear actuator or the like.
  • the nail penetration test apparatus 100 is also applied between the positive electrode P and the negative electrode N of the secondary battery B immediately after the secondary battery B is penetrated by the nail 121.
  • a voltage measuring unit 130 which periodically measures the terminal voltage and outputs a voltage measurement signal corresponding to the measured terminal voltage.
  • the terminal voltage will be referred to as a short circuit voltage.
  • the voltage measuring unit 130 may be a voltmeter, but the present invention is not limited by the type of device for performing the voltage measurement.
  • the nail penetration test apparatus 100 further receives a voltage measurement signal from the voltage measuring unit 130 after the secondary battery B is penetrated by the nail 121 and then, The short circuit voltage is determined, and assuming that the short circuit voltage is formed between the outermost nodes of the equivalent circuit using the equivalent circuit of the secondary battery B, the short circuit current flowing through the regenerative circuit is calculated and the And a controller 140 for generating a short-circuit current profile showing the change over time.
  • the controller 140 optionally determines a short circuit resistance at the point where the nail 121 penetrates from the determined terminal voltage and the short circuit current, and generates a short circuit resistance profile showing a change over time of the short circuit resistance. can do.
  • control unit 140 optionally determines a local short circuit joule generated at the nail penetration point from the determined terminal voltage and the short circuit current, and shows a short circuit joule column showing a change over time of the short circuit joule row. You can create a profile.
  • the controller 140 may determine the state of charge of the secondary battery by integrating the determined short-circuit current, and then determine an open voltage corresponding to the state of charge with reference to a predefined "charge state-open voltage lookup table". From the determined open voltage, short circuit voltage and short circuit current, the resistance joule heat generated from the resistance characteristics of the secondary battery can be determined and a resistance joule thermal profile showing the change over time of the resistance joule heat can be generated.
  • the controller 140 selectively selects a processor, an application-specific integrated circuit (ASIC), another chipset, a logic circuit, a register, a communication modem, a data processing device, and the like, which are known in the art, to execute various control logics described later. It may include.
  • ASIC application-specific integrated circuit
  • the controller 140 may be implemented as a program module.
  • the program module may be recorded in a storage medium and executed by a processor.
  • the storage medium may be inside or outside the processor and may be connected to the processor through various well-known data transmitting and receiving means.
  • the nail penetration test apparatus 100 also stores a nail penetration test program including the control logics of the control unit 140 and a memory unit 150 in which data generated during the execution of the control logics are stored. It includes.
  • the controller 140 periodically receives a voltage signal corresponding to the short circuit voltage from the voltage measuring unit 130 every time the short circuit voltage of the secondary battery is measured, determines a short circuit voltage, and calculates a short circuit current from the short circuit voltage.
  • the short circuit voltage profile and the short circuit current profile may be generated by reading out a plurality of short circuit voltage data and a plurality of short circuit current data stored in the memory unit 150 together.
  • the controller 140 may determine the short circuit resistance according to Ohm's law and store the short circuit resistance in the memory unit 150. Short resistance data can be read to generate a short resistance profile.
  • the controller 140 may determine a local short-circuit joule heat generated at a nail penetration point by using a calorie calculation formula and store it in the memory unit 150.
  • the short joule heat profile stored in the unit 150 may be read to generate a short joule heat profile.
  • the controller 140 also determines the state of charge of the secondary battery B by integrating the short circuit current whenever the short circuit current is determined and corresponds to the state of charge determined by referring to the "charge state-open voltage lookup table".
  • the opening voltage of the secondary battery is determined, and a resistance joule heat generated from the resistance characteristics of the secondary battery is determined from the determined opening voltage, the short circuit voltage, and the short circuit current, and stored in the memory unit 150 and stored in the memory unit 150.
  • the resistance joule thermal profile can be read to generate a resistance joule thermal profile.
  • the memory unit 150 is a semiconductor memory device that loads program code executed by the controller 140 and records, erases, or updates data generated while the controller 140 executes various control logics. Can be.
  • the program code may be stored in a separate electromagnetic or optical recording medium accessible by the controller 140.
  • the memory unit 150 is not particularly limited as long as it is a semiconductor memory device known in the art.
  • the memory unit 150 may be a DRAM, an SDRAM, a flash memory, a ROM, an EEPROM, a register, or the like.
  • the memory unit 150 may be physically separated from the control unit 140 or may be integrated with the control unit 140.
  • the nail penetration test apparatus 100 may further include a display unit 160.
  • the display unit 160 may be a liquid crystal display or an organic light emitting diode display.
  • the present invention is not necessarily limited thereto. Therefore, any display device known in the art to visually display information may be included in the category of the display unit 160.
  • the controller 140 generates at least one selected from a short circuit voltage profile, a short circuit current profile, a short circuit resistance profile, a short joule thermal profile, and a resistance joule thermal profile based on data stored in the memory 140 according to an operator's request. To be visually displayed through the display unit 160.
  • the nail penetration test apparatus 100 may further include an input device through which an operator may input various control commands required for the nail penetration test.
  • the input device may be operatively coupled with the controller 140.
  • the input device may include a keyboard and a mouse, but the present invention is not limited thereto.
  • the nail penetration test apparatus 100 may provide a user interface implemented in software so that an operator may input various control commands.
  • the operator may set the nail penetration test condition on the user interface, request a visual output of the change over time of the data calculated by the controller 140, and check the change over time of the corresponding data through the display unit 160. have.
  • the nail penetration test conditions include the rate of rise and fall of the nail, electrical parameters of the circuit elements constituting the circuit model used for the prediction of the short circuit current, such as resistance values, capacitance values, and the like, and a state of charge-open voltage lookup table.
  • FIG. 2 is a circuit diagram showing an equivalent circuit 200 of a secondary battery B to be subjected to a nail penetration test.
  • the equivalent circuit 200 has a series resistance (R 0 , 210) for modeling its own resistance of the secondary battery (B), and a current flows through the secondary battery (B).
  • the equivalent circuit 200 may include two RC circuits to independently model polarization characteristics of the positive electrode and the negative electrode of the secondary battery B.
  • the number of RC circuits can be reduced to one, or increased to three or more.
  • the RC circuit on the left side is referred to as a first RC circuit 220a as a circuit for modeling the polarization characteristic of the anode
  • the RC circuit on the right side is a circuit for modeling the polarization characteristic of the cathode. It will be referred to as a second RC circuit 220b.
  • the resistance value or capacitance value of the circuit components constituting the equivalent circuit 200 depends on the type of the secondary battery B and may be appropriately tuned through experiments.
  • the voltage formed by the open voltage source 230 may be determined using the "charge state-open voltage lookup table" defined through the discharge experiment.
  • the discharge experiment refers to an experiment in which the open circuit is measured for each state of charge while the secondary battery B is fully charged and then discharged with a constant current.
  • the "charge state-open voltage lookup table” has a data structure in the form of a table capable of mapping an open voltage corresponding to each charge state or, conversely, mapping a charge state for each open voltage.
  • the present invention assumes that when the secondary battery B is penetrated by the nail, the short circuit current i short flowing through the equivalent circuit 200 also flows through the equivalent circuit 200.
  • the short- circuit voltage V short measured between the positive electrode and the negative electrode of the secondary battery B while the short- circuit current i short flows is equally applied between the outermost nodes of the equivalent circuit 200. .
  • the short- circuit voltage V short is the voltage V R0 formed in the series resistor 210 , the voltage V RC1 formed in the first RC circuit 220a, and the voltage formed in the second RC circuit 220b, as shown in Equation 1 below. It can be calculated by the sum of V RC2 and the voltage V OCV formed in the open voltage source 230.
  • V short V R0 + V RC1 + V RC2 + V OCV
  • Equation 1 can be summarized as i short to obtain Equation 2.
  • i short (V short -V RC1 -V RC2 -V OCV ) / R 0
  • V short may be updated by assigning a voltage value periodically measured between the positive electrode and the negative electrode of the secondary battery B.
  • V and V RC1 RC2 may update the time by the following formula 3 by applying a discrete-time model (Discrete-Time Model).
  • V RC1 [k + 1] V RC1 [k] e - ⁇ t / R1 * C1 + R 1 (1- e - ⁇ t / R1 * C1 ) i short [k]
  • V RC2 [k + 1] V RC2 [k] e - ⁇ t / R2 * C2 + R 2 (1- e - ⁇ t / R2 * C2 ) i short [k]
  • Equation 3 ⁇ t is a time update period, and k and k + 1 are time indices.
  • V RC1 [k] and V RC2 [k] are the voltage values just before the time update, and V RC1 [k + 1] and V RC2 [k + 1] are the voltage values after the time update is made.
  • R1 and C1 may be tuned to appropriate values through experiments as resistance values and capacitance values of resistors and capacitors included in the first RC circuit 220a.
  • R2 and C2 may be tuned to appropriate values through experiments as resistance values and capacitance values of resistors and capacitors included in the second RC circuit 220b.
  • i short [k] is the predicted short circuit current value just before the time update.
  • V RC1 [1], V RC2 [1], and i short [1] can be initialized to zero.
  • V OCV time-updates the state of charge of the secondary battery B by integrating the short-circuit current flowing through the equivalent circuit 200 using the following Equation 4, and "charge state-open voltage lookup table" With reference to may be determined by looking up the open voltage corresponding to the state of charge.
  • Equation 4 ⁇ t is the time update period of the state of charge and Q cell is the capacity of the secondary battery (B). Immediately after the nail penetrates the secondary battery B, the short circuit current is small enough to be ignored. Therefore, the SOC [1] corresponding to the initial condition is charged with the state of charge obtained from the "charge state-open voltage lookup table" using the open voltage of the secondary battery B measured before the nail penetrates the secondary battery B. Assign it to the initial value. From SOC [2], the short-circuit current obtained from Equation 2 is substituted into Equation 4 to determine the state of charge by time updating.
  • control unit 140 flows inside the secondary battery B immediately after the nail penetrates the secondary battery B using the equivalent circuit 200 of FIG. 2 according to an exemplary embodiment of the present invention.
  • Flow charts showing the process of determining the short circuit current.
  • the control unit 140 measures the open voltage of the secondary battery B fixed on the upper part of the stage 110 using the voltage measuring unit 130, and then measures the measurement.
  • the stored open voltage is stored in the memory unit 150 (S100). Then, the controller 140 allocates the measured opening voltage to an initial value of V OCV (S115).
  • the controller 140 initializes the time index k to 1 (S110), and the voltages V RC1 formed in the first RC circuit 220a of the equivalent circuit 200 and the voltages V formed in the second RC circuit 220b.
  • the initial value of the short- circuit current i short flowing through RC2 and the equivalent circuit 200 is assigned 0, and the secondary battery is obtained by using the open voltage of the secondary battery B measured in step S100 and the "charge state-open voltage lookup table".
  • the SOC which is the charged state of (B) is initialized (S120).
  • the controller 140 controls the nail penetrating portion 120 according to the nail penetration speed set by the operator to lower the nail toward the secondary battery B fixed on the stage 110. Through it (S130).
  • the controller 140 determines whether a predetermined time ⁇ t has elapsed based on the penetrating time (S140).
  • ⁇ t substantially corresponds to the calculation period of the short circuit current, and may have a time value of 100 ms or less, for example.
  • step S140 If it is determined in step S140 that ⁇ t has not elapsed, the controller 140 waits for the process to proceed. On the other hand, if it is determined in step S140 that ⁇ t has elapsed, the controller 140 proceeds to step S150.
  • step S150 the controller 140 measures the short circuit voltage of the secondary battery B using the voltage measurer 130, stores the short circuit voltage in the memory unit 150, and allocates the measured short circuit voltage to the V short value. .
  • the controller 140 determines the short- circuit current i short by substituting the V short value determined in step S150, the V OCV value determined in step S115, and the V RC1 and V RC2 values initialized in step S120 into Equation 2 ( S160).
  • the controller 140 determines whether a predetermined nail penetration test time has elapsed (S170).
  • the nail penetration test time may be set within several tens of seconds.
  • step S170 If it is determined in step S170 that the nail penetration test time has elapsed, the controller 140 ends the process according to the present invention. On the other hand, if the nail penetration test time has not elapsed in step S170, the controller 140 proceeds to step S180 (see FIG. 4).
  • step S180 the controller 140 substitutes the initial values of V RC1 and V RC2 determined in step S120 and the i short value determined in step S160 into Equation 3 to form the voltage V RC1 formed in the first RC circuit 220a.
  • the voltage V RC2 formed in the second RC circuit 220b is time-updated, respectively.
  • V RC1 [2] V RC1 [1] e - ⁇ t / R1 * C1 + R 1 (1- e - ⁇ t / R1 * C1 ) i short [1]
  • V RC2 [2] V RC2 [1] e - ⁇ t / R2 * C2 + R 2 (1- e - ⁇ t / R2 * C2 ) i short [1]
  • control unit 140 i short value and at S120 step by substituting the initial values of the state of charge SOC of the determined secondary battery (B) in the formula 4 to update the state of charge SOC of the rechargeable battery (B) the time determined in step S160 (S190).
  • SOC [2] SOC [1] + 100 * i short [1] ⁇ t / Q cell
  • the controller 140 determines an open voltage corresponding to the time updated SOC using the time update value of the SOC and the “charge state-open voltage lookup table” determined in step S190, and uses the determined open voltage to determine V. Time updates the OCV value (S200).
  • the controller 140 increases the time index k by one (S210), and proceeds to step S140. Then, when the condition that the time ⁇ t elapses is satisfied again, the controller 140 measures the short circuit voltage of the secondary battery B again using the voltage measuring unit 130 and stores the short-circuit voltage in the memory unit 150. Measure and update the short value with the newly measured short- circuit voltage value.
  • control unit 140 is a secondary measurement updated V short at the time the updated V RC1, V RC2 and V OCV and the step S150 in step S180 and step S200 from the current time index of the re-substituted into the equation (2)
  • the short circuit current i short of the battery B is determined (S160).
  • the short- circuit current i short thus determined is used to time update V RC1 , V RC2 , SOC and V OCV in steps S180, S190 and S200 unless the condition in which the nail through test time has elapsed is established in step S170.
  • the time update of V RC1 , V RC2 , SOC and V OCV using Equations 3 and 4 as described above, and the measurement update of the V short value through the measurement of the short-circuit voltage of the secondary battery B may not be timed through the nail penetration test time. It repeats periodically with increasing time index k until it is updated, and whenever the updated voltage values, ie V RC1 , V RC2 and V short are substituted into Equation 2, the short-circuit current i short value of the secondary battery B is time updated. .
  • the controller 140 may accumulate and store the V short values periodically measured and updated in step S150 in the memory unit 150.
  • the controller 140 generates a short circuit voltage profile using a plurality of short circuit voltage (V short ) data stored in the memory unit 150 at the request of an operator and displays the generated short circuit voltage profile. Can be displayed visually.
  • control unit 140 is a short-circuit current i short time value, which is periodically updated using Equation 2 at step S160 can be stored cumulatively in the memory unit 150.
  • controller 140 generates a short circuit current profile using a plurality of short circuit current (i short ) data stored in the memory unit 150 at the request of an operator and displays the generated short circuit current profile. Can be displayed visually.
  • control unit 140 may optionally predict a short circuit resistance based on the penetration point of the secondary battery B and generate a change as a profile.
  • the controller 140 is measured updated in step S150 short-circuit voltage V short value and by the time the updated short-circuit current i short value in step S160 the time short circuit of the through-point by the following formula 5, each time the index is increased
  • the resistance may be determined, and the determined short-circuit resistance value may be accumulated and stored in the memory unit 150.
  • the controller 140 generates a short-circuit resistance profile using a plurality of short-circuit resistance (R short ) data stored in the memory unit 150 at the request of an operator and displays the generated short-circuit resistance profile in the display unit 160. Can be displayed visually.
  • R short short-circuit resistance
  • controller 140 may optionally predict a short-circuit joule heat generated at a penetration point of the secondary battery B and generate a change as a profile.
  • the controller 140 generates a short joule column by the following expression 6 whenever the time index increases by using the measured and updated short- circuit voltage V short and the time-updated short- circuit current i short in step S160.
  • the determined short joule column values may be accumulated and stored in the memory unit 150.
  • control unit 140 generates a short joule column profile using a plurality of short joule column (Q short ) data stored in the memory unit 150 at the request of an operator and displays the generated short joule column profile. It may be visually displayed through the unit 160.
  • Q short short joule column
  • controller 140 may optionally include the resistance of the secondary battery, that is, the series resistance 210 and the first and second RC circuits 220a and 220b during the nail penetration test of the secondary battery B.
  • the resistance joule heat generated by the given resistance can be predicted and the change produced as a profile.
  • the controller 140 may increase the time index by using the measured and updated short- circuit voltage V short value in step S150, the time-updated short- circuit current i short value in step S160, and the time-updated V OCV value in step S200.
  • the resistance joule column may be determined by Equation 7, and the determined resistance joule column value may be accumulated and stored in the memory unit 150.
  • At least one of the above-described control logics performed by the controller 140 may be combined, and the combined control logics may be written in a computer readable code system and recorded on a computer readable recording medium.
  • the recording medium is not particularly limited as long as it is accessible by a processor included in the computer.
  • the recording medium includes at least one selected from the group consisting of a ROM, a RAM, a register, a CD-ROM, a magnetic tape, a hard disk, a floppy disk, and an optical data recording device.
  • the code system may be modulated into a carrier signal to be included in a communication carrier at a specific point in time, and may be distributed and stored and executed in a networked computer.
  • functional programs, code and code segments for implementing the combined control logics can be easily inferred by programmers in the art to which the present invention pertains.
  • a pouch type lithium polymer secondary battery having a capacity of 37 Ah and a state of charge of 80% was prepared.
  • the prepared secondary battery was then loaded onto the stage of the nail test penetrating device according to the invention and fixed by clamping means.
  • the positive electrode and the negative electrode of the secondary battery were connected to the voltage measuring part (volt meter).
  • a nail made of steel having a circular cross section and a diameter of 6 mm was mounted on the nail penetrating portion, and lowered at a speed of 20 mm / s to penetrate the secondary battery and maintained for 20 seconds.
  • the short- circuit voltage V short of the secondary battery was repeatedly measured and stored in the memory unit 150 at 100 ms intervals using the volt meter, and each time the short-circuit voltage was measured, FIGS. 3 and FIG.
  • the short-circuit current i short the short-circuit resistor R short , the short joule column Q short , and the resistor joule column Q cell of the secondary battery are determined, and the respective data are stored in the memory unit. Cumulative storage.
  • the calculation period of each parameter was set substantially the same as the measurement period of the short circuit voltage.
  • the series resistance value was tuned to 0.00102 kPa.
  • the resistance and capacitance values of the resistor and the capacitor included in the first RC circuit were tuned to 0.0003 k ⁇ and 667F, respectively.
  • the resistance value and capacitance value of the resistor and the capacitor included in the second RC circuit were tuned to 0.0010 kPa and 2000F, respectively.
  • V short short voltage
  • i short short circuit current
  • the short current (i short ) rapidly increases after 1 second after the nail penetrates the secondary battery and stabilizes after 2 seconds.
  • This change in short- circuit current (i short ) is opposite to the change in short- circuit voltage (V short ). That is, it can be seen that the short circuit voltage V short decreases rapidly after 1 second and stabilizes after 2 seconds. In the section where the short voltage V short decreases rapidly, the short current (i short ) decreases rapidly. Coincide with increasing intervals.
  • FIG. 6 is a short-circuit resistance profile showing the change over time of the short- circuit resistance R short predicted for 10 seconds
  • FIG. 7 is a short-circuit joule heat profile showing the change over time of the short- circuit joule Q short predicted for 10 seconds
  • 8 is a resistance joule heat profile showing the change over time of the resistance joule heat (Q cell ) predicted for 10 seconds.
  • the short-circuit resistance R short exhibits a rapidly decreasing pattern in a time interval in which the short- circuit current i short increases rapidly.
  • the short-circuit Joule heat can be confirmed that even a dramatic increase in the time interval of the short circuit current (i short) sharply increased (Q short) and the resistor, Joule heat (Q cell).
  • the resistance joule row (Q cell ) is small at a level of 1/100 compared to the short joule row (Q short ).
  • the results of this experiment quantitatively identify the thermal behavior of the penetration point, the cause of heat generation, and the change of calorie when the secondary battery is penetrated by a pointed object, and further develop a cooling mechanism for the secondary battery penetration accident. It is suggested that the nail penetration test apparatus according to the present invention can be usefully used.
  • each component may be selectively integrated with other components or each component may be divided into subcomponents for efficient execution of control logic (s).
  • control logic control logic
  • the integrated or divided components should also be interpreted as being within the scope of the present application, provided that the functional identity can be recognized even if the components are integrated or divided.
  • the predicted short-circuit current can be used to quantitatively calculate the short-circuit resistance change at the point where the nail penetrates, the short-circuit joule heat, or the change in the resistance joule heat generated from the resistance of the secondary battery.
  • the present invention quantitatively investigates the thermal behavior of the penetration point, the cause of heat generation, and the change in the amount of heat when the secondary battery is penetrated by a sharp object, and further develops a cooling mechanism for the secondary battery penetration accident. It can be useful.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

본 발명은, 이차 전지의 못 관통 시험 장치 및 그 방법을 개시한다. 본 발명에 따른 못 관통 시험 장치는, 못 관통 시험의 대상이 되는 이차 전지가 고정되는 스테이지; 못 승하강 수단을 포함하는 못 관통부; 못 관통 시험이 진행되는 동안 이차 전지의 단락 전압을 시간 간격을 두고 반복 측정하는 전압 측정부; 및 상기 전압 측정부와 동작 가능하게 결합된 제어부를 포함한다. 상기 제어부는, 상기 전압 측정부로부터 단락 전압을 주기적으로 입력 받고, 상기 단락 전압이 입력될 때마다 상기 이차 전지를 모델링한 등가 회로의 최외측 노드 사이에 상기 입력된 단락 전압이 형성되도록 하는 단락 전류를 결정하고, 상기 결정된 단락 전류에 대한 값의 경시적 변화를 디스플레이부를 통해 시각적으로 출력한다.

Description

이차 전지의 못 관통 시험 장치 및 방법
본 발명은 이차 전지의 못 관통 시험 장치 및 방법에 관한 것으로서, 보다 상세하게는 이차 전지의 등가 회로를 이용하여 이차 전지에 못이 관통되었을 때 내부에서 흐르는 단락 전류의 변화 양상을 용이하게 예측할 수 있는 못 관통 시험 장치 및 방법에 관한 것이다.
본 출원은, 대한민국에 2015년 9월 9일자에 출원된 특허출원 제10-2015-0127839호에 대한 우선권을 주장하며, 우선권 주장의 기초가 되는 출원의 내용은 본 명세서의 일부로서 합체될 수 있다.
이차 전지는 전기화학적인 산화 및 환원 반응을 통해 전기 에너지를 생성하는 것으로서, 광범위하게 다양한 용도로 이용된다. 예를 들어, 이차 전지는 휴대 전화, 랩탑 컴퓨터, 디지털 카메라, 비디오 카메라, 태블릿 컴퓨터, 전동 공구 등과 같이 사람의 손에 휴대할 수 있는 장치; 전기 자전거, 전기 오토바이, 전기 자동차, 하이브리드 자동차, 전기 배, 전기 비행기 등과 같은 각종 전기구동 동력 장치; 신재생 에너지를 통해 발전된 전력이나 잉여 발전 전력을 저장하는데 사용되는 전력 저장 장치; 서버 컴퓨터와 통신용 기지국을 비롯한 각종 정보 통신 장치에 전력을 안정적으로 공급하기 위한 무정전 전원 공급 장치 등에 이르기까지 사용 영역이 점차 확대되고 있다.
이차 전지는 외장재 내에 전극 조립체를 전해질과 함께 밀봉하고 극성이 서로 다른 2개의 전극 단자를 외부에 노출시킨 구조를 가진다. 상기 전극 조립체는 복수의 단위 셀을 포함하고, 단위 셀은 적어도 다공성의 분리막이 개재된 음극판과 양극판을 포함한다. 상기 음극판과 양극판에는 활물질이 코팅되어 있으며, 활물질과 전해질의 전기화학적 반응에 의해 이차 전지가 충전 또는 방전된다.
한편, 이차 전지는 금속 재질의 뽀족한 물체로부터 큰 충격이 가해졌을 때 해당 물체가 외장재를 관통하여 전극 조립체에 포함되어 있는 서로 다른 극성의 전극판들까지 관통할 수 있다. 이 경우, 서로 다른 극성의 전극판들이 금속 물체에 의해 전기적으로 연결되면서 단락 회로가 형성되고, 아주 큰 단락 전류가 금속 물체와 이것을 통해 관통된 전극판들 사이에서 수초 이내에 흐르게 된다. 단락 전류가 흐르면, 전극판들에서 다량의 열이 발생되고 이러한 열에 의해 전해질이 급격하게 분해되면서 다량의 가스가 발생한다. 전해질의 분해 반응은 발열 반응에 해당하기 때문에 못이 관통된 지점을 중심으로 이차 전지의 온도가 국소적으로 급격하게 상승하며, 급기야는 이차 전지가 발화하면서 연소하게 된다.
따라서, 새로운 이차 전지가 개발되면 상용화를 진행하기 전에 못 관통 시험을 통해 이차 전지의 관통 안전성을 검증한다. 못 관통 시험은 이차 전지의 온도와 전압을 측정할 수 있는 시험 장치에 이차 전지를 로딩한 후 미리 준비한 다양한 직경을 가진 뽀족한 금속 못으로 이차 전지를 관통시켜 의도적으로 이차 전지 내부에 단락을 유발한 후 못의 직경과 관통 속도에 따라 이차 전지의 온도나 전압 변화를 측정하고, 이차 전지의 발화 여부를 육안으로 확인해 보는 시험이다.
그런데 종래의 못 관통 시험 장치는 이차 전지가 어떠한 관통 조건에서 발화를 일으시키지 확인하기 위해 상당수의 이차 전지를 불필요하게 파손해야 하는 문제가 있다.
또한, 이차 전지의 발화 메커니즘을 정확하게 규명하기 위해서는 못이 관통된 지점에서 흐르는 단락 전류의 크기 변화를 시간에 따라 측정하여 단락 전류 때문에 생긴 열의 변화를 정량적으로 계산해야 한다.
또한, 관통 지점에서 발생되는 열과 이차 전지의 열 전도 특성을 고려하여 못이 관통된 지점의 온도가 발화 온도까지 급격하게 상승될 수 있는지 여부를 열역학적으로 해석해 볼 필요가 있다.
하지만, 단락 전류는 못이 관통된 지점을 통해서 이차 전지 내부에서 아주 짧은 시간 동안만 국소적으로 흐르기 때문에 직접적인 측정이 사실상 불가능하다.
따라서, 종래의 못 관통 시험 장치는 이차 전지가 금속 물체에 의해 관통되었을 때 발화 메커니즘을 정확하게 규명하는데 한계를 가진다.
본 발명은 위와 같은 종래 기술의 배경하에서 창안된 것으로서, 이차 전지의 못 관통 시험에서 이차 전지의 내부에서 흐르는 단락 전류의 크기 변화를 예측하고 못 관통 지점에서의 발열 특성을 정량적으로 해석할 수 있는 이차 전지의 못 관통 시험 장치 및 그 방법을 제공하는데 그 목적이 있다.
상기 기술적 과제를 달성하기 위한 본 발명에 따른 이차 전지의 못 관통 시험 장치는, 못 관통 시험의 대상이 되는 이차 전지가 고정되는 스테이지; 상기 이차 전지를 관통시키는 못과 상기 못을 승강 또는 하강시키는 못 승하강 수단을 포함하는 못 관통부; 상기 이차 전지의 전극에 결합되어 못 관통 시험이 진행되는 동안 이차 전지의 단락 전압을 시간 간격을 두고 반복 측정하는 전압 측정부; 및 상기 전압 측정부와 동작 가능하게 결합된 제어부를 포함하고, 상기 제어부는, 상기 못 관통부를 제어하여 상기 못을 하강시켜 이차 전지를 관통시키고, 상기 전압 측정부로부터 단락 전압을 주기적으로 입력 받고, 상기 단락 전압이 입력될 때마다 상기 이차 전지를 모델링한 등가 회로에 기초하여 상기 등가 회로의 최외측 노드 사이에 상기 입력된 단락 전압이 형성되게 하는 단락 전류를 결정하고, 상기 결정된 단락 전류에 대한 값의 경시적 변화 양상을 시각적으로 출력한다.
바람직하게, 상기 등가 회로는, 복수의 회로 요소로서, 직렬 저항, 적어도 하나의 RC 회로 및 이차 전지의 충전 상태에 따라 전압이 가변되는 개방 전압원을 포함하고, 상기 복수의 회로 요소들은 서로 직렬 연결되어 있을 수 있다.
바람직하게, 상기 제어부는, 하기 수식 ①에 의해 이차 전지의 단락 전류를 결정할 수 있다.
ishort = (Vshort - VRC - VOCV)/R0 ---①
(여기서, ishort는 단락 전류, Vshort는 상기 전압 측정부에 의해 측정된 단락 전압, VRC는 상기 RC 회로에 의해 형성되는 전압, VOCV는 이차 전지의 충전 상태에 따른 개방 전압, R0는 상기 직렬 저항의 저항 값임)
바람직하게, 상기 제어부는 상기 수식 ①의 VRC를 하기 수식 ②에 의해 시간 업데이트할 수 있다.
상기 기술적 과제를 달성하기 위한 본 발명에 따른 이차 전지의 못 관통 시험 장치는, 못 관통 시험의 대상이 되는 이차 전지가 고정되는 스테이지; 상기 이차 전지를 관통시키는 못과 상기 못을 승강 또는 하강시키는 못 승하강 수단을 포함하는 못 관통부; 상기 이차 전지의 전극에 결합되어 못 관통 시험이 진행되는 동안 이차 전지의 단락 전압을 시간 간격을 두고 반복 측정하는 전압 측정부; 및 상기 전압 측정부와 동작 가능하게 결합된 제어부를 포함하고, 상기 제어부는, 상기 못 관통부를 제어하여 상기 못을 하강시켜 이차 전지를 관통시키고, 상기 전압 측정부로부터 단락 전압을 주기적으로 입력 받고, 상기 단락 전압이 입력될 때마다 상기 이차 전지를 모델링한 등가 회로에 기초하여 상기 등가 회로의 최외측 노드 사이에 상기 입력된 단락 전압이 형성되게 하는 단락 전류를 결정하고, 상기 결정된 단락 전류에 대한 값의 경시적 변화 양상을 시각적으로 출력한다.
바람직하게, 상기 등가 회로는, 복수의 회로 요소로서, 직렬 저항, 적어도 하나의 RC 회로 및 이차 전지의 충전 상태에 따라 전압이 가변되는 개방 전압원을 포함하고, 상기 복수의 회로 요소들은 서로 직렬 연결되어 있을 수 있다.
바람직하게, 상기 제어부는, 하기 수식 ①에 의해 이차 전지의 단락 전류를 결정할 수 있다.
ishort = (Vshort - VRC - VOCV)/R0 ---①
(여기서, ishort는 단락 전류, Vshort는 상기 전압 측정부에 의해 측정된 단락 전압, VRC는 상기 RC 회로에 의해 형성되는 전압, VOCV는 이차 전지의 충전 상태에 따른 개방 전압, R0는 상기 직렬 저항의 저항 값임)
바람직하게, 상기 제어부는 상기 수식 ①의 VRC를 하기 수식 ②에 의해 시간 업데이트할 수 있다.
VRC[k+1]=VRC[k]e- Δt /R*C + R(1- e- Δt /R*C) ishort[k] --- ②
(여기서, k는 시간 인덱스이고, VRC[k]는 시간 업데이트 직전의 VRC 값이고, VRC[k+1]은 시간 업데이트된 VRC 값이고, Δt는 VRC의 시간 업데이트 주기이고, R과 C는 각각 RC 회로에 포함된 저항과 콘덴서의 저항값 및 커패시턴스값이고, ishort는 직전 계산 주기에서 결정된 단락 전류의 예측 값임)
바람직하게, 상기 제어부는 하기 수식 ③에 의해 이차 전지의 충전 상태인 SOC를 시간 업데이트할 수 있다. 또한, 상기 제어부는, 상기 시간 업데이트된 충전 상태와 미리 정의된 "충전 상태-개방 전압 룩업 테이블"을 이용하여 상기 시간 업데이트된 충전 상태에 대응되는 이차 전지의 개방 전압 VOCV를 결정할 수 있다.
SOC[k+1] = SOC[k] + 100*ishort[k]△t/Qcell ---③
(여기서, k는 시간 인덱스이고, SOC[k]는 시간 업데이트 직전의 충전 상태이고, SOC[k+1]은 시간 업데이트된 충전 상태이고, ishort는 직전 계산 주기에서 결정된 단락 전류이고, Δt는 충전 상태 SOC의 시간 업데이트 주기이고, Qcell은 이차 전지의 용량임)
일 측면에 따르면, 상기 제어부는, 하기 수식 ④를 이용하여 못이 관통된 지점의 단락 저항인 Rshort를 결정할 수 있고, 상기 단락 저항의 경시적 변화 양상을 시각적으로 출력할 수 있다.
Rshort = Vshort/ishort ---④
(여기서, Rshort는 못이 관통된 지점의 단락 저항이고, Vshort는 전압 측정부에 의해 주기적으로 측정되는 이차 전지의 단락 전압이고, ishort는 주기적으로 측정되는 이차 전지의 단락 전압에 대응되는 단락 전류의 예측 값임)
다른 측면에 따르면, 상기 제어부는, 하기 수식 ⑤를 이용하여 못이 관통된 지점에서 발생하는 단락 주울 열인 Qshort를 결정하고, 상기 단락 주울 열의 경시적 변화 양상을 시각적으로 출력할 수 있다.
Qshort = ishort*Vshort ---⑤
(여기서, Qshort는 못이 관통된 지점에서 발생되는 단락 주울 열이고, Vshort는 전압 측정부에 의해 주기적으로 측정되는 이차 전지의 단락 전압이고, ishort는 주기적으로 측정되는 이차 전지의 단락 전압에 대응되는 단락 전류의 예측 값임)
또 다른 측면에 따르면, 상기 제어부는, 하기 수식 ⑥을 이용하여 이차 전지의 관통 지점에서 이차 전지의 저항 특성으로부터 발생되는 저항 저울열인 Qcell을 결정하고, 상기 저항 주울 열의 경시적 변화 양상을 시각적으로 출력할 수 있다.
Qcell = ishort*|Vshort - VOCV| ---⑥
(여기서, Qcell은 못이 관통된 지점에서 이차 전지의 저항 특성으로부터 발생되는 주울 열이고, Vshort는 전압 측정부에 의해 주기적으로 측정되는 이차 전지의 단락 전압이고, ishort는 주기적으로 측정되는 이차 전지의 단락 전압에 대응되는 단락 전류의 예측 값이고, VOCV는 이차 전지의 충전 상태에 따른 개방 전압의 예측 값임)
바람직하게, 본 발명에 따른 장치는, 상기 제어부와 동작 가능하게 결합된 디스플레이부를 더 포함하고, 상기 제어부는 상기 디스플레이부를 통해 단락 전압, 단락 전류, 단락 저항, 단락 주울 열 및 저항 주울 열로 이루어진 군에서 선택된 적어도 하나 이상의 경시적 변화 양상을 시각적으로 출력할 수 있다.
바람직하게, 본 발명에 따른 장치는, 상기 제어부와 동작 가능하게 결합된 메모리부를 더 포함하고, 상기 제어부는 단락 전압, 단락, 전류, 단락 저항, 단락 주울 열 및 저항 주울 열에 대한 데이터를 상기 메모리부에 누적해서 저장할 수 있다.
상기 기술적 과제를 달성하기 위한 본 발명에 따른 이차 전지의 못 관통 시험 방법은, 이차 전지를 스테이지에 고정하는 단계; 이차 전지를 못으로 관통하는 단계; 이차 전지의 전극을 통해 단락 전압을 시간 간격을 두고 반복적으로 측정하는 단계; 단락 전압이 측정될 때마다 상기 이차 전지를 모델링한 등가 회로에 기초하여 상기 등가 회로의 최외측 노드 사이에 상기 측정된 단락 전압이 형성되도록 하는 단락 전류를 결정하는 단계; 및 상기 결정된 단락 전류에 대한 경시적 변화 양상을 시각적으로 출력하는 단계;를 포함할 수 있다.
선택적으로, 본 발명에 따른 방법은, 상기 단락 전압의 경시적 변화 양상을 시각적으로 출력하는 단계를 더 포함할 수 있다.
선택적으로, 본 발명에 따른 방법은, 상기 단락 전압과 상기 단락 전류로부터 결정된 단락 저항의 경시적 변화 양상을 시각적으로 출력하는 단계를 더 포함할 수 있다.
선택적으로, 본 발명에 따른 방법은, 상기 단락 전압과 상기 단락 전류로부터 결정된 단락 주울 열에 대한 경시적 변화 양상을 시각적으로 출력하는 단계를 더 포함할 수 있다.
선택적으로, 본 발명에 따른 방법은, 상기 단락 전압과 상기 단락 전류, 그리고 상기 단락 전류를 적산하여 구한 충전 상태로부터 계산된 개방 전압을 이용하여 저항 주울 열을 계산하고, 상기 저항 주울 열의 경시적 변화 양상을 시각적으로 출력하는 단계를 더 포함할 수 있다.
상기 기술적 과제는 본 발명에 따른 이차 전지의 못 관통 시험 방법을 프로그램화하여 수록한 컴퓨터로 읽을 수 있는 기록매체에 의해서도 달성될 수 있다.
본 발명에 따르면, 이차 전지가 못에 의해 관통되었을 때 전지 내부에서 발생되는 단락 전류의 크기 변화를 정량적으로 규명할 수 있다. 또한, 예측된 단락 전류를 이용하여 못이 관통된 지점의 단락 저항 변화 또는 단락 주울 열의 변화 또는 이차 전지의 저항으로부터 발생되는 저항 주울 열의 변화도 정량적으로 계산할 수 있다.
따라서, 본 발명은 이차 전지가 뽀족한 물체에 의해 관통되었을 때 관통 지점의 열적 거동과 열의 발생 원인, 그리고 열량의 변화 양상을 정량적으로 규명하고 나아가 이차 전지의 관통 사고에 대비한 냉각 메커니즘을 개발하는데 유용하게 활용될 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 한 실시예를 예시하는 것이며, 후술하는 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 이차 전지의 못 관통 시험 장치의 구성을 개략적으로 도시한 블록도이다.
도 2는 못 관통 시험의 대상이 되는 이차 전지의 등가 회로를 나타낸 회로도이다.
도 3과 도 4는 본 발명의 실시예에 따라 제어부가 도 2의 등가 회로를 이용하여 못이 이차 전지를 관통한 직후에 이차 전지의 내부에서 흐르는 단락 전류를 결정하는 과정을 도시한 순서도들이다.
도 5는 본 발명의 실험예에서 못이 이차 전지를 관통한 이후 10초 동안 측정한 단락 전압(Vshort)의 프로파일(실선)과, 등가 회로를 이용하여 10초 동안 예측한 단락 전류(ishort) 프로파일(점선)을 나타낸 그래프이다.
도 6은 본 발명의 실험예에서 10초 동안 예측한 단락 저항(Rshort)의 경시적 변화를 보여주는 단락 저항 프로파일이다.
도 7은 본 발명의 실험예에서 10초 동안 예측한 단락 주울 열(Qshort)의 경시적 변화를 보여주는 단락 주울 열 프로파일이다.
도 8은 본 발명의 실험예에서 10초 동안 예측한 저항 주울 열(Qcell)의 경시적 변화를 보여주는 저항 주울 열 프로파일이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 출원을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 발명시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 일 실시예에 따른 이차 전지의 못 관통 시험 장치(100)의 구성을 개략적으로 도시한 블록도이다.
도 1을 참조하면, 본 발명에 따른 못 관통 시험 장치(100)는, 못 관통 시험의 대상이 되는 이차 전지(B)가 거치되는 스테이지(110)를 포함한다. 상기 스테이지(110)는 지지 프레임(111) 상에 설치될 수 있고, 중앙 부위에 관통창(112)이 구비될 수 있다. 상기 관통창(112)은 이차 전지(B)를 관통한 못(121)의 첨두가 통과하는 공간을 제공한다. 상기 스테이지(110)는 상부에 못 관통 시험의 대상이 되는 이차 전지(B)를 선택적으로 고정시키는 복수의 클램핑 수단(113)을 포함할 수 있다.
본 발명에 따른 못 관통 시험 장치(100)는, 또한 상기 스테이지(110)의 상부에 단부가 날까로운 못(121)을 이차 전지(B)를 통해 관통시키는 못 관통부(120)를 포함한다.
상기 못 관통부(120)는 이차 전지(B)를 관통시키는 못(121)과, 상기 못(121)을 빠른 속도로 하강시켜 상기 스테이지(110)에 고정된 이차 전지(B)를 관통시키고 못 관통 시험이 종료된 후 못(121)을 원래의 위치로 복귀시키는 못 승하강 수단(122)을 포함한다.
일 실시예에서, 상기 못 승하강 수단(122)은 못(121)의 상단부가 고정되는 고정 프레임 블록(1221)과, 고정 프레임 블록(1221)이 안착되어 슬라이딩 이동되는 승하강 레일(1222)과, 상기 고정 프레임 블록(1221)을 승하강 레일(1222) 상에서 원하는 속도로 승강 또는 하강시키는 리니어 모터(1223)와, 상기 리니어 모터(1223)의 회전 RPM과 회전 방향을 제어하는 모터 제어기(1224)를 포함한다.
한편, 본 발명은 못 승하강 수단(122)의 구체적인 구성에 의해 한정되지 않으므로 상기 리니어 모터(1223)는 선형 엑츄에이터 등으로 얼마든지 대체될 수 있다.
본 발명에 따른 못 관통 시험 장치(100)는, 또한 이차 전지(B)가 못(121)에 의해 관통된 직후에 상기 이차 전지(B)의 양극(P)과 음극(N) 사이에 인가되는 단자 전압을 주기적으로 측정하고 측정된 단자 전압에 대응되는 전압 측정 신호를 출력하는 전압 측정부(130)를 포함한다. 이하, 상기 단자 전압은 단락 전압이라고 명명하기로 한다. 상기 전압 측정부(130)는 볼트 미터(voltmeter)일 수 있는데, 본 발명은 전압 측정을 수행하는 디바이스의 종류에 의해 한정되는 것은 아니다.
본 발명에 따른 못 관통 시험 장치(100)는, 또한 이차 전지(B)가 못(121)에 의해 관통된 이후에 상기 전압 측정부(130)로부터 전압 측정 신호를 입력 받아 이차 전지(B)의 단락 전압을 결정하고, 이차 전지(B)의 등가 회로를 이용하여 상기 단락 전압이 상기 등가 회로의 최외측 노드들 사이에 형성된다고 가정할 때 상기 등기 회로에 흐르는 단락 전류를 계산하고 상기 단락 전류의 경시적 변화를 보여주는 단락 전류 프로파일을 생성하는 제어부(140)를 포함한다.
상기 제어부(140)는, 선택적으로(optionally), 상기 결정된 단자 전압 및 단락 전류로부터 못(121)이 관통된 지점의 단락 저항을 결정하고, 상기 단락 저항의 경시적 변화를 보여주는 단락 저항 프로파일을 생성할 수 있다.
또한, 상기 제어부(140)는, 선택적으로(optionally), 상기 결정된 단자 전압 및 단락 전류로부터 못 관통 지점에서 발생되는 국부적인 단락 주울 열을 결정하고, 상기 단락 주울 열의 경시적 변화를 보여주는 단락 주울 열 프로파일을 생성할 수 있다.
또한, 상기 제어부(140)는, 상기 결정된 단락 전류를 적산하여 이차 전지의 충전 상태를 결정한 후 미리 정의된 "충전 상태-개방 전압 룩업 테이블"을 참조하여 충전 상태에 대응되는 개방 전압을 결정하고, 결정된 개방 전압, 단락 전압 및 단락 전류로부터 이차 전지의 저항 특성으로부터 발생되는 저항 주울 열을 결정하고, 상기 저항 주울 열의 경시적 변화를 보여주는 저항 주울 열 프로파일을 생성할 수 있다.
상기 제어부(140)는, 이후에 개시되는 다양한 제어 로직들을 실행하기 위해 당업계에 알려진 프로세서, ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 레지스터, 통신 모뎀, 데이터 처리 장치 등을 선택적으로 포함할 수 있다.
또한, 상기 제어 로직들이 소프트웨어로 구현될 때, 상기 제어부(140)는 프로그램 모듈로 구현될 수 있다. 이 때, 상기 프로그램 모듈은 저장매체에 기록되고, 프로세서에 의해 실행될 수 있다. 상기 저장매체는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 데이터 송수신 수단으로 프로세서와 연결될 수 있다.
본 발명에 따른 못 관통 시험 장치(100)는, 또한 상기 제어부(140)의 제어 로직들을 포함하는 못 관통 시험 프로그램을 저장하고 상기 제어 로직들의 실행 과정에서 생성되는 데이터들이 저장되는 메모리부(150)를 포함한다.
상기 제어부(140)는, 주기적으로 이차 전지의 단락 전압이 측정될 때마다 상기 전압 측정부(130)로부터 단락 전압에 대응되는 전압 신호를 입력받은 후 단락 전압을 결정하고 이로부터 계산되는 단락 전류와 함께 메모리부(150)에 저장할 수 있고, 상기 메모리부(150)에 저장된 복수의 단락 전압 데이터와 복수의 단락 전류 데이터를 독출(read out)하여 단락 전압 프로파일과 단락 전류 프로파일을 생성할 수 있다.
상기 제어부(140)는, 또한 상기 단자 전압 및 단락 전류가 주기적으로 결정될 때마다 오옴의 법칙에 따라 단락 저항을 결정하여 메모리부(150)에 저장할 수 있고, 상기 메모리부(150)에 저장된 복수의 단락 저항 데이터를 독출하여 단락 저항 프로파일을 생성할 수 있다.
상기 제어부(140)는, 또한 상기 단자 전압 및 단락 전류가 주기적으로 결정될 때마다 열량 계산식을 이용하여 못 관통 지점에서 발생되는 국부적인 단락 주울 열을 결정하여 메모리부(150)에 저장할 수 있고 상기 메모리부(150)에 저장된 복수의 단락 주울 열 데이터를 독출하여 단락 주울 열 프로파일을 생성할 수 있다.
상기 제어부(140)는, 또한 상기 단락 전류가 결정될 때마다 상기 단락 전류를 적산하여 이차 전지(B)의 충전 상태를 결정하고 "충전 상태-개방 전압 룩업 테이블"을 참조하여 결정된 충전 상태에 대응되는 이차 전지의 개방 전압을 결정하고, 결정된 개방 전압, 단락 전압 및 단락 전류로부터 이차 전지의 저항 특성으로부터 발생되는 저항 주울 열을 결정하여 메모리부(150)에 저장하고 상기 메모리부(150)에 저장된 복수의 저항 주울 열 데이터를 독출하여 저항 주울 열 프로파일을 생성할 수 있다.
상기 메모리부(150)는 반도체 메모리 소자로서, 상기 제어부(140)에 의해 실행되는 프로그램 코드를 로딩하고, 상기 제어부(140)가 각종 제어 로직을 실행하는 동안 생성되는 데이터를 기록, 소거 또는 갱신할 수 있다. 상기 프로그램 코드는 상기 제어부(140)에 의해 엑세스 가능한 별도의 전자기적 또는 광학적 기록매체에 수록되어 있을 수 있다.
상기 메모리부(150)는 당업계에 알려진 반도체 메모리 소자라면 그 종류에 특별한 제한이 없다. 일 예시로서, 상기 메모리부(150)는 DRAM, SDRAM, 플래쉬 메모리, ROM, EEPROM, 레지스터 등일 수 있다. 상기 메모리부(150)는 제어부(140)와 물리적으로 분리되어 있을 수도 있고, 상기 제어부(140)와 일체로 통합되어 있을 수도 있다.
본 발명에 따른 못 관통 시험 장치(100)는, 또한 디스플레이부(160)를 더 포함할 수 있다. 상기 디스플레이부(160)는 액정 디스플레이(Liquid Crystal Display) 또는 유기 발광 다이오드 디스플레이(Organic Light Emitting Diode Display)일 수 있다. 하지만, 본 발명이 반드시 이에 한하는 것은 아니다. 따라서, 당업계에서 정보를 시각적으로 표출할 수 있다고 알려진 디스플레이 디바이스라면 상기 디스플레이부(160)의 범주에 포함될 수 있다.
상기 제어부(140)는 오퍼레이터의 요청에 따라 상기 메모리부(140)에 저장된 데이터를 활용하여 단락 전압 프로파일, 단락 전류 프로파일, 단락 저항 프로파일, 단락 주울 열 프로파일, 저항 주울 열 프로파일 중에서 선택된 적어도 하나를 생성하여 상기 디스플레이부(160)를 통해 시각적으로 표출할 수 있다.
도면에 도시하지는 않았지만, 본 발명에 따른 못 관통 시험 장치(100)는 오퍼레이터가 못 관통 시험에 필요한 다양한 제어 명령을 입력할 수 있는 입력 디바이스를 더 포함할 수 있다. 상기 입력 디바이스는 제어부(140)와 동작 가능하게 결합될 수 있다. 상기 입력 디바이스는 키보드와 마우스를 포함할 수 있는데, 본 발명이 이에 한정되는 것은 아니다.
또한, 상기 못 관통 시험 장치(100)는, 오퍼레이터가 다양한 제어 명령을 입력할 수 있도록 소프트웨어로 구현된 사용자 인터페이스를 제공할 수 있다.
오퍼레이터는 사용자 인터페이스 상에서 못 관통 시험 조건을 설정하고, 제어부(140)에 의해 계산된 데이터의 경시적 변화에 대한 시각적 출력을 요청하고, 디스플레이부(160)를 통해 해당 데이터의 경시적 변화를 확인할 수 있다.
못 관통 시험 조건은, 못의 승하강 속도와, 단락 전류의 예측에 사용되는 회로 모델를 구성하는 회로 소자의 전기적 파라미터, 예컨대 저항값, 커패시턴스 값 등과, 충전 상태-개방 전압 룩업 테이블을 포함한다.
도 2는 못 관통 시험의 대상이 되는 이차 전지(B)의 등가 회로(200)를 나타낸 회로도이다.
도 2를 참조하면, 본 발명의 실시예에 따른 등가 회로(200)는 이차 전지(B)의 자체 저항을 모델링하는 직렬 저항(R0, 210)과, 이차 전지(B)를 통해 전류가 흐를 때 전극의 분극 특성을 모델링하는 적어도 하나 이상의 RC 회로(220a, 220b)와, 이차 전지(B)의 충전 상태(SOC)에 따라 고유하게 결정되는 이차 전지(B)의 개방 전압을 모델링하는 개방 전압원(230)을 포함한다.
바람직하게, 상기 등가 회로(200)는 이차 전지(B)의 양극과 음극에 대한 분극 특성을 독립적으로 모델링하기 위해 2개의 RC 회로를 포함할 수 있다. 물론, RC 회로의 수는 하나로 감소시킬 수도 있고, 3개 이상으로 증가시킬 수도 있다.
이하에서는, 설명의 편의를 위해, 왼쪽의 RC 회로는 양극의 분극 특성을 모델링하기 위한 회로로서 제1RC 회로(220a)로 명명하고, 오른 쪽의 RC 회로는 음극의 분극 특성을 모델링하기 위한 회로로서 제2RC 회로(220b)라고 명명하기로 한다.
상기 등가 회로(200)를 구성하는 회로 성분들의 저항값 또는 커패시턴스 값 등은 이차 전지(B)의 종류에 따라 달라지며 실험을 통해 적절하게 튜닝될 수 있다. 또한, 개방 전압원(230)에 의해 형성되는 전압은 방전 실험을 통하여 정의되는 "충전 상태-개방 전압 룩업 테이블"을 이용하여 결정할 수 있다. 여기서, 상기 방전 실험은 이차 전지(B)를 만충전 시킨 후 정전류로 방전을 시키면서 충전 상태 별로 개방 전압을 측정하는 실험을 의미한다. 또한, 상기 "충전 상태-개방 전압 룩업 테이블"은 충전 상태 별로 대응되는 개방 전압을 맵핑하거나, 반대로 개방 전압 별로 충전 상태를 맵핑할 수 있는 테이블 형태의 데이터 구조를 가진다.
본 발명은 이차 전지(B)가 못에 의해 관통되었을 때 상기 등가 회로(200)를 통해서도 이차 전지(B)의 내부에 흐르는 단락 전류(ishort)가 동일하게 흐른다고 가정한다. 또한, 단락 전류(ishort)가 흐르는 동안 이차 전지(B)의 양극과 음극 사이에서 측정되는 단락 전압(Vshort)은 상기 등가 회로(200)의 최외측 노드들 사이에도 동일하게 인가된다고 가정한다.
상기 가정에 의하면, 단락 전압 Vshort은 다음 수식 1과 같이 직렬 저항(210)에 형성되는 전압 VR0, 제1RC 회로(220a)에 형성되는 전압 VRC1, 제2RC 회로(220b)에 형성되는 전압 VRC2 및 개방 전압원(230)에 형성되는 전압 VOCV의 합에 의해 계산될 수 있다.
<수식 1>
Vshort = VR0 + VRC1 + VRC2 + VOCV
상기 수식 1에 있어서 VR0는 ishort*R0이므로, 수식 1을 ishort에 대해 정리하면 다음 수식 2를 얻을 수 있다.
<수식 2>
ishort = (Vshort - VRC1- VRC2-VOCV)/R0
상기 수식 2에 있어서, Vshort은 이차 전지(B)의 양극과 음극 사이에서 주기적으로 측정되는 전압 값을 할당하여 측정 업데이트될 수 있다.
상기 수식 2에 있어서, VRC1 및 VRC2는 이산 시간 모델(Time-Discrete Model)을 적용하여 다음 수식 3에 의해 시간 업데이트할 수 있다.
<수식 3>
VRC1[k+1] = VRC1[k]e- Δt /R1*C1 + R1(1- e-Δt/R1*C1)ishort[k]
VRC2[k+1] = VRC2[k]e- Δt /R2*C2 + R2(1- e-Δt/R2*C2)ishort[k]
상기 수식 3에 있어서, Δt는 시간 업데이트 주기이고, k와 k+1은 시간 인덱스이다. VRC1[k] 및 VRC2[k]는 시간 업데이트되기 직전의 전압 값이고, VRC1[k+1] 및 VRC2[k+1]은 시간 업데이트가 이루어진 이후의 전압 값이다. R1과 C1은 제1RC 회로(220a)에 포함된 저항과 콘덴서의 저항값과 커패시턴스 값으로서 실험을 통하여 적절한 값으로 튜닝될 수 있다. 유사하게, R2와 C2는 제2RC 회로(220b)에 포함된 저항과 콘덴서의 저항값과 커패시턴스 값으로서 실험을 통하여 적절한 값으로 튜닝될 수 있다. ishort[k]는 시간 업데이트되기 직전에 예측된 단락 전류 값이다.
못이 이차 전지(B)를 관통한 직후에는 단락 전류가 무시할 정도로 작으므로 VRC1[1], VRC2[1], ishort[1]은 0으로 초기화할 수 있다.
상기 수식 2에 있어서, VOCV는 다음 수식 4를 이용하여 등가 회로(200)를 통해 흐르는 단락 전류를 적산함으로써 이차 전지(B)의 충전 상태를 시간 업데이트하고, "충전 상태-개방 전압 룩업 테이블"을 참조하여 충전 상태에 대응되는 개방 전압을 룩업하는 방식으로 결정할 수 있다.
<수식 4>
SOC[k+1]= SOC[k] + 100*ishort[k]△t/Qcell
상기 수식 4에 있어서, Δt는 충전 상태의 시간 업데이트 주기이고 Qcell은 이차 전지(B)의 용량이다. 못이 이차 전지(B)를 관통한 직후에는 단락 전류가 무시할 정도로 작다. 따라서, 초기 조건에 해당하는 SOC[1]에는 못이 이차 전지(B)를 관통하기 전에 측정한 이차 전지(B)의 개방 전압을 이용하여 "충전 상태-개방 전압 룩업 테이블"로부터 얻은 충전 상태를 초기값으로 할당한다. 그리고, SOC[2]부터는 수식 2에서 구한 단락 전류를 수식 4에 대입하여 충전 상태를 시간 업데이트하여 결정한다.
그러면, 이하에서는 이차 전지(B)가 못에 의해 관통되었을 때 제어부(140)가 상기 수식들을 이용하여 주기적으로 등가 회로(200)에 흐르는 단락 전류를 결정하는 과정을 보다 구체적으로 설명한다.
도 3과 도 4는 본 발명의 실시예에 따라 제어부(140)가 도 2의 등가 회로(200)를 이용하여 못이 이차 전지(B)를 관통한 직후에 이차 전지(B)의 내부에서 흐르는 단락 전류를 결정하는 과정을 도시한 순서도들이다.
도시된 바와 같이, 먼저 못 관통 시험이 시작되면, 상기 제어부(140)는 전압 측정부(130)를 이용하여 스테이지(110)의 상부에 고정된 이차 전지(B)의 개방 전압을 측정하고, 측정된 개방 전압을 메모리부(150)에 저장한다(S100). 그런 다음, 상기 제어부(140)는 측정된 개방 전압을 VOCV의 초기 값으로 할당한다(S115).
이어서, 상기 제어부(140)는 시간 인덱스 k를 1로 초기화하고(S110), 등가 회로(200)의 제1RC 회로(220a)에 형성되는 전압 VRC1과 제2RC 회로(220b)에 형성되는 전압 VRC2와 등가 회로(200)에 흐르는 단락 전류 ishort의 초기 값으로 0을 할당하고, 단계 S100에서 측정한 이차 전지(B)의 개방 전압과 "충전 상태-개방 전압 룩업 테이블"을 이용하여 이차 전지(B)의 충전 상태인 SOC를 초기화한다(S120).
이어서, 상기 제어부(140)는 오퍼레이터가 설정한 못 관통 속도에 따라 못 관통부(120)를 제어하여 스테이지(110) 상에 고정된 이차 전지(B)를 향해 못을 하강시켜 이차 전지(B)를 관통시킨다(S130).
이어서, 상기 제어부(140)는 관통 시점을 기준으로 미리 설정된 시간 Δt가 경과되었는지 판별한다(S140). 여기서, Δt는 실질적으로 단락 전류의 계산 주기에 해당하며, 예컨대 100ms 이하의 시간 값을 가질 수 있다.
만약, 단계 S140에서 Δt가 경과되지 않았다고 판단되면 상기 제어부(140)는 프로세스의 진행을 대기한다. 반면, 단계 S140에서 Δt가 경과되었다고 판단되면 상기 제어부(140)는 단계 S150을 진행한다.
단계 S150에서, 상기 제어부(140)는 전압 측정부(130)를 이용하여 이차 전지(B)의 단락 전압을 측정하여 메모리부(150)에 저장하고, 측정된 단락 전압을 Vshort 값으로 할당한다.
이어서, 상기 제어부(140)는 단계 S150에서 결정된 Vshort값과, 단계 S115에서 결정된 VOCV 값과 단계 S120에서 초기화된 VRC1 및 VRC2 값을 수식 2에 대입하여 단락 전류 ishort 를 결정한다(S160).
이어서, 상기 제어부(140)는 미리 설정된 못 관통 시험 시간이 경과되었는지 판별한다(S170). 일 예로, 상기 못 관통 시험 시간은 수십 초 이내로 설정할 수 있다.
만약, 단계 S170에서 못 관통 시험 시간이 경과되었다고 판단되면, 상기 제어부(140)는 본 발명에 따른 프로세스를 종료한다. 반면, 단계 S170에서 못 관통 시험 시간이 경과되지 않았으면 상기 제어부(140)는 단계 S180(도 4 참조)을 진행한다.
단계 S180에서, 상기 제어부(140)는 단계 S120에서 결정된 VRC1 및 VRC2의 초기값과 단계 S160에서 결정된 ishort 값을 수식 3에 대입하여 제1RC 회로(220a)에 형성되는 전압 VRC1과, 제2RC 회로(220b)에 형성되는 전압 VRC2를 각각 시간 업데이트한다.
<수식 3>
VRC1[2] = VRC1[1]e- Δt /R1*C1 + R1(1- e-Δt/R1*C1)ishort[1]
VRC2[2] = VRC2[1]e- Δt /R2*C2 + R2(1- e-Δt/R2*C2)ishort[1]
이어서, 상기 제어부(140)는 단계 S160에서 결정된 ishort 값과 S120 단계에서 결정된 이차 전지(B)의 충전 상태 SOC의 초기값을 수식 4에 대입하여 이차 전지(B)의 충전 상태 SOC를 시간 업데이트한다(S190).
<수식 4>
SOC[2] = SOC[1] + 100*ishort[1]△t/Qcell
이어서, 상기 제어부(140)는 단계 S190에서 결정된 SOC의 시간 업데이트 값과 "충전 상태-개방 전압 룩업 테이블"을 이용하여 시간 업데이트된 SOC에 대응되는 개방 전압을 결정하고, 결정된 개방 전압을 이용하여 VOCV 값을 시간 업데이트한다(S200).
이어서, 상기 제어부(140)는 시간 인덱스 k를 1증가시키고(S210), 프로세스를 단계 S140으로 진행한다. 그런 다음, 상기 제어부(140)는 시간 Δt가 경과된 조건이 다시 만족되면, 전압 측정부(130)를 이용하여 이차 전지(B)의 단락 전압을 다시 측정하여 메모리부(150)에 저장하고 Vshort 값을 새로 측정된 단락 전압 값으로 측정 업데이트한다.
이어서, 상기 제어부(140)는 단계 S180 및 단계 S200에서 시간 업데이트된 VRC1, VRC2 및 VOCV와 단계 S150에서 측정 업데이트된 Vshort를 수식 2에 다시 대입하여 현재의 시간 인덱스를 기준으로 한 이차 전지(B)의 단락 전류 ishort를 결정한다(S160).
이렇게 결정된 단락 전류 ishort는 단계 S170에서 못 관통 시험 시간이 경과된 조건이 성립되지 않는 이상 단계 S180, S190 및 S200에서 VRC1, VRC2, SOC 및 VOCV를 시간 업데이트 하는데 이용된다.
상기한 바와 같은 수식 3 및 4를 활용한 VRC1, VRC2, SOC 및 VOCV의 시간 업데이트와 이차 전지(B)의 단락 전압 측정을 통한 Vshort값의 측정 업데이트는 못 관통 시험 시간이 경과될 때까지 시간 인덱스 k가 증가하면서 주기적으로 반복되며, 업데이트된 전압 값들, 즉 VRC1, VRC2 및 Vshort가 수식 2에 대입될 때마다 이차 전지(B)의 단락 전류 ishort 값이 시간 업데이트된다.
바람직하게, 상기 제어부(140)는 단계 S150에서 주기적으로 측정 업데이트되는 Vshort 값을 메모리부(150)에 누적해서 저장할 수 있다. 또한, 상기 제어부(140)는 오퍼레이터의 요청이 있을 경우 상기 메모리부(150)에 저장된 복수의 단락 전압(Vshort) 데이터들을 이용하여 단락 전압 프로파일을 생성하고 생성된 단락 전압 프로파일을 디스플레이부(160)를 통해 시각적으로 표시할 수 있다.
또한, 상기 제어부(140)는 단계 S160에서 수식 2를 이용하여 주기적으로 시간 업데이트되는 단락 전류 ishort 값을 메모리부(150)에 누적해서 저장할 수 있다. 또한, 상기 제어부(140)는 오퍼레이터의 요청이 있을 경우 상기 메모리부(150)에 저장된 복수의 단락 전류(ishort) 데이터들을 이용하여 단락 전류 프로파일을 생성하고 생성된 단락 전류 프로파일을 디스플레이부(160)를 통해 시각적으로 표시할 수 있다.
한편, 상기 제어부(140)는, 선택적으로(optionally), 이차 전지(B)의 관통 지점을 기준으로 단락 저항을 예측하고 그 변화를 프로파일로서 생성할 수 있다.
즉, 상기 제어부(140)는 단계 S150에서 측정 업데이트된 단락 전압 Vshort값과 단계 S160에서 시간 업데이트된 단락 전류 ishort값을 이용하여 시간 인덱스가 증가할 때마다 다음 수식 5에 의해 관통 지점의 단락 저항을 결정하고, 결정된 단락 저항 값을 메모리부(150)에 누적 저장할 수 있다.
<수식 5>
Rshort = Vshort/ishort
또한, 상기 제어부(140)는 오퍼레이터의 요청이 있을 경우 상기 메모리부(150)에 저장된 복수의 단락 저항(Rshort) 데이터들을 이용하여 단락 저항 프로파일을 생성하고 생성된 단락 저항 프로파일을 디스플레이부(160)를 통해 시각적으로 표시할 수 있다.
또한, 상기 제어부(140)는, 선택적으로(optionally), 이차 전지(B)의 관통 지점에서 발생되는 단락 주울 열을 예측하고 그 변화를 프로파일로서 생성할 수 있다.
즉, 상기 제어부(140)는 단계 S150에서 측정 업데이트된 단락 전압 Vshort값과 단계 S160에서 시간 업데이트된 단락 전류 ishort값을 이용하여 시간 인덱스가 증가할 때마다 다음 수식 6에 의해 단락 주울 열을 결정하고, 결정된 단락 주울 열 값을 메모리부(150)에 누적 저장할 수 있다.
<수식 6>
Qshort = ishort*Vshort
또한, 상기 제어부(140)는 오퍼레이터의 요청이 있을 경우 상기 메모리부(150)에 저장된 복수의 단락 주울 열(Qshort) 데이터들을 이용하여 단락 주울 열 프로파일을 생성하고 생성된 단락 주울 열 프로파일을 디스플레이부(160)를 통해 시각적으로 표시할 수 있다.
또한, 상기 제어부(140)는, 선택적으로(optionally), 이차 전지(B)의 못 관통 시험 시 이차 전지의 저항, 즉 직렬 저항(210)과 제1 및 제2RC 회로(220a, 220b)에 포함된 저항에 의해 발생되는 저항 주울 열을 예측하고 그 변화를 프로파일로서 생성할 수 있다.
즉, 상기 제어부(140)는 단계 S150에서 측정 업데이트된 단락 전압 Vshort값, 단계 S160에서 시간 업데이트된 단락 전류 ishort값, 그리고 단계 S200에서 시간 업데이트된 VOCV 값을 이용하여 시간 인덱스가 증가할 때마다 다음 수식 7에 의해 저항 주울 열을 결정하고, 결정된 저항 주울 열 값을 메모리부(150)에 누적 저장할 수 있다.
<수식 7>
Qcell = ishort*|Vshort - VOCV|
한편 상기 제어부(140)에 의해 수행되는 상술한 제어 로직들은 적어도 하나 이상이 조합되고, 조합된 제어 로직들은 컴퓨터가 읽을 수 있는 코드 체계로 작성되어 컴퓨터가 읽을 수 있는 기록매체에 수록될 수 있다. 상기 기록매체는 컴퓨터에 포함된 프로세서에 의해 접근이 가능한 것이라면 그 종류에 특별한 제한이 없다. 일 예시로서, 상기 기록매체는 ROM, RAM, 레지스터, CD-ROM, 자기 테이프, 하드 디스크, 플로피디스크 및 광 데이터 기록장치를 포함하는 군에서 선택된 적어도 하나 이상을 포함한다. 또한, 상기 코드 체계는 캐리어 신호로 변조되어 특정한 시점에 통신 캐리어에 포함될 수 있고, 네트워크로 연결된 컴퓨터에 분산되어 저장되고 실행될 수 있다. 또한, 상기 조합된 제어 로직들을 구현하기 위한 기능적인 프로그램, 코드 및 코드 세그먼트들은 본 발명이 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.
<실험예>
그러면, 이하에서는 실험예를 통하여 본 발명의 효과를 설명하기로 한다. 본 명세서에서 설명되는 실험예는 본 발명의 이해를 돕기 위한 것이므로 본 발명의 범위가 실험예에서 의해 한정되지 않음은 자명하다.
먼저, 용량이 37Ah이고 충전 상태가 80%인 파우치 타입의 리튬 폴리머 이차 전지를 준비하였다. 그런 다음, 준비된 이차 전지를 본 발명에 따른 못 시험 관통 장치의 스테이지에 로딩하고 클램핑 수단으로 고정시켰다. 그리고, 이차 전지의 양극과 음극을 전압 측정부(볼트 미터)에 연결하였다. 그런 다음, 단면이 원형이고 직경이 6mm인 강철 재질의 못을 못 관통부에 장착한 후 20mm/s의 속도로 하강시켜 이차 전지를 관통하고 그 상태를 20초 동안 유지하였다.
못 관통 시험이 진행되는 동안, 상기 볼트 미터를 이용하여 100ms를 주기로 이차 전지의 단락 전압 Vshort을 반복적으로 측정하여 메모리부(150)에 누적 저장하였으며, 단락 전압이 측정될 때마다 도 3 및 도 4에 도시된 알고리즘을 실행하여 시간 인덱스가 증가할 때마다 이차 전지의 단락 전류 ishort, 단락 저항 Rshort, 단락 주울 열 Qshort, 및 저항 주울 열 Qcell을 결정하고 각각의 데이터들을 메모리부에 누적 저장하였다. 본 실험예에서, 각 파라미터들의 계산 주기는 단락 전압의 측정 주기와 실질적으로 동일하게 설정하였다.
본 실험예에서 사용된 등가 회로에 있어서, 직렬 저항 값은 0.00102Ω으로 튜닝하였다. 또한, 제1RC 회로에 포함된 저항과 콘덴서의 저항 값과 커패시턴스 값은 각각 0.0003Ω 및 667F으로 각각 튜닝하였다. 또한, 제2RC 회로에 포함된 저항과 콘덴서의 저항 값과 커패시턴스 값은 각각 0.0010Ω 및 2000F으로 각각 튜닝하였다.
<실험 결과>
도 5는 못이 이차 전지를 관통한 이후 10초 동안 측정한 단락 전압(Vshort)의 경시적 변화를 보여주는 프로파일(실선)과, 등가 회로를 이용하여 10초 동안 예측한 단락 전류(ishort)의 경시적 변화를 보여주는 프로파일(점선)을 나타낸 그래프이다.
도 5를 참조하면, 단락 전류(ishort)가 못이 이차 전지를 관통한 후 1초 이후에 급격하게 증가하였다가 2초 이후에 안정화된 것을 확인할 수 있다. 이러한 단락 전류(ishort)의 변화 양상은 단락 전압(Vshort)의 변화 양상과 반대이다. 즉, 단락 전압(Vshort)은 1초 이후에 급격하게 감소하였다가 2초 이후에 안정화된 것을 확인할 수 있는데, 단락 전압(Vshort)이 급격하게 감소하는 구간은 단락 전류(ishort)가 급격하게 증가하는 구간과 일치한다. 이러한 실험 결과는, 등가 회로를 이용하여 예측된 단락 전류(ishort)가 실제 못이 관통된 부위에서 흐르는 단락 전류를 잘 모사할 수 있음을 보여준다.
도 6은 10초 동안 예측한 단락 저항(Rshort)의 경시적 변화를 보여주는 단락 저항 프로파일이고, 도 7은 10초 동안 예측한 단락 주울 열(Qshort)의 경시적 변화를 보여주는 단락 주울 열 프로파일이고, 도 8은 10초 동안 예측한 저항 주울 열(Qcell)의 경시적 변화를 보여주는 저항 주울 열 프로파일이다.
도 6 내지 도 8을 참조하면, 단락 저항(Rshort)은 단락 전류(ishort)가 급격하게 증가하는 시간 구간에서 급격하게 감소하는 패턴을 보인다. 또한, 단락 주울 열(Qshort)과 저항 주울 열(Qcell)도 단락 전류(ishort)가 급격하게 증가하는 시간 구간에서 급격하게 증가하는 것을 확인할 수 있다. 아울러, 저항 주울 열(Qcell)은 단락 주울 열(Qshort)과 비교하여 1/100의 수준으로 작다는 것을 확인할 수 있다.
이러한 실험 결과는, 이차 전지가 뽀족한 물체에 의해 관통되었을 때 관통 지점의 열적 거동과 열의 발생 원인, 그리고 열량의 변화 양상을 정량적으로 규명하고 나아가 이차 전지의 관통 사고에 대비한 냉각 메커니즘을 개발하는데 본 발명에 따른 못 관통 시험 장치가 유용하게 활용될 수 있음을 시사해 준다.
본 출원의 다양한 실시 양태를 설명함에 있어서, '~부'라고 명명된 구성 요소들은 물리적으로 구분되는 요소들이라고 하기 보다 기능적으로 구분되는 요소들로 이해되어야 한다. 따라서 각각의 구성요소는 다른 구성요소와 선택적으로 통합되거나 각각의 구성요소가 제어 로직(들)의 효율적인 실행을 위해 서브 구성요소들로 분할될 수 있다. 하지만 구성요소들이 통합 또는 분할되더라도 기능의 동일성이 인정될 수 있다면 통합 또는 분할된 구성요소들도 본 출원의 범위 내에 있다고 해석되어야 함은 당업자에게 자명하다.
이상에서 본 출원은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 출원은 이것에 의해 한정되지 않으며 본 출원이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 출원의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
본 발명에 따르면, 이차 전지가 못에 의해 관통되었을 때 전지 내부에서 발생되는 단락 전류의 크기 변화를 정량적으로 규명할 수 있다. 또한, 예측된 단락 전류를 이용하여 못이 관통된 지점의 단락 저항 변화 또는 단락 주울 열의 변화 또는 이차 전지의 저항으로부터 발생되는 저항 주울 열의 변화도 정량적으로 계산할 수 있다.
따라서, 본 발명은 이차 전지가 뽀족한 물체에 의해 관통되었을 때 관통 지점의 열적 거동과 열의 발생 원인, 그리고 열량의 변화 양상을 정량적으로 규명하고 나아가 이차 전지의 관통 사고에 대비한 냉각 메커니즘을 개발하는데 유용하게 활용될 수 있다.

Claims (14)

  1. 못 관통 시험의 대상이 되는 이차 전지가 고정되는 스테이지;
    상기 이차 전지를 관통시키는 못과 상기 못을 승강 또는 하강시키는 못 승하강 수단을 포함하는 못 관통부;
    상기 이차 전지의 전극에 결합되어 못 관통 시험이 진행되는 동안 이차 전지의 단락 전압을 시간 간격을 두고 반복 측정하는 전압 측정부;
    시각적으로 정보를 표시하는 디스플레이부;
    상기 전압 측정부와 동작 가능하게 결합된 제어부를 포함하고,
    상기 제어부는, 상기 못 관통부를 제어하여 상기 못을 하강시켜 이차 전지를 관통시키고, 상기 전압 측정부로부터 단락 전압을 주기적으로 입력 받고, 상기 단락 전압이 입력될 때마다 상기 이차 전지를 모델링한 등가 회로에 기초하여 상기 등가 회로의 최외측 노드 사이에 상기 입력된 단락 전압이 형성되게 하는 단락 전류를 결정하고, 상기 결정된 단락 전류에 대한 값의 경시적 변화 양상을 상기 디스플레이부를 통해 시각적으로 출력하도록 구성된 것을 특징으로 하는 이차 전지의 못 관통 시험 장치.
  2. 제1항에 있어서,
    상기 등가 회로는, 복수의 회로 요소로서, 직렬 저항, 적어도 하나의 RC 회로 및 이차 전지의 충전 상태에 따라 전압이 가변되는 개방 전압원을 포함하고,
    상기 복수의 회로 요소들은 서로 직렬 연결되어 있는 것을 특징으로 하는 이차 전지의 못 관통 시험 장치.
  3. 제2항에 있어서,
    상기 제어부는, 하기 수식에 의해 이차 전지의 단락 전류를 결정하도록 구성된 것을
    ishort = (Vshort - VRC - VOCV)/R0
    (여기서, ishort는 단락 전류, Vshort는 상기 전압 측정부에 의해 측정된 단락 전압, VRC는 상기 RC 회로에 의해 형성되는 전압, VOCV는 이차 전지의 충전 상태에 따른 개방 전압, R0는 상기 직렬 저항의 저항 값임)
    특징으로 하는 이차 전지의 못 관통 시험 장치.
  4. 제3항에 있어서,
    상기 제어부는 상기 VRC를 하기 수식에 의해 시간 업데이트하도록 구성되고,
    VRC[k+1] = VRC[k]e- Δt /R*C + R(1- e- Δt /R*C) ishort[k]
    (여기서, k는 시간 인덱스이고, VRC[k]는 시간 업데이트 직전의 VRC 값이고, VRC[k+1]은 시간 업데이트된 VRC 값이고, Δt는 VRC의 시간 업데이트 주기이고, R과 C는 각각 RC 회로에 포함된 저항과 콘덴서의 저항값 및 커패시턴스값이고, ishort는 직전 계산 주기에서 결정된 단락 전류의 예측 값임)
    상기 제어부는 하기 수식에 의해 이차 전지의 충전 상태인 SOC를 시간 업데이트하도록 구성되고,
    SOC[k+1] = SOC[k] + 100*ishort[k]△t/Qcell
    (여기서, k는 시간 인덱스이고, SOC[k]는 시간 업데이트 직전의 충전 상태이고, SOC[k+1]은 시간 업데이트된 충전 상태이고, ishort는 직전 계산 주기에서 결정된 단락 전류이고, Δt는 충전 상태 SOC의 시간 업데이트 주기이고, Qcell은 이차 전지의 용량임)
    상기 제어부는 상기 시간 업데이트된 충전 상태와 미리 정의된 "충전 상태-개방 전압 룩업 테이블"을 이용하여 상기 시간 업데이트된 충전 상태에 대응되는 이차 전지의 개방 전압 VOCV를 결정하도록 구성된 것을 특징으로 하는 이차 전지의 못 관통 시험 장치.
  5. 제1항에 있어서,
    상기 제어부는, 하기 수식을 이용하여 못이 관통된 지점의 단락 저항인 Rshort를 결정하고,
    Rshort = Vshort/ishort
    (여기서, Rshort는 못이 관통된 지점의 단락 저항이고, Vshort는 전압 측정부에 의해 주기적으로 측정되는 이차 전지의 단락 전압이고, ishort는 주기적으로 측정되는 이차 전지의 단락 전압에 대응되는 단락 전류의 예측 값임)
    상기 단락 저항의 경시적 변화 양상을 상기 디스플레이부를 통해 시각적으로 출력하도록 구성된 것을 특징으로 하는 이차 전지의 못 관통 시험 장치.
  6. 제1항에 있어서,
    상기 제어부는, 하기 수식을 이용하여 못이 관통된 지점에서 발생하는 단락 주울 열인 Qshort를 결정하고,
    Qshort = ishort*Vshort
    (여기서, Qshort는 못이 관통된 지점에서 발생되는 단락 주울 열이고, Vshort는 전압 측정부에 의해 주기적으로 측정되는 이차 전지의 단락 전압이고, ishort는 주기적으로 측정되는 이차 전지의 단락 전압에 대응되는 단락 전류의 예측 값임)
    상기 단락 주울 열의 경시적 변화 양상을 상기 디스플레이부를 통해 시각적으로 출력하도록 구성된 것을 특징으로 하는 이차 전지의 못 관통 시험 장치.
  7. 제1항에 있어서,
    상기 제어부는, 하기 수식을 이용하여 이차 전지의 관통 지점에서 이차 전지의 저항 특성으로부터 발생되는 저항 저울열인 Qcell을 결정하고,
    Qcell = ishort*|Vshort - VOCV|
    (여기서, Qcell은 못이 관통된 지점에서 이차 전지의 저항 특성으로부터 발생되는 주울 열이고, Vshort는 전압 측정부에 의해 주기적으로 측정되는 이차 전지의 단락 전압이고, ishort는 주기적으로 측정되는 이차 전지의 단락 전압에 대응되는 단락 전류의 예측 값이고, VOCV는 이차 전지의 충전 상태에 따른 개방 전압의 예측 값임)
    상기 저항 주울 열의 경시적 변화 양상을 상기 디스플레이부를 통해 시각적으로 출력하도록 구성된 것을 특징으로 하는 이차 전지의 못 관통 시험 장치.
  8. (a) 이차 전지를 스테이지에 고정하는 단계;
    (b) 이차 전지를 못으로 관통하는 단계;
    (c) 이차 전지의 전극을 통해 단락 전압을 시간 간격을 두고 반복적으로 측정하는 단계;
    (d) 단락 전압이 측정될 때마다 상기 이차 전지를 모델링한 등가 회로에 기초하여 상기 등가 회로의 최외측 노드 사이에 상기 측정된 단락 전압이 형성되도록 하는 단락 전류를 결정하는 단계; 및
    (e) 상기 결정된 단락 전류에 대한 변화 양상을 시각적으로 출력하는 단계;를 포함하는 것을 특징으로 하는 이차 전지의 못 관통 시험 방법.
  9. 제8항에 있어서,
    상기 등가 회로는, 복수의 회로 요소로서, 직렬 저항, 적어도 하나의 RC 회로 및 이차 전지의 충전 상태에 따라 전압이 가변되는 개방 전압원을 포함하고, 상기 복수의 회로 요소들은 서로 직렬 연결되어 있는 것을 특징으로 하는 이차 전지의 못 관통 시험 방법.
  10. 제9항에 있어서, 상기 (d) 단계는,
    이차 전지의 단락 전류를 하기 수식을 이용하여 결정하는 단계임을
    ishort = (Vshort - VRC - VOCV)/R0
    (여기서, ishort는 단락 전류, Vshort는 상기 전압 측정부에 의해 측정된 단락 전압, VRC는 상기 RC 회로에 의해 형성되는 전압, VOCV는 이차 전지의 충전 상태에 따른 개방 전압, R0는 상기 직렬 저항의 저항 값임)
    특징으로 하는 이차 전지의 못 관통 시험 방법.
  11. 제10항에 있어서, 상기 (d) 단계는,
    (d1) 상기 VRC를 하기 수식에 의해 시간 업데이트하는 단계;
    VRC[k+1] = VRC[k]e- Δt /R*C + R(1- e- Δt /R*C) ishort(k)
    (여기서, k는 시간 인덱스이고, VRC[k]는 시간 업데이트 직전의 VRC 값이고, VRC[k+1]은 시간 업데이트된 VRC 값이고, Δt는 VRC의 시간 업데이트 주기이고, R과 C는 각각 RC 회로에 포함된 저항과 콘덴서의 저항값 및 커패시턴스 값이고, ishort는 직전 계산 주기에서 결정된 단락 전류의 예측 값임)
    (d2) 이차 전지의 충전 상태인 SOC를 하기 수식에 의해 시간 업데이트하는 단계;
    SOC[k+1] = SOC[k] + 100*ishort[k]△t/Qcell
    (여기서, k는 시간 인덱스이고, SOC[k]는 시간 업데이트 직전의 충전 상태이고, SOC[k+1]은 시간 업데이트된 충전 상태이고, ishort는 직전 계산 주기에서 결정된 단락 전류이고, Δt는 충전 상태 SOC의 시간 업데이트 주기이고, Qcell은 이차 전지의 용량임); 및
    (d3) 상기 시간 업데이트된 충전 상태와 미리 정의된 "충전 상태-개방 전압 룩업 테이블"을 이용하여 상기 시간 업데이트된 충전 상태에 대응되는 이차 전지의 개방 전압인 VOCV를 결정하는 단계를 포함하는 것을 특징으로 하는 이차 전지의 못 관통 시험 방법.
  12. 제8항에 있어서,
    못이 관통된 지점의 단락 저항인 Rshort를 하기 수식에 의해 결정하는 단계
    Rshort = Vshort/ishort
    (여기서, Rshort는 못이 관통된 지점의 단락 저항이고, Vshort는 전압 측정부에 의해 주기적으로 측정되는 이차 전지의 단락 전압이고, ishort는 주기적으로 측정되는 이차 전지의 단락 전압에 대응되는 단락 전류의 예측 값임); 및
    상기 단락 저항의 변화 양상을 시각적으로 출력하는 단계를 더 포함하는 것을 특징으로 하는 이차 전지의 못 관통 시험 방법.
  13. 제8항에 있어서,
    못이 관통된 지점에서 발생하는 단락 주울 열인 Qshort를 하기 수식을 이용하여 결정하는 단계
    Qshort = ishort*Vshort
    (여기서, Qshort는 못이 관통된 지점에서 발생되는 단락 주울 열이고, Vshort는 전압 측정부에 의해 주기적으로 측정되는 이차 전지의 단락 전압이고, ishort는 주기적으로 측정되는 이차 전지의 단락 전압에 대응되는 단락 전류의 예측 값임); 및
    상기 단락 주울 열의 변화 양상을 시각적으로 출력하는 단계를 더 포함하는 것을 특징으로 하는 이차 전지의 못 관통 시험 방법.
  14. 제8항에 있어서,
    이차 전지의 관통 지점에서 이차 전지의 저항 특성으로부터 발생되는 저항 저울 열인 Qcell을 하기 수식을 이용하여 결정하는 단계
    Qcell = ishort*|Vshort - VOCV|
    (여기서, Qcell은 못이 관통된 지점에서 이차 전지의 저항 특성으로부터 발생되는 주울 열이고, Vshort는 전압 측정부에 의해 주기적으로 측정되는 이차 전지의 단락 전압이고, ishort는 주기적으로 측정되는 이차 전지의 단락 전압에 대응되는 단락 전류의 예측 값이고, VOCV는 이차 전지의 충전 상태에 따른 개방 전압의 예측 값임); 및
    상기 저항 주울 열의 변화 양상을 시각적으로 출력하는 단계를 더 포함하는 것을 특징으로 하는 이차 전지의 못 관통 시험 방법.
PCT/KR2016/010101 2015-09-09 2016-09-08 이차 전지의 못 관통 시험 장치 및 방법 WO2017043890A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680022728.1A CN107533112B (zh) 2015-09-09 2016-09-08 用于对二次电池进行钉子穿刺测试的设备和方法
JP2018502813A JP6621906B2 (ja) 2015-09-09 2016-09-08 二次電池の釘貫通試験装置及び方法
US15/562,086 US10451682B2 (en) 2015-09-09 2016-09-08 Apparatus and method for conducting nail penetration test for secondary battery
EP16844706.8A EP3264514B1 (en) 2015-09-09 2016-09-08 Apparatus and method for conducting nail penetration test for secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0127839 2015-09-09
KR1020150127839A KR101927257B1 (ko) 2015-09-09 2015-09-09 이차 전지의 못 관통 시험 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2017043890A1 true WO2017043890A1 (ko) 2017-03-16

Family

ID=58240349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010101 WO2017043890A1 (ko) 2015-09-09 2016-09-08 이차 전지의 못 관통 시험 장치 및 방법

Country Status (6)

Country Link
US (1) US10451682B2 (ko)
EP (1) EP3264514B1 (ko)
JP (1) JP6621906B2 (ko)
KR (1) KR101927257B1 (ko)
CN (1) CN107533112B (ko)
WO (1) WO2017043890A1 (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10033213B2 (en) * 2014-09-30 2018-07-24 Johnson Controls Technology Company Short circuit wake-up system and method for automotive battery while in key-off position
US10788536B2 (en) * 2017-05-11 2020-09-29 Texas Instruments Incorporated System and apparatus for battery internal short current detection under arbitrary load conditions
KR102164255B1 (ko) * 2017-07-11 2020-10-12 주식회사 엘지화학 이차전지 시험용 고정장치
KR102204699B1 (ko) 2018-01-31 2021-01-18 주식회사 엘지화학 이차전지 안전성 평가 방법 및 장치
WO2019190253A1 (ko) * 2018-03-28 2019-10-03 주식회사 엘지화학 분리막의 안정성 평가 방법
US11105858B2 (en) * 2018-10-03 2021-08-31 O2Micro Inc. Predicting a potential fault in a battery
CN109444746A (zh) * 2018-10-29 2019-03-08 天津力神电池股份有限公司 测量电池进行针刺测试时内部电流大小的方法
JP7171491B2 (ja) * 2019-03-29 2022-11-15 本田技研工業株式会社 内部短絡状態量の計測装置及び計測方法
JP7125911B2 (ja) * 2019-03-29 2022-08-25 本田技研工業株式会社 内部短絡電流の推算方法及び短絡セル容量の推算方法
WO2020209325A1 (ja) * 2019-04-10 2020-10-15 本田技研工業株式会社 電池評価方法及び電池評価装置
CN110926966A (zh) * 2019-12-13 2020-03-27 国联汽车动力电池研究院有限责任公司 一种锂离子电池隔膜安全性的检测方法
JP7520669B2 (ja) * 2020-09-30 2024-07-23 エスペック株式会社 二次電池の試験治具、試験装置及び試験方法
KR102668490B1 (ko) * 2021-07-02 2024-05-23 이연석 배터리 압입 시험 장치 및 방법
US20230100761A1 (en) * 2021-09-27 2023-03-30 Lenovo (United States) Inc. Thermal runaway pin-point heating test
KR20230067893A (ko) * 2021-11-10 2023-05-17 주식회사 엘지에너지솔루션 전지셀 측면의 관통 시험 장치 및 이를 이용한 전지셀의 관통 시험 방법
KR20230155069A (ko) * 2022-05-03 2023-11-10 주식회사 엘지에너지솔루션 배터리 모듈의 충방전 검사 시스템
JP2024128404A (ja) * 2023-03-10 2024-09-24 トヨタ自動車株式会社 蓄電デバイスの評価方法、治具セット、および、蓄電デバイスの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060047689A (ko) * 2004-05-14 2006-05-18 마츠시타 덴끼 산교 가부시키가이샤 전지 평가장치
KR20080073667A (ko) * 2007-02-06 2008-08-11 마쯔시다덴기산교 가부시키가이샤 전지의 내부 단락시의 안전성 평가방법 및 그 장치
KR20100118189A (ko) * 2009-04-28 2010-11-05 주식회사 코아텍 2차 전지 전용 파괴시험장치
KR20110021970A (ko) * 2009-01-19 2011-03-04 파나소닉 주식회사 전지의 내부 단락 평가 장치
KR20150100500A (ko) * 2014-02-24 2015-09-02 에스펙 가부시키가이샤 전지 시험 장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4666712B2 (ja) * 2000-02-22 2011-04-06 パナソニック株式会社 電池の短絡検査方法
KR100942906B1 (ko) * 2006-10-23 2010-02-16 주식회사 엘지화학 우수한 안전성을 발휘하는 전기화학소자
JP5223329B2 (ja) * 2007-12-26 2013-06-26 Tdk株式会社 電気化学素子の評価方法及び電気化学素子の評価装置
JP2010212183A (ja) * 2009-03-12 2010-09-24 Toyota Motor Corp 電池の短絡試験装置
JP2011085415A (ja) * 2009-10-13 2011-04-28 Kobelco Kaken:Kk 安全性評価試験装置
US9310444B2 (en) 2014-01-15 2016-04-12 Ford Global Technologies, Llc Battery testing system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060047689A (ko) * 2004-05-14 2006-05-18 마츠시타 덴끼 산교 가부시키가이샤 전지 평가장치
KR20080073667A (ko) * 2007-02-06 2008-08-11 마쯔시다덴기산교 가부시키가이샤 전지의 내부 단락시의 안전성 평가방법 및 그 장치
KR20110021970A (ko) * 2009-01-19 2011-03-04 파나소닉 주식회사 전지의 내부 단락 평가 장치
KR20100118189A (ko) * 2009-04-28 2010-11-05 주식회사 코아텍 2차 전지 전용 파괴시험장치
KR20150100500A (ko) * 2014-02-24 2015-09-02 에스펙 가부시키가이샤 전지 시험 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3264514A4 *

Also Published As

Publication number Publication date
EP3264514A4 (en) 2018-05-23
US20180074131A1 (en) 2018-03-15
EP3264514B1 (en) 2020-04-29
JP2018523273A (ja) 2018-08-16
US10451682B2 (en) 2019-10-22
EP3264514A1 (en) 2018-01-03
KR101927257B1 (ko) 2018-12-10
CN107533112B (zh) 2019-10-25
JP6621906B2 (ja) 2019-12-18
KR20170030356A (ko) 2017-03-17
CN107533112A (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
WO2017043890A1 (ko) 이차 전지의 못 관통 시험 장치 및 방법
WO2017034277A1 (ko) 이차 전지의 퇴화도 추정 장치 및 방법
WO2010016647A1 (en) Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
WO2022114871A1 (ko) 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 자동차
WO2017082705A1 (ko) 이차 전지의 출력 파라미터를 조정하는 시스템 및 그 방법
WO2018038383A1 (ko) 배터리 셀의 성능 테스트 장치 및 방법
WO2018199434A1 (ko) 수치적 시뮬레이션 데이터 기반 배터리의 수명 상태 예측 방법
WO2016053055A1 (ko) 신속하게 절연 저항을 측정할 수 있는 절연 저항 측정 장치 및 방법
WO2019027190A1 (ko) 배터리 관리 장치 및 이를 포함하는 배터리 팩
WO2018105881A1 (ko) 배터리 관리 장치 및 방법
WO2019139335A1 (ko) 배터리 셀의 성능을 테스트하기 위한 장치 및 방법
WO2018235995A1 (ko) 전기자동차용 배터리의 열화 발생을 저감하면서 고속충전과 최대방전을 수행하기 위한 방법 및 그 장치
WO2019199064A1 (ko) 배터리 진단 장치 및 방법
WO2020153637A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
WO2023068899A1 (ko) 배터리 팩 내의 이상 징후 셀 검출 장치 및 방법
WO2022092827A1 (ko) 배터리 관리 장치 및 방법
WO2022265357A1 (ko) 배터리 soh 추정 장치 및 방법
WO2021246655A1 (ko) 배터리 상태 진단 장치 및 방법
WO2021230639A1 (ko) 충전 심도 설정 장치 및 방법
WO2022145822A1 (ko) 배터리 관리 장치 및 방법
WO2022035130A1 (ko) 배터리 관리 장치 및 방법
WO2022215962A1 (ko) 배터리 진단 장치 및 방법
WO2020166914A1 (ko) 충전 상태 추정 장치 및 방법
WO2022080837A1 (ko) 배터리 진단 장치 및 방법
WO2022071776A1 (ko) 배터리 진단 장치, 방법 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844706

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016844706

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15562086

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2018502813

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE