WO2023182496A1 - レーザ加工経路割付方法、レーザ加工方法、及びレーザ加工経路割付装置 - Google Patents

レーザ加工経路割付方法、レーザ加工方法、及びレーザ加工経路割付装置 Download PDF

Info

Publication number
WO2023182496A1
WO2023182496A1 PCT/JP2023/011818 JP2023011818W WO2023182496A1 WO 2023182496 A1 WO2023182496 A1 WO 2023182496A1 JP 2023011818 W JP2023011818 W JP 2023011818W WO 2023182496 A1 WO2023182496 A1 WO 2023182496A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
notch
outer peripheral
line segment
workpiece
Prior art date
Application number
PCT/JP2023/011818
Other languages
English (en)
French (fr)
Inventor
拓也 村上
シバクマル スバイア
昇 吉川
Original Assignee
株式会社アマダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダ filed Critical 株式会社アマダ
Publication of WO2023182496A1 publication Critical patent/WO2023182496A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine

Definitions

  • the present disclosure relates to a laser processing path allocation method, a laser processing method, and a laser processing path allocation device.
  • Patent Document 1 points out that if a product that has been cut out from a workpiece by laser processing and separated from the skeleton, which is the remaining material of the workpiece, is supported at an angle by a skid, a problem will occur when taking out the product.
  • the scrap removed from the workpiece inside the notch may not fall into the gap between the skids and get caught between the skids. be. If the scrap caught between the skids rises above the workpiece, the processing head that moves above the workpiece may interfere with the scrap when cutting the outer peripheral edge of the workpiece other than the notch. It is required to suppress interference between the processing head and the scrap produced by notch removal processing.
  • a first aspect of one or more embodiments is that, in a laser processing path for cutting out a product having a notch at an outer peripheral end from a workpiece by laser processing, board cutting data is used in which the shape of the product is arranged in a shape representing the workpiece.
  • the notch forming processing path for forming the notch in the notch part of the product the part for cutting into the inside of the product excluding the line segment of the notch part at the outer peripheral end.
  • An open path that opens toward the outside of the product is allocated, and the notch portion at the outer peripheral end, which is the remaining part of the notch forming path among the laser processing paths, is assigned to the cutting data.
  • An outer periphery in which a first outer periphery processing path for cutting the line segment and a second outer periphery processing path for cutting at least a part of the line segment other than the notch portion at the outer periphery end portion are connected.
  • a laser processing path allocation method for allocating paths is provided.
  • a second aspect of the one or more embodiments is a notch formation step for forming the notch in the workpiece when a product having a notch at the outer peripheral end is cut out by laser processing from the workpiece supported by the skid.
  • a laser beam is used as a part of the processing path along an open path that is open toward the outside of the product for cutting into the inside of the product, excluding a line segment of the notch portion at the outer peripheral edge. to cut the open path in the workpiece, and before or after cutting the open path in the workpiece, irradiate the workpiece with the outer peripheral edge, which is the remaining part of the notch forming processing path.
  • a laser processing method is provided in which the workpiece is cut by irradiating a laser beam along an outer circumferential path connected to the outer circumferential path.
  • a third aspect of the one or more embodiments is to process the product from the workpiece by laser machining based on the central processing unit and the board cutting data in which the shape of the product having a notch at the outer peripheral edge is arranged in the shape representing the workpiece.
  • a storage unit that stores a laser processing path allocation program for allocating laser processing paths to be cut out, and the central processing unit executes the laser processing path allocation program to allocate the laser processing paths of the cutout data.
  • An open path that opens outward is assigned, and the cutout data includes the notch portion at the outer peripheral end, which is the remaining part of the notch forming path among the laser processing paths.
  • An outer circumferential processing path that connects a first outer circumferential processing path for cutting a line segment and a second outer circumferential processing path for cutting at least a part of the line segment other than the notch portion at the outer peripheral end portion.
  • a laser processing path allocation device Provided is a laser processing path allocation device.
  • the notch is not removed from the workpiece when the processing head moves over the workpiece to cut the outer peripheral edge of the product, resulting in scrap from the notch removal process. will not get caught between the skids and rise above the workpiece. Therefore, the processing head does not interfere with the scrap produced by the notch removal processing.
  • the laser processing path allocation method, laser processing method, and laser processing path allocation device it is possible to prevent interference between the processing head and workpiece scrap during laser processing of a product having a notch. Can be suppressed.
  • FIG. 1 is a diagram illustrating an example of the overall configuration of a laser processing system including a laser processing path allocation device that executes a laser processing path allocation method according to one or more embodiments.
  • Figure 2 shows a laser processing path allocation method in a comparative example, and shows the laser processing path allocated to the workpiece when a product having a notch on the outer peripheral edge is cut out from the workpiece after scrap inside the notch is removed from the workpiece. It is a figure showing an example.
  • FIG. 3 is a plan view showing an example of a product cut out from a workpiece by the laser processing machine shown in FIG. FIG.
  • FIG. 4A is a diagram illustrating an example of an open path allocated to a notch portion of a product when the laser processing path allocation device according to one or more embodiments selects Type 1 as the laser processing path pattern.
  • FIG. 4B shows a line segment that closes the open path at the notch portion and a line segment at the outer peripheral end of the product, which are allocated to the workpiece when the laser processing path allocation device according to one or more embodiments selects type 1. It is a figure which shows an example of the outer peripheral path
  • FIG. 5 shows a laser processing path that is allocated to a workpiece in order to cut out the product shown in FIG. 3 from the workpiece when the laser processing path allocation device according to one or more embodiments selects type 1 as the laser processing path pattern.
  • FIG. 6A shows an open path at the notch portion and an open path at the outer peripheral edge of the product, which are allocated to the workpiece when the laser processing path allocation device according to one or more embodiments selects Type 2 as the laser processing path pattern. It is a figure which shows an example of the route
  • FIG. 6B shows a line segment at the outer peripheral end of the product and a line segment closing the open path at the notch portion, which is allocated to the workpiece when the laser processing path allocation device according to one or more embodiments selects type 2. It is a figure which shows an example of the outer peripheral path
  • FIG. 7 is a diagram showing laser processing paths allocated to a workpiece in order to cut out the product shown in FIG.
  • FIG. 8 shows a laser processing path to be allocated to a workpiece in order to cut out a product having one notch at the outer peripheral edge from the workpiece when the laser processing path allocation device according to one or more embodiments selects type 2.
  • FIG. 9 shows a laser processing path that is allocated to a workpiece in order to cut out the product shown in FIG. 3 from the workpiece when the laser processing path allocation device according to one or more embodiments selects type 3 as the laser processing path pattern.
  • FIG. FIG. 10A is a diagram illustrating an example of a setting image of product processing conditions displayed on the touch panel of the operation pendant in FIG. 1.
  • FIG. 10B is a diagram illustrating a state in which the depth and width of a notch are being set in an example of a setting image of product processing conditions displayed on the touch panel of the operation pendant in FIG. 1.
  • FIG. 11A is a diagram showing the position of a line segment that closes an open path assigned to a notch when the corner of the notch has an edge shape that is not chamfered and the line segments that sandwich the notch are on a straight line.
  • FIG. 11B shows an edge shape in which the corners of the notch are not chamfered, and when the line segments that sandwich the notch are not on a straight line and the line segment on the right side is farther from the bottom of the notch than the line segment on the left side, FIG.
  • FIG. 3 is a diagram showing the position of a line segment that closes an open path assigned to a notch.
  • FIG. 11C shows an edge shape in which the corners of the notch are not chamfered, and when the line segments that sandwich the notch are not on a straight line and the line segment on the left side is farther from the bottom of the notch than the line segment on the right side,
  • FIG. 3 is a diagram showing the position of a line segment that closes an open path assigned to a notch.
  • FIG. 12 is a diagram for explaining conditions for changing the position of a line segment that closes an open path assigned to a notch when the corner of the notch has a non-chamfered edge shape.
  • FIG. 13A shows an edge shape in which the corners of the notch are not chamfered, the line segments that sandwich the notch are not in a straight line, and the line segment on the right side is farther from the bottom of the notch than the line segment on the left side.
  • FIG. 7 is a diagram showing a state in which the position of a line segment that closes an open path assigned to a notch has been changed.
  • FIG. 13B shows an edge shape in which the corners of the notch are not chamfered, and when the line segments that sandwich the notch are not in a straight line and the line segment on the left side is farther from the bottom of the notch than the line segment on the right side, FIG.
  • FIG. 7 is a diagram showing a state in which the position of a line segment that closes an open path assigned to a notch has been changed.
  • FIG. 14A is a diagram showing the position of the line segment that closes the open path assigned to the notch when the corner of the notch has a C-chamfered shape and the line segments that sandwich the notch are on a straight line.
  • Figure 14B shows how the notch is assigned when the corners of the notch have a C-chamfered shape, the line segments that sandwich the notch are not on a straight line, and the line segment on the right side is farther from the bottom of the notch than the line segment on the left side.
  • FIG. 3 is a diagram showing the position of a line segment that closes an open path that has been created.
  • Figure 14C shows how the notch is assigned when the corners of the notch have a C-chamfered shape, the line segments that sandwich the notch are not on a straight line, and the line segment on the left side is farther from the bottom of the notch than the line segment on the right side.
  • FIG. 3 is a diagram showing the position of a line segment that closes an open path that has been created.
  • Figure 15A shows how the notch is assigned when the corners of the notch have a C-chamfered shape, the line segments that sandwich the notch are not in a straight line, and the line segment on the right side is farther from the bottom of the notch than the line segment on the left side.
  • FIG. 6 is a diagram showing a state in which the position of the line segment that closes the open path that was created has been changed.
  • Figure 15B shows how the notch is assigned when the corners of the notch have a C-chamfered shape, the line segments that sandwich the notch are not on a straight line, and the line segment on the left side is farther from the bottom of the notch than the line segment on the right side.
  • FIG. 6 is a diagram showing a state in which the position of the line segment that closes the open path that was created has been changed.
  • FIG. 16A is a diagram showing the position of the line segment that closes the open path assigned to the notch when the corner of the notch is rounded and the line segments that sandwich the notch are on a straight line.
  • FIG. 16A is a diagram showing the position of the line segment that closes the open path assigned to the notch when the corner of the notch is rounded and the line segments that sandwich the notch are on a straight line.
  • FIG. 16B shows how the notch is assigned when the corners of the notch are R-chamfered, the line segments that sandwich the notch are not in a straight line, and the line segment on the right side is farther from the bottom of the notch than the line segment on the left side.
  • FIG. 3 is a diagram showing the position of a line segment that closes an open path.
  • FIG. 16C shows how the notch is assigned when the corners of the notch are rounded, the lines that sandwich the notch are not in a straight line, and the line segment on the left side is farther from the bottom of the notch than the line segment on the right side.
  • FIG. 3 is a diagram showing the position of a line segment that closes an open path.
  • FIG. 17A is a diagram illustrating preferred directions of approach and escape of the open path shown in FIG. 11A.
  • FIG. 17B is a diagram illustrating preferred directions of approach and escape of the open path shown in FIG. 14A.
  • FIG. 17C is a diagram illustrating preferred directions of approach and escape of the open path shown in FIG. 16A.
  • FIG. 18 is a diagram illustrating an example of a state in which part images representing a product are displayed on the display unit for manual assignment of laser processing paths.
  • FIG. 19 is a diagram showing an example of a parts editing image displayed on the display unit.
  • FIG. 20A is a diagram showing open paths allocated to the notches selected in the part image shown in FIG. 18.
  • FIG. 20B is a diagram showing the determined open path allocated to the notch selected in the part image shown in FIG. 18.
  • FIG. 21A is a partial flowchart illustrating an example of a process in which a computer device automatically assigns a laser processing path to a workpiece.
  • FIG. 21B is a partial flowchart following FIG. 21A, showing an example of a process in which the computer equipment automatically assigns laser processing paths to the workpiece.
  • FIG. 22 is a flowchart illustrating an example of a process in which the computer equipment allocates laser processing paths to workpieces by manual allocation.
  • FIG. 23 is a flowchart showing an example of a process in which the NC device controls a laser processing machine to cut out a product from a workpiece.
  • One or more embodiments shown below illustrate devices and the like for embodying the technical idea of the present invention.
  • the technical idea of the present invention is not limited to the following materials, shapes, structures, arrangements, functions, etc. of each component.
  • FIG. 1 shows an example of the overall configuration of a laser processing system 1 including a laser processing path allocation device that executes a laser processing path allocation method according to one or more embodiments.
  • the laser processing system 1 includes a computer device 10 and a laser processing machine 20.
  • a laser processing path allocation apparatus according to one or more embodiments may be configured by computer equipment 10 .
  • the laser processing method according to one or more embodiments is executed by the laser processing machine 20 cutting out a product from the plate-shaped work W by laser processing on a laser processing path assigned by the computer equipment 10.
  • the work W is a sheet metal.
  • a product may be a part.
  • the laser processing machine 20 includes a processing machine main body 30, an operation section 40, an NC (Numerical Control) device 50, a processing program database 60, a processing condition database 70, and a display section 80.
  • the NC device 50 is an example of a control unit that controls each part of the laser processing machine 20.
  • the NC device 50 may be connected to a machining program database 60 and a machining condition database 70 via a network.
  • the machining program database 60 and the machining condition database 70 may be configured outside the laser beam machine 20.
  • the processing machine main body 30 has a base 31, a frame 32, a carriage 33, and a processing head 34.
  • a table 311 on which the workpiece W is placed is provided on the base 31. Inside the table 311, a plurality of rows of skids 312 made of, for example, iron plates are arranged. A plurality of triangular protrusions are formed in line at the upper end of the skid 312. The workpiece W on the table 311 is supported by a plurality of protrusions of the skid 312. Rails 313 extending in the longitudinal direction X of the table 311 are protruded from both side surfaces of the base 31, respectively.
  • the frame 32 is formed into a gate shape that straddles the table 311 and includes side frames 321 and 322 and an upper frame 323.
  • the side frames 321 and 322 are configured to be slidable on the rails 313 of the base 31.
  • the frame 32 can be moved in the longitudinal direction X of the table 311 relative to the base 31 while being guided by the rails 313.
  • An operation pendant 324 connected to the NC device 50 is attached to the side frame 321.
  • the operation pendant 324 has a touch panel 325 and an operation key section 326.
  • the touch panel 325 can be configured by combining a liquid crystal panel and a touch pad, for example.
  • a carriage 33 is provided within the upper frame 323 and is slidable in the width direction Y of the frame 32, which is orthogonal to the longitudinal direction X of the table 311.
  • a processing head 34 that emits a laser beam and an assist gas is supported on the carriage 33 so as to be slidable in a vertical direction Z perpendicular to the longitudinal direction X of the table 311 and the width direction Y of the frame 32 .
  • the operation unit 40 and the display unit 80 are used to input processing conditions that are required to be input to the NC device 50 when cutting the workpiece W, and to set the laser processing machine 20 determined based on the input processing conditions.
  • This is a user interface for presenting values to an operator.
  • the operation unit 40 can be configured by, for example, a touch pad of a touch panel 325 and an operation key unit 326.
  • the operator can input information to the NC device 50 by touching keys or the like displayed on the liquid crystal panel on the touch pad or by operating the operation key section 326.
  • the display unit 80 can be configured by, for example, a liquid crystal panel of the touch panel 325.
  • the liquid crystal panel can display various information.
  • the machining program database 60 stores machining programs for the NC device 50 to operate each component of the laser beam machine 20.
  • the machining program is a program code that defines the operation procedure of the laser beam machine 20.
  • the machining condition database 70 stores a plurality of machining condition files in which a plurality of parameters necessary for cutting the workpiece W are registered.
  • the machining condition file is a file that defines each parameter within the machining program.
  • the NC device 50 reads a machining program from the machining program database 60 and selects one of a plurality of machining conditions stored in the machining condition database 70.
  • the NC device 50 controls the laser processing machine 20 to process the workpiece W based on the read processing program and the selected processing conditions.
  • the computer device 10 includes a central processing unit (hereinafter referred to as CPU) 11 and a storage unit 12 that stores a CAM (Computer Aided Manufacturing) program.
  • the storage unit 12 is a non-temporary storage medium.
  • the computer device 10 is a CAM device that executes a CAM program.
  • the CAM program stored in the storage unit 12 is a laser processing route allocation program that allocates a laser processing route for cutting out a product from the workpiece W by laser processing to the cutting data.
  • a computer device (not shown) that executes a CAD (Computer Aided Design) program generates board cutting data consisting of CAD data in which the shape of one or more products to be cut out from the workpiece W is arranged in a shape representing the workpiece W. create.
  • a computer device that executes a CAD program is a CAD device. Board cutting data created by a CAD device is input to the computer device 10 .
  • the computer device 10 may be a CAD/CAM device that also serves as a computer device that executes a CAD program.
  • the CPU 11 By executing the CAM program stored in the storage unit 12, the CPU 11 allocates a laser processing path to the input board cutting data.
  • the computer device 10 creates a processing program that cuts out one or more products from the workpiece W on the skid 312 using a laser beam emitted from the processing head 34 according to the assigned laser processing path.
  • Computer equipment 10 stores the machining program in machining program database 60.
  • the computer device 10 allocates a laser processing path to the cutting data, but hereinafter it may be stated that the computer device 10 allocates a laser processing path to the workpiece W, the product, or a line segment on the product.
  • FIG. 2 shows an example of a laser machining path allocated to the workpiece W1 when a product P1 having a notch N1 on the outer peripheral edge is cut out from the workpiece W1 after scrap inside the notch N1 is removed from the workpiece W1.
  • the notch N1 has a triangular shape, but the notch N1 may have a rectangular shape.
  • the computer equipment 10 when cutting out a product P1 having a notch N1 from a workpiece W1, the computer equipment 10 cuts out a scrap SC1 inside the notch N1 from the workpiece W1 from the piercing PI1 inside the notch N1 through the approach AP1. Allocate the machining path PR1 to be dropped.
  • the computer equipment 10 assigns to the workpiece W1 machining paths PR2 and PR3 that cut the outer peripheral end of the product P1 after machining the notch N1 and separate the product P1 from the skeleton SK1 that is the remaining material of the workpiece W1.
  • the scrap SC1 inside the notch N1 is first removed from the workpiece W1, and then the product P1 having the notch N1 on the outer peripheral edge is removed from the workpiece W1. It can be cut out from.
  • the removed scrap SC1 When the scrap SC1 is removed from the workpiece W1 by laser processing along the processing path PR1, the removed scrap SC1 may not fall into the gap between the skids 312 that support the workpiece W1, but may get caught between the skids 312.
  • the scrap SC1 caught between the skids 312 rises above the workpiece W1
  • the processing head 34 passes above the notch N1 of the workpiece W1 in laser processing on the next processing path PR2
  • the processing head 34 moves the scrap SC1 It may interfere with If the processing head 34 interferes with the scrap SC1, the laser processing of the workpiece W1 may stop abnormally or a processing defect may occur.
  • FIG. 3 shows an example of a product P cut out from a workpiece W by the laser processing machine 20 of FIG.
  • Product P has three notches N11 to N13 on the outer peripheral edge. On the outer peripheral end, notch N11 and notch N12 are adjacent to each other, notch N12 and notch N13 are adjacent to each other, and notch N13 and notch N11 are adjacent to each other.
  • the notches N11 to N13 have a depth Dd and a width Dw inside the product P from a pair of corner portions C111 and C112, C121 and C122, C121 and C122, and C131 and C132, which are located at the outer peripheral end and face each other.
  • the depth Dd and width Dw of the notches N11 to N13 may be the same or different.
  • the width Dw of the notch N13 is narrower than the width Dw of the notches N11 and N12.
  • Notches N11 to N13 are collectively referred to as notch N.
  • an arbitrary notch may be referred to as a notch N.
  • the notch N has a rectangular shape, but the notch N may have a triangular shape.
  • the computer equipment 10 assigns a laser processing path for cutting out the product P shown in FIG. 3 from the workpiece W by laser processing, in a pattern different from the laser processing path shown in FIG. 2, to the cutting data.
  • the computer device 10 can select from a plurality of types the pattern of the laser processing path to be assigned to the cutting data when cutting out the product P having the notch N at the outer peripheral end from the workpiece W.
  • the laser processing path when the computer equipment 10 selects type 1 will be explained using FIGS. 4A, 4B, and 5.
  • the computer equipment 10 allocates an open path OP that is open toward the outside of the product P to the cutting data.
  • the open path OP is a processing path for cutting into the inside of the product P.
  • the open path OP is open toward the outside of the product P, it means that in the notch forming processing path for forming the notch N, the line segment is connected to the line segment of the notch N part at the outer peripheral edge of the product P.
  • the outer circumferential machining path (first outer circumferential machining path) for cutting is not assigned.
  • the computer device 10 allocates the open path OP excluding the line segment of the notch N at the outer peripheral end of the product P as a part of the notch forming processing path.
  • the outer circumferential path OU indicated by the two-dot chain line is located at the outer circumferential end of the product P.
  • a piercing PI is formed at a position outside the product P of the work W, and an approach AP is connected to the piercing PI.
  • the end of the approach AP is the start of the open path OP.
  • a relief ES extending to the outside of the product P is connected to the end of the open path OP.
  • the computer device 10 connects the line segment CL that closes the open path OP and the line segments OL1 and OL2 at the outer peripheral end of the product P as a processing path to be processed after processing the open path OP. Allocate the outer circumferential route OU.
  • Line segments OL1 and OL2 are line segments that sandwich the notch N at the outer peripheral end.
  • the line segment CL that closes the open path OP is a line segment for cutting the notch N at the outer peripheral end.
  • the outer circumferential path OU includes a first outer circumferential processing path for cutting the line segment CL at the notch N portion at the outer circumferential end portion, and a second outer circumferential processing path for cutting the outer circumferential end portion of the portion other than the notch N. It is a combination of The first outer circumferential machining path is the remaining part of the notch forming machining path.
  • the open path OP and the first outer peripheral processing path are notch forming processing paths for removing the notch N portion.
  • the second outer periphery processing path is a processing path for cutting the entire outer periphery end of the product P, which is a portion other than the notch N.
  • FIG. 5 shows the laser processing path assigned to the workpiece W according to type 1 shown in FIGS. 4A and 4B.
  • the computer equipment 10 allocates open paths OP11 to OP13 corresponding to the open path OP shown in FIG. 4A to each portion of the notches N11 to N13 in the laser processing path.
  • Approaches AP11 to AP13 are connected to the piercings PI11 to PI13 on the outside of the product P, respectively, and the ends of the approaches AP11 to AP13 are the starting ends of open paths OP11 to OP13, respectively.
  • Escapes ES11 to ES13 extending to the outside of the product P are connected to the terminal ends of the open paths OP11 to OP13, respectively.
  • the order in which the open routes OP11 to OP13 are cut is not limited, for example, the order is the open routes OP11, OP12, and OP13.
  • the computer equipment 10 connects line segments CL11 to CL13 that close the open paths OP11 to OP13 to the workpiece W and the outer peripheral edge of the product P as a processing path to be processed after processing the open paths OP11 to OP13 among the laser processing paths.
  • An outer circumferential route OU shown by a dashed line connecting line segments OL10 to OL13 is allocated.
  • An approach AP 14 is connected to the piercing PI 14 on the outside of the product P, and the terminal end of the approach AP 14 is the starting end of the outer circumferential path OU.
  • the terminal end of the outer circumferential path OU is connected to the starting end of the outer circumferential path OU.
  • Line segments CL11 to CL13 are line segments connecting the corners C111 and C112, between C121 and C122, and between C131 and C132 shown in FIG. 3, respectively.
  • Line segment OL10 is a line segment that connects the end of approach AP14 on the opposite side from piercing PI14 and corner C111.
  • Line segment OL11 is a line segment that connects corner C112 and corner C121.
  • Line segment OL12 is a line segment that connects corner C122 and corner C131.
  • Line segment OL13 is a line segment that connects corner C132 and the starting end of outer circumferential route OU.
  • the outer peripheral path OU is a continuous processing path that goes around the outer peripheral edge of the product P.
  • Product P in FIG. 3 has a hole H10 in the center in addition to the three notches N11 to N13.
  • the computer equipment 10 allocates a circular path CP10 shown in FIG. 5 corresponding to the hole H10 as a laser processing path for cutting out the product P.
  • An approach AP10 is connected to the piercing PI10 inside the hole H10, and the terminal end of the approach AP10 is the starting end of the circular path CP10.
  • the circular route CP10 goes around the hole H10, and the terminal end of the circular route CP10 is connected to the starting end of the circular route CP10.
  • the computer equipment 10 assigns a laser machining path to the board cutting data so that after forming the hole H10, notches N11 to N13 are formed, and finally the outer peripheral end of the product P is cut to cut out the product P.
  • the product P does not need to have the hole H10, but only needs to have one or more notches N at the outer peripheral edge.
  • the laser processing path when the computer equipment 10 selects type 2 will be explained using FIGS. 6A, 6B, and 7.
  • the computer device 10 connects the open path OP opening toward the outside of the product P and the line segment OL2 at the outer peripheral end of the product P in this order based on the cutting data.
  • the open path OP is a part of the notch forming path.
  • An approach AP is connected to the pierce PI on the outside of the product P, and the end of the approach AP is the starting end of the open path OP.
  • the line segment OL2 is at least a portion of the outer peripheral end of the product P in a portion other than the notch N.
  • the computer equipment 10 includes a line segment OL1 at the outer peripheral end of the product P and a line segment closing the open path OP in the cutting data as a machining route to be processed before or after machining the machining route OU1.
  • An outer circumferential route OU2 is allocated that connects CL in this order.
  • the line segment OL1 is at least a part of the outer peripheral end of the product P other than the notch N portion.
  • the outer circumferential path OU2 includes a first outer circumferential processing path and a second outer circumferential processing path.
  • the first outer periphery processing path is a remaining part of the notch forming processing path for the notch N, and is a processing path for cutting the line segment CL of the notch N portion at the outer periphery end.
  • the second outer peripheral processing path is a processing path for cutting at least a portion of the outer peripheral end of the product P other than the notch N portion.
  • FIG. 7 shows the laser processing path allocated to the workpiece W by type 2 shown in FIGS. 6A and 6B.
  • the layout of the circuit path CP10 corresponding to the hole H10 is the same as that in FIG. 5.
  • the computer equipment 10 applies the laser processing path to the notch N11, the outer peripheral edge of the product P between the notches N11 and N12, and the notch N12 as shown in FIG. 6A.
  • a machining path OU11 corresponding to the machining path OU1 is allocated.
  • the processing path OU11 cuts the open path OP11 at the notch N11, the line segment OL11 connecting the corner C112 and the corner C121 at the outer peripheral end, and the line segment CL12 at the notch N12. This is a continuous machining route in which the machining routes are connected in this order.
  • the machining path OU11 is a continuous machining path connected to the approach AP11.
  • the computer equipment 10 performs processing corresponding to the processing path OU1 shown in FIG. 6A on the notch N12 part, the outer peripheral edge of the product P between the notches N12 and N13, and the notch N13 part in the laser processing path.
  • the path OU12 includes an open path OP12 at the notch N12, a machining path that cuts the line segment OL12 connecting the corner C122 and the corner C131 at the outer peripheral end, and a process that cuts the line segment CL13 at the notch N13. This is a continuous machining route in which the routes are connected in this order.
  • the machining path OU12 is a continuous machining path connected to the approach AP12.
  • the computer equipment 10 applies a path OU13 corresponding to the path OU1 shown in FIG. 6A to the notch N13, the outer peripheral edge of the product P between the notches N13 and N11, and the notch N11 in the laser processing path.
  • the path OU13 includes an open path OP13 at the notch N13, a machining path that cuts the line segment OL13 connecting the corner C132 and the corner C111 at the outer peripheral end, and a process that cuts the line segment CL11 at the notch N11. This is a continuous machining route in which the routes are connected in this order.
  • the machining path OU13 is a continuous machining path connected to the approach AP13.
  • the line segment CL11 at the notch N11 is the cut of the open path OP11. later cut off.
  • Line segments CL12 and CL13 at the notches N12 and N13 are cut before cutting open paths OP12 and OP13, respectively.
  • a laser processing path will be described when the computer equipment 10 selects type 2 when the product P has only the notch N11 as the notch N at the outer peripheral end.
  • the computer equipment 10 cuts a line segment OL11 that connects the open path OP11 at the notch N11 that connects to the approach AP11 and the corner C112 to the corner C111 at the outer peripheral end, in the cutout data.
  • a continuous machining path OU11 is allocated by connecting the machining path and the machining path that cuts the line segment CL11 at the notch N11 in this order.
  • the computer equipment 10 may allocate a laser processing path to the cutting data using type 3 shown in FIG.
  • the layout of the circuit path CP10 corresponding to the hole H10 is the same as that in FIG. 5.
  • the computer equipment 10 includes, in the cutting data, a line segment connecting the corner C111 of the notch N11 and the corner C121 of the notch N12, following the approach AP11 leading to the piercing PI11 in the laser processing route.
  • a path OU31 shown by a solid line connecting the machining path for cutting OL31 and the open path OP12 at the notch N12 is assigned.
  • the computer equipment 10 includes, in the cutting data, a processing path that cuts a line segment OL32 that connects the corner C121 of the notch N12 and the corner C131 of the notch N13, following the approach AP12 that leads to the piercing PI12 among the laser processing paths. , a path OU32 shown by a chain line connecting the open path OP13 at the notch N13 is allocated.
  • the computer equipment 10 includes, in the cutting data, a processing path that cuts a line segment OL33 connecting the corner C131 of the notch N13 and the corner C111 of the notch N11, following the approach AP13 that connects to the piercing PI13 among the laser processing paths. , a route OU33 shown by a broken line connecting the open route OP11 of the notch N11 is allocated.
  • type 2 shown in FIG. 7 or type 3 shown in FIG. 9 is selected, the number of piercings and approaches formed on the workpiece W can be reduced compared to selecting type 1 shown in FIG. 5. According to type 2 shown in FIG. 7 or type 3 shown in FIG. 9, the piercing PI 14 and approach AP 14 shown in FIG. 5 can be omitted.
  • the computer equipment 10 can allocate a laser processing path for cutting out a product having a notch on the outer peripheral edge to the cutting data by automatic allocation or manual allocation.
  • automatic allocation can be selected by operating the product processing condition setting image displayed on the touch panel 325 of the operation pendant 324 in FIG.
  • [Automatic allocation] 10A and 10B show setting images of product processing conditions displayed on the touch panel 325.
  • the setting image 327 of FIG. 10A by selecting "No processing (open path)" in the "Processing" item, it is possible to specify that the computer device 10 performs automatic allocation.
  • the selected depth and width dimensions can be set in the “value 1” and “value 2” items of the setting image 327.
  • the depth Dd and width of each notch N11 to N13 are The dimension of Dw can be set.
  • the dimensions of each depth Dd and each width Dw of the notches N11 to N13 can be individually set in the “value 1” and “value 2” items of the setting image 327.
  • each notch N11 to N13 may change depending on the direction in which the notch opens at the outer peripheral end of the notch. If it is necessary to set dimensions with different settings for notches N11 to N13 that open in different directions, even if they have the same shape, it is necessary to consider the settings for dimensions depending on the direction in which they open, resulting in poor operability. is not good.
  • the shape of the notches N11 to N13 can be changed even if the opening direction with respect to the outer peripheral edge of the product P is different. If they are the same, the dimensions can be set with the same setting contents.
  • the computer equipment 10 can select from a plurality of types of patterns for allocating laser processing paths to the cutting data.
  • the laser processing system 1 may select one of types 1 and 2, or may select any one of types 1 to 3.
  • the type can be selected in the "Condition name” item.
  • FIGS. 10A and 10B Type 1 is selected.
  • the computer device 10 determines the position of the line segment CL to which the first peripheral machining path is to be allocated, depending on the shape of the notch N to which the open path OP is to be allocated.
  • 11A to 11C show the position of the line segment CL when the corners C1 and C2 of the notch N to which the open path OP is allocated have non-chamfered edges.
  • the notch N shown in FIGS. 11A to 11C may be any of the notches N11 to N13 shown in FIG. 3.
  • the corner portions C1 and C2 correspond to any one of the corner portions C111 and C112, C121 and C122, and C131 and C132.
  • FIG. 11A a line segment OL1 (first line segment) that connects with corner C1 at the outer peripheral end of product P and a line segment OL2 (second line segment) that connects with corner C2 are on a straight line. It shows a case.
  • FIG. 11B shows a case where line segment OL1 and line segment OL2 are not on a straight line, and line segment OL2 is farther from the bottom BT of notch N than line segment OL1.
  • FIG. 11C shows a case where the line segment OL1 and the line segment OL2 are not on a straight line, and the line segment OL1 is farther from the bottom BT than the line segment OL2. Since the notch N here has a rectangular shape, the bottom BT is the bottom side of the notch N.
  • the computer device 10 allocates the first outer circumferential machining path to the line segment CL connecting the corner C1 that is the starting end of the open path OP and the corner C2 that is the end of the open path OP.
  • the computer device 10 can basically connect the line segment C1 and the corner C2. Assign the first outer circumferential machining path to CL.
  • the computer equipment 10 does not assign the first outer machining path to the line segment CL connecting the corner C1 and the corner C2, and instead assigns the line segment CL whose position has been changed. It is preferable to allocate the first outer circumferential machining path to.
  • the corners C1 and C2 of the notch N have a non-chamfered edge shape and that the position of the line segment CL is changed.
  • the corner C1 and the corner C2 the one closer to the bottom BT of the notch N is called a first corner, and the one farther from the bottom BT is called a second corner.
  • a corner C1 is a first corner
  • a corner C2 is a second corner that is farther from the bottom BT than the corner C1.
  • the angle on the product P side formed by the temporary line segment DL (third line segment) connecting the first corner and the second corner and the side SD going from the second corner to the bottom BT Let be the angle ⁇ .
  • the computer equipment 10 sets the temporary line segment DL as the line segment CL as shown in FIG. 11B, and assigns the first outer circumferential machining path to the line segment CL.
  • the predetermined angle is, for example, 45 degrees.
  • the corner C1 is a first corner
  • the corner C2 is a second corner farther from the bottom BT than the corner C1
  • the temporary line segment DL and the second corner This shows a state in which the position of the line segment CL is changed when the angle ⁇ formed by the side SD extending from the bottom part to the bottom part BT is less than a predetermined angle.
  • the computer equipment 10 can extend the first line segment OL1 connected to the first corner from the first corner to the side SD.
  • the line segment from the corner to the side SD (fourth line segment) is newly set as line segment CL, and the first outer circumferential machining path is assigned to line segment CL.
  • the corner C2 is a first corner
  • the corner C1 is a second corner farther from the bottom BT than the corner C1
  • the temporary line segment DL and the second corner This shows a state in which the position of the line segment CL is changed when the angle ⁇ formed by the side SD extending from the bottom part to the bottom part BT is less than a predetermined angle.
  • the computer device 10 moves the line segment OL2 connected to the first corner from the first corner to the side SD.
  • the line segment (fourth line segment) from the first corner to the side SD, which has been extended, is set as a new line segment CL, and the first outer peripheral machining path is assigned to the line segment CL.
  • FIGS. 14A to 14C show the position of the line segment CL when the corners C1 and C2 of the notch N to which the open path OP is allocated are chamfered.
  • corner C1 and corner C2 in FIGS. 11A to 11C are chamfered, and line segments OC1 and OC2 are allocated between open path OP and line segments OL1 and OL2, respectively.
  • the starting end of the open route OP is a corner C1' that connects with the line segment OC1 instead of the corner C1
  • the end of the open route OP is a corner C2' that connects with the line segment OC2 instead of the corner C2. There is.
  • the computer device 10 assigns the first outer circumferential machining path to the line segment CL connecting the corner C1' that is the starting end of the open path OP and the corner C2' that is the end of the open path OP. .
  • the computer device 10 basically connects the corner C1' and the corner C2'.
  • a first outer peripheral machining path is assigned to the line segment CL.
  • the computer equipment 10 does not assign the first outer circumferential machining path to the line segment CL connecting the corner C1' and the corner C2', and uses the line whose position has been changed. It is preferable to allocate the first outer peripheral machining path to the minute CL.
  • corner C1' is the first corner
  • corner C2' is the second corner
  • the angle on the outside of the product P formed by the line segment OC1 and the temporary line segment DL (third line segment) connecting the first corner and the second corner is angle ⁇ 1
  • the temporary line segment DL is The angle on the product P side formed by the side SD extending from the second corner toward the bottom BT.
  • corner C2' is the first corner
  • corner C1' is the second corner.
  • the computer equipment 10 sets the temporary line segment DL as it is as the line segment CL as shown in FIGS. 14B and 14C, and assigns the first outer circumferential machining path to the line segment CL. .
  • the predetermined angle is, for example, 45 degrees.
  • the computer device 10 creates a new line segment (fourth line segment) from the first corner to the side SD.
  • a first outer peripheral machining path is assigned to the line segment CL.
  • the fourth line segment is parallel to line segment OL1 or line segment OL2 and orthogonal to side SD.
  • the corner Processing defects may occur in C1' or C2'.
  • 16A to 16C show the position of the line segment CL when the corners C1 and C2 of the notch N to which the open path OP is allocated are rounded. 16A to 16C, corner C1 and corner C2 in FIGS. 11A to 11C are rounded and line segments OR1 and OR2 are allocated between open path OP and line segments OL1 and OL2, respectively. Indicates when there is.
  • the starting end of the open path OP is a corner C1'' that connects with the line segment OR1 instead of the corner C1
  • the end of the open path OP is a corner C2 that connects with the line segment OC2 instead of the corner C2.
  • the computer equipment 10 allocates the first outer circumferential machining path to the line segment CL connecting the corner C1'' which is the starting end of the open path OP and the corner C2'' which is the terminal end of the open path OP.
  • the end of the line segment OR1 that connects with the line segment OL1 that is closer to the bottom BT is defined as a corner C1'' which is the starting end of the open path OP.
  • the first outer circumferential machining path is assigned to minute CL.
  • the end of the line segment OR2 that connects with the line segment OL2 that is closer to the bottom BT is defined as a corner C2'' which is the end of the open path OP.
  • the position where the line segment CL connects to the side SD that connects to the line segment OR1 that connects to the line segment OL1 that is farther from the bottom BT is defined as a corner C1'' which is the starting end of the open path OP.
  • the first outer circumferential machining path is assigned to minute CL.
  • the line segments OC1 and OC2 in FIG. 14A or the line segments OR1 and OR2 in FIG. 16A are connected to the line segments OL1 and OL2 at the outer peripheral end of the product P to form the outer circumferential path OU in FIG. 4B or the outer circumferential path OU2 in FIG. 6B. It may be considered as a part.
  • the start and end ends of the open path OP that connects the approach AP and the escape ES are the ends of the line segments OC1 and OC2 or the line segments OR1 and OR2 on the open path OP side.
  • the line segments OC1 and OC2 in FIG. 14A or the line segments OR1 and OR2 in FIG. 16A can be connected to the open path OP and become part of the open path OP.
  • the starting and ending ends of the open path OP connecting the approach AP and the escape ES are the ends of the line segments OC1 and OC2 or the line segments OR1 and OR2 on the line segments OL1 and OL2 side of the outer peripheral end of the product P. Become.
  • the computer equipment 10 allocates an approach AP to each notch N to be connected to the starting end of the open path OP, and an escape ES to be connected to the end of the open path OP.
  • the direction of the approach AP when viewed from the starting end of the open path OP and the direction of the escape ES when viewed from the end of the open path OP can be determined by the shape of the angle of the notch N to which the open path OP is allocated.
  • FIGS. 17A to 17C show the approach AP and escape ES allocated to the notch N whose corners have an edge shape, a C chamfer shape, and an R chamfer shape, respectively.
  • 17A to 17C show preferred directions of approach AP and escape ES in the cases of FIGS. 11A, 14A, and 16A, respectively.
  • the opening angle between the line segment OL1 and the line segment CL that closes the open path OP is 180°
  • the opening angle between the line segment OL2 and the line segment CL is 180°
  • the direction of the approach AP is preferably 90°, which is an angle that bisects the opening angle of 180°, toward the skeleton SK.
  • the direction of the relief ES is preferably 90°, which is an angle that bisects the opening angle of 180°, toward the skeleton SK.
  • the opening angle between line segment OC1 and line segment CL is less than 180°, and the opening angle between line segment OC2 and line segment CL is less than 180°.
  • the direction of the approach AP is preferably the direction of an angle that bisects an opening angle of less than 180 degrees toward the skeleton SK.
  • the direction of the relief ES is preferably the direction of an angle that bisects an opening angle of less than 180° toward the skeleton SK.
  • the opening angle between the tangent at corner C1'' of line segment OR1 and line segment CL is less than 180°, and the opening angle between the tangent at corner C2'' of line segment OR2 and line segment CL is 180°. less than
  • the direction of the approach AP is preferably the direction of an angle that bisects an opening angle of less than 180 degrees toward the skeleton SK.
  • the direction of the relief ES is preferably the direction of an angle that bisects an opening angle of less than 180° toward the skeleton SK.
  • the molten metal of the workpiece W scattered during laser processing of the approach AP and escape ES can become spatter and adhere to the product P. can be suppressed.
  • the earring PI may be moved away from the product P to lengthen the approach AP and escape ES.
  • the approach AP and the escape ES may be lengthened within a range where the approach AP and the escape ES do not intersect.
  • the lengths of the approach AP and escape ES are, at the longest, half of the distance from the corner C1' or C1'' to the intersection of the two, and half of the distance from the corner C2' or C2'' to the intersection of the two. Good too.
  • the display section 80 A warning message may be displayed on the touch panel 325.
  • the NC device 50 displays a warning message on the display unit 80.
  • the length of the approach AP shown in FIGS. 17A to 17C may be the same length as the approach AP 14 for the outer circumferential route OU. In this way, the length of the approach AP set when laser processing the notch N can be used as the length of the approach AP 14 when laser processing the outer circumferential path OU.
  • the computer equipment 10 can also allocate the laser processing path to the cutting data by manual allocation.
  • the NC device 50 displays the part image and the part editing image generated by the computer device 10 on the touch panel 325 of the operation pendant 324, so that the user can manually assign a laser processing path to the product P.
  • FIG. 18 shows an example of a parts image 328 displayed on the touch panel 325
  • FIG. 19 shows an example of a parts editing image 330 displayed on the touch panel 325.
  • the part image 328 displays the shape of the product P to which the laser processing path is manually allocated.
  • the product P shown in FIG. 18 has notches N21 and N22 at the outer peripheral end.
  • laser processing paths can be allocated to the selected notches N21 and N22 by manual allocation as shown in FIG. Specifically, by touching a button 331 indicating type 1 displayed as the notch type in the notch tab, the user can designate layout of type 1 as the laser processing path pattern.
  • the button 331 As shown in FIG. 20A, the notches N21 and N22 surrounded by the broken line frame 329 of the parts image 328 are switched to the open paths OP21 and OP22 shown by the broken lines.
  • the laser processing path can be determined to type 1.
  • the open routes OP21 and OP22 indicated by broken lines are switched to open routes OP21 and OP22 in the confirmed state indicated by solid lines.
  • the computer device 10 may request the user to input necessary processing conditions when allocating the open paths OP21 and OP22 to the notches N21 and N22 by manual allocation.
  • a button may be added to specify that the laser processing path is allocated as type 2 as the cutout type, or a button may be added that specify that the laser processing path is allocated as type 3. good.
  • the computer equipment 10 allocates the laser machining path to the cutting data in the same way as automatic allocation.
  • the open paths OP21 and OP22 that the user allocates to the notches N21 and N22 in manual allocation may be processing paths that include the piercing PI, the approach AP, and the escape ES.
  • the direction and length of the approach AP and escape ES may be similar to those in automatic allocation. Even in manual allocation, a warning message may be displayed on the touch panel 325 as necessary.
  • the computer device 10 determines whether or not there is a hole inside the product P in step S1 based on shape data indicating the shape of the product P in the cutting data. If there is a hole inside the product P (YES), the computer equipment 10 allocates a circular route to the hole in step S2, and moves the process to step S3. If there is no hole inside the product P (NO), the computer equipment 10 moves the process to step S3.
  • the computer equipment 10 recognizes the shape of the outer peripheral edge of the product P based on the shape data of the product P in step S3.
  • the computer device 10 determines whether there is a notch at the outer peripheral end. If there is no notch (NO), the computer equipment 10 allocates an outer circumferential path for cutting the outer circumferential edge to the line segment of the outer circumferential edge of the product P in step S5, and ends the process.
  • step S4 determines whether the selected laser processing path pattern is type 1 in step S6. If the pattern of the laser processing path is type 1 (YES), the computer equipment 10 allocates an open path to the notch portion in step S7, and moves the process to step S8. In step S8, the computer device 10 determines whether there is a notch to which an open path has not been assigned. If there is a notch to which an open path has not been assigned (YES), the computer device 10 repeats the processing of steps S7 and S8.
  • the computer device 10 allocates an outer circumferential path connecting the line segments at the outer circumferential end in step S9, and ends the process.
  • the outer periphery path in step S9 includes a first outer periphery processing path that is an outer periphery processing path for each notch portion, and a second outer periphery processing path that is an outer periphery processing path for all portions other than the notch. This is a continuous machining path that goes around the outer peripheral edge.
  • step S10 it is determined whether there is only one notch formed in the outer peripheral end. If there is one notch (YES), the computer equipment 10 allocates a continuous machining path in which the outer peripheral path is connected to the open path allocated to the notch in step S11, and ends the process.
  • the outer circumferential path in step S11 is a line that connects in this order the second outer circumferential machining path, which is all the outer circumferential machining paths in the part other than the notch, and the first outer peripheral machining path, which is the outer peripheral machining path in the notch part. This is the continuation of the processing route.
  • step S10 If there is not one notch in step S10 (NO), the computer device 10 sets the variable i to 1 in step S12. Subsequently, in step S13, the computer device 10 creates a peripheral machining path (second peripheral machining path) between the i-th notch and the (i+1)-th notch in the open path of the i-th notch in the machining order. A continuous machining route is allocated that connects the outer circumferential machining route (first outer circumferential machining route) that closes the open route of the (i+1)th notch. In step S14, the computer device 10 determines whether there is a notch for the next processing order.
  • step S15 If there is a notch in the next processing order (YES), the computer device 10 increments the variable i by 1 in step S15, and returns the process to step S13. The computer device 10 repeats the processing of steps S13 to S15 until it is determined in step S14 that there is no notch for the next processing order.
  • step S16 connects the (i+1)th notch and the first notch to the open path of the (i+1)th notch. Processing is performed by allocating a continuous machining route that connects the outer circumferential machining route (second outer machining route) between Terminate it.
  • step S21 the computer device 10 accepts selection of the range of the parts image 328 in FIG. 18 by the user operating the touch panel 325.
  • the computer device 10 recognizes the shape within the selected range in step S22.
  • step S23 the computer device 10 determines whether there is a notch within the selected range. If there is no notch within the selection range (NO), the computer device 10 ends the process. In this case, the computer device 10 may allocate the outer circumferential path for cutting the outer circumferential edge to the line segment of the outer circumferential edge of the product P by another manual allocation by the user.
  • the computer device 10 determines whether the selected laser processing path pattern is type 1 in step S24. If the pattern of the laser processing path is type 1 (YES), the computer equipment 10 allocates an open path to the notch portion in step S25 and ends the process. In this case as well, the computer device 10 may allocate the outer circumferential path for cutting the outer circumferential edge to the line segment of the outer circumferential edge of the product P by another manual allocation by the user.
  • step S24 if the pattern of the laser processing path is not type 1 (NO), the computer equipment 10 closes the outer peripheral processing path up to the next notch and the next notch in the open path of the notch in step S26. A continuous machining path connected to the outer circumferential machining path is allocated, and the process is completed.
  • the processing head 34 does not interfere with the scrap produced by removing the notch N.
  • a laser processing path allocation method discloses the following laser processing path allocation method.
  • the laser machining route allocation method is such that the laser machining route for cutting out a product P having a notch N at the outer peripheral end from a workpiece W by laser machining is such that the product An open path OP that opens toward the outside of the product P for cutting into the inside of the product P is assigned.
  • the open path OP is a part of the notch forming process path for forming the notch N, and is a process path that excludes the line segment CL of the notch N at the outer peripheral end of the product P.
  • the laser processing route allocation method allocates the outer peripheral route among the laser processing routes to the cutting data.
  • the outer peripheral route includes a first outer peripheral processing route for cutting a line segment at the notch N at the outer peripheral end, which is the remaining part of the processing route in the notch forming processing route, and a first peripheral processing route for cutting the line segment at the notch N at the outer peripheral end.
  • This machining path is connected to a second outer circumferential machining path for cutting at least a portion of a line segment other than the above.
  • the processing head 34 and the scrap of the workpiece W are removed during laser processing of the product P having the notch N. It is possible to suppress interference with the scraps (scrap that has been pulled out).
  • the product P shown in FIG. 3 has one or more notches N (N11 to N13) on the outer peripheral edge.
  • the type 1 laser processing route allocation method shown in FIG. Allocate a single open path OP that does not connect machining paths.
  • an outer circumferential machining route for cutting all line segments other than the notch N portion at the outer circumferential end is assigned to the board cutting data as a second outer circumferential machining route.
  • the type 1 laser machining route allocation method allocates a continuous outer peripheral route that connects the first outer peripheral processing route and the second outer peripheral processing route of each notch.
  • the outer peripheral end of the product P can be cut by one laser processing using a continuous outer peripheral path.
  • the product P shown in FIG. 8 has one notch N (N11) at the outer peripheral end.
  • the type 2 laser machining route allocation method allocates the outer circumferential machining route for cutting all line segments other than the notch N portion (line segment OL11) at the outer circumferential end to the board data as the second outer circumferential machining route. .
  • the type 2 laser machining route allocation method further allocates a continuous outer circumferential route (processing route OU11) in which the second outer circumferential processing route and the first outer circumferential processing route are connected in this order to the cutting data.
  • the type 2 laser machining route allocation method further allocates a continuous machining route in which the open route OP (OP11) and the outer circumferential route are connected in this order to the cutting data.
  • the product P shown in FIG. 3 has first and second notches adjacent to each other at the outer peripheral end. Notches N11 and N12, notches N12 and N13, or notches N13 and N11 correspond to first and second notches.
  • a line segment (line segment OL11, OL12, or ) is assigned as the second outer peripheral machining route.
  • the type 2 laser processing route allocation method shown in FIG. 7 further includes connecting the second outer circumferential processing route and the first outer circumferential processing route in the notch forming processing route of the second notch to the blanking data in this order. Assign a continuous outer route.
  • the machining path for cutting the line segment CL12, CL13, or CL11 is the first outer peripheral machining path here.
  • the number of piercings and approaches formed on the workpiece W can be reduced compared to the type 1 laser processing route allocation method.
  • the laser processing method discloses the following laser processing method performed by the laser processing machine 20.
  • the laser processing machine 20 cuts out a product P having a notch N at the outer peripheral end from the workpiece W supported by the skid 312 by laser processing.
  • the laser processing machine 20 irradiates the workpiece W with a laser beam along the open path OP as a part of the notch forming processing path for forming the notch N, thereby forming the open path OP in the workpiece W. cut.
  • the open path OP is a processing path for cutting into the inside of the product P excluding the line segment of the notch N at the outer peripheral end, and is open toward the outside of the product P.
  • the laser processing machine 20 irradiates the workpiece W with a laser beam along an outer peripheral path connecting a first outer peripheral processing path and a second outer peripheral processing path, before or after cutting the open path in the workpiece W. , cut the outer circumferential path of the workpiece W.
  • the first outer periphery processing path is a processing path for cutting the line segment CL of the notch portion at the outer periphery end, which is the remaining part of the processing path in the notch forming processing path.
  • the second outer periphery processing path is a processing path for cutting at least a portion of the line segment other than the notch N portion at the outer periphery end.
  • interference between the processing head 34 and the scrap that has been removed from the notch N is suppressed, so that abnormal stoppage of laser processing or processing defects may occur. can be prevented from occurring.
  • the laser processing machine 20 processes the workpiece W as follows.
  • the laser processing machine 20 irradiates the workpiece W with a laser beam along the open path OP assigned corresponding to each notch N, and cuts only the open path in the workpiece W independently.
  • the laser processing machine 20 irradiates the workpiece W with a laser beam along an outer peripheral path that connects the first outer peripheral processing path and the second outer peripheral processing path, A product P is cut out from a workpiece W.
  • the second outer periphery processing path is a processing path for cutting all line segments other than the notch N portion at the outer periphery end.
  • the laser processing machine 20 processes the workpiece W as follows.
  • the laser processing machine 20 irradiates the workpiece W with a laser beam along the open path OP to cut the open path OP in the workpiece W.
  • the laser processing machine 20 cuts all line segments other than the notch N at the outer peripheral edge on the workpiece W as a second outer peripheral processing path and the first outer peripheral processing path.
  • the product is cut out from the workpiece W by irradiating a laser beam along the outer circumferential path connected in this order.
  • the laser processing machine 20 processes the workpiece W as follows. At least two notches N that are adjacent to each other are defined as first and second notches.
  • the laser processing machine 20 irradiates the workpiece W with a laser beam along a first open path as an open path OP allocated corresponding to the first notch, thereby forming a first open path in the workpiece W. disconnect. Continuing with the cutting of the first open path, the laser processing machine 20 cuts the workpiece W between the first notch and the second notch, which are part of the outer peripheral edge, as a second outer peripheral processing path. A laser beam is irradiated along the outer circumferential processing path for cutting the line segment, thereby cutting the second outer circumferential processing path on the workpiece W.
  • the laser processing machine 20 irradiates the workpiece W with a laser beam along a first peripheral processing path in the notch forming processing path of the second notch, successively cutting the second peripheral processing path, and cuts the workpiece W.
  • the first outer circumferential machining path of the second notch in W is cut.
  • the laser processing path allocation device may be configured with computer equipment 10.
  • the computer device 10 includes a CPU 11 and a storage section 12.
  • the storage unit 12 stores a laser machining path allocation program that allocates a laser machining path for cutting out the product P from the work W by laser machining to the cutting data in which the shape of the product P having a notch N at the outer peripheral end is arranged in a shape representing the work W. I remember.
  • the CPU 11 executes a laser processing path allocation program to cut into the notch N part of the cutting data to the outside of the product P in order to cut into the inside of the product P excluding the line segment of the notch N part at the outer peripheral end. Allocate an open path OP toward the destination.
  • the open path OP is a part of the notch forming path for forming the notch N among the laser processing paths.
  • the CPU 11 allocates an outer circumferential route that connects the first outer circumferential machining route and the second outer circumferential machining route to the cutting data by executing the laser machining route allocation program.
  • the first outer peripheral processing path is a processing path for cutting a line segment of the notch N portion at the outer peripheral end, which is the remaining part of the processing path in the notch forming processing path among the laser processing paths.
  • the second outer peripheral processing path is a processing path for cutting at least a portion of the line segment other than the notch N portion at the outer peripheral end of the laser processing path.
  • the laser processing path allocation device it is possible to prevent the processing head 34 from interfering with the scrap of the workpiece W during laser processing of the product P having the notch N in the cutting data. It is possible to allocate possible laser processing paths.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Geometry (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Laser Beam Processing (AREA)
  • Numerical Control (AREA)

Abstract

レーザ加工経路割付方法は、板取データのノッチの部分に、ノッチ形成加工経路における一部の加工経路として、製品の外周端部におけるノッチの部分の線分を除く製品の内側へと切り込むための製品の外側に向かって開いている開経路(OP11~OP13)を割り付ける。レーザ加工経路割付方法は、ノッチ形成加工経路における残りの一部の加工経路である外周端部におけるノッチの部分の線分(CL11~CL13)を切断するための第1の外周加工経路と、外周端部におけるノッチの部分以外の線分の少なくとも一部を切断するための第2の外周加工経路とを連結した外周経路(OU)を割り付ける。

Description

レーザ加工経路割付方法、レーザ加工方法、及びレーザ加工経路割付装置
 本開示は、レーザ加工経路割付方法、レーザ加工方法、及びレーザ加工経路割付装置に関する。
 特許文献1は、レーザ加工によってワークから切り出してワーク残材であるスケルトンから分離された製品が、スキッドによって傾いて支持されると、製品の取り出しの際に問題が生じることを指摘している。
特開2020-163436号公報
 製品がノッチを有している場合、ワークに対してノッチの抜き落とし加工を行うと、ノッチの内側のワークから抜き落とされたスクラップが、スキッド間の隙間に落下せずスキッド間に引っ掛かることがある。スキッド間に引っ掛かったスクラップがワークよりも上方に起き上がると、ノッチ以外のワークの外周端部を切断する際にワークの上方を移動する加工ヘッドがスクラップと干渉することがある。加工ヘッドとノッチの抜き落とし加工によるスクラップとが干渉を抑制することが求められている。
 1またはそれ以上の実施形態の第1の態様は、ワークから外周端部にノッチを有する製品をレーザ加工によって切り出すレーザ加工経路のうち、前記ワークを示す形状に前記製品の形状を配置した板取データの前記ノッチの部分に、前記ノッチを形成するためのノッチ形成加工経路における一部の加工経路として、前記外周端部における前記ノッチの部分の線分を除く前記製品の内側へと切り込むための前記製品の外側に向かって開いている開経路を割り付け、前記板取データに、前記レーザ加工経路のうち、前記ノッチ形成加工経路における残りの一部の加工経路である前記外周端部における前記ノッチの部分の前記線分を切断するための第1の外周加工経路と、前記外周端部における前記ノッチの部分以外の線分の少なくとも一部を切断するための第2の外周加工経路とを連結した外周経路を割り付けるレーザ加工経路割付方法を提供する。
 1またはそれ以上の実施形態の第2の態様は、スキッドによって支持されたワークより、外周端部にノッチを有する製品をレーザ加工によって切り出すに際し、前記ワークに、前記ノッチを形成するためのノッチ形成加工経路における一部の加工経路として、前記外周端部における前記ノッチの部分の線分を除く前記製品の内側へと切り込むための前記製品の外側に向かって開いている開経路に沿ってレーザビームを照射して、前記ワークにおける前記開経路を切断し、前記ワークにおける前記開経路を切断する前または後に、前記ワークに、前記ノッチ形成加工経路における残りの一部の加工経路である前記外周端部における前記ノッチの部分の前記線分を切断するための第1の外周加工経路と、前記外周端部における前記ノッチの部分以外の線分の少なくとも一部を切断するための第2の外周加工経路とを連結した外周経路に沿ってレーザビームを照射して、前記ワークにおける前記外周経路を切断するレーザ加工方法を提供する。
 1またはそれ以上の実施形態の第3の態様は、中央処理装置と、ワークを示す形状に外周端部にノッチを有する製品の形状を配置した板取データに、前記ワークから前記製品をレーザ加工によって切り出すレーザ加工経路を割り付けるレーザ加工経路割付プログラムを記憶する記憶部とを備え、前記中央処理装置は、前記レーザ加工経路割付プログラムを実行することによって、前記レーザ加工経路のうち、前記板取データの前記ノッチの部分に、前記ノッチを形成するためのノッチ形成加工経路における一部の加工経路として、前記外周端部における前記ノッチの部分の線分を除く前記製品の内側へと切り込むための前記製品の外側に向かって開いている開経路を割り付け、前記板取データに、前記レーザ加工経路のうち、前記ノッチ形成加工経路における残りの一部の加工経路である前記外周端部における前記ノッチの部分の前記線分を切断するための第1の外周加工経路と、前記外周端部における前記ノッチの部分以外の線分の少なくとも一部を切断するための第2の外周加工経路とを連結した外周経路を割り付けるレーザ加工経路割付装置を提供する。
 1またはそれ以上の実施形態によれば、製品の外周端部を切断するために加工ヘッドがワークの上方を移動するときにノッチがワークから抜き落されていないから、ノッチの抜き落とし加工によるスクラップがスキッド間に引っ掛かってワークよりも上方に起き上がることはない。よって、加工ヘッドがノッチの抜き落とし加工によるスクラップと干渉することはない。
 1またはそれ以上の実施形態に係るレーザ加工経路割付方法、レーザ加工方法、及びレーザ加工経路割付装置によれば、ノッチを有する製品のレーザ加工中に加工ヘッドとワークのスクラップとが干渉することを抑制することができる。
図1は、1またはそれ以上の実施形態に係るレーザ加工経路割付方法を実行するレーザ加工経路割付装置を含むレーザ加工システムの全体的な構成例を示す図である。 図2は、比較例のレーザ加工経路割付方法を示し、外周端部にノッチを有する製品を、ノッチの内側のスクラップをワークから抜き落とした後にワークから切り出す場合の、ワークに割り付けるレーザ加工経路の一例を示す図である。 図3は、図1に示すレーザ加工機がワークから切り出す製品の一例を示す平面図である。 図4Aは、1またはそれ以上の実施形態に係るレーザ加工経路割付装置がレーザ加工経路のパターンとしてタイプ1を選択したときに、製品のノッチの部分に割り付ける開経路の一例を示す図である。 図4Bは、1またはそれ以上の実施形態に係るレーザ加工経路割付装置がタイプ1を選択したときに、ワークに割り付ける、ノッチの部分の開経路を閉じる線分と製品の外周端部の線分とを連結した外周経路の一例を示す図である。 図5は、1またはそれ以上の実施形態に係るレーザ加工経路割付装置がレーザ加工経路のパターンとしてタイプ1を選択したときに、ワークから図3に示す製品を切り出すためにワークに割り付けるレーザ加工経路を示す図である。 図6Aは、1またはそれ以上の実施形態に係るレーザ加工経路割付装置がレーザ加工経路のパターンとしてタイプ2を選択したときに、ワークに割り付ける、ノッチの部分の開経路と製品の外周端部の線分とを連結した経路の一例を示す図である。 図6Bは、1またはそれ以上の実施形態に係るレーザ加工経路割付装置がタイプ2を選択したときに、ワークに割り付ける、製品の外周端部の線分とノッチの部分の開経路を閉じる線分とを連結した外周経路の一例を示す図である。 図7は、1またはそれ以上の実施形態に係るレーザ加工経路割付装置がタイプ2を選択したときに、ワークから図3に示す製品を切り出すためにワークに割り付けるレーザ加工経路を示す図である。 図8は、1またはそれ以上の実施形態に係るレーザ加工経路割付装置がタイプ2を選択したときに、ワークから外周端部に1つのノッチを有する製品を切り出すためにワークに割り付けるレーザ加工経路を示す図である。 図9は、1またはそれ以上の実施形態に係るレーザ加工経路割付装置がレーザ加工経路のパターンとしてタイプ3を選択したときに、ワークから図3に示す製品を切り出すためにワークに割り付けるレーザ加工経路を示す図である。 図10Aは、図1の操作ペンダントのタッチパネルに表示される製品の加工条件の設定画像の一例を示す図である。 図10Bは、図1の操作ペンダントのタッチパネルに表示される製品の加工条件の設定画像の一例において、ノッチの深さ及び幅を設定している状態を示す図である。 図11Aは、ノッチの角部が面取りされていないエッジ形状であり、ノッチを挟む線分が一直線上にある場合に、ノッチに割り付けられた開経路を閉じる線分の位置を示す図である。 図11Bは、ノッチの角部が面取りされていないエッジ形状であり、ノッチを挟む線分が一直線上になく、右側の線分が左側の線分よりもノッチの底部から離れている場合に、ノッチに割り付けられた開経路を閉じる線分の位置を示す図である。 図11Cは、ノッチの角部が面取りされていないエッジ形状であり、ノッチを挟む線分が一直線上になく、左側の線分が右側の線分よりもノッチの底部から離れている場合に、ノッチに割り付けられた開経路を閉じる線分の位置を示す図である。 図12は、ノッチの角部が面取りされていないエッジ形状である場合に、ノッチに割り付けられた開経路を閉じる線分の位置を変更する条件を説明するための図である。 図13Aは、ノッチの角部が面取りされていないエッジ形状であり、ノッチを挟む線分が一直線上になく、右側の線分が左側の線分よりもノッチの底部から離れている場合に、ノッチに割り付けられた開経路を閉じる線分の位置を変更した状態を示す図である。 図13Bは、ノッチの角部が面取りされていないエッジ形状であり、ノッチを挟む線分が一直線上になく、左側の線分が右側の線分よりもノッチの底部から離れている場合に、ノッチに割り付けられた開経路を閉じる線分の位置を変更した状態を示す図である。 図14Aは、ノッチの角部がC面取り形状であり、ノッチを挟む線分が一直線上にある場合に、ノッチに割り付けられた開経路を閉じる線分の位置を示す図である。 図14Bは、ノッチの角部がC面取り形状であり、ノッチを挟む線分が一直線上になく、右側の線分が左側の線分よりもノッチの底部から離れている場合に、ノッチに割り付けられた開経路を閉じる線分の位置を示す図である。 図14Cは、ノッチの角部がC面取り形状であり、ノッチを挟む線分が一直線上になく、左側の線分が右側の線分よりもノッチの底部から離れている場合に、ノッチに割り付けられた開経路を閉じる線分の位置を示す図である。 図15Aは、ノッチの角部がC面取り形状であり、ノッチを挟む線分が一直線上になく、右側の線分が左側の線分よりもノッチの底部から離れている場合に、ノッチに割り付けられた開経路を閉じる線分の位置を変更した状態を示す図である。 図15Bは、ノッチの角部がC面取り形状であり、ノッチを挟む線分が一直線上になく、左側の線分が右側の線分よりもノッチの底部から離れている場合に、ノッチに割り付けられた開経路を閉じる線分の位置を変更した状態を示す図である。 図16Aは、ノッチの角部がR面取りであり、ノッチを挟む線分が一直線上にある場合に、ノッチに割り付けられた開経路を閉じる線分の位置を示す図である。 図16Bは、ノッチの角部がR面取りであり、ノッチを挟む線分が一直線上になく、右側の線分が左側の線分よりもノッチの底部から離れている場合に、ノッチに割り付けられた開経路を閉じる線分の位置を示す図である。 図16Cは、ノッチの角部がR面取りであり、ノッチを挟む線分が一直線上になく、左側の線分が右側の線分よりもノッチの底部から離れている場合に、ノッチに割り付けられた開経路を閉じる線分の位置を示す図である。 図17Aは、図11Aに示す開経路のアプローチ及び逃げの好ましい方向を示す図である。 図17Bは、図14Aに示す開経路のアプローチ及び逃げの好ましい方向を示す図である。 図17Cは、図16Aに示す開経路のアプローチ及び逃げの好ましい方向を示す図である。 図18は、レーザ加工経路の手動割付のために表示部に製品を示すパーツ画像を表示している状態の一例を示す図である。 図19は、表示部に表示されるパーツ編集画像の一例を示す図である。 図20Aは、図18に示すパーツ画像において選択されたノッチに割り付けられる開経路を示す図である。 図20Bは、図18に示すパーツ画像において選択されたノッチに割り付けられる確定した開経路を示す図である。 図21Aは、コンピュータ機器が自動割付によってワークにレーザ加工経路を割り付ける処理の一例を示す部分的なフローチャートである。 図21Bは、コンピュータ機器が自動割付によってワークにレーザ加工経路を割り付ける処理の一例を示す、図21Aに続く部分的なフローチャートである。 図22は、コンピュータ機器が手動割付によってワークにレーザ加工経路を割り付ける処理の一例を示すフローチャートである。 図23は、NC装置が、ワークから製品を切り出すようレーザ加工機を制御する処理の一例を示すフローチャートである。
 以下、1またはそれ以上の実施形態について、添付図面を参照して説明する。各図面を通じて同一あるいは同等の部位または構成要素には、同一の符号を付している。
 以下に示す1またはそれ以上の実施形態は、本発明の技術的思想を具体化するための装置等を例示するものである。本発明の技術的思想は、各構成要素の下記の材質、形状、構造、配置、機能等に限定されない。
 [レーザ加工システムの構成]
 図1は、1またはそれ以上の実施形態に係るレーザ加工経路割付方法を実行するレーザ加工経路割付装置を含むレーザ加工システム1の全体的な構成例を示している。図1に示すように、レーザ加工システム1は、コンピュータ機器10及びレーザ加工機20を有する。1またはそれ以上の実施形態に係るレーザ加工経路割付装置は、コンピュータ機器10によって構成することができる。1またはそれ以上の実施形態に係るレーザ加工方法は、コンピュータ機器10が割り付けたレーザ加工経路で、レーザ加工機20が板状のワークWから製品をレーザ加工により切り出すことで実行される。典型的には、ワークWは板金である。製品とはパーツであることがある。
 レーザ加工機20は、加工機本体30、操作部40、NC(Numerical Control:数値制御)装置50、加工プログラムデータベース60、加工条件データベース70、及び表示部80を備える。NC装置50は、レーザ加工機20の各部を制御する制御部の一例である。NC装置50は、ネットワークを介して加工プログラムデータベース60及び加工条件データベース70と接続されていてもよい。加工プログラムデータベース60及び加工条件データベース70は、レーザ加工機20の外部の構成であってもよい。
 加工機本体30は、ベース31、フレーム32、キャリッジ33、及び加工ヘッド34を有している。
 ベース31上には、ワークWを載置するためのテーブル311が設けられている。テーブル311内には、例えば鉄板よりなる複数の列のスキッド312が配列されている。スキッド312の上端部には、複数の三角形状の突起が並んで形成されている。テーブル311上のワークWは、スキッド312の複数の突起によって支えられる。ベース31の両側面には、テーブル311の長手方向Xに延在するレール313がそれぞれ突設されている。
 フレーム32は、テーブル311を跨ぐ門型に形成されており、サイドフレーム321及び322と上部フレーム323とを有する。サイドフレーム321及び322は、ベース31のレール313にスライド可能に構成されている。フレーム32は、レール313にガイドされて、ベース31に対しテーブル311の長手方向Xに移動することができる。
 サイドフレーム321には、NC装置50と接続された操作ペンダント324が取り付けられている。操作ペンダント324は、タッチパネル325及び操作キー部326を有する。タッチパネル325は、例えば、液晶パネルとタッチパッドとを組み合わせて構成することができる。
 上部フレーム323内には、テーブル311の長手方向Xと直交するフレーム32の幅方向Yにスライド可能なキャリッジ33が設けられている。キャリッジ33には、レーザビームとアシストガスとを射出する加工ヘッド34が、テーブル311の長手方向X及びフレーム32の幅方向Yと直交する昇降方向Zにスライド可能に支持されている。
 操作部40及び表示部80は、ワークWを切断加工する際にNC装置50への入力が必要となる加工条件の入力、及び入力された加工条件に基づいて決定されたレーザ加工機20の設定値をオペレータに提示するためのユーザインターフェイスである。
 操作部40は、例えば、タッチパネル325のタッチパッド及び操作キー部326によって構成することができる。オペレータが、液晶パネルに表示されたキー等をタッチパッド上でタッチ操作し、または、操作キー部326を操作することで、NC装置50に対して情報を入力することができる。表示部80は、例えば、タッチパネル325の液晶パネルによって構成することができる。液晶パネルは、各種の情報を表示することができる。
 加工プログラムデータベース60は、NC装置50がレーザ加工機20の各構成を動作させるための加工プログラムを記憶する。加工プログラムは、レーザ加工機20の動作の手順を規定するプログラムコードである。
 加工条件データベース70は、ワークWを切断加工する際に必要となる複数のパラメータが登録された複数の加工条件ファイルを記憶する。加工条件ファイルは、加工プログラム内の各パラメータを規定するファイルである。
 NC装置50は、加工プログラムデータベース60より加工プログラムを読み出し、加工条件データベース70に記憶されている複数の加工条件のいずれかを選択する。NC装置50は、読み出した加工プログラム及び選択した加工条件に基づいてワークWを加工するよう、レーザ加工機20を制御する。
 コンピュータ機器10の構成及び動作を詳細に説明する。コンピュータ機器10は、中央処理装置(以下、CPU(Central Processing Unit))11と、CAM(Computer Aided Manufacturing)プログラムを記憶する記憶部12を備える。記憶部12は、非一時的な記憶媒体である。コンピュータ機器10は、CAMプログラムを実行するCAM機器である。記憶部12に記憶されているCAMプログラムは、ワークWから製品をレーザ加工によって切り出すレーザ加工経路を板取データに割り付けるレーザ加工経路割付プログラムである。
 CAD(Computer Aided Design)プログラムを実行する図示していないコンピュータ機器は、ワークWを示す形状にワークWから切り出そうとする1またはそれ以上の製品の形状を配置したCADデータよりなる板取データを作成する。CADプログラムを実行するコンピュータ機器は、CAD機器である。コンピュータ機器10には、CAD機器が作成した板取データが入力される。コンピュータ機器10は、CADプログラムを実行するコンピュータ機器を兼ねたCAD/CAM機器であってもよい。
 CPU11は、記憶部12に記憶されているCAMプログラムを実行することによって、入力された板取データにレーザ加工経路を割り付ける。コンピュータ機器10は、割り付けたレーザ加工経路に従って、加工ヘッド34から射出されるレーザビームによって、スキッド312上のワークWから1またはそれ以上の製品を切り出す加工プログラムを作成する。コンピュータ機器10は、加工プログラムを加工プログラムデータベース60に記憶させる。
 厳密には、コンピュータ機器10は板取データにレーザ加工経路を割り付けるものの、以下、コンピュータ機器10はワークW、製品、または製品上の線分にレーザ加工経路を割り付ける、と記載することがある。
 [比較例のレーザ加工経路割付方法]
 1またはそれ以上の実施形態に係るレーザ加工経路割付方法を説明する前に、図2を用いて比較例のレーザ加工経路割付方法を説明する。図2は、外周端部にノッチN1を有する製品P1を、ノッチN1の内側のスクラップをワークW1から抜き落とした後にワークW1から切り出す場合に、ワークW1に割り付けるレーザ加工経路の一例を示している。ここでは、ノッチN1を三角形状としているが、ノッチN1は矩形状であってもよい。
 図2において、ワークW1からノッチN1を有する製品P1を切り出す場合、コンピュータ機器10は、ワークW1に、ノッチN1の内側のピアスPI1からアプローチAP1を経てノッチN1の内側のスクラップSC1をワークW1から抜き落とす加工経路PR1を割り付ける。コンピュータ機器10は、ワークW1に、ノッチN1の加工に続けて製品P1の外周端部を切断し、ワークW1の残材であるスケルトンSK1から製品P1を切り離す加工経路PR2及びPR3を割り付ける。
 加工経路PR1のレーザ加工後に加工経路PR2及びPR3をレーザ加工することで、ノッチN1の内側のスクラップSC1をワークW1から先に抜き落としてから、外周端部にノッチN1を有する製品P1をワークW1から切り出すことができる。
 加工経路PR1のレーザ加工によりスクラップSC1をワークW1から抜き落とすと、抜き落としたスクラップSC1が、ワークW1を支持するスキッド312間の隙間に落下せずスキッド312間に引っ掛かることがある。スキッド312間に引っ掛かったスクラップSC1がワークW1の上方に起き上がると、次の加工経路PR2のレーザ加工で、加工ヘッド34がワークW1のノッチN1の上方を通過する際に、加工ヘッド34がスクラップSC1と干渉することがある。加工ヘッド34がスクラップSC1と干渉すると、ワークW1のレーザ加工が異常停止したり、加工不良が発生したりする。
 [1またはそれ以上の実施形態に係るレーザ加工経路割付方法]
 図3は、図1のレーザ加工機20によってワークWから切り出される製品Pの一例を示している。製品Pは外周端部に3つのノッチN11~N13を有している。外周端部上で、ノッチN11とノッチN12とが隣り合っており、ノッチN12とノッチN13とが隣り合っており、ノッチN13とノッチN11とが隣り合っている。ノッチN11~N13は、外周端部に位置する互いに対向する一対の角部C111及びC112、C121及びC122と、C131及びC132から、製品Pの内側に深さDdと、幅Dwを有する。
 ノッチN11~N13における深さDd及び幅Dwは互いに同じであってもよいし、異なっていてもよい。図3に示す製品Pにおいては、ノッチN13の幅DwはノッチN11及びN12の幅Dwよりも狭い。ノッチN11~N13をノッチNと総称する。また、任意のノッチをノッチNと称することがある。図3に示す製品Pにおいては、ノッチNを矩形状としているが、ノッチNは三角形状であってもよい。
 コンピュータ機器10は、板取データに、図2に示すレーザ加工経路とは異なるパターンで、図3に示す製品Pをレーザ加工によりワークWから切り出すレーザ加工経路を割り付ける。コンピュータ機器10は、ワークWより外周端部にノッチNを有する製品Pを切り出す際の板取データに対して割り付けるレーザ加工経路のパターンを、複数のタイプから選択することができる。
 図4A、図4B、及び図5を用いて、コンピュータ機器10がタイプ1を選択したときのレーザ加工経路を説明する。図4Aに示すように、コンピュータ機器10は、板取データに対して、製品Pの外側に向かって開いている開経路OPを割り付ける。開経路OPは、製品Pの内側へと切り込むための加工経路である。開経路OPが製品Pの外側に向かって開いているとは、ノッチNを形成するためのノッチ形成加工経路において、製品Pの外周端部におけるノッチNの部分の線分に、その線分を切断するための外周加工経路(第1の外周加工経路)を割り付けていないということである。このように、コンピュータ機器10は、ノッチ形成加工経路における一部の加工経路として、製品Pの外周端部におけるノッチNの部分の線分を除く開経路OPを割り付ける。二点鎖線で示す外周経路OUは、製品Pの外周端部に位置する。
 ワークWの製品Pよりも外側の位置にピアスPIが形成され、ピアスPIにアプローチAPが接続されている。アプローチAPの終端が開経路OPの始端である。開経路OPの終端には、製品Pの外側へと伸びる逃げESが接続されている。
 図4Bに示すように、コンピュータ機器10は、開経路OPの加工の後に加工される加工経路として、開経路OPを閉じる線分CLと製品Pの外周端部の線分OL1及びOL2とを連結させた外周経路OUを割り付ける。線分OL1及びOL2は、外周端部におけるノッチNを挟む線分である。開経路OPを閉じる線分CLとは、外周端部におけるノッチNの部分を切断するための線分である。外周経路OUは、外周端部におけるノッチNの部分の線分CLを切断するための第1の外周加工経路と、ノッチN以外の部分の外周端部を切断するための第2の外周加工経路とを連結したものである。第1の外周加工経路は、ノッチ形成加工経路における残りの一部の加工経路である。開経路OPと第1の外周加工経路とは、ノッチNの部分を抜き落とすためのノッチ形成加工経路である。第2の外周加工経路は、ノッチN以外の部分である製品Pの外周端部の全てを切断するための加工経路である。
 図5は、図4A及び図4Bに示すタイプ1によってワークWに割り付けられたレーザ加工経路を示している。図5に示すように、コンピュータ機器10は、レーザ加工経路のうち、ノッチN11~N13の各部分に、図4Aに示す開経路OPに相当する開経路OP11~OP13をそれぞれ割り付ける。製品Pよりも外側のピアスPI11~PI13にはそれぞれアプローチAP11~AP13が接続され、アプローチAP11~AP13の終端がそれぞれ開経路OP11~OP13の始端となっている。開経路OP11~OP13の終端には、それぞれ、製品Pの外側へと伸びる逃げES11~ES13が接続されている。開経路OP11~OP13を切断する順番は限定されないが、例えば開経路OP11、OP12、OP13の順である。
 コンピュータ機器10は、レーザ加工経路のうち、開経路OP11~OP13の加工の後に加工される加工経路として、ワークWに開経路OP11~OP13を閉じる線分CL11~CL13と製品Pの外周端部の線分OL10~OL13とを連結させた一点鎖線で示す外周経路OUを割り付ける。製品Pよりも外側のピアスPI14にはアプローチAP14が接続され、アプローチAP14の終端が外周経路OUの始端となっている。外周経路OUの終端は外周経路OUの始端に接続される。
 線分CL11~CL13は、それぞれ、図3に示す角部C111及びC112間、C121及びC122間、C131及びC132間を結ぶ線分である。線分OL10は、アプローチAP14のピアスPI14とは反対側の端部と角部C111とを結ぶ線分である。線分OL11は、角部C112と角部C121とを結ぶ線分である。線分OL12は、角部C122と角部C131とを結ぶ線分である。線分OL13は、角部C132と外周経路OUの始端とを結ぶ線分である。外周経路OUは、製品Pの外周端部に沿って一周する一続きの加工経路である。
 図3の製品Pは、3つのノッチN11~N13の他に、中央に穴H10を有している。コンピュータ機器10は、製品Pを切り出すレーザ加工経路として、穴H10に対応する図5に示す周回経路CP10を割り付ける。穴H10の内部のピアスPI10にはアプローチAP10が接続され、アプローチAP10の終端が周回経路CP10の始端となっている。周回経路CP10は穴H10に沿って一周し、周回経路CP10の終端は周回経路CP10の始端に接続される。
 なお、コンピュータ機器10は、板取データに、穴H10を形成した後にノッチN11~N13を形成し、最後に製品Pの外周端部を切断して製品Pを切り出すようレーザ加工経路を割り付ける。製品Pは穴H10を有する必要はなく、外周端部に1またはそれ以上のノッチNを有すればよい。
 図6A、図6B、及び図7を用いて、コンピュータ機器10がタイプ2を選択したときのレーザ加工経路を説明する。図6Aに示すように、コンピュータ機器10は、板取データに対して、製品Pの外側に向かって開いている開経路OPと製品Pの外周端部の線分OL2とをこの順で連結させた加工経路OU1を割り付ける。開経路OPは、ノッチ形成加工経路における一部の加工経路である。製品Pよりも外側のピアスPIにはアプローチAPが接続され、アプローチAPの終端が開経路OPの始端となっている。線分OL2は、ノッチN以外の部分における製品Pの外周端部の少なくとも一部である。
 図6Bに示すように、コンピュータ機器10は、加工経路OU1の加工の前または後に加工される加工経路として、板取データに、製品Pの外周端部の線分OL1と開経路OPを閉じる線分CLとをこの順で連結させた外周経路OU2を割り付ける。線分OL1は、ノッチNの部分以外の製品Pの外周端部の少なくとも一部である。外周経路OU2は、第1の外周加工経路と第2の外周加工経路とを含む。第1の外周加工経路は、ノッチNのノッチ形成加工経路における残りの一部の加工経路であり、外周端部におけるノッチNの部分の線分CLを切断するため加工経路である。第2の外周加工経路は、ノッチNの部分以外の製品Pの外周端部の少なくとも一部を切断するための加工経路である。
 図7は、図6A及び図6Bに示すタイプ2によってワークWに割り付けられたレーザ加工経路を示している。穴H10に対応する周回経路CP10の割り付けは図5と同様である。図7に示すように、コンピュータ機器10は、レーザ加工経路のうち、ノッチN11の部分と、ノッチN11及びN12の間の製品Pの外周端部と、ノッチN12の部分とに、図6Aに示す加工経路OU1に相当する加工経路OU11を割り付ける。加工経路OU11は、ノッチN11の部分の開経路OP11と、外周端部における角部C112と角部C121とを結ぶ線分OL11を切断する加工経路と、ノッチN12の部分の線分CL12を切断する加工経路とをこの順で連結した一続きの加工経路である。加工経路OU11は、アプローチAP11に繋がる一続きの加工経路である。
 コンピュータ機器10は、レーザ加工経路のうち、ノッチN12の部分と、ノッチN12及びN13の間の製品Pの外周端部と、ノッチN13の部分とに、図6Aに示す加工経路OU1に相当する加工経路OU12を割り付ける。経路OU12は、ノッチN12の部分の開経路OP12と、外周端部における角部C122と角部C131とを結ぶ線分OL12を切断する加工経路と、ノッチN13の部分の線分CL13を切断する加工経路とをこの順で連結した一続きの加工経路である。加工経路OU12は、アプローチAP12に繋がる一続きの加工経路である。
 コンピュータ機器10は、レーザ加工経路のうち、ノッチN13の部分と、ノッチN13及びN11の間の製品Pの外周端部と、ノッチN11の部分とに、図6Aに示す経路OU1に相当する経路OU13を割り付ける。経路OU13は、ノッチN13の部分の開経路OP13と、外周端部における角部C132と角部C111とを結ぶ線分OL13を切断する加工経路と、ノッチN11の部分の線分CL11を切断する加工経路とをこの順で連結した一続きの加工経路である。加工経路OU13は、アプローチAP13に繋がる一続きの加工経路である。
 図7に示すレーザ加工経路より分かるように、タイプ2を選択してノッチN11、N12、N13の順で加工する場合を例とすると、ノッチN11の部分における線分CL11は開経路OP11の切断の後に切断される。ノッチN12及びN13の部分における線分CL12及びCL13は、それぞれ、開経路OP12及びOP13の切断の前に切断される。
 図8を用いて、製品Pが外周端部のノッチNとしてノッチN11のみを有する場合に、コンピュータ機器10がタイプ2を選択したときのレーザ加工経路を説明する。コンピュータ機器10は、板取データに、アプローチAP11に繋がるノッチN11の部分の開経路OP11と、外周端部におけるノッチN11以外の部分である角部C112から角部C111までを結ぶ線分OL11を切断する加工経路と、ノッチN11の部分の線分CL11を切断する加工経路とをこの順で連結した一続きの加工経路OU11を割り付ける。
 コンピュータ機器10は、図9に示すタイプ3によって板取データにレーザ加工経路を割り付けてもよい。穴H10に対応する周回経路CP10の割り付けは図5と同様である。図9に示すように、コンピュータ機器10は、板取データに、レーザ加工経路のうち、ピアスPI11に繋がるアプローチAP11に続けて、ノッチN11の角部C111とノッチN12の角部C121とを結ぶ線分OL31を切断する加工経路と、ノッチN12の部分の開経路OP12とを連結した実線で示す経路OU31を割り付ける。
 コンピュータ機器10は、板取データに、レーザ加工経路のうち、ピアスPI12に繋がるアプローチAP12に続けて、ノッチN12の角部C121とノッチN13の角部C131とを結ぶ線分OL32を切断する加工経路と、ノッチN13の部分の開経路OP13とを連結した一点鎖線で示す経路OU32を割り付ける。コンピュータ機器10は、板取データに、レーザ加工経路のうち、ピアスPI13に繋がるアプローチAP13に続けて、ノッチN13の角部C131とノッチN11の角部C111とを結ぶ線分OL33を切断する加工経路と、ノッチN11の部分の開経路OP11とを連結した破線で示す経路OU33を割り付ける。
 図9に示すレーザ加工経路より分かるように、タイプ3を選択してノッチN11、N12、N13の順で加工する場合を例とすると、ノッチN11の部分における図7の線分CL11に相当する箇所は開経路OP11の切断の前に切断される。ノッチN12及びN13の部分における図7の線分CL12及びCL13に相当する箇所は、それぞれ、開経路OP12及びOP13の切断の後に切断される。
 図7に示すタイプ2または図9に示すタイプ3を選択すると、図5に示すタイプ1を選択する場合を比較して、ワークWに形成するピアス及びアプローチの数を減らすことができる。図7に示すタイプ2または図9に示すタイプ3によれば、図5に示すピアスPI14及びアプローチAP14を省略することができる。
 コンピュータ機器10は、板取データに、外周端部にノッチを有する製品を切り出すレーザ加工経路を、自動割付または手動割付によって割り付けることができる。例えば、図1の操作ペンダント324のタッチパネル325に表示される製品の加工条件の設定画像における操作で自動割付を選択することができる。
 [自動割付]
 図10A及び図10Bは、タッチパネル325に表示される製品の加工条件の設定画像を示している。図10Aの設定画像327では、「処理」の項目で「処理なし(開経路)」を選択することで、コンピュータ機器10に対して、自動割付による割り付けを行うように指定することができる。
 設定画像327の「処理」の項目で「処理なし(開経路)」を選択すると、図10Bに示す設定画像327の「X/Y」の項目で、製品のノッチの互いに直交する外周端部からの深さ及び幅のどちらかを、プルダウンメニューで選択することができる。選択した深さ及び幅の寸法は、設定画像327の「値1」、「値2」の項目で設定することができる。
 例えば、図3の製品Pの加工条件として、設定画像327で自動割付による割り付けを選択した場合は、設定画像327の「X/Y」の項目で、各ノッチN11~N13の深さDd及び幅Dwの寸法を設定することができる。ノッチN11~N13の各深さDd及び各幅Dwの寸法は、設定画像327の「値1」、「値2」の項目で個別に設定することができる。
 例えば、各ノッチN11~N13の寸法を、設定画像327の「X/Y」の項目で、既存のX及びY方向で設定しようとすると、ノッチN11~N13の形状が同じであっても製品Pの外周端部にどのような向きで開いているかによって、各ノッチN11~N13の寸法の設定内容が変わることがある。開いている方向が異なるノッチN11~N13に対して形状が同じでも異なる設定内容で寸法を設定する必要があると、開いている方向に応じて寸法の設定内容を考えなければならず、操作性がよくない。
 レーザ加工システム1では、ノッチN11~N13の寸法を深さDd及び幅Dwで設定することで、製品Pの外周端部に対して開いている向きが異なっても、ノッチN11~N13の形状が同じであれば同じ設定内容で寸法を設定することができる。
 レーザ加工システム1においては、コンピュータ機器10が板取データにレーザ加工経路を割り付けるパターンを複数のタイプから選択することができる。レーザ加工システム1は、タイプ1とタイプ2からいずれかのタイプを選択してもよいし、タイプ1~3からいずれかのタイプを選択してもよい。設定画像327の「処理」の項目で「処理なし(開経路)」を選択すると、「条件名」の項目においてタイプを選択することができる。図10A及び図10Bにおいては、タイプ1(Type1)が選択されている。
 [開経路を閉じる線分の割り付け位置]
 コンピュータ機器10は、開経路OPを割り付けるノッチNの形状に応じて、第1の外周加工経路を割り付ける線分CLの位置を決定する。図11A~図11Cは、開経路OPを割り付けるノッチNの角部C1及びC2が面取りされていないエッジ形状である場合の線分CLの位置を示している。図11A~図11Cに示すノッチNは、図3に示すノッチN11~N13のいずれでもよい。角部C1及びC2は、角部C111及びC112、C121及びC122、C131及びC132のうちのいずれかに相当する。
 図11Aは、製品Pの外周端部における角部C1と連結する線分OL1(第1の線分)と、角部C2と連結する線分OL2(第2の線分)とが一直線上にある場合を示している。図11Bは、線分OL1と線分OL2とが一直線上になく、線分OL2が線分OL1よりもノッチNの底部BTから離れている場合を示している。図11Cは、線分OL1と線分OL2とが一直線上になく、線分OL1が線分OL2よりも底部BTから離れている場合を示している。ここでのノッチNは矩形状であるので、底部BTはノッチNの底辺である。
 図11Aに示すように、コンピュータ機器10は、開経路OPの始端である角部C1と開経路OPの終端である角部C2とを結ぶ線分CLに第1の外周加工経路を割り付ける。図11B及び図11Cに示すように、線分OL1と線分OL2とが一直線上にない場合であっても、コンピュータ機器10は、原則的に、角部C1と角部C2とを結ぶ線分CLに第1の外周加工経路を割り付ける。但し、コンピュータ機器10は、ノッチNの形状が後述する条件を満たすとき、角部C1と角部C2とを結ぶ線分CLに第1の外周加工経路を割り付けず、位置を変更した線分CLに第1の外周加工経路を割り付けることが好ましい。
 図12を用いて、ノッチNの角部C1及びC2が面取りされていないエッジ形状であって、線分CLの位置を変更することが好ましい条件を説明する。角部C1と角部C2とのうち、ノッチNの底部BTに近い方を第1の角部、底部BTから離れている方を第2の角部とする。図12においては、角部C1が第1の角部であり、角部C2が角部C1よりも底部BTから離れている第2の角部である。第1の角部と第2の角部とを連結する仮の線分DL(第3の線分)と、第2の角部から底部BTに向かう側辺SDとがなす製品P側の角度を角度θとする。
 コンピュータ機器10は、角度θが所定の角度以上であれば、仮の線分DLを図11Bに示すようにそのまま線分CLとして、線分CLに第1の外周加工経路を割り付ける。所定の角度は例えば45度である。
 図13Aは、角部C1が第1の角部であり、角部C2が角部C1よりも底部BTから離れている第2の角部であって、仮の線分DLと第2の角部から底部BTに向かう側辺SDとがなす角度θが所定の角度未満である場合に、線分CLの位置を変更した状態を示している。図13Aに示すように、コンピュータ機器10は、角度θが所定の角度未満であれば、第1の角部に連結する線分OL1を第1の角部から側辺SDまで伸ばした、第1の角部から側辺SDまでの線分(第4の線分)を新たに線分CLとして、線分CLに第1の外周加工経路を割り付ける。
 図13Bは、角部C2が第1の角部であり、角部C1が角部C1よりも底部BTから離れている第2の角部であって、仮の線分DLと第2の角部から底部BTに向かう側辺SDとがなす角度θが所定の角度未満である場合に、線分CLの位置を変更した状態を示している。図13Bに示すように、コンピュータ機器10は、図13Aと同様に、角度θが所定の角度未満であれば、第1の角部に連結する線分OL2を第1の角部から側辺SDまで伸ばした、第1の角部から側辺SDまでの線分(第4の線分)を新たに線分CLとして、線分CLに第1の外周加工経路を割り付ける。
 角度θが例えば45度未満である場合に、角部C1と角部C2とを結ぶ線分CLに第1の外周加工経路を割り付けてノッチNの部分を抜き落とすと、角部C1またはC2に加工不良が発生することがある。図13Aまたは図13Bに示すように線分CLの位置を変更することにより、加工不良の発生を抑制することができる。
 図14A~図14Cは、開経路OPを割り付けるノッチNの角部C1及びC2がC面取りされている場合の線分CLの位置を示している。図14A~図14Cは、それぞれ、図11A~図11Cにおける角部C1及び角部C2がC面取りされて、開経路OPと線分OL1及びOL2との間に線分OC1及びOC2が割り付けられている場合を示している。開経路OPの始端は、角部C1に代えて線分OC1と連結する角部C1’、開経路OPの終端は、角部C2に代えて線分OC2と連結する角部C2’とされている。
 図14Aに示すように、コンピュータ機器10は、開経路OPの始端である角部C1’と開経路OPの終端である角部C2’とを結ぶ線分CLに第1の外周加工経路を割り付ける。図14B及び図14Cに示すように、線分OL1と線分OL2とが一直線上にない場合であっても、コンピュータ機器10は、原則的に、角部C1’と角部C2’とを結ぶ線分CLに第1の外周加工経路を割り付ける。但し、コンピュータ機器10は、ノッチNの形状が後述する条件を満たすとき、角部C1’と角部C2’とを結ぶ線分CLに第1の外周加工経路を割り付けず、位置を変更した線分CLに第1の外周加工経路を割り付けることが好ましい。
 図15A及び図15Bにおいて、角部C1’と角部C2’とのうち、ノッチNの底部BTに近い方を第1の角部、底部BTから離れている方を第2の角部とする。図15Aにおいては、角部C1’が第1の角部であり、角部C2’が第2の角部である。線分OC1と第1の角部と第2の角部とを連結する仮の線分DL(第3の線分)とがなす製品Pの外側の角度を角度θ1、仮の線分DLと第2の角部から底部BTに向かう側辺SDとがなす製品P側の角度を角度θ2とする。図15Bにおいては、角部C2’が第1の角部であり、角部C1’が第2の角部である。線分OC2と仮の線分DLとがなす製品Pの外側の角度を角度θ1、仮の線分DLと側辺SDとがなす製品P側の角度を角度θ2とする。
 コンピュータ機器10は、角度θ1またはθ2が所定の角度以上であれば、仮の線分DLを図14B及び14Cに示すようにそのまま線分CLとして、線分CLに第1の外周加工経路を割り付ける。所定の角度は例えば45度である。図15A及び15Bに示すように、コンピュータ機器10は、角度θ1またはθ2が所定の角度未満であれば、第1の角部から側辺SDまでの線分(第4の線分)を新たに線分CLとして、線分CLに第1の外周加工経路を割り付ける。第4の線分は、線分OL1または線分OL2と平行であり、側辺SDと直交する。
 角度θ1またはθ2が例えば45度未満である場合に、角部C1’と角部C2’とを結ぶ線分CLに第1の外周加工経路を割り付けてノッチNの部分を抜き落とすと、角部C1’またはC2’に加工不良が発生することがある。図15Aまたは図15Bに示すように線分CLの位置を変更することにより、加工不良の発生を抑制することができる。
 図16A~図16Cは、開経路OPを割り付けるノッチNの角部C1及びC2がR面取りされている場合の線分CLの位置を示している。図16A~図16Cは、それぞれ、図11A~図11Cにおける角部C1及び角部C2がR面取りされて、開経路OPと線分OL1及びOL2との間に線分OR1及びOR2が割り付けられている場合を示している。
 図16Aにおいて、開経路OPの始端は、角部C1に代えて線分OR1と連結する角部C1”、開経路OPの終端は、角部C2に代えて線分OC2と連結する角部C2”とされている。コンピュータ機器10は、開経路OPの始端である角部C1”と開経路OPの終端である角部C2”とを結ぶ線分CLに第1の外周加工経路を割り付ける。図16Bにおいて、底部BTに近い方の線分OL1と連結する線分OR1の端部を開経路OPの始端である角部C1”とする。角部C1”から線分OL1及びOL2と平行の線分CLが、底部BTに遠い方の線分OL2と連結する線分OR2に繋がる側辺SDと連結する位置を開経路OPの終端である角部C2”とする。コンピュータ機器10は、線分CLに第1の外周加工経路を割り付ける。
 図16Cにおいて、底部BTに近い方の線分OL2と連結する線分OR2の端部を開経路OPの終端である角部C2”とする。角部C2”から線分OL1及びOL2と平行の線分CLが、底部BTに遠い方の線分OL1と連結する線分OR1に繋がる側辺SDと連結する位置を開経路OPの始端である角部C1”とする。コンピュータ機器10は、線分CLに第1の外周加工経路を割り付ける。
 図16A~図16Cに示すノッチNの角部C1及びC2がR面取りされている場合には、何らかの条件を満たすときに線分CLの位置を変更する必要はない。
 図14Aの線分OC1及びOC2または図16Aの線分OR1及びOR2は、製品Pの外周端部の各線分OL1及びOL2と連結して、図4Bの外周経路OUまたは図6Bの外周経路OU2の一部とされてもよい。この場合、アプローチAP及び逃げESを接続する開経路OPの始端及び終端は、線分OC1及びOC2または線分OR1及びOR2の開経路OP側の端部となる。
 図14Aの線分OC1及びOC2または図16Aの線分OR1及びOR2は、開経路OPと連結して開経路OPの一部とすることができる。この場合、アプローチAP及び逃げESを接続する開経路OPの始端及び終端は、線分OC1及びOC2または線分OR1及びOR2の、製品Pの外周端部の線分OL1及びOL2側の端部となる。
 [アプローチ及び逃げの方向]
 コンピュータ機器10は、各ノッチNの部分に、アプローチAPを割り付けて開経路OPの始端に接続し、開経路OPの終端に接続する逃げESを割り付ける。開経路OPの始端から見たときのアプローチAPの方向、開経路OPの終端から見たときの逃げESの方向を、開経路OPを割り付けるノッチNの角度の形状によって決定することができる。
 図17A~図17Cは、それぞれ、角部がエッジ形状、C面取り形状、R面取り形状であるノッチNに割り付けるアプローチAP及び逃げESを示している。図17A~図17Cは、それぞれ、図11A、図14A、16Aの場合におけるアプローチAP及び逃げESの好ましい方向を示している。
 図17Aにおいて、線分OL1と開経路OPを閉じる線分CLとの開き角は180゜であり、線分OL2と線分CLとの開き角は180゜である。アプローチAPの方向は、スケルトンSK側に、開き角180゜を二等分する角度である90°の方向とするのがよい。逃げESの方向は、スケルトンSK側に、開き角180゜を二等分する角度である90°の方向とするのがよい。
 図17Bにおいて、線分OC1と線分CLとの開き角は180゜未満であり、線分OC2と線分CLとの開き角は180゜未満である。アプローチAPの方向は、スケルトンSK側に、180゜未満の開き角を二等分する角度の方向とするのがよい。逃げESの方向は、スケルトンSK側に、180゜未満の開き角を二等分する角度の方向とするのがよい。
 図17Cにおいて、線分OR1の角部C1”における接線と線分CLとの開き角は180゜未満であり、線分OR2の角部C2”における接線と線分CLとの開き角は180゜未満である。アプローチAPの方向は、スケルトンSK側に、180゜未満の開き角を二等分する角度の方向とするのがよい。逃げESの方向は、スケルトンSK側に、180゜未満の開き角を二等分する角度の方向とするのがよい。
 アプローチAP及び逃げESの方向を図17A~図17Cに示すように設定することにより、アプローチAP及び逃げESのレーザ加工時に飛散するワークWの溶融金属が、スパッタとなって製品Pに付着することを抑制することができる。
 図17Aにおいては、ピアスPIを製品Pから遠ざけて、アプローチAP及び逃げESを長くしてもよい。図17B及び図17Cにいては、アプローチAPと逃げESとが交差しない範囲でアプローチAP及び逃げESを長くしてもよい。アプローチAP及び逃げESの長さを、それぞれ、最長で、角部C1’またはC1”から両者の交点までの距離の半分、及び角部C2’またはC2”から両者の交点までの距離の半分としてもよい。
 アプローチAPの長さを確定させる前に、ピアスPIが製品Pに近く、ピアシングの際に飛散するワークWの溶融金属がスパッタとなって製品Pに付着するおそれがあるときに、表示部80(タッチパネル325)にウォーニングメッセージを表示してもよい。コンピュータ機器10が製品Pにスパッタが付着するおそれがあると判定すると、NC装置50は、表示部80にウォーニングメッセージを表示する。
 図17A~図17Cに示すアプローチAPの長さを、外周経路OUに対するアプローチAP14と同じ長さとしてもよい。このようにすると、ノッチNのレーザ加工の際に設定したアプローチAPの長さを、外周経路OUをレーザ加工する際のアプローチAP14の長さとして用いることができる。
 [手動割付]
 コンピュータ機器10は、手動割付によってレーザ加工経路を板取データに割り付けることもできる。NC装置50が、操作ペンダント324のタッチパネル325に、コンピュータ機器10が生成するパーツ画像及びパーツ編集画像を表示することにより、ユーザは製品Pに対して手動でレーザ加工経路を割り付けることができる。図18はタッチパネル325に表示されるパーツ画像328の一例を示し、図19はタッチパネル325に表示されるパーツ編集画像330の一例を示している。
 図18において、パーツ画像328には、手動割付によってレーザ加工経路を割り付ける製品Pの図形が表示されている。図18に示す製品Pは、外周端部にノッチN21及びN22を有している。パーツ画像328上で、ユーザがノッチN21及びN22の部分を触れることによって、破線の枠329で囲まれているように、ノッチN21及びN22を含む範囲が選択される。
 図19に示すパーツ編集画像330において、図18に示すように選択したノッチN21及びN22に、手動割付によってレーザ加工経路を割り付けることができる。具体的には、ユーザが切り欠きタブ内の切り欠きタイプとして表示されているタイプ1を示すボタン331に触れることによって、レーザ加工経路のパターンとしてタイプ1で割り付けることを指定することができる。ユーザがボタン331に触れると、図20Aに示すように、パーツ画像328の破線の枠329で囲まれたノッチN21及びN22が破線で示す開経路OP21及びOP22へと切り替えられる。
 その後、ユーザが切り欠きタブ内の割付ボタン332に触れると、レーザ加工経路をタイプ1に確定させることができる。図20Bに示すように、ユーザが割付ボタン332に触れると、破線で示す開経路OP21及びOP22が実線で示す確定状態の開経路OP21及びOP22へと切り替えられる。コンピュータ機器10は、手動割付でノッチN21及びN22に開経路OP21及びOP22を割り付ける際に、ユーザに必要な加工条件の入力を要求してもよい。
 図19に示すパーツ編集画像330において、切り欠きタイプとして、レーザ加工経路をタイプ2で割り付けることを指定するボタンを追加してもよいし、タイプ3で割り付けることを指定するボタンを追加してもよい。
 コンピュータ機器10は、レーザ加工経路のパターンがタイプ1に確定したら、自動割付と同様に、板取データに対してレーザ加工経路を割り付ける。
 ユーザが手動割付においてノッチN21及びN22の部分に割り付ける開経路OP21及びOP22は、ピアスPI、アプローチAP、及び逃げESを含む加工経路であってもよい。アプローチAP及び逃げESの方向及び長さは、自動割付におけるそれらと同様でよい。手動割付においても、必要に応じてタッチパネル325にウォーニングメッセージを表示してもよい。
 [自動割付による処理]
 図21A及び図21Bに示すフローチャートを用いて、コンピュータ機器10が自動割付によって板取データにレーザ加工経路を割り付ける処理の一例を説明する。ここでは、選択可能なレーザ加工経路のパターンはタイプ1またはタイプ2であるとする。
 図21Aにおいて、コンピュータ機器10は、ステップS1にて、板取データにおける製品Pの形状を示す形状データに基づいて、製品Pの内部に穴があるか否かを判定する。製品Pの内部に穴があれば(YES)、コンピュータ機器10は、ステップS2にて、穴に周回経路を割り付けて、処理をステップS3に移行させる。製品Pの内部に穴がなければ(NO)、コンピュータ機器10は処理をステップS3に移行させる。
 コンピュータ機器10は、ステップS3にて、製品Pの形状データに基づいて、製品Pの外周端部の形状を認識する。コンピュータ機器10は、ステップS4にて、外周端部にノッチがあるか否かを判定する。ノッチがなければ(NO)、コンピュータ機器10は、ステップS5にて、製品Pの外周端部の線分に外周端部を切断するための外周経路を割り付けて、処理を終了させる。
 ステップS4にて外周端部にノッチがあれば(YES)、コンピュータ機器10は、ステップS6にて、選択されているレーザ加工経路のパターンがタイプ1であるか否かを判定する。レーザ加工経路のパターンがタイプ1であれば(YES)、コンピュータ機器10は、ステップS7にて、ノッチの部分に開経路を割り付けて、処理をステップS8に移行させる。コンピュータ機器10は、ステップS8にて、開経路が割り付けられていないノッチがあるか否かを判定する。開経路が割り付けられていないノッチがあれば(YES)、コンピュータ機器10はステップS7及びS8の処理を繰り返す。
 ステップS8にて開経路が割り付けられていないノッチがなければ(NO)、コンピュータ機器10は、ステップS9にて、外周端部の線分を連結した外周経路を割り付けて、処理を終了させる。ステップS9における外周経路は、各ノッチの部分における外周加工経路である第1の外周加工経路と、ノッチ以外の部分における全ての外周加工経路である第2の外周加工経路とを含む、製品Pの外周端部に沿って一周する一続きの加工経路である。
 ステップS6にて選択されているレーザ加工経路のパターンがタイプ1でなければ(NO)(即ち、選択されているレーザ加工経路のパターンがタイプ2であれば)、コンピュータ機器10は、図21BにおけるステップS10にて、外周端部に形成されているノッチが1つであるか否かを判定する。ノッチが1つであれば(YES)、コンピュータ機器10は、ステップS11にて、ノッチに割り付けた開経路に外周経路を連結した一続きの加工経路を割り付けて処理を終了させる。ステップS11における外周経路は、ノッチ以外の部分における全ての外周加工経路である第2の外周加工経路と、ノッチの部分における外周加工経路である第1の外周加工経路とをこの順で連結した一続きの加工経路である。
 ステップS10にてノッチが1つでなければ(NO)、コンピュータ機器10は、ステップS12にて、変数iを1に設定する。続けて、コンピュータ機器10は、ステップS13にて、加工順i番目のノッチの開経路に、i番目のノッチと(i+1)番目のノッチとの間の外周加工経路(第2の外周加工経路)と、(i+1)番目のノッチの開経路を閉じる外周加工経路(第1の外周加工経路)とを連結した一続きの加工経路を割り付ける。コンピュータ機器10は、ステップS14にて、次の加工順のノッチがあるか否かを判定する。次の加工順のノッチがあれば(YES)、コンピュータ機器10は、ステップS15にて、変数iを1インクリメントして、処理をステップS13に戻す。コンピュータ機器10は、ステップS14にて次の加工順のノッチがないと判定されるまで、ステップS13~S15の処理を繰り返す。
 ステップS14にて次の加工順のノッチがなければ(NO)、コンピュータ機器10は、ステップS16にて、(i+1)番目のノッチの開経路に、(i+1)番目のノッチと1番目のノッチとの間の外周加工経路(第2の外周加工経路)と、1番目のノッチの開経路を閉じる外周加工経路(第1の外周加工経路)とを連結した一続きの加工経路を割り付けて処理を終了させる。
 [手動割付による処理]
 図22に示すフローチャートを用いて、コンピュータ機器10が手動割付によって板取データにレーザ加工経路を割り付ける処理の一例を説明する。ここでは、選択可能なレーザ加工経路のパターンはタイプ1またはタイプ2であるとする。ここでは、製品Pが図18に示す製品Pである場合を例とする。
 図22において、コンピュータ機器10は、ステップS21にて、ユーザがタッチパネル325を操作したことによる図18のパーツ画像328の範囲の選択を受け付ける。コンピュータ機器10は、ステップS22にて、選択範囲内の形状を認識する。コンピュータ機器10は、ステップS23にて、選択範囲内にノッチがあるか否かを判定する。選択範囲内にノッチがなければ(NO)、コンピュータ機器10は処理を終了させる。この場合、コンピュータ機器10は、ユーザによる別の手動割付によって、製品Pの外周端部の線分に外周端部を切断するための外周経路を割り付ければよい。
 ステップS23にて選択範囲内にノッチがあれば(YES)、コンピュータ機器10は、ステップS24にて、選択されているレーザ加工経路のパターンがタイプ1であるか否かを判定する。レーザ加工経路のパターンがタイプ1であれば(YES)、コンピュータ機器10は、ステップS25にて、ノッチの部分に開経路を割り付けて処理を終了させる。この場合も、コンピュータ機器10は、ユーザによる別の手動割付によって、製品Pの外周端部の線分に外周端部を切断するための外周経路を割り付ければよい。
 ステップS24にて、レーザ加工経路のパターンがタイプ1でなければ(NO)、コンピュータ機器10は、ステップS26にて、ノッチの開経路に、次のノッチまでの外周加工経路と次のノッチを閉じる外周加工経路とを連結した一続きの加工経路を割り付けて、処理を終了させる。
 [レーザ加工処理]
 図23に示すフローチャートを用いて、NC装置50が、ワークWから製品Pを切り出すようレーザ加工機20を制御するレーザ加工処理の一例を説明する。ここでは、コンピュータ機器10が自動割付によってタイプ1のレーザ加工経路をワークWに割り付けているとする。図23において、NC装置50は、ステップS31にて、ワークW上におけるレーザビームの照射位置を開経路に沿って移動させる。NC装置50は、ステップS32にて、ワークW上におけるレーザビームの照射位置を外周経路に沿って移動させて、処理を終了させる。
 NC装置50が図23に示すようにレーザ加工機20を制御することによってレーザ加工機20が実行するレーザ加工方法によれば、製品Pの外周端部を切断するために加工ヘッド34がワークWの上方を移動するときに、ノッチNがワークWから抜き落されておらず、ノッチNの部分にスクラップが形成されていない。よって、ノッチNの抜き落とし加工によるスクラップがスキッド312間に引っ掛かってワークWよりも上方に起き上がることはない。それゆえ、加工ヘッド34がノッチNの抜き落とし加工によるスクラップと干渉することはない。
 以上説明した図5に示すタイプ1によるレーザ加工経路割付方法と、図7または図8に示すタイプ2によるレーザ加工経路割付方法と、図9に示すタイプ3によるレーザ加工経路割付方法とを総合すると、1またはそれ以上の実施形態に係るレーザ加工経路割付方法は、次のレーザ加工経路割付方法を開示する。
 1またはそれ以上の実施形態に係るレーザ加工経路割付方法は、ワークWから外周端部にノッチNを有する製品Pをレーザ加工によって切り出すレーザ加工経路のうち、板取データのノッチNの部分に、製品Pの内側へと切り込むための製品Pの外側に向かって開いている開経路OPを割り付ける。開経路OPは、ノッチNを形成するためのノッチ形成加工経路における一部の加工経路であり、製品Pの外周端部におけるノッチNの部分の線分CLを除く加工経路である。
 1またはそれ以上の実施形態に係るレーザ加工経路割付方法は、板取データに、レーザ加工経路のうち、外周経路を割り付ける。外周経路は、ノッチ形成加工経路における残りの一部の加工経路である外周端部におけるノッチNの部分の線分を切断するための第1の外周加工経路と、外周端部におけるノッチNの部分以外の線分の少なくとも一部を切断するための第2の外周加工経路とを連結した加工経路である。
 1またはそれ以上の実施形態に係るレーザ加工経路割付方法によって板取データにレーザ加工経路を割り付けることにより、ノッチNを有する製品Pのレーザ加工中に加工ヘッド34とワークWのスクラップ(ノッチNの部分を抜き落としたスクラップ)とが干渉することを抑制することができる。
 図3に示す製品Pは外周端部に1またはそれ以上のノッチN(N11~N13)を有する。図5に示すタイプ1によるレーザ加工経路割付方法は、板取データのノッチNの部分に、開経路OPとして、外周端部におけるノッチNの部分以外の線分の少なくとも一部を切断するための外周加工経路を連結させていない単独の開経路OPを割り付ける。タイプ1によるレーザ加工経路割付方法は、板取データに、外周端部におけるノッチNの部分以外の全ての線分を切断するための外周加工経路を第2の外周加工経路として割り付ける。また、タイプ1によるレーザ加工経路割付方法は、各ノッチの第1の外周加工経路と、第2の外周加工経路とを連結した一続きの外周経路を割り付ける。
 タイプ1によるレーザ加工経路割付方法によれば、製品Pの外周端部を一続きの外周経路による1回のレーザ加工で切断することができる。
 図8に示す製品Pは外周端部に1つのノッチN(N11)を有する。タイプ2によるレーザ加工経路割付方法は、板取データに、外周端部におけるノッチNの部分以外の全ての線分(線分OL11)を切断するための外周加工経路を第2の外周加工経路として割り付ける。タイプ2によるレーザ加工経路割付方法は、さらに、板取データに、第2の外周加工経路と第1の外周加工経路とをこの順で連結した一続きの外周経路(加工経路OU11)を割り付ける。タイプ2によるレーザ加工経路割付方法は、さらに、板取データに、開経路OP(OP11)と外周経路とをこの順で連結した一続きの加工経路を割り付ける。
 図3に示す製品Pは外周端部に互いに隣り合う第1及び第2のノッチを有する。ノッチN11及びN12、ノッチN12及びN13、またはノッチN13及びN11は、第1及び第2のノッチに相当する。図7に示すタイプ2によるレーザ加工経路割付方法は、板取データに、外周端部の一部である第1のノッチと第2のノッチとの間の線分(線分OL11、OL12、またはOL13)を切断するための外周加工経路を第2の外周加工経路として割り付ける。
 図7に示すタイプ2によるレーザ加工経路割付方法は、さらに、板取データに、第2の外周加工経路と第2のノッチのノッチ形成加工経路における第1の外周加工経路とをこの順で連結した一続きの外周経路を割り付ける。線分CL12、CL13、またはCL11を切断するための加工経路が、ここでの第1の外周加工経路である。図7に示すタイプ2によるレーザ加工経路割付方法は、さらに、板取データに、第1のノッチの開経路(開経路OP12、OP13、またはOP11)と外周経路とをこの順で連結した一続きの加工経路を割り付ける。
 タイプ2によるレーザ加工経路割付方法によれば、タイプ1によるレーザ加工経路割付方法と比較して、ワークWに形成するピアス及びアプローチの数を減らすことができる。
 1またはそれ以上の実施形態に係るレーザ加工方法は、レーザ加工機20が実行する次のレーザ加工方法を開示する。レーザ加工機20は、スキッド312によって支持されたワークWより、外周端部にノッチNを有する製品Pをレーザ加工によって切り出す。このとき、レーザ加工機20は、ワークWに、ノッチNを形成するためのノッチ形成加工経路における一部の加工経路として、開経路OPに沿ってレーザビームを照射してワークWにおける開経路OPを切断する。開経路OPは、外周端部におけるノッチNの部分の線分を除く製品Pの内側へと切り込むための加工経路であり、製品Pの外側に向かって開いている。
 レーザ加工機20は、ワークWにおける開経路を切断する前または後に、ワークWに、第1の外周加工経路と第2の外周加工経路とを連結した外周経路に沿ってレーザビームを照射して、ワークWにおける外周経路を切断する。第1の外周加工経路は、ノッチ形成加工経路における残りの一部の加工経路である外周端部におけるノッチの部分の線分CLを切断するための加工経路である。第2の外周加工経路は、外周端部におけるノッチNの部分以外の線分の少なくとも一部を切断するための加工経路である。
 1またはそれ以上の実施形態に係るレーザ加工方法によれば、加工ヘッド34とノッチNの部分を抜き落としたスクラップとが干渉することが抑制されるから、レーザ加工が異常停止したり、加工不良が発生したりすることを抑制することができる。
 板取データに図5に示すタイプ1によるレーザ加工経路割付方法によるレーザ加工経路が割り付けられているとき、レーザ加工機20は、次のようにワークWを加工する。レーザ加工機20は、ワークWに、各ノッNチに対応して割り付けられた開経路OPに沿ってレーザビームを照射して、ワークWにおける開経路のみを単独で切断する。レーザ加工機20は、ワークWにおける開経路OPを切断した後に、ワークWに、第1の外周加工経路と第2の外周加工経路とを連結した外周経路に沿ってレーザビームを照射して、ワークWより製品Pを切り出す。第2の外周加工経路は、外周端部におけるノッチNの部分以外の全ての線分を切断するための加工経路である。
 板取データに図8に示すタイプ2によるレーザ加工経路割付方法によるレーザ加工経路が割り付けられているとき、レーザ加工機20は、次のようにワークWを加工する。レーザ加工機20は、ワークWに、開経路OPに沿ってレーザビームを照射して、ワークWにおける開経路OPを切断する。レーザ加工機20は、開経路OPの切断に連続させて、ワークWに、第2の外周加工経路として外周端部におけるノッチNの部分以外の全ての線分と、第1の外周加工経路とをこの順で連結した外周経路に沿ってレーザビームを照射して、ワークWより前記製品を切り出す。
 板取データに図7に示すタイプ2によるレーザ加工経路割付方法によるレーザ加工経路が割り付けられているとき、レーザ加工機20は、次のようにワークWを加工する。少なくとも2つのノッチNにおける互いに隣り合う2つのノッチNを第1及び第2のノッチとする。
 レーザ加工機20は、ワークWに、第1のノッチに対応して割り付けられた開経路OPとしての第1の開経路に沿ってレーザビームを照射して、ワークWにおける第1の開経路を切断する。レーザ加工機20は、第1の開経路の切断に連続させて、ワークWに、第2の外周加工経路として、外周端部の一部である第1のノッチと第2のノッチとの間の線分を切断するための外周加工経路に沿ってレーザビームを照射して、ワークWにおける第2の外周加工経路を切断する。レーザ加工機20は、第2の外周加工経路の切断に連続させて、ワークWに、第2のノッチのノッチ形成加工経路における第1の外周加工経路に沿ってレーザビームを照射して、ワークWにおける第2のノッチの第1の外周加工経路を切断する。
 1またはそれ以上の実施形態に係るレーザ加工経路割付装置は、コンピュータ機器10で構成することができる。コンピュータ機器10は、CPU11と記憶部12を備える。記憶部12は、ワークWを示す形状に外周端部にノッチNを有する製品Pの形状を配置した板取データに、ワークWから製品Pをレーザ加工によって切り出すレーザ加工経路を割り付けるレーザ加工経路割付プログラムを記憶している。
 CPU11は、レーザ加工経路割付プログラムを実行することによって、板取データのノッチNの部分に、外周端部におけるノッチNの部分の線分を除く製品Pの内側へと切り込むための製品Pの外側に向かって開いている開経路OPを割り付ける。開経路OPは、レーザ加工経路のうち、ノッチNを形成するためのノッチ形成加工経路における一部の加工経路である。また、CPU11は、レーザ加工経路割付プログラムを実行することによって、板取データに、第1の外周加工経路と第2の外周加工経路とを連結した外周経路を割り付ける。第1の外周加工経路は、レーザ加工経路のうち、ノッチ形成加工経路における残りの一部の加工経路である外周端部におけるノッチNの部分の線分を切断するための加工経路である。第2の外周加工経路は、レーザ加工経路のうち、外周端部におけるノッチNの部分以外の線分の少なくとも一部を切断するための加工経路である。
 1またはそれ以上の実施形態に係るレーザ加工経路割付装置によれば、板取データに、ノッチNを有する製品Pのレーザ加工中に加工ヘッド34がワークWのスクラップと干渉することを抑制することができるレーザ加工経路を割り付けることができる。
 本願は、2022年3月25日に日本国特許庁に出願された特願2022-050396号、及び2023年3月17日に日本国特許庁に出願された特願2023-043307号に基づく優先権を主張するものであり、それらの全ての開示内容は引用によりここに援用される。

Claims (10)

  1.  ワークから外周端部にノッチを有する製品をレーザ加工によって切り出すレーザ加工経路のうち、前記ワークを示す形状に前記製品の形状を配置した板取データの前記ノッチの部分に、前記ノッチを形成するためのノッチ形成加工経路における一部の加工経路として、前記外周端部における前記ノッチの部分の線分を除く前記製品の内側へと切り込むための前記製品の外側に向かって開いている開経路を割り付け、
     前記板取データに、前記レーザ加工経路のうち、前記ノッチ形成加工経路における残りの一部の加工経路である前記外周端部における前記ノッチの部分の前記線分を切断するための第1の外周加工経路と、前記外周端部における前記ノッチの部分以外の線分の少なくとも一部を切断するための第2の外周加工経路とを連結した外周経路を割り付ける
     レーザ加工経路割付方法。
  2.  前記製品は前記外周端部に1またはそれ以上のノッチを有し、
     前記板取データの前記ノッチの部分に、前記開経路として、前記外周端部における前記ノッチの部分以外の線分の少なくとも一部を切断するための外周加工経路を連結させていない単独の開経路を割り付け、
     前記板取データに、
     前記外周端部における前記ノッチの部分以外の全ての線分を切断するための外周加工経路を前記第2の外周加工経路として割り付け、
     各ノッチの前記第1の外周加工経路と、前記第2の外周加工経路とを連結した一続きの外周経路を割り付ける
     請求項1に記載のレーザ加工経路割付方法。
  3.  前記製品は前記外周端部に1つのノッチを有し、
     前記板取データに、
     前記外周端部における前記ノッチの部分以外の全ての線分を切断するための外周加工経路を前記第2の外周加工経路として割り付け、
     前記第2の外周加工経路と前記第1の外周加工経路とをこの順で連結した一続きの外周経路を割り付け、
     前記開経路と前記外周経路とをこの順で連結した一続きの加工経路を割り付ける
     請求項1に記載のレーザ加工経路割付方法。
  4.  前記製品は前記外周端部に互いに隣り合う第1及び第2のノッチを有し、
     前記板取データに、
     前記外周端部の一部である前記第1のノッチと前記第2のノッチとの間の線分を切断するための外周加工経路を前記第2の外周加工経路として割り付け、
     前記第2の外周加工経路と前記第2のノッチの前記ノッチ形成加工経路における前記第1の外周加工経路とをこの順で連結した一続きの外周経路を割り付け、
     前記第1のノッチの前記開経路と前記外周経路とをこの順で連結した一続きの加工経路を割り付ける
     請求項1に記載のレーザ加工経路割付方法。
  5.  前記ノッチの部分における前記外周端部上で第1の角部と第2の角部とが互いに対向し、前記第1の角部と連結する前記外周端部の第1の線分と、前記第2の角部と連結する前記外周端部の第2の線分とが一直線上になく、前記第2の角部が前記第1の角部よりも前記ノッチの底部から離れているとき、
     前記第1の角部と前記第2の角部とを連結する第3の線分と、前記第2の角部から前記底部に向かう側辺とがなす角度が所定の角度以上であれば、前記第3の線分に前記第1の外周加工経路を割り付け、
     前記第3の線分と前記側辺とがなす角度が前記所定の角度未満であれば、前記第1の線分を前記第1の角部から前記側辺まで伸ばした、前記第1の角部から前記側辺までの第4の線分に前記第1の外周加工経路を割り付ける
     請求項1~4のいずれか1項に記載のレーザ加工経路割付方法。
  6.  スキッドによって支持されたワークより、外周端部にノッチを有する製品をレーザ加工によって切り出すに際し、前記ワークに、前記ノッチを形成するためのノッチ形成加工経路における一部の加工経路として、前記外周端部における前記ノッチの部分の線分を除く前記製品の内側へと切り込むための前記製品の外側に向かって開いている開経路に沿ってレーザビームを照射して、前記ワークにおける前記開経路を切断し、
     前記ワークにおける前記開経路を切断する前または後に、前記ワークに、前記ノッチ形成加工経路における残りの一部の加工経路である前記外周端部における前記ノッチの部分の前記線分を切断するための第1の外周加工経路と、前記外周端部における前記ノッチの部分以外の線分の少なくとも一部を切断するための第2の外周加工経路とを連結した外周経路に沿ってレーザビームを照射して、前記ワークにおける前記外周経路を切断する
     レーザ加工方法。
  7.  前記製品は前記外周端部に1またはそれ以上のノッチを有し、
     前記ワークに、各ノッチに対応して割り付けられた前記開経路に沿ってレーザビームを照射して、前記ワークにおける前記開経路のみを単独で切断し、
     前記ワークにおける前記開経路を切断した後に、前記ワークに、前記第1の外周加工経路と、前記第2の外周加工経路として前記外周端部における前記ノッチの部分以外の全ての線分を切断するための加工経路とを連結した外周経路に沿ってレーザビームを照射して、前記ワークより前記製品を切り出す
     請求項6に記載のレーザ加工方法。
  8.  前記製品は前記外周端部に1つのノッチを有し、
     前記ワークに、前記開経路に沿ってレーザビームを照射して、前記ワークにおける前記開経路を切断し、
     前記開経路の切断に連続させて、前記ワークに、前記第2の外周加工経路として前記外周端部における前記ノッチの部分以外の全ての線分と、前記第1の外周加工経路とをこの順で連結した外周経路に沿ってレーザビームを照射して、前記ワークより前記製品を切り出す
     請求項6に記載のレーザ加工方法。
  9.  前記製品は前記外周端部に少なくとも2つのノッチを有し、前記少なくとも2つのノッチにおける互いに隣り合う2つのノッチを第1及び第2のノッチとしたとき、
     前記ワークに、前記第1のノッチに対応して割り付けられた前記開経路としての第1の開経路に沿ってレーザビームを照射して、前記ワークにおける前記第1の開経路を切断し、
     前記第1の開経路の切断に連続させて、前記ワークに、前記第2の外周加工経路として、前記外周端部の一部である前記第1のノッチと前記第2のノッチとの間の線分を切断するための外周加工経路に沿ってレーザビームを照射して、前記ワークにおける前記第2の外周加工経路を切断し、
     前記第2の外周加工経路の切断に連続させて、前記ワークに、前記第2のノッチの前記ノッチ形成加工経路における前記第1の外周加工経路に沿ってレーザビームを照射して、前記ワークにおける前記第2のノッチの前記第1の外周加工経路を切断する
     請求項6に記載のレーザ加工方法。
  10.  中央処理装置と、
     ワークを示す形状に外周端部にノッチを有する製品の形状を配置した板取データに、前記ワークから前記製品をレーザ加工によって切り出すレーザ加工経路を割り付けるレーザ加工経路割付プログラムを記憶する記憶部と、
     を備え、
     前記中央処理装置は、前記レーザ加工経路割付プログラムを実行することによって、
     前記レーザ加工経路のうち、前記板取データの前記ノッチの部分に、前記ノッチを形成するためのノッチ形成加工経路における一部の加工経路として、前記外周端部における前記ノッチの部分の線分を除く前記製品の内側へと切り込むための前記製品の外側に向かって開いている開経路を割り付け、
     前記板取データに、前記レーザ加工経路のうち、前記ノッチ形成加工経路における残りの一部の加工経路である前記外周端部における前記ノッチの部分の前記線分を切断するための第1の外周加工経路と、前記外周端部における前記ノッチの部分以外の線分の少なくとも一部を切断するための第2の外周加工経路とを連結した外周経路を割り付ける
     レーザ加工経路割付装置。
PCT/JP2023/011818 2022-03-25 2023-03-24 レーザ加工経路割付方法、レーザ加工方法、及びレーザ加工経路割付装置 WO2023182496A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-050396 2022-03-25
JP2022050396 2022-03-25
JP2023-043307 2023-03-17
JP2023043307A JP7312925B1 (ja) 2022-03-25 2023-03-17 レーザ加工経路割付方法、レーザ加工方法、及びレーザ加工経路割付装置

Publications (1)

Publication Number Publication Date
WO2023182496A1 true WO2023182496A1 (ja) 2023-09-28

Family

ID=87201120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011818 WO2023182496A1 (ja) 2022-03-25 2023-03-24 レーザ加工経路割付方法、レーザ加工方法、及びレーザ加工経路割付装置

Country Status (2)

Country Link
JP (1) JP7312925B1 (ja)
WO (1) WO2023182496A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05104270A (ja) * 1991-10-18 1993-04-27 Mitsubishi Electric Corp レーザ加工方法及びその装置
JP2013176807A (ja) * 2013-05-02 2013-09-09 Mitsubishi Electric Corp レーザ加工装置、レーザ加工方法、板金部材
JP2015085330A (ja) * 2013-10-28 2015-05-07 株式会社アマダ 板材加工方法及び加工プログラム作成装置
JP2021157425A (ja) * 2020-03-26 2021-10-07 株式会社アマダ 加工機及び自動プログラミング装置並びに加工機の制御方法
JP2021154337A (ja) * 2020-03-26 2021-10-07 株式会社アマダ レーザ加工機及びレーザ加工機の制御方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5104270B2 (ja) 2007-12-10 2012-12-19 パナソニック株式会社 掃除機用吸込具および電気掃除機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05104270A (ja) * 1991-10-18 1993-04-27 Mitsubishi Electric Corp レーザ加工方法及びその装置
JP2013176807A (ja) * 2013-05-02 2013-09-09 Mitsubishi Electric Corp レーザ加工装置、レーザ加工方法、板金部材
JP2015085330A (ja) * 2013-10-28 2015-05-07 株式会社アマダ 板材加工方法及び加工プログラム作成装置
JP2021157425A (ja) * 2020-03-26 2021-10-07 株式会社アマダ 加工機及び自動プログラミング装置並びに加工機の制御方法
JP2021154337A (ja) * 2020-03-26 2021-10-07 株式会社アマダ レーザ加工機及びレーザ加工機の制御方法

Also Published As

Publication number Publication date
JP7312925B1 (ja) 2023-07-21
JP2023143817A (ja) 2023-10-06

Similar Documents

Publication Publication Date Title
JP6935772B2 (ja) 情報処理装置、作業計画編集支援プログラム及び作業計画編集支援方法
WO2023182496A1 (ja) レーザ加工経路割付方法、レーザ加工方法、及びレーザ加工経路割付装置
JP3679110B2 (ja) 板金加工用cad/camシステム,プログラム及びプログラムを記録した記録媒体
WO2019188694A1 (ja) レーザ加工機、レーザ加工方法、及び加工プログラム作成装置
JP6148921B2 (ja) レーザ加工機の自動プログラミング装置
JPH0938898A (ja) 板材切断加工機
JP7398534B1 (ja) 割付データ作成装置、割付データ作成方法、及びレーザ切断加工方法
CN113656954A (zh) 一种切割图谱生成方法和装置
WO2020170856A1 (ja) レーザ加工機、レーザ加工方法、及び加工プログラム作成装置
JP7324631B2 (ja) 加工プログラム作成方法及び加工プログラム作成装置
JP7165489B2 (ja) シート上にパーツを編集配置する加工プログラムの作成装置及び方法
EP4252956A1 (en) Laser machining method, laser machining device, and machining program creation device
WO2022239702A1 (ja) 加工データ作成装置、及びレーザ切断加工方法
JP7329401B2 (ja) レーザ加工位置決定方法、レーザ加工位置決定プログラム及びレーザ加工プログラム作成装置
JP5891206B2 (ja) レーザ加工機の自動プログラミング装置及び自動プログラミング方法
JP4427927B2 (ja) 自動板取り装置及び自動板取り方法
EP3858536B1 (en) Laser machining method and laser machining device
JPH0561515A (ja) パンチプレス機の自動プログラミング方法
JP3413309B2 (ja) 金型分割装置
JP5272493B2 (ja) 転置機能付きネスティング装置
JP2023005825A (ja) 板取り装置及び板取り方法
JPH09234577A (ja) 切断加工における製品部分の判定方法
JP2504823B2 (ja) シャ―リングにおける板取り方法
JP2002001460A (ja) プレス金型設計用cad/camシステム
JP2001154714A (ja) 自動板取り方法およびその装置、並びに自動板取りを実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23775089

Country of ref document: EP

Kind code of ref document: A1