WO2023182358A1 - 熱硬化性樹脂組成物、表示装置用シール剤、および表示装置 - Google Patents

熱硬化性樹脂組成物、表示装置用シール剤、および表示装置 Download PDF

Info

Publication number
WO2023182358A1
WO2023182358A1 PCT/JP2023/011241 JP2023011241W WO2023182358A1 WO 2023182358 A1 WO2023182358 A1 WO 2023182358A1 JP 2023011241 W JP2023011241 W JP 2023011241W WO 2023182358 A1 WO2023182358 A1 WO 2023182358A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
resin composition
thermosetting resin
display device
sealant
Prior art date
Application number
PCT/JP2023/011241
Other languages
English (en)
French (fr)
Inventor
大輔 河野
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2023182358A1 publication Critical patent/WO2023182358A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/161Gaskets; Spacers; Sealing of cells; Filling or closing of cells

Definitions

  • the present invention relates to a thermosetting resin composition, a sealant for a display device, and a display device.
  • liquid crystal display devices organic EL display devices, electrophoretic display devices, and the like have been put into practical use as display devices for various electronic devices.
  • a liquid crystal display device consists of two transparent substrates with electrodes on their surfaces, a frame-shaped sealant sandwiched between them, and an area enclosed by the sealant. It has a liquid crystal material.
  • a sealant for sealing liquid crystal in this manner for example, Patent Document 1 discloses a thermosetting resin composition (liquid crystal sealant) containing an epoxy resin and an epoxy resin curing agent.
  • an electrophoretic display device a display device having a microcup structure has been proposed, for example, as in Patent Document 2.
  • the display element is placed between a pair of substrates and sealed by applying a sealant.
  • Patent Document 3 describes that a sealant containing an epoxy resin or the like can be used.
  • sealants used in various display devices are known.
  • the cured product of the thermosetting resin composition contained in the sealant is required to have high flexibility in order to relieve stress when external stress is applied to the display device. If the flexibility of the cured product is low, for example, when a display device is attached to a tablet terminal or the like, the sealant will not be able to relieve the stress applied to the display device, and there will be a problem that the sealant will peel off from the substrate.
  • the sealants containing the thermosetting resin compositions described in Patent Documents 1 and 3 do not increase the flexibility of the cured product, and when stress is applied to the display device, However, peeling of the sealant could not be suppressed.
  • the present invention has been made in view of the above circumstances, and provides a thermosetting resin composition, a sealant for a display device, and a thermosetting resin composition capable of suppressing peeling of a sealant from a substrate when stress is applied to a display device. and a display device.
  • the present invention relates to the following thermosetting resin composition, sealant for a display device, and display device.
  • thermosetting resin composition of the present invention comprises a compound (A) having a total of two or more functional groups of at least one of a glycidyl group and an oxetanyl group and having a structure represented by general formula (1); It contains a curing agent (B) and has a viscosity of 20.0 Pa ⁇ s or less when measured with an E-type viscometer at 25° C. and 2.5 rpm.
  • a represents an integer from 0 to 8
  • b represents an integer from 0 to 3
  • c represents an integer from 0 to 8
  • d represents an integer from 0 to 8, respectively.
  • At least one of and c is 1 or more
  • n is an integer of 1 or more
  • * represents a bonding position.
  • the sealant for a display device of the present invention contains the above thermosetting resin composition.
  • the display device of the present invention includes a protective member, a base material having an image display section, and the display device sealant disposed between the protective member and the base material.
  • thermosetting resin composition that can suppress peeling of a sealant from a substrate when stress is applied to a display device, a sealant containing the same, and a display device.
  • FIG. 1 is a schematic diagram showing the configuration of a display device according to an embodiment of the present invention.
  • thermosetting resin composition of the present invention is a compound having a total of two or more functional groups of at least one of a glycidyl group and an oxetanyl group, and having a structure represented by general formula (1).
  • a represents an integer from 0 to 8
  • b represents an integer from 0 to 3
  • c represents an integer from 0 to 8
  • d represents an integer from 0 to 8, respectively.
  • At least one of and c is 1 or more
  • n is an integer of 1 or more
  • * represents a bonding position.
  • thermosetting resin compositions do not increase the flexibility of the cured product, and there is a problem that the sealant may peel off from the substrate when stress is applied to the display device. Ta.
  • the present inventors found that a compound having a total of two or more functional groups of at least one of a glycidyl group and an oxetanyl group, and a structure represented by the above general formula (1). It has been found that the above-mentioned peeling can be made less likely to occur by including the compound (A) in the thermosetting resin composition. The reason for this is not clear, but it is thought to be as follows.
  • the structure represented by the above general formula (1) is considered to be a flexible structure that can enhance molecular mobility. Therefore, it is considered that the flexibility of the cured product was increased by including the compound (A) having this structure in the thermosetting resin composition. Further, a cured product of the thermosetting resin composition can be obtained by crosslinking the compound contained in the composition in the presence of a thermosetting agent. At this time, since the compound has a skeleton represented by the above general formula (1), the distance between the crosslinking points between the compounds can be increased, and therefore the crosslinking density is considered to be lowered. It is thought that this also increases the flexibility of the cured product.
  • the stress can be dispersed throughout the cured product and alleviated, thereby preventing the sealant from peeling off. It is thought that this can be suppressed.
  • Compound (A) in the present invention has a total of two or more functional groups of at least one of a glycidyl group and an oxetanyl group, and has a structure represented by the above general formula (1).
  • Compound (A) may be a compound having two or more functional groups of at least one of a glycidyl group and an oxetanyl group, but preferably has two or more glycidyl groups.
  • compound (A) is preferably a polyfunctional epoxy compound.
  • the number of glycidyl groups and oxetanyl groups that compound (A) has in one molecule may be at least two in total, but from the viewpoint of suppressing the decrease in flexibility of the cured product due to improvement in crosslink density, Preferably, the number is two.
  • a represents an integer from 0 to 8
  • b represents an integer from 0 to 3
  • c represents an integer from 0 to 8
  • d represents an integer from 0 to 8, respectively.
  • At least one of b and d is 1 or more
  • n is an integer of 1 or more.
  • the value of a+b+c+d in the above general formula (1) is preferably 1 or more and 10 or less, more preferably 2 or more and 5 or less. The greater the number of carbon atoms in the structure represented by the general formula (1), the more the crosslinking points and the flexibility of the cured product can be increased.
  • the compound (A) is a bifunctional epoxy compound that satisfies these conditions.
  • n is an integer of 1 or more, preferably 1 or more and 10 or less, more preferably 3 or more and 7 or less, and even more preferably 3 or more and 5 or less.
  • n is 10 or less, the molecular weight of the compound (A) can be appropriately adjusted, and the viscosity of the thermosetting resin composition can be more easily adjusted within the above range.
  • n is 5 or less, the moisture resistance of the cured product can be easily maintained.
  • Compound (A) may have only one structure represented by general formula (1) in its skeleton, or may have multiple general formulas in which the values of a, b, c, d, and n are the same or different.
  • the structure represented by (1) may be included in the skeleton. Further, a plurality of structures represented by general formula (1) having different values of a, b, c, and d may be consecutive.
  • the numbers of a, b, c, d and n in each structure may be the same or different. Good too.
  • compound (A) may further have a structure other than the structure represented by general formula (1).
  • the other structures include a structure represented by the following general formula (2), a structure represented by the general formula (3), and the like.
  • the structure represented by the following general formula (2) is preferred from the viewpoint of further improving the moisture resistance of the cured product.
  • R 1 represents a single bond, an alkylene group having 1 to 4 carbon atoms, an alkylidene group having 2 to 4 carbon atoms, a sulfonyl group, an oxygen atom, and sulfur.
  • R 2 is a hydrogen atom or an alkylene group having 1 or more and 4 or less carbon atoms, m is an integer of 1 or more and 4 or less, and * represents a bonding position.
  • thermosetting resin composition contains a compound having a structure represented by general formula (2)
  • moisture resistance can be improved; It was not possible to increase the flexibility of the cured product, and it was not possible to suppress peeling of the sealant when stress was applied to the display device.
  • the compound (A) contained in the thermosetting resin composition of the present invention contains the structure represented by general formula (2) in order to improve moisture resistance, Because of this structure, the flexibility of the cured product can be increased and peeling of the sealant can be suppressed when stress is applied to the display device.
  • R 1 is preferably an alkylene group having 1 to 4 carbon atoms, an alkylidene group having 2 to 4 carbon atoms, and an alkylidene group having 2 to 4 carbon atoms. It is more preferable.
  • alkylene groups having 1 to 4 carbon atoms examples include methylene groups, ethylene groups, propylene groups, butylene groups, isobutylene groups, and the like.
  • alkylidene groups having 2 or more and 4 or less carbon atoms examples include methylidene groups, ethylidene groups, propylidene groups, isopropylidene groups, butylidene groups, isobutylidene groups, and the like. Among these, isopropylidene group is preferred.
  • R 2 is a hydrogen atom or an alkylene group having 1 or more and 4 or less carbon atoms, and m is an integer of 1 or more and 4 or less.
  • a plurality of R 2 may be the same or different, but it is preferable that all of them are hydrogen atoms. Moreover, it is preferable that m is 1.
  • R 2 is an alkylene group having 1 or more and 4 or less carbon atoms
  • the number of carbon atoms is preferably 2 or more and 4 or less.
  • Compound (A) may have only one structure represented by general formula (2), or may have multiple structures represented by general formula (2) in which R 1 and R 2 are the same or different. may have. When compound (A) has the structure represented by general formula (2) at multiple positions, R 1 and R 2 in each structure may be the same or different.
  • general formula (2) when R 1 is a single bond, general formula (2) becomes a biphenyl structure.
  • a compound having two or more functional groups of at least one of a glycidyl group and an oxetanyl group, and having a structure represented by general formula (1) and a biphenyl structure is defined as a compound. (A).
  • R 1 , R 2 , and m in general formula (3) can be the same as those in general formula (2), so detailed explanations will be omitted.
  • Compound (A) may be solid at room temperature, but is preferably liquid from the viewpoint of making it easier to adjust the viscosity of the thermosetting resin composition within the above range.
  • the epoxy equivalent of compound (A) is preferably 300 g/eq or more, more preferably 350 g/eq or more, and 350 g/eq or more and 750 g/eq or less. It is more preferable that the amount is 350 g/eq or more and 500 g/eq or less.
  • the epoxy equivalent is 300 g/eq or more, the flexibility of the cured product can be further improved.
  • the epoxy equivalent is 750 g/eq or less, moisture resistance can be more easily maintained.
  • the epoxy equivalent can be measured by a method based on JIS K7236:2009.
  • Compound (A) preferably has a glass transition temperature (Tg) of a cured product obtained by the following method of 100°C or lower, more preferably 80°C or lower, and even more preferably 70°C or lower. .
  • Tg glass transition temperature
  • the lower limit of the glass transition temperature is not particularly limited, but is, for example, 0° C. or higher.
  • the cured product of the compound (A) is prepared by mixing 100 parts by mass of the compound (A), methylhexahydrophthalic anhydride in a chemical equivalent amount to 100 parts by mass of the compound (A), and 1 part by mass of dimethylbenzylamine, It is obtained by heating at 110°C for 3 hours and then at 165°C for 2 hours.
  • the glass transition temperature can be measured using, for example, a dynamic mechanical analysis (DMA) device (DMS7100, manufactured by Hitachi High-Tech Science Co., Ltd.).
  • DMA dynamic mechanical analysis
  • thermosetting resin composition may contain only one type of compound (A), or may contain two or more types of compound (A).
  • the content of compound (A) is preferably 1.5% by mass or more and 20% by mass or less, and 2.5% by mass or more and 15% by mass or less, based on the total mass of the thermosetting resin composition. It is more preferable.
  • the content is 1.5% by mass or more, the flexibility of the thermosetting resin composition can be further improved. Thereby, even if stress is applied to the display device, peeling of the sealant from the substrate can be further suppressed.
  • the content is 20% by mass or less, the viscosity of the thermosetting resin composition can be easily adjusted within the above range.
  • thermosetting resin composition of the present invention may further include a compound (a) having a functional group of at least one of a glycidyl group and an oxetanyl group and a biphenyl structure.
  • the thermosetting resin composition contains the compound (a)
  • the moisture resistance of the thermosetting resin composition can be further improved due to the biphenyl structure of the compound (a).
  • the viscosity of the thermosetting resin composition can be further lowered, making it easier to adjust the viscosity to the above range.
  • thermosetting resin composition when the compound (a) having a biphenyl structure is included in the thermosetting resin composition, the moisture resistance can be increased, while the flexibility of the cured product can be improved. Therefore, peeling of the sealant could not be suppressed when stress was applied to the display device.
  • the compound (A) contained in the thermosetting resin composition of the present invention contains the compound (a) having a biphenyl structure in order to improve moisture resistance, the compound (A) represented by the above general formula (1) Because of the structure, the flexibility of the cured product can be increased and peeling of the sealant can be suppressed when stress is applied to the display device.
  • compound (A ) a compound having at least one functional group of a glycidyl group and an oxetanyl group and a biphenyl structure, and further having a structure represented by general formula (1) is referred to as compound (A ). That is, compound (a) does not include a compound having the structure represented by general formula (1).
  • the compound (a) may be a compound having a biphenyl structure and at least one of a glycidyl group and an oxetanyl functional group, but preferably has a glycidyl group among the above functional groups.
  • compound (a) is preferably an epoxy compound having a biphenyl structure.
  • the number of glycidyl groups and oxetanyl groups that compound (a) has in one molecule is preferably one.
  • Compound (a) may be solid at room temperature, but is preferably liquid from the viewpoint of making it easier to adjust the viscosity of the thermosetting resin composition within the above range.
  • compound (a) is an epoxy compound
  • the epoxy equivalent of compound (a) is preferably 226 g/eq or more and 260 g/eq or less.
  • the epoxy equivalent is 226 g/eq or more, the flexibility of the cured product can be further improved.
  • the epoxy equivalent is 260 g/eq or less, deterioration in moisture resistance can be further suppressed.
  • the epoxy equivalent can be measured by the same method as described for compound (A).
  • compound (a) examples include o-phenylphenol glycidyl ether, m-phenylphenol glycidyl ether, p-phenylphenol glycidyl ether, and derivatives thereof.
  • the thermosetting resin composition of the present application may contain only one type of compound (a), or may contain two or more types of compound (a).
  • Examples of commercial products of compound (a) include OPP-EP (manufactured by Yokkaichi Gosei Co., Ltd.).
  • the content of compound (a) is preferably 10% by mass or more and 30% by mass or less, more preferably 15% by mass or more and 25% by mass or less, based on the total mass of the thermosetting resin composition. .
  • the content is 10% by mass or more, the moisture resistance of the thermosetting resin composition can be further improved. Further, when the content is 30% by mass or less, the flexibility of the cured product can be better maintained.
  • the compound (a) may partially contain a functional group other than the glycidyl group and the oxetanyl group, and a structure other than the biphenyl structure.
  • thermosetting resin composition of the present invention may contain other curable compounds that do not correspond to compound (A) and compound (a).
  • examples of other curable compounds include polyfunctional epoxy compounds that do not have a structure represented by general formula (1) or a biphenyl structure.
  • the total content of other curable compounds is preferably 30% by mass or more and 40% by mass or less based on the total mass of the thermosetting resin composition.
  • thermosetting resin composition of the present invention contains a thermosetting agent (B).
  • the thermosetting agent (B) may be one that can be cured by reacting with a compound contained in the thermosetting resin composition such as the compound (A), such as a dihydrazide-based thermosetting agent, an amine adduct-based thermosetting agent, etc.
  • a thermosetting agent, a polyamine thermosetting agent, and the like can be used.
  • polyamine thermosetting agents are preferred from the viewpoint of increasing the viscosity stability of the thermosetting resin composition.
  • thermosetting agent (B) is preferably a latent thermosetting agent.
  • a latent thermosetting agent is a curing agent that does not harden compounds such as compound (A) under normal storage conditions (room temperature), but hardens these compounds when heat is applied.
  • latent thermosetting agents examples include dihydrazide-based latent thermosetting agents, amine adduct-based latent thermosetting agents, and polyamine-based latent thermosetting agents.
  • polyamine-based latent thermosetting agents are preferred from the viewpoint of increasing the viscosity stability of the thermosetting resin composition.
  • dihydrazide-based latent thermosetting agents examples include adipic acid dihydrazide (melting point 181°C), 1,3-bis(hydrazinocarboethyl)-5-isopropylhydantoin (melting point 120°C), and 7,11-octadecadiene.
  • adipic acid dihydrazide melting point 181°C
  • 1,3-bis(hydrazinocarboethyl)-5-isopropylhydantoin melting point 120°C
  • 7,11-octadecadiene examples include adipic acid dihydrazide (melting point 181°C), 1,3-bis(hydrazinocarboethyl)-5-isopropylhydantoin (melting point 120°C), and 7,11-octadecadiene.
  • -1,18-dicarbohydrazide melting point: 160°C
  • the amine adduct-based latent thermosetting agent is a latent thermosetting agent consisting of an addition compound obtained by reacting an amine-based compound with catalytic activity with an arbitrary compound.
  • amine adduct-based thermal latent curing agents include Amicure PN-40 (melting point 110°C), Amicure PN-50 (melting point 120°C), Amicure PN-23 (melting point 100°C), and Amicure PN-31 (melting point 115°C).
  • Amicure PN-H melting point 115°C
  • Amicure MY-24 melting point 120°C
  • Amicure MY-H melting point 131°C
  • polyamine-based latent thermosetting agents examples include ADEKA HARDNER EH5015S (melting point 85°C or higher and 105°C), ADEKA HARDNER EH4357S (melting point 75°C or higher and 85°C), and EH5030S (melting point 70°C or higher and 80°C) (all manufactured by Co., Ltd. (manufactured by ADEKA), etc.
  • the melting point of the thermosetting agent is preferably 60°C or more and 190°C or less, more preferably 60°C or more and 110°C or less, and even more preferably 65°C or more and 100°C or less.
  • the melting point is 60° C. or higher, it is possible to prevent the thermosetting agent (B) from reacting with the compound (A) and the like and curing it at room temperature. Further, when the melting point is 110° C. or less, compound (A) etc. can be cured without excessive heating.
  • the content of the thermosetting agent (B) is preferably 25% by mass or more and 40% by mass or less, and preferably 30% by mass or more and 35% by mass or less, based on the total mass of the thermosetting resin composition. More preferred.
  • the content is 25% by mass or more, the curability of the cured product can be further improved. Thereby, for example, the cured product of the sealant containing the thermosetting resin composition can sufficiently seal the display device.
  • the viscosity of the thermosetting resin composition can be easily adjusted to the above range.
  • thermosetting resin composition of the present invention may also contain an inorganic filler (C).
  • the thermosetting resin composition contains the inorganic filler (C)
  • the moisture resistance of the cured product is more likely to increase.
  • inorganic fillers (C) include calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, zirconium silicate, iron oxide, titanium oxide, aluminum oxide (alumina), zinc oxide, silicon dioxide, potassium titanate. , kaolin, talc, glass beads, sericite activated clay, bentonite, aluminum nitride, silicon nitride, etc.
  • the thermosetting resin composition may contain only one type of inorganic filler (C), or may contain two or more types.
  • the shape of the inorganic filler (C) may be a regular shape, such as a spherical shape, a plate shape, or a needle shape, or may be an amorphous shape.
  • the average primary particle size of the inorganic filler (C) is preferably 0.1 ⁇ m or more and 20 ⁇ m or less, more preferably 0.1 ⁇ m or more and 10 ⁇ m or less, More preferably, the thickness is 0.5 ⁇ m or more and 5.0 ⁇ m or less.
  • the average primary particle size of the inorganic filler (C) can be measured by a laser diffraction method in accordance with JIS Z8825-1:2013.
  • the mass average particle diameter d50 of the inorganic filler (C) is preferably 0.05 ⁇ m or more and 5.0 ⁇ m or less, more preferably less than 25.0 ⁇ m. When the mass average particle diameter d50 is within the above range, the viscosity stability of the thermosetting resin composition will be high.
  • the mass average particle diameter d50 of the filler is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, even more preferably 0.2 ⁇ m or more, and more than 1.0 ⁇ m. It may be.
  • the mass average particle diameter d 50 of the filler is determined by a laser diffraction method in accordance with JIS Z8825-1:2013. Specifically, the particle size indicated by the 50% by mass value on the mass addition curve obtained in the above measurement can be taken as the mass average particle diameter d50 .
  • the content of the inorganic filler (C) is preferably 0% by mass or more and 10% by mass or less, and preferably 0% by mass or more and 5% by mass or less, based on the total mass of the thermosetting resin composition. More preferred. Moreover, when the content is 10% by mass or less, the viscosity of the thermosetting resin composition can be prevented from increasing excessively, and the viscosity can be easily adjusted.
  • thermosetting resin composition of the present invention may contain additives such as a silane coupling agent, a rubber agent, an ion trapping agent, an ion exchanger leveling agent, a pigment, a dye, a plasticizer, and an antifoaming agent.
  • additives such as a silane coupling agent, a rubber agent, an ion trapping agent, an ion exchanger leveling agent, a pigment, a dye, a plasticizer, and an antifoaming agent.
  • the thermosetting resin composition may contain only one kind of additive, or may contain two or more kinds of additives.
  • silane coupling agent examples include vinyltrimethoxysilane, ⁇ -(meth)acryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, and ⁇ -glycidoxypropyltriethoxysilane. It will be done.
  • the content of the silane coupling agent is preferably 0.01% by mass or more and 5.0% by mass or less based on the total mass of the thermosetting resin composition.
  • the silane coupling agent is within the above range, the adhesive strength between the cured product and the substrate can be further increased.
  • thermosetting resin composition is not particularly limited, and can be prepared by mixing each component by a known method.
  • the method of mixing each component is not particularly limited, and for example, a double-arm stirrer, a roll kneader, a twin-screw extruder, a ball mill kneader, a planetary stirrer, etc. can be used.
  • a thermosetting resin composition may be obtained by filtering through a filter to remove impurities, or may be obtained by further performing a vacuum defoaming treatment.
  • thermosetting resin composition of the present invention has a viscosity of 20.0 Pa ⁇ s or less as measured by an E-type viscometer at 25°C and 2.5 rpm, and 10.0 Pa ⁇ s. It is preferably at most 5.0 Pa ⁇ s, more preferably at most 5.0 Pa ⁇ s. If the viscosity is 20.0 Pa ⁇ s or less, when producing various display devices using a sealant containing a thermosetting resin composition, it will enter minute gaps and seal the display device more reliably. can do.
  • the lower limit of the viscosity is not particularly limited, but is preferably 0.5 Pa ⁇ s or more.
  • the viscosity of the thermosetting resin composition can be controlled within the above range by adjusting the composition of the thermosetting resin composition.
  • sealant for display devices of the present invention contains the above-mentioned thermosetting resin composition.
  • the sealant may be the above-mentioned thermosetting resin composition as it is, or may be a mixture of the above-mentioned thermosetting resin composition and additives.
  • the sealant of the present invention can be used in various display devices.
  • the cured product of the sealant is used to seal the display element in a display device having a pair of substrates and a display element disposed between the pair of substrates.
  • it is preferably used for sealing display elements in various display devices having liquid crystal elements, EL elements, LED elements, electrophoretic display elements, electrochromic display elements, etc. .
  • the sealing agent Since the sealing agent has a viscosity within the above-mentioned range, it easily enters the gap between the substrates that sandwich the display element, and can seal more reliably.
  • a display device having an electrophoretic display element or an electrochromic display element it is preferable that the sealant enters into minute gaps. can be used more suitably for display devices. Examples of electrophoretic display devices and electrochromic display devices include displays, electronic paper, and the like that utilize these methods.
  • the sealant can be applied to the substrate and cured to seal the display element.
  • the method for applying the sealant is not particularly limited, and for example, known methods such as a dispenser or screen printing can be used.
  • a sealant may be filled between a pair of substrates that sandwich a display element and then cured. Examples of the method for filling the space between the substrates with the sealant include filling with a dispenser.
  • thermosetting temperature is preferably 60° C. or higher and 80° C. or lower from the viewpoint of suppressing deterioration of the display device.
  • the heat curing time can be appropriately adjusted depending on the heat curing temperature and the amount of sealant, and is, for example, 30 minutes or more and 90 minutes or less.
  • the display device of the present invention comprises a pair of substrates, a cured product of the sealant for display devices, which is disposed between the pair of substrates, and a cured product of the sealant between the pair of substrates.
  • a display element arranged in an enclosed space.
  • substrates examples include inorganic substrates, resin substrates, etc.
  • inorganic substrates include glass substrates and the like.
  • resin substrates include substrates made of resins such as polyethylene terephthalate, polymethyl methacrylate, polycarbonate, cyclic polyolefin (COC), polypropylene, polystyrene, polyvinyl chloride, transparent ABS resin, transparent nylon, transparent polyimide, and polyvinyl alcohol. included.
  • examples of display elements include liquid crystal elements, EL elements, LED elements, electrophoretic display elements, electrochromic display elements, and the like.
  • a display device having an electrophoretic display element can have a configuration as shown in FIG. 1.
  • the display device 100 is surrounded by a pair of substrates 110, a cured product 120 of the display device sealant 1 disposed between the pair of substrates 110, and a cured product 120 of the sealant between the pair of substrates 110. and a display element 130 arranged in space.
  • the display element 130 has a display layer 130a and a transparent electrode 130b for driving the display layer 130a.
  • the display layer 130a can be configured to include chargeable particles such as pigments and a dispersion medium.
  • chargeable particles such as pigments
  • a dispersion medium such as an alcohol solvent.
  • the transparent electrode 130b applies a voltage to the display layer 130a to drive the display layer 130a.
  • a protective film may be provided on the surface of the transparent electrode 130b.
  • the display device of the present invention includes, for example, (1) a step of forming a laminate having a display element and a pair of substrates sandwiching the display element; and (2) a step of forming a laminate having a display element and a pair of substrates sandwiching the display element; and (3) the step of curing the sealant.
  • the method of filling the sealant is not particularly limited, but can be performed using a dispenser, for example. Further, as a method for curing the sealant, the method described for the sealant can be used.
  • thermosetting resin composition 1-1 Material of thermosetting resin composition 1-1.
  • the glass transition temperature of the above compound (A) after curing was measured by the following method.
  • Thermosetting agent (B) EH5030S polyamine thermosetting agent, manufactured by ADEKA Co., Ltd., melting point: 70 to 80°C, amine equivalent: 105 g/equivalent was used.
  • Inorganic filler (C) S-100 sica particles, manufactured by Nippon Shokubai Co., Ltd. was used.
  • Silane coupling agent KBM403 (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • thermosetting resin composition 50 parts by mass of compound (A), 215 parts by mass of compound (a) having a biphenyl structure, 320 parts by mass of polyfunctional epoxy compound (A'-1), 330 parts by mass of thermosetting agent (B), 30 parts by mass of silane coupling agent. Parts by mass were mixed using three rolls to obtain a thermosetting resin composition. In this example, this was used as a sealant.
  • thermosetting resin composition was prepared in the same manner as in Example 1, except that the composition was changed to those shown in Tables 1 and 2.
  • thermosetting resin composition and its cured product were evaluated as follows.
  • thermosetting resin composition The viscosity of the thermosetting resin composition was measured at 25° C. using an E-type viscometer at a rotation speed of 2.5 rpm.
  • thermosetting resin composition was dropped onto a screen plate having a mesh size of 1.5 mm in diameter. After that, a screen plate was installed in the center of a 25 mm x 45 mm glass substrate (RT-DM88-PIN, manufactured by EHC Co., Ltd.) on which a transparent electrode was formed in advance so that the mesh part overlapped with the above, and a squeegee was used to A thermosetting resin composition was applied from the mesh part.
  • RT-DM88-PIN 25 mm x 45 mm glass substrate
  • the glass substrate on which the thermosetting resin composition was formed and the glass substrate to be paired were bonded together from directly above the thermosetting resin composition so that the long sides of the substrates intersected perpendicularly. Then, the two bonded glass substrates were heated at 80° C. for 1 hour to cure the thermosetting resin composition, and a test piece was obtained.
  • thermosetting resin composition was indented at a speed of 37.5 mm/min using an indentation tester (Model 210, manufactured by Intesco Co., Ltd.).
  • the thermosetting resin composition was pressed perpendicularly to the glass substrate, and the stress when the thermosetting resin composition was peeled off from the glass substrate was measured.
  • the adhesive strength was determined by dividing the stress by the dot width drawn with the thermosetting resin composition.
  • the obtained adhesive strength was evaluated according to the following criteria. ⁇ Adhesive strength is 1.0 N/mm or more ⁇ Adhesive strength is 0.5 N/mm or more and less than 1.0 N/mm ⁇ Adhesive strength is less than 0.5 N/mm
  • thermosetting resin composition moisture resistance
  • a release film was placed on a glass plate, and after surrounding the four sides of the glass plate with 100 ⁇ m PET film pieces, the prepared thermosetting resin composition was applied. Thereafter, a release film and a glass plate were further placed on the applied thermosetting resin composition, and the four sides of the glass plate were fixed with clips.
  • the glass piece on which the coating film of the thermosetting resin composition was formed was held in a hot air drying oven at 80° C. for 60 minutes, then taken out and cooled. Thereafter, the glass pieces were disassembled and the coating film was peeled off from the release paper to obtain a film with a thickness of 100 ⁇ m.
  • Moisture permeability is less than 50 g/m 2 ⁇ Moisture permeability is 50 g/m 2 or more and less than 80 g/m 2 ⁇ Moisture permeability is 80 g/m 2 or more
  • thermosetting resin compositions As shown in Table 1 above, Examples 1 to 7 containing a compound (A) having a glycidyl group and having the structure of formula (1) and a polyamine-based latent thermosetting agent (B) All of the thermosetting resin compositions had excellent adhesive strength when stress was applied, and the sealant (thermosetting resin composition) was difficult to peel off from the substrate. This is considered to be because compound (A) having the structure represented by formula (1) was able to relieve stress. Furthermore, it was found that in Examples 1 to 7, the moisture resistance could be improved.
  • thermosetting resin compositions of Comparative Examples 1 to 4 that did not contain compound (A) had low adhesive strength when stress was applied.
  • thermosetting resin composition can be obtained that can suppress peeling from a substrate when stress is applied to a display device.
  • the present invention is very useful for application to various display devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Epoxy Resins (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明は、グリシジル基およびオキセタニル基の少なくとも一方の官能基をあわせて2つ以上有し、一般式(1)で表される骨格を有する化合物(A)と、熱硬化剤(B)とを含み、E型粘度系で25℃、2.5rpmで測定した粘度が20.0Pa・s以下である、熱硬化性樹脂組成物に関する。 (一般式(1)において、aは0以上8以下の整数、bは0以上3以下の整数、cは0以上8以下の整数、dは0以上8以下の整数を、それぞれ表し、a、bおよびcの少なくとも1つは、1以上であり、nは1以上の整数であり、*は結合位置を表す。)

Description

熱硬化性樹脂組成物、表示装置用シール剤、および表示装置
 本発明は、熱硬化性樹脂組成物、表示装置用シール剤、および表示装置に関する。
 近年、各種電子機器の表示装置として、液晶方式の表示装置、有機EL方式の表示装置、電気泳動方式の表示装置などが実用化されている。
 例えば、液晶方式の表示装置は、表面に電極が設けられた2枚の透明基板と、それらの間に挟持された枠状のシール剤と、当該シール剤で囲まれた領域内に封入された液晶材料とを有する。このように液晶を封止するためのシール剤として、例えば特許文献1には、エポキシ樹脂と、エポキシ樹脂硬化剤とを含む熱硬化性樹脂組成物(液晶シール剤)が開示されている。
 一方、電気泳動方式の表示装置として、例えば、特許文献2のように、マイクロカップ構造を有する表示装置が提案されている。上記電気泳動方式の表示装置では、表示素子は一対の基板の間に配置され、シール剤が塗布されることによって封止されている。
 このような電気泳動方式の表示装置に対して、例えば特許文献3では、エポキシ樹脂等を含むシール剤を用い得ることが記載されている。
特開2005-018022号公報 特開2004-536332号公報 特開2014-142549号公報
 このように、種々の表示装置に使用されるシール剤が知られている。シール剤に含まれる熱硬化性樹脂組成物の硬化物には、表示装置に外部からの応力が加わった際に、その応力を緩和させるための高い柔軟性が求められる。上記硬化物の柔軟性が低いと、例えば、タブレット端末等に表示装置を取り付ける際、シール剤は表示装置に加わる応力を緩和させることができず、基板から剥離してしまう問題がある。
 本発明者らの検討によると、特許文献1および特許文献3に記載された熱硬化性樹脂組成物を含むシール剤では、硬化物の柔軟性が高まらず、表示装置に応力が加わった際に、シール剤の剥離を抑制することができなかった。
 本発明は、上記事情に鑑みてなされたものであり、表示装置に応力が加わった際にシール剤の基板からの剥離を抑制することができる熱硬化性樹脂組成物、表示装置用シール剤、および表示装置を提供することを目的とする。
 本発明は、以下の熱硬化性樹脂組成物、表示装置用シール剤および表示装置に関する。
 本発明の熱硬化性樹脂組成物は、グリシジル基およびオキセタニル基の少なくとも一方の官能基をあわせて2つ以上有し、一般式(1)で表される構造を有する化合物(A)と、熱硬化剤(B)とを含み、E型粘度計で25℃、2.5rpmで測定した粘度が20.0Pa・s以下である。
Figure JPOXMLDOC01-appb-C000003
 一般式(1)において、aは0以上8以下の整数、bは0以上3以下の整数、cは0以上8以下の整数、dは0以上8以下の整数を、それぞれ表し、a、bおよびcの少なくとも1つは、1以上であり、nは1以上の整数であり、*は結合位置を表す。化合物(A)が一般式(1)で表される構造を複数有する場合、それぞれの構造におけるa、b、c、dおよびnの数は同一であってもよいし、異なっていてもよい。
 本発明の表示装置用シール剤は、上記熱硬化性樹脂組成物を含む。
 本発明の表示装置は、保護部材と、画像表示部を有する基材と、前記保護部材と、前記基材との間に配置された上記表示装置用シール剤と、を有する。
 本発明によれば、表示装置に応力が加わった際にシール剤の基板からの剥離を抑制することができる熱硬化性樹脂組成物、これを含むシール剤、および表示装置を提供することができる。
図1は、本発明の一実施形態に係る表示装置の構成を示す模式図である。
 以下、本発明の実施形態について詳細に説明する。なお、本発明は、以下の形態に限定されるものではない。
 1.熱硬化性樹脂組成物
 本発明の熱硬化性樹脂組成物は、グリシジル基およびオキセタニル基の少なくとも一方の官能基をあわせて2つ以上有し、一般式(1)で表される構造を有する化合物(A)と、熱硬化剤(B)とを含み、E型粘度計で25℃、2.5rpmで測定した粘度が20.0Pa・s以下である。
Figure JPOXMLDOC01-appb-C000004
 一般式(1)において、aは0以上8以下の整数、bは0以上3以下の整数、cは0以上8以下の整数、dは0以上8以下の整数を、それぞれ表し、a、bおよびcの少なくとも1つは、1以上であり、nは1以上の整数であり、*は結合位置を表す。
 上述のように、従来の熱硬化性樹脂組成物を含むシール剤では、硬化物の柔軟性が高まらず、表示装置に応力が加わった際に、シール剤が基板から剥離してしまう問題があった。
 これに対して、本発明者らは、鋭意検討の結果、グリシジル基およびオキセタニル基の少なくとも一方の官能基をあわせて2つ以上有する化合物であり、上記一般式(1)で表される構造を有する化合物(A)を熱硬化性樹脂組成物に含ませることで、上記剥離を生じにくくさせることができることを見出した。これについて、理由は定かではないが、以下のように考えられる。
 上記一般式(1)で表される構造は、分子運動性を高めることができる柔軟な構造であると考えられる。そのため、この構造を有する化合物(A)を熱硬化性樹脂組成物に含ませることで、硬化物の柔軟性が高まったと考えられる。また、熱硬化性樹脂組成物の硬化物は、熱硬化剤の存在下で、組成物に含まれる化合物を架橋することで得ることができる。このとき、化合物が上記一般式(1)で表される骨格を有することで、化合物どうしの架橋点距離を長くすることができるため、架橋密度が低くなると考えられる。これによっても、硬化物の柔軟性が高まると考えられる。そして、硬化物の柔軟性が高まることで、シール剤を剥離させるような応力が表示装置に加わっても、上記応力を硬化物全体に分散させて緩和することができるため、シール剤の剥離を抑制できると考えられる。
 1-1.化合物(A)
 本発明における化合物(A)は、グリシジル基およびオキセタニル基の少なくとも一方の官能基をあわせて2つ以上有し、上記一般式(1)で表される構造を有する。
 化合物(A)は、グリシジル基およびオキセタニル基の少なくとも一方の官能基をあわせて2つ以上有する化合物であればよいが、グリシジル基を2つ以上有することが好ましい。具体的には、化合物(A)は多官能エポキシ化合物であることが好ましい。
 化合物(A)が一分子中に有するグリシジル基およびオキセタニル基の数は、これらがあわせて2個以上であればよいが、架橋密度の向上による硬化物の柔軟性の低下を抑制する観点から、2個であることが好ましい。
 上記一般式(1)において、aは0以上8以下の整数、bは0以上3以下の整数、cは0以上8以下の整数、dは0以上8以下の整数を、それぞれ表し、a、bおよびdの少なくとも1つは、1以上であり、nは1以上の整数である。これらのうち、化合物(A)は、上記一般式(1)において、a+b+c+dの値が、1以上10以下であることが好ましく、2以上5以下であることがより好ましい。一般式(1)で表される構造の炭素数を多くするほど、架橋点、硬化物の柔軟性をより高めることができる。一方で、一般式(1)で表される構造の炭素数を少なくすることで、架橋点間距離が長くなることによる硬化物の耐湿性の低下が抑制でき、かつ、化合物(A)の分子量増大を抑えて組成物の粘度を適度な範囲に調整しやすくなる。より具体的には、(a=3、b=0、c=0、d=0)、(a=1、b=1、c=0、d=0)、または(a=0、b=1、c=0、d=1)を満たすことが好ましく、(a=3、b=0、c=0、d=0)を満たすことがより好ましい。また、化合物(A)は、これらの条件を満たす2官能エポキシ化合物であることが好ましい。
 上記一般式(1)において、nは1以上の整数であり、1以上10以下であることが好ましく、3以上7以下であることがより好ましく、3以上5以下であることがさらに好ましい。nが10以下であることで、化合物(A)の分子量を適度に調整して、熱硬化性樹脂組成物の粘度を上記範囲内により調整しやすくすることができる。また、nが5以下であることで、硬化物の耐湿性を維持しやすくすることができる。
 化合物(A)は、一般式(1)で表される構造を骨格内に1つだけ有していてもよいし、a、b、c、dおよびnの値が同一または異なる複数の一般式(1)で表される構造を骨格内に有していてもよい。また、a、b、c、dの値が異なる複数の一般式(1)で表される構造が連続していてもよい。化合物(A)が一般式(1)で表される構造を複数の位置に有する場合、それぞれの構造におけるa、b、c、dおよびnの数は同一であってもよいし、異なっていてもよい。
 また、化合物(A)は、一般式(1)で表される構造以外の他の構造をさらに有していてもよい。上記他の構造の例には、下記一般式(2)で表される構造、一般式(3)で表される構造、などが含まれる。これらのうち、硬化物の耐湿性をより高める観点から、下記一般式(2)で表される構造が好ましい。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 一般式(2)、一般式(3)において、Rは、単結合、炭素原子数1以上4以下のアルキレン基、炭素原子数2以上4以下のアルキリデン基、スルホニル基、酸素原子、および硫黄原子のいずれかであり、Rは、水素原子または炭素原子数1以上4以下のアルキレン基であり、mは1以上4以下の整数であり、*は結合位置を表す。
 本発明者らの知見によると、従来のシール剤において、熱硬化性樹脂組成物に一般式(2)で表される構造を有する化合物を含ませると、耐湿性を高めることができる一方で、硬化物の柔軟性を高めることができず、表示装置に応力が加わった際にシール剤の剥離を抑制することができなかった。一方、本発明の熱硬化性樹脂組成物に含まれる化合物(A)は、耐湿性を高めるため一般式(2)で表される構造を含ませても、上記一般式(1)で表される構造を有するため、硬化物の柔軟性を高めて、表示装置に応力が加わった際にシール剤の剥離を抑制することができる。
 一般式(2)において、Rは、炭素原子数1以上4以下のアルキレン基、炭素原子数2以上4以下のアルキリデン基であることが好ましく、炭素原子数2以上4以下のアルキリデン基であることがより好ましい。
 炭素原子数1以上4以下のアルキレン基の例には、メチレン基、エチレン基、プロピレン基、ブチレン基、イソブチレン基などが含まれる。
 炭素原子数2以上4以下のアルキリデン基の例には、メチリデン基、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基などが含まれる。これらのうちイソプロピリデン基が好ましい。
 一般式(2)において、Rは、水素原子または炭素原子数1以上4以下のアルキレン基であり、mは1以上4以下の整数である。複数のRは、同一であっても異なっていてもよいが、全て水素原子であることが好ましい。また、mは1であることが好ましい。
 Rが炭素原子数1以上4以下のアルキレン基であるとき、上記炭素原子数は2以上4以下であることが好ましい。
 化合物(A)は、一般式(2)で表される構造を1つだけ有していてもよいし、RおよびRが同一または異なる複数の一般式(2)で表される構造を有していてもよい。化合物(A)が一般式(2)で表される構造を複数の位置に有する場合、それぞれの構造におけるRおよびRは同一であってもよいし、異なっていてもよい。
 なお、一般式(2)において、Rが単結合のとき、一般式(2)はビフェニル構造となる。このとき、本明細書においては、グリシジル基およびオキセタニル基の少なくとも一方の官能基をあわせて2つ以上有し、一般式(1)で表される構造と、ビフェニル構造とを有する化合物は、化合物(A)とする。
 一般式(3)における、R、R、およびmについては、一般式(2)と同様とすることができるため、詳しい説明は省略する。
 化合物(A)は、常温で固体状であってもよいが、熱硬化性樹脂組成物の粘度を上記範囲に調整しやすくする観点から、液状であることが好ましい。
 化合物(A)がエポキシ化合物である場合、化合物(A)のエポキシ当量は、300g/eq以上であることが好ましく、350g/eq以上であることがより好ましく、350g/eq以上750g/eq以下であることがより好ましく、350g/eq以上500g/eq以下であることがさらに好ましい。エポキシ当量が300g/eq以上だと、硬化物の柔軟性をより高めることができる。また、エポキシ当量が750g/eq以下であることで、耐湿性をより維持しやすくすることができる。上記エポキシ当量は、JIS K7236:2009に準拠した方法で測定することができる。
 化合物(A)は、以下の方法により得られる硬化物のガラス転移温度(Tg)が100℃以下であることが好ましく、80℃以下であることがより好ましく、70℃以下であることがさらに好ましい。上記ガラス転移温度が100℃以下であると、硬化物の柔軟性をより高めることができる。上記ガラス転移温度の下限値は特に限定されないが、例えば、0℃以上である。
 上記化合物(A)の硬化物は、化合物(A)100質量部と、化合物(A)100質量部に対する化学当量分のメチルヘキサヒドロ無水フタル酸と、ジメチルベンジルアミン1質量部とを混合し、110℃で3時間加熱後、165℃で2時間加熱して得られる。
 上記ガラス転移温度は、例えば、動的粘弾性測定(DMA)装置(DMS7100、株式会社日立ハイテクサイエンス製)を用いて測定することができる。
 化合物(A)の市販品の例には、EP-4010S、EP-4010L(いずれも株式会社ADEKA製)などが含まれる。熱硬化性樹脂組成物は、化合物(A)を1種のみ含んでもよく、2種以上含んでもよい。
 化合物(A)の含有量は、熱硬化性樹脂組成物の全質量に対して、1.5質量%以上20質量%以下であることが好ましく、2.5質量%以上15質量%以下であることがより好ましい。上記含有量が1.5質量%以上であると、熱硬化性樹脂組成物の柔軟性をより向上させることができる。これにより、表示装置に応力が加わっても、シール剤が基板から剥離することをより抑制することができる。また、上記含有量が20質量%以下であると、熱硬化性樹脂組成物の粘度が上記範囲により調整されやすくなる。
 1-2.ビフェニル構造を有する化合物(a)
 本発明の熱硬化性樹脂組成物は、グリシジル基およびオキセタニル基の少なくとも一方の官能基と、ビフェニル構造とを有する化合物(a)をさらに含んでもよい。熱硬化性樹脂組成物が、化合物(a)を含むことで、化合物(a)のビフェニル構造により、熱硬化性樹脂組成物の耐湿性をより高めることができる。さらに、化合物(a)を含むことで、熱硬化性樹脂組成物の粘度をより低下させて、上記範囲に調整しやすくすることができる。
 本発明者らの知見によると、従来のシール剤において、熱硬化性樹脂組成物にビフェニル構造を有する化合物(a)を含ませると、耐湿性を高めることができる一方で、硬化物の柔軟性を高めることができず、表示装置に応力が加わった際にシール剤の剥離を抑制することができなかった。一方、本発明の熱硬化性樹脂組成物に含まれる化合物(A)は、耐湿性を高めるためにビフェニル構造を有する化合物(a)を含ませても、上記一般式(1)で表される構造を有するため、硬化物の柔軟性を高めて、表示装置に応力が加わった際にシール剤の剥離を抑制することができる。
 なお、上述のように、本明細書において、グリシジル基およびオキセタニル基の少なくとも一方の官能基と、ビフェニル構造を有し、さらに一般式(1)で表される構造を有する化合物は、化合物(A)である。すなわち、化合物(a)には、一般式(1)で表される構造を有する化合物は含まれない。
 化合物(a)は、グリシジル基およびオキセタニル基の少なくとも一方の官能基と、ビフェニル構造を有する化合物であればよいが、上記官能基のうちグリシジル基を有することが好ましい。具体的には、化合物(a)はビフェニル構造を有するエポキシ化合物であることが好ましい。
 化合物(a)が一分子中に有するグリシジル基およびオキセタニル基の数は、1であることが好ましい。
 化合物(a)は、常温で固体状であってもよいが、熱硬化性樹脂組成物の粘度を上記範囲に調整しやすくする観点から、液状であることが好ましい。
 化合物(a)がエポキシ化合物である場合、化合物(a)のエポキシ当量は、226g/eq以上260g/eq以下であることが好ましい。エポキシ当量が226g/eq以上だと、硬化物の柔軟性をより高めることができる。また、エポキシ当量が260g/eq以下であることで、耐湿性の低下をより抑制することができる。上記エポキシ当量は、化合物(A)で述べた方法と同様の方法で測定することができる。
 化合物(a)の具体例には、o-フェニルフェノールグリシジルエーテル、m-フェニルフェノールグリシジルエーテル、p-フェニルフェノールグリシジルエーテル、およびこれらの誘導体が含まれる。本願の熱硬化性樹脂組成物は、化合物(a)を1種のみ含んでもよく、2種以上含んでもよい。
 化合物(a)の市販品の例には、OPP-EP(四日市合成株式会社製)などが含まれる。
 化合物(a)の含有量は、熱硬化性樹脂組成物の全質量に対して、10質量%以上30質量%以下であることが好ましく、15質量%以上25質量%以下であることがより好ましい。上記含有量が10質量%以上であると、熱硬化性樹脂組成物の耐湿性をより向上させることができる。また、上記含有量が30質量%以下であると、硬化物の柔軟性をより維持することができる。
 なお、化合物(a)は、グリシジル基およびオキセタニル基以外の官能基、ならびに、ビフェニル構造以外の構造を一部に含んでいてもよい。
 1-3.その他の化合物
 本発明の熱硬化性樹脂組成物は、化合物(A)および化合物(a)に相当しない、その他の硬化性化合物を含んでもよい。その他の硬化性化合物の例には、一般式(1)で表される構造およびビフェニル構造を有さない多官能エポキシ化合物などが含まれる。
 その他の硬化性化合物の総含有量は、熱硬化性樹脂組成物の全質量に対して、30質量%以上40質量%以下であることが好ましい。上記含有量が上記範囲にあることで、熱硬化性樹脂組成物の粘度を上記範囲に調整しやすくすることができる。
 1-4.熱硬化剤(B)
 本発明の熱硬化性樹脂組成物は、熱硬化剤(B)を含む。
 熱硬化剤(B)は、化合物(A)などの熱硬化性樹脂組成物に含まれる化合物と反応して硬化させることができるものであればよく、例えば、ジヒドラジド系熱硬化剤、アミンアダクト系熱硬化剤、およびポリアミン系熱硬化剤などを用いることができる。これらのうち、熱硬化性樹脂組成物の粘度安定性を高める観点から、ポリアミン系熱硬化剤が好ましい。
 熱硬化剤(B)は、潜在性熱硬化剤であることが好ましい。潜在性熱硬化剤とは、通常の保存条件下(室温)では化合物(A)などの化合物を硬化させないが、熱が与えられると、これらの化合物を硬化させる硬化剤である。
 潜在性熱硬化剤の例には、ジヒドラジド系潜在性熱硬化剤、アミンアダクト系潜在性熱硬化剤、およびポリアミン系潜在性熱硬化剤などが含まれる。これらのうち、熱硬化性樹脂組成物の粘度安定性を高める観点から、ポリアミン系潜在性熱硬化剤が好ましい。
 ジヒドラジド系潜在性熱硬化剤の例には、アジピン酸ジヒドラジド(融点181℃)、1,3-ビス(ヒドラジノカルボエチル)-5-イソプロピルヒダントイン(融点120℃)、7,11-オクタデカジエン-1,18-ジカルボヒドラジド(融点160℃)、ドデカン二酸ジヒドラジド(融点190℃)、およびセバシン酸ジヒドラジド(融点189℃)などが含まれる。
 アミンアダクト系潜在性熱硬化剤は、触媒活性を有するアミン系化合物と任意の化合物とを反応させて得られる付加化合物からなる潜在性熱硬化剤である。アミンアダクト系熱潜在性硬化剤の例には、アミキュアPN-40(融点110℃)、アミキュアPN-50(融点120℃)、アミキュアPN-23(融点100℃)、アミキュアPN-31(融点115℃)、アミキュアPN-H(融点115℃)、アミキュアMY-24(融点120℃)、およびアミキュアMY-H(融点131℃)(いずれも味の素ファインテクノ株式会社製)などが含まれる。
 ポリアミン系潜在性熱硬化剤の例には、アデカハードナーEH5015S(融点85℃以上105℃)、アデカハードナーEH4357S(融点75℃以上85℃)、EH5030S(融点70℃以上80℃)(いずれも株式会社ADEKA製)などが含まれる。
 熱硬化剤の融点は、60℃以上190℃以下であることが好ましく、60℃以上110℃以下であることがより好ましく、65℃以上100℃以下であることがさらに好ましい。上記融点が60℃以上であると、常温で熱硬化剤(B)が化合物(A)などと反応して硬化させることを抑制することができる。また、上記融点が110℃以下であると、過度に加熱しなくても化合物(A)などを硬化させることができる。
 熱硬化剤(B)の含有量は、熱硬化性樹脂組成物の全質量に対して、25質量%以上40質量%以下であることが好ましく、30質量%以上35質量%以下であることがより好ましい。上記含有量が25質量%以上であると、硬化物の硬化性をより高めることができる。これにより、例えば、熱硬化性樹脂組成物を含むシール剤の硬化物が、表示装置を十分に封止することができる。また、上記含有量が40質量%以下であると、熱硬化性樹脂組成物の粘度を上記範囲に調整しやすくすることができる。
 1-5.無機充填材(C)
 本発明の熱硬化性樹脂組成物は、無機充填剤(C)を含んでもよい。熱硬化性樹脂組成物が、無機充填剤(C)を含むことで、硬化物の耐湿性がより高まりやすくなる。
 無機充填剤(C)の例には、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸マグネシウム、珪酸アルミニウム、珪酸ジルコニウム、酸化鉄、酸化チタン、酸化アルミニウム(アルミナ)、酸化亜鉛、二酸化ケイ素、チタン酸カリウム、カオリン、タルク、ガラスビーズ、セリサイト活性白土、ベントナイト、窒化アルミニウム、窒化ケイ素などが含まれる。熱硬化性樹脂組成物は、無機充填剤(C)を1種のみ含んでもよく、2種以上含んでもよい。
 無機充填材(C)の形状は、球状、板状、針状等、定形状であってもよく、非定形状であってもよい。無機充填剤(C)が球状である場合、無機充填剤(C)の平均一次粒径は、0.1μm以上20μm以下であることが好ましく、0.1μm以上10μm以下であることがより好ましく、0.5μm以上5.0μm以下であることがさらに好ましい。上記平均一次粒径が上記範囲にあると、熱硬化性樹脂組成物の粘度をより調整しやすくすることができる。無機充填剤(C)の平均一次粒径は、JIS Z8825-1:2013に準拠したレーザー回折法により測定することができる。
 無機充填剤(C)の質量平均粒径d50は、0.05μm以上5.0μm以下であることが好ましく、25.0μm未満がより好ましい。上記質量平均粒径d50が前記範囲にあると、熱硬化性樹脂組成物の粘度安定性が高くなる。また、硬化物の耐湿性を高めるという観点からは、フィラーの質量平均粒径d50は0.05μm以上が好ましく、0.1μm以上がより好ましく、0.2μm以上がさらに好ましく、1.0μm超であってもよい。フィラーの質量平均粒径d50は、JIS Z8825-1:2013に準拠したレーザー回折法によって求められる。具体的には、上記測定で得られる、質量加積曲線上の50質量%値で示される粒径を質量平均粒径d50とすることができる。
 無機充填剤(C)の含有量は、熱硬化性樹脂組成物の全質量に対して、0質量%以上10質量%以下であることが好ましく、0質量%以上5質量%以下であることがより好ましい。また、上記含有量が10質量%以下であると、熱硬化性樹脂組成物の粘度が過剰に高めることを抑制して、上記粘度を調整しやすくすることができる。
 1-6.その他
 本発明の熱硬化性樹脂組成物は、シランカップリング剤、ゴム剤、イオントラップ剤、イオン交換剤レベリング剤、顔料、染料、可塑剤、消泡剤などの添加剤を含んでもよい。熱硬化性樹脂組成物は、添加剤を1種のみ含んでもよいし、2種以上含んでもよい。
 上記シランカップリング剤の例には、ビニルトリメトキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、およびγ-グリシドキシプロピルトリエトキシシランなどが含まれる。
 シランカップリング剤の含有量は、熱硬化性樹脂組成物の全質量に対して、0.01質量%以上5.0質量%以下であることが好ましい。シランカップリング剤の上記範囲内であると、硬化物と基板との接着強度をより高めることができる。
 1-7.熱硬化性樹脂組成物の調製方法
 上述の熱硬化性樹脂組成物の調製方法は、特に限定されず、各成分を公知の方法で混合することで調製することができる。各成分を混合する方法は、特に限定されず、例えば、双腕式攪拌機、ロール混練機、2軸押出機、ボールミル混練機、および遊星式撹拌機などを用いることができる。各成分の混合後、フィルタでろ過して不純物を取り除いて、熱硬化性樹脂組成物を得てもよいし、真空脱泡処理をさらに施して得てもよい。
 1-8.熱硬化性樹脂組成物の物性
 本発明の熱硬化性樹脂組成物は、E型粘度計により25℃、2.5rpmで測定される粘度が20.0Pa・s以下であり、10.0Pa・s以下であることが好ましく、5.0Pa・s以下であることがより好ましい。上記粘度が20.0Pa・s以下であると、熱硬化性樹脂組成物を含むシール剤を用いて各種表示装置を作製する際に、微少な隙間に入り込んで、より確実に表示装置を封止することができる。上記粘度の下限値は特に限定されないが、0.5Pa・s以上であることが好ましい。熱硬化性樹脂組成物の粘度は、熱硬化性樹脂組成物の組成を調整することで、上記範囲にすることができる。
 2.表示装置用シール剤
 本発明の表示装置用シール剤(以下、単に「シール剤」と称する)は、上述の熱硬化性樹脂組成物を含む。
 シール剤は、上述の熱硬化性樹脂組成物をそのままシール剤としてもよいし、上記熱硬化性樹脂組成物と添加剤などを混合したものをシール剤としてもよい。
 本発明のシール剤は、各種表示装置に用いることができる。上記シール剤は特に、一対の基板と、上記一対の基板の間に配置された表示素子とを有する表示装置において、シール剤の硬化物が上記表示素子を封止するために用いられることが好ましい。具体的には、液晶素子、EL素子、LED素子、電気泳動方式の表示素子、エレクトロクロミック方式の表示素子などを有する各種表示装置において、これらの表示素子を封止するために使用することが好ましい。
 上記シール剤は、粘度が上述の範囲であるため、特に表示素子を挟持する基板間の隙間に入り込みやすく、より確実に封止することができる。電気泳動方式の表示素子およびエレクトロクロミック方式の表示素子を有する表示装置では、シール剤が微少な隙間に入り込むことが好ましいため、本発明のシール剤は、電気泳動方式の表示装置、またはエレクトロクロミック方式の表示装置に対してより好適に使用され得る。電気泳動方式の表示装置およびエレクトロクロミック方式の表示装置の例には、これらの方式を利用したディスプレイ、電子ペーパーなどが含まれる。
 シール剤は、例えば、基板に塗布され、硬化させることで表示素子を封止することができる。シール剤の塗布方法は、特に制限されず、例えば、ディスペンサー、スクリーン印刷等、公知の方法を用いることができる。また、表示素子を挟持する一対の基板の間に、シール剤を充填した後に硬化させてもよい。シール剤を基板の間に充填する方法は、例えば、ディスペンサーによる充填が挙げられる。
 また、上記シール剤は、熱硬化により硬化させることができる。熱硬化温度は、表示装置の劣化を抑制する観点から、60℃以上80℃以下が好ましい。熱硬化時間は、熱硬化温度や、シール剤の量によって適宜調整することができ、例えば、30分以上90分以下である。
 3.表示装置
 本発明の表示装置は、一対の基板と、上記一対の基板の間に配置された、上述の表示装置用シール剤の硬化物と、上記一対の基板の間のシール剤の硬化物で囲まれた空間に配置された表示素子と、を有する。
 基板の例には、無機基板、樹脂基板などが含まれる。
 無機基板の例には、ガラス基板などが含まれる。樹脂基板の例には、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリカーボネート、環状ポリオレフィン(COC)、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、透明ABS樹脂、透明ナイロン、透明ポリイミド、ポリビニルアルコールなどの樹脂製の基板などが含まれる。
 表示素子の例には、上述のように、液晶素子、EL素子、LED素子、電気泳動方式の表示素子、エレクトロクロミック方式の表示素子などが含まれる。
 例えば、電気泳動方式の表示素子を有する表示装置は、図1に示されるような構成とすることができる。
 表示装置100は、一対の基板110と、一対の基板110の間に配置された表示装置用シール剤1の硬化物120と、一対の基板110の間のシール剤の硬化物120で囲まれた空間に配置された表示素子130と、を有する。
 表示素子130は、表示層130aと、表示層130aを駆動させるための透明電極130bとを有する。
 表示層130aは、顔料などの帯電性粒子と、分散媒とを有する構成とすることができる。例えば、帯電性粒子と、アルコール系溶媒などの分散媒を含むマイクロカプセルを有する構成とすることができる。
 透明電極130bは、表示層130aに電圧を印加し、表示層130aを駆動させる。透明電極130bの表面には、保護膜が設けられていてもよい。
 本発明の表示装置は、例えば、(1)表示素子と、表示素子を挟持する一対の基板とを有する積層体を形成する工程と、(2)積層体の周縁部に形成された一対の基板との隙間に、上述のシール剤を充填する工程と、(3)上述のシール剤を硬化させる工程とを経て製造されうる。
 シール剤を充填する方法は特に限定されないが、例えば、ディスペンサーによって行うことができる。また、シール剤を硬化させる方法は、シール剤で述べた方法を用いることができる。
 以下、実施例を参照して本発明を具体的に説明するが、本発明の範囲は実施例の記載に限定されない。
 1.熱硬化性樹脂組成物の材料
 1-1.化合物(A)
 EP-4010S(株式会社ADEKA製、ビスフェノールA型2官能エポキシ化合物(プロピレンオキサイド変性)、一般式(1)においてa=3、b=0、c=0、一般式(2)のRはイソプロピリデン基、エポキシ当量:350g/eq、硬化物のガラス転移温度Tg:60℃)を用いた。
 1-2.ビフェニル構造を有する化合物(a)
 OPP-EP(四日市合成株式会社製、エポキシ化合物、エポキシ当量:230g/eq、)を用いた。
 1-3.その他の化合物(A’)
 以下の多官能エポキシ化合物のいずれかを用いた。
 EXA-835LV(A’-1)(DIC株式会社製、ビスフェノールF型/ビスフェノールA型2官能エポキシ化合物、エポキシ当量:165g/eq)
 YL-983U(A’-2)(三菱ケミカル株式会社製、ビスフェノールF型2官能エポキシ化合物、エポキシ当量:170g/eq)
 YL-980(A’-3)(三菱ケミカル株式会社製、ビスフェノールA型2官能エポキシ化合物、エポキシ当量:190g/eq)
 YX8000D(A’-4)(三菱ケミカル株式会社製、水添ビスフェノールA型2官能エポキシ化合物、エポキシ当量205g/eq)
 上記化合物(A)の硬化後のガラス転移温度は、以下の方法で測定した。
 上記エポキシ化合物(化合物(A))100質量部と、メチルヘキサヒドロ無水フタル酸をエポキシ化合物100質量部に対する化学当量分と、ジメチルベンジルジアミン1質量部と、を混合し、110℃で3時間加熱後、165℃で2時間加熱した。そして、得られた硬化物を100μmのフィルム状に加工し、硬化物のガラス転移温度(Tg)を動的粘弾性測定(DMA)により測定した。
 1-4.熱硬化剤(B)
 EH5030S(ポリアミン系熱硬化剤、株式会社ADEKA製、融点:70~80℃、アミン当量:105g/当量)を用いた。
 1-5.無機充填剤(C)
 S-100(シリカ粒子、株式会社日本触媒製)を用いた。
 1-6.その他
 以下のものを用いた。
 シランカップリング剤:KBM403(信越化学工業株式会社製)
 2.熱硬化性樹脂組成物の調製
 (実施例1)
 化合物(A)50質量部、ビフェニル構造を有する化合物(a)215質量部、多官能エポキシ化合物(A’-1)320質量部、および熱硬化剤(B)330質量部、シランカップリング剤30質量部を、3本ロールを用いて混合し、熱硬化性樹脂組成物を得た。本実施例では、これをシール剤とした。
 (実施例2~7、比較例1~4)
 表1、2に示した組成に変更した以外は、実施例1と同様にして熱硬化性樹脂組成物を調製した。
 3.評価
 得られた熱硬化性樹脂組成物、およびその硬化物に対して以下の評価を行った。
 (粘度)
 熱硬化性樹脂組成物の粘度は、25℃、E型粘度計、回転速度2.5rpmにより測定した。
 (接着性(柔軟性))
 直径1.5mmのメッシュ径を有するスクリーン版上に、調製した熱硬化性樹脂組成物を滴下した。その後、透明電極が予め形成された25mm×45mmのガラス基板(RT-DM88-PIN、株式会社EHC製)の中央部分に、上記メッシュ部が重なるようにスクリーン版を設置し、スキージを用いて上記メッシュ部から熱硬化性樹脂組成物を塗布した。
 次いで、熱硬化性樹脂組成物を形成したガラス基板と、対になるガラス基板と、基板の長辺どうしが垂直に交わるように、熱硬化性樹脂組成物の真上から貼り合せた。そして、貼り合せた2枚のガラス基板を80℃で1時間加熱して熱硬化性樹脂組成物を硬化させ、試験片を得た。
 得られた試験片において、円状に硬化した熱硬化性樹脂組成物の中央部から22.5mm離れた部分を、押込み試験機(Model210、株式会社インテスコ製)を用い37.5mm/分の速度でガラス基板に対して垂直に押込み、熱硬化性樹脂組成物がガラス基板から剥がれた時の応力を測定した。接着強度はその応力を熱硬化性樹脂組成物で描画された打点幅で割ることにより求めた。得られた接着強度を以下の基準に沿って評価した。
 〇 接着強度が1.0N/mm以上
 △ 接着強度が0.5N/mm以上1.0N/mm未満
 × 接着強度が0.5N/mm未満
 (耐湿性)
 ガラス板上に離型フィルムを置き、ガラス板の四辺を100μmのPETフィルム片で囲ったのち、調製した熱硬化性樹脂組成物を塗布した。その後、塗布した熱硬化性樹脂組成物の上に離型フィルムとガラス板をさらに乗せ、ガラス板の四辺をクリップで固定した。この熱硬化性樹脂組成物の塗膜が形成されたガラス片を80℃の熱風乾燥オーブンで60分間保持した後、取り出して冷却した。その後、ガラス片を解体し、離型紙から塗膜を剥離して、膜厚100μmのフィルムを得た。
 得られた100μmのフィルムを用い、JIS Z0208:1976に準拠した方法でアルミカップを作製し、60℃90%RHの高温高湿槽に17時間放置した。そして放置後のフィルムの重量を測定した。その後、上記フィルムを改めて24時間放置した後、フィルムの重量を測定し、下記の計算式で透湿量を算出した。
 透湿量(g/m・100μm・24h)=[24時間放置後のアルミカップ重量(g)-24時間放置前のアルミカップ重量(g)]/フィルム面積(m
 算出した透湿量に基づき、以下の基準に沿って耐湿性を評価した。
 〇 透湿量が50g/m未満
 △ 透湿量が50g/m以上80g/m未満
 × 透湿量が80g/m以上
 各評価結果を表1、2に示した。なお、表1、2中の組成の数値は、質量部を表す。    
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 上記表1に示されるように、グリシジル基を有し、式(1)の構造を有する化合物(A)と、ポリアミン系潜在性熱硬化剤(B)と、を含む、実施例1~7の熱硬化性樹脂組成物は、いずれも、応力が加わった際の接着強度が優れており、シール剤(熱硬化性樹脂組成物)が基板から剥離しにくかった。これは、化合物(A)が式(1)で表される構造を有することで、応力を緩和することができたためであると考えられる。さらに、実施例1~7では耐湿性を向上させることができたことがわかった。
 これに対し、化合物(A)を含まない比較例1~4の熱硬化性樹脂組成物は、応力が加わった際の接着強度が低かった。
 本出願は、2022年3月25日出願の特願2022-049974に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、全て本願明細書に援用される。
 本発明によれば、表示装置に応力が加わった際に基板からの剥離を抑制することができる熱硬化性樹脂組成物が得られる。本発明は、各種表示装置への応用に非常に有用である。
 100 表示装置
 110 基板
 120 シール剤の硬化物
 130 表示素子

 

Claims (12)

  1.  グリシジル基およびオキセタニル基の少なくとも一方の官能基をあわせて2つ以上有し、一般式(1)で表される構造を有する化合物(A)と、熱硬化剤(B)とを含み、
     E型粘度計で25℃、2.5rpmで測定した粘度が20.0Pa・s以下である、
     熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)において、aは0以上8以下の整数、bは0以上3以下の整数、cは0以上8以下の整数、dは0以上8以下の整数を、それぞれ表し、a、bおよびcの少なくとも1つは、1以上であり、nは1以上の整数であり、*は結合位置を表す。化合物(A)が一般式(1)で表される構造を複数有する場合、それぞれの構造におけるa、b、c、dおよびnの数は同一であってもよいし、異なっていてもよい。)
  2.  前記化合物(A)は、一般式(2)で表される構造をさらに有する、請求項1に記載の熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)において、Rは炭素原子数1以上4以下のアルキレン基、炭素原子数2以上4以下のアルキリデン基、酸素原子、および硫黄原子のいずれかであり、*は結合位置を表す。化合物(A)が一般式(2)で表される構造を複数有する場合、それぞれの構造におけるRは同一であってもよいし、異なっていてもよい。)
  3.  前記化合物(A)は、前記一般式(1)において、(a=3、b=0、c=0、d=0)、(a=1、b=1、c=0、d=0)、または(a=0、b=1、c=0、d=1)である、2官能エポキシ化合物である、請求項1または2に記載の熱硬化性樹脂組成物。
  4.  前記化合物(A)は、
     エポキシ当量が300g/eq以上であるエポキシ化合物であり、
     前記化合物(A)100質量部と、前記化合物(A)100質量部に対する化学当量分のメチルヘキサヒドロ無水フタル酸と、ジメチルベンジルアミン1質量部と、を混合し、110℃で3時間加熱後、165℃で2時間加熱して得られる硬化物のガラス転移温度が100℃以下である、
     請求項1~3のいずれか一項に記載の熱硬化性樹脂組成物。
  5.  前記熱硬化剤(B)は、ジヒドラジド系熱硬化剤、アミンアダクト系熱硬化剤、およびポリアミン系熱硬化剤からなる群から選択される少なくとも1種の硬化剤である、
     請求項1~4のいずれか一項に記載の熱硬化性樹脂組成物。
  6.  前記熱硬化剤(B)は、ポリアミン系潜在性熱硬化剤であり、融点が60℃以上110℃以下である、請求項1~5のいずれか一項に記載の熱硬化性樹脂組成物。
  7.  グリシジル基およびオキセタニル基の少なくとも一方の官能基と、ビフェニル構造とを有する化合物(a)をさらに含む、
     請求項1~6のいずれか一項に記載の熱硬化性樹脂組成物。
  8.  無機充填材(C)をさらに含む、請求項1~7のいずれか一項に記載の熱硬化性樹脂組成物。
  9.  請求項1~8のいずれか一項に記載の熱硬化性樹脂組成物を含む、表示装置用シール剤。
  10.  一対の基板と、前記一対の基板の間に配置された表示素子と、を有する表示装置において、前記表示装置用シール剤の硬化物は前記表示素子を封止するために用いられる、
     請求項9に記載の表示装置用シール剤。
  11.  前記表示装置は、電気泳動方式、またはエレクトロクロミック方式の表示装置である、請求項9または10に記載の表示装置用シール剤。
  12.  一対の基板と、
     前記一対の基板の間に配置された、請求項9~11のいずれか一項に記載の表示装置用シール剤の硬化物と、
     前記一対の基板の間の前記表示装置用シール剤の硬化物で囲まれた空間に配置された表示素子と、
     を有する、表示装置。
PCT/JP2023/011241 2022-03-25 2023-03-22 熱硬化性樹脂組成物、表示装置用シール剤、および表示装置 WO2023182358A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022049974 2022-03-25
JP2022-049974 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023182358A1 true WO2023182358A1 (ja) 2023-09-28

Family

ID=88101614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011241 WO2023182358A1 (ja) 2022-03-25 2023-03-22 熱硬化性樹脂組成物、表示装置用シール剤、および表示装置

Country Status (2)

Country Link
TW (1) TW202340307A (ja)
WO (1) WO2023182358A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001142086A (ja) * 1999-11-12 2001-05-25 Ricoh Co Ltd プラスチックフィルム液晶素子用シール剤及び表示素子
JP2011219682A (ja) * 2010-04-13 2011-11-04 Adeka Corp 硬化性樹脂組成物
WO2015060439A1 (ja) * 2013-10-25 2015-04-30 味の素株式会社 柔軟性エポキシ樹脂組成物
WO2018092508A1 (ja) * 2016-11-21 2018-05-24 協立化学産業株式会社 電子装置用樹脂組成物
WO2020235357A1 (ja) * 2019-05-17 2020-11-26 三井化学株式会社 液晶滴下工法用封止剤、これを用いた液晶表示パネル、およびその製造方法
WO2021241129A1 (ja) * 2020-05-29 2021-12-02 三井化学株式会社 表示装置用シール剤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001142086A (ja) * 1999-11-12 2001-05-25 Ricoh Co Ltd プラスチックフィルム液晶素子用シール剤及び表示素子
JP2011219682A (ja) * 2010-04-13 2011-11-04 Adeka Corp 硬化性樹脂組成物
WO2015060439A1 (ja) * 2013-10-25 2015-04-30 味の素株式会社 柔軟性エポキシ樹脂組成物
WO2018092508A1 (ja) * 2016-11-21 2018-05-24 協立化学産業株式会社 電子装置用樹脂組成物
WO2020235357A1 (ja) * 2019-05-17 2020-11-26 三井化学株式会社 液晶滴下工法用封止剤、これを用いた液晶表示パネル、およびその製造方法
WO2021241129A1 (ja) * 2020-05-29 2021-12-02 三井化学株式会社 表示装置用シール剤

Also Published As

Publication number Publication date
TW202340307A (zh) 2023-10-16

Similar Documents

Publication Publication Date Title
KR101455547B1 (ko) 조성물, 이 조성물로 이루어지는 표시 디바이스 단면 시일제용 조성물, 표시 디바이스 및 그 제조 방법
JP5345393B2 (ja) 液晶シール剤、それを用いた液晶表示パネルの製造方法、および液晶表示パネル
KR101623670B1 (ko) 조성물, 조성물로 이루어지는 표시 디바이스 단면 시일제, 표시 디바이스 및 그의 제조 방법
JP2009139922A (ja) 液晶シール剤およびそれを用いた液晶表示セル
EP2455801A1 (en) Sealing agent for liquid crystal dripping method
JP2010014771A (ja) 熱硬化型液晶滴下工法用液晶シール剤及びそれを用いた液晶表示セル
JP5008117B2 (ja) 液晶シール剤およびそれを用いた液晶表示セル
TW201136972A (en) Liquid crystal sealing agent, fabricating method of liquid crystal display panel using the same and liquid crystal display panel
JP4575297B2 (ja) 液晶シール剤、それを用いた液晶表示装置および該装置の製造方法
JP3863253B2 (ja) 液晶表示素子とその製造方法
JP7391211B2 (ja) 表示装置用シール剤
WO2023182358A1 (ja) 熱硬化性樹脂組成物、表示装置用シール剤、および表示装置
JP5393292B2 (ja) 液晶滴下工法用液晶シール剤及びそれを用いた液晶表示セル
WO2020235357A1 (ja) 液晶滴下工法用封止剤、これを用いた液晶表示パネル、およびその製造方法
JP3826144B2 (ja) 液晶表示素子用硬化性樹脂組成物、液晶滴下工法用シール剤、上下導通用材料及び液晶表示素子
JP5153123B2 (ja) 液晶滴下工法用シール剤、それを用いた液晶表示パネルの製造方法及び液晶表示パネル
JP5424411B2 (ja) 液晶表示パネルの製造方法および液晶表示パネル
JP2021039377A (ja) 表示素子用シール剤、硬化物、上下導通材料、及び、表示素子
JP2022029897A (ja) 二液硬化型樹脂組成物
CN112424680A (zh) 液晶滴注工艺用遮光密封剂以及使用其的液晶显示面板的制造方法
JP2003119248A (ja) 液晶封止用樹脂組成物
WO2021177111A1 (ja) 液晶滴下工法用シール剤および液晶表示パネルの製造方法
JP2002030201A (ja) プラスチックフィルム液晶表示素子用シール材及びプラスチックフィルム液晶表示素子
WO2021200220A1 (ja) 液晶滴下工法用シール剤および液晶表示パネルの製造方法、ならびに液晶表示パネル
CN100460963C (zh) 液晶用密封剂和使用该密封剂制造的液晶显示单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774953

Country of ref document: EP

Kind code of ref document: A1