WO2021200220A1 - 液晶滴下工法用シール剤および液晶表示パネルの製造方法、ならびに液晶表示パネル - Google Patents

液晶滴下工法用シール剤および液晶表示パネルの製造方法、ならびに液晶表示パネル Download PDF

Info

Publication number
WO2021200220A1
WO2021200220A1 PCT/JP2021/011090 JP2021011090W WO2021200220A1 WO 2021200220 A1 WO2021200220 A1 WO 2021200220A1 JP 2021011090 W JP2021011090 W JP 2021011090W WO 2021200220 A1 WO2021200220 A1 WO 2021200220A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
sealant
compound
epoxy
meth
Prior art date
Application number
PCT/JP2021/011090
Other languages
English (en)
French (fr)
Inventor
健祐 大塚
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2022511888A priority Critical patent/JP7413511B2/ja
Priority to KR1020227030123A priority patent/KR20220136390A/ko
Priority to CN202180016740.2A priority patent/CN115176199A/zh
Publication of WO2021200220A1 publication Critical patent/WO2021200220A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs

Definitions

  • the present invention relates to a sealant for a liquid crystal dropping method, a method for manufacturing a liquid crystal display panel, and a liquid crystal display panel.
  • the liquid crystal dropping method has been widely used as a method of sealing a liquid crystal between a pair of substrates.
  • a sealant is applied to form a seal pattern.
  • the liquid crystal is dropped onto the substrate on which the seal pattern is formed or the substrate that is paired with the seal pattern, and the liquid crystals are bonded together in a vacuum.
  • the seal pattern is cured by UV irradiation or heating, and the liquid crystal is sealed by the seal member.
  • sealing agent used for the sealing agent for the liquid crystal dropping method a wide variety of compositions have been proposed as the sealing agent used for the sealing agent for the liquid crystal dropping method.
  • a sealing agent or the like capable of forming a highly flexible sealing member has also been proposed (for example, Patent Documents 1 and 2).
  • liquid crystal display panels have been used in various environments. For example, it is also required to use a liquid crystal display panel in a high temperature and high humidity environment.
  • the conventional liquid crystal display panel has a problem that even if the adhesive strength between the substrate and the sealing member is high under a normal environment, the adhesive strength tends to decrease when exposed to high temperature and high humidity. .. Even with a highly flexible sealing member as described in Patent Document 1 and Patent Document 2 described above, it has been difficult to maintain sufficient adhesive strength with the substrate after the high temperature and high humidity test.
  • the adhesive strength of the sealing member and the substrate during or after storage in a high temperature and high humidity environment does not necessarily correlate with the adhesive strength of the sealing member and the substrate under a normal environment. It became clear. That is, it has been difficult to improve the adhesive strength between the sealing member and the substrate when stored in a high-temperature and high-humidity environment or after storage by the conventional method.
  • the conventional seal member may have insufficient moisture resistance in a high temperature and high humidity environment, which may cause a problem in the liquid crystal display panel.
  • a sealant for a liquid crystal dropping method capable of forming a seal member having good adhesive strength with a substrate even when exposed to a high temperature and high humidity environment, a liquid crystal display panel using the sealant, and a manufacturing method thereof.
  • a sealant for the liquid crystal dripping method capable of forming a sealing member having good adhesive strength with the substrate and having high moisture resistance even when exposed to a high temperature and high humidity environment, a liquid crystal display panel using the same, and a liquid crystal display panel using the same.
  • the manufacturing method is also provided.
  • the present invention provides the following first sealant for the liquid crystal dropping method.
  • the sealing agent for the liquid crystal dropping method is made into a film having a thickness of 100 ⁇ m, irradiated with light of 3000 mJ / cm 2 , and at 120 ° C. for 1 hour. when heated to form a film, is measured by a dynamic viscoelasticity measuring apparatus, an initial Young's modulus at 120 ° C. of the film is not more than 1.0 ⁇ 10 8 Pa, and 121 ° C. the film, 100% under Rh environment is measured by a dynamic viscoelasticity measuring apparatus after storage for 24 hours, and PCT after Young's modulus at 120 ° C. of the film, the difference between the initial Young's modulus, is less 8.0 ⁇ 10 7 Pa , Sealing agent for liquid crystal dripping method.
  • thermosetting agent selected from the group consisting of an imidazole-based thermosetting agent, an amine adduct-based thermosetting agent, and a polyamine-based thermosetting agent, [2] to [5].
  • the sealant for the liquid crystal dropping method according to any one of.
  • a sealing agent for a liquid crystal dropping method which comprises a polymerizable compound having a polymerizable functional group and a thermosetting agent, wherein the polymerizable compound contains an epoxy-based compound and is a sealing agent for the liquid crystal dropping method.
  • the ratio of the number of active hydrogens derived from the thermosetting agent to the number of epoxy groups derived from the epoxy compound in the sealant for the liquid crystal dropping method is 0.25 or more, and the sealing agent for the liquid crystal dropping method. Is formed into a film having a thickness of 100 ⁇ m, irradiated with light of 3000 mJ / cm 2 , and heated at 120 ° C. for 1 hour to form a film.
  • the coated particles further include a core composed of inorganic particles and a coated particle having a polymer layer covering the core, and the coated particle has a functional group containing an epoxy group and / or a carbon-carbon double bond on the surface.
  • the sealant for the liquid crystal dropping method according to any one of [7] to [11].
  • the sealant for a liquid crystal drop method according to [12] wherein the polymer layer contains a crosslinked polymer.
  • the sealant for a liquid crystal dropping method according to [12] or [13], wherein the average particle size of the coated particles is 0.2 ⁇ m to 10 ⁇ m.
  • the present invention also provides the following method for manufacturing a liquid crystal display panel.
  • the step of dropping the liquid crystal in the region of the seal pattern of the one substrate or on the other substrate, and the step of superimposing the one substrate and the other substrate on the seal pattern is uncured.
  • a method for manufacturing a liquid crystal display panel which comprises a step of curing the seal pattern and a step of curing the seal pattern.
  • the present invention also provides the following liquid crystal display panels.
  • [19] A liquid crystal display panel containing a cured product of the sealant for the liquid crystal dropping method according to any one of the above [1] to [14].
  • the first sealant for the liquid crystal dropping method of the present invention can form a sealing member having good adhesive strength with the substrate even when exposed to a high temperature and high humidity environment. Therefore, it can be applied to a liquid crystal display panel used in various environments.
  • the second sealant for the liquid crystal dropping method of the present invention can form a sealing member having good adhesive strength with the substrate and high moisture resistance even when exposed to a high temperature and high humidity environment. Therefore, it can be applied to a liquid crystal display panel used in various environments.
  • the sealing agent for liquid crystal dripping method of the present invention (hereinafter, also simply referred to as "seal agent”) is a composition for producing a sealing member for a liquid crystal display panel, and is displayed on a liquid crystal display by the liquid crystal dripping method. It is preferably used when manufacturing a panel. However, it can also be used to manufacture a liquid crystal display panel by a liquid crystal injection method or the like.
  • the sealants for the liquid crystal dropping method of the two embodiments will be described.
  • the sealing member obtained from the conventional sealing agent often has a reduced adhesive strength to the substrate when exposed to a high temperature and high humidity environment. When such a decrease in adhesive strength occurs, problems such as liquid crystal leakage are likely to occur.
  • the sealing member and the substrate can be bonded to each other during or after storage in a high temperature and high humidity environment. It was clarified that the adhesive strength can be improved. Specifically, it is the initial Young's modulus at 120 ° C.
  • the sealant for curing the sealant at a predetermined condition film 1.0 ⁇ 10 8 Pa or less, and of the film which was stored under 100% Rh environment 24 hours 120 °C and PCT after Young's modulus at the difference between the initial Young's modulus is equal to or less than 8.0 ⁇ 10 7 Pa, even when exposed to high temperature and high humidity environment, the seal member is superior to the substrate bond It became clear that it has strength.
  • the sealing member expands due to the heat, and stress is applied to the interface between the sealing member and the substrate. Further, the unreacted components (for example, epoxy groups) in the sealing member react with each other due to heat and moisture in the high temperature and high humidity environment, and the unreacted components react with the moisture in the environment to cause the sealing member. Distortion occurs inside the. Then, due to the strain, stress is likely to be generated at the interface between the seal member and the substrate, and the seal member and the substrate are easily peeled off.
  • the unreacted components for example, epoxy groups
  • the Young's modulus at 120 ° C. of the cured product of the sealing agent (sealing member) (initial Young's modulus) or less 1.0 ⁇ 10 8 Pa, sealing member is relatively soft ,
  • the stress generated at the interface between the substrate and the sealing member can be absorbed.
  • the fact that the amount of change between the Young's modulus after PCT and the initial Young's modulus after being left in a high temperature and high humidity environment is small means that the state change in the high temperature and high humidity environment is small, that is, the strain generated in the seal member is small. Represents. Therefore, the substrate and the sealing member can maintain high adhesive strength during and after storage in a high temperature and high humidity environment.
  • the initial Young's modulus is measured as follows. First, the sealant is applied onto a paper pattern to a thickness of 100 ⁇ m using an applicator to form a film of 100 ⁇ m. Then, the film was placed in a container for nitrogen replacement, subjected to nitrogen purging for 5 minutes , irradiated with light of 3000 mJ / cm 2 (light calibrated by a sensor having a wavelength of 365 nm), and further heated at 120 ° C. for 1 hour to form a film. To make.
  • the obtained film is cut into a length of 35 mm and a width of 10 mm, and the temperature is raised from 25 ° C. to 170 ° C. by a dynamic viscoelasticity measuring device (for example, DMA, manufactured by Seiko Instruments Inc., DMS6100) to store elastic modulus. To measure. Then, among the obtained results, the storage elastic modulus at 120 ° C. is defined as the initial Young's modulus.
  • the initial Young's modulus is more preferably 1.0 ⁇ 10 6 to 1.0 ⁇ 10 8 Pa, and even more preferably 1.0 ⁇ 10 7 to 5.0 ⁇ 10 7 Pa.
  • Young's modulus after PCT can be measured as follows. First, the film prepared in the same manner as above is allowed to stand at 121 ° C. in a 100% Rh environment for 24 hours. Then, the temperature is lowered to room temperature, and the temperature is raised from 25 ° C. to 170 ° C. by a dynamic viscoelasticity measuring device (for example, DMA, manufactured by Seiko Instruments Inc., DMS6100) to measure the storage elastic modulus. Then, among the obtained results, the storage elastic modulus at 120 ° C. is defined as the Young's modulus after PCT.
  • the difference between the Young's modulus after PCT and the initial Young's modulus is more preferably 8.0 ⁇ 10 7 Pa or less, and further preferably 7.0 ⁇ 10 7 Pa or less.
  • the composition of the sealant may be adjusted.
  • the sealant of the present invention preferably contains a polymerizable compound having a polymerizable functional group, a photopolymerization initiator, a thermosetting agent, (meth) acrylic thermoplastic particles and the like.
  • the sealant of the present embodiment usually contains a polymerizable compound having a polymerizable functional group.
  • the polymerizable functional group refers to a functional group that is activated by light irradiation or heating, a thermosetting agent, a photopolymerization initiator, a catalyst, or the like to carry out a polymerization reaction.
  • the polymerizable functional group include a (meth) acrylic group, a vinyl group, an acrylamide group, an epoxy group, an isocyanato group, a silanol group and the like.
  • the description of (meth) acrylic in the present specification means methacryl, acrylic, or both, and the description of (meth) acryloyl means methacryloyl, acryloyl, or both of them.
  • the polymerizable compound may be a monomer, an oligomer, or a polymer, but a monomer or an oligomer is preferable from the viewpoint of coatability of the sealant.
  • the sealant of the present embodiment may contain only one kind of the above-mentioned polymerizable compound, or may contain two or more kinds of the above-mentioned polymerizable compound.
  • R 1 is Represents a group (* represents a bond) selected from the group consisting of. That is, R 1 has a structure derived from bisphenol A, bisphenol E, or bisphenol F, and among these, a structure derived from bisphenol A or bisphenol F is preferable.
  • R 2 and R 3 in the above general formula (1) are independently Represents a group (* represents a bond) selected from the group consisting of.
  • m, n, and p each represent an integer of 1 to 30, and m, n, and p are more preferably 2 to 10.
  • R 4 and R 5 in the above general formula (1) independently represent a hydrogen atom or a methyl group, respectively.
  • the molecular weight (or weight average molecular weight) of the curable monomer is preferably 700 or more, more preferably 750 to 1300.
  • the molecular weight (or weight average molecular weight) of the curable monomer is 700 or more, the cured product of the curable monomer becomes flexible, and the effect of absorbing the stress generated at the interface between the substrate and the sealing member becomes high.
  • the molecular weight of the curable monomer can be adjusted by the number of n, m, or p in the above general formula (1), that is, the amount of the structure derived from ethylene oxide or the structure derived from propylene oxide.
  • the weight average molecular weight of the curable monomer can be specified (in terms of polystyrene) by, for example, gel permeation chromatography (GPC).
  • the total amount of the curable monomer is preferably 10% by mass or more and 30% by mass or less, and more preferably 10% by mass or more and 20% by mass or less with respect to the total amount of the polymerizable compound. If the amount of curable monomer is excessively large, the curable monomer may affect the display characteristics of the liquid crystal display panel. On the other hand, when the amount of the curable monomer is 30% by mass or less, the display characteristics of the liquid crystal display panel tend to be good. On the other hand, when the amount of the curable monomer is 10% by mass or more, the above-mentioned initial Young's modulus and post-PCT Young's modulus tend to fall within the above ranges.
  • the polymerizable compound includes an epoxy compound, a (meth) acrylic / epoxy-containing compound, and a (meth) acrylic compound other than the curable monomer (hereinafter, simply “(meth) acrylic compound”) in addition to the curable monomer. It is also preferable to further include) and the like.
  • the polymerizable compound contains these, the adhesive strength between the obtained sealing member and the substrate is likely to be good, and the display characteristics of the liquid crystal display panel are likely to be good.
  • the epoxy compound may be a compound having an epoxy group (however, the compound corresponding to the (meth) acrylic epoxy compound described later is excluded).
  • the number of epoxy groups contained in one molecule of the epoxy compound is preferably 2 or more. When the number of epoxy groups in the epoxy compound is 2 or more, the adhesiveness between the obtained sealing member and the substrate of the liquid crystal display panel becomes good. Further, the moisture resistance of the obtained sealing member is likely to increase.
  • the epoxy compound may be liquid at room temperature or solid.
  • the softening point of the epoxy compound is preferably 40 to 120 ° C. from the viewpoint of keeping the viscosity of the sealant in a desired range.
  • the epoxy compound may be a monomer, an oligomer, or a polymer.
  • the molecular weight (or weight average molecular weight) of the epoxy compound is usually preferably 220 to 3000, more preferably 250 to 2500, and even more preferably 300 to 2000.
  • the ratio of the component having a molecular weight of 500 or more to the total amount of the epoxy compound is preferably 25% by mass or more.
  • Epoxy compounds having a molecular weight of 500 or more are difficult to dissolve in liquid crystal displays when the liquid crystal display panel is manufactured. Therefore, the display characteristics of the obtained liquid crystal display panel are improved.
  • the weight average molecular weight of the epoxy compound can be specified (in terms of polystyrene) by, for example, gel permeation chromatography (GPC).
  • the structure of the epoxy compound is not particularly limited, and an example thereof includes an aromatic epoxy compound having an aromatic ring in the main chain.
  • aromatic epoxy compounds include aromatic diols typified by bisphenol A, bisphenol S, bisphenol F, bisphenol AD, diols obtained by modifying these with ethylene glycol, propylene glycol, and alkylene glycol AD, and epichlorohydrin.
  • Aromatic polyvalent glycidyl ether compound obtained by reaction; obtained by reaction of epichlorohydrin with novolak resin derived from phenol, cresol, etc. and formaldehyde, polyphenols represented by polyalkenylphenol, copolymers thereof, etc.
  • novolak-type polyvalent glycidyl ether compounds include novolak-type polyvalent glycidyl ether compounds; glycidyl ether compounds of xylylenephenol resin; naphthalene-type epoxy compounds; diphenyl ether-type epoxy compounds; biphenyl-type epoxy compounds; and the like.
  • the aromatic epoxy compound is a cresol novolac type epoxy compound, a phenol novolac type epoxy compound, a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, a triphenol methane type epoxy compound, or a triphenol ethane type epoxy compound.
  • Trisphenol type epoxy compound, diphenyl ether type epoxy compound, biphenyl type epoxy compound are preferable.
  • the polymerizable compound may contain only one type of epoxy compound, or may contain two or more types of epoxy compound.
  • the total amount of the epoxy compound is preferably 5 to 70% by mass, more preferably 10 to 50% by mass, based on the total amount of the polymerizable compound.
  • the amount of the epoxy compound in the polymerizable compound is 5% by mass or more, the adhesive strength between the cured product of the sealant and the substrate of the liquid crystal display panel tends to increase.
  • the amount of the epoxy compound is 70% by mass or less, the amount of unreacted components contained in the obtained sealing member tends to decrease. Therefore, the difference between the Young's modulus after PCT of the cured product of the sealant and the initial Young's modulus tends to be small.
  • the (meth) acrylic / epoxy-containing compound means a compound having an epoxy group and a (meth) acrylic group in one molecule.
  • the polymerizable compound contains the above-mentioned epoxy compound and the above-mentioned curable monomer, their compatibility may be low.
  • the polymerizable compound further contains a (meth) acrylic / epoxy-containing compound, the compatibility between the epoxy compound and the curable monomer is enhanced. Furthermore, the elution of the epoxy compound into the liquid crystal display can also be suppressed by the (meth) acrylic / epoxy-containing compound.
  • the number of epoxy groups and (meth) acrylic groups in one molecule of the (meth) acrylic / epoxy-containing compound is not particularly limited, but may be, for example, one or a plurality. Further, the number of epoxy groups and the number of (meth) acrylic groups may be the same or different.
  • the (meth) acrylic-epoxy-containing compound include a (meth) acrylic-modified epoxy compound obtained by reacting an epoxy compound with (meth) acrylic acid in the presence of a basic catalyst.
  • the epoxy compound used for preparing the (meth) acrylic-modified epoxy compound may be a bifunctional or higher-functional epoxy compound having two or more epoxy groups in the molecule, and may be bisphenol A type, bisphenol F type, or 2,2'-diallyl.
  • Bisphenol type epoxy compounds such as bisphenol A type, bisphenol AD type, and hydrogenated bisphenol type; novolak type epoxy compounds such as phenol novolac type, cresol novolac type, biphenyl novolac type, and trisphenol novolac type; biphenyl type epoxy compounds; naphthalene Type epoxy compounds and the like are included.
  • the (meth) acrylic-modified epoxy compound obtained by (meth) acrylic modification of a polyfunctional epoxy compound such as trifunctional or tetrafunctional has a high crosslink density when cured. Therefore, if the sealant contains such a (meth) acrylic-modified epoxy compound, it may be difficult to satisfy the above initial Young's modulus. Therefore, a (meth) acrylic-modified epoxy compound obtained by modifying a bifunctional epoxy compound with (meth) acrylic is preferable.
  • the epoxy compound for preparing the (meth) acrylic-modified epoxy compound is more preferably a biphenyl type epoxy compound, a naphthalene type epoxy compound, and a bisphenol type epoxy compound, and a bisphenol type epoxy compound such as bisphenol A type and bisphenol F type is used. It is more preferable from the viewpoint of coating efficiency of the sealant.
  • the epoxy compound for preparing the (meth) acrylic-modified epoxy compound may be one kind or two or more kinds. Further, the epoxy compound for preparing the (meth) acrylic-modified epoxy compound is preferably highly purified by a molecular distillation method, a washing method or the like.
  • reaction between the above epoxy compound and (meth) acrylic acid can be carried out according to a conventional method.
  • (meth) acrylic acid reacts with some of the epoxy groups in the epoxy compound to obtain a (meth) acrylic-modified epoxy compound having a (meth) acrylic group and an epoxy group.
  • the molecular weight (weight average molecular weight) of the (meth) acrylic / epoxy-containing compound is preferably, for example, 310 to 1000, and more preferably 350 to 900.
  • the weight average molecular weight of the (meth) acrylic / epoxy-containing compound can be measured (in terms of polystyrene) by, for example, gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the total amount of the (meth) acrylic / epoxy-containing compound is preferably 30 to 80% by mass, more preferably 40 to 70% by mass, based on the total amount of the polymerizable compound.
  • the amount of the (meth) acrylic / epoxy-containing compound in the polymerizable compound is 40% by mass or more, the compatibility between the curable monomer and the epoxy compound tends to increase.
  • the amount of the (meth) acrylic / epoxy-containing compound is 70% by mass or less, the above-mentioned initial Young's modulus and Young's modulus after PCT tend to be in a desired range.
  • the (meth) acrylic compound is a compound containing one or more (meth) acrylic groups in one molecule and does not have an epoxy group (however, it corresponds to the above-mentioned curable monomer). (Excluding those).
  • the (meth) acrylic compound may be a monomer, an oligomer, or a polymer.
  • the number of (meth) acrylic groups contained in one molecule of the (meth) acrylic compound is preferably 2 or more.
  • the photocurability of the sealant becomes good.
  • examples of the (meth) acrylic compound include di (meth) acrylates such as polyethylene glycol, propylene glycol, and polypropylene glycol; di (meth) acrylates of tris (2-hydroxyethyl) isocyanurate; and 1 mol of neopentyl glycol.
  • the glass transition temperature of the (meth) acrylic compound is preferably 25 ° C. or higher and 200 ° C. or lower from the viewpoint that the initial Young's modulus of the cured product of the sealant easily falls within a desired range.
  • the glass transition temperature is more preferably 40 ° C. to 200 ° C., further preferably 50 to 150 ° C.
  • the glass transition temperature is measured by a viscoelasticity measuring device (DMS).
  • the molecular weight (or weight average molecular weight) of the (meth) acrylic compound is preferably 310 to 1000, more preferably 400 to 900.
  • the weight average molecular weight of the (meth) acrylic compound can be measured (in terms of polystyrene) by, for example, gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the amount of the (meth) acrylic compound is preferably 5 to 70% by mass, more preferably 10 to 50% by mass, based on the total amount of the polymerizable compound.
  • the amount of the (meth) acrylic compound is 5% by mass or more, the photocurability of the sealant tends to be good.
  • the amount of the (meth) acrylic compound is 70% by mass or less, the moisture resistance of the obtained sealing member tends to be good.
  • the total amount of the polymerizable compound (total amount of the above-mentioned curable monomer, epoxy compound, (meth) acrylic / epoxy-containing compound, (meth) acrylic compound, etc.) is 60 to 80% by mass with respect to the total amount of the sealant. Is preferable, and 65 to 75% by mass is more preferable.
  • the polymerizable compound is contained in the sealant in the above range, the curability of the sealant becomes good, and a seal member having high strength can be obtained.
  • the sealant preferably contains a photopolymerization initiator.
  • the photopolymerization initiator may be a self-cleaving type photopolymerization initiator or a hydrogen abstraction type photopolymerization initiator as long as it is a compound capable of generating an active species by irradiation with light. ..
  • the sealing agent may contain only one kind of photopolymerization initiator, or may contain two or more kinds of photopolymerization initiators.
  • Examples of self-cleaving photopolymerization initiators include benzyl dimethyl ketal such as alkylphenone compounds (for example, 2,2-dimethoxy-1,2-diphenylethane-1-one (IRGACURE 651 manufactured by BASF)), 2-. ⁇ -Aminoalkylphenone such as methyl-2-morpholino (4-thiomethylphenyl) propan-1-one (IRGACURE 907 manufactured by BASF), 1-hydroxy-cyclohexyl-phenyl-ketone (IRGACURE 184 manufactured by BASF), etc.
  • alkylphenone compounds for example, 2,2-dimethoxy-1,2-diphenylethane-1-one (IRGACURE 651 manufactured by BASF)
  • 2-. ⁇ -Aminoalkylphenone such as methyl-2-morpholino (4-thiomethylphenyl) propan-1-one (IRGACURE 907 manufactured by BASF), 1-hydroxy-cyclohexyl-phenyl-ketone (IR
  • ⁇ -Hydroxyalkylphenone etc.
  • Acylphosphine oxide compounds eg 2,4,6-trimethylbenzoindiphenylphosphine oxide, etc.
  • Titanocene compounds eg, bis ( ⁇ 5-2,4-cyclopentadiene-1-yl))- Bis (2,6-difluoro-3- (1H-pyrrole-1-yl) -phenyl) titanium, etc.
  • Acetphenone compounds eg, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1- On, benzyl dimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1, -Hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-
  • hydrogen abstraction-type photopolymerization initiators examples include benzophenone compounds (eg, benzophenone, o-benzoylmethylbenzoate methyl-4-phenylbenzophenone, 4,4'-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4'-.
  • benzophenone compounds eg, benzophenone, o-benzoylmethylbenzoate methyl-4-phenylbenzophenone, 4,4'-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4'-.
  • Methyl-diphenylsulfide acrylicized benzophenone, 3,3', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 3,3'-dimethyl-4-methoxybenzophenone, etc.
  • thioxanthone compounds eg, thioxanthone, 2-Chlorothioxanthone, 1-chloro-4-propoxythioxanthone, 1-chloro-4-ethoxythioxanthone (Lambson Limited Co., Ltd. Speedcure CPTX), 2-isopropylxantone (Lambson Limited Co., Ltd.
  • the absorption wavelength of the photopolymerization initiator is not particularly limited, and for example, a photopolymerization initiator that absorbs light having a wavelength of 360 nm or more is preferable. Among them, it is more preferable to absorb light in the visible light region, a photopolymerization initiator that absorbs light having a wavelength of 360 to 780 nm is more preferable, and a photopolymerization initiator that absorbs light having a wavelength of 360 to 430 nm is particularly preferable.
  • Examples of the photopolymerization initiator that absorbs light having a wavelength of 360 nm or more include an alkylphenone-based compound, an acylphosphine oxide-based compound, a titanosen-based compound, an oxime ester-based compound, a thioxanthone-based compound, and an anthraquinone-based compound, and are preferable. It is an alkylphenone-based compound or an oxime ester-based compound.
  • the structure of the photopolymerization initiator can be specified by combining high performance liquid chromatography (HPLC) and liquid chromatography mass spectrometry (LC / MS) with NMR measurement or IR measurement.
  • HPLC high performance liquid chromatography
  • LC / MS liquid chromatography mass spectrometry
  • the molecular weight of the photopolymerization initiator is preferably 200 or more and 5000 or less, for example.
  • the molecular weight of the photopolymerization initiator is 200 or more, it is difficult for the photopolymerization initiator to elute into the liquid crystal display when the sealant and the liquid crystal display come into contact with each other.
  • the molecular weight is 5000 or less, the compatibility with the above-mentioned (meth) acrylic compound and the like is enhanced, and the curability of the sealant tends to be improved.
  • the molecular weight of the photopolymerization initiator is more preferably 230 or more and 3000 or less, and further preferably 230 or more and 1500 or less.
  • the molecular weight of the photopolymerization initiator can be determined as the "relative molecular weight" of the molecular structure of the main peak detected when analyzed by high performance liquid chromatography (HPLC: High Performance Liquid Chromatography).
  • the main peak refers to the peak with the highest intensity (the peak with the highest peak height) among all the peaks detected at the detection wavelength characteristic of each compound (for example, 400 nm in the case of a thioxanthone compound).
  • the relative molecular weight corresponding to the peak peak of the detected main peak can be measured by liquid chromatography-mass spectrometry (LC / MS: Liquid Chromatography Mass Spectrometry).
  • the amount of the photopolymerization initiator is preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass, still more preferably 1 to 10% by mass, based on the total amount of the sealant.
  • the amount of the photopolymerization initiator is 0.1% by mass or more, the photocurability of the sealant tends to be good.
  • the amount of the photopolymerization initiator is 15% by mass or less, it becomes difficult for the photopolymerization initiator to elute into the liquid crystal display.
  • the sealing agent preferably contains a thermosetting agent.
  • the thermosetting agent may be any component capable of curing the above-mentioned polymerizable compound, particularly an epoxy compound or a (meth) acrylic / epoxy-containing compound by heating.
  • thermosetting agents do not cure the above-mentioned epoxy compounds and (meth) acrylic / epoxy-containing compounds under normal storage conditions (room temperature, visible light, etc.), but compounds that cure these compounds by heating. Is preferable.
  • the sealing agent containing such a thermosetting agent both storage stability and thermosetting property can be achieved at the same time.
  • thermosetting agent has a solubility in water at 20 ° C. of preferably 5 g / 100 g or less, more preferably 3 g / 100 g or less, and further preferably 1 g / 100 g or less.
  • solubility of the thermosetting agent in water is within this range, it becomes difficult for the thermosetting agent to elute into the liquid crystal together with water in the atmosphere.
  • thermosetting agent a compound capable of curing an epoxy compound (hereinafter, also referred to as “epoxy curing agent”) is preferable.
  • the melting point of the epoxy curing agent is preferably 50 ° C. or higher and 250 ° C. or lower, more preferably 100 ° C. or higher and 200 ° C. or lower, and 150 ° C. or higher, from the viewpoint of increasing the viscosity stability of the sealing agent and not impairing the moisture resistance of the obtained sealing member. It is more preferably ° C. or higher and 200 ° C. or lower.
  • the sealing agent can be made one-component curable.
  • workability is excellent because it is not necessary to mix the main agent and the curing agent at the time of use.
  • epoxy curing agents include organic acid dihydrazide-based thermal latent curing agents, imidazole-based thermal latent curing agents, dicyandiamide-based thermal latent curing agents, amine adduct-based thermal latent curing agents, and polyamine-based thermal latent curing agents. Contains agents.
  • organic acid dihydrazide-based thermal latent curing agents include adipic acid dihydrazide (melting point 181 ° C.), 1,3-bis (hydrazinocarboethyl) -5-isopropylhydranthin (melting point 120 ° C.), 7,11-octa. Includes decadien-1,18-dicarbohydrazide (melting point 160 ° C.), dodecanedioic acid dihydrazide (melting point 190 ° C.), sebacic acid dihydrazide (melting point 189 ° C.) and the like.
  • imidazole-based thermal latent curing agents examples include 2,4-diamino-6- [2'-ethylimidazolyl- (1')]-ethyltriazine (melting point 215-225 ° C.) and 2-phenylimidazole (melting point). 137 to 147 ° C.) and the like.
  • dicyandiamide-based thermal latent curing agents examples include dicyandiamide (melting point 209 ° C.) and the like.
  • the amine adduct-based thermal latent curing agent is a thermal latent curing agent composed of an additional compound obtained by reacting an amine-based compound having catalytic activity with an arbitrary compound.
  • amine adduct-based thermal latent curing agents are Ajinomoto Fine-Techno's Amicure PN-40 (melting point 110 ° C), Ajinomoto Fine-Techno's Amicure PN-23 (melting point 100 ° C), and Ajinomoto Fine-Techno's Amicure PN.
  • the polyamine-based thermal latent curing agent is a thermal latent curing agent having a polymer structure obtained by reacting amine and epoxy, and an example thereof is ADEKA Hardener EH4339S (softening point 120 to 130 ° C.) manufactured by ADEKA Corporation. , And ADEKA Hardener EH4357S (softening point 73 to 83 ° C.) and the like.
  • an imidazole-based thermal latent curing agent, an amine adduct-based thermal latent curing agent, or a polyamine-based thermal latent curing agent is preferable from the viewpoint of availability, compatibility with other components, and the like.
  • the sealant may contain only one type of epoxy curing agent, or may contain two or more types of sealant.
  • the content of the thermosetting agent is preferably 1 to 20% by mass, more preferably 2 to 18% by mass, still more preferably 3 to 15% by mass, based on the total amount of the sealing agent.
  • the amount of the thermosetting agent is in the above range, the thermosetting property of the sealing agent becomes good.
  • the sealant further contains (meth) acrylic thermoplastic polymer particles (hereinafter, also simply referred to as “polymer particles”).
  • the average particle size of the polymer particles is preferably 0.05 to 5 ⁇ m, preferably 0.07 to 3 ⁇ m, from the viewpoint of ensuring good dispersibility in the sealant.
  • the average particle size is a value measured by the Coulter counter method.
  • the softening point temperature of the polymer particles is preferably 50 to 120 ° C, more preferably 60 to 80 ° C.
  • the (meth) acrylic thermoplastic polymer melts and becomes compatible with other components in the sealant.
  • the compatible (meth) acrylic thermoplastic polymer swells and suppresses the decrease in viscosity of the sealant before curing. As a result, it becomes difficult for the components in the sealant to elute into the liquid crystal display.
  • the polymer particles may be polymer particles containing a structural unit derived from a (meth) acrylic acid ester monomer, but may be polymer particles obtained by copolymerizing a (meth) acrylic acid ester monomer with another monomer. It is preferable to have.
  • the amount of the (meth) acrylic acid ester-derived structural unit in the polymer particles is preferably 50 to 99.9% by mass, more preferably 60 to 80% by mass.
  • the amount of the structural unit derived from other monomers in the polymer particles is preferably 0.1 to 50% by mass, more preferably 20 to 40% by mass.
  • Examples of (meth) acrylic acid ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and amyl (meth) acrylate.
  • Monofunctional (meth) acrylic acid esters such as hexadecyl (meth) acrylate, octadecyl (meth) acrylate, butoxyethyl (meth) acrylate, phenoxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, and glycidyl (meth) acrylate.
  • the polymer particles may contain only one type of structure derived from these, or may contain two or more types of structures.
  • examples of other monomers include acrylamides; acid monomers such as (meth) acrylic acid, itaconic acid, and maleic acid; aromatic vinyl compounds such as styrene and styrene derivatives; 1,3-butadiene, 1,3-. Conjugated dienes such as pentadiene, isoprene, 1,3-hexadiene and chloroprene; polyfunctional monomers such as divinylbenzene and diacrylates; and the like are included.
  • the polymer particles may contain only one type of structure derived from another polymer, or may contain two or more types of structures.
  • the polymer particles may be either a non-crosslinked type or a crosslinked type, and may be a composite type having a core-shell structure composed of a crosslinked core and a non-crosslinked shell layer. Whether the polymer particles are non-crosslinked or crosslinked can be adjusted by the type of other monomer.
  • the content of the polymer particles is preferably 3% by mass or more, more preferably 5 to 30% by mass, based on the total amount of the sealant. When the amount of the polymer particles is in the above range, the moisture resistance of the obtained sealing member becomes good.
  • the sealant may further contain inorganic particles.
  • the sealing agent contains inorganic particles, the viscosity of the sealing agent, the strength of the obtained sealing member, the linear expansion property, and the like tend to be improved.
  • inorganic particle materials include calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, zirconium silicate, iron oxide, titanium oxide, titanium nitride, aluminum oxide (alumina), zinc oxide, silicon dioxide, and titanic acid. Includes potassium, kaolin, talc, glass beads, sericite-activated clay, bentonite, aluminum oxide, silicon nitride and the like.
  • the sealing agent may contain only one kind of inorganic particles, or may contain two or more kinds of sealing agents. Among the above, silicon dioxide or talc is preferable as the inorganic particles.
  • the shape of the inorganic particles may be a fixed shape such as a spherical shape, a plate shape, a needle shape, or a non-fixed shape.
  • the average primary particle size of the inorganic particles is preferably 1.5 ⁇ m or less, and the specific surface area is more preferably 0.5 to 20 m 2 / g.
  • the average primary particle size of the inorganic particles can be measured by the laser diffraction method described in JIS Z8825-1.
  • the specific surface area of the inorganic particles can be measured by the BET method described in JIS Z8830.
  • the content of the inorganic particles is preferably 0.1 to 25% by mass, more preferably 3 to 20% by mass, still more preferably 5 to 18% by mass, based on the total amount of the sealant.
  • the content of the inorganic particles is 0.1% by mass or more, the moisture resistance of the obtained sealing member tends to increase, and when it is 25% by mass or less, the coating stability of the sealing agent is not easily impaired.
  • Organic Particle Sealing Agent may further contain organic particles in addition to the above (meth) acrylic thermoplastic polymer particles or inorganic particles. When the sealant contains organic particles, it becomes easy to adjust the elastic modulus of the sealant after photocuring.
  • organic particles examples include silicone particles, styrene particles such as a styrene / divinylbenzene copolymer, and polyolefin particles.
  • the sealing agent may contain only one kind of organic particles, or may contain two or more kinds of organic particles.
  • the average primary particle size of the organic particles is preferably 0.05 to 13 ⁇ m, more preferably 0.1 to 10 ⁇ m, and even more preferably 0.1 to 8 ⁇ m.
  • the shape of the organic particles is not particularly limited, but is preferably spherical, and more preferably true spherical.
  • the average primary particle size of organic particles can be measured by microscopy, specifically image analysis with an electron microscope.
  • it is preferable that the surface of the organic particles is smooth. A smooth surface reduces the specific surface area and increases the amount of organic particles that can be added to the sealant.
  • the content of the organic particles is preferably 0.1 to 20% by mass, more preferably 1 to 15% by mass, still more preferably 3 to 12% by mass, based on the total amount of the sealant.
  • the amount of organic particles is in this range, the Young's modulus of the sealant after photocuring tends to fall within a desired range.
  • the sealant of the present embodiment is a thermal radical polymerization initiator, a coupling agent such as a silane coupling agent, an ion trapping agent, an ion exchanger, a leveling agent, a pigment, a dye, and a sensitizer, if necessary.
  • a coupling agent such as a silane coupling agent, an ion trapping agent, an ion exchanger, a leveling agent, a pigment, a dye, and a sensitizer, if necessary.
  • Plasticizers, antifoaming agents and the like may be further included.
  • silane coupling agents examples include vinyltrimethoxysilane, ⁇ - (meth) acryloxipropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and the like.
  • the amount of the silane coupling agent is preferably 0.01 to 6% by mass, more preferably 0.1 to 5% by mass, still more preferably 0.5 to 3% by mass, based on the total amount of the sealing agent.
  • the content of the silane coupling agent is 0.01% by mass or more, the obtained sealing member tends to have sufficient adhesiveness.
  • the sealant may further contain a spacer or the like for adjusting the gap of the liquid crystal display panel.
  • the total amount of other components is preferably 1 to 50% by mass with respect to the total amount of the sealant.
  • the viscosity of the sealant is unlikely to increase excessively, and the coating stability of the sealant is unlikely to be impaired.
  • the viscosity of the E-type viscometer of the sealing agent at 25 ° C. and 2.5 rpm is preferably 200 to 450 Pa ⁇ s, more preferably 250 to 400 Pa ⁇ s.
  • the viscosity is in the above range, when a pair of substrates are superposed on each other via a sealant (seal pattern), the sealant is likely to be deformed so as to fill these gaps. Therefore, the gap between the pair of substrates of the liquid crystal display panel can be appropriately controlled.
  • the thixotropy index (TI value) of the sealant is preferably 1.0 to 1.5, more preferably 1.1 to 1.3, from the viewpoint of the coatability of the sealant.
  • the TI value is determined by using an E-type viscometer, the viscosity of the sealant at room temperature (25 ° C.) and 0.5 rpm is ⁇ 1, and the viscosity of the sealant at 5 rpm is ⁇ 2. It is a value obtained by applying to.
  • TI value (viscosity ⁇ 1 (25 ° C) at 0.5 rpm) / (viscosity ⁇ 2 (25 ° C) at 5 rpm) ... (1)
  • Second Sealing Agent for Liquid Crystal Dropping Method As described above, the sealing member obtained from the conventional sealing agent often has a reduced adhesive strength to the substrate when exposed to a high temperature and high humidity environment. When such a decrease in adhesive strength occurs, problems such as liquid crystal leakage are likely to occur.
  • the conventional sealing member may not have sufficient moisture resistance, and the liquid crystal display panel is likely to be affected when exposed to a high temperature and high humidity environment.
  • the adhesive strength between the seal member and the substrate can be improved during or after storage in a high temperature and high humidity environment.
  • it is the initial Young's modulus at 120 ° C. for curing the sealant at a predetermined condition film 1.0 ⁇ 10 8 Pa or less, and of the film which was stored under 100% Rh environment 24 hours 120 °C and PCT after Young's modulus at the difference between the initial Young's modulus is equal to or less than 8.0 ⁇ 10 7 Pa, even when exposed to high temperature and high humidity environment, the seal member is superior to substrate adhesion It became clear that it has strength.
  • the reason and the method for measuring Young's modulus are as described in the section of the first sealant.
  • the initial Young's modulus is more preferably 1.0 ⁇ 10 6 to 1.0 ⁇ 10 8 Pa, further preferably 1.0 ⁇ 10 7 to 5.0 ⁇ 10 7 Pa.
  • the difference between the post-PCT Young's modulus and the initial Young's modulus is more preferably 8.0 ⁇ 10 7 Pa or less, and even more preferably 7.0 ⁇ 10 7 Pa or less.
  • the ratio of the number of active hydrogens derived from the thermosetting agent in the sealant to the number of epoxy groups derived from the epoxy compound in the sealant (the number of the active hydrogens / the number of the epoxy groups). Is 0.25 or more. Therefore, the moisture resistance of the obtained sealing member becomes very good. The reason is that the amount of active hydrogen is relatively large relative to the number of epoxy groups. With such a ratio, unreacted epoxy groups are less likely to remain after curing, and the crosslink density in the sealing member is increased. Therefore, it becomes difficult for the sealing member to absorb or permeate moisture.
  • the number of epoxy groups derived from the epoxy compound is obtained by dividing the amount (mass) of the epoxy compound in the sealant by the epoxy equivalent of the compound.
  • the epoxy equivalent is a value obtained by dividing the molecular weight (or weight average molecular weight) of the epoxy compound by the number of epoxy groups contained in one molecule of the epoxy compound (molecular weight of the epoxy compound / number of epoxy groups). ..
  • the amount of active hydrogen derived from the thermosetting agent is a value obtained by dividing the amount (mass) of the thermosetting agent in the sealing agent by the active hydrogen equivalent of the thermosetting agent.
  • the active hydrogen equivalent is the value obtained by dividing the molecular weight (or weight average molecular weight) of the heat curing agent by the number of active hydrogens bonded to the nitrogen atom contained in one molecule of the heat curing agent (molecular weight of the heat curing agent / number of active hydrogens). Is.
  • the sealant contains a plurality of epoxy compounds
  • the number of epoxy groups is calculated for each epoxy compound, and the total value of these is taken as the total number of epoxy groups in the sealant.
  • the number of active hydrogens is calculated for each thermosetting agent, and the total value of these is taken as the number of active hydrogens in the entire sealant.
  • the above ratio (the number of active hydrogens / the number of epoxy groups) is more preferably 0.25 to 1.0, and even more preferably 0.3 to 0.6.
  • the composition of the sealant may be adjusted.
  • the components constituting the sealant will be described in detail.
  • the sealant of the present embodiment contains a polymerizable compound having a polymerizable functional group.
  • the polymerizable compound may be a monomer, an oligomer, or a polymer, but is usually a monomer or an oligomer. Further, the sealant of the present embodiment may contain only one kind of the above-mentioned polymerizable compound, or may contain two or more kinds of the above-mentioned polymerizable compound.
  • the sealant of the present embodiment contains at least an epoxy compound as a polymerizable compound.
  • the epoxy compound in the present specification is a polymerizable compound having an epoxy group, and the coating particles described later are not included in the epoxy compound.
  • the sealant of the present embodiment also contains the curable monomer represented by the above-mentioned general formula (1).
  • epoxy compounds include compounds having an epoxy group and no (meth) acrylic group (hereinafter, also referred to as “epoxy compound”), and compounds having an epoxy group and a (meth) acrylic group (hereinafter,). , Also referred to as “(meth) acrylic epoxy compound”).
  • the epoxy compound may be a compound having an epoxy group (however, the compound corresponding to the (meth) acrylic epoxy compound described later is excluded).
  • the number of epoxy groups contained in one molecule of the epoxy compound is preferably 2 or more. When the number of epoxy groups in the epoxy compound is 2 or more, the adhesiveness between the obtained sealing member and the substrate of the liquid crystal display panel becomes good. Further, the moisture resistance of the obtained sealing member is likely to increase.
  • the epoxy compound may be liquid at room temperature or solid.
  • the softening point of the epoxy compound is preferably 40 to 110 ° C. from the viewpoint of the viscosity of the obtained sealant.
  • the epoxy equivalent of the epoxy compound is preferably 200 to 2000, more preferably 300 to 1000. When the epoxy equivalent is in this range, it becomes easy to satisfy the ratio of the active hydrogen equivalent of the thermosetting agent to the epoxy equivalent of the above-mentioned epoxy compound.
  • the epoxy compound may be a monomer, an oligomer, or a polymer.
  • the molecular weight (or weight average molecular weight) of the epoxy compound is usually preferably 220 to 3000, more preferably 250 to 2500, and even more preferably 300 to 2000.
  • the ratio of the component having a molecular weight of 500 or more to the total amount of the epoxy compound is preferably 25% by mass or more.
  • Epoxy compounds having a molecular weight of 500 or more are difficult to dissolve in liquid crystal displays when the liquid crystal display panel is manufactured. Therefore, the display characteristics of the obtained liquid crystal display panel are improved.
  • the weight average molecular weight of the epoxy compound can be specified (in terms of polystyrene) by, for example, gel permeation chromatography (GPC).
  • the structure of the epoxy compound is not particularly limited, and an example thereof includes an aromatic epoxy compound having an aromatic ring in the main chain.
  • the structure of the epoxy compound is the same as that of the epoxy compound contained in the first sealant described above.
  • the sealant may contain only one type of epoxy compound, or may contain two or more types of sealant.
  • the total amount of the epoxy compound is preferably 5 to 70% by mass, more preferably 10 to 50% by mass, based on the total amount of the polymerizable compound.
  • the amount of the epoxy compound in the polymerizable compound is 5% by mass or more, the adhesive strength between the cured product of the sealant and the substrate of the liquid crystal display panel tends to increase.
  • the amount of the epoxy compound is 70% by mass or less, the amount of unreacted components contained in the obtained sealing member tends to decrease. Therefore, the difference between the Young's modulus after PCT of the cured product of the sealant and the initial Young's modulus tends to be small.
  • the (meth) acrylic / epoxy-containing compound means a compound having an epoxy group and a (meth) acrylic group in one molecule.
  • the polymerizable compound contains the above-mentioned epoxy compound and the below-mentioned curable monomer, their compatibility may be low.
  • the polymerizable compound further contains a (meth) acrylic / epoxy-containing compound, the compatibility between the epoxy compound and the curable monomer is enhanced. Furthermore, the elution of the epoxy compound into the liquid crystal display can also be suppressed by the (meth) acrylic / epoxy-containing compound.
  • the specific structure and preferable structure of the (meth) acrylic / epoxy-containing compound are the same as those of the (meth) acrylic / epoxy compound contained in the first sealant described above.
  • the molecular weight (weight average molecular weight) of the (meth) acrylic / epoxy-containing compound is preferably, for example, 310 to 1000, and more preferably 350 to 900.
  • the weight average molecular weight of the (meth) acrylic / epoxy-containing compound can be measured (in terms of polystyrene) by, for example, gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the total amount of the (meth) acrylic / epoxy-containing compound is preferably 30 to 80% by mass, more preferably 40 to 70% by mass, based on the total amount of the polymerizable compound.
  • the amount of the (meth) acrylic / epoxy-containing compound is 30% by mass or more, the compatibility between the curable monomer and the epoxy compound tends to increase.
  • the amount of the (meth) acrylic / epoxy-containing compound is 80% by mass or less, the above-mentioned initial Young's modulus and Young's modulus after PCT tend to be in a desired range.
  • the polymerizable compound further contains the curable monomer represented by the general formula (1) described in the section of the first sealant, the initial Young's modulus of the cured product of the sealant and the Young's modulus after PCT However, it tends to fall within the above range.
  • the molecular weight (or weight average molecular weight) of the curable monomer represented by the above general formula (1) is preferably 700 or more, more preferably 750 to 1300.
  • the molecular weight (or weight average molecular weight) of the curable monomer is 700 or more, the cured product of the curable monomer becomes flexible, and the effect of absorbing the stress generated at the interface between the substrate and the sealing member becomes high.
  • the molecular weight of the curable monomer can be adjusted by the number of n, m, and p in the above general formula (1), that is, the amount of the structure derived from ethylene oxide or the structure derived from propylene oxide.
  • the weight average molecular weight of the curable monomer can be specified (in terms of polystyrene) by, for example, gel permeation chromatography (GPC).
  • the total amount of the curable monomer is preferably 10% by mass or more and 30% by mass or less, and more preferably 10% by mass or more and 20% by mass or less with respect to the total amount of the polymerizable compound. If the amount of curable monomer is excessively large, the curable monomer may affect the display characteristics of the liquid crystal display panel. On the other hand, when the amount of the curable monomer is 30% by mass or less, the display characteristics of the liquid crystal display panel tend to be good. On the other hand, when the amount of the curable monomer is 10% by mass or more, the above-mentioned initial Young's modulus and post-PCT Young's modulus tend to fall within the above ranges.
  • the polymerizable compound preferably further contains a (meth) acrylic compound having a structure other than the curable monomer in addition to the epoxy compound and the curable monomer.
  • a (meth) acrylic compound When the polymerizable compound contains a (meth) acrylic compound, the adhesive strength between the substrate and the sealing member tends to be good, and the display characteristics of the liquid crystal display panel tend to be good.
  • the (meth) acrylic compound contained in the polymerizable compound of the present embodiment is a compound containing one or more (meth) acrylic groups in one molecule and does not have an epoxy group (however, as described above). Except for curable monomers).
  • the (meth) acrylic compound may be a monomer, an oligomer, or a polymer.
  • the number of (meth) acrylic groups contained in one molecule of the (meth) acrylic compound is preferably 2 or more.
  • the photocurability of the sealant becomes good.
  • the (meth) acrylic compound is the same as the (meth) acrylic compound contained in the first sealant described above.
  • the glass transition temperature of the (meth) acrylic compound is preferably 25 ° C. or higher and lower than 200 ° C. from the viewpoint that the initial Young's modulus of the cured product of the sealant easily falls within a desired range.
  • the glass transition temperature is more preferably 40 ° C. to 200 ° C., further preferably 50 to 150 ° C.
  • the glass transition temperature is measured by a viscoelasticity measuring device (DMS).
  • the molecular weight (or weight average molecular weight) of the (meth) acrylic compound is preferably 310 to 1000, more preferably 400 to 900.
  • the weight average molecular weight of the (meth) acrylic compound can be measured (in terms of polystyrene) by, for example, gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the amount of the (meth) acrylic compound is preferably 5 to 70% by mass, more preferably 10 to 50% by mass, based on the total amount of the polymerizable compound.
  • the amount of the (meth) acrylic compound is 5% by mass or more, the photocurability of the sealant tends to be good.
  • the amount of the (meth) acrylic compound is 70% by mass or less, the moisture resistance of the obtained sealing member tends to be good.
  • the total amount of the polymerizable compound (total amount of epoxy group compound, (meth) acrylic / epoxy-containing compound, curable monomer, (meth) acrylic compound, etc.) is 60 to 80% by mass based on the total amount of the sealant. Is preferable, and 65 to 75% by mass is more preferable.
  • the polymerizable compound is contained in the sealant in the above range, the curability of the sealant becomes good, and a seal member having higher strength can be obtained.
  • the sealing agent contains a thermosetting agent.
  • the thermosetting agent is a component capable of curing the above-mentioned polymerizable compound, particularly an epoxy compound or a (meth) acrylic / epoxy-containing compound by heating, and is a sealing agent with respect to the number of epoxy groups in the above-mentioned sealing agent.
  • the ratio of the number of active hydrogens derived from the thermosetting agent is not particularly limited as long as it is 0.25 or more.
  • the thermosetting agent does not cure the above-mentioned epoxy compounds or (meth) acrylic / epoxy-containing compounds under normal storage conditions (room temperature, visible light, etc.), but it is a compound that cures these compounds by heating. Is preferable. According to the sealing agent containing such a thermosetting agent, both storage stability and thermosetting property can be achieved at the same time.
  • the active hydrogen equivalent of the thermosetting agent is preferably 10 to 500, more preferably 100 to 300.
  • the active equivalent of the thermosetting agent is in the above range, it becomes easy to satisfy the ratio of the number of active hydrogens derived from the thermosetting agent in the sealant to the number of epoxy groups in the sealant described above.
  • thermosetting agent an epoxy curing agent similar to the epoxy curing agent contained in the first sealing agent described above is preferable.
  • the melting point of the epoxy curing agent is preferably 50 ° C. or higher and 250 ° C. or lower, more preferably 100 ° C. or higher and 200 ° C. or lower, from the viewpoint of enhancing the viscosity stability of the sealing agent and not impairing the moisture resistance of the obtained sealing member. More preferably, it is 150 ° C. or higher and 200 ° C. or lower.
  • the sealing agent can be made one-component curable. When the sealing agent is one-component curable, workability is excellent because it is not necessary to mix the main agent and the curing agent at the time of use.
  • the structure of the epoxy curing agent is the same as the structure of the epoxy curing agent contained in the first sealant described above.
  • an imidazole-based thermal latent curing agent, an amine adduct-based thermal latent curing agent, or a polyamine-based thermal latent curing agent is preferable from the viewpoint of availability, compatibility with other components, and the like.
  • the sealant may contain only one type of epoxy curing agent, or may contain two or more types of sealant.
  • the content of the thermosetting agent is preferably 1 to 20% by mass, more preferably 2 to 18% by mass, still more preferably 3 to 15% by mass, based on the total amount of the sealing agent.
  • the amount of the thermosetting agent is in the above range, the thermosetting property of the sealing agent becomes good.
  • the sealant preferably contains a curing catalyst.
  • the curing catalyst may be any compound that functions as a catalyst when the above-mentioned polymerizable compound is polymerized or crosslinked. Examples of the curing catalyst include an imidazole-based curing catalyst, an amine adduct-based curing catalyst, a modified amine-based curing catalyst, and the like.
  • imidazole-based curing catalysts examples include 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-hydroxymethylimidazole, 1-benzyl-5-hydroxymethylimidazole. , 1,2-Dihydroxyethylimidazole, 1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione and 6- [2- (2-methyl-1H-imidazole-1-yl)) Ethyl] -1,3,5-triazine-2,4-diamine and the like are included.
  • Examples of amine adduct-based curing catalysts include Amicure PN-23 (manufactured by Ajinomoto Fine-Techno Co., Ltd.) and the like.
  • Examples of the modified amine-based curing catalyst include Fujicure FXR-1020, FXR-1081, FXR-1121, FXR-1032, FXR-1131 (all manufactured by Fuji Kasei Kogyo Co., Ltd.) and the like.
  • the melting point of the curing catalyst is preferably 100 ° C. or higher, more preferably 140 to 300 ° C.
  • the melting point of the curing catalyst is 100 ° C. or higher, the storage stability of the sealant tends to be good.
  • the content of the curing catalyst is preferably 0.1 to 20% by mass, more preferably 0.2 to 15% by mass, and even more preferably 0.3 to 13% by mass with respect to the total amount of the sealant.
  • the amount of the curing catalyst is in the above range, the curing of the sealant becomes good.
  • the sealant preferably further contains coated particles.
  • the coated particles in the present specification are particles having a core composed of inorganic particles and a polymer layer covering the core, and have a functional group containing an epoxy group and / or a carbon-carbon double bond on the surface.
  • Examples of carbon-carbon double bonds include vinyl groups, allyl groups, and (meth) acrylic groups.
  • the polymer layer may completely cover the core, but may only partially cover it. However, the coverage is preferably 50% or more, more preferably 80% or more.
  • the number of epoxy groups per 1 g of the coated particles is preferably 1 to 300 ⁇ eq / g. From the viewpoint of storage stability, the above value is preferably 1 to 150 ⁇ eq / g. Further, from the viewpoint of improving the adhesive strength, the above value is preferably 5 to 300 ⁇ eq / g.
  • the amount of epoxy group can be specified by a known measurement method.
  • the number of functional groups having a carbon-carbon double bond per 1 g of the coated particles is preferably 1 to 300 ⁇ eq / g. Within this range, the storage stability of the sealant becomes good.
  • the method for measuring the functional group equivalent having a carbon-carbon double bond is not particularly limited, and one example thereof is the iodine value method (14th revised Japanese Pharmacopoeia General Test Method 65. Oil and Fat Test Method).
  • the average particle size of the coated particles is preferably 0.2 ⁇ m to 10 ⁇ m, more preferably 0.2 to 5 ⁇ m, and even more preferably 0.2 to 3 ⁇ m.
  • the thickness of the polymer layer in the coated particles is preferably 0.001 to 1 ⁇ m, more preferably 0.001 to 0.5 ⁇ m. When the thickness of the polymer layer is within the above range, the affinity between the coated particles and the above-mentioned polymerizable compound is enhanced, not only the coatability of the sealing agent is improved, but also the deformation of the obtained sealing member can be suppressed.
  • the thickness of the polymer layer can be specified from the average particle size of the core and the average particle size of the coated particles.
  • the average thickness of the polymer layer (average particle size of coated particles-average particle size of core) / 2.
  • the average particle size of the core and the average particle size of the coated particles can be specified by a laser method particle size measuring device using a laser having a wavelength of 632.8 nm, and are average values when the average particle size of the primary particles is measured 10 times. And.
  • Examples of cores of coated particles include crystalline silica, molten silica, silica obtained by the precipitation method, silica obtained by the sol-gel method, calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, zirconium silicate, and zirconium dioxide.
  • silica and titania silica Includes composite oxides of silica such as zirconia and other metals.
  • silicas such as crystalline silica having excellent thermal stability, fused silica, and silica obtained by the sol-gel method are more preferable.
  • the core may be hydrophobized.
  • Examples of the hydrophobic treatment include a method of treating the core material with a hydrophobic surface treatment agent such as cyclic siloxane, silane coupling agent, titanate-based coupling agent, and hexaalkyl disilazane.
  • a hydrophobic surface treatment agent such as cyclic siloxane, silane coupling agent, titanate-based coupling agent, and hexaalkyl disilazane.
  • cyclic siloxane such as hexamethylcyclotrisiloxane or hexaalkyldisilazane such as hexamethyldisilazane
  • the hygroscopicity of the obtained sealing member tends to be lowered.
  • the polymer layer can be formed by radical polymerization of a monomer having a radically polymerizable functional group in the presence of the core.
  • a monomer having a radically polymerizable functional group epoxy acrylate having a carbon-carbon double bond, a polyfunctional carbon-carbon double bond compound, etc.
  • the monomer may be radically polymerized to form a polymer layer.
  • a functional group on the core and a monomer having a radically polymerizable functional group are grafted by a dealcohol condensation reaction or the like. They may be bonded to form a polymer layer. Further, a compound having a carbon-carbon double bond such as an acrylic silane compound is reacted with the core, and then a monomer having a radically polymerizable functional group (epoxy acrylate having a carbon-carbon double bond or polyfunctional carbon-carbon) is reacted. A method in which a double bond compound) is further reacted to form a core layer is particularly preferable.
  • a polymer obtained by polymerizing a polyfunctional carbon-carbon double bond compound is referred to as a crosslinked polymer.
  • the polymer layer described above preferably contains a crosslinked polymer.
  • thermosetting agent and a photopolymerization initiator are used together with an epoxy acrylate having a carbon-carbon double bond and a polyfunctional carbon-carbon double bond compound, which are monomers having a radically polymerizable functional group. May be used. These can be the same as the thermosetting agent and the photopolymerization initiator contained in the sealant. The amount thereof is also appropriately selected according to the desired polymer layer.
  • Propyltrimethoxysilane and the like are included.
  • Examples of the epoxy acrylate used when forming the polymer layer include glycidyl (meth) acrylate, glycidoxystyrene, glycidoxymethylstyrene, glycidoxyethylstyrene and the like.
  • the polyfunctional carbon-carbon double bond compound used when forming the polymer layer is a compound having two or more carbon-carbon double bonds, and examples thereof include divinylbenzene and divinylbiphenyl.
  • Aromatic vinyl-based monomers such as polyfunctional aromatic vinyl compounds such as trivinylbenzene and divinylnaphthalene; ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth).
  • a monomer other than epoxy acrylate or a polyfunctional carbon-carbon double bond compound may be used in combination.
  • examples of other monomers include aromatic vinyl-based monomers such as styrene, vinyltoluene, 2,4-dimethylstyrene, p-tert-butylstyrene, vinylnaphthalene; methyl (meth) acrylate, (meth) acrylic.
  • the content of the coating particles is preferably 0.1 to 30% by mass, more preferably 3 to 20% by mass, still more preferably 5 to 20% by mass, based on the total amount of the sealant. When the amount of the coating particles is in the above range, the moisture resistance of the sealant becomes good.
  • the sealant preferably contains a photopolymerization initiator.
  • the photopolymerization initiator may be a self-cleaving type photopolymerization initiator or a hydrogen abstraction type photopolymerization initiator as long as it is a compound capable of generating an active species by irradiation with light. ..
  • the sealing agent may contain only one kind of photopolymerization initiator, or may contain two or more kinds of photopolymerization initiators.
  • photopolymerization initiator contained in the sealant of the present embodiment are the same as those of the photopolymerization initiator contained in the first sealant described above.
  • the absorption wavelength of the photopolymerization initiator is not particularly limited, and for example, a photopolymerization initiator that absorbs light having a wavelength of 360 nm or more is preferable. Among them, it is more preferable to absorb light in the visible light region, a photopolymerization initiator that absorbs light having a wavelength of 360 to 780 nm is more preferable, and a photopolymerization initiator that absorbs light having a wavelength of 360 to 430 nm is particularly preferable.
  • Examples of the photopolymerization initiator that absorbs light having a wavelength of 360 nm or more include an alkylphenone-based compound, an acylphosphine oxide-based compound, a titanosen-based compound, an oxime ester-based compound, a thioxanthone-based compound, and an anthraquinone-based compound, and are preferable. It is an alkylphenone-based compound or an oxime ester-based compound.
  • the structure of the photopolymerization initiator can be specified by the above method.
  • the molecular weight of the photopolymerization initiator is preferably 200 or more and 5000 or less, for example.
  • the molecular weight of the photopolymerization initiator is 200 or more, it is difficult for the photopolymerization initiator to elute into the liquid crystal display when the sealant and the liquid crystal display come into contact with each other.
  • the molecular weight is 5000 or less, the compatibility with the above-mentioned (meth) acrylic compound and the like is enhanced, and the curability of the sealant tends to be improved.
  • the molecular weight of the photopolymerization initiator is more preferably 230 or more and 3000 or less, and further preferably 230 or more and 1500 or less.
  • the molecular weight of the photopolymerization initiator can be determined by the method described above.
  • the amount of the photopolymerization initiator is preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass, still more preferably 1 to 10% by mass, based on the total amount of the sealant.
  • the amount of the photopolymerization initiator is 0.1% by mass or more, the photocurability of the sealant tends to be good.
  • the amount of the photopolymerization initiator is 15% by mass or less, it becomes difficult for the photopolymerization initiator to elute into the liquid crystal display.
  • the organic particle sealant may further contain organic particles, if necessary. When the sealant contains organic particles, it becomes easy to adjust the Young's modulus of the sealant and the like.
  • organic particles examples include silicone particles, acrylic particles, styrene particles such as a styrene / divinylbenzene copolymer, and polyolefin particles.
  • the sealing agent may contain only one kind of organic particles, or may contain two or more kinds of organic particles.
  • the average primary particle size of the organic particles is preferably 0.05 to 13 ⁇ m, more preferably 0.1 to 10 ⁇ m, and even more preferably 0.1 to 8 ⁇ m.
  • the shape of the organic particles is not particularly limited, but is preferably spherical, and more preferably true spherical.
  • the average primary particle size of the organic particles can be specified by the method described above.
  • the content of the organic particles is preferably 0.1 to 20% by mass, more preferably 1 to 15% by mass, still more preferably 3 to 13% by mass, based on the total amount of the sealant.
  • the amount of organic particles is in the above range, the elastic modulus of the sealant after photocuring tends to be within a desired range.
  • the sealant may further contain inorganic particles.
  • the sealing agent contains inorganic particles, the viscosity of the sealing agent, the strength of the obtained sealing member, the linear expansion property, and the like tend to be improved.
  • the content of the inorganic particles is preferably 0.1 to 25% by mass, more preferably 3 to 20% by mass, still more preferably 5 to 18% by mass, based on the total amount of the sealant.
  • the content of the inorganic particles is 0.1% by mass or more, the moisture resistance of the obtained sealing member tends to increase, and when it is 25% by mass or less, the coating stability of the sealing agent is not easily impaired.
  • the sealant of the present embodiment is a thermal radical polymerization initiator, a coupling agent such as a silane coupling agent, an ion trapping agent, an ion exchanger, a leveling agent, a pigment, a dye, and a sensitizer, if necessary.
  • a coupling agent such as a silane coupling agent, an ion trapping agent, an ion exchanger, a leveling agent, a pigment, a dye, and a sensitizer, if necessary.
  • Plasticizers, antifoaming agents and the like may be further included.
  • silane coupling agents examples include vinyltrimethoxysilane, ⁇ - (meth) acryloxipropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and the like.
  • the amount of the silane coupling agent is preferably 0.01 to 6% by mass, more preferably 0.1 to 5% by mass, still more preferably 0.5 to 3% by mass, based on the total amount of the sealing agent.
  • the content of the silane coupling agent is 0.01% by mass or more, the obtained sealing member tends to have sufficient adhesiveness.
  • the sealant may further contain a spacer or the like for adjusting the gap of the liquid crystal display panel.
  • the total amount of other components is preferably 1 to 50% by mass with respect to the total amount of the sealant.
  • the viscosity of the sealant is unlikely to increase excessively, and the coating stability of the sealant is unlikely to be impaired.
  • the viscosity of the E-type viscometer of the sealing agent at 25 ° C. and 2.5 rpm is preferably 200 to 450 Pa ⁇ s, more preferably 250 to 400 Pa ⁇ s.
  • the viscosity is in the above range, when a pair of substrates are superposed on each other via a sealant (seal pattern), the sealant is likely to be deformed so as to fill these gaps. Therefore, the gap between the pair of substrates of the liquid crystal display panel can be appropriately controlled.
  • the thixotropy index (TI value) of the sealant is preferably 1.0 to 1.5, more preferably 1.1 to 1.3, from the viewpoint of the coatability of the sealant.
  • the TI value is determined by using an E-type viscometer, the viscosity of the sealant at room temperature (25 ° C.) and 0.5 rpm is ⁇ 1, and the viscosity of the sealant at 5 rpm is ⁇ 2. It is a value obtained by applying to.
  • TI value (viscosity ⁇ 1 (25 ° C) at 0.5 rpm) / (viscosity ⁇ 2 (25 ° C) at 5 rpm) ... (1)
  • the liquid crystal display panel of the present invention includes a pair of substrates, a frame-shaped seal member arranged between the substrates, and a liquid crystal filled between the pair of substrates and inside the frame-shaped seal member.
  • the sealing member is a cured product of the above-mentioned sealing agent.
  • the sealing member obtained from the above-mentioned first sealing agent or the second sealing agent has high adhesive strength with the substrate, and even if the sealing member is thinned, liquid crystal leakage or the like is unlikely to occur. Further, the sealing agent is less likely to contaminate the liquid crystal display. Therefore, afterimages and the like are unlikely to occur when the liquid crystal display panel is used.
  • the pair of substrates are both transparent substrates.
  • transparent substrate materials include glass or polycarbonate, polyethylene terephthalate, polyether sulfone, PMMA and the like.
  • a matrix-shaped TFT, a color filter, a black matrix, etc. are arranged on the surface of the display board or the facing board.
  • An alignment film is further formed on the surface of the display substrate or the facing substrate.
  • the alignment film includes known organic alignment agents, inorganic alignment agents, and the like. Further, a known liquid crystal can be used as the liquid crystal.
  • the liquid crystal display panel manufacturing method generally includes a liquid crystal dropping method and a liquid crystal injection method, but the liquid crystal display panel manufacturing method of the present invention is preferably the liquid crystal dropping method.
  • the method for manufacturing a liquid crystal display panel by the liquid crystal dropping method is as follows: 1) a seal pattern forming step of applying the above-mentioned sealant to one substrate to form a frame-shaped seal pattern, and 2) a state in which the seal pattern is uncured. Then, the liquid crystal is dropped on one substrate and in the region surrounded by the seal pattern, or on the other substrate and in the region surrounded by the seal pattern when the other substrate and one substrate are opposed to each other. It includes a step, 3) a superposition step of superimposing one substrate and the other substrate via a seal pattern, and 4) a curing step of curing the seal pattern.
  • the above-mentioned sealant is applied to one of the substrates.
  • the method of applying the sealant is not particularly limited, and is not particularly limited as long as it is a method capable of forming a seal pattern with a desired thickness and width, such as screen printing or application with a dispenser, and a known method of applying the sealant. Is similar to.
  • the shape of the seal pattern to be formed may be appropriately selected according to the application of the liquid crystal display panel, etc., and may be a shape in which the liquid crystal does not leak. For example, it may have a rectangular frame shape, but is not limited to the shape.
  • the line width of the seal pattern is preferably 0.2 to 1.0 mm, more preferably 0.2 to 0.5 mm.
  • the pair of substrates are opposed to each other with the seal pattern uncured.
  • the state in which the seal pattern is uncured means a state in which the curing reaction of the sealant has not progressed to the gel point.
  • the seal pattern may be semi-cured by irradiating or heating the seal pattern in order to suppress the dissolution of the sealant in the liquid crystal.
  • the method of dropping the liquid crystal is the same as the known method of dropping the liquid crystal, and the liquid crystal may be dropped on the substrate on which the seal pattern is formed, and the liquid crystal may be dropped on the substrate on which the seal pattern is not formed (the other substrate). May be dropped.
  • one substrate and the other substrate are overlapped so as to face each other via a seal pattern. At this time, the gap between the substrates is controlled to be within a desired range.
  • the seal pattern is cured.
  • the method for curing the seal pattern is not particularly limited, but it is preferable that the seal pattern is temporarily cured by irradiation with light having a predetermined wavelength and then finally cured by heating. By light irradiation, the seal pattern can be instantly cured, and the components in the sealant can be suppressed from being dissolved in the liquid crystal display.
  • the wavelength of the light to be irradiated is appropriately selected according to the type of the photopolymerization initiator, and light containing visible light is preferable.
  • the light irradiation time is, for example, about 10 minutes, although it depends on the composition of the sealant.
  • the amount of energy to be irradiated at this time may be an amount of energy sufficient to cure the (meth) acrylic compound or the (meth) acrylic / epoxy-containing compound.
  • the epoxy compound or the (meth) acrylic / epoxy-containing compound may be cured by heating.
  • the heating temperature depends on the composition of the sealant, but is, for example, 100 to 150 ° C., and the heating time is preferably about 2 hours.
  • Epoxy compound 1 JER, Epicoat 1004, softening point 97 ° C., epoxy equivalent: 900, weight average molecular weight: 1650
  • Epoxy compound 2 ADEKA, EP-4003S, epoxy equivalent: 470, weight average molecular weight: 940
  • Acrylic modified epoxy compound manufactured by KSM, BAEM-50, epoxy equivalent: about 470 (estimated)
  • Thermosetting agent Thermosetting agent 1 ADEKA, EH-4357S, polyamine type, melting point 75 to 85 ° C, solubility in water: insoluble, amino group equivalent: 0.013
  • Thermosetting agent 2 Made by Japan Finechem Company, Inc., dihydrazide malonic acid (MDH), melting point 150-160 ° C., solubility in water: 10 g / 100 g, amino group equivalent: 0.045
  • Photopolymerization initiator 1 BASF, Irgacure 651
  • Photopolymerization Initiator 2 Omnipol-TX, manufactured by IGM Regins
  • Epoxy compound 2 100 parts by mass, acrylic modified epoxy compound 495 parts by mass, acrylic compound 60 parts by mass, curable monomer (A-1) prepared in Synthesis Example 1 80 parts by mass, heat curing agent 30 parts by mass, inorganic particles 120 parts by mass Parts, 100 parts by mass of acrylic thermoplastic polymer particles, 10 parts by mass of silane coupling agent, and 10 parts by mass of photopolymerization initiator are sufficiently mixed using three rolls so as to form a uniform liquid, and the liquid crystal is dropped. A sealant for the construction method was obtained.
  • Examples 1-2 to 1-10 and Comparative Examples 1-1 to 1-5 A sealant for the liquid crystal dropping method was obtained in the same manner as in Example 1-1, except that the type and amount of each component were changed as shown in Table 1.
  • the obtained sealant for the liquid crystal dropping method was applied on a paper pattern to a thickness of 100 ⁇ m using an applicator. Then, the film was placed in a container for nitrogen replacement, subjected to nitrogen purging for 5 minutes , irradiated with light of 3000 mJ / cm 2 (light calibrated by a sensor having a wavelength of 365 nm), and further heated at 120 ° C. for 1 hour to form a film. Made.
  • the Young's modulus of the obtained film was 25 ° C to 170 ° C by cutting the obtained cured film with scissors having a length of 35 mm and a width of 10 mm and using a dynamic viscoelasticity measuring device (DMA, manufactured by Seiko Instruments Inc., DMS6100). It was measured by raising the temperature to. Then, among the obtained results, the value of the storage elastic modulus at 120 ° C. was defined as the initial Young's modulus.
  • DMA dynamic viscoelasticity measuring device
  • the film prepared in the same manner as above was placed in a PCT testing machine (PC-422R8D manufactured by Hirayama Seisakusho Co., Ltd.) and exposed to a environment of 121 ° C. and 100% Rh for 24 hours. Then, after the temperature was lowered to room temperature, the film was taken out and measured using a dynamic viscoelasticity measuring device in the same manner as described above. Then, among the obtained results, the value of the storage elastic modulus at 120 ° C. was defined as the Young's modulus after PCT.
  • a 38 mm ⁇ 38 mm quadrangle (frame shape) was applied onto a PIN (manufactured by EHC) to form a seal pattern (cross-sectional area 2500 ⁇ m 2).
  • the paired glass substrates were bonded under reduced pressure so as to be perpendicular to the glass substrate on which the seal pattern was formed, and then the glass substrates were opened to the atmosphere and bonded.
  • the two laminated glass substrates are held in a light-shielding box for 1 minute , then irradiated with light containing visible light of 3000 mJ / cm 2 (light having a wavelength of 370 to 450 nm), and further heated at 120 ° C. for 1 hour. The seal was cured.
  • the bonded glass substrate was placed in a PCT testing machine (PC-422R8D manufactured by Hirayama Seisakusho Co., Ltd.), exposed to a temperature of 121 ° C. and 100% Rh for 24 hours, and then taken out after the temperature dropped to room temperature for testing. I got a piece.
  • PCT testing machine PC-422R8D manufactured by Hirayama Seisakusho Co., Ltd.
  • the portion 4.5 mm from the outer circumference of the seal pattern of the obtained test piece was vertically pressed at a speed of 5 mm / min using an indentation tester (Model 210 manufactured by Intesco), and the stress when the seal was peeled off was measured. ..
  • the adhesive strength was determined by dividing the stress by the seal line width drawn with the liquid crystal sealant. Then, it was evaluated according to the following criteria. ⁇ : Peeling at 25 N / mm or more ⁇ : Peeling at 15 N / mm or more and less than 25 N / mm ⁇ : Peeling at less than 15 N / mm
  • the above-mentioned sealant for the liquid crystal dripping method was used with a dispenser (Musashi Engineering Co., Ltd., Shotmaster) to form a transparent electrode and an alignment film in advance on a 40 mm x 45 mm glass substrate (EHC Co., Ltd., RT-).
  • a 35 mm ⁇ 35 mm quadrangular (frame-shaped) seal pattern (cross-sectional area 3500 ⁇ m 2 ) was formed on the DM88-PIN) as a main seal, and a 38 mm ⁇ 38 mm quadrangular (frame-shaped) seal pattern was formed on the outer periphery thereof.
  • a liquid crystal material (MLC-6609-000 manufactured by Merck & Co., Inc.) corresponding to the capacity of the panel after bonding was precisely dropped into the frame of the main seal using a dispenser.
  • the paired glass substrates were bonded under reduced pressure, and then opened to the atmosphere for bonding.
  • the main seal is masked with a substrate coated with a 36 mm ⁇ 36 mm square black matrix, and visible light of 500 mJ / cm 2 is emitted.
  • the main seal was cured by irradiating the contained light (light having a wavelength of 370 to 450 nm) and further heating at 120 ° C. for 1 hour.
  • a polarizing film was attached to both sides of the obtained liquid crystal cell to obtain a liquid crystal display panel.
  • the evaluation was performed as follows.
  • When the liquid crystal is oriented up to the main seal of the liquid crystal display panel and there is no color unevenness ⁇ : When color unevenness occurs in the vicinity of the main seal over a range of less than 1 mm ⁇ : 1 mm from the vicinity of the main seal When color unevenness occurs over the above range
  • the difference is, when it exceeds 8.0 ⁇ 10 7 Pa (Comparative Example with the case (Comparative Example 1-3), or PCT after Young's modulus and the initial Young's modulus of the initial Young's modulus of more than 1.0 ⁇ 10 8 1-1, 1-2, 1-4, and 1-5) all had low adhesive strength after PCT.
  • the curable monomer represented by the above general formula (1) was not contained, the display characteristics were also low (Comparative Examples 1-2, 1-3).
  • the coated particles had an epoxy group on the surface.
  • the thickness of the polymer layer of the coated particles was 0.009 ⁇ m.
  • Epoxy compound 1 JER, Epicoat 1004, softening point 97 ° C., epoxy equivalent: 900, weight average molecular weight: 1650
  • Epoxy compound 2 ADEKA, EP-4003S, epoxy equivalent: 470, weight average molecular weight: 940
  • Acrylic modified epoxy compound manufactured by KSM, BAEM-50, epoxy equivalent: about 470 (estimated)
  • Admatex SO-C1
  • Epoxy compound 2 80 parts by mass, acrylic modified epoxy compound 510 parts by mass, acrylic compound 60 parts by mass, curable monomer (A-1) prepared in Synthesis Example 1 80 parts by mass, heat curing agent 30 parts by mass, inorganic particles 120 parts by mass Parts, 100 parts by mass of organic particles, 10 parts by mass of silane coupling agent, and 10 parts by mass of photopolymerization initiator are sufficiently mixed using three rolls so as to form a uniform liquid to prepare a sealant for the liquid crystal dropping method. Obtained.
  • Example 2-2 to 2-14 and Comparative Examples 2-1 to 2-5 A sealant for the liquid crystal dropping method was obtained in the same manner as in Example 2-1 except that the type and amount of each component were changed as shown in Table 2 or 3.
  • the obtained sealant for the liquid crystal dropping method was applied on a paper pattern to a thickness of 100 ⁇ m using an applicator. Then, the film was placed in a container for nitrogen replacement, subjected to nitrogen purging for 5 minutes , irradiated with light of 3000 mJ / cm 2 (light calibrated by a sensor having a wavelength of 365 nm), and further heated at 120 ° C. for 1 hour to form a film. Made.
  • the Young's modulus of the obtained film was 25 ° C to 170 ° C by cutting the obtained cured film with scissors having a length of 35 mm and a width of 10 mm and using a dynamic viscoelasticity measuring device (DMA, manufactured by Seiko Instruments Inc., DMS6100). It was measured by raising the temperature to. Then, among the obtained results, the value of the storage elastic modulus at 120 ° C. was defined as the initial Young's modulus.
  • DMA dynamic viscoelasticity measuring device
  • the film prepared in the same manner as above was placed in a PCT testing machine (PC-422R8D manufactured by Hirayama Seisakusho Co., Ltd.) and exposed to a environment of 121 ° C. and 100% Rh for 24 hours. Then, after the temperature was lowered to room temperature, the film was taken out and measured using a dynamic viscoelasticity measuring device in the same manner as described above. Then, among the obtained results, the value of the storage elastic modulus at 120 ° C. was defined as the Young's modulus after PCT.
  • the two laminated glass substrates are held in a light-shielding box for 1 minute , then irradiated with light containing visible light of 3000 mJ / cm 2 (light having a wavelength of 370 to 450 nm), and further heated at 120 ° C. for 1 hour. The seal was cured.
  • the bonded glass substrate was placed in a PCT testing machine (PC-422R8D manufactured by Hirayama Seisakusho Co., Ltd.), exposed to a temperature of 121 ° C. and 100% Rh for 24 hours, and then taken out after the temperature dropped to room temperature for testing. I got a piece.
  • PCT testing machine PC-422R8D manufactured by Hirayama Seisakusho Co., Ltd.
  • the portion 4.5 mm from the outer circumference of the seal pattern of the obtained test piece was vertically pressed at a speed of 5 mm / min using an indentation tester (Model 210 manufactured by Intesco), and the stress when the seal was peeled off was measured. ..
  • the adhesive strength was determined by dividing the stress by the seal line width drawn with the liquid crystal sealant. Then, it was evaluated according to the following criteria. ⁇ : Peeling at 25 N / mm or more ⁇ : Peeling at 15 N / mm or more and less than 25 N / mm ⁇ : Peeling at less than 15 N / mm
  • Viscosity increase rate B / A x 100 ⁇ : Viscosity increase rate is 120% or less ⁇ : Viscosity increase rate is more than 120%
  • Examples 2-11 and 2-14 the adhesive strength was particularly high and the amount of moisture permeation was also low. Further, even when coated particles were contained, the adhesive strength was improved and the amount of moisture permeation was reduced (Examples 2-12 to 2-14).
  • the cured product of the sealant of the present invention has high adhesive strength with the substrate even after being stored in a high temperature and high humidity environment. Therefore, the sealant is very useful as a sealant or the like for producing a seal member for various liquid crystal display panels.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mathematical Physics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Material Composition (AREA)

Abstract

高温高湿環境に晒されても、基板と良好な接着強度を有するシール部材を形成可能な液晶滴下工法用シール剤、およびこれを用いた液晶表示パネル、ならびにその製造方法を提供することを課題とする。 上記課題を解決する液晶滴下工法用シール剤は、液晶滴下工法に使用する。前記液晶滴下工法用シール剤を厚み1000μmの膜状にし、3000mJ/cm2の光を照射し、120℃で1時間加熱してフィルムを形成したとき、動的粘弾性測定装置で測定される、前記フィルムの120℃における初期ヤング率が1.0×108Pa以下であり、かつ前記フィルムを121℃、100%Rh環境下で24時間保存後に動的粘弾性測定装置で測定される、前記フィルムの120℃におけるPCT後ヤング率と、前記初期ヤング率との差が、8.0×107Pa以下である。

Description

液晶滴下工法用シール剤および液晶表示パネルの製造方法、ならびに液晶表示パネル
 本発明は、液晶滴下工法用シール剤および液晶表示パネルの製造方法、ならびに液晶表示パネルに関する。
 従来、一対の基板間に液晶を封止する方法として、液晶滴下工法が広く用いられてきた。液晶滴下工法によって液晶表示パネルを製造する場合、シール剤を塗布してシールパターンを形成する。そして、シールパターンを形成した基板、もしくはこれと対になる基板上に液晶を滴下し、真空で貼り合わせる。その後、UV照射したり、加熱したりすることでシールパターンを硬化させ、シール部材によって液晶を封止する。
 ここで、上記液晶滴下工法用シール剤に用いるシール剤として、多種多様な組成物が提案されている。例えば、柔軟性の高いシール部材を形成可能な、シール剤等も提案されている(例えば、特許文献1および2)。
特開2017-197731号公報 特開2015-206997号公報
 近年、タブレット端末や携帯端末の普及に伴って、液晶表示パネルが様々な環境下で使用されている。例えば、高温高湿環境下で液晶表示パネルを使用すること等も求められている。しかしながら、従来の液晶表示パネルは、通常の環境下では基板とシール部材との接着強度が高かったとしても、高温高湿に晒されると、これらの接着強度が低下しやすい、という課題があった。上述の特許文献1や特許文献2に記載されているような、柔軟性の高いシール部材であっても、高温高湿試験後に基板と十分な接着強度を維持することは難しかった。
 そこで、通常の環境下におけるシール部材と基板との接着強度をより高めることで、高温高湿環境保存時や保存後のシール部材と基板との剥離を抑制することが試みられていた。しかしながら、本発明者らが鋭意検討したところ、高温高湿環境保存時または保存後のシール部材および基板の接着強度と、通常の環境下でのシール部材および基板の接着強度とが、必ずしも相関しないことが明らかとなった。つまり、従来の手法では、高温高湿環境保存時や保存後におけるシール部材と基板との接着強度を良好にすることは難しかった。また、従来のシール部材では、高温高湿環境下における耐湿性が不十分なことがあり、液晶表示パネルに不具合が生じることがあった。
 本発明は、上記課題を鑑みてなされたものである。具体的には、高温高湿環境に晒されても、基板と良好な接着強度を有するシール部材を形成可能な液晶滴下工法用シール剤、およびこれを用いた液晶表示パネル、ならびにその製造方法を提供する。また、高温高湿環境に晒されても、基板と良好な接着強度を有し、かつ耐湿性の高いシール部材を形成可能な液晶滴下工法用シール剤、およびこれを用いた液晶表示パネル、ならびにその製造方法も提供する。
 本発明は、以下の第1の液晶滴下工法用シール剤を提供する。
 [1]液晶滴下工法に使用する、液晶滴下工法用シール剤であって、前記液晶滴下工法用シール剤を厚み100μmの膜状にし、3000mJ/cmの光を照射し、120℃で1時間加熱してフィルムを形成したとき、動的粘弾性測定装置で測定される、前記フィルムの120℃における初期ヤング率が1.0×10Pa以下であり、かつ前記フィルムを121℃、100%Rh環境下で24時間保存後に動的粘弾性測定装置で測定される、前記フィルムの120℃におけるPCT後ヤング率と、前記初期ヤング率との差が、8.0×10Pa以下である、液晶滴下工法用シール剤。
 [2]重合性官能基を有する重合性化合物を含み、前記重合性化合物は、下記一般式(1)で表される構造を有する硬化性モノマーを含む、[1]に記載の液晶滴下工法用シール剤。
Figure JPOXMLDOC01-appb-C000007
 (上記一般式(1)における、Rは、
Figure JPOXMLDOC01-appb-C000008
からなる群から選ばれる基(*は結合手を表す)を表し、
 RおよびRは、それぞれ独立に、
Figure JPOXMLDOC01-appb-C000009
からなる群から選ばれる基(*は結合手を表し、m、n、およびpは、1~30の整数を表す)を表し、RおよびRは、それぞれ独立に水素原子またはメチル基を表す)
 [3]前記硬化性モノマーの分子量が700以上である、[2]に記載の液晶滴下工法用シール剤。
 [4]前記重合性化合物の総量に対する前記硬化性モノマーの総量が、10質量%以上30質量%以下である、[2]または[3]に記載の液晶滴下工法用シール剤。
 [5](メタ)アクリル系熱可塑性ポリマー粒子をさらに含み、前記(メタ)アクリル系熱可塑性ポリマー粒子の量が、10質量%以上である、[2]~[4]のいずれかに記載の液晶滴下工法用シール剤。
 [6]イミダゾール系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、およびポリアミン系熱潜在性硬化剤からなる群より選ばれる少なくとも一種の熱硬化剤をさらに含む、[2]~[5]のいずれかに記載の液晶滴下工法用シール剤。
 本発明は、以下の第2の液晶滴下工法用シール剤を提供する。
 [7]重合性官能基を有する重合性化合物と、熱硬化剤と、を含む液晶滴下工法用シール剤であって、前記重合性化合物がエポキシ基系化合物を含み、前記液晶滴下工法用シール剤中の前記エポキシ系化合物由来のエポキシ基の数に対する、前記液晶滴下工法用シール剤中の前記熱硬化剤由来の活性水素の数の比率が0.25以上であり、前記液晶滴下工法用シール剤を厚み100μmの膜状にし、3000mJ/cmの光を照射し、120℃で1時間加熱してフィルムを形成したとき、動的粘弾性測定装置で測定される、前記フィルムの120℃における初期ヤング率が1.0×10Pa以下であり、かつ前記フィルムを121℃、100%Rh環境下で24時間保存後に動的粘弾性測定装置で測定される、前記フィルムの120℃におけるPCT後ヤング率と、前記初期ヤング率との差が、8.0×10Pa以下である、液晶滴下工法用シール剤。
 [8]前記重合性化合物が、下記一般式(1)で表される構造を有する硬化性モノマーをさらに含む、[7]に記載の液晶滴下工法用シール剤。
Figure JPOXMLDOC01-appb-C000010
 (上記一般式(1)における、Rは、
Figure JPOXMLDOC01-appb-C000011
からなる群から選ばれる基(*は結合手を表す)を表し、RおよびRは、それぞれ独立に、
Figure JPOXMLDOC01-appb-C000012
からなる群から選ばれる基(*は結合手を表し、m、nおよびpは、1~30の整数を表す)を表し、RおよびRは、それぞれ独立に水素原子またはメチル基を表す)
 [9]前記硬化性モノマーの分子量が700以上である、[8]に記載の液晶滴下工法用シール剤。
 [10]前記重合性化合物の総量に対する前記硬化性モノマーの総量が、10質量%以上30質量%以下である、[8]または[9]に記載の液晶滴下工法用シール剤。
 [11]硬化触媒をさらに含み、前記硬化触媒の融点が100℃以上である、[7]~[10]のいずれかに記載の液晶滴下工法用シール剤。
 [12]無機粒子からなるコアと、前記コアを覆うポリマー層とを有する被覆粒子をさらに含み、前記被覆粒子は、表面にエポキシ基および/または炭素-炭素二重結合を含む官能基を有する、[7]~[11]のいずれかに記載の液晶滴下工法用シール剤。
 [13]前記ポリマー層が、架橋型ポリマーを含む、[12]に記載の液晶滴下工法用シール剤。
 [14]前記被覆粒子の平均粒子径が0.2μm~10μmである、[12]または[13]に記載の液晶滴下工法用シール剤。
 本発明は、以下の液晶表示パネルの製造方法も提供する。
 [15]一対の基板の一方の基板上に、[1]~[14]のいずれかに記載の液晶滴下工法用シール剤を塗布し、シールパターンを形成する工程と、前記シールパターンが未硬化の状態において、前記一方の基板の前記シールパターンの領域内、または他方の基板上に液晶を滴下する工程と、前記一方の基板と前記他方の基板とを、前記シールパターンを介して重ね合わせる工程と、前記シールパターンを硬化させる工程と、を含む、液晶表示パネルの製造方法。
 [16]前記シールパターンを硬化させる工程において、前記シールパターンに光を照射する、[15]に記載の液晶表示パネルの製造方法。
 [17]前記光が、可視光を含む、[16]に記載の液晶表示パネルの製造方法。
 [18]前記シールパターンを硬化させる工程において、光を照射後、加熱する、[16]または[17]に記載の液晶表示パネルの製造方法。
 本発明は、以下の液晶表示パネルも提供する。
 [19]上記[1]~[14]のいずれかに記載の液晶滴下工法用シール剤の硬化物を含む、液晶表示パネル。
 本発明の第1の液晶滴下工法用シール剤は、高温高湿環境に晒されても、基板と良好な接着強度を有するシール部材を形成可能である。したがって、各種環境下で使用される液晶表示パネルに適用できる。また、本発明の第2の液晶滴下工法用シール剤は、高温高湿環境に晒されても、基板と良好な接着強度を有し、かつ耐湿性の高いシール部材を形成可能である。したがって、各種環境下で使用される液晶表示パネルに適用できる。
 1.液晶滴下工法用シール剤
 本発明の液晶滴下工法用シール剤(以下、単に「シール剤」とも称する)は、液晶表示パネルのシール部材を作製するための組成物であり、液晶滴下工法で液晶表示パネルを作製する場合に好適に用いられる。ただし、液晶注入工法等で液晶表示パネルを作製するためにも用いることができる。以下、2つの実施形態の液晶滴下工法用シール剤について説明する。
 1-1.第1の液晶滴下工法用シール剤
 上述のように、従来のシール剤から得られるシール部材は、高温高湿環境に晒されると、基板に対する接着強度が低下することが多かった。そして、このような接着強度低下が生じると、液晶漏れ等の不具合が生じやすかった。
 これに対し、本発明者らの鋭意検討によれば、シール剤の硬化物のヤング率を所定の範囲に調整することで、高温高湿環境下保存中または保存後に、シール部材と基板との接着強度を良好にできることが明らかとなった。具体的には、シール剤を所定の条件で硬化させたフィルムの120℃における初期ヤング率が1.0×10Pa以下であり、かつ100%Rh環境下で24時間保存した当該フィルムの120℃におけるPCT後ヤング率と、上記初期ヤング率との差が、8.0×10Pa以下である場合に、高温高湿環境に晒されても、シール部材が基板に対して優れた接着強度を有することが明らかとなった。
 その理由は、以下のように推察される。通常、シール剤の硬化物(シール部材)が高温高湿環境に晒されると、その熱によってシール部材が膨張したりして、シール部材と基板との界面に応力がかかる。また、高温高湿環境中の熱や水分によって、当該シール部材中の未反応成分(例えばエポキシ基等)どうしが反応したり、未反応成分が環境中の水分と反応したりして、シール部材の内部に歪みが生じる。そして、当該歪みによっても、シール部材と基板との界面に応力が生じやすく、シール部材と基板とが剥離しやすくなる。
 これに対し、本実施形態のように、シール剤の硬化物(シール部材)の120℃におけるヤング率(初期ヤング率)が1.0×10Pa以下であると、シール部材が比較的柔らかく、基板とシール部材との界面に生じる応力を吸収できる。さらに、高温高湿環境下に放置後のPCT後ヤング率と初期ヤング率との変化量が少ないことは、高温高湿環境下での状態変化が少ないこと、すなわちシール部材に生じる歪みが小さいことを表す。したがって、高温高湿環境下に保存中や保存後も、基板とシール部材とが、高い接着強度を維持できる。
 ここで、初期ヤング率は、以下のように測定される。まず、シール剤を離型紙上にアプリケーターを用いて100μmの厚みで塗布し、100μmの膜状とする。その後、窒素置換用の容器に入れて窒素パージを5分実施した後、3000mJ/cmの光(波長365nmセンサーで校正した光)を照射し、さらに120℃で1時間加熱して、フィルムを作製する。
 そして、得られたフィルムを長さ35mm、幅10mmにカットし、動的粘弾性測定装置(例えば、DMA、セイコーインスツル社製、DMS6100)により25℃から170℃まで昇温させて貯蔵弾性率を測定する。そして、得られた結果のうち、120℃での貯蔵弾性率を初期ヤング率とする。なお、上記初期ヤング率は、1.0×10~1.0×10Paがより好ましく、1.0×10~5.0×10Paがさらに好ましい。
 一方、PCT後ヤング率は、以下のように測定できる。まず、上記と同様に作製したフィルムを121℃、100%Rh環境下に24時間静置する。その後、室温まで温度を下げ、動的粘弾性測定装置(例えば、DMA、セイコーインスツル社製、DMS6100)により25℃から170℃まで昇温させて貯蔵弾性率を測定する。そして、得られた結果のうち、120℃での貯蔵弾性率をPCT後ヤング率とする。なお、PCT後ヤング率と、初期ヤング率との差は、8.0×10Pa以下がより好ましく、7.0×10Pa以下がさらに好ましい。
 ここで、上記初期ヤング率や、PCT後ヤング率が上記範囲になるように調整するためには、シール剤の組成を調整すればよい。本発明のシール剤は、重合性官能基を有する重合性化合物や、光重合開始剤、熱硬化剤、(メタ)アクリル熱可塑性粒子等を含むことが好ましい。以下、シール剤を構成する成分について詳しく説明する。
 (1)重合性化合物
 本実施形態のシール剤は通常、重合性官能基を有する重合性化合物を含む。本明細書において、重合性官能基とは、光照射または加熱、熱硬化剤や光重合開始剤、触媒等によって活性化されて、重合反応をする官能基をいう。当該重合性官能基の例には、(メタ)アクリル基、ビニル基、アクリルアミド基、エポキシ基、イソシアナート基、シラノール基等が含まれる。なお、本明細書における(メタ)アクリルとの記載は、メタクリル、アクリル、またはこれらの両方を表し、(メタ)アクリロイルとの記載は、メタクリロイル、アクリロイル、またはこれらの両方を表す。
 重合性化合物は、モノマーであってもよくオリゴマーであってもよく、ポリマーであってもよいが、モノマーまたはオリゴマーであることが、シール剤の塗布性の観点で好ましい。また、本実施形態のシール剤は、上記重合性化合物を一種のみ含んでいてもよく、二種以上含んでいてもよい。
 ここで、重合性化合物が、下記の一般式(1)で表される硬化性モノマーを含むと、シール剤の硬化物の初期ヤング率や、PCT後ヤング率が、上記範囲に収まりやすくなる。
Figure JPOXMLDOC01-appb-C000013
 上記一般式(1)における、Rは、
Figure JPOXMLDOC01-appb-C000014
からなる群から選ばれる基(*は結合手を表す)を表す。すなわち、Rは、ビスフェノールA、ビスフェノールE、またはビスフェノールF由来の構造であり、これらの中でもビスフェノールAまたはビスフェノールF由来の構造が好ましい。
 また、上記一般式(1)におけるRおよびRは、それぞれ独立に、
Figure JPOXMLDOC01-appb-C000015
からなる群から選ばれる基(*は結合手を表す)を表す。また、m、n、およびpは、それぞれ1~30の整数を表し、m、n、およびpは、より好ましくは、2~10である。さらに、上記一般式(1)におけるRおよびRは、それぞれ独立に水素原子またはメチル基を表す。
 ここで、上記硬化性モノマーの分子量(もしくは重量平均分子量)は、700以上が好ましく、750~1300がより好ましい。上記硬化性モノマーの分子量(もしくは重量平均分子量)が700以上であると、硬化性モノマーの硬化物が柔軟になり、基板とシール部材との界面に生じる応力を吸収する効果が高くなる。硬化性モノマーの分子量は、上記一般式(1)におけるn、m、またはpの数、すなわちエチレンオキサイド由来の構造またはプロピレンオキサイド由来の構造の量によって調整できる。また、硬化性モノマーの重量平均分子量は、例えばゲルパーミエーションクロマトグラフィー(GPC)により特定(ポリスチレン換算)できる。
 上記硬化性モノマーの総量は、重合性化合物の総量に対し、10質量%以上30質量%以下が好ましく、10質量%以上20質量%以下がより好ましい。硬化性モノマーの量が過度に多いと、硬化性モノマーが液晶表示パネルの表示特性に影響を及ぼすことがある。これに対し、硬化性モノマーの量が30質量%以下であれば、液晶表示パネルの表示特性が良好になりやすい。一方で、硬化性モノマーの量が10質量%以上であると、上述の初期ヤング率およびPCT後ヤング率が、上記範囲に収まりやすくなる。
 ここで、重合性化合物は、上記硬化性モノマー以外に、エポキシ化合物や、(メタ)アクリル・エポキシ含有化合物、上記硬化性モノマー以外の(メタ)アクリル化合物(以下、単に「(メタ)アクリル化合物」とも称する)等をさらに含むことが好ましい。重合性化合物が、これらを含むと、得られるシール部材と基板との接着強度が良好になったり、液晶表示パネルの表示特性が良好になったりしやすい。
 エポキシ化合物は、エポキシ基を有する化合物であればよい(ただし、後述の(メタ)アクリル・エポキシ化合物に相当するものは除く)。エポキシ化合物が一分子中に含むエポキシ基の数は2以上が好ましい。エポキシ化合物中のエポキシ基の数が2以上であると、得られるシール部材と液晶表示パネルの基板との接着性が良好になる。さらに、得られるシール部材の耐湿性も高まりやすい。
 エポキシ化合物は、常温で液状であってもよく、固体状であってもよい。エポキシ化合物の軟化点は、シール剤の粘度を所望の範囲にするとの観点で、40~120℃が好ましい。
 また、エポキシ化合物は、モノマーであってもよく、オリゴマーであってもよく、ポリマーであってもよい。エポキシ化合物の分子量(もしくは重量平均分子量)は、通常220~3000が好ましく、250~2500がより好ましく、300~2000がさらに好ましい。ただし、エポキシ化合物の総量に対して、分子量が500以上である成分の割合は、25質量%以上が好ましい。分子量が500以上のエポキシ化合物は、液晶表示パネル作製時に液晶に溶解し難い。したがって、得られる液晶表示パネルの表示特性が良好になる。エポキシ化合物の重量平均分子量は、例えばゲルパーミエーションクロマトグラフィー(GPC)により特定(ポリスチレン換算)できる。
 ここで、エポキシ化合物の構造は特に制限されないが、その例には、芳香環を主鎖に含む芳香族エポキシ化合物が含まれる。芳香族エポキシ化合物の例には、ビスフェノールA、ビスフェノールS、ビスフェノールF、ビスフェノールAD等で代表される芳香族ジオール類や、これらをエチレングリコール、プロピレングリコール、アルキレングリコール変性したジオール類と、エピクロルヒドリンとの反応で得られた芳香族多価グリシジルエーテル化合物;フェノールやクレゾール等とホルムアルデヒドとから誘導されたノボラック樹脂や、ポリアルケニルフェノールやそのコポリマー等で代表されるポリフェノール類と、エピクロルヒドリンとの反応で得られたノボラック型多価グリシジルエーテル化合物;キシリレンフェノール樹脂のグリシジルエーテル化合物類;ナフタレン型エポキシ化合物;ジフェニルエーテル型エポキシ化合物;ビフェニル型エポキシ化合物;等が含まれる。
 上記芳香族エポキシ化合物は、より具体的には、クレゾールノボラック型エポキシ化合物、フェノールノボラック型エポキシ化合物、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、トリフェノールメタン型エポキシ化合物、トリフェノールエタン型エポキシ化合物、トリスフェノール型エポキシ化合物、ジフェニルエーテル型エポキシ化合物、ビフェニル型エポキシ化合物が好ましい。重合性化合物は、エポキシ化合物を一種のみ含んでいてもよく、二種以上を含んでいてもよい。
 ここで、上記エポキシ化合物の総量は、重合性化合物の総量に対して、5~70質量%が好ましく、10~50質量%がより好ましい。重合性化合物中のエポキシ化合物の量が5質量%以上であると、シール剤の硬化物と液晶表示パネルの基板との接着強度が高まりやすい。一方で、エポキシ化合物の量が70質量%以下であると、得られるシール部材に含まれる未反応成分が少なくなりやすい。したがって、シール剤の硬化物のPCT後ヤング率と、初期ヤング率との差が小さくなりやすい。
 一方、(メタ)アクリル・エポキシ含有化合物とは、1分子中にエポキシ基および(メタ)アクリル基を有する化合物をいう。重合性化合物が上述のエポキシ化合物と、上述の硬化性モノマーと、を含む場合、これらの相溶性が低いことがある。これに対し、重合性化合物が、(メタ)アクリル・エポキシ含有化合物をさらに含むと、エポキシ化合物と上記硬化性モノマーとの相溶性が高まる。またさらに、エポキシ化合物の液晶への溶出も、(メタ)アクリル・エポキシ含有化合物によって抑制できる。
 ここで、(メタ)アクリル・エポキシ含有化合物の1分子中のエポキシ基および(メタ)アクリル基の数は特に制限されないが、例えば1つずつであってもよく、複数ずつであってもよい。またエポキシ基の数および(メタ)アクリル基の数は同一であってもよく、異なっていてもよい。(メタ)アクリル・エポキシ含有化合物の例には、エポキシ化合物と(メタ)アクリル酸とを、塩基性触媒の存在下で反応させて得られる(メタ)アクリル変性エポキシ化合物が含まれる。
 (メタ)アクリル変性エポキシ化合物の調製に用いるエポキシ化合物は、分子内にエポキシ基を2つ以上有する2官能以上のエポキシ化合物であればよく、ビスフェノールA型、ビスフェノールF型、2,2’-ジアリルビスフェノールA型、ビスフェノールAD型、および水添ビスフェノール型等のビスフェノール型エポキシ化合物;フェノールノボラック型、クレゾールノボラック型、ビフェニルノボラック型、およびトリスフェノールノボラック型等のノボラック型エポキシ化合物;ビフェニル型エポキシ化合物;ナフタレン型エポキシ化合物等が含まれる。
 ただし、3官能や4官能等の多官能エポキシ化合物を(メタ)アクリル変性して得られる(メタ)アクリル変性エポキシ化合物は、硬化させたときの架橋密度が高い。そのため、シール剤がこのような(メタ)アクリル変性エポキシ化合物を含むと、上記初期ヤング率を満たし難くなることがある。したがって、2官能エポキシ化合物を(メタ)アクリル変性して得られる(メタ)アクリル変性エポキシ化合物が好ましい。
 したがって、(メタ)アクリル変性エポキシ化合物調製用のエポキシ化合物は、ビフェニル型エポキシ化合物、ナフタレン型エポキシ化合物、およびビスフェノール型エポキシ化合物がより好ましく、ビスフェノールA型およびビスフェノールF型等のビスフェノール型エポキシ化合物が、シール剤の塗布効率の観点からさらに好ましい。なお、(メタ)アクリル変性エポキシ化合物調製用のエポキシ化合物は、一種であってもよく、二種以上であってもよい。また、(メタ)アクリル変性エポキシ化合物調製用のエポキシ化合物は、分子蒸留法、洗浄法等により高純度化されていることが好ましい。
 また、上記エポキシ化合物と(メタ)アクリル酸との反応は、常法に従って行うことができる。当該反応を行うと、エポキシ化合物中の一部のエポキシ基に(メタ)アクリル酸が反応し、(メタ)アクリル基とエポキシ基とを有する(メタ)アクリル変性エポキシ化合物が得られる。
 ここで、(メタ)アクリル・エポキシ含有化合物の分子量(重量平均分子量)は、例えば310~1000が好ましく、350~900がより好ましい。(メタ)アクリル・エポキシ含有化合物の重量平均分子量は、例えばゲルパーミエーションクロマトグラフィー(GPC)により測定(ポリスチレン換算)できる。(メタ)アクリル・エポキシ化合物含有化合物の分子量が当該範囲であると、シール剤の粘度が所望の範囲になりやすい。
 (メタ)アクリル・エポキシ含有化合物の総量は、重合性化合物の総量に対して、30~80質量%が好ましく、40~70質量%がより好ましい。重合性化合物中の(メタ)アクリル・エポキシ含有化合物の量が40質量%以上であると、硬化性モノマーとエポキシ化合物との相溶性が高まりやすい。一方、(メタ)アクリル・エポキシ含有化合物の量が70質量%以下であると、上述の初期ヤング率やPCT後ヤング率が所望の範囲になりやすい。
 また、(メタ)アクリル化合物とは、一分子中に1つ以上の(メタ)アクリル基を含む化合物であって、エポキシ基を有さない化合物である(ただし、上述の硬化性モノマーに相当するものは除く)。(メタ)アクリル化合物は、モノマーであってもよく、オリゴマーであってもよく、ポリマーであってもよい。
 (メタ)アクリル化合物が一分子中に含む(メタ)アクリル基の数は、2以上が好ましい。(メタ)アクリル化合物中の(メタ)アクリル基の数が2以上であると、シール剤の光硬化性が良好になる。
 ここで、(メタ)アクリル化合物の例には、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール等のジ(メタ)アクリレート;トリス(2-ヒドロキシエチル)イソシアヌレートのジ(メタ)アクリレート;ネオペンチルグリコール1モルに4モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオールのジ(メタ)アクリレート;トリメチロールプロパン1モルに3モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たトリオールのジまたはトリ(メタ)アクリレート;トリス(2-ヒドロキシエチル)イソシアヌレートのトリ(メタ)アクリレート;トリメチロールプロパンのトリ(メタ)アクリレート、またはそのオリゴマー;ペンタエリスリトールのトリ(メタ)アクリレート、またはそのオリゴマー;ジペンタエリスリトールのポリ(メタ)アクリレート;トリス(アクリロキシエチル)イソシアヌレート;カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート;カプロラクトン変性トリス(メタクリロキシエチル)イソシアヌレート;アルキル変性ジペンタエリスリトールのポリ(メタ)アクリレート;カプロラクトン変性ジペンタエリスリトールのポリ(メタ)アクリレート;ヒドロキシピバリン酸ネオペンチルグリコールのジ(メタ)アクリレート;カプロラクトン変性ヒドロキシピバリン酸ネオペンチルグリコールのジ(メタ)アクリレート;エチレンオキサイド変性リン酸(メタ)アクリレート;エチレンオキサイド変性アルキル化リン酸の(メタ)アクリレート;ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトールのオリゴ(メタ)アクリレート;等が含まれる。
 これらの中でも、シール剤の硬化物の初期ヤング率が所望の範囲に収まりやすいとの観点で、(メタ)アクリル化合物のガラス転移温度は25℃以上200℃以下が好ましい。ガラス転移温度は、40℃~200℃がより好ましく、50~150℃がさらに好ましい。ガラス転移温度は、粘弾性測定装置(DMS)により測定される。
 また、(メタ)アクリル化合物の分子量(または重量平均分子量)は、310~1000が好ましく、400~900がより好ましい。(メタ)アクリル化合物の重量平均分子量は、例えばゲルパーミエーションクロマトグラフィー(GPC)により測定(ポリスチレン換算)できる。(メタ)アクリル化合物の分子量が当該範囲であると、シール剤の粘度が所望の範囲になりやすい。
 (メタ)アクリル化合物の量は、重合性化合物の総量に対して、5~70質量%が好ましく、10~50質量%がより好ましい。(メタ)アクリル化合物の量が5質量%以上であると、シール剤の光硬化性が良好になりやすい。一方、(メタ)アクリル化合物の量が70質量%以下であると、得られるシール部材の耐湿性が良好になりやすい。
 なお、重合性化合物の総量(上述の硬化性モノマー、エポキシ化合物、(メタ)アクリル・エポキシ含有化合物および(メタ)アクリル化合物等の合計量)は、シール剤の総量に対して60~80質量%が好ましく、65~75質量%がより好ましい。シール剤中に、重合性化合物が当該範囲含まれると、シール剤の硬化性が良好になり、強度の高いシール部材が得られる。
 (2)光重合開始剤
 シール剤は、光重合開始剤を含むことが好ましい。光重合開始剤は、光の照射によって、活性種を発生可能な化合物であればよく、自己開裂型の光重合開始剤であってもよく、水素引き抜き型の光重合開始剤であってもよい。シール剤は、光重合開始剤を一種のみ含んでいてもよく、二種以上含んでいてもよい。
 自己開裂型の光重合開始剤の例には、アルキルフェノン系化合物(例えば2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(BASF社製 IRGACURE 651)等のベンジルジメチルケタール、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン(BASF社製 IRGACURE 907)等のα-アミノアルキルフェノン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASF社製 IRGACURE 184)等のα-ヒドロキシアルキルフェノン等);アシルホスフィンオキサイド系化合物(例えば2,4,6-トリメチルベンゾインジフェニルホスフィンオキシド等);チタノセン系化合物(例えばビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム等);アセトフェノン系化合物(例えばジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン等);フェニルグリオキシレート系化合物(例えばメチルフェニルグリオキシエステル等);ベンゾインエーテル系化合物(例えばベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等);オキシムエステル系化合物(例えば1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)](BASF社製 IRGACURE OXE01)、エタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(0-アセチルオキシム)(BASF社製 IRGACURE OXE02)等);等が含まれる。
 水素引き抜き型の光重合開始剤の例には、ベンゾフェノン系化合物(例えばベンゾフェノン、o-ベンゾイル安息香酸メチル-4-フェニルベンゾフェノン、4,4’-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン等);チオキサントン系化合物(例えばチオキサントン、2-クロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、1-クロロ-4-エトキシチオキサントン(Lambson Limited社製 Speedcure CPTX)、2-イソプロピルキサントン(Lambson Limited社製 Speedcure ITX)、4-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン(Lambson Limited社製 Speedcure DETX)、2,4-ジクロロチオキサントン、IGM Regins社製、Omnipol-TX);アントラキノン系化合物(例えば2-メチルアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノン等、2-ヒドロキシアントラキノン(東京化成工業社製 2-Hydroxyanthraquinone)、2,6-ジヒドロキシアントラキノン(東京化成工業社製 Anthraflavic Acid)、2-ヒドロキシメチルアントラキノン(純正化学社製 2-(Hydroxymethyl)anthraquinone)等);ベンジル系化合物;等が含まれる。
 光重合開始剤の吸収波長は特に限定されず、例えば波長360nm以上の光を吸収する光重合開始剤が好ましい。中でも、可視光域の光を吸収することがより好ましく、波長360~780nmの光を吸収する光重合開始剤がさらに好ましく、波長360~430nmの光を吸収する光重合開始剤が特に好ましい。
 波長360nm以上の光を吸収する光重合開始剤の例には、アルキルフェノン系化合物、アシルホスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、チオキサントン系化合物、アントラキノン系化合物が含まれ、好ましくはアルキルフェノン系化合物またはオキシムエステル系化合物である。
 なお、光重合開始剤の構造は、高速液体クロマトグラフィー(HPLC)および液体クロマトグラフィー質量分析(LC/MS)と、NMR測定またはIR測定とを組み合わせることで特定できる。
 光重合開始剤の分子量は、例えば200以上5000以下が好ましい。光重合開始剤の分子量が200以上であると、シール剤と液晶とが接触したときに、光重合開始剤が液晶に溶出し難い。一方、分子量が5000以下であると、上述の(メタ)アクリル化合物等との相溶性が高まり、シール剤の硬化性が良好になりやすい。光重合開始剤の分子量は、230以上3000以下がより好ましく、230以上1500以下がさらに好ましい。
 光重合開始剤の分子量は、高速液体クロマトグラフィー(HPLC:High Performance Liquid Chromatography)で分析したときに検出されるメインピークの、分子構造の「相対分子質量」として求めることができる。
 具体的には、光重合開始剤をTHF(テトラヒドロフラン)に溶解させた試料液を調製し、高速液体クロマトグラフィー(HPLC)測定を行う。そして、検出されたピークの面積百分率(各ピークの面積の、全ピークの面積の合計に対する比率)を求め、メインピークの有無を確認する。メインピークとは、各化合物に特徴的な検出波長(例えばチオキサントン系化合物であれば400nm)で検出された全ピークのうち、最も強度が大きいピーク(ピークの高さが最も高いピーク)をいう。検出されたメインピークのピーク頂点に対応する相対分子質量は、液体クロマトグラフィー質量分析(LC/MS:Liquid Chromatography Mass Spectrometry)により測定できる。
 光重合開始剤の量は、シール剤の総量に対して0.1~15質量%が好ましく、0.5~10質量%がより好ましく、1~10質量%がさらに好ましい。光重合開始剤の量が、0.1質量%以上であると、シール剤の光硬化性が良好になりやすい。光重合開始剤の量が15質量%以下であると、光重合開始剤が液晶に溶出し難くなる。
 (3)熱硬化剤
 シール剤は、熱硬化剤を含むことも好ましい。熱硬化剤は、加熱により上記重合性化合物、特にエポキシ化合物や(メタ)アクリル・エポキシ含有化合物を硬化させることが可能な成分であればよい。ただし、熱硬化剤は、通常の保存条件下(室温、可視光線下等)では、上述のエポキシ化合物や、(メタ)アクリル・エポキシ含有化合物を硬化させないが、加熱によってこれらの化合物を硬化させる化合物であることが好ましい。このような熱硬化剤を含有するシール剤によれば、保存安定性と熱硬化性とを両立できる。
 また、熱硬化剤は、20℃における水への溶解度が5g/100g以下であることが好ましく、3g/100g以下であることがより好ましく、1g/100g以下であることがさらに好ましい。熱硬化剤の水への溶解度が当該範囲であると、大気中の水とともに液晶に溶出し難くなる。
 上記熱硬化剤としては、エポキシ化合物を硬化させることが可能な化合物(以下、「エポキシ硬化剤」とも称する)が好ましい。
 エポキシ硬化剤の融点は、シール剤の粘度安定性を高め、かつ得られるシール部材の耐湿性を損なわない観点から、50℃以上250℃以下が好ましく、100℃以上200℃以下がより好ましく、150℃以上200℃以下がさらに好ましい。エポキシ硬化剤の融点が当該範囲であると、シール剤を一液硬化性とすることができる。シール剤が一液硬化性であると、使用に際して主剤と硬化剤を混合する必要がないことから、作業性が優れる。
 エポキシ硬化剤の例には、有機酸ジヒドラジド系熱潜在性硬化剤、イミダゾール系熱潜在性硬化剤、ジシアンジアミド系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、およびポリアミン系熱潜在性硬化剤が含まれる。
 有機酸ジヒドラジド系熱潜在性硬化剤の例には、アジピン酸ジヒドラジド(融点181℃)、1,3-ビス(ヒドラジノカルボエチル)-5-イソプロピルヒダントイン(融点120℃)、7,11-オクタデカジエン-1,18-ジカルボヒドラジド(融点160℃)、ドデカン二酸ジヒドラジド(融点190℃)、およびセバシン酸ジヒドラジド(融点189℃)等が含まれる。
 イミダゾール系熱潜在性硬化剤の例には、2,4-ジアミノ-6-[2’-エチルイミダゾリル-(1’)]-エチルトリアジン(融点215~225℃)、および2-フェニルイミダゾール(融点137~147℃)等が含まれる。
 ジシアンジアミド系熱潜在性硬化剤の例には、ジシアンジアミド(融点209℃)等が含まれる。
 アミンアダクト系熱潜在性硬化剤は、触媒活性を有するアミン系化合物と任意の化合物とを反応させて得られる付加化合物からなる熱潜在性硬化剤である。アミンアダクト系熱潜在性硬化剤の例には、味の素ファインテクノ社製 アミキュアPN-40(融点110℃)、味の素ファインテクノ社製 アミキュアPN-23(融点100℃)、味の素ファインテクノ社製 アミキュアPN-31(融点115℃)、味の素ファインテクノ社製 アミキュアPN-H(融点115℃)、味の素ファインテクノ社製 アミキュアMY-24(融点120℃)、および味の素ファインテクノ社製 アミキュアMY-H(融点131℃)等が含まれる。
 ポリアミン系熱潜在性硬化剤は、アミンとエポキシとを反応させて得られるポリマー構造を有する熱潜在性硬化剤であり、その例には、ADEKA社製 アデカハードナーEH4339S(軟化点120~130℃)、およびADEKA社製 アデカハードナーEH4357S(軟化点73~83℃)等が含まれる。
 上記の中でも、入手しやすさ、他の成分との相溶性等の観点で、イミダゾール系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、またはポリアミン系熱潜在性硬化剤が好ましい。シール剤は、エポキシ硬化剤を一種のみ含んでいてもよく、二種以上含んでいてもよい。
 熱硬化剤の含有量は、シール剤の総量に対して1~20質量%が好ましく、2~18質量%がより好ましく、3~15質量%がさらに好ましい。熱硬化剤の量が当該範囲であると、シール剤の熱硬化性が良好になる。
 (4)(メタ)アクリル系熱可塑性ポリマー粒子
 また、シール剤は、(メタ)アクリル系熱可塑性ポリマー粒子(以下、単に「ポリマー粒子」とも称する)をさらに含むことが好ましい。シール剤中での良好な分散性を確保する点から、ポリマー粒子の平均粒子径は0.05~5μmが好ましく、0.07~3μmが好ましい。当該平均粒子径は、コールターカウンター法で測定される値である。
 当該ポリマー粒子の軟化点温度は50~120℃が好ましく、60~80℃がより好ましい。ポリマー粒子の軟化点温度がこの範囲にあるとシール剤を加熱した際に、(メタ)アクリル系熱可塑性ポリマーが溶融し、シール剤中の他の成分と相溶する。そして、相溶した(メタ)アクリル熱可塑性ポリマーが膨潤し、シール剤の硬化前の粘度低下を抑制する。その結果、液晶にシール剤中の成分が溶出し難くなる。
 ポリマー粒子は、(メタ)アクリル酸エステルモノマー由来の構造単位を含むポリマーの粒子であればよいが、(メタ)アクリル酸エステルモノマーと、他のモノマーとを共重合させて得られるポリマーの粒子であることが好ましい。ポリマー粒子中の(メタ)アクリル酸エステル由来の構造単位の量は、50~99.9質量%が好ましく、60~80質量%がより好ましい。一方で、ポリマー粒子中の他のモノマー由来の構造単位の量は、0.1~50質量%が好ましく、20~40質量%がさらに好ましい。
 (メタ)アクリル酸エステルモノマーの例には、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、アミル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート等の単官能(メタ)アクリル酸エステルモノマーが含まれる。これらの中でも、メチル(メタ)アクリレート、ブチルアクリレート、2-エチルヘキシル(メタ)メタアクリレートが好ましい。ポリマー粒子は、これら由来の構造を一種のみ含んでいてもよく、二種以上含んでいてもよい。
 一方、他のモノマーの例には、アクリルアミド類;(メタ)アクリル酸、イタコン酸、マレイン酸等の酸モノマー;スチレン、スチレン誘導体などの芳香族ビニル化合物;1,3-ブタジエン、1、3-ペンタジエン、イソプレン、1,3-ヘキサジエン、クロロプレン等の共役ジエン類;ジビニルベンゼン、ジアクリレート類等の多官能モノマー;等が含まれる。ポリマー粒子は、他のポリマー由来の構造を一種のみ含んでいてもよく、二種以上含んでいてもよい。
 ここで、ポリマー粒子は、非架橋型、架橋型のいずれであってもよく、さらに架橋型のコアと非架橋型のシェル層とからなるコアシェル構造を有する複合型であってもよい。ポリマー粒子が非架橋型または架橋型のいずれとなるかは、他のモノマーの種類によって調整できる。
 ポリマー粒子の含有量は、シール剤の総量に対して3質量%以上が好ましく、5~30質量%がより好ましい。ポリマー粒子の量が当該範囲であると、得られるシール部材の耐湿性が良好になる。
 (5)無機粒子
 シール剤は、無機粒子をさらに含んでいてもよい。シール剤が無機粒子を含むと、シール剤の粘度や得られるシール部材の強度、および線膨張性等が良好になりやすい。
 無機粒子の材料の例には、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸マグネシウム、珪酸アルミニウム、珪酸ジルコニウム、酸化鉄、酸化チタン、窒化チタン、酸化アルミニウム(アルミナ)、酸化亜鉛、二酸化ケイ素、チタン酸カリウム、カオリン、タルク、ガラスビーズ、セリサイト活性白土、ベントナイト、窒化アルミニウム、窒化ケイ素等が含まれる。シール剤は、無機粒子を一種のみ含んでいてもよく、二種以上含んでいてもよい。無機粒子は、上記の中でも二酸化ケイ素またはタルクが好ましい。
 無機粒子の形状は、球状、板状、針状等、定形状であってもよく、非定形状であってもよい。無機粒子が球状である場合、無機粒子の平均一次粒子径は、1.5μm以下が好ましく、かつ比表面積が0.5~20m/gがより好ましい。無機粒子の平均一次粒子径は、JIS Z8825-1に記載のレーザー回折法により測定することができる。無機粒子の比表面積は、JIS Z8830に記載のBET法により測定できる。
 無機粒子の含有量は、シール剤の総量に対して0.1~25質量%が好ましく、3~20質量%がより好ましく、5~18質量%がさらに好ましい。無機粒子の含有量が0.1質量%以上であると、得られるシール部材の耐湿性が高まりやすく、25質量%以下であると、シール剤の塗工安定性が損なわれにくい。
 (6)有機粒子
 シール剤は、上記(メタ)アクリル系熱可塑性ポリマー粒子または無機粒子以外に、さらに有機粒子を含んでいてもよい。シール剤が有機粒子を含むと、シール剤の光硬化後の弾性率等を調整しやすくなる。
 有機粒子の例には、シリコーン粒子、スチレン・ジビニルベンゼン共重合体等のスチレン粒子、およびポリオレフィン粒子等が含まれる。シール剤は、有機粒子を一種のみ含んでもよく、二種以上含んでもよい。有機粒子の平均一次粒子径は、0.05~13μmが好ましく、0.1~10μmがより好ましく、0.1~8μmがさらに好ましい。
 また、有機粒子の形状は特に制限されないが、好ましくは球状であり、さらに好ましくは真球状である。球状であるとは、各粒子の直径の最大値(a)に対する最小値(b)の比b/a=0.9~1.0であることをいう。有機粒子の平均一次粒子径は、顕微鏡法、具体的には電子顕微鏡の画像解析により測定することができる。また、有機粒子の表面は平滑であることが好ましい。表面が平滑であると比表面積が低下して、シール剤に添加可能な有機粒子の量が増加する。
 有機粒子の含有量は、シール剤の総量に対して、0.1~20質量%が好ましく、1~15質量%がより好ましく、3~12質量%がさらに好ましい。有機粒子の量が当該範囲であると、シール剤の光硬化後のヤング率が所望の範囲に収まりやすい。
 (7)その他
 本実施形態のシール剤は、必要に応じて熱ラジカル重合開始剤、シランカップリング剤等のカップリング剤、イオントラップ剤、イオン交換剤、レベリング剤、顔料、染料、増感剤、可塑剤及び消泡剤等の添加剤をさらに含んでいてもよい。
 シランカップリング剤の例には、ビニルトリメトキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン等が含まれる。シランカップリング剤の量は、シール剤の総量に対して0.01~6質量%が好ましく、0.1~5質量%がより好ましく、0.5~3質量%がさらに好ましい。シランカップリング剤の含有量が0.01質量%以上であると、得られるシール部材が十分な接着性を有しやすい。
 シール剤は、液晶表示パネルのギャップを調整するためのスペーサー等をさらに含んでいてもよい。
 その他の成分の合計量は、シール剤の総量に対して1~50質量%が好ましい。その他の成分の合計量が50質量%以下であると、シール剤の粘度が過度に上昇し難く、シール剤の塗工安定性が損なわれにくい。
 (8)シール剤の物性
 シール剤のE型粘度計の25℃、2.5rpmにおける粘度は、200~450Pa・sが好ましく、250~400Pa・sがより好ましい。粘度が上記範囲にあると、シール剤(シールパターン)を介して、一対の基板を重ね合わせたときに、シール剤がこれらの隙間を埋めるように変形しやすい。そのため、液晶表示パネルの一対の基板間のギャップを適正に制御できる。
 また、シール剤のチクソトロピーインデックス(TI値)は、シール剤の塗布性の観点から、1.0~1.5が好ましく、1.1~1.3がより好ましい。TI値は、E型粘度計を用い、室温(25℃)、0.5rpmにおけるシール剤の粘度をη1とし、5rpmにおけるシール剤の粘度をη2とし、これらの測定値を、下記式(1)に当てはめて得られる値である。
 TI値=(0.5rpmにおける粘度η1(25℃))/(5rpmにおける粘度η2(25℃))・・・(1)
 1-2.第2の液晶滴下工法用シール剤
 上述のように、従来のシール剤から得られるシール部材は、高温高湿環境に晒されると、基板に対する接着強度が低下することが多かった。そして、このような接着強度低下が生じると、液晶漏れ等の不具合が生じやすかった。従来のシール部材は耐湿性が十分でないことがあり、高温高湿環境に晒された際やその後、液晶表示パネルに影響が出やすかった。
 これに対し、上述のように、シール剤の硬化物のヤング率を所定の範囲に調整することで、高温高湿環境下保存中または保存後に、シール部材と基板との接着強度を良好にできることが明らかとなった。具体的には、シール剤を所定の条件で硬化させたフィルムの120℃における初期ヤング率が1.0×10Pa以下であり、かつ100%Rh環境下で24時間保存した当該フィルムの120℃におけるPCT後ヤング率と、上記初期ヤング率との差が、8.0×10Pa以下である場合に、高温高湿環境に晒されても、シール部材が基板に対して優れた接着強度を有することが明らかとなった。その理由や、ヤング率の測定方法は、第1のシール剤の項で述べた通りである。
 本実施形態においても、上記初期ヤング率は、1.0×10~1.0×10Paがより好ましく、1.0×10~5.0×10Paがさらに好ましい。また、PCT後ヤング率と、初期ヤング率との差は、8.0×10Pa以下がより好ましく、7.0×10Pa以下がさらに好ましい。
 さらに、本実施形態では、シール剤中のエポキシ系化合物由来のエポキシ基の数に対する、シール剤中の熱硬化剤由来の活性水素の数の比率(上記活性水素の数/上記エポキシ基の数)が0.25以上である。そのため、得られるシール部材の耐湿性が非常に良好になる。その理由としては、活性水素の量がエポキシ基の数に対して比較的多いことが挙げられる。このような比率とすることで、未反応のエポキシ基が硬化後に残り難くなり、さらにはシール部材中の架橋密度が高くなる。したがって、シール部材が、水分を吸湿したり透過させたりし難くなる。
 なお、エポキシ系化合物由来のエポキシ基の数は、シール剤中のエポキシ系化合物の量(質量)を当該化合物のエポキシ当量で除して求められる。なお、エポキシ当量とは、エポキシ系化合物の分子量(もしくは重量平均分子量)を、当該エポキシ系化合物一分子が含むエポキシ基の数で除した値(エポキシ系化合物の分子量/エポキシ基の数)である。一方、熱硬化剤由来の活性水素の量は、シール剤中の熱硬化剤の量(質量)を、当該熱硬化剤の活性水素当量で除した値である。活性水素当量は、熱硬化剤の分子量(もしくは重量平均分子量)を、熱硬化剤一分子が含む窒素原子に結合した活性水素の数で除した値(熱硬化剤の分子量/活性水素の数)である。
 なお、シール剤がエポキシ系化合物を複数含む場合には、エポキシ系化合物毎に、エポキシ基の数を算出し、これらをすべて合計した値をシール剤全体のエポキシ基の数とする。同様に、熱硬化剤を複数含む場合には、熱硬化剤毎に活性水素の数を算出し、これらを全て合計した値を、シール剤全体の活性水素の数とする。
 上述の比率(上記活性水素の数/上記エポキシ基の数)は、0.25~1.0がより好ましく、0.3~0.6がさらに好ましい。
 ここで、上記初期ヤング率や、PCTヤング率が上記範囲になるように調整するためには、シール剤の組成を調整すればよい。以下、シール剤を構成する成分について、詳しく説明する。
 (1)重合性化合物
 本実施形態のシール剤は、重合性官能基を有する重合性化合物を含む。重合性化合物は、モノマーであってもよくオリゴマーであってもよく、ポリマーであってもよいが、通常モノマーまたはオリゴマーである。また、本実施形態のシール剤は、上記重合性化合物を一種のみ含んでいてもよく、二種以上含んでいてもよい。
 本実施形態のシール剤は、重合性化合物として、少なくともエポキシ系化合物を含む。なお、本明細書におけるエポキシ系化合物とは、エポキシ基を有する重合性の化合物であり、後述の被覆粒子はエポキシ系化合物には含まない。ここで、本実施形態のシール剤は、上述の一般式(1)で表される硬化性モノマーを併せて含むことも好ましい。
 エポキシ系化合物の例には、エポキシ基を有し、かつ(メタ)アクリル基を有さない化合物(以下、「エポキシ化合物」とも称する)や、エポキシ基および(メタ)アクリル基を有する化合物(以下、「(メタ)アクリル・エポキシ化合物」とも称する)が含まれる。
 上記エポキシ化合物は、エポキシ基を有する化合物であればよい(ただし、後述の(メタ)アクリル・エポキシ化合物に相当するものは除く)。エポキシ化合物が一分子中に含むエポキシ基の数は2以上が好ましい。エポキシ化合物中のエポキシ基の数が2以上であると、得られるシール部材と液晶表示パネルの基板との接着性が良好になる。さらに、得られるシール部材の耐湿性も高まりやすい。
 エポキシ化合物は、常温で液状であってもよく、固体状であってもよい。エポキシ化合物の軟化点は、得られるシール剤の粘度の観点で、40~110℃が好ましい。
 エポキシ化合物のエポキシ当量は、200~2000が好ましく、300~1000がより好ましい。エポキシ当量が当該範囲であると、上述のエポキシ化合物のエポキシ当量に対する、熱硬化剤の活性水素当量の比率を満たしやすくなる。
 また、エポキシ化合物は、モノマーであってもよく、オリゴマーであってもよく、ポリマーであってもよい。エポキシ化合物の分子量(もしくは重量平均分子量)は、通常220~3000が好ましく、250~2500がより好ましく、300~2000がさらに好ましい。ただし、エポキシ化合物の総量に対して、分子量が500以上である成分の割合は、25質量%以上が好ましい。分子量が500以上のエポキシ化合物は、液晶表示パネル作製時に液晶に溶解し難い。したがって、得られる液晶表示パネルの表示特性が良好になる。エポキシ化合物の重量平均分子量は、例えばゲルパーミエーションクロマトグラフィー(GPC)により特定(ポリスチレン換算)できる。
 ここで、エポキシ化合物の構造は特に制限されないが、その例には、芳香環を主鎖に含む芳香族エポキシ化合物が含まれる。当該エポキシ化合物の構造は、上述の第1のシール剤が含むエポキシ化合物と同様である。シール剤は、エポキシ化合物を一種のみ含んでいてもよく、二種以上を含んでいてもよい。
 ここで、上記エポキシ化合物の総量は、重合性化合物の総量に対して、5~70質量%が好ましく、10~50質量%がより好ましい。重合性化合物中のエポキシ化合物の量が5質量%以上であると、シール剤の硬化物と液晶表示パネルの基板との接着強度が高まりやすい。一方で、エポキシ化合物の量が70質量%以下であると、得られるシール部材に含まれる未反応成分が少なくなりやすい。したがって、シール剤の硬化物のPCT後ヤング率と、初期ヤング率との差が小さくなりやすい。
 一方、(メタ)アクリル・エポキシ含有化合物とは、1分子中にエポキシ基および(メタ)アクリル基を有する化合物をいう。重合性化合物が上述のエポキシ化合物と、後述の硬化性モノマーと、を含む場合、これらの相溶性が低いことがある。これに対し、重合性化合物が、(メタ)アクリル・エポキシ含有化合物をさらに含むと、エポキシ化合物と硬化性モノマーとの相溶性が高まる。またさらに、エポキシ化合物の液晶への溶出も、(メタ)アクリル・エポキシ含有化合物によって抑制できる。
 ここで、(メタ)アクリル・エポキシ含有化合物の具体的な構造や好ましい構造は、上述の第1のシール剤が含む(メタ)アクリル・エポキシ化合物と同様である。
 ここで、(メタ)アクリル・エポキシ含有化合物の分子量(重量平均分子量)は、例えば310~1000が好ましく、350~900がより好ましい。(メタ)アクリル・エポキシ含有化合物の重量平均分子量は、例えばゲルパーミエーションクロマトグラフィー(GPC)により測定(ポリスチレン換算)できる。(メタ)アクリル・エポキシ化合物含有化合物の分子量が当該範囲であると、シール剤の粘度が所望の範囲になりやすい。
 (メタ)アクリル・エポキシ含有化合物の総量は、重合性化合物の総量に対して、30~80質量%が好ましく、40~70質量%がより好ましい。(メタ)アクリル・エポキシ含有化合物の量が30質量%以上であると、硬化性モノマーとエポキシ化合物との相溶性が高まりやすい。一方、(メタ)アクリル・エポキシ含有化合物の量が80質量%以下であると、上述の初期ヤング率やPCT後ヤング率が所望の範囲になりやすい。
 一方、重合性化合物が、第1のシール剤の項で説明した、一般式(1)で表される硬化性モノマーをさらに含むと、シール剤の硬化物の初期ヤング率や、PCT後ヤング率が、上記範囲に収まりやすくなる。
 ここで、上述の一般式(1)で表される硬化性モノマーの分子量(もしくは重量平均分子量)は、700以上が好ましく、750~1300がより好ましい。上記硬化性モノマーの分子量(もしくは重量平均分子量)が700以上であると、硬化性モノマーの硬化物が柔軟になり、基板とシール部材との界面に生じる応力を吸収する効果が高くなる。当該硬化性モノマーの分子量は、上述の一般式(1)におけるnやm、pの数、すなわちエチレンオキサイド由来の構造またはプロピレンオキサイド由来の構造の量によって調整できる。また、硬化性モノマーの重量平均分子量は、例えばゲルパーミエーションクロマトグラフィー(GPC)により特定(ポリスチレン換算)できる。
 上記硬化性モノマーの総量は、重合性化合物の総量に対し、10質量%以上30質量%以下が好ましく、10質量%以上20質量%以下がより好ましい。硬化性モノマーの量が過度に多いと、硬化性モノマーが液晶表示パネルの表示特性に影響を及ぼすことがある。これに対し、硬化性モノマーの量が30質量%以下であれば、液晶表示パネルの表示特性が良好になりやすい。一方で、硬化性モノマーの量が10質量%以上であると、上述の初期ヤング率およびPCT後ヤング率が、上記範囲に収まりやすくなる。
 また、重合性化合物は、上記エポキシ系化合物および上記硬化性モノマー以外に、上記硬化性モノマー以外の構造を有する(メタ)アクリル化合物等をさらに含むことが好ましい。重合性化合物が、(メタ)アクリル化合物を含むと、基板とシール部材との接着強度が良好になったり、液晶表示パネルの表示特性が良好になったりしやすい。
 本実施形態の重合性化合物が含む(メタ)アクリル化合物は、一分子中に1つ以上の(メタ)アクリル基を含む化合物であって、エポキシ基を有さない化合物である(ただし、上述の硬化性モノマーに相当するものは除く)。(メタ)アクリル化合物は、モノマーであってもよく、オリゴマーであってもよく、ポリマーであってもよい。
 (メタ)アクリル化合物が一分子中に含む(メタ)アクリル基の数は、2以上が好ましい。(メタ)アクリル化合物中の(メタ)アクリル基の数が2以上であると、シール剤の光硬化性が良好になる。
 当該(メタ)アクリル化合物は、上述の第1のシール剤が含む(メタ)アクリル化合物と同様である。上記(メタ)アクリル化合物の中でも、シール剤の硬化物の初期ヤング率が所望の範囲に収まりやすいとの観点で、(メタ)アクリル化合物のガラス転移温度は25℃以上200℃未満が好ましい。ガラス転移温度は、40℃~200℃がより好ましく、50~150℃がさらに好ましい。ガラス転移温度は、粘弾性測定装置(DMS)により測定される。
 また、(メタ)アクリル化合物の分子量(または重量平均分子量)は、310~1000が好ましく、400~900がより好ましい。(メタ)アクリル化合物の重量平均分子量は、例えばゲルパーミエーションクロマトグラフィー(GPC)により測定(ポリスチレン換算)できる。(メタ)アクリル化合物の分子量が当該範囲であると、シール剤の粘度が所望の範囲になりやすい。
 (メタ)アクリル化合物の量は、重合性化合物の総量に対して、5~70質量%が好ましく、10~50質量%がより好ましい。(メタ)アクリル化合物の量が5質量%以上であると、シール剤の光硬化性が良好になりやすい。一方、(メタ)アクリル化合物の量が70質量%以下であると、得られるシール部材の耐湿性が良好になりやすい。
 なお、重合性化合物の総量(エポキシ基化合物、(メタ)アクリル・エポキシ含有化合物、硬化性モノマー、および(メタ)アクリル化合物等の合計量)は、シール剤の総量に対して60~80質量%が好ましく、65~75質量%がより好ましい。シール剤中に、重合性化合物が当該範囲含まれると、シール剤の硬化性が良好になり、さらに強度の高いシール部材が得られる。
 (2)熱硬化剤
 シール剤は、熱硬化剤を含む。熱硬化剤は、加熱により上記重合性化合物、特にエポキシ化合物や(メタ)アクリル・エポキシ含有化合物を硬化させることが可能な成分であり、かつ上述のシール剤中のエポキシ基の数に対する、シール剤中の熱硬化剤由来の活性水素の数の比率が0.25以上となるものであれば特に制限されない。なお、熱硬化剤は、通常の保存条件下(室温、可視光線下等)では、上述のエポキシ化合物や、(メタ)アクリル・エポキシ含有化合物を硬化させないが、加熱によってこれらの化合物を硬化させる化合物であることが好ましい。このような熱硬化剤を含有するシール剤によれば、保存安定性と熱硬化性とを両立できる。
 熱硬化剤の活性水素当量は、10~500が好ましく、100~300がより好ましい。熱硬化剤の活性当量が当該範囲であると、上述のシール剤中のエポキシ基の数に対する、シール剤中の熱硬化剤由来の活性水素の数の比率を満たしやすくなる。
 上記熱硬化剤としては、上述の第1のシール剤が含むエポキシ硬化剤と同様のエポキシ硬化剤が好ましい。当該エポキシ硬化剤の融点は、シール剤の粘度安定性を高め、かつ得られるシール部材の耐湿性を損なわない観点から、50℃以上250℃以下が好ましく、100℃以上200℃以下がより好ましく、150℃以上200℃以下がさらに好ましい。エポキシ硬化剤の融点が当該範囲であると、シール剤を一液硬化性とすることができる。シール剤が一液硬化性であると、使用に際して主剤と硬化剤を混合する必要がないことから、作業性が優れる。
 エポキシ硬化剤の構造は、上述の第1のシール剤が含むエポキシ硬化剤の構造と同様である。エポキシ硬化剤の中でも、入手しやすさ、他の成分との相溶性等の観点で、イミダゾール系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、またはポリアミン系熱潜在性硬化剤が好ましい。シール剤は、エポキシ硬化剤を一種のみ含んでいてもよく、二種以上含んでいてもよい。
 熱硬化剤の含有量は、シール剤の総量に対して1~20質量%が好ましく、2~18質量%がより好ましく、3~15質量%がさらに好ましい。熱硬化剤の量が当該範囲であると、シール剤の熱硬化性が良好になる。
 (3)硬化触媒
 また、シール剤は、硬化触媒を含むことが好ましい。硬化触媒は、上述の重合性化合物が重合したり架橋したりする際に、触媒として機能する化合物であればよい。硬化触媒の例には、イミダゾール系硬化触媒、アミンアダクト系硬化触媒、変性アミン系硬化触媒等が含まれる。
 イミダゾール系硬化触媒の例には、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-ヒドロキシメチルイミダゾール、1-ベンジル-5-ヒドロキシメチルイミダゾール、1,2-ジヒドロキシエチルイミダゾール、1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンと6-[2-(2-メチル-1H-イミダゾール-1-イル)エチル]-1,3,5-トリアジン-2,4-ジアミンとの混合物等が含まれる。
 アミンアダクト系硬化触媒の例には、アミキュアPN-23(味の素ファインテクノ社製)等が含まれる。変性アミン系硬化触媒の例には、フジキュアーFXR-1020、FXR-1081、FXR-1121、FXR-1032、FXR-1131(いずれも富士化成工業社製)等が含まれる。
 上記の中でも、硬化触媒の融点は、100℃以上好ましく、140~300℃がより好ましい。硬化触媒の融点が100℃以上であると、シール剤の保存安定性が良好になりやすい。
 硬化触媒の含有量は、シール剤の総量に対して0.1~20質量%が好ましく、0.2~15質量%がより好ましく、0.3~13質量%がさらに好ましい。硬化触媒の量が当該範囲であると、シール剤の硬化が良好になる。
 (4)被覆粒子
 シール剤は、被覆粒子をさらに含むことが好ましい。本明細書における被覆粒子は、無機粒子からなるコアと、当該コアを覆うポリマー層とを有する粒子であって、表面に、エポキシ基および/または炭素-炭素二重結合を含む官能基を有する粒子をいう。炭素-炭素二重結合の例には、ビニル基、アリル基、(メタ)アクリル基が含まれる。
 ポリマー層は、コアを全て覆っていてもよいが、一部のみを被覆していてもよい。ただし、被覆率は、50%以上が好ましく、80%以上がより好ましい。
 また、被覆粒子の表面にエポキシ基を有する場合、被覆粒子1g当たりのエポキシ基の数は、1~300μeq/gが好ましい。貯蔵安定性の観点から上記値は、1~150μeq/gが好ましい。また、接着強度向上の観点から上記値は、5~300μeq/gが好ましい。エポキシ基の量は、公知の測定法で特定できる。
 また、被覆粒子の表面に、炭素-炭素二重結合を含む官能基を有する場合、被覆粒子1g当たりの炭素-炭素二重結合を有する官能基の数は、1~300μeq/gが好ましい。この範囲であればシール剤の貯蔵安定性が良好になる。炭素-炭素二重結合を有する官能基当量の測定法は特に制限されないが、その一例として、ヨウ素価法(第十四改正日本薬局方一般試験法65.油脂試験法)が挙げられる。
 また、被覆粒子の平均粒子径は、0.2μm~10μmが好ましく、0.2~5μmがより好ましく、0.2~3μmがさらに好ましい。また、当該被覆粒子におけるポリマー層の厚みは、0.001~1μmが好ましく、0.001~0.5μmがより好ましい。ポリマー層の厚みが、当該範囲であると、被覆粒子と上述の重合性化合物との親和性が高まり、シール剤の塗布性が良好になるだけでなく、得られるシール部材の変形も抑制できる。ポリマー層の厚みは、コアの平均粒子径と、被覆粒子の平均粒子径とから特定できる。具体的には、ポリマー層の平均厚み=(被覆粒子の平均粒子径-コアの平均粒子径)/2として求められる。また、コアの平均粒子径および被覆粒子の平均粒子径は、波長632.8nmのレーザを用いたレーザ法粒子径測定器により特定でき、一次粒子の平均粒子径を10回測定したときの平均値とする。
 被覆粒子のコアの例には、結晶性シリカ、溶融シリカ、沈殿法により得られるシリカ、ゾルゲル法により得られるシリカ、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸マグネシウム、珪酸アルミニウム、珪酸ジルコニウム、二酸化ジルコニウム、酸化鉄、酸化チタン、アルミナ、酸化亜鉛、二酸化珪素、二酸化チタン、チタン酸カリウム、カオリン、タルク、窒化ケイ素、窒化ホウ素、窒化アルミニウム、石英粉、雲母、ガラス繊維等、シリカとチタニア、シリカとジルコニア等のシリカと他金属との複合酸化物等が含まれる。これらの中でも、熱安定性に優れる結晶性シリカ、溶融シリカ、ゾルゲル法により得られるシリカ等のシリカ類がより好ましい。なお、コアは、疎水化処理されていてもよい。
 疎水化処理の例には、上記コアとなる材料を、環状シロキサン、シランカップリング剤、チタネート系カップリング剤、ヘキサアルキルジシラザン等の疎水化表面処理剤で処理する方法が含まれる。これらの中でも、ヘキサメチルシクロトリシロキサン等の環状シロキサンやヘキサメチルジシラザン等のヘキサアルキルジシラザンで疎水化処理すると、得られるシール部材の吸湿性が低くなりやすい。
 一方、ポリマー層は、上記コアの存在下、ラジカル重合性官能基を有するモノマーをラジカル重合することによって形成できる。例えば、コアにラジカル重合性官能基を有するモノマー(炭素-炭素二重結合を有するエポキシアクリレートや、多官能炭素-炭素二重結合性化合物等)を噴霧等して、コアの表面にモノマーを付着させた後、当該モノマーをラジカル重合してポリマー層を形成してもよい。また、コア上の官能基とラジカル重合性官能基を有するモノマー(炭素-炭素二重結合を有するエポキシアクリレートや、多官能炭素-炭素二重結合性化合物)とを、脱アルコール縮合反応等によりグラフト結合させて、ポリマー層を形成してもよい。また、コアにアクリルシラン化合物等の炭素-炭素二重結合を有する化合物を反応させ、その後、ラジカル重合性官能基を有するモノマー(炭素-炭素二重結合を有するエポキシアクリレートや、多官能炭素-炭素二重結合性化合物)をさらに反応させてコア層を形成する方法が特に好ましい。なお、本明細書では、多官能炭素-炭素二重結合性化合物を重合して得られるポリマーを架橋型ポリマーと称する。上述のポリマー層は、架橋型ポリマーを含むことが好ましい。
 なお、上記ポリマー層形成の際、ラジカル重合性官能基を有するモノマーである炭素-炭素二重結合を有するエポキシアクリレートや多官能炭素-炭素二重結合性化合物と共に、熱硬化剤や光重合開始剤を用いてもよい。これらは、シール剤が含む熱硬化剤や光重合開始剤と同様とすることができる。またその量も、所望のポリマー層に合わせて適宜選択される。
 上記ポリマー層を形成する際に、コアと反応させる、アクリルシラン化合物の例には、メタクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシメチルジメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アクリロイルオキシプロピルトリメトキシシラン等が含まれる。
 上記ポリマー層を形成する際に用いるエポキシアクリレートの例には、グリシジル(メタ)アクリレート、グリシドキシスチレン、グリシドキシメチルスチレン、グリシドキシエチルスチレン等が含まれる。
 また、上記ポリマー層を形成する際に用いる多官能炭素-炭素二重結合性化合物とは、2つ以上の炭素-炭素二重結合を有する化合物であり、その例には、ジビニルベンゼン、ジビニルビフェニル、トリビニルベンゼン、ジビニルナフタレン等の多官能の芳香族ビニル化合物類等の芳香族ビニル系の単量体類;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ヘキサメチレンジ(メタアクリルアミド等の多官能の(メタ)アクリル系の単量体類;(メタ)アリル(メタ)アクリレート等が含まれる。なお、粒子表面に炭素-炭素二重結合を残存させるために、光重合開始剤の量等を制御してもよい。また、反応性の異なる複数の官能基を有するモノマーを組みわせることでも、表面に炭素-炭素二重結合の一部を残存させることができる。
 また、上記ポリマー層を形成する際、エポキシアクリレートや、多官能炭素-炭素二重結合性化合物以外のモノマーを併用してもよい。他のモノマーの例には、スチレン、ビニルトルエン、2,4-ジメチルスチレン、p-tert-ブチルスチレン、ビニルナフタレン等の芳香族ビニル系のモノマー類;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、 (メタ)アクリル酸ベンジル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、2-ヒドロキシエチル(メタ)アクリレート、(メタ)アクリロニトリル等の(メタ)アクリル系のモノマー類;ジビニルスルホン、エチルビニルエーテル、メチルビニルケトン、ビニルピロリドン等が含まれる。
 上記被覆粒子の含有量は、シール剤の総量に対して0.1~30質量%が好ましく、3~20質量%がより好ましく、5~20質量%がさらに好ましい。被覆粒子の量が当該範囲であると、シール剤の耐湿性が良好になる。
 (5)光重合開始剤
 シール剤は、光重合開始剤を含むことが好ましい。光重合開始剤は、光の照射によって、活性種を発生可能な化合物であればよく、自己開裂型の光重合開始剤であってもよく、水素引き抜き型の光重合開始剤であってもよい。シール剤は、光重合開始剤を一種のみ含んでいてもよく、二種以上含んでいてもよい。
 本実施形態のシール剤が含む光重合開始剤の具体例は、上述の第1のシール剤が含む光重合開始剤と同様である。
 光重合開始剤の吸収波長は特に限定されず、例えば波長360nm以上の光を吸収する光重合開始剤が好ましい。中でも、可視光域の光を吸収することがより好ましく、波長360~780nmの光を吸収する光重合開始剤がさらに好ましく、波長360~430nmの光を吸収する光重合開始剤が特に好ましい。
 波長360nm以上の光を吸収する光重合開始剤の例には、アルキルフェノン系化合物、アシルホスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、チオキサントン系化合物、アントラキノン系化合物が含まれ、好ましくはアルキルフェノン系化合物またはオキシムエステル系化合物である。なお、光重合開始剤の構造は、上述の方法で特定できる。
 光重合開始剤の分子量は、例えば200以上5000以下が好ましい。光重合開始剤の分子量が200以上であると、シール剤と液晶とが接触したときに、光重合開始剤が液晶に溶出し難い。一方、分子量が5000以下であると、上述の(メタ)アクリル化合物等との相溶性が高まり、シール剤の硬化性が良好になりやすい。光重合開始剤の分子量は、230以上3000以下がより好ましく、230以上1500以下がさらに好ましい。光重合開始剤の分子量は、上述の方法で求めることができる。
 光重合開始剤の量は、シール剤の総量に対して0.1~15質量%が好ましく、0.5~10質量%がより好ましく、1~10質量%がさらに好ましい。光重合開始剤の量が、0.1質量%以上であると、シール剤の光硬化性が良好になりやすい。光重合開始剤の量が15質量%以下であると、光重合開始剤が液晶に溶出し難くなる。
 (6)有機粒子
 シール剤は、必要に応じて有機粒子をさらに含んでいてもよい。シール剤が有機粒子を含むと、シール剤のヤング率等を調整しやすくなる。
 有機粒子の例には、シリコーン粒子、アクリル粒子、スチレン・ジビニルベンゼン共重合体等のスチレン粒子、およびポリオレフィン粒子等が含まれる。シール剤は、有機粒子を一種のみ含んでもよく、二種以上含んでもよい。有機粒子の平均一次粒子径は、0.05~13μmが好ましく、0.1~10μmがより好ましく、0.1~8μmがさらに好ましい。
 また、有機粒子の形状は特に制限されないが、好ましくは球状であり、さらに好ましくは真球状である。球状であるとは、各粒子の直径の最大値(a)に対する最小値(b)の比b/a=0.9~1.0であることをいう。有機粒子の平均一次粒子径は、上述の方法により特定可能である。
 有機粒子の含有量は、シール剤の総量に対して、0.1~20質量%が好ましく、1~15質量%がより好ましく、3~13質量%がさらに好ましい。有機粒子の量が当該範囲であると、シール剤の光硬化後の弾性率が所望の範囲に収まりやすい。
 (7)無機粒子
 シール剤は、無機粒子をさらに含んでいてもよい。シール剤が無機粒子を含むと、シール剤の粘度や得られるシール部材の強度、および線膨張性等が良好になりやすい。
 本実施形態のシール剤が含む無機粒子の具体例は、上述の第1のシール剤が含む無機粒子と同様である。
 無機粒子の含有量は、シール剤の総量に対して0.1~25質量%が好ましく、3~20質量%がより好ましく、5~18質量%がさらに好ましい。無機粒子の含有量が0.1質量%以上であると、得られるシール部材の耐湿性が高まりやすく、25質量%以下であると、シール剤の塗工安定性が損なわれにくい。
 (8)その他
 本実施形態のシール剤は、必要に応じて熱ラジカル重合開始剤、シランカップリング剤等のカップリング剤、イオントラップ剤、イオン交換剤、レベリング剤、顔料、染料、増感剤、可塑剤及び消泡剤等の添加剤をさらに含んでいてもよい。
 シランカップリング剤の例には、ビニルトリメトキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン等が含まれる。シランカップリング剤の量は、シール剤の総量に対して0.01~6質量%が好ましく、0.1~5質量%がより好ましく、0.5~3質量%がさらに好ましい。シランカップリング剤の含有量が0.01質量%以上であると、得られるシール部材が十分な接着性を有しやすい。
 シール剤は、液晶表示パネルのギャップを調整するためのスペーサー等をさらに含んでいてもよい。
 その他の成分の合計量は、シール剤の総量に対して1~50質量%が好ましい。その他の成分の合計量が50質量%以下であると、シール剤の粘度が過度に上昇し難く、シール剤の塗工安定性が損なわれにくい。
 (9)シール剤の物性
 シール剤のE型粘度計の25℃、2.5rpmにおける粘度は、200~450Pa・sが好ましく、250~400Pa・sがより好ましい。粘度が上記範囲にあると、シール剤(シールパターン)を介して、一対の基板を重ね合わせたときに、シール剤がこれらの隙間を埋めるように変形しやすい。そのため、液晶表示パネルの一対の基板間のギャップを適正に制御できる。
 また、シール剤のチクソトロピーインデックス(TI値)は、シール剤の塗布性の観点から、1.0~1.5が好ましく、1.1~1.3がより好ましい。TI値は、E型粘度計を用い、室温(25℃)、0.5rpmにおけるシール剤の粘度をη1とし、5rpmにおけるシール剤の粘度をη2とし、これらの測定値を、下記式(1)に当てはめて得られる値である。
 TI値=(0.5rpmにおける粘度η1(25℃))/(5rpmにおける粘度η2(25℃))・・・(1)
 2.液晶表示パネル
 本発明の液晶表示パネルは、一対の基板と、当該基板の間に配置された枠状のシール部材と、一対の基板間かつ枠状のシール部材の内部に充填された液晶と、を有する。当該液晶表示パネルでは、シール部材が、前述のシール剤の硬化物である。前述の第1のシール剤または第2のシール剤から得られるシール部材は、基板との接着強度が高く、シール部材を細線化しても液晶漏れ等が生じ難い。さらに、当該シール剤は、液晶を汚染し難い。したがって、液晶表示パネルの使用時に残像等が生じ難い。
 一対の基板(「表示基板および対向基板」とも称する)は、いずれも透明基板である。透明基板の材質の例には、ガラス、または、ポリカーボネート、ポリエチレンテレフタレート、ポリエーテルサルフォンおよびPMMA等が含まれる
 表示基板または対向基板の表面には、マトリクス状のTFT、カラーフィルタ、ブラックマトリクス等が配置される。表示基板または対向基板の表面には、さらに配向膜が形成される。配向膜には、公知の有機配向剤や無機配向剤等が含まれる。また、液晶は公知の液晶を用いることが可能である。
 液晶表示パネルの製造方法には、一般に、液晶滴下工法と、液晶注入工法とがあるが、本発明の液晶表示パネルの製造方法は、液晶滴下工法であることが好ましい。
 液晶滴下工法による液晶表示パネルの製造方法は、1)一方の基板に、前述のシール剤を塗布し、枠状のシールパターンを形成するシールパターン形成工程と、2)シールパターンが未硬化の状態で、一方の基板上かつシールパターンで囲まれた領域内、もしくは他方の基板上かつ他方の基板と一方の基板とを対向させたときにシールパターンに囲まれる領域に、液晶を滴下する液晶滴下工程と、3)一方の基板および他方の基板を、シールパターンを介して重ね合わせる重ね合わせ工程と、4)シールパターンを硬化させる硬化工程と、を含む。 
 1)シールパターン形成工程では、一方の基板に、前述のシール剤を塗布する。シール剤を塗布する方法は特に制限されず、例えばスクリーン印刷や、ディスペンサによる塗布等、所望の厚みや幅でシールパターンを形成可能な方法であれば特に制限されず、公知のシール剤の塗布方法と同様である。
 また、形成するシールパターンの形状は、液晶表示パネルの用途等に合わせて適宜選択され、液晶が漏出しない形状であればよい。例えば矩形状の枠状とすることができるが、当該形状に制限されない。シールパターンの線幅は、0.2~1.0mmが好ましく、0.2~0.5mmがより好ましい。
 2)液晶滴下工程では、シールパターンが未硬化の状態で、一対の基板を対向させる。ここで、シールパターンが未硬化の状態とは、シール剤の硬化反応がゲル化点までは進行していない状態を意味する。なお、液晶滴下工程前に、シール剤の液晶への溶解を抑制するために、シールパターンを光照射または加熱して半硬化させてもよい。また、液晶の滴下方法は、公知の液晶の滴下方法と同様であり、シールパターンが形成された基板に液晶を滴下してもよく、シールパターンが形成されていない基板(他方の基板)に液晶を滴下してもよい。
 3)重ね合わせ工程では、シールパターンを介して一方の基板と他方の基板とが対向するように重ね合わせる。このとき、基板間のギャップが所望の範囲となるように制御する。
 4)硬化工程では、シールパターンを硬化させる。シールパターンの硬化方法は特に制限されないが、所定の波長の光の照射によって仮硬化させた後、加熱により本硬化させることが好ましい。光照射によれば、シールパターンを瞬時に硬化させることができ、シール剤中の成分が液晶に溶解することを抑制できる。
 照射する光の波長は、光重合開始剤の種類に応じて適宜選択され、可視光を含む光が好ましい。また、光照射時間は、シール剤の組成にもよるが、例えば10分程度である。このとき照射するエネルギー量は、(メタ)アクリル化合物や、(メタ)アクリル・エポキシ含有化合物を硬化させることができる程度のエネルギー量であればよい。
 光の照射後、加熱によりエポキシ化合物や(メタ)アクリル・エポキシ含有化合物を硬化させてもよい。加熱温度は、シール剤の組成にもよるが、例えば100~150℃であり、加熱時間は2時間程度が好ましい。
 本発明を実施例に基づき詳細に説明するが、本発明はこれらの実施例に限定されない。
 1.第1の実施形態
 [合成例1]硬化性モノマー(A-1)の合成
 228gの液状ビスフェノールA(富士フィルム和光純薬社製)および0.74gの触媒(水酸化カリウム、富士フィルム和光純薬社製)を撹拌機付き高圧反応器(オートクレーブ)に仕込み、窒素ガスで置換した。次に、撹拌しながら高圧反応器を加熱し、内温が70℃に達したところで440gのエチレンオキサイド(東京化成工業社製)を高圧反応器に圧入し、さらに100℃まで加熱して4時間半反応させた。反応後、23℃まで冷却し、ビスフェノールA型エトキシレートを分取した。得られたビスフェノールA型エトキシレート316gと、アクリル酸(東京化成工業社製)144gとを、フラスコ内に仕込み、乾燥空気を送り込んで、105℃で還流撹拌しながら20時間反応させた。得られた化合物を、超純水にて20回洗浄し、上述の一般式(1)の構造を満たす硬化性モノマー(A-1)(エチレンオキサイド(EO)変性ビスフェノールA型アクリルモノマー(上述の一般式(1)におけるm+n+p=10))を得た。平均分子量を表1に示す。
 [合成例2]硬化性モノマー(A-2)の合成
 228gの液状ビスフェノールA(富士フィルム和光純薬社製)および0.74gの触媒(水酸化カリウム、富士フィルム和光純薬社製)を撹拌機付き高圧反応器(オートクレーブ)に仕込み、窒素ガスで置換した。次に、撹拌しながら高圧反応器を加熱し、内温が70℃に達したところで704gのエチレンオキサイド(東京化成工業社製)を高圧反応器に圧入し、さらに100℃まで加熱して4時間半反応させた。反応後、23℃まで冷却し、ビスフェノールA型エトキシレートを分取した。得られたビスフェノールA型エトキシレート316gと、アクリル酸(東京化成工業社製)144gとをフラスコ内に仕込み、乾燥空気を送り込んで、105℃で還流撹拌しながら20時間反応させた。得られた化合物を、超純水にて20回洗浄し、上述の一般式(1)の構造を満たす硬化性モノマー(A-2)(エチレンオキサイド(EO)変性ビスフェノールA型アクリルモノマー(上述の一般式(1)におけるm+n+p=16))を得た。平均分子量を表1に示す。
 [合成例3]硬化性モノマー(A-3)の合成
 228gの液状ビスフェノールA(富士フィルム和光純薬社製)および0.74gの触媒(水酸化カリウム、富士フィルム和光純薬社製)を撹拌機付き高圧反応器(オートクレーブ)に仕込み、窒素ガスで置換した。次に、撹拌しながら高圧反応器を加熱し、内温が70℃に達したところで440gのエチレンオキサイド(東京化成工業社製)を高圧反応器に圧入し、さらに100℃まで加熱して4時間半反応させた。反応後、23℃まで冷却し、ビスフェノールA型エトキシレートを分取した。得られたビスフェノールA型エトキシレート316gと、メタクリル酸(東京化成工業社製)200gとをフラスコ内に仕込み、乾燥空気を送り込んで、105℃で還流撹拌しながら20時間反応させた。得られた化合物を、超純水にて20回洗浄し、上述の一般式(1)の構造を満たす硬化性モノマー(A-3)(エチレンオキサイド(EO)変性ビスフェノールA型メタクリルモノマー(上述の一般式(1)におけるm+n+p=10))を得た。平均分子量を表1に示す。
 [合成例4]硬化性モノマー(A-4)の合成
 200gの液状ビスフェノールF(富士フィルム和光純薬社製)、0.74gの触媒(水酸化カリウム、富士フィルム和光純薬社製)を撹拌機付き高圧反応器(オートクレーブ)に仕込み、窒素ガスで置換した。次に、撹拌しながら高圧反応器を加熱し、内温が70℃に達したところで440gのエチレンオキサイド(東京化成工業社製)を高圧反応器に圧入し、さらに100℃まで加熱して4時間半反応させた。反応後、23℃まで冷却し、ビスフェノールFエトキシレートを分取した。得られたビスフェノールF型エトキシレート288gと、アクリル酸(東京化成工業社製)144gとをフラスコ内に仕込み、乾燥空気を送り込んで、105℃で還流撹拌しながら20時間反応させた。得られた化合物を、超純水にて20回洗浄し、上述の一般式(1)の構造を満たす硬化性モノマー(A-4)(EO変性ビスフェノールF型アクリルモノマー(上述の一般式(1)におけるm+n+p=10))を得た。重量平均分子量を表1に示す。
 [合成例5]硬化性モノマー(A-5)の合成
 200gの液状ビスフェノールF(富士フィルム和光純薬社製)、0.74gの触媒(水酸化カリウム、富士フィルム和光純薬社製)を撹拌機付き高圧反応器(オートクレーブ)に仕込み、窒素ガスで置換した。次に、撹拌しながら高圧反応器を加熱し、内温が70℃に達したところで440gのエチレンオキサイド(東京化成工業社製)を高圧反応器に圧入し、さらに100℃まで加熱して4時間半反応させた。反応後、23℃まで冷却し、ビスフェノールFエトキシレートを分取した。得られたビスフェノールF型エトキシレート288gと、メタクリル酸(東京化成工業社製)200gとを、フラスコ内に仕込み、乾燥空気を送り込んで、105℃で還流撹拌しながら20時間反応させた。得られた化合物を、超純水にて20回洗浄し、上述の一般式(1)の構造を満たす硬化性モノマー(A-5)(EO変性ビスフェノールF型メタクリルモノマー(上述の一般式(1)におけるm+n+p=10))を得た。重量平均分子量を表1に示す。
 [合成例6]硬化性モノマー(A-6)の合成
 456gの液状ビスフェノールA(富士フィルム和光純薬社製)、0.74gの触媒(水酸化カリウム、富士フィルム和光純薬社製)を撹拌機付き高圧反応器(オートクレーブ)に仕込み、窒素ガスで置換した。次に、撹拌しながら高圧反応器を加熱し、内温が70℃に達したところで352gのエチレンオキサイド(東京化成工業社製)を高圧反応器に圧入し、さらに100℃まで加熱して4時間半反応させた。反応後、23℃まで冷却し、ビスフェノールA型エトキシレートを分取した。得られたビスフェノールA型エトキシレート316gと、アクリル酸(東京化成工業社製)144gとをフラスコ内に仕込み、乾燥空気を送り込んで、105℃で還流撹拌しながら20時間反応させた。得られた化合物を、超純水にて20回洗浄し、上述の一般式(1)の構造を満たす硬化性モノマー(A-6)(EO変性ビスフェノールA型アクリルモノマー(上述の一般式(1)におけるm+n+p=4))を得た。重量平均分子量を表1に示す。
 [その他の化合物の準備]
 上記硬化性モノマー以外の成分は、以下の化合物を用いた。
 ・重合性化合物
 エポキシ化合物1:JER社製、エピコート1004、軟化点97℃、エポキシ当量:900、重量平均分子量:1650
 エポキシ化合物2:ADEKA社製、EP-4003S、エポキシ当量:470、重量平均分子量:940
 アクリル変性エポキシ化合物:ケーエスエム社製、BAEM-50、エポキシ当量:470程度(推定)
 アクリル化合物:ダイセル・オルネクス社製、EBECRYL3700、重量平均分子量:500
 ポリブタジエン末端ジアクリレート:大阪有機化学工業社製、BAC-45、重量平均分子量:10000
 ・熱硬化剤
 熱硬化剤1:ADEKA社製、EH-4357S、ポリアミン型、融点75~85℃、水への溶解度:不溶、アミノ基当量:0.013
 熱硬化剤2:日本ファインケム社製、マロン酸ジヒドラジド(MDH)、融点150~160℃、水への溶解度:10g/100g、アミノ基当量:0.045
 ・光重合開始剤
 光重合開始剤1:BASF社製、Irgacure651
 光重合開始剤2:IGM Regins社製、Omnipol-TX
 ・無機粒子
 アドマテックス社製、SO-C1(シリカ粒子)
 ・(メタ)アクリル系熱可塑性ポリマー粒子
 アイカ工業社製微粒子ポリマー、F351
 ・シランカップリング剤
 信越化学工業社製、KBM-403
 [実施例1-1]
 エポキシ化合物2 100質量部、アクリル変性エポキシ化合物 495質量部、アクリル化合物 60質量部、合成例1で調製した硬化性モノマー(A-1) 80質量部、熱硬化剤 30質量部、無機粒子 120質量部、アクリル系熱可塑性ポリマー粒子 100質量部、シランカップリング剤 10質量部、光重合開始剤1 10質量部を、三本ロールを用いて均一な液になるように十分混合して、液晶滴下工法用シール剤を得た。
 [実施例1-2~1-10、および比較例1-1~1-5]
 各成分の種類や量を表1に示すように変更した以外は、実施例1-1と同様に液晶滴下工法用シール剤を得た。
 [評価]
 実施例1-1~1-10および比較例1-1~1-5で得られた液晶滴下工法用シール剤について、ヤング率、PCT後接着強度および表示特性を以下の方法で評価した。
 ・ヤング率の測定
 得られた液晶滴下工法用シール剤を、離型紙のうえにアプリケーターを用いて100μmの厚みで塗布した。その後、窒素置換用の容器に入れて窒素パージを5分実施した後、3000mJ/cm(波長365nmセンサーで校正した光)の光を照射し、さらに120℃で1時間加熱して、フィルムを作製した。
 得られたフィルムのヤング率は、得られた硬化フィルムを長さ35mm、幅10mmにはさみでカットし、動的粘弾性測定装置(DMA、セイコーインスツル社製、DMS6100)により25℃から170℃まで昇温させて測定した。そして、得られた結果のうち、120℃での貯蔵弾性率の値を初期ヤング率とした。
 続いて、上記と同様に作製したフィルムを、PCT試験機(平山製作所社製、PC-422R8D)に入れ、121℃、100%Rh環境下に24時間曝した。その後、室温まで温度が低下してからフィルムを取り出し、前記と同様に動的粘弾性測定装置を用いて測定した。そして、得られた結果のうち、120℃の貯蔵弾性率の値を、PCT後ヤング率とした。
 ・PCT後接着強度評価
 上述の液晶滴下工法用シール剤を、ディスペンサー(武蔵エンジニアリング社製、ショットマスター)を用いて、透明電極と配向膜が予め形成された40mm×45mmガラス基板(RT-DM88-PIN、EHC社製)上に、38mm×38mmの四角形(枠状)に塗布し、シールパターン(断面積2500μm)を形成した。次いで、シールパターンを形成したガラス基板に対して垂直になるように、対になるガラス基板を減圧下で貼り合せた後、大気開放して貼り合わせた。そして、貼り合わせた2枚のガラス基板を1分間遮光ボックス内で保持した後、3000mJ/cmの可視光を含む光(波長370~450nmの光)を照射し、さらに120℃で1時間加熱してシールを硬化させた。
 その後、貼り合わせたガラス基板をPCT試験機(平山製作所社製、PC-422R8D)に入れ、121℃、100%Rh環境下に24時間曝した後、室温まで温度が低下してから取り出し、試験片を得た。
 得られた試験片のシールパターンの外周から4.5mmの部分を、押込み試験機(インテスコ社製、Model210)を用い5mm/分の速度で垂直に押込み、シールが剥がれた時の応力を測定した。接着強度はその応力を液晶シール剤で描画したシール線幅で割ることにより求めた。そして、以下の基準で評価した。
 ◎:25N/mm以上で剥離
 〇:15N/mm以上、25N/mm未満で剥離
 ×:15N/mm未満で剥離
 ・表示特性評価
 上述の液晶滴下工法用シール剤を、ディスペンサー(武蔵エンジニアリング社製、ショットマスター)を用いて、透明電極と配向膜が予め形成された40mm×45mmガラス基板(EHC社製、RT-DM88-PIN)上に、メインシールとして35mm×35mmの四角形(枠状)のシールパターン(断面積3500μm)と、その外周に38mm×38mmの四角形(枠状)のシールパターンとを形成した。
 次いで、貼り合せ後のパネル内容量に相当する液晶材料(メルク社製、MLC-6609-000)を、メインシールの枠内にディスペンサーを用いて精密に滴下した。次いで、対になるガラス基板を減圧下で貼り合せた後、大気開放して貼り合わせた。そして、貼り合わせた2枚のガラス基板を1分間遮光ボックス内で保持した後、メインシールを36mm×36mmの四角形のブラックマトリックスを塗布した基板でマスクした状態で、500mJ/cmの可視光を含む光(波長370~450nmの光)を照射し、さらに120℃で1時間加熱して、メインシールを硬化させた。その後、得られた液晶セルの両面に偏光フィルムを貼り付けて、液晶表示パネルを得た。評価は、以下のように行った。
 〇:液晶表示パネルのメインシール際まで液晶が配向されて色ムラが全くない場合
 △:メインシール際の近傍に1mm未満の範囲にわたり色ムラが発生している場合
 ×:メインシール際近傍から1mm以上の範囲にわたり色ムラが発生している場合
Figure JPOXMLDOC01-appb-T000016
 表1に示されるように、初期ヤング率が、1.0×10以下であり、かつPCT後ヤング率と初期ヤング率との差が、8.0×10Pa以下である場合には、いずれもPCT後の接着強度が高く、かつ表示特性も良好であった(実施例1-1~1-10)。
 一方、初期ヤング率が1.0×10を超える場合(比較例1-3)、またはPCT後ヤング率と初期ヤング率との差が、8.0×10Paを超える場合(比較例1-1、1-2、1-4、および1-5)は、いずれもPCT後接着強度が低かった。また特に、上述の一般式(1)で表される硬化性モノマーを含まない場合には、表示特性も低かった(比較例1-2、1-3)。
 2.第2の実施形態
 [合成例1~6]硬化性モノマー(A-1)~(A-6)の合成
 上述の第1の実施形態の硬化性モノマー(A-1)~(A-6)の合成方法と同様に、各硬化性モノマーを調製した。表2および表3には、平均分子量を示す。
 [合成例7]被覆粒子の合成
 テフロン(登録商標)製撹拌翼を有する攪拌機付きの1Lテフロン(登録商標)製三つ口フラスコにゾルゲルシリカを100g仕込み、高速攪拌しながら、グリシジルアクリレート0.28g、ジビニルベンゼン0.026g、およびパーブチルO(日本油脂社製)0.04gを混合した溶液を二流体ノズルにて噴霧した。噴霧終了後にさらに2時間撹拌した。その後、攪拌しながらフラスコを1時間かけて100℃まで昇温し、100℃で4時間保持した。
 このようにして得られた被覆粒子について、1g当たりのエポキシ基の量を測定した結果、22μeq/gであった。さらに、二重結合性官能基当量を測定したが検出できなかった。この結果より、被覆粒子が、表面にエポキシ基を有することが確認された。なお、当該被覆粒子のポリマー層の厚みは、0.009μmであった。
 [その他の化合物の準備]
 上記硬化性モノマーおよび被覆粒子以外の成分は、以下の化合物を用いた。
 ・重合性化合物
 エポキシ化合物1:JER社製、エピコート1004、軟化点97℃、エポキシ当量:900、重量平均分子量:1650
 エポキシ化合物2:ADEKA社製、EP-4003S、エポキシ当量:470、重量平均分子量:940
 アクリル変性エポキシ化合物:ケーエスエム社製、BAEM-50、エポキシ当量:470程度(推定)
 アクリル化合物:ダイセル・オルネクス社製、EBECRYL3700、重量平均分子量:500
 ポリブタジエン末端ジアクリレート:大阪有機化学工業社製、BAC-45、重量平均分子量:10000
 ・熱硬化剤
 ADEKA社製、EH-4357S、ポリアミン型、融点75~85℃、水への溶解度:不溶、活性水素当量:79.75
 ・硬化触媒
 四国化成社製、キュアゾール 2MZ-H、融点140~148℃
 ・光重合開始剤
 BASF社製、Irgacure651
 IGM社製、Omnipol-TX
 ・無機粒子
 アドマテックス社製、SO-C1、シリカ粒子
 ・有機粒子
 アイカ工業社製微粒子ポリマー、F351
 ・シランカップリング剤
 信越化学工業社製、KBM-403
 [実施例2-1]
 エポキシ化合物2 80質量部、アクリル変性エポキシ化合物 510質量部、アクリル化合物 60質量部、合成例1で調製した硬化性モノマー(A-1) 80質量部、熱硬化剤 30質量部、無機粒子 120質量部、有機粒子 100質量部、シランカップリング剤 10質量部、光重合開始剤 10質量部を、三本ロールを用いて均一な液になるように十分混合して、液晶滴下工法用シール剤を得た。
 [実施例2-2~2-14、および比較例2-1~2-5]
 各成分の種類や量を表2または3に示すように変更した以外は、実施例2-1と同様に液晶滴下工法用シール剤を得た。
 [評価]
 実施例2-1~2-14および比較例2-1~2-5で得られた液晶滴下工法用シール剤について、ヤング率、PCT後接着強度および表示特性を以下の方法で評価した。
 ・ヤング率の測定
 得られた液晶滴下工法用シール剤を、離型紙のうえにアプリケーターを用いて100μmの厚みで塗布した。その後、窒素置換用の容器に入れて窒素パージを5分実施した後、3000mJ/cm(波長365nmセンサーで校正した光)の光を照射し、さらに120℃で1時間加熱して、フィルムを作製した。
 得られたフィルムのヤング率は、得られた硬化フィルムを長さ35mm、幅10mmにはさみでカットし、動的粘弾性測定装置(DMA、セイコーインスツル社製、DMS6100)により25℃から170℃まで昇温させて測定した。そして、得られた結果のうち、120℃での貯蔵弾性率の値を初期ヤング率とした。
 続いて、上記と同様に作製したフィルムを、PCT試験機(平山製作所社製、PC-422R8D)に入れ、121℃、100%Rh環境下に24時間曝した。その後、室温まで温度が低下してからフィルムを取り出し、前記と同様に動的粘弾性測定装置を用いて測定した。そして、得られた結果のうち、120℃の貯蔵弾性率の値を、PCT後ヤング率とした。
・シール剤中のエポキシ基の数に対する活性水素の数の比率
 まず、以下の式に基づき、エポキシ系化合物由来のエポキシ基の数および熱硬化剤由来の活性水素の数を算出した。
 エポキシ基の数=(エポキシ化合物1の含有量/エポキシ化合物1のエポキシ当量)+(エポキシ化合物2の含有量/エポキシ化合物2のエポキシ当量)+(アクリル変性エポキシ化合物の含有量/当該化合物のエポキシ当量)
 活性水素の数=熱硬化剤の含有量/熱硬化剤の活性水素当量
 そして、上記活性水素の数をエポキシ基の数で除した値(活性水素の数/エポキシ基の数)を、シール剤中のエポキシ系化合物由来のエポキシ基の数に対する、シール剤中の熱硬化剤由来の活性水素の数の比率として算出した。
 ・PCT後接着強度評価
 上述の液晶滴下工法用シール剤を、ディスペンサー(武蔵エンジニアリング製、ショットマスター)を用いて、透明電極と配向膜が予め形成された40mm×45mmガラス基板(RT-DM88-PIN、EHC社製)上に、38mm×38mmの四角形(枠状)に塗布し、シールパターン(断面積2500μm)を形成した。次いで、シールパターンを形成したガラス基板に対して垂直になるように、対になるガラス基板を減圧下で貼り合せた後、大気開放して貼り合わせた。そして、貼り合わせた2枚のガラス基板を1分間遮光ボックス内で保持した後、3000mJ/cmの可視光を含む光(波長370~450nmの光)を照射し、さらに120℃で1時間加熱してシールを硬化させた。
 その後、貼り合わせたガラス基板をPCT試験機(平山製作所社製、PC-422R8D)に入れ、121℃、100%Rh環境下に24時間曝した後、室温まで温度が低下してから取り出し、試験片を得た。
 得られた試験片のシールパターンの外周から4.5mmの部分を、押込み試験機(インテスコ社製、Model210)を用い5mm/分の速度で垂直に押込み、シールが剥がれた時の応力を測定した。接着強度はその応力を液晶シール剤で描画したシール線幅で割ることにより求めた。そして、以下の基準で評価した。
 ◎:25N/mm以上で剥離
 〇:15N/mm以上、25N/mm未満で剥離
 ×:15N/mm未満で剥離
 ・透湿量評価
 ヤング率の測定と同様に硬化フィルムを作製した。吸湿剤として塩化カルシウム(無水)を封入したアルミカップに硬化フィルムを乗せ、さらにアルミリングを乗せてねじ締をした。その後、アルミカップ全体の初期の質量を計測した。そして、60℃90%Rhに設定した恒温槽にアルミカップを入れて、24時間放置した。そして、アルミカップを取り出して質量を計測した。得られた質量を、計算式「透湿量=(試験後質量-試験前重量)*フィルム厚み/(フィルム面積×100)」に入れて、透湿量を算出した。得られた値を、以下の基準で評価した。
 ◎:70g/m未満
 〇:70以上150g/m未満
 ×:150g/m以上
 ・粘度安定性評価
 シール剤をプラスチック製のシリンジに抜取り、E型粘度計により25℃、2.5rpmの条件で初期の粘度(粘度:A)を測定した。一方、シール剤(シリンジ)を23℃の恒温槽に168時間保管した後、再度粘度(粘度:B)を測定した。得られた粘度について、粘度増加率を以下の計算式で算出し、以下の基準で評価した。なお、粘度増加率が100%に近いほど粘度安定性が高いことを示す。
 粘度増加率(%)=B/A×100
 〇:粘度増加率が120%以下
 ×:粘度増加率が120%超
 ・塗布性評価
 得られたシール剤を10ccのシリンジに充填した後、脱泡し、続いてディスペンサー(ショットマスター:武蔵エンジニアリング社製)に充填した。このディスペンサーを用いて、ガラス基板に毎秒4cmのスピードで塗布し描画を行なった。塗布性は以下の基準で評価した。
 ○:所望の描画線からのシール剤の染み出しまたは糸曳きが無く、かつ外観も良好
 △:前記染み出しまたは糸曳きは無いが、外観が不良
 ×:前記染み出しまたは糸曳きが発生し塗布適性が極めて不良
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 表2および表3に示されるように、初期ヤング率が、1.0×10以下であり、かつPCT後ヤング率と初期ヤング率との差が、8.℃0×10Pa以下であり、かつエポキシ化合物のエポキシ当量に対する、熱硬化剤の活性水素当量の比率が0.25以上である場合には、いずれもPCT後の接着強度評価が高く、かつ透湿量も低かった。さらに粘度安定性やと不安定性評価も良好であった(実施例2-1~2-15)。また特に、融点が100℃以上の硬化触媒を含む場合(実施例2-11および実施例2-14)には、接着強度が特に高く、さらに透湿量も低かった。また、被覆粒子を含む場合にも、接着強度が向上し、透湿量が低減した(実施例2-12~2-14)。
 一方、初PCT後ヤング率と初期ヤング率との差が、8.0×10Paを超える場合(比較例2-1~2-4)は、いずれもPCT後接着強度が低かった。また、シール剤中のエポキシ基系化合物由来のエポキシ基の数に対する、シール剤中の熱硬化剤由来の活性水素の数の比率が0.25未満となる場合には、透湿量評価が低下した(比較例2-4および2-5)。
 本出願は、2020年3月30日出願の特願2020-060596号に基づく優先権、および2020年3月30日出願の特願2020-060603号に基づく優先権を主張する。これらの出願明細書に記載された内容は、すべて本願明細書に援用される。
 本発明のシール剤の硬化物は、高温高湿環境下に保存した後でも、基板との接着強度が高い。したがって、当該シール剤は、各種液晶表示パネルのシール部材を作製するためのシール剤等として非常に有用である。

Claims (19)

  1.  液晶滴下工法に使用する、液晶滴下工法用シール剤であって、
     前記液晶滴下工法用シール剤を厚み100μmの膜状にし、3000mJ/cmの光を照射し、120℃で1時間加熱してフィルムを形成したとき、
     動的粘弾性測定装置で測定される、前記フィルムの120℃における初期ヤング率が1.0×10Pa以下であり、かつ
     前記フィルムを121℃、100%Rh環境下で24時間保存後に動的粘弾性測定装置で測定される、前記フィルムの120℃におけるPCT後ヤング率と、前記初期ヤング率との差が、8.0×10Pa以下である、
     液晶滴下工法用シール剤。
  2.  重合性官能基を有する重合性化合物を含み、
     前記重合性化合物は、下記一般式(1)で表される構造を有する硬化性モノマーを含む、
     請求項1に記載の液晶滴下工法用シール剤。
    Figure JPOXMLDOC01-appb-C000001
     (上記一般式(1)における、Rは、
    Figure JPOXMLDOC01-appb-C000002
    からなる群から選ばれる基(*は結合手を表す)を表し、
     RおよびRは、それぞれ独立に、
    Figure JPOXMLDOC01-appb-C000003
    からなる群から選ばれる基(*は結合手を表し、m、n、およびpは、1~30の整数を表す)を表し、
     RおよびRは、それぞれ独立に水素原子またはメチル基を表す)
  3.  前記硬化性モノマーの分子量が700以上である、
     請求項2に記載の液晶滴下工法用シール剤。
  4.  前記重合性化合物の総量に対する前記硬化性モノマーの総量が、10質量%以上30質量%以下である、
     請求項2に記載の液晶滴下工法用シール剤。
  5.  (メタ)アクリル系熱可塑性ポリマー粒子をさらに含み、
     前記(メタ)アクリル系熱可塑性ポリマー粒子の量が、10質量%以上である、
     請求項2に記載の液晶滴下工法用シール剤。
  6.  イミダゾール系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、およびポリアミン系熱潜在性硬化剤からなる群より選ばれる少なくとも一種の熱硬化剤をさらに含む、
     請求項2に記載の液晶滴下工法用シール剤。
  7.  重合性官能基を有する重合性化合物と、熱硬化剤と、を含む液晶滴下工法用シール剤であって、
     前記重合性化合物がエポキシ系化合物を含み、
     前記液晶滴下工法用シール剤中の前記エポキシ系化合物由来のエポキシ基の数に対する、前記液晶滴下工法用シール剤中の前記熱硬化剤由来の活性水素の数の比率が0.25以上であり、
     前記液晶滴下工法用シール剤を厚み100μmの膜状にし、3000mJ/cmの光を照射し、120℃で1時間加熱してフィルムを形成したとき、
     動的粘弾性測定装置で測定される、前記フィルムの120℃における初期ヤング率が1.0×10Pa以下であり、かつ
     前記フィルムを121℃、100%Rh環境下で24時間保存後に動的粘弾性測定装置で測定される、前記フィルムの120℃におけるPCT後ヤング率と、前記初期ヤング率との差が、8.0×10Pa以下である、
     液晶滴下工法用シール剤。
  8.  前記重合性化合物が、下記一般式(1)で表される構造を有する硬化性モノマーをさらに含む、
     請求項7に記載の液晶滴下工法用シール剤。
    Figure JPOXMLDOC01-appb-C000004
     (上記一般式(1)における、Rは、
    Figure JPOXMLDOC01-appb-C000005
    からなる群から選ばれる基(*は結合手を表す)を表し、
     RおよびRは、それぞれ独立に、
    Figure JPOXMLDOC01-appb-C000006
    からなる群から選ばれる基(*は結合手を表し、m、n、およびpは、1~30の整数を表す)を表し、
     RおよびRは、それぞれ独立に水素原子またはメチル基を表す)
  9.  前記硬化性モノマーの分子量が700以上である、
     請求項8に記載の液晶滴下工法用シール剤。
  10.  前記重合性化合物の総量に対する前記硬化性モノマーの総量が、10質量%以上30質量%以下である、
     請求項8に記載の液晶滴下工法用シール剤。
  11.  硬化触媒をさらに含み、
     前記硬化触媒の融点が100℃以上である、
     請求項7に記載の液晶滴下工法用シール剤。
  12.  無機粒子からなるコアと、前記コアを覆うポリマー層とを有する被覆粒子をさらに含み、
     前記被覆粒子は、表面にエポキシ基および/または炭素-炭素二重結合を含む官能基を有する、
     請求項7に記載の液晶滴下工法用シール剤。
  13.  前記ポリマー層が、架橋型ポリマーを含む、
     請求項12に記載の液晶滴下工法用シール剤。
  14.  前記被覆粒子の平均粒子径が0.2μm~10μmである、
     請求項12に記載の液晶滴下工法用シール剤。
  15.  一対の基板の一方の基板上に、請求項1~14のいずれか一項に記載の液晶滴下工法用シール剤を塗布し、シールパターンを形成する工程と、
     前記シールパターンが未硬化の状態において、前記一方の基板の前記シールパターンの領域内、または他方の基板上に液晶を滴下する工程と、
     前記一方の基板と前記他方の基板とを、前記シールパターンを介して重ね合わせる工程と、
     前記シールパターンを硬化させる工程と、
     を含む、液晶表示パネルの製造方法。
  16.  前記シールパターンを硬化させる工程において、前記シールパターンに光を照射する、
     請求項15に記載の液晶表示パネルの製造方法。
  17.  前記光が、可視光を含む、
     請求項16に記載の液晶表示パネルの製造方法。
  18.  前記シールパターンを硬化させる工程において、光を照射後、加熱する、
     請求項16または17に記載の液晶表示パネルの製造方法。
  19.  請求項1~14のいずれか一項に記載の液晶滴下工法用シール剤の硬化物を含む、
     液晶表示パネル。
PCT/JP2021/011090 2020-03-30 2021-03-18 液晶滴下工法用シール剤および液晶表示パネルの製造方法、ならびに液晶表示パネル WO2021200220A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022511888A JP7413511B2 (ja) 2020-03-30 2021-03-18 液晶滴下工法用シール剤および液晶表示パネルの製造方法、ならびに液晶表示パネル
KR1020227030123A KR20220136390A (ko) 2020-03-30 2021-03-18 액정 적하 공법용 실링제 및 액정 표시 패널의 제조 방법, 및 액정 표시 패널
CN202180016740.2A CN115176199A (zh) 2020-03-30 2021-03-18 液晶滴加工艺用密封剂及液晶显示面板的制造方法、以及液晶显示面板

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020060596 2020-03-30
JP2020-060596 2020-03-30
JP2020-060603 2020-03-30
JP2020060603 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021200220A1 true WO2021200220A1 (ja) 2021-10-07

Family

ID=77928423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011090 WO2021200220A1 (ja) 2020-03-30 2021-03-18 液晶滴下工法用シール剤および液晶表示パネルの製造方法、ならびに液晶表示パネル

Country Status (5)

Country Link
JP (1) JP7413511B2 (ja)
KR (1) KR20220136390A (ja)
CN (1) CN115176199A (ja)
TW (1) TW202144531A (ja)
WO (1) WO2021200220A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164297A (ja) * 2010-02-08 2011-08-25 Three Bond Co Ltd 液晶滴下工法用シール剤
JP2014106255A (ja) * 2012-11-22 2014-06-09 Sekisui Chem Co Ltd 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP2019108432A (ja) * 2017-12-15 2019-07-04 日本化薬株式会社 ディスプレイ用封止剤

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6583198B2 (en) * 1997-11-28 2003-06-24 Hitachi Chemical Company, Ltd. Photo curable resin composition and photosensitive element
JP4100529B2 (ja) * 1998-12-05 2008-06-11 大日本印刷株式会社 液晶表示装置およびその製造方法
CN101180568A (zh) * 2005-06-21 2008-05-14 积水化学工业株式会社 液晶间隔物、间隔物分散液、液晶显示装置的制造方法及液晶显示装置
JP2014091808A (ja) * 2012-11-06 2014-05-19 Tosoh Corp 樹脂組成物及びこれを含む液晶表示パネル用シール剤
JP5876972B1 (ja) 2014-03-31 2016-03-02 協立化学産業株式会社 硬化後柔軟性に優れる硬化性樹脂、(メタ)アクリル化硬化性樹脂、及び液晶シール剤組成物
JP6754933B2 (ja) * 2014-04-09 2020-09-16 協立化学産業株式会社 フレキシブル液晶パネルに適応可能な液晶シール剤
KR102258279B1 (ko) * 2015-12-02 2021-05-31 주식회사 엘지화학 광학 소자
KR102176231B1 (ko) * 2017-12-20 2020-11-09 주식회사 엘지화학 투과도 가변 필름 및 투과도 가변 필름의 제조 방법
TW201934716A (zh) * 2018-02-14 2019-09-01 日商日本化藥股份有限公司 顯示器用封裝劑

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164297A (ja) * 2010-02-08 2011-08-25 Three Bond Co Ltd 液晶滴下工法用シール剤
JP2014106255A (ja) * 2012-11-22 2014-06-09 Sekisui Chem Co Ltd 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP2019108432A (ja) * 2017-12-15 2019-07-04 日本化薬株式会社 ディスプレイ用封止剤

Also Published As

Publication number Publication date
KR20220136390A (ko) 2022-10-07
JPWO2021200220A1 (ja) 2021-10-07
JP7413511B2 (ja) 2024-01-15
CN115176199A (zh) 2022-10-11
TW202144531A (zh) 2021-12-01

Similar Documents

Publication Publication Date Title
JP5008682B2 (ja) 光硬化性樹脂と熱硬化性樹脂を含有する液晶滴下工法用シール剤
KR101762055B1 (ko) 조성물, 경화물, 표시 디바이스 및 그 제조 방법
JP5986987B2 (ja) 液晶シール剤、それを用いた液晶表示パネルの製造方法、および液晶表示パネル
JP6566994B2 (ja) 液晶シール剤及びその硬化物、並びに液晶表示パネル及びその製造方法
JP2017223828A (ja) 液晶滴下工法用シール材、液晶表示パネル及び液晶表示パネルの製造方法
JP6793471B2 (ja) 液晶滴下工法用シール材、液晶表示パネル及び液晶表示パネルの製造方法
JP5645765B2 (ja) 液晶シール剤及びそれを用いた液晶表示セル
JP5153123B2 (ja) 液晶滴下工法用シール剤、それを用いた液晶表示パネルの製造方法及び液晶表示パネル
JP5032340B2 (ja) 液晶シール剤およびこれを用いた液晶パネルの製造方法
WO2021200220A1 (ja) 液晶滴下工法用シール剤および液晶表示パネルの製造方法、ならびに液晶表示パネル
JP2017219564A (ja) 液晶滴下工法用シール材、液晶表示パネル及び液晶表示パネルの製造方法
JP7411693B2 (ja) 光熱硬化性樹脂組成物およびこれを含む液晶シール剤、ならびに液晶表示パネルおよびその製造方法
JP7490747B2 (ja) 液晶滴下工法用シール剤および液晶表示パネルの製造方法
WO2021177111A1 (ja) 液晶滴下工法用シール剤および液晶表示パネルの製造方法
JPWO2020022188A1 (ja) 液晶滴下工法用遮光シール剤、およびこれを用いた液晶表示パネルの製造方法
WO2020230678A1 (ja) 液晶シール剤、これを用いた液晶表示パネル、およびその製造方法
WO2022181498A1 (ja) 光硬化性樹脂組成物、液晶シール剤、ならびにこれを用いた液晶表示パネルおよびその製造方法
WO2023182361A1 (ja) 液晶シール剤、液晶表示パネルの製造方法及び液晶表示パネル
CN115380246A (zh) 液晶密封剂、液晶显示面板的制造方法及液晶显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227030123

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022511888

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779715

Country of ref document: EP

Kind code of ref document: A1