WO2023181454A1 - 基板処理装置、半導体装置の製造方法及びプログラム - Google Patents

基板処理装置、半導体装置の製造方法及びプログラム Download PDF

Info

Publication number
WO2023181454A1
WO2023181454A1 PCT/JP2022/034843 JP2022034843W WO2023181454A1 WO 2023181454 A1 WO2023181454 A1 WO 2023181454A1 JP 2022034843 W JP2022034843 W JP 2022034843W WO 2023181454 A1 WO2023181454 A1 WO 2023181454A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
substrate
section
unit
processing apparatus
Prior art date
Application number
PCT/JP2022/034843
Other languages
English (en)
French (fr)
Inventor
司 鎌倉
哲明 稲田
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Publication of WO2023181454A1 publication Critical patent/WO2023181454A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations

Definitions

  • the present technology relates to a substrate processing apparatus, a semiconductor device manufacturing method, and a program.
  • a substrate processing apparatus that includes a plurality of processing chambers for processing a substrate is known (for example, see Japanese Patent Application Laid-Open No. 2021-158351).
  • substrates are transferred to multiple boats using a single transfer machine.
  • the present disclosure provides a technology that can achieve cost reduction and throughput improvement by configuring a container in which a substrate is stored to be transported.
  • a first container moving unit capable of moving the container; a second container moving unit disposed at a different position from the first container moving unit and capable of moving the container; a plurality of process modules capable of processing substrates in the container; a substrate transport unit disposed between the first container movement unit and the second container movement unit, configured to be able to communicate with the plurality of process modules, and capable of transporting the substrate; a substrate transport robot provided in the substrate transport unit and capable of transporting the substrate to the process module; a third container moving unit disposed between the first container moving unit and the second container moving unit, and capable of moving the container from the first container moving unit to the second container moving unit; and, a control unit;
  • a technology having the following is provided.
  • cost reduction and throughput improvement can be achieved by configuring the container in which the substrate is stored to be transported.
  • FIG. 1 is an explanatory diagram (cross-sectional view) showing a schematic configuration example of a substrate processing apparatus according to a first embodiment of the present disclosure.
  • 2 is a cross-sectional view taken along the ⁇ - ⁇ line of the substrate processing apparatus shown in FIG. 1.
  • FIG. 2 is a cross-sectional view taken along the ⁇ - ⁇ line of the substrate processing apparatus shown in FIG. 1.
  • FIG. 2 is an explanatory diagram (vertical cross-sectional view) showing an example of a schematic configuration of the reactor shown in FIG. 1.
  • FIG. FIG. 5 is an explanatory diagram showing a schematic configuration example of a first gas supply section included in the reactor shown in FIG. 4.
  • FIG. 5 is an explanatory diagram showing a schematic configuration example of a second gas supply section included in the reactor shown in FIG. 4.
  • FIG. FIG. 5 is an explanatory diagram showing a schematic configuration example of an inert gas supply section included in the reactor shown in FIG. 4.
  • FIG. FIG. 5 is an explanatory diagram showing a schematic configuration example of an inert gas supply section included in the reactor shown in FIG. 4.
  • FIG. 1 is an explanatory diagram illustrating a controller of a substrate processing apparatus according to a first embodiment of the present disclosure.
  • FIG. 2 is an explanatory diagram (horizontal cross-sectional view) showing a schematic configuration example of a substrate processing apparatus according to a second embodiment of the present disclosure.
  • FIG. 8 is a cross-sectional view taken along the ⁇ - ⁇ line of the substrate processing apparatus shown in FIG. 7.
  • FIG. 8 is a cross-sectional view taken along the ⁇ - ⁇ line of the substrate processing apparatus shown in FIG. 7.
  • FIG. 9 is a cross-sectional view of a modification of the substrate processing apparatus shown in FIG. 7 (corresponding to the cross-sectional view in FIG. 9).
  • FIG. 8 is an explanatory diagram (vertical cross-sectional view) showing an example of a schematic configuration of the reactor shown in FIG. 7;
  • FIG. 3 is an explanatory diagram (cross-sectional view) showing a schematic configuration example of a substrate processing apparatus according to a third embodiment of the present disclosure.
  • FIG. 14 It is an explanatory view (horizontal cross-sectional view) showing an example of a schematic structure of a substrate processing device concerning a fourth embodiment of this indication.
  • 14 is a sectional view taken along the ⁇ - ⁇ line of the substrate processing apparatus shown in FIG. 13.
  • FIG. 13 It is an explanatory view (longitudinal sectional view) showing an example of a schematic structure of a substrate processing device concerning a fifth embodiment of this indication.
  • FIG. 1 is a cross-sectional view showing a configuration example of a substrate processing apparatus according to a first embodiment of the present disclosure.
  • FIG. 2 shows a configuration example of a substrate processing apparatus according to the first embodiment of the present disclosure, and is a longitudinal cross-sectional view taken along the ⁇ - ⁇ line in FIG.
  • a substrate processing apparatus 100 of this embodiment processes a substrate S as a substrate.
  • This substrate processing apparatus 100 mainly includes a load port 110, a first container moving section 120, a second container moving section 180, a substrate transport section 140, a third container moving section 160, and a reactor 200 as an example of a process module. Ru.
  • the direction indicated by the arrow FR of the substrate processing apparatus 100 in FIG. is called the upper side (upper side) of the substrate processing apparatus 100, and the direction opposite to the arrow UP is called the lower side (lower side).
  • the direction of the substrate processing apparatus 100 indicated by the arrow LF is called the left side (left side) of the substrate processing apparatus 100, and the direction opposite to the arrow LF is called the right side (right side).
  • the front (front side), rear (rear side), upper side (upper side), lower side (lower side), left side (left side), and right side (right side) of the substrate processing apparatus 100 are simply referred to as the front (front side) and rear (back side). It is also called the rear side), upper side (upper side), lower side (lower side), left side (left side), and right side (right side).
  • the left-right direction of the substrate processing apparatus 100 may be referred to as the width direction or the lateral direction
  • the front-rear direction of the substrate processing apparatus 100 may be referred to as the depth direction
  • the up-down direction of the substrate processing apparatus 100 may be referred to as the height direction. You can also put it in other words.
  • the substrate processing apparatus 100 includes a load port 110 and a first container moving section 120 arranged at the front, and a second container moving section 180 arranged at the rear. Between the first container moving section 120 and the second container moving section 180, a substrate transport section 140, a third container moving section 160, and a plurality of reactors 200 are arranged. Specifically, the substrate transport section 140 is arranged below the substrate processing apparatus 100 at the center side in the width direction of the substrate processing apparatus 100 . On the other hand, the third container moving unit 160 is arranged above the substrate processing apparatus 100 at the center side in the width direction of the substrate processing apparatus 100. Note that in this embodiment, the third container moving section 160 is arranged above the substrate transport section 140.
  • the plurality of reactors 200 are arranged on both sides of the substrate transport section 140 in the width direction.
  • the reactors 200 are arranged on one side (left side) in the width direction of the substrate transport section 140, and five reactors 200 are arranged on the other side (right side) in the width direction.
  • the reactors 200 on the left are called 200a, 200b, 200c, 200d, and 200e from the front
  • the reactors 200 on the right are called 200f, 200g, 200h, 200i, and 200j from the front. call.
  • the load port 110, the first container moving section 120, the second container moving section 180, the substrate transport section 140, and the reactor 200 are each fixed to the floor 101.
  • each configuration of the substrate processing apparatus 100 will be specifically explained. Note that the operation of each part of the substrate processing apparatus 100 is controlled by a controller 400 as an example of a control unit, which will be described later.
  • the load port 110 is installed in front of the substrate processing apparatus 100.
  • a plurality of support stands 111 are provided on the load port 110.
  • a storage container 102 which is an example of a container, is mounted on the support stand 111.
  • This storage container 102 is a container that can accommodate a substrate S such as a silicon (Si) substrate.
  • This storage container 102 is sometimes called a FOUP, a cassette, or the like.
  • the first container moving section 120 is adjacent to the load port 110 at the rear of the load port 110, as shown in FIG. Further, the first container moving section 120 is adjacent to the reactor 200 on the opposite side to the load port 110. Specifically, the first container moving section 120 is adjacent to the reactor 200a and the reactor 200f.
  • the first container moving unit 120 is configured to be able to move the storage container 102.
  • the first container moving section 120 is a section that moves (transfers) the storage container 102 between the load port 110, the substrate transport section 140, and the third container moving section 160.
  • This first container moving section 120 is also called a front container moving section or a front atmospheric transfer chamber.
  • the first container moving unit 120 has a housing 121.
  • the inside of the casing 121 is a transport space 122 in which the storage container 102 is transported.
  • a loading/unloading port 112 is provided on the front side of the housing 121 for carrying the storage container 102 into and out of the housing 121 from the load port 110.
  • the loading/unloading exit 112 is opened and closed by a shutter 129.
  • a loading/unloading port 128 is provided at the rear lower part of the housing 121 for carrying the storage container 102 into and out of the housing 141 of the substrate transport section 140 from inside the housing 121.
  • An opener 145 for opening the lid of the storage container 102 is provided at the loading/unloading port 128 . Note that the opener 145 is provided on the substrate transport section 140 side.
  • a loading/unloading port 126 is provided at the rear upper part of the housing 121 for transporting the storage container 102 from inside the housing 121 to the outside where the third container moving section 160 is arranged.
  • the first container moving unit 120 includes an elevator 123, a robot 124, a stand 125 as an example of a first container stand, and a stand 127 as an example of a second container stand.
  • the robot 124 and the elevator 123 collectively constitute a front container transport section.
  • the front container transport section is an example of the first container transport section in the present disclosure.
  • the elevator 123 is configured to be movable in the vertical direction.
  • a robot 124 is mounted on the elevator 123. As the elevator 123 moves up and down, the robot 124 also moves up and down. Here, if the robot 124 is holding the storage container 102, the storage container 102 also moves in the vertical direction together with the robot 124 due to the vertical movement of the elevator 123. Further, the elevator 123 is configured to be able to rise to a height at which the robot 124 can place the storage container 102 on an upper platform 125 and receive the storage container 102 from the platform 125. On the other hand, the elevator 123 is configured to be able to descend to a height at which the robot 124 can place the storage container 102 on a lower platform 127 and receive the storage container 102 from the platform 127.
  • the robot 124 is mounted on the elevator 123 and has the function of holding the storage container 102.
  • the robot 124 moves together with the elevator 123 and transports the storage container 102 between the support platform 111, the platform 125, and the platform 127.
  • the robot 124 includes a fixed part 124a fixed to the elevator 123, a rotating part 124b provided on the fixed part 124a, and a support part 124c provided on the rotating part 124b.
  • the rotating part 124b is rotatable about the vertical direction.
  • the support portion 124c is a portion that supports the storage container 102. The rotation of this rotating portion 124b causes the supporting portion 124c to rotate and move in the horizontal direction. This configuration allows the storage container 102 to be transported between the support stand 111, the stand 125, and the stand 127.
  • the stand 125 is a stand that supports the storage container 102 and is adjacent to the third container moving section 160. Specifically, the stand 125 is disposed near the loading/unloading port 126 and is adjacent to the third container moving section 160 via the loading/unloading port 126, and is connected to the first container moving section 120 and the third container moving section 160. This is a stand on which the storage container 102 is placed when being transferred between the two (during transfer).
  • the stand 127 is a stand that supports the storage container 102 and is adjacent to the substrate transport section 140. Specifically, the table 127 is disposed near the loading/unloading port 128 , is adjacent to the substrate transporting section 140 via the loading/unloading port 128 , and is stored between the first container moving section 120 and the substrate transporting section 140 . This is a stand on which the substrate S in the container 102 is placed when transferring (transferring).
  • the storage container 102 is placed on the stand 127 so that the lid of the storage container 102 faces the substrate transport section 140. In other words, the storage container 102 is placed on the stand 127 with the lid facing rearward.
  • each part of the first container moving section 120 is controlled by the controller 400.
  • the controller 400 can control the elevator 123 and the robot 124 to move the storage container 102 supported by the load port 110 to the platform 125 or 127. That is, the elevator 123 and robot 124 controlled by the controller 400 move the storage container 102 supported by the load port 110 to the platform 125 or 127.
  • the second container moving unit 180 is adjacent to the reactor 200 at the rear of the reactor 200, as shown in FIG. Specifically, the second container moving section 180 is adjacent to the reactor 200e and the reactor 200j.
  • the second container moving section 180 is arranged at a different position from the first container moving section 120. Specifically, the second container moving section 180 is arranged at a position facing the first container moving section 120 in the front-rear direction, in other words, at a position behind the first container moving section 120.
  • the second container moving unit 180 is configured to be able to move the storage container 102.
  • the second container moving section 180 is a section that moves (transfers) the storage container 102 between the substrate transport section 140 and the third container moving section 160.
  • This second container moving section 180 is also called a rear container moving section or a rear atmospheric transfer chamber.
  • the second container moving unit 180 has a housing 181.
  • the inside of the casing 181 is a transport space 182 in which the storage container 102 is transported.
  • a loading/unloading port 147 is provided at the front lower part of the housing 181 for carrying the storage container 102 into and out of the housing 141 of the substrate transport section 140 from inside the housing 181.
  • An opener 146 for opening the lid of the storage container 102 is provided at the loading/unloading port 147. It is provided on the substrate transport section 140 side.
  • a loading/unloading port 163 is provided at the rear upper part of the housing 181 to carry the storage container 102 in and out from inside the housing 181 to the outside where the third container moving section 160 is arranged.
  • the second container moving unit 180 includes an elevator 183, a robot 184, a stand 185 as an example of a third container stand, and a stand 186 as an example of a fourth container stand.
  • the robot 184 and elevator 183 are collectively referred to as a rear container transport section.
  • the rear container transport section is an example of the second container transport section in the present disclosure.
  • the elevator 183 is configured to be movable in the vertical direction.
  • a robot 184 is mounted on the elevator 183.
  • the elevator 183 moves up and down, the robot 184 also moves up and down.
  • the elevator 183 is configured to be able to rise to a height at which the robot 184 can place the storage container 102 on an upper platform 185 and receive the storage container 102 from the platform 185.
  • the elevator 183 is configured to be able to descend to a height at which the robot 184 can place the storage container 102 on a lower platform 186 and receive the storage container 102 from the platform 186.
  • the robot 184 is mounted on the elevator 183 and has the function of holding the storage container 102.
  • the robot 184 moves together with the elevator 183 and transports the storage container 102 between the support platform 111, the platform 185, and the platform 186.
  • the robot 184 includes a fixed part 184a fixed to the elevator 183, a rotating part 184b provided on the fixed part 184a, and a support part 184c provided on the rotating part 184b.
  • the rotating part 184b is rotatable about the vertical direction.
  • the support portion 184c is a portion that supports the storage container 102. The rotation of this rotating portion 184b causes the supporting portion 184c to rotate and move in the horizontal direction. This configuration allows the storage container 102 to be transported between the support stand 111, the stand 185, and the stand 186.
  • the stand 185 is a stand that supports the storage container 102 and is adjacent to the third container moving section 160. Specifically, the table 185 is disposed near the loading/unloading port 163 and is adjacent to the third container moving section 160 via the loading/unloading port 163, and is connected to the second container moving section 180 and the third container moving section 160. This is a stand on which the storage container 102 is placed when being transferred between the two (during transfer).
  • the stand 186 is a stand that supports the storage container 102 and is adjacent to the substrate transport section 140. Specifically, the table 186 is disposed near the loading/unloading port 147 , is adjacent to the substrate transporting section 140 via the loading/unloading port 147 , and is stored between the second container moving section 180 and the substrate transporting section 140 . This is a stand on which the substrate S in the container 102 is placed when transferring (transferring).
  • the storage container 102 is placed on the stand 186 so that the lid of the storage container 102 faces the substrate transport section 140.
  • the storage container 102 is placed on the stand 186 with the lid facing forward. That is, the stand 186 is configured such that the lid of the storage container 102 supported on the stand 186 and the lid of the storage container 102 supported on the stand 127 face each other.
  • each part of the second container moving section 180 is controlled by the controller 400.
  • the controller 400 moves the storage container 102 in the first container moving section 120 to the second container moving section 180 via the third container moving section 160.
  • the storage container 102 supported on the stand 125 is moved to the stand 185 by the third container moving section 160.
  • the elevator 183 and robot 184 are controlled so that the storage container 102 supported on the stand 185 is supported on the stand 186.
  • the substrate transport section 140 is arranged between the first container moving section 120 and the second container moving section 180 and on the lower side. Further, a plurality of reactors 200 are arranged on both sides of the substrate transport section 140 in the width direction.
  • the substrate transport section 140 is configured to be able to communicate with the plurality of reactors 200.
  • the substrate transport section 140 is a section that transports the storage container 102 between the first container movement section 120 and each reactor 200, and transports the storage container 102 between the second container movement section 180 and each reactor 200. .
  • This substrate transfer section 140 is also called a lower transfer chamber.
  • the substrate transport section 140 has a housing 141.
  • the inside of the casing 141 is a transport space 142 in which the storage container 102 is transported.
  • a loading/unloading port 128 is provided on the front side of the casing 141, and an opener 145 is provided near the loading/unloading port 128.
  • a loading/unloading port 147 is provided on the rear side of the housing 141, and an opener 146 is provided near the loading/unloading port 147.
  • a transport robot 144 moves in the housing 141.
  • a rail 143 is provided. Specifically, the rail 143 is provided at the bottom of the housing 141 and extends in the front-rear direction. In other words, the rail 143 extends from the loading/unloading port 128 to the loading/unloading port 147 or from the loading/unloading port 147 to the loading/unloading port 128 .
  • the substrate transport unit 140 is provided with a transport robot 144 as an example of a substrate transport robot that can transport the substrate S to each reactor 200.
  • the substrate transfer unit 140 includes the transfer robot 144 within the housing 141.
  • the substrate transport section 140 includes a plurality of transport robots 144.
  • the transport robot 144 is movable on the rails 143 along the rails 143.
  • This transfer robot 144 is configured to be able to mount a plurality of substrates S. That is, the transport robot 144 can move on the rails 143 with a plurality of substrates S loaded (held) thereon and transport the substrates S to the target reactor 200.
  • the substrate transport section 140 includes a plurality of transport robots 144.
  • a reactor 200 in charge of each of these plurality of transfer robots 144 is set.
  • the substrate transfer unit 140 includes two transfer robots 144, and one transfer robot 144 is provided further forward on the rail 143 than the other transfer robot 144.
  • the transport robot 144 arranged on the front side will be referred to as a front transport robot 144a
  • the transport robot 144 arranged on the rear side will be referred to as a rear transport robot 144b.
  • the front transfer robot 144a of the present embodiment is an example of the first substrate transfer robot in the present disclosure
  • the rear transfer robot 144b of the present embodiment is an example of the second substrate transfer robot in the present disclosure. .
  • the front transfer robot 144a of this embodiment is in charge of the reactor 200 arranged on the front side among the plurality of reactors 200. Specifically, the front transfer robot 144a is in charge of reactor 200a, reactor 200b, reactor 200f, and reactor 200g. In this embodiment, since five reactors 200 are arranged on each side, the front transfer robot 144a is also in charge of the reactors 200c and 200h located in the middle in the front-rear direction. In other words, the front transfer robot 144a transfers the substrate S to these reactors 200a, 200b, 200c, 200f, 200g, and 200h.
  • the rear transfer robot 144b of this embodiment is in charge of the reactor 200 arranged on the rear side among the plurality of reactors 200. Specifically, the rear transfer robot 144b is in charge of reactor 200d, reactor 200e, reactor 200i, and reactor 200j. In other words, the rear transfer robot 144b transfers the substrate S to these reactors 200d, 200e, 200i, and 200j.
  • the front transfer robot 144a and the rear transfer robot 144b have transfer areas (reactors 200 in charge) set according to the type of substrate processing by the reactors 200. Good too.
  • the transfer area (the reactor 200 in charge) may be set according to the time of substrate processing by the reactor 200.
  • the transfer robot 144 may be configured to process the substrate S in one reactor 200 and then move to a different reactor (another reactor) 200. .
  • the substrate transport section 140 includes an inert gas supply section 148 and an exhaust section 149.
  • the inert gas supply unit 148 is configured to supply inert gas into the housing 141. By supplying the inert gas into the housing 141, the transport space 142 becomes an inert gas atmosphere.
  • the exhaust section 149 is a part that exhausts the atmosphere inside the casing 141.
  • each part of the substrate transport section 140 is controlled by the controller 400.
  • the controller 400 sets the transfer areas (the reactors 200 in charge) of the plurality of transfer robots 144.
  • the third container moving section 160 is arranged between the first container moving section 120 and the second container moving section 180 and on the upper side. Further, a plurality of reactors 200 are arranged on both sides of the third container moving section 160 in the width direction.
  • This third container moving section 160 is a section that can move the storage container 102 from the first container moving section 120 to the second container moving section 180. That is, the third container moving section 160 is a section that can move (transfer) the storage container 102 between the first container moving section 120 and the second container moving section 180. For this reason, the third container moving section 160 is also referred to as an upper conveyance section.
  • the third container moving section 160 includes a rail 161 and a container transport section 162.
  • the rail 161 spans between the first container moving section 120 and the second container moving section 180. Specifically, it extends from above the loading/unloading port 126 of the casing 121 to above the loading/unloading port 163 of the casing 181 .
  • a container transport section 162 moves along this rail 161.
  • the container transport section 162 is a part that holds and transports the storage container 102. This container transport section 162 moves along the rails 161 as described above. That is, the container transport unit 162 can move (transport) the storage container 102 between the first container movement unit 120 and the second container movement unit 180 by moving the rail 161 while holding the storage container 102. Make it.
  • the third container moving section 160 is configured to be able to transport the storage container 102 in an atmosphere independent of the substrate transport section 104.
  • the substrate transport unit 140 in this embodiment transports the substrate S under an inert gas atmosphere
  • the third container transport unit 160 transports the substrate S in the atmosphere, so both storage containers 102 are transported.
  • the atmosphere is different. That is, the atmosphere of the third container moving section 160 is independent from the atmosphere of the substrate transport section 104.
  • the container transport section 162 may be provided with a rotating section.
  • This rotating part is a part that rotates in the horizontal direction with the vertical direction as the axial direction. By rotating the rotating section, the storage container 102 held by the container transport section 162 can be rotated in the horizontal direction. This allows the orientation of the lid of the storage container 102 to be changed.
  • reactor batch equipment
  • a plurality of reactors 200 are arranged on both sides of the substrate transport section 140 in the width direction.
  • This reactor 200 is a device that can process the substrate S in the storage container 102. Note that since each reactor 200 has the same configuration, it will be described as one reactor 200 here.
  • Each reactor 200 is configured to be capable of performing multiple processes. Details will be explained below.
  • the casing 201 that constitutes the reactor 200 includes a reaction tube storage chamber 210 at the top and a transfer chamber 270 at the bottom.
  • a heater 211 and an inner reaction tube 222 are mainly stored in the reaction tube storage chamber 210 .
  • the transfer chamber 270 communicates with the inside of the casing 141 of the substrate transfer section 140.
  • the transfer chamber 270 is installed at the lower part of the inner reaction tube 222 and is configured to communicate with the inner reaction tube 222.
  • the transfer robot 144 places (mounts) the substrate S on a substrate support (hereinafter also referred to as a boat) 240, which will be described later. It is done to take things out.
  • the inner reaction tube 222 includes an outer reaction tube 221 and an inner reaction tube 222.
  • the inner reaction tube 222 is housed inside the outer reaction tube 221.
  • the outer reaction tube 221 is provided between the inner reaction tube 222 and the heater 211.
  • the atmosphere inside the outer reaction tube 221 and the atmosphere inside the inner reaction tube 222 are configured to be separated.
  • a room in which the inner reaction tubes 222 are stored is called an inner reaction tube storage chamber 221b.
  • a flange portion 221a is provided below the outer reaction tube 221.
  • a hole is provided at the center of the flange portion 221a, into which the flange portion 222a of the inner reaction tube 222 is inserted and fixed.
  • the flange portion 221a and the flange portion 222a are collectively referred to as a furnace mouth portion 222b.
  • the upper part of the inner reaction tube 222 is closed, and the lower part is provided with a flange part 222a.
  • a furnace opening 222b through which the substrate support 240 passes is provided at the center of the flange 222a.
  • the inner reaction tube 222 can accommodate the substrate S supported by the substrate support 240.
  • the inner reaction tube 222 is provided with a nozzle 223 as a gas supply section.
  • the nozzle 223 is configured to extend in the vertical direction, which is the direction in which the plurality of substrates S are arranged. The gas supplied from the nozzle 223 is supplied to each substrate S.
  • the nozzles 223 are provided, for example, for each gas type, and here, as an example, three nozzles 223a, 223b, and 223c are described. Each nozzle 223 is arranged so as not to overlap in the horizontal direction. Although three nozzles 223 are shown in FIG. 4 for convenience of explanation, the number is not limited to this, and four or more or two or less nozzles may be arranged depending on the content of substrate processing.
  • a gas supply unit capable of supplying gas to each nozzle 223 will be described using FIGS. 5A, 5B, 5C, and 5D.
  • a first gas supply section and a second gas supply section which will be described later, are collectively referred to as a gas supply section.
  • the gas supply pipe 224a is provided with, in order from the upstream direction, a first gas source 224b, a mass flow controller (MFC) 224c that is a flow rate controller (flow rate control unit), and a valve 224d that is an on-off valve.
  • Gas supply pipe 224a is configured to communicate with nozzle 223a.
  • the first gas source 224b is a first gas source containing a first element (also referred to as "first element-containing gas").
  • the first element-containing gas is one of the source gases, that is, the processing gases.
  • the first element is silicon (Si), for example.
  • hexachlorodisilane Si 2 Cl 6 , abbreviation: HCDS
  • monochlorosilane SiH 3 Cl, abbreviation: MCS
  • dichlorosilane SiH 2 Cl 2 , abbreviation: DCS
  • trichlorosilane SiHCl 3
  • TCS chlorosilane source gas containing an Si-Cl bond
  • tetrachlorosilane SiCl 4 , STC
  • octachlorotrisilane Si 3 Cl 8 , OCTS
  • a first gas supply section (also referred to as a silicon-containing gas supply section) 224 is mainly composed of a gas supply pipe 224a, an MFC 224c, and a valve 224d.
  • a gas supply pipe 224e is connected to the gas supply pipe 224a on the downstream side of the valve 224d.
  • the gas supply pipe 224e is provided with an inert gas source 224f, an MFC 224g, and a valve 224h in this order from the upstream direction.
  • An inert gas such as nitrogen (N 2 ) gas, is supplied from the inert gas source 224f.
  • a first inert gas supply section is mainly composed of the gas supply pipe 224e, MFC 224g, and valve 224h.
  • the inert gas supplied from the inert gas source 224f is used as a carrier gas or diluent gas for the first gas in the substrate processing process.
  • a first inert gas supply may be added to the first gas supply.
  • the gas supply pipe 225a is provided with a second gas source 225b, an MFC 225c, and a valve 225d in this order from the upstream direction.
  • Gas supply pipe 225a is configured to communicate with nozzle 223b.
  • the second gas source 225b is a second gas source containing a second element (hereinafter also referred to as "second element-containing gas").
  • the second element-containing gas is one of the processing gases. Note that the second element-containing gas may be considered as a reaction gas or a reformed gas.
  • the second element-containing gas contains a second element different from the first element.
  • the second element is, for example, any one of oxygen (O), nitrogen (N), and carbon (C).
  • the second element-containing gas is, for example, a nitrogen-containing gas.
  • it is a hydrogen nitride gas containing an NH bond, such as ammonia (NH 3 ), diazene (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, and N 3 H 8 gas.
  • a second gas supply section (also referred to as a reaction gas supply section) 225 is mainly composed of the gas supply pipe 225a, MFC 225c, and valve 225d.
  • a gas supply pipe 225e is connected to the downstream side of the valve 225d.
  • the gas supply pipe 225e is provided with an inert gas source 225f, an MFC 225g, and a valve 225h in this order from the upstream direction. Inert gas is supplied from the inert gas source 225f.
  • a second inert gas supply section is mainly composed of the gas supply pipe 225e, MFC 225g, and valve 225h.
  • the inert gas supplied from the inert gas source 225f is used as a carrier gas or diluent gas for the second gas in the substrate processing process.
  • a second inert gas supply may be added to the second gas supply 225.
  • the gas supply pipe 226a is provided with an inert gas source 226b, an MFC 226c, and a valve 226d in this order from the upstream direction.
  • the inert gas supplied from the inert gas source 226b is used, for example, as a purge gas to purge the atmosphere inside the inner reaction tube 222, or as a pressure adjustment gas to adjust the pressure in the inner reaction tube 222.
  • Gas supply pipe 226a is configured to communicate with nozzle 223c.
  • the exhaust section 230 that exhausts the atmosphere of the inner reaction tube 222 has an exhaust pipe 231 that communicates with the inner reaction tube 222.
  • a vacuum pump (not shown) as an evacuation device is connected to the exhaust pipe 231 via a valve 232 as an on-off valve and an APC (Auto Pressure Controller) valve 233 as a pressure regulator (pressure adjustment section).
  • the inner reaction tube 222 is configured to be able to be evacuated to a predetermined pressure (degree of vacuum).
  • the pressure within the inner reaction tube 222 is adjusted by the cooperation of the gas supply section and the exhaust section described above.
  • the pressure value detected by a pressure detection section (not shown) is adjusted to a predetermined value.
  • the inner reaction tube 222 the area where the substrate S is stored is called a processing area, and the section that makes up the processing area is called a processing chamber 222c.
  • the inner reaction tube 222 constitutes a processing chamber 222c.
  • the substrate S is transferred to the substrate support 240 via the carry-in/out port 147 by the transfer robot 144 inside the transfer chamber 270 . Further, the substrate support 240 transports the transferred substrate S into the inside of the inner reaction tube 222. Then, processing such as forming a thin film on the surface of the substrate S is performed inside the inner reaction tube 222.
  • the substrate support 240 includes an elevating section 241 that drives the substrate support 240 in the vertical direction. In FIG. 4, the substrate support 240 is raised by the lifting section 241 and is housed in the inner reaction tube 222. As shown in FIG. Further, the substrate support 240 includes a rotation drive unit 242 that drives the substrate support 240 to rotate.
  • Each drive unit is connected to a shaft 243 that supports a support stand 244.
  • the support stand 244 is provided with a plurality of support columns 246 capable of supporting the substrate S.
  • the support column 246 supports the top plate 249. In FIG. 4, one support column 246 is shown for convenience of explanation.
  • a plurality of substrate support mechanisms are provided on the support column 246 at predetermined intervals in the vertical direction, and the plurality of substrates S are supported by the respective substrate support mechanisms.
  • the lower part of the plurality of support columns 246 is covered with a heat insulating cover 245.
  • the substrate support 240 supports a plurality of substrates S, for example, five substrates S, in multiple stages in the vertical direction using a plurality of support columns 246.
  • the top plate 249 and the plurality of support columns 246 are made of a material such as quartz or SiC, for example. Note that although an example in which seven substrates S are supported on the substrate support 240 is shown here, the present invention is not limited to this.
  • the substrate support 240 may be configured to be able to support approximately 5 to 50 substrates S.
  • the substrate support 240 is moved vertically between the inner reaction tube 222 and the transfer chamber 270 by the lifting section 241, and rotates around the center of the substrate S supported by the substrate support 240 by the rotation drive section 242b. driven in the direction.
  • a lid 247 that closes the furnace mouth portion 222b is fixed to the shaft 243 via a fixing portion 247a.
  • the diameter of the lid body 247 is configured to be larger than the diameter of the furnace mouth portion 222b.
  • the lid 247 is provided with a heater 247b that heats the lid 247.
  • the flange portion 222a of the inner reaction tube 222 is provided with an O-ring 248 as a sealing member.
  • the lid body 247 closes the furnace opening 222b, for example, while processing the substrate S.
  • the elevating unit 241 lifts the lid 247 so that the top surface of the lid 247 is pressed against the flange portion 222a, as shown in FIG. let Thereby, the inside of the inner reaction tube 222 can be kept airtight.
  • the transfer chamber 270 is installed at the lower part of the reaction tube storage chamber 210.
  • the transfer robot 144 can place (mount) the substrate S on the substrate support 240 through the carry-in/out port 147, and the transfer robot 144 can take out the substrate S from the substrate support 240. be exposed.
  • the transfer chamber 270 is provided with an exhaust section 280 that exhausts the atmosphere inside the transfer chamber 270.
  • the exhaust section 280 is connected to the transfer chamber 270 and has an exhaust pipe 281 that communicates with the inside thereof.
  • a vacuum pump (not shown) as an evacuation device is connected to the exhaust pipe 281 via a valve 282 as an on-off valve and an APC valve 283, and the pressure in the transfer chamber 270 is evacuated to a predetermined pressure. It is configured so that it can be done.
  • An inert gas supply section 271 shown in FIG. 5D may be connected to the transfer chamber 270.
  • the gas supply pipe 271a is provided with an inert gas source 271b, an MFC 271c, and a valve 271d in this order from the upstream direction.
  • the inert gas supplied from the inert gas source 271b is used, for example, to purge the atmosphere in the transfer chamber 270 or adjust the pressure.
  • the inert gas supply section 271 is also referred to as a third gas supply section.
  • the substrate processing apparatus 100 includes a controller 400 that controls the operation of each part.
  • the controller 400 is configured as a computer including a CPU (Central Processing Unit) 401, a RAM (Random Access Memory) 402, a storage section 403, and an I/O port 404.
  • the RAM 402, storage unit 403, and I/O port 404 are configured to be able to exchange data with the CPU 401 via an internal bus 405. Transmission and reception of data within the substrate processing apparatus 100 is performed according to instructions from a transmission/reception instruction unit 406, which is also one of the functions of the CPU 401.
  • the CPU 401 is configured to read and execute a control program from the storage unit 403 and read a process recipe from the storage unit 403 in response to input of an operation command from the input/output device 423. Then, the CPU 401 performs, for example, the lifting and lowering operations of each lifting mechanism, the substrate transfer operation by the robot, the on/off control of each pump, the flow rate adjustment operation of the MFC, and the opening/closing operation of the valves in accordance with the contents of the read process recipe. It is configured to be able to control the following.
  • the storage unit 403 is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like.
  • a recipe 410 consisting of a process recipe etc. in which procedures and conditions for substrate processing are described, and a control program 411 for controlling the operation of the substrate processing apparatus are stored in a readable manner.
  • the process recipe is a combination that allows the controller 400 to execute each procedure in the substrate processing process described later to obtain a predetermined result, and functions as a program.
  • This process recipe exists for each reactor, for example, and is read for each reactor.
  • this process recipe, control program, etc. will be collectively referred to as simply a program.
  • the word program may include only a single process recipe, only a single control program, or both.
  • the RAM 402 is configured as a memory area (work area) in which programs, data, etc. read by the CPU 401 are temporarily held.
  • the I/O port 404 is connected to each component such as each pressure regulator, each pump, and heater control unit. Further, a network transmitter/receiver 421 is provided which is connected to the host device 420 via a network.
  • the controller 400 can be configured by installing a program on a computer using the external storage device 422 that stores the above-mentioned program.
  • the external storage device 422 include a magnetic disk such as a hard disk, an optical disk such as a DVD, a magneto-optical disk such as an MO, and a semiconductor memory such as a USB memory.
  • the means for supplying the program to the computer is not limited to supplying the program via the external storage device 422.
  • the program may be supplied without going through the external storage device 422 using communication means such as the Internet or a dedicated line.
  • the storage unit 403 and the external storage device 422 are configured as computer-readable recording media. Hereinafter, these will be collectively referred to as simply recording media. Note that in this specification, when the term "recording medium" is used, it may include only the storage unit 403, only the external storage device 422, or both.
  • the robot 124 of the first container moving unit 120 receives the storage container 102 supported by the support stand 111 of the load port 110. Thereby, the storage container 102 is moved from the load port 110 to the first container moving section 120.
  • the substrate processing apparatus 100 transports the substrate S accommodated in the storage container 102 from the first container moving unit 120 via the substrate transport unit 140 to the reactor 200 for the purpose of transport.
  • the storage container 102 (substrate S) is sent toward the transfer robot 144 in charge of the reactor 200 for the purpose of transfer, and the substrate S is transferred from the transfer robot 144 to the reactor 200.
  • the front transfer robot 144a For example, if the front transfer robot 144a is in charge of the reactor 200 for transfer purposes, the storage container 102 is placed on the stand 127 using the robot 124 and the elevator 123. Next, the lid of the storage container 102 is opened using the opener 145. Then, the front transfer robot 144a takes out the substrate S from the storage container 102 and transfers it to the reactor 200 for the purpose of transfer. Thereafter, the front transfer robot 144a transfers the substrate S to the substrate support 240 of the reactor 200 for the purpose of transfer. That is, when the front transfer robot 144a is in charge of the reactor 200 for the purpose of conveyance, the substrate S is carried into the reactor 200 for the purpose of conveyance via the first container moving section 120 and the substrate conveyance section 140.
  • the storage container 102 is placed on the stand 125 using the robot 124 and the elevator 123.
  • the storage container 102 supported by the stand 125 is placed on the stand 185 of the second container moving part 180 by the container transporting part 162 of the third container moving part 160.
  • the storage container 102 is moved from the platform 185 to the platform 186 using the robot 184 and the elevator 183.
  • the lid of the storage container 102 is opened using the opener 146.
  • the rear transfer robot 144b takes out the substrate S from the storage container 102 and transfers it to the reactor 200 for the purpose of transfer.
  • the rear transfer robot 144b transfers the substrate S to the substrate support 240 of the reactor 200 for the purpose of transfer. That is, when the rear transfer robot 144b is in charge of the reactor 200 for the purpose of conveyance, the reactor for the purpose of conveyance is transferred via the first container moving section 120, the third container moving section 160, the second container moving section 180, and the substrate conveying section 140. The substrate S is carried into the 200. In this embodiment, when carrying the substrate S into the substrate transport section 140, the inert gas supply section 148 and the exhaust section 149 are adjusted so that the atmosphere of the substrate transport section 140 becomes an inert gas atmosphere.
  • the substrate loading process Next, the substrate loading process will be explained.
  • the substrate support 240 supporting the substrate S is raised and loaded into the inner reaction tube 222 as shown in FIG.
  • the lid 247 rises together with the substrate support 240, and the O-ring 248 is pressed against the lid 247. This seals the inside of the inner reaction tube 222.
  • the heater 211 is in operation and maintained at the processing temperature of the substrate S.
  • the inside of the inner reaction tube 222 is brought to a predetermined pressure by cooperation of the inert gas supply section 226 and the exhaust section 230.
  • the inert gas supply section 271 and the exhaust section 280 are controlled so that the pressure inside the transfer chamber 270 is higher than the pressure inside the inner reaction tube 222. By doing so, it is possible to suppress the atmosphere inside the inner reaction tube 222 from moving to the transfer chamber 270.
  • the film processing step is a step of processing a film formed on the substrate S within the reactor 200.
  • the first gas supply section 224 and the second gas supply section 225 are controlled to supply the first gas and the second gas into the inner reaction tube 222. and the substrate S is processed.
  • the process in this step refers to a process in which a predetermined film is formed on the substrate S by, for example, reacting a first gas and a second gas.
  • HCDS is supplied as the first gas
  • NH 3 gas is supplied as the second gas to form a silicon nitride (SiN) film.
  • First gas HCDS Gas supply amount of primary gas 5sccm ⁇ 5000sccm
  • Second gas NH3 Gas supply amount of second gas 10sccm ⁇ 10000sccm
  • Processing chamber pressure 133Pa to 13332Pa Processing temperature: 300°C ⁇ 500°C
  • the first gas supply section 224 and the second gas supply section 225 are stopped. Further, inert gas is supplied from the inert gas supply section 226 to exhaust the atmosphere inside the processing chamber 222c.
  • the substrate unloading process will be explained. After a predetermined period of time has elapsed, the elevating section 241 lowers the substrate support 240. After the substrate support 240 is lowered, the substrate S is carried out in the reverse manner to the manner in which the substrate S was carried in.
  • the substrate processing apparatus 100 of this embodiment includes a third container moving section 160 that transports the storage container 102 between the first container moving section 120 and the second container moving section 180. Therefore, in the substrate processing apparatus 100, the substrate S is transported to the second container moving section 180 by the third container moving section 160 in a state where the substrate S is stored in the storage container 102 (in the state of the storage container 102). Thereby, the substrate processing apparatus 100 can increase throughput, for example, compared to a configuration in which the substrate S is transported from the first container moving section 120 to the second container moving section 180. Furthermore, in order to transport the substrate S in the third container moving section 160, it is necessary to transport the substrate S in an inert gas atmosphere, which increases maintenance frequency and parts costs.
  • the storage container 102 containing the substrate S is transported in the state of the storage container 102 by the third container moving section 160 to the second container moving section 180, so that costs can be reduced. That is, the substrate processing apparatus 100 of this embodiment can achieve cost reduction and throughput improvement. Further, in the substrate processing apparatus 100 of the present embodiment, since a plurality of transportation routes for the storage container 102 are provided, different types of substrates can be transported while avoiding contamination (for example, a phenomenon in which components of a substrate adhere to other substrates). It becomes possible.
  • the substrate processing apparatus 100 of this embodiment can place the storage container 102 received at the load port 110 on the stands 125 and 127. That is, in the substrate processing apparatus 100, since the storage container 102 can be directly transported from the load port 110 to the tables 125 and 127, the efficiency of transporting the substrates S can be improved. Furthermore, since the elevator 123 is used, it is possible to suppress the footprint from increasing.
  • the controller 400 can control the elevator 123 and the robot 124 to move the storage container 102 supported by the load port 110 to the table 125 or 127.
  • the storage container 102 received from the third container moving section 160 can be directly transported to the platforms 185 and 186, so the efficiency of transporting the substrates S can be increased. Furthermore, since the elevator 183 is used, it is possible to suppress the footprint from increasing.
  • the third container moving section 160 can transport the storage container 102 in an atmosphere independent of the substrate transport section 140. Therefore, in the substrate processing apparatus 100, the third container moving section 160 and the substrate transporting section 140 are provided with independent atmospheres, so that the third container moving section 160 needs to be provided with a pressure reducing structure like the substrate transporting section 140. This leads to a reduction in the number of parts.
  • the robot 124 of the first container moving unit 120 places the storage container 102 on the stand 127 so that the lid of the storage container 102 faces the substrate transport unit 140. Then, the robot 184 of the second container moving unit 180 places the storage container 102 on the stand 186 so that the lid of the storage container 102 faces the substrate transport unit 140. In other words, the lid of the storage container 102 placed on the stand 127 and the lid of the storage container 102 placed on the stand 186 face each other. Therefore, in the substrate processing apparatus 100, the transfer robot 144 of the substrate transfer unit 140 can receive the substrate S, so that the efficiency of transferring the substrate S is increased.
  • the first container moving section 120 and the second container moving section 180 can have a simple configuration. Maintenance frequency is reduced.
  • the substrate transport section 140 includes a plurality of transport robots 144, and a process module in charge of each robot is set. In this manner, in the substrate processing apparatus 100, contamination can be suppressed by setting the process module in charge of the transfer robot 144.
  • the front transfer robot 144a when the front transfer robot 144a is in charge of the reactor 200 disposed on the front side and the rear transfer robot 144b is in charge of the reactor 200 disposed on the rear side, a dedicated route for each process is used. Since a dedicated robot can be set up, contamination can be further suppressed.
  • the front transfer robot 144a and the rear transfer robot 144b have transfer areas set according to the type of substrate processing. It's okay. In this case, since contamination can be suppressed in the transport space (transport area), contamination can be suppressed more reliably.
  • the transport areas of the front transport robot 144a and the rear transport robot 144b may be set according to the substrate processing time. If the process times are different here, the transfer robot 144 will be on standby (for example, when the substrate S cannot be transferred because the destination reactor 200 is crowded), which may reduce the transfer efficiency. In contrast, in the substrate processing apparatus 100, by setting the transfer area according to the processing time, it is possible to eliminate the need for the transfer robot 144 to wait.
  • a plurality of transfer robots 144 move on the rails 143.
  • smooth transfer is possible, and as a result, even when moving over long distances, the substrate S does not slide and stable transfer is possible. becomes possible.
  • each of the plurality of reactors 200 is capable of different processing, and when the transfer robot 144 processes in one reactor 200 and then moves to a different reactor 200, continuous processing can be realized.
  • a SiN film may be formed in a certain reactor 200 and then modified in another process module.
  • the substrate processing apparatus 600 of this embodiment has the same configuration as the substrate processing apparatus 100 of the first embodiment except for the configurations of the substrate transport section 500 and the reactor 300. Therefore, in this embodiment, the configurations of the substrate transport section 500 and the reactor 300 will be mainly described. Note that the description of the same configuration as the substrate processing apparatus 100 of the first embodiment will be omitted.
  • FIG. 7 is a cross-sectional view showing a configuration example of a substrate processing apparatus according to a second embodiment of the present disclosure.
  • FIG. 8 shows a configuration example of a substrate processing apparatus according to a second embodiment of the present disclosure, and is a longitudinal cross-sectional view taken along the ⁇ - ⁇ line in FIG. 7.
  • the substrate transport section 500 is arranged between the first container moving section 120 and the second container moving section 180 and on the lower side.
  • the substrate transport section 500 is a section that transports the storage container 102 between the first container movement section 120 and each reactor 200, and transports the storage container 102 between the second container movement section 180 and each reactor 200.
  • This substrate transfer section 500 is also referred to as a lower transfer chamber.
  • the substrate transport section 500 includes an atmospheric transport section 510, a load lock chamber 520, a vacuum transport section 530, a load lock chamber 540, and an atmospheric transport section 550 in order from the front.
  • the atmosphere conveyance section 510 has a housing 511.
  • the inside of the casing 511 is a transport space 512 in which the storage container 102 is transported.
  • the atmospheric transport section 510 of this embodiment is also referred to as a front atmospheric transport section.
  • a loading/unloading port 128 is provided on the front side of the housing 511, and an opener 514 is provided near the loading/unloading port 128.
  • a loading/unloading port 515 is provided on the rear side of the housing 511 for carrying in and out the substrate S taken out from the storage container 102 from inside the housing 511 into the housing 521 of the load lock chamber 520.
  • a gate valve 524 is provided at the loading/unloading port 515 . Note that the gate valve 524 is provided on the load lock chamber 520 side.
  • the atmospheric transport unit 510 has an atmospheric transport robot 513 inside a housing 511.
  • This atmospheric transfer robot 513 takes out the substrate S from the storage container 102 on the stand 127 and places it on the substrate mounting stand 523 in the load lock chamber 520 .
  • the atmospheric transfer robot 513 can also return the substrate S from the substrate mounting table 523 to the storage container 102. That is, the atmospheric transport robot 513 can transport the substrate S between the first container moving section 120 and the load lock chamber 520.
  • the load lock chamber 520 has a housing 521.
  • the interior of the casing 521 is a transport space 522 in which the storage container 102 is transported.
  • the load lock chamber 520 of this embodiment is also referred to as a front load lock chamber.
  • a loading/unloading port 515 is provided on the front side of the casing 521, and a gate valve 524 is provided at the loading/unloading port 515.
  • a loading/unloading port 525 is provided on the rear side of the housing 521 for loading and unloading the substrate S from inside the housing 521 into the housing 531 of the vacuum transfer section 530.
  • a gate valve 534 is provided at the loading/unloading port 525 . Note that the gate valve 534 is provided on the vacuum transfer section 530 side.
  • the atmosphere conveyance section 550 has a housing 551.
  • the inside of the casing 551 is a transport space 552 in which the storage container 102 is transported.
  • the atmospheric transport section 550 of this embodiment is also referred to as a rear atmospheric transport section.
  • a loading/unloading port 555 is provided on the rear side of the casing 551, and an opener 554 is provided near the loading/unloading port 555.
  • a loading/unloading port 545 is provided on the front side of the housing 551 for carrying in and out the substrate S taken out from the storage container 102 from inside the housing 551 into the housing 541 of the load lock chamber 540.
  • a gate valve 544 is provided at the loading/unloading port 545 . Note that the gate valve 544 is provided on the load lock chamber 540 side.
  • the atmospheric transport unit 550 has an atmospheric transport robot 553 inside a housing 551.
  • This atmospheric transfer robot 553 takes out the substrate S from the storage container 102 on the table 186 and places it on the substrate mounting table 543 in the load lock chamber 540.
  • the atmospheric transfer robot 553 can also return the substrate S from the substrate mounting table 543 to the storage container 102. That is, the atmospheric transport robot 553 can transport the substrate S between the second container moving section 180 and the load lock chamber 540.
  • the load lock chamber 540 has a housing 541.
  • the interior of the casing 541 is a transport space 542 in which the storage container 102 is transported.
  • the load lock chamber 540 of this embodiment is also referred to as a rear load lock chamber.
  • a loading/unloading port 545 is provided on the rear side of the housing 541, and a gate valve 544 is provided at the loading/unloading port 545.
  • a loading/unloading port 537 is provided on the front side of the housing 541 for carrying the substrate S into and out of the housing 531 of the vacuum transfer section 530 from inside the housing 541.
  • a gate valve 536 is provided at the loading/unloading port 537 . Note that the gate valve 536 is provided on the vacuum transfer section 530 side.
  • a plurality of reactors 300 are arranged on both sides in the width direction. Further, the vacuum transfer section 530 is configured to be able to communicate with the plurality of reactors 300.
  • the reactors 300 are provided on one side of the vacuum transfer section 530 in the width direction, and five reactors 300 are provided on the other side of the vacuum transfer section 530 in the width direction. Note that when specifying the reactors 300 individually, the reactors 300 on one side in the width direction are called reactor 300a, reactor 300b, reactor 300c, reactor 300d, and reactor 300e in order from the front.
  • reactors 300 on the other side in the width direction are referred to as a reactor 300f, a reactor 300g, a reactor 300h, a reactor 300i, and a reactor 300j in order from the front.
  • the vacuum transfer section 530 of this embodiment is also referred to as a lower vacuum transfer chamber.
  • the vacuum transfer section 530 has a housing 531.
  • the inside of the casing 531 is a transport space 532 in which the storage container 102 is transported.
  • a loading/unloading port 525 is provided on the front side of the housing 531, and a gate valve 534 is provided at the loading/unloading port 525.
  • a loading/unloading port 537 is provided on the rear side of the housing 521 for loading and unloading the substrate S from the housing 541 of the load lock chamber 540 into the housing 531 of the vacuum transfer section 530.
  • a gate valve 536 is provided at the loading/unloading port 537 .
  • the housing 531 is provided with a rail 533 on which a vacuum transfer robot 535 (described later) moves.
  • the rail 533 is provided at the bottom of the housing 531 and extends in the front-rear direction. In other words, the rail 533 extends from the carry-in/out port 525 to the carry-in/out port 537, or from the carry-in/out port 537 to the carry-in/out port 525.
  • the vacuum transfer unit 530 is provided with a vacuum transfer robot 535, which is an example of a substrate transfer robot that can transfer the substrate S to each reactor 300.
  • the vacuum transfer unit 530 includes a vacuum transfer robot 535 within the housing 521.
  • the vacuum transfer section 530 includes a plurality of vacuum transfer robots 535.
  • the vacuum transfer robot 535 is movable on the rail 533 along the rail 533.
  • This vacuum transfer robot 535 is configured to be able to mount a plurality of substrates S. That is, the vacuum transfer robot 535 can move on the rails 533 with a plurality of substrates S loaded (held) thereon and transfer the substrates S to the target reactor 300.
  • the vacuum transfer section 530 includes a plurality of vacuum transfer robots 535.
  • Each of the plurality of vacuum transfer robots 535 is provided with a corresponding reactor 300.
  • the vacuum transfer unit 530 includes two vacuum transfer robots 535, and one vacuum transfer robot 535 is provided further forward on the rail 143 than the other vacuum transfer robot 535.
  • the vacuum transfer robot 535 disposed on the front side will be referred to as a front vacuum transfer robot 535a
  • the vacuum transfer robot 535 disposed on the rear side will be referred to as a rear vacuum transfer robot 535b.
  • the front vacuum transfer robot 535a of the present embodiment is an example of the first substrate transfer robot in the present disclosure
  • the rear vacuum transfer robot 535b of the present embodiment is an example of the second substrate transfer robot in the present disclosure. It is.
  • the front vacuum transfer robot 535a of this embodiment is in charge of the reactor 300 arranged on the front side among the plurality of reactors 300. Specifically, the front vacuum transfer robot 535a is in charge of reactor 300a, reactor 300b, reactor 300f, and reactor 300g. In this embodiment, since five reactors 300 are arranged on each side, the front vacuum transfer robot 535a is also in charge of the reactors 300c and 300h located in the middle in the front-rear direction. In other words, the front vacuum transfer robot 535a transfers the substrate S to these reactors 300a, 300b, 300c, 300f, 300g, and 300h.
  • the rear vacuum transfer robot 535b of this embodiment is in charge of the reactor 300 arranged on the rear side among the plurality of reactors 300. Specifically, the rear vacuum transfer robot 535b is in charge of reactor 300d, reactor 300e, reactor 300i, and reactor 300j. In other words, the rear vacuum transfer robot 535b transfers the substrate S to these reactors 300d, 300e, 300i, and 300j.
  • the front vacuum transfer robot 535a and the rear vacuum transfer robot 535b have transfer areas (reactors 300 in charge) set according to the type of substrate processing by the reactors 300. may be done.
  • the transfer area (the reactor 300 in charge) may be set according to the substrate processing time by the reactor 300.
  • the vacuum transfer robot 535 may be set to move to a different reactor (another reactor) 200 after processing the substrate S in a certain reactor 300. good.
  • the vacuum transfer section 530 includes an inert gas supply section 148 and an exhaust section 149, as shown in FIG.
  • the inert gas supply unit 148 is a part that supplies inert gas into the housing 531. By supplying the inert gas into the housing 531, the transport space 532 becomes an inert gas atmosphere.
  • the exhaust section 149 is a part that exhausts the atmosphere inside the casing 531.
  • each part of the substrate transport section 140 is controlled by the controller 400.
  • the controller 400 sets the transfer areas (the reactors 300 in charge) of the plurality of vacuum transfer robots 535.
  • the reactor 300 includes a container 302. Inside the container 302, a processing chamber 301 forming a processing space 305 for processing the substrate S, and a transport chamber 306 having a transport space through which the substrate S passes when transporting the substrate S to the processing space 305 are formed. There is.
  • the container 302 is composed of an upper container 302a and a lower container 302b.
  • a partition plate 308 is provided between the upper container 302a and the lower container 302b.
  • a loading/unloading port 340 adjacent to the gate valve 341 is provided on the side surface of the lower container 302b, and the substrate S moves between the loading/unloading port 340 and the vacuum transfer section 530.
  • a plurality of lift pins 307 are provided at the bottom of the lower container 302b.
  • a substrate support section 310 that supports the substrate S is arranged in the processing space 305.
  • the substrate support section 310 includes a substrate mounting surface 311 on which the substrate S is mounted, a substrate mounting table 312 having the substrate mounting surface 311 on its surface, and a heater 313 as a heating section provided in the substrate mounting table 312. has.
  • the substrate mounting table 312 is provided with through holes 314, through which the lift pins 307 pass, at positions corresponding to the lift pins 307, respectively.
  • a wiring 322 for supplying power is connected to the heater 313.
  • Wiring 322 is connected to heater control section 323.
  • the heater control section 323 is electrically connected to the controller 400.
  • the controller 400 controls the heater control section 323 to operate the heater 313.
  • the substrate mounting table 312 is supported by a shaft 317.
  • the shaft 317 passes through the bottom of the container 302 and is further connected to a lifting section 318 outside the container 302.
  • the substrate mounting table 312 can raise and lower the substrate S placed on the substrate mounting surface 311.
  • the processing chamber 301 includes a substrate mounting table 312. Note that the processing chamber 301 only needs to be able to secure a processing space 305 for processing the substrate S, and may be configured with another structure.
  • the substrate mounting surface 311 is lowered to the transport position P0 facing the loading/unloading port 340, and when the substrate S is being processed, the substrate S is being processed as shown in FIG. It rises until it reaches a processing position within the space 305.
  • a gas introduction hole 331a is provided in the lid 331 of the processing chamber 301.
  • a first gas supply section 224, a second gas supply section 225, and an inert gas supply section 226 are connected to this gas introduction hole 331a. Thereby, the first gas, the second gas, and the inert gas are supplied to the processing chamber 301.
  • An exhaust pipe 392 is communicated with the processing space 305 .
  • the exhaust pipe 392 is connected to the upper container 302a so as to communicate with the processing space 305.
  • the exhaust pipe 392 is provided with an APC 393 that is a pressure controller that controls the inside of the processing space 305 to a predetermined pressure.
  • the APC 393 has a valve body (not shown) whose opening degree can be adjusted, and adjusts the conductance of the exhaust pipe 392 according to instructions from the controller 400.
  • a valve 394 is provided downstream of the APC 393 in the exhaust pipe 392 .
  • a dry pump 395 is provided upstream of the exhaust pipe 392. The dry pump 395 exhausts the atmosphere in the processing space 305 via the exhaust pipe 392.
  • the robot 124 of the first container moving unit 120 receives the storage container 102 supported by the support stand 111 of the load port 110. Thereby, the storage container 102 is moved from the load port 110 to the first container moving section 120.
  • the substrate processing apparatus 600 transports the substrate S accommodated in the storage container 102 from the first container moving unit 120 via the substrate transport unit 500 to the reactor 300 for the purpose of transport.
  • the storage container 102 (substrate S) is sent toward the vacuum transfer robot 535 in charge of the reactor 300 for the purpose of transfer, and the substrate S is transferred from the transfer robot 144 to the reactor 300.
  • the storage container 102 is placed on the stand 127 using the robot 124 and the elevator 123.
  • the lid of the storage container 102 is opened using the opener 145.
  • the atmospheric transfer robot 513 takes out the substrate S from the storage container 102 and places it on the substrate mounting table 523.
  • the substrate S placed on the substrate mounting table 523 is received by the front vacuum transfer robot 535a and transferred to the reactor 300 for transfer purpose.
  • the gate valve 341 of the reactor 300 for transport purpose is opened, and the front vacuum transport robot 535a transfers the substrate S to the substrate mounting table 312 of the reactor 300 for transport purpose. That is, when the front vacuum transfer robot 535a is in charge of the reactor 300 for the purpose of transfer, the substrate S is carried into the reactor 300 for the purpose of transfer via the first container moving section 120 and the substrate transfer section 500.
  • the storage container 102 is placed on the stand 125 using the robot 124 and the elevator 123.
  • the storage container 102 supported by the stand 125 is placed on the stand 185 of the second container moving part 180 by the container transporting part 162 of the third container moving part 160.
  • the storage container 102 is moved from the platform 185 to the platform 186 using the robot 184 and the elevator 183.
  • the lid of the storage container 102 is opened using the opener 554.
  • the rear vacuum transfer robot 535b takes out the substrate S from the storage container 102 and places it on the substrate mounting table 543.
  • the substrate S placed on the substrate mounting table 543 is received by the rear vacuum transfer robot 535b and transferred to the reactor 300 for transfer purpose. Thereafter, the gate valve 341 of the reactor 300 for transport purpose is opened, and the rear vacuum transport robot 535b transfers the substrate S to the substrate mounting table 312 of the reactor 300 for transport purpose. That is, when the rear vacuum transfer robot 535b is in charge of the reactor 300 for the purpose of transfer, the reactor 300 for the purpose of transfer is transferred via the first container moving section 120, the third container moving section 160, the second container moving section 180, and the substrate transfer section 500. A substrate S is carried into the reactor 300.
  • an inert gas supply section is installed so that each of the load lock chamber 520, the vacuum transport section 530, and the load lock chamber 540 has an inert gas atmosphere. 148 and exhaust section 149.
  • the substrate loading process Next, the substrate loading process will be explained.
  • the substrate mounting table 312 supporting the substrate S is raised and carried into the processing chamber 301 as shown in FIG. Note that the heater 313 is in an operating state and maintained at the processing temperature of the substrate S.
  • the inert gas supply section 226 and the exhaust section 391 work together to bring the inside of the processing chamber 301 to a predetermined pressure.
  • the film processing step is a step of processing a film formed on the substrate S within the reactor 300.
  • the first gas supply section 224 and the second gas supply section 225 are controlled to supply the first gas and the second gas into the processing chamber 301 to process the substrate S. do.
  • the process in this step refers to a process in which a predetermined film is formed on the substrate S by, for example, reacting a first gas and a second gas.
  • HCDS is supplied as the first gas
  • NH 3 gas is supplied as the second gas to form a silicon nitride (SiN) film.
  • the first gas supply section 224 and the second gas supply section 225 are stopped. Further, an inert gas is supplied from the inert gas supply section 226 to exhaust the atmosphere inside the processing chamber 301.
  • the substrate unloading process will be explained. After a predetermined period of time has elapsed, the substrate mounting table 312 is lowered. After the substrate mounting table 312 is lowered, the substrate S is carried out in the reverse manner to the way the substrate S was carried in.
  • the substrate processing apparatus 600 of this embodiment can obtain the same effects as the substrate processing apparatus 100 of the first embodiment, a detailed explanation of the effects will be omitted.
  • the substrate processing apparatus 600 of this embodiment all the reactors 300 are used for film formation, but the present disclosure is not limited thereto.
  • one of the reactors 300 may be dedicated to cooling. That is, the substrate processing apparatus 600 may include a cooling module 370 in at least one of the reactors 300. Further, a temperature sensor 372 for monitoring the temperature of the substrate S may be provided in the cooling module 370.
  • a cooling module 370 in at least one of the reactors 300 and cooling the substrate S after processing with the cooling module 370, it is possible to alleviate congestion in processing the substrate S and improve processing efficiency of the entire apparatus.
  • a substrate processing apparatus 700 according to a third embodiment of the present disclosure will be described based on FIG. 12.
  • the substrate processing apparatus 700 of this embodiment differs from the substrate processing apparatus 100 of the first embodiment in that a rail 143 is provided laterally (in the width direction) for each of the plurality of transfer robots 144, and other parts are the same. It is the composition. Therefore, descriptions of the same configurations as the substrate processing apparatus 100 of the first embodiment will be omitted.
  • the substrate transport section 140 of the substrate processing apparatus 700 includes a plurality of rails 143.
  • the substrate transfer unit 140 includes a rail 143a for a transfer robot 144a and a rail 143b for a transfer robot 144b.
  • the controller 400 of the substrate processing apparatus 700 sets the other transfer robot 144 to also take charge of the reactor 200 that is in charge of the transfer robot 144 in which the problem has occurred, when a problem occurs in one of the transfer robots 144. It is configured.
  • each of the plurality of transfer robots 144 is provided with a dedicated path, that is, a dedicated rail 143, congestion of the transfer robots 144 can be prevented.
  • the transport processing of the substrate S can be continued using another transport robot 144 that does not have a malfunction.
  • a dedicated path that is, a dedicated rail 143 is provided horizontally (in the width direction) for each of the plurality of transfer robots 144 in the third embodiment, may also be applied to the second embodiment described above.
  • a substrate processing apparatus 800 according to a fourth embodiment of the present disclosure will be described based on FIGS. 13 and 14.
  • the substrate processing apparatus 800 of this embodiment differs from the substrate processing apparatus 100 of the first embodiment in that rails 143 are provided above and below for each of the plurality of transfer robots 144, and other parts have the same configuration. Therefore, descriptions of the same configurations as the substrate processing apparatus 100 of the first embodiment will be omitted.
  • the inside of the casing 141 of the substrate transport section 140 of the substrate processing apparatus 800 is partitioned into upper and lower sections by a partition section 802. That is, the conveyance space 142 is divided by the partition portion 802 into a lower lower conveyance space 142a and an upper upper conveyance space 142b.
  • the substrate transport section 140 of the substrate processing apparatus 800 includes a plurality of rails 143.
  • the substrate transfer unit 140 includes a rail 143a for a transfer robot 144a and a rail 143b for a transfer robot 144b.
  • the rail 143a and the rail 143b are arranged apart from each other in the vertical direction.
  • the rails 143a are arranged in the lower transport space 142a
  • the rails 143b are arranged in the upper transport space 142b. That is, the rail 143b is arranged above the rail 143a.
  • the rail 143a and the rail 143b are provided so as not to overlap in the vertical direction (vertical direction).
  • the loading/unloading exit of the reactor 200 is set at the height of each rail 143.
  • the loading/unloading port of the reactor 200 is provided at a height that allows the transfer robot 144a moving on the rails 143a to deliver the substrate S to the reactor 200.
  • the loading/unloading port of the reactor 200 is provided at a height that allows the transfer robot 144b moving on the rails 143b to deliver the substrate S to the reactor 200.
  • the lower conveyance space 142a and the upper conveyance space 142b are each provided with the same number of loading/unloading ports as the reactors 200.
  • each of the plurality of transfer robots 144 is provided with a dedicated path, that is, a dedicated rail 143, congestion of the transfer robots 144 can be prevented.
  • the transport processing of the substrate S can be continued using another transport robot 144 that does not have a malfunction.
  • the footprint can be reduced by providing the rails 143 in the vertical direction.
  • the interior of the casing 141 is partitioned into upper and lower sections by the partition section 802, but the present disclosure is not limited to this configuration.
  • the inside of the housing 141 may not be partitioned by the partition portion 802, but may be configured such that the rail 143b is arranged above the rail 143a. In this case as well, the same effects as in the fourth embodiment can be obtained.
  • a substrate processing apparatus 900 according to a fifth embodiment of the present disclosure will be described based on FIG. 15.
  • the substrate processing apparatus 900 of this embodiment has the same configuration as the substrate processing apparatus 600 of the second embodiment except that at least one of the reactors 300 is used exclusively for cooling. Therefore, in this embodiment, a reactor 300 dedicated to cooling will be described. Note that the description of the same configuration as the substrate processing apparatus 100 of the second embodiment will be omitted.
  • the substrate processing apparatus 900 of this embodiment includes a cooling module 370 in at least one of the reactors 300.
  • the cooling module 370 of this embodiment has, as an example, an inner cooling mechanism and an outer shell that constitutes the outer side and on which the substrate S is placed.
  • the cooling-only reactor 300 is provided with a lifting unit 902 as an example of an elevator.
  • This elevating unit 902 moves the cooling modules 370 in multiple stages in the vertical direction. Note that the cooling modules 370 in each stage are arranged vertically apart from each other. Further, a temperature sensor 904 is attached to each cooling module 370, and the temperature state of the substrate S is monitored by this temperature sensor 904.
  • the cooling module 370 since the cooling module 370 is provided in multiple stages, the substrate S after processing is efficiently cooled by the cooling module 370, thereby alleviating congestion in processing the substrate S and increasing the processing efficiency of the entire apparatus. be able to.
  • the transfer efficiency of the vacuum transfer robot 535 can be prevented from being reduced.
  • At least one reactor 300 is dedicated to cooling, but the present disclosure is not limited to this configuration.
  • a cooling mechanism or the like may be provided on the substrate mounting table 543 of the housing 541 to cool the mounted substrate S.
  • a chamber dedicated to cooling may be provided separately from the reactor 300.
  • the substrate S may be cooled by providing a cooling mechanism on the stand 127 and the stand 186.
  • the substrate processing apparatus 100 uses five reactors 200 on each side in the width direction, for a total of 10 units, but the invention is not limited to this. It may be a substrate processing apparatus that uses 6 reactors 200 in total, 12 reactors 200 or more, or it may be a substrate processing apparatus that uses 8 reactors 200 in total, 4 reactors 200 on each side in the width direction, or fewer reactors 200. good.
  • HCDS gas is used as the first element-containing gas (first gas)
  • NH3 gas is used as the second element-containing gas (second gas).
  • the processing gas used in the film forming process is not limited to HCDS gas, NH 3 gas, etc., and other types of gases may be used to form other types of thin films.
  • three or more types of processing gases may be used.
  • the first element may be various elements such as titanium (Ti), zirconium (Zr), hafnium (Hf), etc., instead of Si.
  • the second element may be, for example, nitrogen (N) instead of H.
  • a film forming process is taken as an example of the process performed by the substrate processing apparatus, but the present disclosure is not limited thereto. That is, the present disclosure can be applied to film formation processes and modification processes other than the thin films exemplified in each embodiment, in addition to the film formation processes exemplified in each embodiment.
  • the specific content of the substrate processing is irrelevant, and it is applicable not only to film formation processing and modification processing, but also to other substrate processing such as annealing processing, diffusion processing, oxidation processing, nitriding processing, lithography processing, etc. can.
  • the present disclosure is applicable to other substrate processing apparatuses, such as annealing processing apparatuses, etching apparatuses, oxidation processing apparatuses, nitriding processing apparatuses, exposure apparatuses, coating apparatuses, drying apparatuses, heating apparatuses, and other processing apparatuses using plasma. It can also be applied to substrate processing equipment. Furthermore, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Furthermore, it is also possible to add, delete, or replace some of the configurations of each embodiment with other configurations.
  • a first container moving unit capable of moving the container; a second container moving unit disposed at a different position from the first container moving unit and capable of moving the container; a plurality of process modules capable of processing substrates in the container; a substrate transport unit disposed between the first container movement unit and the second container movement unit, configured to be able to communicate with the plurality of process modules, and capable of transporting the substrate; a substrate transport robot provided in the substrate transport unit and capable of transporting the substrate to the process module; a third container moving unit disposed between the first container moving unit and the second container moving unit, and capable of moving the container from the first container moving unit to the second container moving unit; and, a control unit; has a lid of the container arranged on the second container stand;
  • the substrate processing apparatus is configured such that lids of the containers arranged on the fourth container stand face each other.
  • a first container moving unit capable of moving the container; a second container moving unit disposed at a different position from the first moving unit and capable of moving the container; a process module capable of processing a substrate in the container; a substrate transport unit disposed between the first container movement unit and the second container movement unit, configured to be able to communicate with the plurality of process modules, and capable of transporting the substrate; a substrate transport robot provided in the substrate transport unit and capable of transporting the substrate to the process module; a third container moving unit disposed between the first container moving unit and the second container moving unit, and capable of moving the container from the first container moving unit to the second container moving unit; and, a control unit; has
  • the substrate processing apparatus is configured such that the substrate transfer robot is configured to perform processing in one process module and then move to a different process module.
  • a first container moving unit capable of moving the container; a second container moving unit disposed at a different position from the first moving unit and capable of moving the container; a process module capable of processing a substrate in the container; a substrate transport unit disposed between the first container movement unit and the second container movement unit, configured to be able to communicate with the plurality of process modules, and capable of transporting the substrate; a substrate transport robot provided in the substrate transport unit and capable of transporting the substrate to the process module; a third container moving unit disposed between the first container moving unit and the second container moving unit, and capable of moving the container from the first container moving unit to the second container moving unit; and, a control unit; has
  • the substrate processing apparatus further includes a substrate cooling module.
  • the substrate cooling module is provided in a space different from the space in which the substrate transfer robot is stored in the substrate transfer unit, is provided in the container moving unit, or is provided in the process module. Substrate processing equipment.
  • S...Substrate 100,600,700,800,900...Substrate processing device, 200...Reactor (process module), 300...Reactor (process module), 400...Controller (control unit), 120...First container moving unit, 140,500...Substrate transport section, 144,535...Substrate transport section, 160...Third container moving section, 180...Second container moving section

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

容器を移動可能な第一の容器移動部と、前記第一の容器移動部と異なる位置に配され、前記容器を移動可能な第二の容器移動部と、前記容器内の基板を処理可能な複数のプロセスモジュールと、前記第一の容器移動部と前記第二の容器移動部との間に配されると共に前記複数のプロセスモジュールに連通可能に構成され、前記基板を搬送可能とする基板搬送部と、前記基板搬送部に設けられ、前記プロセスモジュールに前記基板を搬送可能な基板搬送ロボットと、前記第一の容器移動部と前記第二の容器移動部との間に配され、前記第一の容器移動部から前記第二の容器移動部に前記容器を移動可能な第三の容器移動部と、制御部と、を有する技術が提供される。

Description

基板処理装置、半導体装置の製造方法及びプログラム
 本技術は、基板処理装置、半導体装置の製造方法及びプログラムに関する。
 基板を処理する処理室を複数備える基板処理装置が知られている(例えば、特開2021-158351号公報参照)。
 特開2021-158351号公報では、複数のボートに対して一台の移載機で基板を移載している。
 市場では、基板処理装置のスループットの向上が求められている。
 本開示は、基板が収容される容器を搬送するよう構成することにより低コスト化とスループット向上を達成可能な技術を提供する。
 本開示の一態様によれば、
 容器を移動可能な第一の容器移動部と、
 前記第一の容器移動部と異なる位置に配され、前記容器を移動可能な第二の容器移動部と、
 前記容器内の基板を処理可能な複数のプロセスモジュールと、
 前記第一の容器移動部と前記第二の容器移動部との間に配されると共に前記複数のプロセスモジュールに連通可能に構成され、前記基板を搬送可能とする基板搬送部と、
 前記基板搬送部に設けられ、前記プロセスモジュールに前記基板を搬送可能な基板搬送ロボットと、
 前記第一の容器移動部と前記第二の容器移動部との間に配され、前記第一の容器移動部から前記第二の容器移動部に前記容器を移動可能な第三の容器移動部と、
 制御部と、
 を有する技術が提供される。
 本開示によれば、基板が収容される容器を搬送するよう構成することにより低コスト化とスループット向上を達成できる。
本開示の第一実施形態に係る基板処理装置の概略構成例を示す説明図(横断面図)である。 図1に示す基板処理装置のα-α線断面図である。 図1に示す基板処理装置のβ-β線断面図である。 図1に示すリアクタの概略構成例を示す説明図(縦断面図)である。 図4に示すリアクタが備える第一ガス供給部の概略構成例を示す説明図である。 図4に示すリアクタが備える第二ガス供給部の概略構成例を示す説明図である。 図4に示すリアクタが備える不活性ガス供給部の概略構成例を示す説明図である。 図4に示すリアクタが備える不活性ガス供給部の概略構成例を示す説明図である。 本開示の第一実施形態に係る基板処理装置のコントローラを説明する説明図である。 本開示の第二実施形態に係る基板処理装置の概略構成例を示す説明図(横断面図)である。 図7に示す基板処理装置のα-α線断面図である。 図7に示す基板処理装置のβ-β線断面図である。 図7に示す基板処理装置の変形例の断面図である(図9に断面図に対応)。 図7に示すリアクタの概略構成例を示す説明図(縦断面図)である。 本開示の第三実施形態に係る基板処理装置の概略構成例を示す説明図(横断面図)である。 本開示の第四実施形態に係る基板処理装置の概略構成例を示す説明図(横断面図)である。 図13に示す基板処理装置のβ-β線断面図である。 本開示の第五実施形態に係る基板処理装置の概略構成例を示す説明図(縦断面図)である。
 以下に、本開示の一実施形態について、図面を参照しながら説明する。
 なお、以下の説明において用いられる図面は、いずれも模式的なものであり、図面上の各要素の寸法の関係、各要素の比率等は、現実のものとは必ずしも一致していない。また、複数の図面の相互間においても、各要素の寸法の関係、各要素の比率等は必ずしも一致していない。
<第一実施形態>
(1)基板処理装置の構成
 本開示の第一実施形態に係る基板処理装置の概略構成を図1、図2を用いて説明する。図1は本開示の第一実施形態に係る基板処理装置の構成例を示す横断面図である。図2は、本開示の第一実施形態に係る基板処理装置の構成例を示し、図1のα-α線における縦断面図である。
 図1及び図2において、本実施形態の基板処理装置100は、基板としての基板Sを処理するものである。この基板処理装置100は、ロードポート110、第一容器移動部120、第二容器移動部180、基板搬送部140、第三容器移動部160及びプロセスモジュールの一例としてのリアクタ200で主に構成される。
 なお、以下では、説明の便宜上、図1において、基板処理装置100の矢印FRで示す方向を基板処理装置100の前方(前側)、矢印FRと反対方向を基板処理装置100の後方(後側)、矢印UPで示す方向を基板処理装置100の上方(上側)、矢印UPと反対方向を下方(下側)と呼ぶ。また、図2において、基板処理装置100の矢印LFで示す方向を基板処理装置100の左方(左側)、矢印LFと反対方向を右方(右側)と呼ぶ。また、基板処理装置100の前方(前側)、後方(後側)、上方(上側)、下方(下側)、左方(左側)、右方(右側)を、単に前方(前側)、後方(後側)、上方(上側)、下方(下側)、左方(左側)、右方(右側)と呼ぶこともある。なお、基板処理装置100の左右方向を幅方向又は横方向と言い換えてもよいし、基板処理装置100の前後方向を奥行方向と言い換えてもよいし、基板処理装置100の上下方向を高さ方向と言い換えてもよい。
 基板処理装置100は、図1及び図2に示すように、前方にロードポート110及び第一容器移動部120が配置され、後方に第二容器移動部180が配置されている。第一容器移動部120と第二容器移動部180との間には、基板搬送部140、第三容器移動部160及び複数のリアクタ200が配置されている。具体的には、基板搬送部140は、基板処理装置100の幅方向中央側で基板処理装置100の下方に配置されている。一方、第三容器移動部160は、基板処理装置100の幅方向中央側で基板処理装置100の上方に配置されている。なお、本実施形態では、基板搬送部140の上方に第三容器移動部160が配置されている。また、複数のリアクタ200は、基板搬送部140の幅方向両側には、それぞれ配置されている。本実施形態では、一例として、基板搬送部140の幅方向一方側(左側)に5つのリアクタ200が配置され、幅方向他方側(右側)に5つのリアクタ200が配置されている。なお、リアクタ200を個別に指定するときは、左側のリアクタ200を前方から順に200a、200b、200c、200d、200eと呼び、右側のリアクタ200を前方から順に200f、200g、200h、200i、200jと呼ぶ。
 また、ロードポート110、第一容器移動部120、第二容器移動部180、基板搬送部140及びリアクタ200は、それぞれ床101に固定されている。
 次に基板処理装置100の各構成について具体的に説明する。なお、基板処理装置100の各部位の動作は後述する制御部の一例としてのコントローラ400によって制御される。
(ロードポート)
 ロードポート110は、図1に示すように、基板処理装置100の手前(前方)に設置されている。ロードポート110上には複数の支持台111が設けられている。支持台111上には容器の一例としての収納容器102が搭載される。この収納容器102は、シリコン(Si)基板などの基板Sを収容可能な容器である。この収納容器102は、FOUP、カセット等と呼ばれることがある。
(第一容器移動部)
第一容器移動部120は、図1に示すように、ロードポート110の後方でロードポート110に隣接する。また、第一容器移動部120は、ロードポート110と反対側でリアクタ200と隣接する。具体的には、第一容器移動部120は、リアクタ200aとリアクタ200fと隣接する。
 第一容器移動部120は、収納容器102を移動可能なように構成されている。具体的には、第一容器移動部120は、ロードポート110と、基板搬送部140及び第三容器移動部160との間で収納容器102を移動(搬送)させる部分である。この第一容器移動部120は、前側容器移動部、前側大気搬送室とも呼ぶ。
 第一容器移動部120は、筐体121を有する。筐体121内は、収納容器102を搬送する搬送空間122とされている。
 筐体121の前側には、収納容器102をロードポート110から筐体121内に搬入搬出するための搬入出口112が設けられている。搬入出口112は、シャッタ129により開閉される。
 筐体121の後側の下部には、収納容器102を筐体121内から基板搬送部140の筐体141内に搬入搬出するための搬入出口128が設けられている。搬入出口128には、収納容器102の蓋を開けるオープナー145が設けられている。なお、オープナー145は、基板搬送部140側に設けられている。
 筐体121の後側の上部には、収納容器102を筐体121内から第三容器移動部160が配置される外部に搬入搬出するための搬入出口126が設けられている。
 また、第一容器移動部120は、エレベータ123と、ロボット124と、第一容器台の一例としての台125と、第二容器台の一例としての台127と、を有している。ロボット124とエレベータ123をまとめて前側容器搬送部が構成される。前側容器搬送部は、本開示における第一容器搬送部の一例である。
 エレベータ123は、上下方向に移動可能に構成されている。エレベータ123には、ロボット124が搭載されている。エレベータ123が上下方向に移動することでロボット124も上下方向に移動する。ここでロボット124が収納容器102を保持している場合、エレベータ123の上下方向の移動によりロボット124とともに収納容器102も上下方向に移動する。また、エレベータ123は、ロボット124が上方の台125に収納容器102を載置し、台125から収納容器102を受け取ることが可能な高さまで上昇可能に構成されている。一方、エレベータ123は、ロボット124が下方の台127に収納容器102を載置し、台127から収納容器102を受け取ることが可能な高さまで下降可能に構成されている。
 ロボット124は、エレベータ123に搭載されており、収納容器102を保持する機能を有する。ロボット124は、エレベータ123とともに移動し、支持台111、台125及び台127の間で収納容器102を搬送する。ロボット124は、エレベータ123に固定される固定部124aと、固定部124aに設けられた回転部124bと、回転部124bに設けられた支持部124cを備える。回転部124bは、上下方向を軸として回転可能とされている。支持部124cは、収納容器102を支持する部分である。この回転部124bが回転することで支持部124cが水平方向に回転移動する。この構成により支持台111、台125及び台127の間で収納容器102を搬送することが可能となる。
 台125は、収納容器102を支持する台であり、第三容器移動部160に隣接している。具体的には、台125は、搬入出口126の近傍に配置され、搬入出口126を介して第三容器移動部160に隣接しており、第一容器移動部120と第三容器移動部160との間で収納容器102を受け渡すとき(移載時)に載置される台である。
 台127は、収納容器102を支持する台であり、基板搬送部140に隣接している。具体的には、台127は、搬入出口128の近傍に配置され、搬入出口128を介して基板搬送部140に隣接しており、第一容器移動部120と基板搬送部140との間で収納容器102内の基板Sを受け渡すとき(移載時)に載置される台である。
 また、台127には、収納容器102の蓋が基板搬送部140を向くように収納容器102が載置される。言い換えると、収納容器102は、蓋が後方を向くように台127に配置される。
 また、第一容器移動部120の各部位の動作は、コントローラ400によって制御される。一例として、コントローラ400は、ロードポート110に支持された収納容器102を、台125又は台127に移動するようエレベータ123及びロボット124を制御可能である。すなわち、コントローラ400によって制御されたエレベータ123及びロボット124は、ロードポート110に支持された収納容器102を台125又は台127に移動させる。
(第二容器移動部)
 第二容器移動部180は、図1に示すように、リアクタ200の後方でリアクタ200に隣接する。具体的には、第二容器移動部180は、リアクタ200eとリアクタ200jと隣接する。
 第二容器移動部180は、第一容器移動部120と異なる位置に配置されている。具体的には、第二容器移動部180は、前後方向で第一容器移動部120と対向する位置、言い換えると、第一容器移動部120よりも後方の位置に配置されている。
 また、第二容器移動部180は、収納容器102を移動可能なように構成されている。具体的には、第二容器移動部180は、基板搬送部140及び第三容器移動部160との間で収納容器102を移動(搬送)させる部分である。この第二容器移動部180は、後側容器移動部、後側大気搬送室とも呼ぶ。
 第二容器移動部180は、筐体181を有する。筐体181内は、収納容器102を搬送する搬送空間182とされている。
 筐体181の前側の下部には、収納容器102を筐体181内から基板搬送部140の筐体141内に搬入搬出するための搬入出口147が設けられている。搬入出口147には、収納容器102の蓋を開けるオープナー146が設けられている。基板搬送部140側に設けられている。
 筐体181の後側の上部には、収納容器102を筐体181内から第三容器移動部160が配置される外部に搬入搬出するための搬入出口163が設けられている。
 また、第二容器移動部180は、エレベータ183と、ロボット184と、第三容器台の一例としての台185と、第四容器台の一例としての台186と、を有している。ロボット184とエレベータ183をまとめて後側容器搬送部と呼ぶ。後側容器搬送部は、本開示における第二容器搬送部の一例である。
 エレベータ183は、上下方向に移動可能に構成されている。エレベータ183には、ロボット184が搭載されている。エレベータ183が上下方向に移動することでロボット184も上下方向に移動する。ここでロボット184が収納容器102を保持している場合、エレベータ183の上下方向の移動によりロボット184とともに収納容器102も上下方向に移動する。また、エレベータ183は、ロボット184が上方の台185に収納容器102を載置し、台185から収納容器102を受け取ることが可能な高さまで上昇可能に構成されている。一方、エレベータ183は、ロボット184が下方の台186に収納容器102を載置し、台186から収納容器102を受け取ることが可能な高さまで下降可能に構成されている。
 ロボット184は、エレベータ183に搭載されており、収納容器102を保持する機能を有する。ロボット184は、エレベータ183とともに移動し、支持台111、台185及び台186の間で収納容器102を搬送する。ロボット184は、エレベータ183に固定される固定部184aと、固定部184aに設けられた回転部184bと、回転部184bに設けられた支持部184cを備える。回転部184bは、上下方向を軸として回転可能とされている。支持部184cは、収納容器102を支持する部分である。この回転部184bが回転することで支持部184cが水平方向に回転移動する。この構成により支持台111、台185及び台186の間で収納容器102を搬送することが可能となる。
 台185は、収納容器102を支持する台であり、第三容器移動部160に隣接している。具体的には、台185は、搬入出口163の近傍に配置され、搬入出口163を介して第三容器移動部160に隣接しており、第二容器移動部180と第三容器移動部160との間で収納容器102を受け渡すとき(移載時)に載置される台である。
 台186は、収納容器102を支持する台であり、基板搬送部140に隣接している。具体的には、台186は、搬入出口147の近傍に配置され、搬入出口147を介して基板搬送部140に隣接しており、第二容器移動部180と基板搬送部140との間で収納容器102内の基板Sを受け渡すとき(移載時)に載置される台である。
 また、台186には、収納容器102の蓋が基板搬送部140を向くように収納容器102が載置される。言い換えると、収納容器102は、蓋が前方を向くように台186に配置される。すなわち台186は、台186に支持された収納容器102の蓋と台127に支持された収納容器102の蓋とが向かい合うように構成されている。
 第二容器移動部180の各部位の動作は、コントローラ400によって制御される。一例として、コントローラ400は、第一容器移動部120内の収納容器102を、第三容器移動部160を介して第二容器移動部180に移動させる。具体的には、台125に支持された収納容器102を第三容器移動部160で台185に移動させる。その後、台185で支持された収納容器102を台186で支持させるようエレベータ183及びロボット184を制御させる。
(基板搬送部)
 基板搬送部140は、図1に示すように、第一容器移動部120と第二容器移動部180との間でかつ下部側に配置されている。また、基板搬送部140の幅方向両側には複数のリアクタ200がそれぞれ配置されている。基板搬送部140は、複数のリアクタ200に連通可能に構成されている。基板搬送部140は、収納容器102を第一容器移動部120と各リアクタ200との間で搬送し、収納容器102を第二容器移動部180と各リアクタ200との間で搬送する部分である。この基板搬送部140は、下部搬送室とも呼ぶ。
 基板搬送部140は、筐体141を有する。筐体141内は、収納容器102を搬送する搬送空間142とされている。
 筐体141の前側には、搬入出口128が設けられており、搬入出口128の近傍にオープナー145が設けられている。
 筐体141の後側には、搬入出口147が設けられており、搬入出口147の近傍にオープナー146が設けられている。
 また、筐体141には、後述する搬送ロボット144が移動する。レール143が設けられている。具体的には、レール143は、筐体141の下部に設けられ、前後方向に延びている。言い換えると、レール143は、搬入出口128から搬入出口147、又は搬入出口147から搬入出口128へ向けて延びている。
 基板搬送部140には、各リアクタ200に基板Sを搬送可能な基板搬送ロボットの一例としての搬送ロボット144が設けられている。言い換えると、基板搬送部140は、筐体141内に搬送ロボット144を備えている。また、本実施形態では、基板搬送部140が複数の搬送ロボット144を備えている。
 搬送ロボット144は、レール143上をレール143に沿って移動可能とされている。この搬送ロボット144は、基板Sを複数枚搭載可能に構成されている。すなわち、搬送ロボット144は、複数枚の基板Sを搭載(保持)した状態でレール143上を移動して目的のリアクタ200に基板Sを搬送することが可能である。
 また、本実施形態では、基板搬送部140が複数の搬送ロボット144を備えている。これら複数の搬送ロボット144には、それぞれ担当するリアクタ200が設定されている。具体的には、基板搬送部140は、2つの搬送ロボット144を備えており、一方の搬送ロボット144は、他方の搬送ロボット144よりもレール143上で前方に設けられている。以下では、前側に配された搬送ロボット144を前側搬送ロボット144aと呼び、後側に配された搬送ロボット144を後側搬送ロボット144bと呼ぶ。なお、本実施形態の前側搬送ロボット144aは、本開示における第一の基板搬送ロボットの一例であり、本実施形態の後側搬送ロボット144bは、本開示における第二の基板搬送ロボットの一例である。
 本実施形態の前側搬送ロボット144aは、複数のリアクタ200のうち、前側に配置されたリアクタ200を担当する。具体的には、前側搬送ロボット144aは、リアクタ200a、リアクタ200b、リアクタ200f、リアクタ200gを担当する。なお、本実施形態では、リアクタ200が片側に5つずつ配置されるため、前後方向の真ん中に位置するリアクタ200c、リアクタ200hも前側搬送ロボット144aが担当する。言い換えると、前側搬送ロボット144aは、基板Sをこれらのリアクタ200a、リアクタ200b、リアクタ200c、リアクタ200f、リアクタ200g、リアクタ200hに搬送する。
 本実施形態の後側搬送ロボット144bは、複数のリアクタ200のうち、後側に配置されたリアクタ200を担当する。具体的には、後側搬送ロボット144bは、リアクタ200d、リアクタ200e、リアクタ200i、リアクタ200jを担当する。言い換えると、後側搬送ロボット144bは、基板Sをこれらのリアクタ200d、リアクタ200e、リアクタ200i、リアクタ200jに搬送する。
 また、複数のリアクタ200がそれぞれ異なる基板処理が可能な場合、前側搬送ロボット144aと後側搬送ロボット144bは、リアクタ200による基板処理の種類に応じて搬送エリア(担当するリアクタ200)が設定されてもよい。
 さらに、前側搬送ロボット144aと後側搬送ロボット144bは、リアクタ200による基板処理の時間に応じて搬送エリア(担当するリアクタ200)が設定されてもよい。
 またさらに、複数のリアクタ200がそれぞれ異なる基板処理が可能な場合、搬送ロボット144は、あるリアクタ200で基板Sを処理した後、異なるリアクタ(別のリアクタ)200に移動するよう設定されてもよい。
 また、基板搬送部140は、図3に示されるように、不活性ガス供給部148と、排気部149とを備えている。不活性ガス供給部148は、筐体141内に不活性ガスを供給する構成である。筐体141内に不活性ガスが供給されることで搬送空間142が不活性ガス雰囲気となる。また、排気部149は、筐体141内の雰囲気を排気する部分である。
 基板搬送部140の各部位の動作は、コントローラ400によって制御される。一例として、コントローラ400は、複数の搬送ロボット144の搬送エリア(担当するリアクタ200)を設定する。
(第三容器移動部)
 第三容器移動部160は、図1に示すように、第一容器移動部120と第二容器移動部180との間でかつ上部側に配置されている。また第三容器移動部160の幅方向両側には複数のリアクタ200がそれぞれ配置されている。この第三容器移動部160は、第一容器移動部120から第二容器移動部180に収納容器102を移動可能な部分である。すなわち、第三容器移動部160は、第一容器移動部120と第二容器移動部180との間で収納容器102を移動可能(搬送可能)な部分である。このため、第三容器移動部160は、上部搬送部とも呼ぶ。
 第三容器移動部160は、レール161と、容器搬送部162と、を備えている。
 レール161は、第一容器移動部120と第二容器移動部180との間に架け渡されている。具体的には、筐体121の搬入出口126の上側から筐体181の搬入出口163の上側へ向けて延びている。このレール161に沿って容器搬送部162が移動する。
 容器搬送部162は、収納容器102を保持して搬送する部分である。この容器搬送部162は、上記のとおり、レール161に沿って移動する。すなわち、容器搬送部162は、収納容器102を保持した状態でレール161を移動することで第一容器移動部120と第二容器移動部180との間で収納容器102を移動可能(搬送可能)にする。
 また、第三容器移動部160は、基板搬送部104とは独立した雰囲気で、収納容器102を搬送可能に構成されている。ここで、本実施形態における基板搬送部140では不活性ガス雰囲気下で基板Sを搬送するが、第三容器移動部160では大気中で基板Sを搬送するため、双方の収納容器102を搬送する雰囲気が異なる。すなわち、第三容器移動部160の雰囲気は、基板搬送部104の雰囲気と独立している。
 また、容器搬送部162には、回転部が設けられてもよい。この回転部は、上下方向を軸方向として水平方向に回転する部分である。回転部を回転させることで、容器搬送部162で保持した収納容器102を水平方向に回転させられる。こにより、収納容器102の蓋の向きを変えることができる。
(リアクタ:バッチ装置)
 リアクタ200は、図2に示すように、基板搬送部140の幅方向両側にそれぞれ複数配置されている。このリアクタ200は、収納容器102内の基板Sを処理可能な装置である。なお、各リアクタ200は、それぞれ同様の構成であるため、ここでは一つのリアクタ200として説明する。各リアクタ200では、複数の処理が可能なよう構成される。以下に詳細を説明する。
 図4に示すように、リアクタ200を構成する筐体201は、上方に反応管格納室210、下方に移載室270を備える。反応管格納室210内には主にヒータ211、内側反応管222が格納される。移載室270は基板搬送部140の筐体141内と連通している。
 移載室270は、内側反応管222の下部に設置され、内側反応管222と連通するよう構成される。移載室270では、搬送ロボット144により基板Sを後述する基板支持具(以下、ボートと記す場合もある)240に載置(搭載)したり、搬送ロボット144により基板支持具240から基板Sを取り出したりすることが行われる。
 続いて、反応管格納室210と、その内部に格納される内側反応管222について説明する。内側反応管222は、外側反応管221と内側反応管222とを備える。内側反応管222は、外側反応管221の内部に収納される。
 外側反応管221は、内側反応管222とヒータ211との間に設けられている。図4においては外側反応管221内の雰囲気と内側反応管222内の雰囲気とは区画されるよう構成されている。外側反応管221のうち、内側反応管222を格納する部屋を内側反応管格納室221bと呼ぶ。
 外側反応管221の下方には、フランジ部221aが設けられる。フランジ部221aの中心には孔が設けられており、そこには内側反応管222のフランジ部222aが挿入され、固定される。フランジ部221aとフランジ部222aとをまとめて炉口部222bと呼ぶ。
 内側反応管222の上方は閉塞され、下方にはフランジ部222aが設けられている。フランジ部222aの中心には基板支持具240が通過する炉口部222bが設けられている。
 内側反応管222は、基板支持具240に支持された基板Sを収容可能とする。内側反応管222にはガス供給部としてのノズル223が設けられる。ノズル223は複数の基板Sの配置方向である鉛直方向に延伸するよう構成される。ノズル223から供給されたガスは、各基板Sに供給される。
 ノズル223は、例えばガス種ごとに設けられ、ここでは一例として三本のノズル223a、223b、223cを記載している。各ノズル223は水平方向において重ならないように配される。なお、図4においては説明の便宜上三本のノズル223を記載しているが、それに限るものではなく、基板処理の内容に合わせて四本以上、あるいは二本以下に配置されていてもよい。
 次に、図5A、図5B、図5C及び図5Dを用いて各ノズル223にガスを供給可能なガス供給部を説明する。本開示では、例えば後述する第一ガス供給部と第二ガス供給部とをまとめてガス供給部と呼ぶ。
 最初に、図5Aを用いて、ノズル223aにガスを供給可能な第一ガス供給部224を説明する。ガス供給管224aには、上流方向から順に、第一ガス源224b、流量制御器(流量制御部)であるマスフローコントローラ(MFC)224c、及び開閉弁であるバルブ224dが設けられている。ガス供給管224aはノズル223aと連通するよう構成される。
 第一ガス源224bは第一元素を含有する第一ガス(「第一元素含有ガス」とも呼ぶ。)源である。第一元素含有ガスは、原料ガス、すなわち、処理ガスの一つである。ここで、第一元素は、例えばシリコン(Si)である。具体的にはヘキサクロロジシラン(SiCl、略称:HCDS)ガス、モノクロロシラン(SiHCl、略称:MCS)ガス、ジクロロシラン(SiHCl、略称:DCS)、トリクロロシラン(SiHCl、略称:TCS)ガス、テトラクロロシラン(SiCl、略称:STC)ガス、オクタクロロトリシラン(SiCl、略称:OCTS)ガス等のSi-Cl結合を含むクロロシラン原料ガスである。
 主に、ガス供給管224a、MFC224c、バルブ224dにより、第一ガス供給部(シリコン含有ガス供給部ともいう)224が構成される。
 ガス供給管224aのうち、バルブ224dの下流側には、ガス供給管224eが接続される。ガス供給管224eには、上流方向から順に、不活性ガス源224f、MFC224g、及びバルブ224hが設けられている。不活性ガス源224fからは不活性ガス、例えば窒素(N)ガスが供給される。
 主に、ガス供給管224e、MFC224g、バルブ224hにより、第一不活性ガス供給部が構成される。不活性ガス源224fから供給される不活性ガスは、基板処理工程において、第一ガスのキャリアガスや希釈ガスとして用いられる。第一不活性ガス供給部を第一ガス供給部に加えてもよい。
 次に、図5Bを用いて、ノズル223bにガスを供給可能な第二ガス供給部225を説明する。ガス供給管225aには、上流方向から順に、第二ガス源225b、MFC225c、及びバルブ225dが設けられている。ガス供給管225aはノズル223bと連通するよう構成される。
 第二ガス源225bは第二元素を含有する第二ガス(以下、「第二元素含有ガス」とも呼ぶ。)源である。第二元素含有ガスは、処理ガスの一つである。なお、第二元素含有ガスは、反応ガス又は改質ガスとして考えてもよい。
 ここで、第二元素含有ガスは、第一元素と異なる第二元素を含有する。第二元素としては、例えば、酸素(O)、窒素(N)、炭素(C)のいずれか一つである。本実施形態では、第二元素含有ガスは、例えば窒素含有ガスである。具体的には、アンモニア(NH)、ジアゼン(N)ガス、ヒドラジン(N)ガス、Nガス等のN-H結合を含む窒化水素系ガスである。
 主に、ガス供給管225a、MFC225c、バルブ225dにより、第二ガス供給部(反応ガス供給部ともいう)225が構成される。
 ガス供給管225aのうち、バルブ225dの下流側には、ガス供給管225eが接続される。ガス供給管225eには、上流方向から順に、不活性ガス源225f、MFC225g、及びバルブ225hが設けられている。不活性ガス源225fからは不活性ガスが供給される。
 主に、ガス供給管225e、MFC225g、バルブ225hにより、第二不活性ガス供給部が構成される。不活性ガス源225fから供給される不活性ガスは、基板処理工程において、第二ガスのキャリアガスや希釈ガスとして用いられる。第二不活性ガス供給部を第二ガス供給部225に加えてもよい。
 次に、図5Cを用いて、ノズル223cにガスを供給可能な不活性ガス供給部226を説明する。ガス供給管226aには、上流方向から順に、不活性ガス源226b、MFC226c、及びバルブ226dが設けられている。不活性ガス源226bから供給される不活性ガスは、例えば内側反応管222内の雰囲気をパージするパージガスや、内側反応管222の圧力を調整する圧力調整用ガスとして用いられる。ガス供給管226aはノズル223cと連通するよう構成される。
 内側反応管222の雰囲気を排気する排気部230は、内側反応管222と連通する排気管231を有する。
 排気管231には、開閉弁としてのバルブ232、圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ233を介して、真空排気装置としての真空ポンプ(図示省略)が接続されており、内側反応管222内の圧力が所定の圧力(真空度)となるよう真空排気し得るように構成されている。
 上述のガス供給部と排気部との協働により内側反応管222内の圧力が調整される。圧力を調整する際には、図示しない圧力検出部で検出した圧力値が所定の値になるよう調整される。
 内側反応管222のうち、基板Sが収納される領域を処理領域と呼び、処理領域を構成する区画を処理室222cと呼ぶ。本実施形態では、内側反応管222で処理室222cが構成される。
 基板支持具240は、移載室270の内部において搬送ロボット144により搬入出口147を介して基板Sの移し替えが行われる。また、基板支持具240は、移し替えた基板Sを内側反応管222の内部に搬送する。そして、内側反応管222の内部において基板Sの表面に薄膜を形成する等の処理が行われる。
 基板支持具240は、基板支持具240を上下方向に駆動する昇降部241を備える。図4においては、基板支持具240は昇降部241によって上昇され、内側反応管222内に格納された状態を示す。また、基板支持具240は、基板支持具240を回転するよう駆動する回転駆動部242を備える。
 各駆動部は、支持台244を支持するシャフト243と接続される。支持台244には基板Sを支持可能な複数の支持柱246が設けられる。支持柱246は天板249を支持する。図4においては説明の便宜上、一つの支持柱246を記載している。支持柱246には、鉛直方向において複数の基板支持機構が所定の間隔で設けられ、複数の基板Sはそれぞれの基板支持機構に支持される。複数の支持柱246の下方は、断熱カバー245で覆われている。
 基板支持具240は、複数の支持柱246で、複数枚、例えば5枚の基板Sを鉛直方向に多段に支持する。天板249及び複数の支持柱246は、例えば石英やSiC等の材料で形成される。なお、ここでは、基板支持具240に7枚の基板Sを支持した例を示すが、これに限るものではない。例えば、基板Sを5枚~50枚程度、支持可能に基板支持具240を構成してもよい。
 基板支持具240は、昇降部241により、内側反応管222と移載室270との間を上下方向に移動され、回転駆動部242bにより基板支持具240で支持された基板Sの中心周りの回転方向に駆動される。
 シャフト243には、炉口部222bを閉塞する蓋体247が固定部247aを介して固定される。蓋体247の径は、炉口部222bの径よりも大きくなるよう構成される。蓋体247には、蓋体247を加熱するヒータ247bが設けられる。内側反応管222のフランジ部222aには、封止部材としてのOリング248が設けられる。
 蓋体247は、例えば基板Sを処理する間、炉口部222bを閉塞する。蓋体247が炉口部222bを閉塞する際は、図4に示すように、蓋体247の上面がフランジ部222aに押し当てられる位置に設定されるよう、昇降部241が蓋体247を上昇させる。これにより、内側反応管222の内部を気密に保つことができる。
 移載室270は、反応管格納室210の下部に設置される。移載室270では、搬入出口147を介して搬送ロボット144により基板Sを基板支持具240に載置(搭載)したり、搬送ロボット144により基板Sを基板支持具240から取り出したりすることが行われる。
 移載室270には、移載室270内の雰囲気を排気する排気部280が設けられる。排気部280は、移載室270に接続されると共に、その内部と連通する排気管281を有する。
 排気管281には、開閉弁としてのバルブ282、APCバルブ283を介して、真空排気装置としての真空ポンプ(図示省略)が接続されており、移載室270内の圧力が所定の圧力に排気し得るように構成されている。
 移載室270には、図5Dに示す不活性ガス供給部271を接続してもよい。図5Dに示すように、ガス供給管271aには、上流方向から順に、不活性ガス源271b、MFC271c、及びバルブ271dが設けられている。不活性ガス源271bから供給される不活性ガスは、例えば移載室270内の雰囲気をパージしたり、圧力を調整したりする場合に用いられる。不活性ガス供給部271は第三ガス供給部とも呼ぶ。
(コントローラ)
 次に図6を用いて制御部の一例としてのコントローラ400を説明する。
 基板処理装置100は、各部位の動作を制御するコントローラ400を有している。
 コントローラ400は、CPU(Central Processing Unit)401、RAM(Random Access Memory)402、記憶部403、I/Oポート404を備えたコンピュータとして構成されている。RAM402、記憶部403、I/Oポート404は、内部バス405を介して、CPU401とデータ交換可能なように構成されている。基板処理装置100内のデータの送受信は、CPU401の一つの機能でもある送受信指示部406の指示により行われる。
 CPU401は、記憶部403からの制御プログラムを読み出して実行すると共に、入出力装置423からの操作コマンドの入力等に応じて記憶部403からプロセスレシピを読み出すように構成されている。そして、CPU401は、読み出されたプロセスレシピの内容に沿うように、例えば、各昇降機構の昇降動作、ロボットによる基板移載動作、各ポンプのオンオフ制御、MFCの流量調整動作、バルブの開閉動作等を制御可能に構成されている。
 記憶部403は、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶部403内には、基板処理の手順や条件などが記載されたプロセスレシピ等で構成されるレシピ410や、基板処理装置の動作を制御する制御プログラム411が読み出し可能に格納されている。
 なお、プロセスレシピは、後述する基板処理工程における各手順をコントローラ400に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。このプロセスレシピは、例えばリアクタごとに存在し、それぞれのリアクタごとに読み出される。
 以下、このプロセスレシピや制御プログラム等を総称して、単にプログラムともいう。なお、本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、又は、その両方を含む場合がある。また、RAM402は、CPU401によって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート404は、各圧力調整器、各ポンプ、ヒータ制御部等の各構成に接続されている。さらに、上位装置420にネットワークを介して接続されるネットワーク送受信部421が設けられる。
 なお、コントローラ400は、上述のプログラムを格納した外部記憶装置422を用いてコンピュータにプログラムをインストールすること等により、本技術に係るコントローラ400を構成することができる。なお、外部記憶装置422としては、例えば、ハードディスク等の磁気ディスク、DVD等の光ディスク、MOなどの光磁気ディスク、並びに、USBメモリ等の半導体メモリが挙げられる。また、コンピュータにプログラムを供給するための手段は、外部記憶装置422を介して供給する場合に限らない。例えば、インターネットや専用回線等の通信手段を用い、外部記憶装置422を介さずにプログラムを供給するようにしてもよい。なお、記憶部403や外部記憶装置422は、コンピュータ読み取り可能な記録媒体として構成される。以下、これらを総称して、単に記録媒体ともいう。なお、本明細書において、記録媒体という言葉を用いた場合は、記憶部403単体のみを含む場合、外部記憶装置422単体のみを含む場合、又は、その両方を含む場合がある。
(2)基板処理工程
 次に図8を用いて基板処理工程を説明する。基板処理装置の一工程として、上述した構成の基板処理装置100を用いて基板Sを処理する工程について説明する。なお、以下の説明において、基板処理装置を構成する各部の動作はコントローラ400により制御される。
[容器移動工程]
 容器移動工程を説明する。
 まず、基板処理装置100は、ロードポート110の支持台111に支持された収納容器102を、第一容器移動部120のロボット124で受け取る。これにより、収納容器102がロードポート110から第一容器移動部120へ移動する。
 次に、基板処理装置100は、第一容器移動部120から基板搬送部140を介して収納容器102に収容された基板Sを搬送目的のリアクタ200へ搬送する。具体的には、搬送目的のリアクタ200を担当する搬送ロボット144へ向けて収納容器102(基板S)を送り、この搬送ロボット144から基板Sをリアクタ200へ搬送する。
 例えば、搬送目的のリアクタ200の担当が前側搬送ロボット144aの場合、ロボット124とエレベータ123を用いて台127に収納容器102を載置する。次に、収納容器102の蓋をオープナー145で開く。そして、前側搬送ロボット144aは、収納容器102から基板Sを取り出して搬送目的のリアクタ200へ搬送する。その後、前側搬送ロボット144aは、基板Sを搬送目的のリアクタ200の基板支持具240へ受け渡す。すなわち、搬送目的のリアクタ200の担当が前側搬送ロボット144aの場合、第一容器移動部120及び基板搬送部140を介して搬送目的のリアクタ200に基板Sを搬入する。
 一方、搬送目的のリアクタ200の担当が後側搬送ロボット144bの場合、ロボット124とエレベータ123を用いて台125に収納容器102を載置する。次に、台125で支持された収納容器102を第三容器移動部160の容器搬送部162で第二容器移動部180の台185に載置する。次に、ロボット184とエレベータ183を用いて台185から台186へ収納容器102を移動させる。次に、収納容器102の蓋をオープナー146で開く。そして、後側搬送ロボット144bは、収納容器102から基板Sを取り出して搬送目的のリアクタ200へ搬送する。その後、後側搬送ロボット144bは、基板Sを搬送目的のリアクタ200の基板支持具240へ受け渡す。すなわち、搬送目的のリアクタ200の担当が後側搬送ロボット144bの場合、第一容器移動部120、第三容器移動部160、第二容器移動部180及び基板搬送部140を介して搬送目的のリアクタ200に基板Sを搬入する。なお、本実施形態では、基板搬送部140へ基板Sを搬入するときには、基板搬送部140の雰囲気が不活性ガス雰囲気となるよう不活性ガス供給部148と排気部149を調節する。
[基板搬入工程]
 次に、基板搬入工程を説明する。基板搬入工程では、基板Sを支持した基板支持具240を上昇させて、図4に示すように内側反応管222内に搬入する。このとき、蓋体247は基板支持具240と共に上昇し、Oリング248は蓋体247に押し付けられる。これにより、内側反応管222内を封止する。なお、ヒータ211は稼働状態にあり、基板Sの処理温度に維持されている。
 続いて、不活性ガス供給部226と排気部230との協働により、内側反応管222内を所定の圧力とする。また、それと並行して、移載室270内を内側反応管222内の圧力よりも高くするよう、不活性ガス供給部271と排気部280を制御する。このようにすることで、内側反応管222内の雰囲気を移載室270に移動することを抑制できる。
[膜処理工程]
 続いて、膜処理工程を説明する。膜処理工程は、リアクタ200内において、基板Sに形成された膜を処理する工程である。内側反応管222で構成される処理室222cが所望の圧力になったら、第一ガス供給部224、第二ガス供給部225を制御して、内側反応管222内に第一ガスと第二ガスとを供給し、基板Sを処理する。この工程における処理とは、例えば第一ガスと第二ガスとを反応させて、基板S上に所定の膜を形成する処理をいう。本実施形態においては、例えば第一ガスとしてHCDSを供給し、第二ガスとしてNHガスを供給し、シリコン窒化(SiN)膜を形成する。
 本工程では、例えば以下の条件で処理する。
 第一ガス:HCDS
 第一ガスのガス供給量 5sccm~5000sccm
 第二ガス:NH
 第二ガスのガス供給量 10sccm~10000sccm
 処理室の圧力: 133Pa~13332Pa
 処理温度:300℃~500℃
 所定時間が経過したら、第一ガス供給部224、第二ガス供給部225を停止する。さらに、不活性ガス供給部226から不活性ガスを供給して、処理室222c内の雰囲気を排気する。
[基板搬出工程]
 基板搬出工程を説明する。所定時間経過後、昇降部241は基板支持具240を下降させる。基板支持具240が下降されたら、基板Sを搬入したのと逆の方法で基板Sを搬出する。
 次に、本実施形態の効果について説明する。
 本実施形態の基板処理装置100は、第一容器移動部120と第二容器移動部180との間で収納容器102を搬送する第三容器移動部160を備えている。このため、基板処理装置100では、基板Sが収納容器102に収納された状態(収納容器102の状態)で第三容器移動部160によって第二容器移動部180に搬送される。これにより、基板処理装置100は、例えば、第一容器移動部120から第二容器移動部180へ基板Sの状態で搬送する構成と比べて、スループットを高めることができる。また、第三容器移動部160で基板Sの状態で搬送するためには、基板Sを不活性ガス雰囲気で搬送する必要があり、メンテナンス頻度や部品コストが上昇してしまう。これに対して本実施形態では、基板Sが収納された収納容器102が第三容器移動部160によって収納容器102の状態で第二容器移動部180に搬送されるため、コストを低減できる。
 すなわち、本実施形態の基板処理装置100は、低コスト化とスループット向上を達成できる。
 また、本実施形態の基板処理装置100では、収納容器102の搬送ルートが複数設けられることから、コンタミ(例えば基板の成分が他の基板に付着する現象)を避けつつ異なる種類の基板の搬送が可能となる。
 本実施形態の基板処理装置100は、ロードポート110で受け取った収納容器102を台125及び台127に載置可能である。すなわち、基板処理装置100では、収納容器102をロードポート110から台125及び台127に直接搬送可能なので、基板Sの搬送効率を高めることができる。また、エレベータ123を用いるので、フットプリントが大きくなることを抑制できる。
 本実施形態の基板処理装置100では、コントローラ400がロードポート110に支持された収納容器102を、台125又は台127に移動するようエレベータ123及びロボット124を制御可能である。
 本実施形態の基板処理装置100では、第三容器移動部160から受け取った収納容器102を台185及び台186に直接搬送可能なので、基板Sの搬送効率を高めることができる。また、エレベータ183を用いるので、フットプリントが大きくなることを抑制できる。
 本実施形態の基板処理装置100は、第三容器移動部160が基板搬送部140とは独立した雰囲気で収納容器102を搬送可能である。このため、基板処理装置100では、第三容器移動部160と基板搬送部140を独立した雰囲気とすることで、第三容器移動部160に、基板搬送部140のような減圧構造を設ける必要がなく、部品点数低減につながる。
 本実施形態の基板処理装置100では、第一容器移動部120のロボット124が収納容器102の蓋が基板搬送部140へ向くように収納容器102を台127に載置する。そして、第二容器移動部180のロボット184が収納容器102の蓋が基板搬送部140へ向くように収納容器102を台186に載置する。言い換えると、台127に載置した収納容器102の蓋と、台186に載置した収納容器102の蓋は互いに向かい合う。このため、基板処理装置100では、基板搬送部140の搬送ロボット144が基板Sを受け取り可能となるため、基板Sの搬送効率が高まる。
 本実施形態の基板処理装置100では、第三容器移動部160に回転部が設けられている場合、第一容器移動部120及び第二容器移動部180を簡単な構成とすることができるので、メンテナンス頻度が低くなる。
 本実施形態の基板処理装置100では、基板搬送部140が複数の搬送ロボット144を備え、それぞれに担当するプロセスモジュールが設定されている。このように基板処理装置100では、搬送ロボット144に担当するプロセスモジュールを設定することで、コンタミを抑制できる。
 本実施形態の基板処理装置100では、前側搬送ロボット144aが前側に配置されたリアクタ200を担当し、後側搬送ロボット144bが後側に配置されたリアクタ200を担当する場合、プロセスごとの専用ルート、専用ロボットを設定できるため、よりコンタミを抑制できる。
 本実施形態の基板処理装置100では、複数のリアクタ200のそれぞれが異なる基板処理を可能な場合、前側搬送ロボット144aと後側搬送ロボット144bとは、基板処理の種類に応じて搬送エリアが設定されてもよい。この場合、搬送空間(搬送エリア)としてコンタミを抑制できるので、より確実にコンタミの抑制が可能になる。
 本実施形態の基板処理装置100では、前側搬送ロボット144aと後側搬送ロボット144bが基板処理の時間に応じて搬送エリアが設定されてもよい。ここでプロセス時間が異なると搬送ロボット144の待機待ち(例えば搬入先のリアクタ200が混みあっているため、基板Sを搬入できない場合)が発生するため、搬送効率が低くなる恐れがある。これにたいして、基板処理装置100では、処理時間に合わせて搬送エリアを設定することで、搬送ロボット144の待機待ちを無くすことができる。
 本実施形態の基板処理装置100では、複数の搬送ロボット144がレール143上を移動する。ここで、複数の搬送ロボット144を、レール143上に配置することで、スムーズな搬送が可能となり、その結果長距離を移動する場合においても、基板Sを摺動させることがなく、安定した搬送が可能となる。
 本実施形態の基板処理装置100では、複数のリアクタ200のそれぞれは異なる処理が可能であり、搬送ロボット144があるリアクタ200で処理した後、異なるリアクタ200に移動する場合、連続処理を実現できる。具体的には、例えば、あるリアクタ200でSiN膜を形成し、その後別のプロセスモジュールで改質処理を行ってもよい。
<第二実施形態>
 次に本開示の第二実施形態の基板処理装置600について説明する。
 本実施形態の基板処理装置600は、基板搬送部500及びリアクタ300の構成を除いて第一実施形態の基板処理装置100と同様の構成である。したがって、本実施形態では、主に基板搬送部500とリアクタ300の構成について説明する。なお、第一実施形態の基板処理装置100と同様の構成については、その説明を省略する。
 図7は本開示の第二実施形態に係る基板処理装置の構成例を示す横断面図である。図8は、本開示の第二実施形態に係る基板処理装置の構成例を示し、図7のα-α線における縦断面図である。
(基板搬送部)
 基板搬送部500は、図7に示すように、第一容器移動部120と第二容器移動部180との間でかつ下部側に配置されている。基板搬送部500は、収納容器102を第一容器移動部120と各リアクタ200との間で搬送し、収納容器102を第二容器移動部180と各リアクタ200との間で搬送する部分である。この基板搬送部500は、下部搬送室とも呼ぶ。
 基板搬送部500は、前方から順に大気搬送部510、ロードロック室520、真空搬送部530、ロードロック室540及び大気搬送部550を備えている。
―前側大気搬送部―
 大気搬送部510は、筐体511を有する。筐体511内は、収納容器102を搬送する搬送空間512とされている。なお、本実施形態の大気搬送部510を前側大気搬送部とも呼ぶ。
 筐体511の前側には、搬入出口128が設けられており、搬入出口128の近傍にオープナー514が設けられている。
 筐体511の後側には、収納容器102から取り出した基板Sを筐体511内からロードロック室520の筐体521内に搬入搬出するための搬入出口515が設けられている。搬入出口515には、ゲートバルブ524が設けられている。なお、ゲートバルブ524は、ロードロック室520側に設けられている。
 大気搬送部510は、筐体511内に大気搬送ロボット513を有する。この大気搬送ロボット513は、台127上の収納容器102から基板Sを取り出し、ロードロック室520の基板載置台523に載置する。なお、大気搬送ロボット513は、基板載置台523から収納容器102へ基板Sを戻すことも可能である。すなわち、大気搬送ロボット513は、第一容器移動部120とロードロック室520との間で基板Sを搬送することが可能である。
―前側ロードロック室―
 ロードロック室520は、筐体521を有する。筐体521内は、収納容器102を搬送する搬送空間522とされている。なお、本実施形態のロードロック室520を前側ロードロック室とも呼ぶ。
 筐体521の前側には、搬入出口515が設けられており、搬入出口515にはゲートバルブ524が設けられている。
 筐体521の後側には、基板Sを筐体521内から真空搬送部530の筐体531内に搬入搬出するための搬入出口525が設けられている。搬入出口525には、ゲートバルブ534が設けられている。なお、ゲートバルブ534は、真空搬送部530側に設けられている。
―後側大気搬送部―
 大気搬送部550は、筐体551を有する。筐体551内は、収納容器102を搬送する搬送空間552とされている。なお、本実施形態の大気搬送部550を後側大気搬送部とも呼ぶ。
 筐体551の後側には、搬入出口555が設けられており、搬入出口555の近傍にオープナー554が設けられている。
 筐体551の前側には、収納容器102から取り出した基板Sを筐体551内からロードロック室540の筐体541内に搬入搬出するための搬入出口545が設けられている。搬入出口545には、ゲートバルブ544が設けられている。なお、ゲートバルブ544は、ロードロック室540側に設けられている。
 大気搬送部550は、筐体551内に大気搬送ロボット553を有する。この大気搬送ロボット553は、台186上の収納容器102から基板Sを取り出し、ロードロック室540の基板載置台543に載置する。なお、大気搬送ロボット553は、基板載置台543から収納容器102へ基板Sを戻すことも可能である。すなわち、大気搬送ロボット553は、第二容器移動部180とロードロック室540との間で基板Sを搬送することが可能である。
―後側ロードロック室―
 ロードロック室540は、筐体541を有する。筐体541内は、収納容器102を搬送する搬送空間542とされている。なお、本実施形態のロードロック室540を後側ロードロック室とも呼ぶ。
 筐体541の後側には、搬入出口545が設けられており、搬入出口545にはゲートバルブ544が設けられている。
 筐体541の前側には、基板Sを筐体541内から真空搬送部530の筐体531内に搬入搬出するための搬入出口537が設けられている。搬入出口537には、ゲートバルブ536が設けられている。なお、ゲートバルブ536は、真空搬送部530側に設けられている。
―真空搬送部―
 真空搬送部530は、幅方向両側に複数のリアクタ300がそれぞれ配置されている。また、真空搬送部530は、複数のリアクタ300に連通可能に構成されている。なお、本実施形態では、一例として真空搬送部530の幅方向の一方側に5つのリアクタ300が設けられ、真空搬送部530の幅方向の他方側に5つのリアクタ300が設けられている。なお、リアクタ300を個別に指定するときは、幅方向の一方側のリアクタ300を前方から順にリアクタ300a、リアクタ300b、リアクタ300c、リアクタ300d、リアクタ300eと呼ぶ。また、幅方向の他方側のリアクタ300を前方から順にリアクタ300f、リアクタ300g、リアクタ300h、リアクタ300i、リアクタ300jと呼ぶ。
 なお、本実施形態の真空搬送部530は、下部真空搬送室とも呼ぶ。
 真空搬送部530は、筐体531を有する。筐体531内は、収納容器102を搬送する搬送空間532とされている。
 筐体531の前側には、搬入出口525が設けられており、搬入出口525にはゲートバルブ534が設けられている。
 筐体521の後側には、基板Sをロードロック室540の筐体541内から真空搬送部530の筐体531内に搬入搬出するための搬入出口537が設けられている。搬入出口537にはゲートバルブ536が設けられている。
 また、筐体531には、後述する真空搬送ロボット535が移動するレール533が設けられている。具体的には、レール533は、筐体531の下部に設けられ、前後方向に延びている。言い換えると、レール533は、搬入出口525から搬入出口537、又は搬入出口537から搬入出口525へ向けて延びている。
 真空搬送部530には、各リアクタ300に基板Sを搬送可能な基板搬送ロボットの一例としての真空搬送ロボット535が設けられている。言い換えると、真空搬送部530は、筐体521内に真空搬送ロボット535を備えている。また、本実施形態では、真空搬送部530が複数の真空搬送ロボット535を備えている。
 真空搬送ロボット535は、レール533上をレール533に沿って移動可能とされている。この真空搬送ロボット535は、基板Sを複数枚搭載可能に構成されている。すなわち、真空搬送ロボット535は、複数枚の基板Sを搭載(保持)した状態でレール533上を移動して目的のリアクタ300に基板Sを搬送することが可能である。
 また、本実施形態では、真空搬送部530が複数の真空搬送ロボット535を備えている。これら複数の真空搬送ロボット535には、それぞれ担当するリアクタ300が設定されている。具体的には、真空搬送部530は、2つの真空搬送ロボット535を備えており、一方の真空搬送ロボット535は、他方の真空搬送ロボット535よりもレール143上で前方に設けられている。以下では、前側に配された真空搬送ロボット535を前側真空搬送ロボット535aと呼び、後側に配された真空搬送ロボット535を後側真空搬送ロボット535bと呼ぶ。なお、本実施形態の前側真空搬送ロボット535aは、本開示における第一の基板搬送ロボットの一例であり、本実施形態の後側真空搬送ロボット535bは、本開示における第二の基板搬送ロボットの一例である。
 本実施形態の前側真空搬送ロボット535aは、複数のリアクタ300のうち、前側に配置されたリアクタ300を担当する。具体的には、前側真空搬送ロボット535aは、リアクタ300a、リアクタ300b、リアクタ300f、リアクタ300gを担当する。なお、本実施形態では、リアクタ300が片側に5つずつ配置されるため、前後方向の真ん中に位置するリアクタ300c、リアクタ300hも前側真空搬送ロボット535aが担当する。言い換えると、前側真空搬送ロボット535aは、基板Sをこれらのリアクタ300a、リアクタ300b、リアクタ300c、リアクタ300f、リアクタ300g、リアクタ300hに搬送する。
 本実施形態の後側真空搬送ロボット535bは、複数のリアクタ300のうち、後側に配置されたリアクタ300を担当する。具体的には、後側真空搬送ロボット535bは、リアクタ300d、リアクタ300e、リアクタ300i、リアクタ300jを担当する。言い換えると、後側真空搬送ロボット535bは、基板Sをこれらのリアクタ300d、リアクタ300e、リアクタ300i、リアクタ300jに搬送する。
 また、複数のリアクタ300がそれぞれ異なる基板処理が可能な場合、前側真空搬送ロボット535aと後側真空搬送ロボット535bは、リアクタ300による基板処理の種類に応じて搬送エリア(担当するリアクタ300)が設定されてもよい。
 さらに、前側真空搬送ロボット535aと後側真空搬送ロボット535bは、リアクタ300による基板処理の時間に応じて搬送エリア(担当するリアクタ300)が設定されてもよい。
 またさらに、複数のリアクタ300がそれぞれ異なる基板処理が可能な場合、真空搬送ロボット535は、あるリアクタ300で基板Sを処理した後、異なるリアクタ(別のリアクタ)200に移動するよう設定されてもよい。
 また、真空搬送部530は、図9に示されるように、不活性ガス供給部148と、排気部149とを備えている。不活性ガス供給部148は、筐体531内に不活性ガスを供給する部分である。筐体531内に不活性ガスが供給されることで搬送空間532が不活性ガス雰囲気となる。また、排気部149は、筐体531内の雰囲気を排気する部分である。
 基板搬送部140の各部位の動作は、コントローラ400によって制御される。一例として、コントローラ400は、複数の真空搬送ロボット535の搬送エリア(担当するリアクタ300)を設定する。
(リアクタ:枚葉)
 次に、図11を用いてリアクタ300を説明する。図11に示すように、リアクタ300は容器302を備えている。容器302内には、基板Sを処理する処理空間305を構成する処理室301と、基板Sを処理空間305に搬送する際に基板Sが通過する搬送空間を有する搬送室306とが形成されている。容器302は、上部容器302aと下部容器302bで構成される。上部容器302aと下部容器302bとの間には仕切り板308が設けられる。
 下部容器302bの側面には、ゲートバルブ341に隣接した搬入搬出口340が設けられており、基板Sは搬入搬出口340を介して真空搬送部530との間を移動する。下部容器302bの底部には、リフトピン307が複数設けられている。
 処理空間305には、基板Sを支持する基板支持部310が配される。基板支持部310は、基板Sを載置する基板載置面311と、基板載置面311を表面に持つ基板載置台312と、基板載置台312内に設けられた加熱部としてのヒータ313とを有する。基板載置台312には、リフトピン307が貫通する貫通孔314が、リフトピン307と対応する位置にそれぞれ設けられている。
 ヒータ313には、電力を供給するための配線322が接続される。配線322はヒータ制御部323に接続される。ヒータ制御部323はコントローラ400に電気的に接続されている。コントローラ400は、ヒータ制御部323を制御してヒータ313を稼働させる。
 基板載置台312は、シャフト317によって支持される。シャフト317は、容器302の底部を貫通しており、さらに容器302の外部で昇降部318に接続されている。
 昇降部318を作動させてシャフト317及び基板載置台312を昇降させることにより、基板載置台312は、基板載置面311上に載置される基板Sを昇降させることが可能となっている。
 処理室301は、基板載置台312を備える。なお、処理室301は基板Sを処理する処理空間305を確保できればよく、他の構造により構成されてもよい。
 基板載置台312は、基板Sの搬送時には、基板載置面311が搬入搬出口340に対向する搬送ポジションP0まで下降し、基板Sの処理時には、図11で示されるように、基板Sが処理空間305内の処理ポジションとなるまで上昇する。
 処理室301の蓋331には、ガス導入孔331aが設けられている。このガス導入孔331aには、第一ガス供給部224、第二ガス供給部225、不活性ガス供給部226が接続される。これにより、処理室301には、第一ガス、第二ガス、不活性ガスが供給される。
 続いて、排気部391を説明する。処理空間305には、排気管392が連通される。排気管392は、処理空間305に連通するよう、上部容器302aに接続される。排気管392には、処理空間305内を所定の圧力に制御する圧力制御器であるAPC393が設けられる。APC393は開度調整可能な弁体(図示省略)を有し、コントローラ400からの指示に応じて排気管392のコンダクタンスを調整する。排気管392においてAPC393の下流側にはバルブ394が設けられる。排気管392の上流には、ドライポンプ395が設けられる。ドライポンプ395は、排気管392を介して、処理空間305の雰囲気を排気する。
 次に、本実施形態の基板処理装置600を用いた基板処理工程を説明する。なお、第一実施形態の基板処理装置100と同様の工程についてはその説明を省略する。
[容器移動工程]
 容器移動工程を説明する。
 まず、基板処理装置600は、ロードポート110の支持台111に支持された収納容器102を、第一容器移動部120のロボット124で受け取る。これにより、収納容器102がロードポート110から第一容器移動部120へ移動する。
 次に、基板処理装置600は、第一容器移動部120から基板搬送部500を介して収納容器102に収容された基板Sを搬送目的のリアクタ300へ搬送する。具体的には、搬送目的のリアクタ300を担当する真空搬送ロボット535へ向けて収納容器102(基板S)を送り、この搬送ロボット144から基板Sをリアクタ300へ搬送する。
 例えば、搬送目的のリアクタ300の担当が前側真空搬送ロボット535aの場合、ロボット124とエレベータ123を用いて台127に収納容器102を載置する。次に、収納容器102の蓋をオープナー145で開く。そして、大気搬送ロボット513は、収納容器102から基板Sを取り出して基板載置台523に載置する。基板載置台523に載置された基板Sは、前側真空搬送ロボット535aが受け取り、搬送目的のリアクタ300へ搬送する。その後、搬送目的のリアクタ300のゲートバルブ341が開き、前側真空搬送ロボット535aは、基板Sを搬送目的のリアクタ300の基板載置台312へ受け渡す。すなわち、搬送目的のリアクタ300の担当が前側真空搬送ロボット535aの場合、第一容器移動部120及び基板搬送部500を介して搬送目的のリアクタ300に基板Sを搬入する。
 一方、搬送目的のリアクタ300の担当が後側真空搬送ロボット535bの場合、ロボット124とエレベータ123を用いて台125に収納容器102を載置する。次に、台125で支持された収納容器102を第三容器移動部160の容器搬送部162で第二容器移動部180の台185に載置する。次に、ロボット184とエレベータ183を用いて台185から台186へ収納容器102を移動させる。次に、収納容器102の蓋をオープナー554で開く。そして、後側真空搬送ロボット535bは、収納容器102から基板Sを取り出して基板載置台543に載置する。基板載置台543に載置された基板Sは、後側真空搬送ロボット535bが受け取り、搬送目的のリアクタ300へ搬送する。その後、搬送目的のリアクタ300のゲートバルブ341が開き、後側真空搬送ロボット535bは、基板Sを搬送目的のリアクタ300の基板載置台312へ受け渡す。すなわち、搬送目的のリアクタ300の担当が後側真空搬送ロボット535bの場合、第一容器移動部120、第三容器移動部160、第二容器移動部180及び基板搬送部500を介して搬送目的のリアクタ300に基板Sを搬入する。なお、本実施形態では、基板搬送部500へ基板Sを搬入するときには、ロードロック室520、真空搬送部530、ロードロック室540のそれぞれの雰囲気が不活性ガス雰囲気となるよう不活性ガス供給部148と排気部149を調節する。
[基板搬入工程]
 次に、基板搬入工程を説明する。基板搬入工程では、基板Sを支持した基板載置台312を上昇させて、図11に示すように処理室301内に搬入する。なお、ヒータ313は稼働状態にあり、基板Sの処理温度に維持されている。
 続いて、不活性ガス供給部226と排気部391との協働により、処理室301内を所定の圧力とする。
[膜処理工程]
 続いて、膜処理工程を説明する。膜処理工程は、リアクタ300内において、基板Sに形成された膜を処理する工程である。処理室301が所望の圧力になったら、第一ガス供給部224、第二ガス供給部225を制御して、処理室301内に第一ガスと第二ガスとを供給し、基板Sを処理する。この工程における処理とは、例えば第一ガスと第二ガスとを反応させて、基板S上に所定の膜を形成する処理をいう。本実施形態においては、例えば第一ガスとしてHCDSを供給し、第二ガスとしてNHガスを供給し、シリコン窒化(SiN)膜を形成する。
 なお、本工程の条件は、第一実施形態と同様である。したがって、詳細な記載を省略する。
 所定時間が経過したら、第一ガス供給部224、第二ガス供給部225を停止する。さらに、不活性ガス供給部226から不活性ガスを供給して、処理室301内の雰囲気を排気する。
[基板搬出工程]
 基板搬出工程を説明する。所定時間経過後、基板載置台312を下降させる。基板載置台312が下降されたら、基板Sを搬入したのと逆の方法で基板Sを搬出する。
 本実施形態の基板処理装置600は、第一実施形態の基板処理装置100と同様の作用効果を得ることができるため、作用効果の詳細な説明を省略する。
 本実施形態の基板処理装置600では、リアクタ300を全て成膜用として使用しているが、本開示はこれに限定されない。例えば、図10に示すように、リアクタ300の一つを冷却専用としてもよい。すなわち、基板処理装置600は、リアクタ300の少なくとも一つに冷却モジュール370を備えてもよい。また、冷却モジュール370に基板Sの温度を監視する温度センサ372を設けてもよい。リアクタ300の少なくとも一つに冷却モジュール370を備え、処理後の基板Sを冷却モジュール370で冷却することで、基板Sの処理の渋滞を緩和し、装置全体の処理効率を高めることができる。
 <第三実施形態>
 次に本開示の第三実施形態の基板処理装置700について図12に基づいて説明する。
 本実施形態の基板処理装置700は、第一実施形態の基板処理装置100において、複数の搬送ロボット144ごとにレール143が横(幅方向)に設けられている点が異なり、そのほかの部分は同じ構成である。そのため、第一実施形態の基板処理装置100と同様の構成については、その説明を省略する。
 基板処理装置700の基板搬送部140は、複数本のレール143を備えている。具体的には、基板搬送部140は、搬送ロボット144a用のレール143aと、搬送ロボット144b用のレール143bとを備えている。
 基板処理装置700のコントローラ400は、いずれかの搬送ロボット144に不具合が生じた際に、他の搬送ロボット144が、不具合が生じた搬送ロボット144が担当するリアクタ200も担当するように設定するよう構成されている。
 次に本実施形態の作用効果について説明する。
 基板処理装置700では、複数の搬送ロボット144ごとに専用路、すなわち、専用のレール143を備えることから、搬送ロボット144の渋滞を防ぐことができる。
 さらに、基板処理装置700では、いずれかの搬送ロボット144に不具合が生じた場合でも、不具合が生じていない他の搬送ロボット144で基板Sの搬送処理を継続することができる。
 第三実施形態の複数の搬送ロボット144ごとに専用路、すなわち、専用のレール143を横(幅方向)に設ける構成については、前述の第二実施形態にも適用してもよい。
<第四実施形態>
 次に本開示の第四実施形態の基板処理装置800について図13及び図14に基づいて説明する。
 本実施形態の基板処理装置800は、第一実施形態の基板処理装置100において、複数の搬送ロボット144ごとにレール143が上下に設けられている点が異なり、そのほかの部分は同じ構成である。そのため、第一実施形態の基板処理装置100と同様の構成については、その説明を省略する。
 基板処理装置800の基板搬送部140は、筐体141内が仕切部802によって上下に仕切られている。すなわち、仕切部802によって搬送空間142が下方の下部搬送空間142aと、上方の上部搬送空間142bとに区分けられている。
 基板処理装置800の基板搬送部140は、複数本のレール143を備えている。具体的には、基板搬送部140は、搬送ロボット144a用のレール143aと、搬送ロボット144b用のレール143bとを備えている。また、レール143aとレール143bは上下方向に離隔して配置されている。本実施形態では、レール143aが下部搬送空間142aに配置され、レール143bが上部搬送空間142bに配置されている。すなわち、レール143aの上方にレール143bが配置されている。なお、レール143aとレール143bは、上下方向(鉛直方向)に重ならないように設けられている。
 また、図13に示すように、リアクタ200の搬入出口は、それぞれのレール143の高さに設定される。具体的には、リアクタ200の搬入出口は、レール143a上を移動する搬送ロボット144aがリアクタ200に基板Sを受け渡すことが可能な高さに設けられる。また、リアクタ200の搬入出口は、レール143b上を移動する搬送ロボット144bがリアクタ200に基板Sを受け渡すことが可能な高さに設けられる。本実施形態では、下部搬送空間142a及び上部搬送空間142bに、それぞれ搬入出口がリアクタ200と同じ数だけ設けられている。
 次に本実施形態の作用効果について説明する。
 基板処理装置800では、複数の搬送ロボット144ごとに専用路、すなわち、専用のレール143を備えることから、搬送ロボット144の渋滞を防ぐことができる。
 さらに、基板処理装置700では、いずれかの搬送ロボット144に不具合が生じた場合でも、不具合が生じていない他の搬送ロボット144で基板Sの搬送処理を継続することができる。
 そして、基板処理装置700では、レール143を上下方向に設けることで、フットプリントを低減することができる。
 前述の第四実施形態では、筐体141内が仕切部802によって上下に仕切られているが、本開示はこの構成に限定されない。例えば、筐体141内を仕切部802で仕切らずに、レール143aの上方にレール143bを配置する構成としてもよい。この場合にも第四実施形態と同様の作用効果を得ることができる。
 前述の第四実施形態の複数の搬送ロボット144ごとにレール143を上下方向(鉛直方向)に設ける構成については、前述の第二実施形態にも適用してもよい。
<第五実施形態>
 次に本開示の第五実施形態の基板処理装置900を図15に基づいて説明する。
 本実施形態の基板処理装置900は、リアクタ300の少なくとも一つを冷却専用とする点を除いて第二実施形態の基板処理装置600と同様の構成である。したがって、本実施形態では、冷却専用のリアクタ300について説明する。なお、第二実施形態の基板処理装置100と同様の構成については、その説明を省略する。
 本実施形態の基板処理装置900では、図15に示すように、リアクタ300の一つを冷却専用としている。すなわち、基板処理装置900は、リアクタ300の少なくとも一つに冷却モジュール370を備えている。このようにリアクタ300の少なくとも一つに冷却モジュール370を備えることで、処理後の基板Sを冷却モジュール370で冷却することが可能となる。なお、本実施形態の冷却モジュール370は、一例として、内側の冷却機構と、外側を構成し基板Sが置かれる外殻とを有している。
 冷却専用のリアクタ300には、エレベータの一例としての昇降ユニット902が設けられている。この昇降ユニット902により、複数段の冷却モジュール370が上下方向に移動する。なお、各段の冷却モジュール370は上下方向に離隔して配置されている。また、各冷却モジュール370には温度センサ904が取り付けられており、この温度センサ904で基板Sの温度状態を監視している。
 本実施形態では、複数段の冷却モジュール370を備えることから、処理後の基板Sを冷却モジュール370で効率よく冷却することで、基板Sの処理の渋滞を緩和し、装置全体の処理効率を高めることができる。
 また、本実施形態では、真空搬送ロボット535が格納されていないところで処理済みの基板Sを冷却するため、真空搬送ロボット535の搬送効率を低減させないようにすることができる。
 本実施形態では、少なくとも一つのリアクタ300を冷却専用としたが、本開示はこの構成に限定されない。例えば、筐体541の基板載置台543に冷却機構等を設けて、載置された基板Sを冷却してもよい。また、リアクタ300とは別に冷却専用のチャンバを設けてもよい。さらに、台127、台186に冷却機構を設けて、基板Sを冷却してもよい。
(その他の実施形態)
 また、上述した実施形態では、基板処理装置100として、リアクタ200を幅方向の片側5台ずつ、合計10台用いた例について説明したが、これに限るものではなく、リアクタ200を幅方向の片側6台ずつ、合計12台、あるいはそれ以上のリアクタ200を用いる基板処理装置でもよいし、リアクタ200を幅方向の片側4台ずつ、合計8台、あるいはそれ以下のリアクタ200を用いる基板処理装置でもよい。
 また、上述した各実施形態では、基板処理装置が行う成膜処理において、第一元素含有ガス(第一ガス)としてHCDSガスを用い、第二元素含有ガス(第二ガス)としてNHガスを用いて、基板S上にSiN膜を形成する場合を例に挙げたが、本開示がこれに限定されることはない。すなわち、成膜処理に用いる処理ガスは、HCDSガスやNHガス等に限られることはなく、他の種類のガスを用いて他の種類の薄膜を形成しても構わない。さらには、3種類以上の処理ガスを用いる場合であってもよい。また、第一元素としては、Siではなく、例えばチタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)等、種々の元素であってもよい。また、第二元素としては、Hではなく、例えば窒素(N)等であってもよい。
 また、例えば、上述した各実施形態では、基板処理装置が行う処理として成膜処理を例に挙げたが、本開示がこれに限定されることはない。すなわち、本開示は、各実施形態で例に挙げた成膜処理の他に、各実施形態で例示した薄膜以外の成膜処理、改質処理にも適用できる。また、基板処理の具体的内容は不問であり、成膜処理、改質処理だけでなく、アニール処理、拡散処理、酸化処理、窒化処理、リソグラフィ処理等の他の基板処理を行う場合にも適用できる。さらに、本開示は、他の基板処理装置、例えばアニール処理装置、エッチング装置、酸化処理装置、窒化処理装置、露光装置、塗布装置、乾燥装置、加熱装置、プラズマを利用した処理装置等の他の基板処理装置にも適用できる。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。
 以下、本実施形態の他の形態を付記として示す。
 (付記1)
 容器を移動可能な第一の容器移動部と、
 前記第一の容器移動部と異なる位置に配され、前記容器を移動可能な第二の容器移動部と、
 前記容器内の基板を処理可能な複数のプロセスモジュールと、
 前記第一の容器移動部と前記第二の容器移動部との間に配されると共に前記複数のプロセスモジュールに連通可能に構成され、前記基板を搬送可能とする基板搬送部と、
 前記基板搬送部に設けられ、前記プロセスモジュールに前記基板を搬送可能な基板搬送ロボットと、
 前記第一の容器移動部と前記第二の容器移動部との間に配され、前記第一の容器移動部から前記第二の容器移動部に前記容器を移動可能な第三の容器移動部と、
 制御部と、
を有し、
 前記第二容器台に配した前記容器の蓋と、
 前記第四容器台に配した前記容器の蓋は向かい合うよう構成される、基板処理装置。
 (付記2)
 容器を移動可能な第一の容器移動部と、
 前記第一の移動部と異なる位置に配され、前記容器を移動可能な第二の容器移動部と、
 前記容器内の基板を処理可能なプロセスモジュールと、
 前記第一の容器移動部と前記第二の容器移動部との間に配されると共に前記複数のプロセスモジュールに連通可能に構成され、前記基板を搬送可能とする基板搬送部と、
 前記基板搬送部に設けられ、前記プロセスモジュールに前記基板を搬送可能な基板搬送ロボットと、
 前記第一の容器移動部と前記第二の容器移動部との間に配され、前記第一の容器移動部から前記第二の容器移動部に前記容器を移動可能な第三の容器移動部と、
 制御部と、
を有し、
 前記基板搬送ロボットは、あるプロセスモジュールで処理した後、異なるプロセスモジュールに移動するよう設定される、基板処理装置。
 (付記3)
 容器を移動可能な第一の容器移動部と、
 前記第一の移動部と異なる位置に配され、前記容器を移動可能な第二の容器移動部と、
 前記容器内の基板を処理可能なプロセスモジュールと、
 前記第一の容器移動部と前記第二の容器移動部との間に配されると共に前記複数のプロセスモジュールに連通可能に構成され、前記基板を搬送可能とする基板搬送部と、
 前記基板搬送部に設けられ、前記プロセスモジュールに前記基板を搬送可能な基板搬送ロボットと、
 前記第一の容器移動部と前記第二の容器移動部との間に配され、前記第一の容器移動部から前記第二の容器移動部に前記容器を移動可能な第三の容器移動部と、
 制御部と、
を有し、
 更に基板冷却モジュールを備える基板処理装置。
 (付記4)
 前記基板冷却モジュールは、前記基板搬送部のうち、前記基板搬送ロボットが格納された空間と異なる空間に設けられるか、前記容器移動部に設けられるか、前記プロセスモジュールに設けられるかする付記3の基板処理装置。
 S…基板、100,600,700,800,900…基板処理装置、200…リアクタ(プロセスモジュール)、300…リアクタ(プロセスモジュール)、400…コントローラ(制御部)、120…第一容器移動部、140,500…基板搬送部、144,535…基板搬送部、160…第三容器移動部、180…第二容器移動部
 

Claims (20)

  1.  容器を移動可能な第一の容器移動部と、
     前記第一の容器移動部と異なる位置に配され、前記容器を移動可能な第二の容器移動部と、
     前記容器内の基板を処理可能な複数のプロセスモジュールと、
     前記第一の容器移動部と前記第二の容器移動部との間に配されると共に前記複数のプロセスモジュールに連通可能に構成され、前記基板を搬送可能とする基板搬送部と、
     前記基板搬送部に設けられ、前記プロセスモジュールに前記基板を搬送可能な基板搬送ロボットと、
     前記第一の容器移動部と前記第二の容器移動部との間に配され、前記第一の容器移動部から前記第二の容器移動部に前記容器を移動可能な第三の容器移動部と、
     制御部と、
    を有する基板処理装置。
  2.  前記第一の容器移動部は、
     第一容器搬送部と、
     前記第三の容器移動部に隣接する第一容器台と、
     前記基板搬送部に隣接する第二容器台と、
     を有する請求項1に記載の基板処理装置。
  3.  前記第一の容器移動部にはロードポートが隣接され、
     前記制御部は、前記ロードポートに支持された前記容器を、前記第一容器台又は前記第二容器台に移動するよう前記第一容器搬送部を制御可能である、請求項2に記載の基板処理装置。
  4.  前記第二の容器移動部は、
     第二容器搬送部と、
     前記第二の容器移動部に隣接する第三容器台と、
     前記基板搬送部に隣接する第四容器台と、
     を有する請求項1~請求項3のいずれか1項に記載の基板処理装置。
  5.  前記制御部は、前記第一の容器移動部中の前記容器を、前記第三の容器移動部を介して前記第三容器台に移動させ、その後前記第四容器台に支持させるよう、前記第二容器搬送部を制御する、請求項4に記載の基板処理装置。
  6.  前記第三の容器移動部は、前記基板搬送部とは独立した雰囲気で、前記容器を搬送可能とする、請求項1に記載の基板処理装置。
  7.  前記第一の容器移動部は、
     第一容器搬送部と、
     前記第二の容器移動部に隣接する第一容器台と、
     前記基板搬送部に隣接する第二容器台と、
     を有し、
     前記第二の容器移動部は、
     第二容器搬送部と、
     前記第二の容器移動部に隣接する第三容器台と、
     前記基板搬送部に隣接する第四容器台と、
     を有し、
     前記第二容器台では、前記容器の蓋を前記基板搬送部と対向するよう前記容器を配し、 前記第四容器台では、前記容器の蓋を前記基板搬送部と対向するよう前記容器を配する、
     請求項1に記載の基板処理装置。
  8.  前記容器を水平方向に回転する回転部を有する、請求項1に記載の基板処理装置。
  9.  前記回転部は、前記第三の容器移動部に設けられる、請求項8に記載の基板処理装置。
  10.  前記基板搬送部は、複数の前記基板搬送ロボットを備え、それぞれに担当するプロセスモジュールが設定される、請求項1に記載の基板処理装置。
  11.  前記基板搬送部は、フロント側に配された第一の前記基板搬送ロボットと、バック側に配された第二の前記基板搬送ロボットを備え、
     前記第一の基板搬送ロボットは、フロント側に配された前記プロセスモジュールを担当し、
     前記第二の基板搬送ロボットは、バック側に配された前記プロセスモジュールを担当する、
     請求項1に記載の基板処理装置。
  12.  複数の前記プロセスモジュールのそれぞれは異なる処理が可能であり、
     前記第一の基板搬送ロボットと前記第二の基板搬送ロボットとは、前記処理の種類に応じて搬送エリアが設定される、請求項11に記載の基板処理装置。
  13.  前記第一の基板搬送ロボットと前記第二の基板搬送ロボットとは、前記処理の時間に応じて搬送エリアが設定される、請求項12に記載の基板処理装置。
  14.  前記制御部は、いずれかの前記基板搬送ロボットに不具合が生じた際、他の前記基板搬送ロボットは不具合が生じた前記基板搬送ロボットが担当するプロセスモジュールも担当するよう設定する請求項12又は請求項13に記載の基板処理装置。
  15.  前記基板搬送部は、
     前記基板搬送ロボットが移動可能なレールと、
     前記レールに支持される複数の前記基板搬送ロボットと、
     を有する請求項1に記載の基板処理装置。
  16.  前記基板搬送部は、
     前記複数の前記基板搬送ロボットと、
     前記基板搬送ロボットごとに対応し、前記基板搬送ロボットを支持可能な複数のレールと、
     を有する請求項1に記載の基板処理装置。
  17.  前記レールは鉛直方向に重ならないように設けられ、
     前記プロセスモジュールの基板搬入出口は、それぞれの前記レールの高さに設定される、請求項16に記載の基板処理装置。
  18.  前記基板搬送ロボットが格納された空間と異なる空間に基板冷却モジュールを備え、
     前記基板冷却モジュールではエレベータを備え、複数の前記基板を昇降可能な冷却可能とする請求項1に記載の基板処理装置。
  19.  容器を移動可能な第一の容器移動部と、
     前記第一の容器移動部と異なる位置に配され、前記容器を移動可能な第二の容器移動部と、
     前記容器内の基板を処理可能な複数のプロセスモジュールと、
     前記第一の容器移動部と前記第二の容器移動部との間に配されると共に前記複数のプロセスモジュールに連通可能に構成され、前記基板を搬送可能とする基板搬送部と、
     前記基板搬送部に設けられ、前記プロセスモジュールに前記基板を搬送可能な基板搬送ロボットと、
     前記第一の容器移動部と前記第二の容器移動部との間に配され、前記第一の容器移動部から前記第二の容器移動部に前記容器を移動可能な第三の容器移動部と、
     制御部と、
     を有する基板処理装置を用いた半導体装置の製造方法であって、
     前記第一の容器移動部及び前記基板搬送部を介して前記プロセスモジュールに前記基板を搬入し、前記基板を処理する、又は、前記第一の容器移動部、前記第三の容器移動部、前記第二の容器移動部、前記基板搬送部を介して前記プロセスモジュールに前記基板を搬入し、前記基板を処理する半導体装置の製造方法。
  20.  容器を移動可能な第一の容器移動部と、
     前記第一の容器移動部と異なる位置に配され、前記容器を移動可能な第二の容器移動部と、
     前記容器内の基板を処理可能な複数のプロセスモジュールと、
     前記第一の容器移動部と前記第二の容器移動部との間に配されると共に前記複数のプロセスモジュールに連通可能に構成され、前記基板を搬送可能とする基板搬送部と、
     前記基板搬送部に設けられ、前記プロセスモジュールに前記基板を搬送可能な基板搬送ロボットと、
     前記第一の容器移動部と前記第二の容器移動部との間に配され、前記第一の容器移動部から前記第二の容器移動部に前記容器を移動可能な第三の容器移動部と、
     制御部と、
    を有する基板処理装置に実行させるプログラムであって、
     前記第一の容器移動部及び前記基板搬送部を介して前記プロセスモジュールに前記基板を搬入し、前記基板を処理させ、又は、前記第一の容器移動部、前記第三の容器移動部、前記第二の容器移動部、前記基板搬送部を介して前記プロセスモジュールに前記基板を搬入し、前記基板を処理させる、プログラム。
     
PCT/JP2022/034843 2022-03-25 2022-09-16 基板処理装置、半導体装置の製造方法及びプログラム WO2023181454A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022049740 2022-03-25
JP2022-049740 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023181454A1 true WO2023181454A1 (ja) 2023-09-28

Family

ID=88100331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034843 WO2023181454A1 (ja) 2022-03-25 2022-09-16 基板処理装置、半導体装置の製造方法及びプログラム

Country Status (2)

Country Link
TW (1) TW202403087A (ja)
WO (1) WO2023181454A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06329209A (ja) * 1993-05-20 1994-11-29 Kokusai Electric Co Ltd 半導体製造装置のウェーハカセット搬送装置
JPH08111448A (ja) * 1994-10-11 1996-04-30 Dainippon Screen Mfg Co Ltd 基板処理装置
JP2016139828A (ja) * 2016-04-20 2016-08-04 株式会社Screenセミコンダクターソリューションズ 基板処理装置
WO2018179353A1 (ja) * 2017-03-31 2018-10-04 株式会社Kokusai Electric 基板処理装置およびその表示方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06329209A (ja) * 1993-05-20 1994-11-29 Kokusai Electric Co Ltd 半導体製造装置のウェーハカセット搬送装置
JPH08111448A (ja) * 1994-10-11 1996-04-30 Dainippon Screen Mfg Co Ltd 基板処理装置
JP2016139828A (ja) * 2016-04-20 2016-08-04 株式会社Screenセミコンダクターソリューションズ 基板処理装置
WO2018179353A1 (ja) * 2017-03-31 2018-10-04 株式会社Kokusai Electric 基板処理装置およびその表示方法

Also Published As

Publication number Publication date
TW202403087A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
JP6606551B2 (ja) 基板処理装置、半導体装置の製造方法および記録媒体
US20230016879A1 (en) Substrate processing apparatus and method of manufacturing semiconductor device
JP6505851B2 (ja) 基板処理装置および半導体装置の製造方法
US20230170212A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP7429747B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP6475135B2 (ja) 半導体装置の製造方法、ガス供給方法及び基板処理装置並びに基板保持具
WO2023181454A1 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP4563113B2 (ja) シリコン酸化膜の形成方法、半導体デバイスの製造方法および基板処理装置
TWI578384B (zh) A semiconductor device manufacturing method, a substrate processing method, and a substrate processing apparatus
JP6994060B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP7375069B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP2013045884A (ja) 基板処理装置
JP2020147833A (ja) 基板処理装置、半導体装置の製造方法およびプログラム
US11728162B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
WO2023175849A1 (ja) 基板処理装置、基板支持具、半導体装置の製造方法、基板処理方法およびプログラム
WO2023047499A1 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP5792972B2 (ja) 半導体装置の製造方法及び基板処理装置
JP2024020926A (ja) 基板処理装置、半導体装置の製造方法及びプログラム
KR20230041586A (ko) 기판 처리 방법, 프로그램, 기판 처리 장치 및 반도체 장치의 제조 방법
JP2023045011A (ja) 半導体装置の製造方法、基板処理方法、基板処理装置及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933584

Country of ref document: EP

Kind code of ref document: A1