WO2023179602A1 - 测距装置及电子设备 - Google Patents

测距装置及电子设备 Download PDF

Info

Publication number
WO2023179602A1
WO2023179602A1 PCT/CN2023/082761 CN2023082761W WO2023179602A1 WO 2023179602 A1 WO2023179602 A1 WO 2023179602A1 CN 2023082761 W CN2023082761 W CN 2023082761W WO 2023179602 A1 WO2023179602 A1 WO 2023179602A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light
measuring device
distance measuring
lens unit
Prior art date
Application number
PCT/CN2023/082761
Other languages
English (en)
French (fr)
Inventor
大畑笃
野田英希
柿本刚
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023179602A1 publication Critical patent/WO2023179602A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits

Definitions

  • the present application relates to the technical field of optical elements, and specifically to a distance measuring device and electronic equipment.
  • a distance measuring device for the purpose of detecting the position and shape of a subject usually includes a light-emitting element, a light-projecting optical system, a light-receiving optical system and a light-receiving element.
  • the light-emitting optical system and the light-receiving optical system are independently configured and arranged adjacently.
  • LEDs light-emitting diodes
  • LD laser diodes
  • PSD Position detection elements
  • CMOS complementary metal-oxide semiconductors
  • ranging devices etc. These ranging devices are used in factory inspections, robot position detection, smartphones, tablet terminals, etc.
  • the light-emitting and light-receiving optical systems of the distance measuring device are each composed of multiple lenses, for example, when the distance measurement distance is further expanded, it is necessary to increase the Fno (a numerical value indicating the brightness of the lens) of the light-receiving optical system in order to ensure the light receiving intensity.
  • the lens that is, the distance measuring device becomes larger, which directly affects the size of the product equipped with the distance measuring device.
  • the light-emitting and light-receiving optical systems are respectively used as independent optical systems, and the lenses 1A to 3A are mounted on the resin frame 18 of the light-emitting optical system, and the lenses 1B to 3B are mounted on the resin frame 18 of the light-emitting optical system.
  • the resin frame 19 of the system there is a limit to the downsizing of the device in the area direction.
  • the related technology also proposes a solution of using a super lens in the optical system of the distance measuring device, but this solution is only applicable to the light projection optical system. There is still room for further improvement in terms of miniaturization, higher precision, and improved reliability against environmental changes and optimization of the entire distance measuring device including the light-receiving optical system. land.
  • the light-emitting optical system and the light-receiving optical system are made of resin with a linear expansion coefficient of 70 ppm/°C, and the distance is 5 mm
  • the linear expansion coefficient of the substrate of the light-emitting element and the light-receiving element is approximately 1/10 of that of the resin frame.
  • the positional deviation of the imaging point when the temperature changes is almost determined by the above-mentioned change in the distance between the light-emitting and light-receiving systems.
  • At least one embodiment of the present application provides a ranging device and electronic equipment that can suppress the problem of reduced ranging accuracy caused by miniaturization of the ranging device and/or changes in temperature and humidity.
  • embodiments of the present application provide a distance measuring device, including a light-emitting optical system and a light-receiving optical system;
  • the light projection optical system includes: a first lens unit arranged on a first substrate, and a light emitting light source arranged on a third substrate different from the first substrate;
  • the light-receiving optical system includes: a second lens unit arranged on a second substrate, and a light-receiving element arranged on a fourth substrate different from the second substrate;
  • the first lens unit and the second lens unit have the same reference wavelength.
  • the first substrate and the second substrate are not bonded and fixed through different resin frames.
  • embodiments of the present application provide an electronic device, including the ranging device described in the first aspect.
  • the ranging device and electronic equipment provided by the embodiments of the present application do not use Since the light-emitting hyperlens and the light-receiving hyperlens are arranged through different support frames, not only the thickness in the optical axis direction can be greatly reduced, but also the cross-sectional area perpendicular to the optical axis direction can be miniaturized. In addition, the present application Embodiments can also suppress the problem of reduced ranging accuracy caused by changes in temperature and humidity.
  • Figure 1 is a schematic structural diagram of a distance measuring device in the related art
  • Figure 2 is a schematic structural diagram of a distance measuring device provided by an embodiment of the present application.
  • Figure 3 is another structural schematic diagram of a distance measuring device provided by an embodiment of the present application.
  • Figure 4 is another structural schematic diagram of a distance measuring device provided by an embodiment of the present application.
  • Figure 5 is another structural schematic diagram of a distance measuring device provided by an embodiment of the present application.
  • Figure 6 is another structural schematic diagram of a distance measuring device provided by an embodiment of the present application.
  • FIG. 7 is another schematic structural diagram of a distance measuring device provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the figures so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in orders other than those illustrated or described herein, and that "first,” “second,” etc. are distinguished Objects are usually of one type, and the number of objects is not limited. For example, the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • Embodiments of the present application provide a ranging device that can suppress problems such as reduced ranging accuracy caused by miniaturization of the ranging device and changes in temperature and humidity.
  • the embodiment of the present application proposes an optical system to replace the lens of the light emitting/receiving optical system. Specifically, a super lens of a light-emitting optical system and a light-receiving optical system having different microstructures at the nano scale is arranged on at least one transparent substrate, so that The thickness and cross-sectional area of each optical system in the optical axis direction are miniaturized.
  • the embodiment of the present application does not configure the light-emitting/light-receiving lenses through different resin frames. Therefore, relative displacement caused by changes in temperature and humidity can be suppressed.
  • Tilt errors, viewing angle changes, and distortion changes can suppress the decrease in ranging accuracy caused by environmental changes.
  • the linear expansion coefficient of a normal resin frame is about 70 ppm. If the transparent substrate is made of optical glass BK7, for example, the coefficient is about 7.5 ppm, and the change in the light emission/light reception interval due to temperature changes can be approximately 1/10. .
  • An embodiment of the present application provides a distance measuring device, including a light-emitting optical system and a light-receiving optical system.
  • the light-projecting optical system includes a first lens unit arranged on a first substrate
  • the light-receiving optical system includes a second lens unit arranged on a second substrate
  • the first lens unit and the second lens unit are arranged on a second substrate.
  • the reference wavelengths of the lens units are the same.
  • the first substrate and the second substrate are both transparent substrates.
  • the linear expansion coefficients of the first substrate and the second substrate are usually less than a preset threshold.
  • the linear expansion coefficients of the first substrate and the second substrate are generally smaller than the value of the resin material.
  • the linear expansion coefficient of resin materials is generally about 7 ⁇ 10 -5 /°C, so the threshold can be set to 5 ⁇ 10 -5 /°C.
  • the linear expansion coefficients of the first substrate and the second substrate are generally less than 3 ⁇ 10 -5 /°C.
  • the first lens unit and the second lens unit may each include a plurality of lenses with fine structures, and the lenses may specifically be super lenses, liquid lenses, liquid crystal lenses, etc.
  • the light projection optical system further includes a luminescent light source, and the luminescent light source is arranged on a third substrate different from the first substrate.
  • the light-receiving optical system further includes a light-receiving element, and the light-receiving element is arranged on a fourth substrate different from the second substrate.
  • the first substrate and the second substrate may be the same substrate or different substrates, and the third substrate and the fourth substrate may also be the same substrate or different substrates.
  • FIG. 2 shows a situation in which the first substrate and the second substrate are different substrates, and the third substrate and the fourth substrate are also different substrates.
  • the first substrate 21 is provided with a third light emitting element.
  • a lens unit 25, a second lens unit 26 for receiving light is disposed on the second substrate 22, a light emitting source is disposed on the third substrate 23, and a light receiving element is disposed on the fourth substrate 24.
  • the first substrate 21 and the second substrate 22 are not bonded and fixed through different resin frames.
  • FIG. 3 shows a situation where the first substrate and the second substrate are the same substrate, and the third substrate and the fourth substrate are also the same substrate.
  • the first substrate and the second substrate are respectively different parts of the substrate 201.
  • the first lens unit 25 is disposed on the first part of the substrate 201
  • a second lens unit 26 is disposed on the second part of the substrate 201 .
  • the third substrate and the fourth substrate are respectively different parts of the substrate 203.
  • a light emitting light source is arranged on the first part of the substrate 203
  • a light receiving element is arranged on the second part of the substrate 203.
  • light-emitting super lenses and light-receiving super lenses with multiple fine structures are arranged on different or the same transparent substrate.
  • Each super lens is designed with the same reference wavelength, and the emitting light source and the light-receiving element are arranged on the same surface as described above.
  • Transparent substrate on different substrates.
  • the support frame is made of resin
  • the relative positional accuracy depends on the accuracy of the equipment used to make the metalens, so extremely high accuracy can be achieved without adjustment.
  • the relative displacement/tilt of the light-emitting and light-receiving lenses caused by changes in temperature and humidity can be greatly suppressed compared to the case of passing through the resin frame.
  • embodiments of the present application may provide a bandpass filter between the second substrate and the fourth substrate that can only transmit light in a preset wavelength range.
  • a bandpass filter is configured between the first substrate 22 and the fourth substrate 24 ; in FIG. 3 , a bandpass filter is configured between the second part of the substrate 201 and the second part of the substrate 203 In this way, only the light in the preset wavelength range can pass through the band-pass filter and reach the light-receiving element.
  • the second substrate configured with the second lens unit can only transmit light in a preset wavelength range.
  • the second substrate can also function as a bandpass filter as described above.
  • the second substrate 22 is configured to have a bandpass filter function that can only transmit light in a preset wavelength range.
  • the substrate 203 is configured to have a bandpass filter function that can only transmit light in a preset wavelength range. Bandpass filter function.
  • the above-mentioned band-pass filter function may also be implemented only on the second part of the substrate 203 .
  • at least one of the first substrate 21 and the second substrate 22 has the function of the above-mentioned band-pass filter.
  • the luminous light source of the distance measuring device usually uses a specific near-infrared wavelength light source to eliminate the interference with the distance measuring device.
  • the light-receiving metalens is also designed with a specific near-infrared wavelength as the reference wavelength.
  • the light-receiving element receives not only the reflected light emitted by the subject of the near-infrared light emitted by the light-emitting light source, but also normal external light.
  • the above-mentioned substrate By providing the above-mentioned substrate with a band-pass filter function for filtering such external light, light reception noise caused by external light can be suppressed, and distance measurement accuracy can be further improved.
  • the above-mentioned substrate by providing the above-mentioned substrate with a filter function, one component can be reduced compared to that shown in FIG. 2 or 3 , thereby further reducing the cost and the size in the thickness direction.
  • embodiments of the present application may further paste a light-shielding mask on at least the boundary between the first substrate and the second substrate, or at least on the boundary between the first substrate and the second substrate.
  • the boundary portion on one substrate and the second substrate is coated with a light-shielding material; wherein the boundary portion is located between the first lens unit and the second lens unit.
  • a light-shielding wall may be provided between the light-emitting light source of the third substrate and the light-receiving element of the fourth substrate.
  • the first lens unit 25 and the second lens unit 26 are configured on the same substrate 201 .
  • a light-shielding mask is affixed to the boundary portion between the first lens unit 25 and the second lens unit 26 or a light-shielding material is applied.
  • a light-shielding wall is provided between the light-receiving element of the substrate 203 and the light-emitting light source.
  • the substrate, the light-emitting light source, and the light-receiving element may be arranged in the same frame, and a light-shielding wall may be constructed at the boundary between the light-emitting element and the light-receiving element.
  • the light-emitting lens and the light-receiving lens are arranged on the same substrate, and the substrate, the emitting light source, and the light-receiving element are arranged in one frame, and the emitting light source and the light-receiving light source are arranged as close as possible.
  • Applying a light-shielding mask or coating material prevents external stray light from entering the light-receiving element from outside the virtual viewing angle. This can reduce the noise component of the light-receiving signal and further improve the distance measurement accuracy.
  • the accuracy of the application position of the coating material is higher than the accuracy of the mask attachment, so the light shielding accuracy can be further improved.
  • stray light components of the light emitted from the light-emitting light source are prevented from entering the light-receiving element, and the distance measurement accuracy can be further improved.
  • the first substrate 21 and the second substrate 22 in the embodiment of the present application may be different substrates.
  • the first light-emitting lens unit 25 and the light-receiving second lens unit 26 having multiple fine structures are respectively fabricated on respective substrates, and the first substrate 21 and the second substrate 22 are directly bonded. connected, and a mask is arranged on at least the bonding surface between the first substrate and the second substrate Photomask or light blocking material.
  • the first substrate and the second substrate are directly bonded without a frame, each lens is designed with the same reference wavelength, and the light emitting source and the light receiving element are arranged on the same substrate with different lens substrates.
  • the light-emitting lens and the light-receiving lens of the embodiment of the present application are not connected through different support frames as in the past, but are directly bonded and arranged. Therefore, by using a super lens, not only the thickness in the optical axis direction can be greatly reduced, but also the thickness in the optical axis direction can be greatly reduced. It is also possible to miniaturize the cross-sectional area perpendicular to the optical axis.
  • the support frame is made of resin as in the past, in order to improve the relative positional accuracy of the light-emitting lens and the light-receiving lens, adjustment, etc. is required.
  • the substrates are directly bonded to each other and arranged, Since the relative positional accuracy depends on the accuracy of the individual lenses, extremely high-precision placement can be achieved without adjustment during bonding. Furthermore, compared with the case of passing through a resin frame, the relative displacement/tilt of the light-emitting and light-receiving lenses due to changes in temperature and humidity can be greatly suppressed. In addition, if the light-emitting optical system and the light-receiving optical system are arranged close to each other, the stray light emitted by the light-emitting optical system will be received by the light-receiving optical system and become noise. In the embodiment of the present application, light-shielding members are respectively coated at the bonding boundaries.
  • the band-pass function may be provided on only one of the substrates, that is, the first substrate 21 and/or the second substrate 22 only have a band-pass filter. Can transmit light in a preset wavelength range.
  • the substrate (such as the first substrate and the second substrate) equipped with the light-emitting lens and the light-receiving lens can be disposed in the same frame (which may be a resin frame).
  • embodiments of the present application propose an optical system that configures a super lens on a transparent substrate (such as the above-mentioned first substrate and second substrate), wherein the first substrate and the second substrate are different The substrate, or the first substrate and the second substrate are respectively different parts of the same substrate.
  • a transparent substrate such as the above-mentioned first substrate and second substrate
  • the first substrate and the second substrate are different The substrate, or the first substrate and the second substrate are respectively different parts of the same substrate.
  • it can be disposed on a transparent substrate, it is not limited to a super lens.
  • it can be configured by a liquid lens or a liquid crystal lens.
  • the number of the transparent substrates is not limited to one, but may be composed of two, three, etc. depending on the specifications.
  • the material of the transparent substrate in the embodiment of the present application is not particularly specified.
  • the linear expansion coefficient of a resin frame material used as a general lens frame is about 7 ⁇ 10 -5 /°C (for example, Teijin L-1225Y is 7 ⁇ 10 -5 /°C, DN5615B is 5 ⁇ 10 -5 /°C), therefore, when it is desired to drastically improve the temperature reliability, it is preferable that the linear expansion coefficient of the substrate is 1.5 ⁇ 10 -5 /°C or less. of glass Transparent bodies.
  • the light-receiving optical system and the light-emitting optical system in the distance measuring device.
  • the imaging optical system of the main camera is also integrated. Integration on the same substrate enables further miniaturization of mounted products.
  • the embodiments of the present application adopt hardware countermeasures such as masks, coating materials, and light-shielding walls.
  • the time of emitting light and receiving light can also be staggered to detect stray light emitted by the light source. response.
  • one of the practical methods is to laminate a thin film on the substrate to provide a bandpass function.
  • the embodiment of the present application proposes a structure in which a light-emitting system and a light-receiving system super lens are configured on a transparent substrate.
  • this structure can not only be miniaturized but also eliminate the need to adjust the configuration of the light-emitting system and the light-receiving system. This can significantly improve the efficiency of rework such as component replacement when defects occur.
  • the distance-measuring device (distance-measuring device) has the same reference wavelength of the light-receiving system lens and the light-emitting system lens.
  • the shape and height of the hyperlens's fine structure depend on the design reference wavelength. Therefore, it is considered that the same reference wavelength is used when the same reference wavelength is used.
  • the manufacturing process can be significantly simplified, which is also an advantage.
  • the fine structure of the metalens it is manufactured using the same semiconductor manufacturing process as the sensor, etc.
  • the metalens, light-receiving sensor, and light source element can be produced in the same semiconductor factory, there is also a manufacturing/assembly process that can It is more efficient and automated, and can reduce the risk of garbage being mixed during assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种测距装置及电子设备,该测距装置包括投光光学系统和受光光学系统;投光光学系统包括:配置在第一基板上的第一透镜单元(25),以及,配置在与第一基板不同的第三基板上的发光光源;受光光学系统包括:配置在第二基板上的第二透镜单元(26),以及,配置在与第二基板不同的第四基板上的受光元件;第一透镜单元(25)和第二透镜单元(26)的基准波长相同。

Description

测距装置及电子设备
相关申请的交叉引用
本申请主张于2022年3月22日在日本提交的日本专利申请第2022-045774的优先权,其全部内容通过引用包含于此。
技术领域
本申请涉及光学元件技术领域,具体涉及一种测距装置及电子设备。
背景技术
以检测被摄体的位置、形状为目的的测距装置通常包括发光元件、投光光学系统、受光光学系统和受光元件,其中,投光光学系统和受光光学系统独立构成,相邻配置。例如存在发光元件采用发光二极管(LED)、激光二极管(LD),受光元件采用位置检测元件(Position Sensitive Detectors,PSD)、互补金属氧化物半导体(Complementary Metal-Oxide-Semiconductor,CMOS)的测距装置,还存在发光元件采用垂直腔表面发射激光器(Vertical-Cavity Surface-Emitting Laser,VCSEL)、受光元件采用CMOS等,发光和受光都为近红外光,各自的光学系统由多片透镜、光学元件构成的测距装置等。这些测距装置在工厂的检查、机器人的位置检测、智能手机、平板终端等中被采用。
在测距装置的发光、受光光学系统分别由多片透镜构成的情况下,例如使测距距离进一步扩大的情况下,为了确保受光强度而需要使受光光学系统的Fno(表示镜头亮度的数值)更加明亮,但是在该情况下,透镜即测距装置大型化,从而直接影响搭载测距装置的产品大小。另外,相关技术中,如图1所示,在发光、受光光学系统分别作为独立的光学系统,将透镜1A~3A安装于投光光学系统的树脂框18,将透镜1B~3B安装于发光光学系统的树脂框19和的情况下,装置的面积方向的小型化存在限制。
此外,相关技术也提出了在测距装置的光学系统中采用超透镜的方案,但是该方案仅适用于投光光学系统。对于包括受光光学系统的测距装置整体的小型化、高精度化、环境变化的可靠性提高、最佳化还有进一步改善的余 地。
进一步,在根据受光元件的成像点的间隔计算距离的测距装置的情况下,存在如下问题:发光元件与受光元件的相对位置和倾角的精度对测距精度产生较大影响,受到因外部环境变化(温湿度变化)引起的树脂框的变形或树脂框的安装板的变形的影响,从而发生发光、受光光学系统的相对的位移/倾斜变化,该变化对测距精度产生较大影响。作为对策,存在需要复杂的校准、考虑线性膨胀系数而将树脂框材料制成特殊的材料、增加发光元件等对策。
例如,投光光学系统与受光光学系统之间由线性膨胀系数70ppm/℃的树脂构成,距离为5mm的情况下,若温度变化30度,则投光/受光系统间隔变化70×10-6×5×30=10.5×10-3(mm)。发光元件、受光元件的基板的线性膨胀系数为树脂框的大致1/10左右,温度变化时的成像点的位置偏移几乎由上述的投光/受光系统间隔变化量决定。
上述的温度变化时的成像点的位置偏移直接成为测距误差,因此直接影响环境变化时对象距离的检测误差。
发明内容
本申请的至少一个实施例提供了一种测距装置及电子设备,能够抑制因测距装置的小型化和/或温湿度变化引起的测距精度降低的问题。
第一方面,本申请实施例提供了一种测距装置,包括投光光学系统和受光光学系统;
所述投光光学系统包括:配置在第一基板上的第一透镜单元,以及,配置在与所述第一基板不同的第三基板上的发光光源;
所述受光光学系统包括:配置在第二基板上的第二透镜单元,以及,配置在与所述第二基板不同的第四基板上的受光元件;
所述第一透镜单元和第二透镜单元的基准波长相同。
所述第一基板和第二基板不通过不同的树脂框而粘合固定。
第二方面,本申请实施例提供了一种电子设备,包括第一方面所述的测距装置。
与相关技术相比,本申请实施例提供的测距装置及电子设备,没有采用 将投光用超透镜和受光用超透镜经由不同的支撑框来配置,因此不仅能够大幅度减少光轴方向的厚度,还能够使垂直于光轴方向的横截面积小型化,另外,本申请实施例还能够抑制因温湿度变化引起的测距精度降低的问题。
附图说明
图1为相关技术中的一种测距装置的结构示意图;
图2为本申请实施例提供的测距装置的一种结构示意图;
图3为本申请实施例提供的测距装置的另一种结构示意图;
图4为本申请实施例提供的测距装置的另一种结构示意图;
图5为本申请实施例提供的测距装置的另一种结构示意图;
图6为本申请实施例提供的测距装置的另一种结构示意图;
图7为本申请实施例提供的测距装置的另一种结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请实施例提供了一种测距装置,能够抑制因测距装置的小型化和温湿度变化引起的测距精度降低等问题。本申请实施例提出了一种光学系统,代替投光/受光光学系统的透镜。具体的,在至少一张透明基板上配置纳米级(nano scale)不同的微细结构的投光光学系统和受光光学系统的超透镜,使 得各光学系统在光轴方向的厚度和横截面积小型化,另外,本申请实施例不经由不同的树脂框来配置投光/受光透镜,因此,能够抑制因温湿度变化引起的相对的位移倾斜误差、视角变化、歪曲变化,从而能够抑制因环境变化引起的测距精度降低。例如,对于通常的树脂框的线性膨胀系数70ppm左右,如果将透明基板制成例如光学玻璃的BK7,则为7.5ppm左右,能够使温度变化引起的投光/受光间隔变化为大致1/10左右。
本申请实施例提供的一种测距装置,包括投光光学系统和受光光学系统。其中,所述投光光学系统包括有配置在第一基板上的第一透镜单元,所述受光光学系统包括有配置在第二基板上的第二透镜单元,所述第一透镜单元和第二透镜单元的基准波长相同。所述第一基板和第二基板均为透明基板。
另外,所述第一基板和第二基板的线性膨胀系数通常均小于预设门限。例如,所述第一基板和第二基板的线性膨胀系数通常均小于树脂材料的值。树脂材料的线性膨胀系数一般为7×10-5/℃左右,因此门限可以设置为5×10-5/℃。可选地,第一基板和第二基板的线性膨胀系数通常均小于3×10-5/℃。第一透镜单元和第二透镜单元分别可以分别包括多个微细结构的透镜,该透镜具体可以是超透镜、液体透镜或液晶透镜等。
所述投光光学系统还包括有发光光源,所述发光光源配置在与所述第一基板不同的第三基板上。所述受光光学系统还包括有受光元件,所述受光元件配置在与所述第二基板不同的第四基板上。
本申请实施例中,所述第一基板和第二基板可以是同一基板或不同基板,所述第三基板和第四基板也可以是同一基板或不同基板。
图2示出了所述第一基板和第二基板为不同基板,且所述第三基板和第四基板也为不同基板的情况,此时,第一基板21上配置有投光用的第一透镜单元25,所述第二基板22上配置有受光用的第二透镜单元26,所述第三基板23上配置有发光光源,所述第四基板24上配置有受光元件。另外,所述第一基板21和第二基板22不通过不同的树脂框而粘合固定。
图3则示出了所述第一基板和第二基板为同一基板,且所述第三基板和第四基板也为同一基板的情况。此时,所述第一基板和第二基板分别为基板201的不同部分,例如,在基板201的第一部分上配置有第一透镜单元25, 在所述基板201的第二部分上配置有第二透镜单元26。所述第三基板和第四基板分别为基板203的不同部分,例如,在基板203的第一部分上配置有发光光源,在所述基板203的第二部分上配置有受光元件。
以上实施例通过将具有多个精细结构的投光用超透镜和受光用超透镜配置在不同或相同的透明基板上,各超透镜以相同基准波长设计,将发光光源和受光元件配置在与上述透明基板不同的基板上。这样,本申请实施例的上述结构中,没有采用将投光用超透镜和受光用超透镜经由不同的支撑框来配置,因此不仅能够大幅度减少光轴方向的厚度,还能够使垂直于光轴方向的横截面积小型化。此外,在支撑框为树脂制的情况下,需要通过调整支撑框位置以提高投光用透镜和受光用透镜的相对的位置精度,而本申请实施例在相同基板上配置超透镜的情况下,该相对的位置精度取决于制作超透镜的设备精度,因此,无需调整就能够实现极高的精度。进而,上述基板使用例如比树脂框的线性膨胀系数小的基板,由此温湿度变化引起的投光受光透镜的相对位移/倾斜与通过树脂框的情况相比也能够得到极大抑制。
为了减少不必要的光线对测距的影响,本申请实施例可以在所述第二基板和第四基板之间设置有仅能透过预设波长范围的光线的带通滤波器。例如,图2中,在第一基板22和第四基板24之间配置了带通滤波器;图3中,在基板201的第二部分和基板203的第二部分之间配置了带通滤波器,这样,仅预设波长范围的光线能够通过带通滤波器到达受光元件。
作为另一种实现方式,配置有第二透镜单元的第二基板仅能透过预设波长范围的光线,此时,第二基板也能实现如上所述的带通滤波器的功能。如图4所示,使第二基板22具有仅能透过预设波长范围的光线的带通滤波器功能,如图5所示,使基板203具有仅能透过预设波长范围的光线的带通滤波器功能。当然,这里也可以仅在基板203的第二部分实现上述带通滤波器功能。当然,图4中,所述第一基板21和第二基板22中的至少一个基板具有上述带通滤波器的功能。
通过在上述基板中实现仅使特定波长的光线透过的波长选择功能(相当于带通滤波器),本申请实施例能够减少不必要的光线对测距的干扰。例如,测距装置的发光光源,通常采用特定的近红外波长光源以消除对与测距装置 相邻配置的摄像照相机的影响,在该情况下,受光用超透镜也将特定的近红外波长作为基准波长而设计。但是,受光元件不仅入射发光光源发出的近红外光的被摄体发出的反射光,也入射通常的外部光。通过使上述基板具有滤除这些外部光的带通滤波器功能,来抑制外部光引起的受光噪声,能够进一步改善测距精度。另外,通过使上述基板具有滤波器功能,能够比图2或图3减少1个部件,从而进一步降低了成本和厚度方向的大小。
为了减少投光光学系统和受光光学系统之间的光线干扰,本申请实施例还可以至少在所述第一基板和第二基板上的边界部粘贴有遮光掩膜,或者,至少在所述第一基板和第二基板上的边界部涂布有遮光材料;其中,所述边界部位于所述第一透镜单元和第二透镜单元之间。进一步的,所述第三基板的发光光源和所述第四基板的受光元件之间还可以设置有遮光壁。
例如,在所述第一基板和所述第二基板为同一基板的情况下,如图6所示,第一透镜单元25和第二透镜单元26被配置在相同基板201上,上述基板201上在第一透镜单元25和第二透镜单元26的边界部粘贴有遮光用的掩膜或涂布有遮光材料。在基板203的受光元件和发光光源之间设置有遮光壁。具体的,可以在同一框内配置上述基板、发光光源和受光元件,在上述发光元件和受光元件的边界部构建遮光用的壁。
以上实施例将投光用透镜和受光用透镜配置在相同基板上,在一个框内配置基板、发光光源和受光元件,且使发光光源和受光光源尽可能近接配置的情况下,在上述基板上涂抹遮光用的掩膜或涂布材料,防止外部杂散光从虚拟视角外入射到受光元件,由此,能够减少受光信号的噪声成分而进一步提高测距精度。特别是,涂布材料的涂布位置精度高于掩膜的粘贴精度,因此遮光精度也能够进一步提高。此外,通过在发光元件和受光元件之间构建遮光用的壁,防止发光光源发出的光的杂散光成分入射到受光元件,能够进一步改善测距精度。
如图7所示,本申请实施例的第一基板21和第二基板22可以是不同的基板。此时,将具有多个微细构造的投光用的第一透镜单元25和受光用的第二透镜单元26分别制作在各个基板上,所述第一基板21和第二基板22通过直接粘接连接,且至少在所述第一基板和第二基板之间的粘接面上配置有遮 光掩膜或遮光材料。这样,第一基板和第二基板不经由框而直接粘接,各透镜以相同基准波长设计,将发光光源和受光元件配置在于上述透镜基板不同的相同基板上。
通过以上结构,本申请实施例的投光用透镜和受光用透镜不是如以往那样经由不同的支撑框而是直接粘接配置,因此,通过采用超透镜不仅能够大幅度减少光轴方向的厚度,还能够使垂直于光轴的横截面积小型化。此外,在如以往那样,支撑框为树脂制的情况下,想要提高投光用透镜和受光用透镜的相对的位置精度而需要进行调整等,但是,在将基板彼此直接粘接配置的情况下,该相对的位置精度依存于透镜单个的精度,因此,粘接时无需调整就能够实现极高精度配置。进而,与通过树脂框的情形相比,能够极大地抑制因温湿度变化引起的投光受光透镜的相对位移/倾斜。此外,如果使投光、受光光学系统靠近配置,则投光光学系统发出的杂散光通过受光光学系统受光,出现其成为噪声的问题,本申请实施例通过在粘接边界部分别涂布遮光部材后再进行粘接,从而能够抑制在边界附近反射的杂散光,提高测距精度。此外,例如仅在受光和投光用光学系统中需要带通滤波器的情况下,可以仅在任意一个基板上具有带通功能,即,所述第一基板21和/或第二基板22仅能透过预设波长范围的光线。
以上各个实施例中,配置有投光用透镜和受光用透镜的基板(如第一基板和第二基板)可以设置在同一个框(可以是树脂框)中。
从以上各个实施例可以看出,本申请实施例提出了在透明基板(如上述第一基板和第二基板)上配置超透镜的光学系统,其中,所述第一基板和第二基板为不同基板,或者,所述第一基板和第二基板分别为同一基板的不同部分。但是,只要能够在透明基板上配置,则不限于超透镜,例如能够通过液体透镜、液晶透镜来构成。并且,上述透明的基板的数量不限于1张,根据规格而可以由2张、3张等构成。
另外,关于本申请实施例的透明基板的材料没有特别规定,但是,在作为一般的透镜框而使用的树脂框材的线性膨胀系数为7×10-5/℃左右(例如帝人制L-1225Y为7×10-5/℃、DN5615B为5×10-5/℃),因此,在想要急剧改善温度可靠性的情况下,优选,基板的线性膨胀系数为1.5×10-5/℃以下的玻璃 等透明体。
此外,在本申请实施例中提出了将测距装置内的受光光学系统和投光光学系统集成化,但是,在例如智能手机等测距装置的情况下,通过将主照相机的摄像光学系统也集成在相同基板上上,能够进一步使搭载产品小型化。
此外,为了应对重影,本申请实施例采用了掩膜、涂布材料、遮光壁等硬件上的对策,但是,例如也可以使发光和受光的时间错开,而进行发光光源发出的杂散光的应对。
此外,在使透镜基板仅透过特定的波长的情况下,在基板上层叠薄膜,使其具有带通功能的方式等是现实的方法之一。
本申请实施例提出了在透明基板上配置投光系统、受光系统超透镜的结构,与其他框架结构相比,通过这样构成,不仅能够小型化还不需要调整投光系统和受光系统的配置,能够使发生不良时的部件更换等的返工效率明显提高。测距装置(测距装置)在性质上受光系统透镜和投光系统透镜的基准波长相同,超透镜在性质上,其微细构造的形状、高度依存于设计基准波长,因此,认为在将相同基准波长的受光系统透镜和投光系统透镜在相同基板上制造的情况下,根据制造方法不同,制造工艺能够明显简化也是优点。此外,因为超透镜的精细结构,而使用与传感器等相同的半导体制造工艺来进行制造,但是,如果能够在相同的半导体工厂生产超透镜、受光传感器、光源元件,则也存在制造/组装工艺能够更加高效化、自动化,能够减少组装时垃圾混入的风险等优点。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (12)

  1. 一种测距装置,包括投光光学系统和受光光学系统;
    所述投光光学系统包括:配置在第一基板上的第一透镜单元,以及,配置在与所述第一基板不同的第三基板上的发光光源;
    所述受光光学系统包括:配置在第二基板上的第二透镜单元,以及,配置在与所述第二基板不同的第四基板上的受光元件;
    所述第一透镜单元和第二透镜单元的基准波长相同。
  2. 根据权利要求1所述的测距装置,其中,
    所述第一基板和第二基板均为透明基板;
    所述第三基板和第四基板为同一基板;
    所述第一透镜单元和第二透镜单元分别包括多个超透镜、液体透镜或液晶透镜。
  3. 根据权利要求2所述的测距装置,其中,所述第一基板和第二基板的线性膨胀系数小于预设门限。
  4. 根据权利要求3所述的测距装置,其中,所述第一基板和第二基板的线性膨胀系数小于3×10-5/℃。
  5. 根据权利要求2所述的测距装置,其中,
    所述第二基板和第四基板之间设置有仅能透过预设波长范围的光线的带通滤波器。
  6. 根据权利要求2所述的测距装置,其中,
    所述第一基板和/或第二基板仅能透过预设波长范围的光线。
  7. 根据权利要求1至6任一项所述的测距装置,其中,
    所述第一基板和第二基板为不同基板,或者,所述第一基板和第二基板分别为同一基板的不同部分。
  8. 根据权利要求7所述的测距装置,其中,
    至少在所述第一基板和第二基板上的边界部粘贴有遮光掩膜,或者,至少在所述第一基板和第二基板上的边界部涂布有遮光材料;其中,所述边界部位于所述第一透镜单元和第二透镜单元之间。
  9. 根据权利要求8所述的测距装置,其中,
    所述第三基板的发光光源和所述第四基板的受光元件之间设置有遮光壁。
  10. 根据权利要求7所述的测距装置,其中,
    在所述第一基板和第二基板为不同基板的情况下,所述第一基板和第二基板通过直接粘接连接,且至少在所述第一基板和第二基板之间的粘接面上配置有遮光掩膜或遮光材料。
  11. 根据权利要求7所述的测距装置,其中,所述受光元件的受光时间与所述发光光源的发光时间错开。
  12. 一种电子设备,包括有根据权利要求1至11任一项所述的测距装置。
PCT/CN2023/082761 2022-03-22 2023-03-21 测距装置及电子设备 WO2023179602A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022/045774 2022-03-22
JP2022045774A JP7344333B1 (ja) 2022-03-22 2022-03-22 測距装置及び電子機器

Publications (1)

Publication Number Publication Date
WO2023179602A1 true WO2023179602A1 (zh) 2023-09-28

Family

ID=87934776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082761 WO2023179602A1 (zh) 2022-03-22 2023-03-21 测距装置及电子设备

Country Status (2)

Country Link
JP (1) JP7344333B1 (zh)
WO (1) WO2023179602A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329550A (ja) * 1999-05-24 2000-11-30 Matsushita Electric Works Ltd 測距センサおよびこの測距センサの固定方法
CN105830233A (zh) * 2013-12-16 2016-08-03 京瓷株式会社 受光发光元件模块以及使用该受光发光元件模块的传感器装置
CN107534071A (zh) * 2015-04-27 2018-01-02 京瓷株式会社 受光发光元件模块以及传感器装置
CN110416199A (zh) * 2018-04-26 2019-11-05 索尼公司 测距装置以及测距模块
CN112912984A (zh) * 2018-10-30 2021-06-04 京瓷株式会社 光学传感器装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5261320B2 (ja) * 2009-08-21 2013-08-14 シャープ株式会社 光学式測距センサ、および、それを搭載した電子機器
JP6999407B2 (ja) * 2017-12-22 2022-01-18 京セラ株式会社 光学センサ装置
US10979635B2 (en) * 2019-08-08 2021-04-13 Massachusetts Institute Of Technology Ultra-wide field-of-view flat optics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329550A (ja) * 1999-05-24 2000-11-30 Matsushita Electric Works Ltd 測距センサおよびこの測距センサの固定方法
CN105830233A (zh) * 2013-12-16 2016-08-03 京瓷株式会社 受光发光元件模块以及使用该受光发光元件模块的传感器装置
CN107534071A (zh) * 2015-04-27 2018-01-02 京瓷株式会社 受光发光元件模块以及传感器装置
CN110416199A (zh) * 2018-04-26 2019-11-05 索尼公司 测距装置以及测距模块
CN112912984A (zh) * 2018-10-30 2021-06-04 京瓷株式会社 光学传感器装置

Also Published As

Publication number Publication date
JP2023139964A (ja) 2023-10-04
JP7344333B1 (ja) 2023-09-13

Similar Documents

Publication Publication Date Title
TWI667525B (zh) 相機模組及其組裝方法
US10203494B2 (en) Optical module and electronic apparatus
US7554677B2 (en) Optical measuring device for measuring micro displacement or micro vibration of object
US20070097249A1 (en) Camera module
US20150253564A1 (en) INTERFERENCE FILTER HAVING Ag-Sm-Cu REFLECTIVE FILM
JP6133988B2 (ja) 撮像モジュール、車載用ステレオカメラ、及び撮像モジュール用遮光部材
CN102928958A (zh) 光学单元、光学单元的制造方法及图像拾取装置
KR101474969B1 (ko) 기판 처리 장치, 투광 부재 및 뷰포트를 갖는 챔버
WO2023179602A1 (zh) 测距装置及电子设备
US20120019827A1 (en) Interference filter, optical module, and analyzing device
WO2020175676A1 (ja) 光電センサ及びその製造方法
CN214315372U (zh) 摄像机及其成像组件
TWI637502B (zh) 光學感測裝置以及光學感測模組
JP7000019B2 (ja) 波長選択装置及び分光測定装置
JP5966592B2 (ja) 光電センサ
TWM575121U (zh) Optical imaging module
US11112307B2 (en) Spectroscopic camera
US11268833B2 (en) Reflection type sensor and optical encoder having the same
CN114697503A (zh) 热成像模组和电子设备
JP2016213307A (ja) 反射型センサ装置及びその製造方法
JP2016090251A (ja) 分光測定装置、及び分光測定方法
TWM575120U (zh) Optical imaging module
KR100945443B1 (ko) 웨이퍼 레벨 카메라 모듈
JP2007019147A (ja) アライメント用光学系
JPH06281452A (ja) 光学式距離測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773849

Country of ref document: EP

Kind code of ref document: A1