WO2023179437A1 - 自发自收感知方法及相关产品 - Google Patents

自发自收感知方法及相关产品 Download PDF

Info

Publication number
WO2023179437A1
WO2023179437A1 PCT/CN2023/081769 CN2023081769W WO2023179437A1 WO 2023179437 A1 WO2023179437 A1 WO 2023179437A1 CN 2023081769 W CN2023081769 W CN 2023081769W WO 2023179437 A1 WO2023179437 A1 WO 2023179437A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
information
request
sensing
frame structure
Prior art date
Application number
PCT/CN2023/081769
Other languages
English (en)
French (fr)
Inventor
杜瑞
韩霄
娜仁格日勒
狐梦实
杨讯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023179437A1 publication Critical patent/WO2023179437A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the field of communications, and in particular to a spontaneous self-collection sensing method and related products.
  • WLAN sensing is a technology with broad application prospects. It uses radio frequency (RF) signals sent by WLAN devices to sense the surrounding environment and extracts them through a certain algorithm. The corresponding parameters in the received signal are analyzed to obtain relevant information in the surrounding environment.
  • RF radio frequency
  • spontaneous self-receiving sensing means that the same device is used for signal transmission and signal reception. Since signal transmission and signal reception are located in the same device at the same time, better (time, frequency) synchronization can be achieved and the perception performance is better. Therefore, it is necessary to study how to make full use of the perceptual results of spontaneous self-collection perception.
  • Embodiments of the present application disclose a spontaneous self-collection sensing method and related products, which can share the sensing results of the first device's spontaneous self-collection sensing, so as to make full use of the spontaneous self-collection sensing results of the device.
  • embodiments of the present application provide a method for spontaneous self-collection sensing, which is applied to a first device.
  • the method includes:
  • a first response frame is sent to the second device, where the first response frame includes the above-mentioned first sensing result.
  • the first device performs spontaneous self-collection sensing, obtains the first sensing result, and shares the first sensing result with the second device that requests to obtain the spontaneous self-collection sensing result, thereby fully utilizing the device to perform spontaneous self-collection. perceived results.
  • the first frame structure includes one of the following: DMG beacon frame, data frame or beam optimization Protocol (beam refinement ptotocol, BRP) frame.
  • DMG beacon frame data frame or beam optimization Protocol (beam refinement ptotocol, BRP) frame.
  • BRP beam refinement ptotocol
  • the first frame structure includes one of the following: sector scan SSW, Short SSW, BRP or data frame.
  • spontaneous self-receiving sensing can be achieved through multiple types of frame structures.
  • the method further includes:
  • Receive first information and second information sent by the second device the first information is used to request the first device to perform spontaneous self-receiving sensing, and the second information is used to request to obtain target beam information and target location.
  • the target beam information is the beam information of the first frame structure sent by the first device
  • the target location information is the location information of the first frame structure sent by the first device
  • the second information send the target beam information and the target location information to the second device;
  • the method of performing spontaneous self-collection sensing based on the first frame structure to obtain the first sensing result includes:
  • spontaneous self-collection sensing is performed based on the first frame structure to obtain a first sensing result.
  • the first device sends position information and beam transmission information to the second device, which can be used to interpret the results of passive sensing and spontaneous self-receiving sensing at the same time, improving sensing efficiency, and performing passive sensing and sensing based on the same frame structure.
  • Spontaneous self-collection perception can improve perception performance.
  • the first information and the second information are respectively included in different elements of the information request frame; or,
  • the first information and the second information are respectively included in different request frames; or,
  • the first information and the second information are included in the passive sensing information element of the information request frame.
  • the method further includes:
  • Send third information and fourth information the third information is used to declare that the first device has spontaneous and self-receiving sensing capabilities, and the fourth information is used to declare that the first device has passive sensing capabilities.
  • the third information and the fourth information are included in the second frame structure
  • the second frame structure is one or more of the following: association application frame, association response frame, association application frame, and association response.
  • Frame DMG beacon frame, information request frame, information response frame, detection request frame, detection response frame or data frame;
  • the second frame structure is one or more of the following: association application frame, association response frame, association application frame, association response frame, information request frame, information response frame, detection frame Request frame, probe response frame, SSW frame, Short SSW frame or data frame.
  • the method further includes:
  • Send fifth information where the fifth information is used to declare that the first device performs spontaneous self-receiving sensing based on the first frame structure.
  • the first device can actively initiate a spontaneous self-receiving sensing process, and does not need to be bound to passive sensing, making it flexible to use.
  • the first frame structure is a DMG beacon frame in this or the next BTI, or, The first frame structure is a data frame in this or the next data transmission interval (data transmission interval, DTI), or the first frame structure is a BRP in this or the next DTI;
  • the first frame structure is SSW or Short SSW in this or next association beamforming training (A-BFT); or, the first frame The structure is a data frame in this or the next DTI, or the first frame structure is a BRP in this or the next DTI.
  • the fifth information is included in a third frame structure
  • the third frame structure is one or more of the following: association application frame, association response frame, then association application frame, and then association response.
  • Frame DMG beacon frame, information request frame, information response frame, detection request frame, detection response frame or data frame;
  • the third frame structure is one or more of the following: association application frame, association response frame, association application frame, association response frame, information request frame, information response frame, detection frame Request frame, probe response frame, SSW frame, Short SSW frame or data frame.
  • the first request frame is also used to request acquisition of target beam information and target location information.
  • the target beam information is the beam information when the first device sends the first frame structure
  • the target location information is the location information when the first device sends the first frame structure
  • the target beam information and the target location information are sent to the second device.
  • the target beam information and target location information can be simultaneously requested through the same request frame, as well as spontaneous self-receiving sensing, thereby saving transmission resources.
  • the method further includes:
  • the second request frame is used to request acquisition of target beam information and target location information.
  • the target beam information is the first frame structure sent by the first device. Beam information, the target location information is the location information when the first device sends the first frame structure;
  • the target beam information and the target location information are sent to the second device.
  • embodiments of the present application provide a method for spontaneous self-collection sensing, which is applied to a second device.
  • the method includes:
  • the first frame structure includes one of the following: DMG beacon frame, data frame or beam optimization protocolBRP;
  • the first frame structure includes one of the following: sector scan SSW, Short SSW, BRP or data frame.
  • the method further includes:
  • the first information is used to request the first device to perform spontaneous self-receiving sensing
  • the second information is used to request to obtain target beam information and target location information.
  • the target beam information is the beam information when the first device sends the first frame structure
  • the target position information is the position information when the first device sends the first frame structure;
  • the target beam information and the target position information perform passive sensing based on the first frame structure
  • the first sensing result is parsed according to the target beam information and the target location information.
  • the method further includes:
  • Receive third information and fourth information sent by the first device the third information is used to declare that the first device has spontaneous self-receiving sensing capabilities based on the first frame structure, and the fourth information is used Claiming that the first device has passive sensing capabilities based on the first frame structure;
  • the second information is sent to the first device according to the third information and/or the fourth information.
  • the third information and the fourth information are included in the second frame structure
  • the second frame structure is one or more of the following: association application frame, association response frame, association application frame, and association response.
  • Frame DMG beacon frame, information request frame, information response frame, detection request frame, detection response frame or data frame;
  • the second frame structure is one or more of the following: association application frame, association response frame, association application frame, association response frame, information request frame, information response frame, detection frame Request frame, probe response frame, SSW frame, Short SSW frame or data frame.
  • the method further includes:
  • the sending the first request frame to the first device includes:
  • the first request frame is sent to the first device.
  • the first frame structure is the current or next beacon transmission interval (beacon transmission interval, BTI)
  • BTI beacon transmission interval
  • the DMG beacon frame in, or the first frame structure is the data frame in this or the next DTI, or the first frame structure is the BRP in this or the next DTI;
  • the first frame structure is SSW or Short SSW in this or next A-BFT; or, the first frame structure is a data frame in this or next DTI. , or the first frame structure is the BRP in this or the next DTI.
  • the fifth information is included in a third frame structure
  • the third frame structure is one or more of the following: association application frame, association response frame, then association application frame, and then association response.
  • Frame DMG beacon frame, information request frame, information response frame, detection request frame, detection response frame or data frame;
  • the third frame structure is one or more of the following: association application frame, association response frame, association application frame, association response frame, information request frame, information response frame, detection frame Request frame, probe response frame, SSW frame, Short SSW frame or data frame.
  • the first request frame is also used to request acquisition of target beam information and target location information.
  • the target beam information is the beam information of the first frame structure sent by the first device
  • the target location information is the location information when the first device sends the first frame structure, and the method further includes:
  • the first sensing result is parsed according to the target beam information and the target location information.
  • the method further includes:
  • the second request frame is used to request acquisition of target beam information and target location information.
  • the target beam information is the beam of the first frame structure sent by the first device.
  • Information, the target location information is the location information when the first device sends the first frame structure;
  • the first sensing result is parsed according to the target beam information and the target location information.
  • inventions of the present application provide a communication device, which is applied to a first device.
  • the device includes:
  • a transceiver module configured to receive a first request frame sent by the second device, where the first request frame is used to request acquisition of spontaneous self-receiving sensing results
  • the transceiver module is further configured to send a first response frame to the second device according to the first request frame, where the first response frame includes the first sensing result.
  • the first frame structure includes one of the following: DMG beacon frame, data frame or beam optimization protocolBRP;
  • the first frame structure includes one of the following: sector scan SSW, Short SSW, BRP or data frame.
  • the transceiver module is also configured to receive first information and second information sent by the second device, where the first information is used to request the first device to perform spontaneous self-receiving sensing. , the second information is used to request to obtain Obtain target beam information and target position information, the target beam information is the beam information of the first frame structure sent by the first device, and the target position information is the beam information of the first frame structure sent by the first device. location information;
  • the transceiver module is further configured to send the target beam information and the target location information to the second device according to the second information;
  • the processing module is specifically configured to perform spontaneous self-receiving sensing based on the first frame structure according to the first information and obtain a first sensing result.
  • the first information and the second information are respectively included in different elements of the information request frame; or,
  • the first information and the second information are respectively included in different request frames; or,
  • the first information and the second information are included in the passive sensing information element of the information request frame.
  • the transceiver module is also used to send third information and fourth information.
  • the third information is used to declare that the first device has spontaneous self-receiving sensing capabilities.
  • the fourth information Used to declare that the first device has passive sensing capabilities.
  • the third information and the fourth information are included in the second frame structure
  • the second frame structure is one or more of the following: association application frame, association response frame, association application frame, and association response.
  • Frame DMG beacon frame, information request frame, detection request frame, detection response frame, information response frame or data frame;
  • the second frame structure is one or more of the following: association application frame, association response frame, association application frame, association response frame, information request frame, information response frame, detection frame Request frame, probe response frame, SSW frame, Short SSW frame or data frame.
  • the transceiver module is further configured to send fifth information, where the fifth information is used to declare that the first device performs spontaneous self-receiving sensing based on the first frame structure.
  • the first frame structure is a DMG beacon frame in this or the next BTI, or, The first frame structure is a data frame in this or the next DTI, or the first frame structure is a BRP in this or the next DTI;
  • the first frame structure is SSW or Short SSW in this or next A-BFT; or, the first frame structure is a data frame in this or next DTI. , or the first frame structure is the BRP in this or the next DTI.
  • the fifth information is included in a third frame structure
  • the third frame structure is one or more of the following: association application frame, association response frame, then association application frame, and then association response.
  • Frame DMG beacon frame, information request frame, information response frame, detection request frame, detection response frame or data frame;
  • the third frame structure is one or more of the following: association application frame, association response frame, association application frame, association response frame, information request frame, information response frame, SSW Frame, probe request frame, probe response frame, Short SSW frame or data frame.
  • the first request frame is also used to request acquisition of target beam information and target location information.
  • the target beam information is the beam information of the first frame structure sent by the first device,
  • the target location information is the location information when the first device sends the first frame structure;
  • the transceiver module is further configured to send the target beam information and the target location information to the second device according to the first request frame.
  • the transceiver module is also configured to receive a second request frame sent by the first device,
  • the second request frame is used to request acquisition of target beam information and target location information.
  • the target beam information is the beam information of the first frame structure sent by the first device, and the target location information is the first The location information when the device sends the first frame structure;
  • the transceiver module is further configured to send the target beam information and the target location information to the second device according to the second request frame.
  • embodiments of the present application provide a communication device, which is applied to a second device.
  • the device includes:
  • a processing module configured to generate a first request frame, the first request frame being used to request acquisition of spontaneous self-receiving sensing results;
  • a transceiver module configured to send a first request frame to the first device, where the first request frame is used to request acquisition of spontaneous self-receiving sensing results;
  • the transceiver module is further configured to receive a first response frame sent by the first device, where the first response frame includes a first sensing result of spontaneous self-receiving sensing performed by the first device based on the first frame structure.
  • the first frame structure includes one of the following: DMG beacon frame, data frame or beam optimization protocolBRP;
  • the first frame structure includes one of the following: sector scan SSW, Short SSW, BRP or data frame.
  • the transceiver module is further configured to send first information and second information to the first device, where the first information is used to request the first device to perform spontaneous self-receiving sensing,
  • the second information is used to request acquisition of target beam information and target location information.
  • the target beam information is the beam information of the first frame structure sent by the first device, and the target location information is the first device. Position information when sending the first frame structure;
  • the transceiver module is also configured to receive target beam information and target location information sent by the first device;
  • the processing module is also configured to perform passive sensing based on the first frame structure according to the target beam information and the target location information;
  • the processing module is also configured to parse the first sensing result according to the target beam information and the target location information.
  • the transceiver module is further configured to receive third information and fourth information sent by the first device, where the third information is used to declare that the first device has capabilities based on the first device. Spontaneous self-receiving sensing capability of a frame structure, the fourth information is used to declare that the first device has passive sensing capability based on the first frame structure;
  • the transceiver module is further configured to send the first information to the first device according to the third information;
  • the transceiver module is further configured to send the second information to the first device according to the third information and/or the fourth information.
  • the third information and the fourth information are included in the second frame structure
  • the second frame structure is one or more of the following: association application frame, association response frame, association application frame, and association response.
  • Frame DMG beacon frame, information request frame, information response frame, detection request frame, detection response frame or data frame;
  • the second frame structure is one or more of the following: association application frame, association response frame, association application frame, association response frame, information request frame, information response frame, SSW Frame, probe request frame, probe response frame, Short SSW frame or data frame.
  • the transceiver module is further configured to receive fifth information sent by the first device, where the fifth information is used to declare that the first device performs autonomous operations based on the first frame structure. self-receiving perception;
  • the transceiver module is specifically configured to send a message to the first device according to the fifth information. Send the first request frame.
  • the first frame structure is a DMG beacon frame in this or the next BTI, or, The first frame structure is a data frame in this or the next DTI, or the first frame structure is a BRP in this or the next DTI;
  • the first frame structure is SSW or Short SSW in this or next A-BFT; or, the first frame structure is a data frame in this or next DTI. , or the first frame structure is the BRP in this or the next DTI.
  • the fifth information is included in a third frame structure
  • the third frame structure is one or more of the following: association application frame, association response frame, then association application frame, and then association response.
  • Frame DMG beacon frame, information request frame, information response frame, detection request frame, detection response frame or data frame;
  • the third frame structure is one or more of the following: association application frame, association response frame, association application frame, association response frame, information request frame, information response frame, SSW Frame, Short SSW frame, probe request frame, probe response frame or data frame.
  • the first request frame is also used to request acquisition of target beam information and target location information.
  • the target beam information is the beam information of the first frame structure sent by the first device,
  • the target location information is the location information when the first device sends the first frame structure;
  • the transceiver module is also configured to receive the target beam information and the target location information sent by the first device;
  • the processing module is also configured to parse the first sensing result according to the target beam information and the target location information.
  • the transceiver module is further configured to send a second request frame to the first device.
  • the second request frame is used to request acquisition of target beam information and target location information.
  • the target beam The information is beam information when the first device sends the first frame structure, and the target location information is location information when the first device sends the first frame structure;
  • the transceiver module is also configured to receive the target beam information and the target location information sent by the first device;
  • the processing module is also configured to parse the first sensing result according to the target beam information and the target location information.
  • embodiments of the present application provide a communication device, which includes a processor for executing the method shown in the first aspect, the second aspect, or any possible implementation thereof.
  • the process of sending information and receiving information in the above method can be understood as the process of the processor outputting the above information, and the process of the processor receiving the input above information.
  • the processor When outputting the above information, the processor outputs the above information to the transceiver for transmission by the transceiver. After the above information is output by the processor, it may also need to undergo other processing before reaching the transceiver.
  • the processor receives the above information input, the transceiver receives the above information and inputs it into the processor. Furthermore, after the transceiver receives the above information, the above information may need to undergo other processing before being input to the processor.
  • sending a request frame mentioned in the foregoing method can be understood as the processor outputting the request frame.
  • receiving a response frame can be understood as the processor receiving an input response frame.
  • the above-mentioned processor can be a processor specially used to execute these methods, or it can be a processor that executes storage
  • a processor that contains computer instructions to perform these methods such as a general-purpose processor.
  • the above-mentioned memory can be a non-transitory memory, such as a read-only memory (ROM), which can be integrated on the same chip as the processor, or can be separately provided on different chips.
  • ROM read-only memory
  • the memory is located outside the communication device.
  • the memory is located within the above communication device.
  • the processor and the memory can also be integrated into one device, that is, the processor and the memory can also be integrated together.
  • the communication device further includes a transceiver, which is used to receive signals and/or send signals.
  • the transceiver can be used to send request frames.
  • the transceiver can also be used to receive response frames, etc.
  • the communication device may be the first device or the second device in the above-mentioned first aspect or second aspect.
  • inventions of the present application provide a communication device.
  • the communication device includes a processing circuit and an interface circuit.
  • the interface circuit is used to obtain data or output data; the processing circuit is used to perform the above-mentioned first aspect or the first aspect.
  • the corresponding method shown in any possible implementation manner, or the processing circuit is used to perform the corresponding method shown in the above-mentioned second aspect or any possible implementation manner of the second aspect.
  • embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium is used to store a computer program. When it is run on a computer, the first aspect, the second aspect, or any other possible method described above is achieved. The method shown in the implementation is executed.
  • inventions of the present application provide a computer program product.
  • the computer program product includes a computer program or computer code. When it is run on a computer, it enables the above-mentioned first aspect, second aspect or any possible implementation manner. The method shown is executed.
  • embodiments of the present application provide a communication system, which includes a first device and a second device.
  • the first device is configured to perform the method shown in the above-mentioned first aspect or any possible implementation of the first aspect
  • the second device is configured to perform the above-mentioned second aspect or any possible implementation of the second aspect. The implementation method is shown.
  • Figure 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of the beacon interval provided by the embodiment of the present application.
  • Figure 3 is a schematic flowchart of a spontaneous self-receiving sensing method provided by an embodiment of the present application
  • Figure 4 is a schematic flow chart of another spontaneous self-receiving sensing method provided by an embodiment of the present application.
  • FIGS 5a to 5j are schematic diagrams of field structures provided by embodiments of the present application.
  • Figure 6 is a schematic flowchart of yet another spontaneous self-receiving sensing method provided by an embodiment of the present application.
  • FIGS. 7a to 7c are schematic diagrams of field structures provided by embodiments of the present application.
  • FIGS. 8 to 10 are schematic structural diagrams of a communication device provided by embodiments of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art will understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • At least one of the following or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b and c can mean: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a , b and c.
  • a, b and c can be single or multiple respectively.
  • the embodiments of the present application provide a spontaneous self-receiving sensing method that can be applied to a wireless communication system, which can be a wireless local area network or a cellular network; the method can be performed by a communication device in the wireless communication system or a chip in the communication device or processor implementation.
  • the communication device may be a personal basic service area control point (PBSS control point, PCP) or an access point (access point, AP) device or a station (station, STA) device.
  • PBSS control point PCP
  • access point access point
  • station station
  • the system architecture includes at least two WLAN devices ( Figure 1 includes one AP and three STAs as an example).
  • One of the WLAN devices can perform spontaneous self-receiving sensing (such as STA), and the other WLAN
  • the device (such as the AP) requests the sensing result from the WLAN device that performs spontaneous and self-receiving sensing.
  • the WLAN device can support the WLAN communication protocol.
  • the device that implements the method of this application may be a PCP/AP or STA in the WLAN, or a chip or processing system installed in the PCP/AP or STA.
  • PCP/AP is a device with wireless communication functions that supports communication using WLAN protocols and has the function of communicating with other devices in the WLAN network (such as sites or other access points). Of course, it can also have the function of communicating with other devices. Function.
  • an access point may be called an access point station (AP STA).
  • the device with wireless communication function can be a complete device, or it can be a chip or processing system installed in the complete device. The devices equipped with these chips or processing systems can be controlled by the chip or processing system. Methods and functions of the embodiments of this application.
  • the PCP/AP in the embodiment of this application is a device that provides services for STA and can support the 802.11 series protocols.
  • AP can be communication entities such as communication servers, routers, switches, and bridges;
  • PCP/AP can include various forms of macro base stations, micro base stations, relay stations, etc.
  • PCP/AP can also be among these various forms of equipment. chips and processing systems, thereby Implement the methods and functions of the embodiments of this application.
  • the station STA is a device with wireless communication functions that supports communication using the WLAN protocol and has the ability to communicate with other stations or access points in the WLAN network.
  • a station can be called a non-access point station (non-AP STA).
  • STA is any user communication device that allows users to communicate with PCP/AP and then communicate with WLAN.
  • the device can be a complete device, or it can be a chip or processing system installed in the complete device. These chips are installed Or the equipment of the processing system can implement the methods and functions of the embodiments of the present application under the control of the chip or the processing system.
  • STA can be a tablet, desktop, laptop, notebook, ultra-mobile Personal Computer (UMPC), handheld computer, netbook, personal digital assistant (Personal Digital Assistant, PDA), mobile phone, etc.
  • User equipment that can be connected to the Internet, or IoT nodes in the Internet of Things, or in-vehicle communication devices or entertainment equipment, game equipment or systems, global positioning system equipment, etc. in the Internet of Vehicles.
  • STA can also be chips in these terminals or processing system.
  • IEEE 802.11bf is a new generation wireless standard that focuses on the perception of passive objects (that is, the target does not carry any equipment). 11bf estimates the corresponding parameters (such as speed, distance, angle, etc.) of the target and subsequent actions based on the received signal. /behavior recognition. 802.11bf includes two major categories of standards: low frequency (sub7GHz, implementation mainly relies on 11ac, 11ax, 11be and next generation standards) and high frequency (60GHz, implementation mainly relies on 11ad, 11ay and next generation standards). The technical solution of this application can be applied to high frequencies (11ad/DMG, 11ay/EDMG) and low frequencies (standards corresponding to sub7GHz).
  • DMG/EDMG Due to the stronger attenuation of high-frequency electromagnetic waves themselves, existing high-frequency standards DMG/EDMG generally use directional beams for transmission and reception, which is quite different from the standards in low-frequency sub7GHz. But compared with low frequency, high frequency has a larger bandwidth, higher carrier frequency, and better perceptual performance. Directional transmission can also provide some angle information and reduce certain interference, helping to enhance perception performance.
  • the high frequency (11ad, 11ay) of 802.11bf supports monostatic, bistatic and multistatic sensing modes.
  • the monostatic mode is a spontaneous and self-receiving sensing mode, that is, the same device is used for transmitting and receiving. In this mode, transmitting and receiving are located in the same device at the same time, which can achieve better (time, frequency) synchronization and better perception performance.
  • Dual-base mode is a sensing mode in which the transmitter and receiver are separated. It can also be called passive sensing, that is, the transmitter and the receiver are two independent devices. In this mode, transmitting and receiving do not exist in the same device, and perceived performance may be potentially affected (out of sync).
  • the multi-base mode is a sensing mode of one/multi-send/multi-receive, or multi-send/multi-receive. In this mode, multiple devices work together, which is equivalent to a hybrid working mode of multiple single/dual base modes.
  • the timeline is divided into individual BIs.
  • Figure 2 is a schematic structural diagram of the beacon interval BI. As shown in Figure 2, the beacon interval is divided into beacon header indication (BHI) and data transmission interval (data transmission interval, DTI). Among them, BHI also includes beacon transmission interval (beacon transmission interval, BTI), association beamforming training (association beamforming training, A-BFT) and announcement transmission interval (announcement transmission interval, ATI).
  • BHI beacon transmission interval
  • BTI association beamforming training
  • A-BFT announcement transmission interval
  • ATI announcement transmission interval
  • PCP/AP will send multiple beacon frames according to sector numbers in BTI for downlink sector scanning; A-BFT is used for STA association and uplink sector scanning; ATI is used for PCP /AP polls STA for cached data information and allocate resources in the data transmission interval (DTI) to the STA.
  • DTI data transmission interval
  • the entire DTI will be divided into several sub-intervals.
  • the sub-intervals will be divided into contention based access period (CBAP) and service period (SP) according to the form of access. The latter is for scheduled transmission. No need to compete.
  • CBAP contention based access period
  • SP service period
  • the AP first carries a sensing short capability element in the Beacon, indicating that the AP supports passive sensing. If a STA in the environment wants to use the Beacon information sent by the AP for sensing, it can send an Information request frame to the AP and request the AP to send Beacon-related information. The AP sends Beacon transmission information (such as transmission time, transmission beam direction, etc.) to the STA through the information response frame. STA can use this information to receive the Beacon sent by the AP and perform passive sensing based on the information sent by the Beacon.
  • Beacon transmission information such as transmission time, transmission beam direction, etc.
  • Beam training in 802.11ad is mainly performed during association beamforming training (Association BFT, A-BFT).
  • PCP/AP sends Beacon frames in all directions.
  • the A-BFT Length field in the frame indicates the total length of the timeslot in the A-BFT phase.
  • STAs that receive this frame will be in the next A-BFT phase.
  • -BFT stage randomly selects a time slot in [0, A-BFT Length-1] to access, and then uses a directional antenna to send SSW frames (ie RXSS) in sequence.
  • the PCP/AP will use a quasi-omnidirectional antenna to receive from Beams in all directions and record the STAs' best transmit beam.
  • the sector-level scanning feedback stage (SSW Feedback) is entered.
  • the PCP/AP will feed back the training information of the previous stage (RSS) to the STAs using directional beams.
  • the feedback information is the initiator sending the sector sorted according to sector quality.
  • the zone list contains the best sectors of the responder from the previous phase, when the responder was in quasi-omnidirectional reception mode.
  • enter the sector scan confirmation (SSW ACK) phase in which the SSW ACK phase does not need to exist when doing SLS before the data transmission phase (DTI), and the SSW ACK phase is required to do SLS during the DTI phase.
  • DTI data transmission phase
  • SSW ACK phase STAs feed back a list of sectors sent by the responder sorted by quality.
  • the EDGM STA type has been added to 802.11ay. Different from the traditional DGM STA in 802.11ad, it can be used in the A-BFT slot planned in the A-BFT stage. Both SSW frames and Short SSW frames can be transmitted. Compared with SSW frames, Short SSW frames have a shorter frame length, allowing EDGM STA to transmit more in one slot.
  • FIG 3 is a schematic flowchart of a spontaneous self-receiving sensing method provided by an embodiment of the present application.
  • the spontaneous self-receiving sensing method can be applied to the communication system as shown in Figure 1, where the first device can be a PCP/AP as shown in Figure 1, or the first device can be a PCP/AP as shown in Figure 1 STA.
  • the method includes:
  • the first device performs spontaneous self-collection sensing based on the first frame structure, and obtains the first sensing result.
  • the second device sends a first request frame to the first device.
  • the first request frame is used to request to obtain the spontaneous self-receiving sensing result.
  • the first device receives the first request frame.
  • the first device sends a first response frame to the second device according to the first request frame, where the first response frame includes the first sensing result.
  • the second device receives the first response frame.
  • the first device may be PCP/AP or STA.
  • the first frame structure includes one of the following: DMG beacon frame, data frame or BRP; if the first device is STA , the first frame structure is one of the following: sector scan SSW, Short SSW, BRP or data frame.
  • the first frame structure can carry a training field (Training Field, TRN). Since the TRN will be scanned, it is more conducive to perception.
  • TRN Training Field
  • the PCP/AP when the PCP/AP has the capability of spontaneous self-receiving sensing, it can perform spontaneous self-receiving sensing based on the DMG beacon frame Beacon, data frame or BRP to obtain the first sensing result.
  • the STA When the STA has the ability to spontaneously collect and sense, it can Perform spontaneous self-receiving sensing based on SSW, Short SSW, data frame or BRP to obtain the first sensing result.
  • the first device can perform spontaneous self-receiving sensing based on the first frame structure sent by the first device, obtain the first sensing result, and send the first sensing result to the second device.
  • the second device requests the first device to obtain the spontaneous self-receiving sensing result through the first request frame, and the first device sends the first sensing result to the second device through the first response frame.
  • the first device The request frame can be a DMG Sensing Poll frame or an information request frame.
  • the second device can perform passive sensing based on the first frame structure sent by the first device.
  • the second device may request the first device to send target beam information of the first frame structure and target position information of the first device when sending the first frame structure.
  • the target beam information includes but is not limited to Beam horizontal direction, vertical direction, beam horizontal width, beam vertical width, beam gain and other information
  • the target position information includes but is not limited to the orientation and attitude information of the first device when sending the first frame structure.
  • the position coordinates may be determined using the first device as the origin of the coordinates or using other coordinates as the origin of the coordinates.
  • the first device sends the target beam information and the target location information to the second device.
  • the second device can not only use the target beam information and target position information to perform passive sensing based on the first frame structure, but can also use the target beam information and target position information to analyze or interpret the obtained first sensing result, based on the same
  • the process realizes passive sensing and spontaneous self-receiving sensing, thereby improving sensing efficiency and avoiding repeated transmission of beam information and position information.
  • the second device can also perform comprehensive sensing based on the spontaneous self-receiving sensing results and passive sensing results sent by the first device, which increases the sensing diversity gain at the same time and improves sensing performance.
  • the first device may declare that it will perform spontaneous self-receiving sensing based on the first frame structure, and the second device may request the first device for the first sensing result of the spontaneous self-receiving sensing through the first request frame
  • the first request frame may be a DMG Sensing Poll frame.
  • the first frame structure may be a DMG beacon frame in this or the next BTI, that is, the PCP or AP claims to be based on the DMG beacon frame in this BTI. Perform spontaneous self-receiving sensing or perform spontaneous self-receiving sensing based on the DMG beacon frame in the next BTI.
  • the STA can request the PCP or AP for the first sensing result of spontaneous self-receiving sensing.
  • the first frame structure can also be a data frame in this or the next DTI, that is, the PCP or AP declares that it will perform spontaneous self-receiving sensing based on the data frame in this DTI or will based on the data frame in the next DTI.
  • the STA can request the first sensing result of spontaneous self-receiving sensing from the PCP or AP.
  • the first frame structure can also be the BRP in this or the next DTI, that is, the PCP or AP declares that it will perform spontaneous self-receiving based on the BRP in this DTI or will perform spontaneous self-sensing based on the BRP in the next DTI.
  • the STA can request the PCP or AP for the first sensing result of spontaneous self-receiving sensing.
  • the first frame structure can be SSW or Short SSW in this or the next A-BFT, that is, the STA claims to be performing spontaneous self-receiving based on the SSW or Short SSW in this A-BFT. Or spontaneous self-collection sensing will be performed based on the SSW or Short SSW in the next A-BFT.
  • the PCP or AP can request the STA for the first sensing result of spontaneous self-collection sensing. .
  • the first frame structure can also be a data frame in this or the next DTI, that is, the STA declares that it is performing spontaneous self-reception based on the data frame in this DTI or will perform spontaneous self-reception based on the data frame in the next DTI. Sensing, after the end of this or the next DTI, the PCP or AP can request the first sensing result of spontaneous self-receiving sensing from the PCP or AP.
  • the first frame structure can also be the BRP in this or the next DTI, that is, the STA declares that it is performing spontaneous self-receiving sensing based on the BRP in this DTI or will perform spontaneous self-receiving sensing based on the BRP in the next DTI. After this or the next DTI ends, the PCP or AP can request the STA for the first sensing result of spontaneous self-collection sensing.
  • the second device may also request the first device to send the target beam information of the first frame structure and the target position information when the first device sends the first frame structure.
  • the second device may or may not perform passive sensing, that is, spontaneous self-receiving sensing and passive sensing are not bound, which improves the flexibility of the spontaneous self-receiving sensing method.
  • Figure 4 is a schematic flowchart of another spontaneous self-collection sensing method provided by an embodiment of the present application.
  • the method flow in Figure 4 is a possible implementation of the method in Figure 3.
  • the method includes:
  • the first device claims to have spontaneous and self-receiving sensing capabilities through the third information, and claims to have passive sensing capabilities through the fourth information.
  • the first device sends third information and fourth information.
  • the third information is used to declare that the first device has autonomous self-receiving sensing capabilities, or the third information is used to indicate that the first device supports autonomous sensing. Self-receiving perception.
  • the fourth information is used to declare that the first device has passive sensing capabilities, or the fourth information is used to indicate that the first device supports passive sensing, and other devices can request the first device to send beam information and location information.
  • the first device may send the third information and the fourth information in a broadcast, multicast or unicast manner.
  • the second device receives the third information and the fourth information.
  • the third information and the fourth information may be included in the second frame structure.
  • the third information and the fourth information may be included in the Capability Element field of the second frame structure, such as DMG Short Sensing. Capability Element field.
  • the first device is a PCP/AP
  • the PCP/AP performs spontaneous self-receiving sensing based on a beacon frame or BRP, that is, the first frame structure is a DMG beacon frame or BRP.
  • the PCP/AP can declare that it has spontaneous self-receiving sensing capabilities in the DMG Short Sensing Capability Element field of the second frame structure.
  • the second frame structure may be an Association Request Frame, an Association Response Frame, a Reassociation Request Frame, a Reassociation Response Frame, or a DMG Beacon. Frame, Information Request Frame, Information Response Frame, Probe Request, Probe Response and other frames.
  • the structure of the DMG Sensing Short Capabilities Element field can be as shown in Figure 5a, wherein the third information and the fourth information can be included in the Short Sensing Capabilities field of the DMG Sensing Short Capabilities Element field, as shown in Figure 5b and Figure 5c is shown as a structural diagram of the two optional Short Sensing Capabilities fields.
  • the Monostatic sensing support subfield is used to carry the third information, which means that the third information is included in the Monostatic sensing support subfield
  • the Passive Sensing Support subfield is used to carry the fourth information, which means that the fourth information is included in Passive Sensing Support subfield.
  • a Monostatic Sensing Support subfield is added to the Short Sensing Capabilities field to clarify whether the AP supports spontaneous self-receiving sensing. If Passive Sensing Support is 1 and Monostatic Sensing Support is 1, this bit combination indicates that the AP can support Beacon Passive Sensing and can provide Beacon-based spontaneous self-receiving sensing results. It is understandable that after the addition of the Monostatic Sensing Support subfield, the sensing support field in Short Sensing Capabilities is used to indicate support for any sensing mode except passive sensing and spontaneous self-receiving sensing.
  • the first device is a PCP/AP
  • the PCP/AP performs spontaneous self-receiving sensing based on data frames, that is, the first frame structure is a data frame.
  • the PCP/AP can declare that it has spontaneous self-receiving sensing capability in the DMG Short Sensing Capability Element field of the second frame structure.
  • the second frame structure may be an Association Request Frame, an Association Response Frame, and then an Association Application (Reassociation Request Frame), Reassociation Response Frame, DMG Beacon frame, Information Request Frame, Information Response Frame, Data frame, Probe Request frame, Probe Response frame (Probe Response) and other frames.
  • the third information and the fourth information may be included in the Short Sensing Capabilities field of the DMG Short Sensing Capability Element.
  • the first optional implementation manner please refer to the first optional implementation manner.
  • Figure 5d and Figure 5e they are schematic diagrams of two structures of the Allocation field. As shown in the figure, the reserved bit in the Allocation Control subfield can be used to carry the third information and the fourth information.
  • the PCP/AP can also declare that the PCP/AP supports passive sensing through the DMG Short Sensing Capability Element, and indicate that the Allocation supports spontaneous self-sensing through the bit in the corresponding Allocation field of the Beacon's Extended Schedule element.
  • At least one bit can be added to the data frame to indicate that the PCP/AP supports passive sensing and monostatic sensing, or to indicate that the PCP/AP has passive sensing capabilities and spontaneous sensing.
  • Receive sensing capability that is, the second frame structure is a data frame, for example, the third information and the fourth information can be carried in any at least one reserved bit of the PHY header or MAC header.
  • the PCP/AP can also declare that the PCP/AP supports Passive sensing through the DMG Short Sensing Capability Element, and indicate that the PCP/AP supports spontaneous self-sensing by adding a bit in the data frame.
  • the first device is an STA, and the STA performs spontaneous self-receiving sensing based on SSW, Short SSW, or BRP, that is, the first frame structure is SSW, Short SSW, or BRP.
  • the STA can declare that it has spontaneous self-sensing capability in the DMG Short Sensing Capability Element field of the second frame structure, or declare that it supports spontaneous self-sensing.
  • the second frame structure may be an Association Request Frame, an Association Response Frame, a Reassociation Request Frame, a Reassociation Response Frame, or an information request.
  • Frame Information Request Frame
  • Information Response Frame Information Response Frame
  • SSW frame Short SSW frame
  • Probe Request frame Probe Request
  • Probe Response frame Probe Response
  • the structure of the DMG Sensing Short Capabilities Element field can be as shown in Figure 5a, wherein the third information and the fourth information can be included in the Short Sensing Capabilities field of the DMG Sensing Short Capabilities Element field, as shown in Figure 5b and Figure 5c is shown as a structural diagram of the two optional Short Sensing Capabilities fields.
  • the Monostatic sensing support subfield is used to carry the third information, which means that the third information is included in the Monostatic sensing support subfield
  • the Passive Sensing Support subfield is used to carry the fourth information, which means that the fourth information is included in Passive Sensing Support subfield.
  • the device is an STA
  • Passive Sensing Support is 1
  • Monostatic Sensing Support is 1. This bit combination indicates that the STA can support Passive Sensing and can provide spontaneous self-receiving sensing results.
  • the STA can send SSW or Short SSW during the A-BFT process.
  • the reserved bits of the SSW or Short SSW can be used to indicate that the STA supports spontaneous self-receiving sensing, or to indicate that the STA has spontaneous self-receiving sensing capabilities.
  • Figure 5f which is a schematic structural diagram of the SSW provided by this application, the reserved bits in the SSW Feedback field of the SSW can be used to indicate that the STA supports spontaneous self-receiving sensing, or to indicate that the STA has spontaneous self-receiving sensing capabilities.
  • the reserved bit indication in the Short SSW can be used.
  • the STA supports spontaneous self-receiving sensing, or indicates that the STA has spontaneous self-receiving sensing capabilities. That is, the third information is carried or represented through the reserved bits in the SSW or Short SSW.
  • the first device is an STA
  • the STA performs spontaneous self-receiving sensing based on data frames, that is, the first frame structure is a data frame.
  • the STA can declare that it has spontaneous self-receiving sensing capabilities in the DMG Short Sensing Capability Element field of the second frame structure.
  • the second frame structure may be an Association Request Frame, an Association Response Frame, a Reassociation Request Frame, a Reassociation Response Frame, or an information request.
  • Frame Information Request Frame
  • Information Response Frame Information Response Frame
  • SSW frame Short SSW frame
  • Probe Request frame Probe Request
  • Probe Response Probe Response
  • the third information and the fourth information may be included in the Short Sensing Capabilities field of the DMG Short Sensing Capability Element.
  • the device is an STA
  • Passive Sensing Support is 1
  • Monostatic Sensing Support is 1. This bit combination indicates that the STA can support passive sensing Passive Sensing and can provide spontaneous self-receiving sensing results.
  • the STA can send an SSW frame or a Short SSW frame during the A-BFT process.
  • the reserved bits of the SSW frame or the Short SSW frame can be used to indicate that the STA supports spontaneous self-receiving sensing, or to indicate that the STA has spontaneous self-receiving sensing capabilities.
  • Figure 5f which is a schematic structural diagram of the SSW provided by this application, the reserved bits in the SSW Feedback field of the SSW can be used to indicate that the STA supports spontaneous self-receiving sensing, or to indicate that the STA has spontaneous self-receiving sensing capabilities.
  • the reserved bits in the Short SSW can be used to indicate that the STA supports spontaneous self-receiving sensing, or to indicate that the STA has spontaneous self-receiving sensing capabilities.
  • At least one bit can be added to the data frame to indicate that the STA supports passive sensing and monostatic sensing, or to indicate that the STA has passive sensing capabilities and spontaneous sensing capabilities. That is, the second frame structure is a data frame.
  • the third information and the fourth information can be carried in any at least one reserved bit of the PHY header or MAC header. It is understandable that the STA can also declare that the STA supports Passive sensing through the DMG Short Sensing Capability Element, and indicate that the STA supports spontaneous self-sensing by adding a bit in the data frame.
  • the second device sends first information and second information to the first device.
  • the first information is used to request the first device to perform spontaneous self-collection sensing.
  • the second information is used to request to obtain target beam information and target location information.
  • the target The beam information is the beam information of the first frame structure sent by the first device
  • the target position information is the position information of the first frame structure sent by the first device.
  • the first device receives the first information and the second information.
  • the first device performs spontaneous self-collection sensing based on the first information and the first frame structure, and obtains the first sensing result.
  • the second device sends a first request frame to the first device, where the first request frame is used to request to obtain the spontaneous self-receiving sensing result.
  • the first device receives the first request frame.
  • the first device sends a first response frame to the second device, where the first response frame includes the first sensing result.
  • the second device receives the first response frame.
  • the first device sends the target beam information and target location information according to the second information.
  • the second device performs passive sensing based on the first frame structure according to the target beam information and target position information.
  • the second device parses the first sensing result according to the target beam information and target location information.
  • the second device parses the relevant information in the second frame structure, such as the third information and the fourth information.
  • the second device determines through the third information that the first device supports spontaneous self-receiving sensing.
  • the second device The first device may be requested to perform spontaneous self-receiving sensing through the first information.
  • the second device determines that the first device supports passive sensing through the fourth information.
  • the second device can request the target beam information and target location information from the first device through the second information. It can be understood that in order to facilitate the second device to parse the spontaneous self-collection sensing results of the first device, the second device also needs to request the first device.
  • a device requests target beam information and target location information.
  • the first information and the second information may be included in the information request frame.
  • the first information and the second information may be included in different elements of the information request frame, or the first information and the second information may be included in the information request frame.
  • It can also be included in the passive sensing information element of the information request frame (for example: DMG Passive Sensing Beacon Info element/DMG Passive Sensing SSW Info element/DMG Passive Sensing Short SSW Info element/DMG Passive Sensing Info element), or the first information and the second information may be included in different request frames respectively, for example, the second information is included in the information request frame, and the first information is included in another request frame (such as DMG Sensing Measurement Setup Request/DMG Sensing Measurement Instance Request /DMG Sensing Request), this application is not limited.
  • the second device sends an information request frame to the first device, requesting the first device's own target position information (including orientation information when sending the first frame structure) and the first device sending the target of the first frame structure.
  • Beam information (including beam horizontal direction, vertical direction, beam horizontal width, beam vertical width, beam gain and other information), to use the first frame structure subsequently sent by the first device for passive sensing.
  • the second device may also request the first device to use the first frame structure to perform spontaneous self-receiving sensing when subsequently sending the first frame structure.
  • the second device can request the first device for the first sensing result of monostatic sensing based on the first frame structure. It is understandable that the second device requests the first device's own target location information. and sending the target beam information of the first frame structure can also be used to interpret or parse the first sensing result.
  • the first device is AP or PCP
  • the second device is STA
  • the first frame structure is Beacon.
  • the STA can request the AP to send Beacon through the DMG Passive Sensing Beacon Info element contained in the Information request frame. target beam information and AP target location information.
  • the AP will send an Information response frame to the STA.
  • the Information response frame contains DMG Passive Sensing Beacon Info element (describing information such as Beacon's sending time and AP location) and one or more DMG Beacon Sector Descriptors elements (describing the beam information sent by Beacon). and other information).
  • the first information used to request the AP to perform spontaneous self-sensing can be included in the DMG Passive Sensing Beacon Info Element of the Information request frame, that is, the DMG Passive Sensing Beacon Info Element additionally includes an indication information (i.e., the first information) to request the AP to perform spontaneous self-sensing based on Beacon.
  • the first information of this application can be included in the Beacon Info Control field, and of course it can also be included in other fields of the DMG Passive Sensing Beacon Info Element.
  • the Beacon Info Control field Add a bit Monostatic Sensing request to the Beacon Info Control field to request the AP to perform spontaneous self-receiving sensing, that is, Monostatic Sensing request Contains the first information, which is carried in the Monostatic Sensing request.
  • the Beacon Info Control field includes The Next Beacon field, which is used for The target beam information that instructs the AP to send subsequently is used to describe the Beacon in this BTI or the Beacon in the next BTI.
  • the bit Monostatic Sensing request in Figure 5j is also used to request the AP to perform spontaneous self-sensing, that is The Monostatic Sensing request contains the first information, and the first information is carried in the Monostatic Sensing request.
  • the STA uses the Information request frame to request the AP for its own target location information and information about the target beam that sends the Beacon, and also requests the AP to perform spontaneous operations based on the Beacon in the Information request frame. Self-receiving perception.
  • the STA performs passive sensing through the Beacon sent by the AP, and the AP performs spontaneous self-receiving sensing based on the Beacon at the request of the STA. Subsequent STA can request the AP for spontaneous self-received sensing results based on Beacon, that is, the first sensing result.
  • the AP feeds back the first sensing result through the first response frame. After receiving the first sensing result, the STA analyzes the passive sensing result together.
  • the monostatic sensing request bit used to carry the first information can also appear in a new element. That is, the information request frame at this time contains two elements, one element requests passive sensing related information (i.e., DMG Passive Sensing Beacon Info Element), and one element requests spontaneous self-sensing.
  • passive sensing related information i.e., DMG Passive Sensing Beacon Info Element
  • spontaneous self-sensing i.e., spontaneous self-sensing.
  • the above request for target beam information and target location information and the request for AP to perform spontaneous self-receiving sensing can also be implemented in two separate frames, that is, through information request/response to interact with Beacon's transmit beam information and AP's target location information.
  • the STA requests the AP to perform spontaneous self-sensing based on Beacon through another request frame (such as DMG Sensing Measurement Setup Request/DMG Sensing Measurement Instance Request/DMG Sensing Request).
  • the AP feeds back spontaneous sensing based on the response frame corresponding to the other request frame.
  • Self-receiving sensing results. It can be understood that if the first frame structure is BRP, the Beacon in the above interaction process can be replaced with BRP.
  • the spontaneous and self-receiving sensing device is an STA, that is, the first device is the STA, and the second device is the AP or PCP.
  • the corresponding process can be used to complete the interaction of relevant information request feedback.
  • the self-receiving sensing device is an STA
  • the Information Request/Response frame will contain the corresponding DMG Passive Sensing (SSW/Short SSW/BRP)Info element.
  • SSW/Short SSW/BRP DMG Passive Sensing
  • the information in this element is mainly used to describe the information of STA sending SSW/Short SSW/BRP in A-BFT.
  • This bit can be located in the (SSW/Short SSW/BRP)Info Control field, or , or the Information Request frame includes the DMG Passive Sensing (SSW/Short SSW/BRP)Info element and another element.
  • the other element contains the bit Monostatic Sensing request, which is used to request the STA to perform spontaneous self-receiving sensing, or, also
  • the Information Request frame can be used to request the STA to send the target beam information of the SSW/Short SSW/BRP and the target location information of the STA.
  • the AP uses another request frame (such as DMG Sensing Measurement Setup Request/DMG Sensing Measurement Instance Request/DMG Sensing Request) Request STA to perform spontaneous self-receiving sensing based on (SSW/Short SSW/BRP).
  • DMG Sensing Measurement Setup Request/DMG Sensing Measurement Instance Request/DMG Sensing Request DMG Sensing Measurement Setup Request/DMG Sensing Measurement Instance Request/DMG Sensing Request
  • the Information Request/Response frame will contain the corresponding DMG Passive Sensing (Data PPDU)Info element.
  • the information in this element is mainly used to describe information related to the data frame Data PPDU sent by the PCP/AP or STA.
  • the specific interaction process can be referred to the description of the previous embodiment, and will not be described again here.
  • the first device sends the target beam information of the first frame structure to the second device and the target position information of the first device when sending the first frame structure, which can be used to simultaneously interpret the results of passive sensing and monostatic sensing. . It improves the sensing efficiency and saves the overhead of interaction between location information and beam transmission information. And at the same time, passive sensing and monostatic sensing based on the same Beacon/SSW/Short SSW/data frame are implemented, which increases the perception diversity gain at the same moment, which can improve the performance of perception compared to the independent method.
  • Figure 6 is a schematic flowchart of yet another spontaneous self-receiving sensing method provided by an embodiment of the present application.
  • the method flow in Figure 6 is a possible implementation of the method in Figure 3.
  • the method includes:
  • the first device declares through the fifth information that the first device performs spontaneous self-receiving sensing based on the first frame structure.
  • the first device performs spontaneous self-collection sensing based on the first frame structure, and obtains the first sensing result.
  • the second device sends a first request frame to the first device.
  • the first request frame is used to request to obtain the spontaneous self-receiving sensing result.
  • the first device sends a first response frame to the second device, where the first response frame includes the first sensing result.
  • step 305 may also be included;
  • the second assumption is to send a second request frame to the first device, where the second request frame is used to request acquisition of target beam information and target location information.
  • the first device sends target beam information and target location information to the second device.
  • the target beam information is the beam information of the first frame structure sent by the first device
  • the target location information is the first frame structure. Location information when the device sends the first frame structure.
  • the second device analyzes the first sensing result according to the target beam information and target location information.
  • the first device sends fifth information, the fifth information is used to declare that the first device will perform spontaneous self-receiving based on the first frame structure, or the fifth information is used to declare that the first device is performing self-receiving sensing based on the first frame structure.
  • Frame structure for spontaneous self-collection sensing The first device may send the fifth information in a broadcast, multicast or unicast manner.
  • the second device receives the fifth information.
  • the first frame structure may be a DMG beacon frame in this or the next BTI, and the PCP or AP declares through the fifth information that the PCP or AP is based on this BTI.
  • the Beacon performs spontaneous self-receiving sensing, or the PCP or AP declares the STA through the fifth information that the PCP or AP will perform spontaneous self-receiving sensing based on the Beacon in the next BTI.
  • the STA can request the first sensing result of spontaneous self-sensing from the PCP or AP.
  • the STA can also request the PCP or AP for the target beam information of the Beacon sent by the PCP or AP during the monostatic sensing process and the target location information of the PCP or AP when the PCP or AP sends the Beacon.
  • the first frame structure may be a data frame in this or the next DTI, and the PCP or AP declares through the fifth information that the PCP or AP is based on the data in this DTI.
  • the frame performs spontaneous self-receiving sensing, or the PCP or AP declares the STA through the fifth information that the PCP or AP will perform spontaneous self-receiving sensing based on the data frame in the next DTI.
  • the STA can request the first sensing result of spontaneous self-sensing from the PCP or AP.
  • the STA can also request the PCP or AP for the target beam information of the spontaneous self-sensing monostatic sensing process when the PCP or AP sends the data frame and the target location information of the PCP or AP when the PCP or AP sends the data frame. .
  • the first frame structure may be the BRP in this or the next DTI, and the PCP or AP declares through the fifth information that the PCP or AP is performing operations based on the BRP in this DTI.
  • Spontaneous self-collection sensing, or the PCP or AP declares through the fifth information that the PCP or AP will perform spontaneous self-collection sensing based on the BRP in the next DTI.
  • the STA can request the PCP or AP for the first sensing result of spontaneous self-sensing.
  • the STA can also request the PCP or AP for the target beam information of the PCP or AP when sending the BRP during the monostatic sensing process and the target location information of the PCP or AP when the PCP or AP sends the BRP.
  • the first frame structure may be SSW or Short SSW in this or the next A-BFT; the STA declares through the fifth information that the STA is based on the SSW in this A-BFT. /Short SSW performs spontaneous self-receiving sensing, or the STA declares through the fifth information that the STA will perform spontaneous self-receiving sensing based on the SSW/Short SSW in the next A-BFT.
  • the AP completes the corresponding A-BFT, it requests the STA for the first sensing result of the STA's spontaneous self-sensing.
  • the AP can also apply to the STA for spontaneous self-receiving sensing.
  • the STA sends the target beam information of the SSW/Short SSW and the STA sends the target location information of the SSW/Short SSW.
  • the first device is an STA
  • the first frame structure is a data frame in this or the next DTI
  • the STA declares through the fifth information that it is performing spontaneous self-receiving sensing based on the data frame in this DTI.
  • STA via Fifth Letter The message declares that the STA will perform spontaneous self-receiving based on the SSW/Short SSW in the next A-BFT.
  • the AP requests the STA for the first sensing result of the STA's spontaneous self-sensing.
  • the AP can also apply to the STA for the target beam information of the data frame sent by the STA and the target location information of the data frame sent by the STA during the monostatic sensing process.
  • the first device is a STA
  • the first frame structure is the BRP in this or the next DTI
  • the STA declares through the fifth information that the STA is performing spontaneous self-receiving sensing based on the BRP in this DTI, or, The STA declares through the fifth information that the STA will perform spontaneous self-collection sensing based on the BRP in the next DTI.
  • the AP requests the STA for the first sensing result of the STA's spontaneous self-sensing.
  • the AP can also apply to the STA for spontaneous self-receiving sensing.
  • the STA sends the BRP target beam information and the STA sends the target location information of the data frame.
  • the second device may request the first device to obtain the spontaneous self-receiving sensing result through the first request frame, and the first device sends the first sensing result of the spontaneous self-receiving sensing to the second device through the first response frame.
  • the first request frame is also used to request acquisition of target beam information and target location information.
  • the first request frame may be an Information Request frame.
  • the first request frame may be used to request acquisition of spontaneous self-receiving sensing results
  • the second device may request acquisition of target beam information and target location information through the second request frame.
  • the first request frame may be a DMG Sensing Poll frame
  • the second request frame may be an Information Request frame.
  • the second device analyzes the first sensing result of the first device based on the acquired target beam information and target location information.
  • the above fifth information may be included in a third frame structure; if the first device is a PCP or AP, the third frame structure is one or more of the following: association application frame, association Response frame, then associated application frame, then associated response frame, DMG beacon frame, information request frame, information response frame, probe request frame (Probe Request), probe response frame (Probe Response) or data frame, etc. If the first device is an STA, the third frame structure is one or more of the following: association application frame, association response frame, association application frame, association response frame, information request frame, information response frame, and detection request frame. (Probe Request), Probe Response frame (Probe Response), SSW frame, Short SSW frame or data frame, etc.
  • the fifth information may be included in the Capability Element field of the third frame structure, such as the DMG Short Sensing Capability Element field.
  • the fifth information can be included in the Short Sensing Capabilities field of the DMG Short Sensing Capability Element, as shown in Figure 7a, Figure 7b, and Figure 7c, which is a schematic structural diagram of the Short Sensing Capabilities field provided by this application.
  • the Monostatic sensing field can be added to the Short Sensing Capabilities field to carry the fifth information, that is, the Monostatic sensing field is used to indicate whether the relevant device is performing spontaneous self-receiving sensing based on this transmission, or Whether spontaneous self-receiving sensing will be performed based on the next transmission.
  • the Monostatic sensing field can only be used to indicate that the relevant device is performing spontaneous self-receiving sensing based on this transmission, or the Monostatic sensing field can also be used only to indicate that the relevant device will perform spontaneous self-receiving sensing based on the next transmission. There are no restrictions on application.
  • the Monostatic sensing field can also be used to indicate that the relevant device is performing spontaneous self-receiving sensing based on this transmission, or will perform spontaneous self-receiving sensing based on the next transmission.
  • a first field for example: Monostatic sensing with current Beacon
  • a second field for example: Monostatic sensing with next Beacon
  • the first field is used to indicate that spontaneous self-receiving sensing is being performed based on the first frame structure sent this time (such as Beacon in this BTI, or SSW or Short SSW in this A-BFT).
  • the second field is used The instruction will be based on the first frame structure sent next time (such as Beacon in the next BTI, or SSW or Short SSW in the next A-BFT) for spontaneous self-receiving sensing.
  • the fifth information is contained in the first field or the second field.
  • the PCP/AP performs spontaneous self-receiving sensing based on the data frame, that is, the first frame structure is a data frame.
  • the PCP/AP can declare in the DMG Short Sensing Capability Element field of the third frame structure that it is performing spontaneous self-sensing based on the data frame in this DTI, or will based on the data in the next DTI. Frames undergo spontaneous self-collection sensing.
  • the third frame structure may be an Association Request Frame, an Association Response Frame, a Reassociation Request Frame, a Reassociation Response Frame, a Beacon frame, and an information request.
  • the PCP/AP can also use at least 1 bit in the corresponding Allocation field of the Extended Schedule element of the DMG beacon frame Beacon to indicate that the Allocation is based on the data frame in this DTI. Perform spontaneous self-receiving sensing, or perform spontaneous self-receiving sensing based on the data frame in the next DTI.
  • the PCP/AP can also add at least one bit to the data frame to indicate that the PCP/AP is performing spontaneous self-receiving sensing based on the data frame in this DTI, or based on the next DTI.
  • the data frame in the data frame performs spontaneous self-receiving sensing. For example, it can be indicated in at least one reserved bit of the PHY header or MAC header.
  • the STA performs spontaneous self-receiving sensing based on the data frame, that is, the first frame structure is a data frame.
  • the STA can declare in the DMG Short Sensing Capability Element field of the third frame structure that it is performing spontaneous self-sensing based on the data frame in this DTI, or will perform based on the data frame in the next DTI. Spontaneous self-collection perception.
  • the third frame structure may be an Association Request Frame, an Association Response Frame, a Reassociation Request Frame, a Reassociation Response Frame, and an Information Request. Frame), Probe Request frame (Probe Request), Probe Response frame (Probe Response), Information Response Frame (Information Response Frame), SSW frame, Short SSW frame or data frame, etc.
  • I won’t go into details here.
  • the STA can use the SSW frame sent during the A-BFT process or the reserved bits of Short SSW to indicate that the STA is performing spontaneous self-receiving sensing based on the data frame in this DTI, or will based on the data in the next DTI. Frames undergo spontaneous self-collection sensing.
  • the STA can also add at least one bit to the data frame to indicate that the STA is performing spontaneous self-receiving sensing based on the data frame in this DTI, or will perform based on the data frame in the next DTI.
  • Spontaneous self-collection perception For example, you can use at least one reserved bit of the PHY header or MAC header for indication.
  • This application divides the communication device into functional modules according to the above method embodiments.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in this application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • the communication device according to the embodiment of the present application will be described in detail below with reference to FIGS. 8 to 10 .
  • FIG. 8 is a schematic structural diagram of a communication device 100 provided by an embodiment of the present application.
  • the communication device 100 can correspondingly implement the functions or steps implemented by the communication device (such as the first device and the second device) in each of the above method embodiments.
  • the communication device may include a processing module 110 and a transceiver module 120.
  • a storage unit may also be included, which may be used to store instructions (code or programs) and/or data.
  • the processing module 110 and the transceiver module 120 can be connected to the storage unit Coupling, for example, the processing module 110 can read the instructions (code or program) and/or data in the storage unit to implement the corresponding method.
  • Each of the above units can be set up independently or partially or fully integrated.
  • the transceiver module 120 may include a sending module and a receiving module.
  • the sending module can be a transmitter
  • the receiving module can be a receiver.
  • the entity corresponding to the transceiver module 120 may be a transceiver.
  • the communication device 100 can correspondingly implement the behaviors and functions of the first device in the above method embodiments.
  • the communication device 100 may be a first device, or may be a component (such as a chip or a circuit) used in the first device.
  • the transceiver module 120 may, for example, be used to perform all receiving or sending operations performed by the first device in the embodiments of FIG. 3, FIG. 4, and FIG. 6, such as steps 102 and 103 in the embodiment shown in FIG. 3, FIG. Steps 202, 204, 205, and 206 in the embodiment shown in FIG. 4, steps 303, 304, 305, and 306 in the embodiment shown in FIG. 6, and/or other processes used to support the technology described herein.
  • the processing module 110 is configured to perform all operations performed by the first device in the embodiments of FIG. 3, FIG. 4, and FIG. 6 except for the sending and receiving operations, such as step 101 in the embodiment shown in FIG. Steps 201 and 203 in the embodiment shown in FIG. 6 and steps 301 and 302 in the embodiment shown in FIG. 6 .
  • the communication device 100 can correspondingly implement the behaviors and functions of the second device in the above method embodiments.
  • the communication device 100 may be a second device, or may be a component (such as a chip or a circuit) used in the second device.
  • the transceiver module 120 may, for example, be used to perform all receiving or sending operations performed by the second device in the embodiments of FIG. 3, FIG. 4, and FIG. 6, such as steps 102 and 103 in the embodiment shown in FIG. 3, FIG. Steps 202, 204, 205, and 206 in the embodiment shown in FIG. 4, steps 303, 304, 305, and 306 in the embodiment shown in FIG. 6, and/or other processes used to support the technology described herein.
  • the processing module 110 is configured to perform all operations performed by the second device in the embodiments of FIG. 3, FIG. 4, and FIG. 6 except for the sending and receiving operations, such as steps 207 and 208 of the embodiment shown in FIG. 4, FIG. 6 Step 307 of the illustrated embodiment.
  • the first device and the second device in the embodiment of the present application are introduced above.
  • the possible product forms of the first device and the second device are introduced below. It should be understood that any form of product that has the function of the communication device described in Figure 8 above, or any form of product that has the function of the communication device described in Figure 8 above, falls within the protection of the embodiments of the present application. scope. It should also be understood that the following description is only an example, and does not limit the product forms of the first device and the second device in the embodiments of the present application to this.
  • the processing module 110 can be one or more processors, the transceiver module 120 can be a transceiver, or the transceiver module 120 can also be a sending unit and a receiving unit.
  • the sending unit may be a transmitter
  • the receiving unit may be a receiver
  • the sending unit and the receiving unit are integrated into one device, such as a transceiver.
  • the processor and the transceiver may be coupled, etc., and the embodiment of the present application does not limit the connection method between the processor and the transceiver.
  • FIG. 9 is a schematic structural diagram of another communication device 200 provided by an embodiment of the present application.
  • the communication device in Figure 9 may be the above-mentioned first device or the above-mentioned second device.
  • the communication device 200 includes one or more processors 220 and a transceiver 210 .
  • the transceiver 210 can implement the functions of the transceiver module 120
  • the processor 220 can implement the functions of the processing module 110 .
  • the transceiver may include a receiver and a transmitter.
  • the receiver is configured to perform a function (or operation) of receiving.
  • the transmitter is configured to perform a function (or operation) of transmitting. ). and transceivers for communication over transmission media and other equipment/devices.
  • the communication device 200 may also include one or more memories 230 for storing program instructions and/or data.
  • Memory 230 and processor 220 are coupled.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • Processor 220 may cooperate with memory 230.
  • Processor 220 may execute program instructions stored in memory 230 .
  • connection medium between the above-mentioned transceiver 210, processor 220 and memory 230 is not limited in the embodiment of the present application.
  • the memory 230, the processor 220 and the transceiver 210 are connected through a bus 240 in Figure 9.
  • the bus is represented by a thick line in Figure 9.
  • the connection methods between other components are only schematically explained. , is not limited.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 9, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, etc., which can be implemented Or execute the disclosed methods, steps and logical block diagrams in the embodiments of this application.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc. The steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor, or executed by a combination of hardware and software modules in the processor, etc.
  • the memory may include but is not limited to non-volatile memories such as hard disk drive (HDD) or solid-state drive (SSD), random access memory (Random Access Memory, RAM), Erasable Programmable ROM (EPROM), Read-Only Memory (ROM) or Portable Read-Only Memory (Compact Disc Read-Only Memory, CD-ROM), etc.
  • Memory is any storage medium that can be used to carry or store program codes in the form of instructions or data structures, and that can be read and/or written by a computer (such as the communication device shown in this application), but is not limited thereto.
  • the memory in the embodiment of the present application can also be a circuit or any other device capable of realizing a storage function, used to store program instructions and/or data.
  • the processor 220 is mainly used to process communication protocols and communication data, control the entire communication device, execute software programs, and process data of the software programs.
  • Memory 230 is mainly used to store software programs and data.
  • the transceiver 210 may include a control circuit and an antenna.
  • the control circuit is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices, such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor 220 can read the software program in the memory 230, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 220 performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 220.
  • the processor 220 converts the baseband signal into data and performs processing on the data. deal with.
  • the radio frequency circuit and antenna can be arranged independently of the processor that performs baseband processing.
  • the radio frequency circuit and antenna can be arranged remotely and independently of the communication device. .
  • the communication device shown in the embodiment of the present application may also have more components than in Figure 9, and the embodiment of the present application does not limit this.
  • the methods performed by the processor and transceiver shown above are only examples. For specific steps performed by the processor and transceiver, please refer to the method introduced above.
  • the processing module 110 may be one or more logic circuits, and the transceiver module 120 may be an input-output interface, also known as a communication interface, or an interface circuit. , or interface, etc.
  • the transceiver module 120 may also be a sending unit and a receiving unit.
  • the sending unit may be an output interface
  • the receiving unit may be an input interface.
  • the sending unit and the receiving unit may be integrated into one unit, such as an input-output interface.
  • the communication device shown in FIG. 10 includes a logic circuit 301 and an interface 302 .
  • the above-mentioned processing module 110 can be implemented by the logic circuit 301
  • the transceiver module 120 can be implemented by the interface 302.
  • the logic circuit 301 can be a chip, a processing circuit, an integrated circuit or a system on chip (SoC) chip, etc.
  • the interface 302 can be a communication interface, an input/output interface, a pin, etc.
  • FIG. 10 takes the above communication device as a chip.
  • the chip includes a logic circuit 301 and an interface 302 .
  • the logic circuit and the interface may also be coupled to each other.
  • the embodiments of this application do not limit the specific connection methods of the logic circuits and interfaces.
  • the logic circuit 301 is used to perform spontaneous self-receiving sensing based on the first frame structure to obtain the first sensing result; the interface 302 is used to to receive the first request frame and send the first response frame to the second device.
  • the interface 302 is used to send the first request frame to the first device and receive the first response frame sent by the first device; logic Circuit 301, configured to generate a first request frame.
  • the communication device shown in the embodiments of the present application can be implemented in the form of hardware to implement the methods provided in the embodiments of the present application, or can be implemented in the form of software to implement the methods provided in the embodiments of the present application. This is not limited by the embodiments of the present application.
  • Embodiments of the present application also provide a wireless communication system.
  • the wireless communication system includes a first device and a second device.
  • the first device and the second device can be used to perform any of the foregoing embodiments (as shown in Figure 3, Figure 3). 4.
  • this application also provides a computer-readable storage medium, which stores computer code.
  • the computer code When the computer code is run on a computer, it causes the computer to execute the steps performed by the first device in the method provided by this application. Operation and/or processing.
  • This application also provides a computer-readable storage medium that stores computer code.
  • the computer code When the computer code is run on a computer, it causes the computer to perform the operations performed by the second device in the method provided by this application. /or processing.
  • the computer program product includes a computer code or a computer program.
  • the computer code or computer program When the computer code or computer program is run on a computer, it causes the operations performed by the first device in the method provided by this application and/or or processing is performed.
  • the computer program product includes computer code or computer program.
  • the computer code or computer program When the computer code or computer program is run on a computer, it causes the operations performed by the second device in the method provided by this application and/or or processing is performed.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be an indirect coupling or communication connection through some interfaces, devices or units, or may be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the technical effects of the solutions provided by the embodiments of the present application.
  • each functional unit in various embodiments of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a readable
  • the storage medium includes a number of instructions for causing a computer device (which can All or part of the steps of the methods described in various embodiments of this application can be executed using a personal computer, server, or network device, etc.
  • the aforementioned readable storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, etc., which can store program code. medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种自发自收感知方法及相关产品,该方法包括:基于第一帧结构进行自发自收感知,获得第一感知结果;接收第二设备发送的第一请求帧,所述第一请求帧用于请求获取自发自收感知结果;根据所述第一请求帧,向所述第二设备发送第一响应帧,所述第一响应帧包括所述第一感知结果。通过实施本申请,可以充分利用设备自发自收的感知结果。

Description

自发自收感知方法及相关产品
本申请要求于2022年3月21日提交中国专利局、申请号为202210279157.7、申请名称为“自发自收感知方法及相关产品”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种自发自收感知方法及相关产品。
背景技术
无线局域网(wireless local area networks,WLAN)感知(WLAN Sensing)是一项具有广阔应用前景的技术,它利用WLAN设备发送的射频(radio frequency,RF)信号对周围环境进行感知,通过一定的算法提取接收信号中的相应参数进行分析,获取周围环境中的相关信息。其中,自发自收感知是指信号发射和信号接收使用同一个设备。由于信号发射和信号接收同时位于同一设备之中,可以实现较好的(时间、频率)同步,感知性能较好。因此需要研究如何充分利用自发自收感知的感知结果。
发明内容
本申请实施例公开了一种自发自收感知方法及相关产品,能够将第一设备进行自发自收感知的感知结果进行分享,以充分利用设备自发自收的感知结果。
第一方面,本申请实施例提供一种自发自收感知方法,应用于第一设备,该方法包括:
基于第一帧结构进行自发自收感知,获得第一感知结果;
接收第二设备发送的第一请求帧,该第一请求帧用于请求获取自发自收感知结果;
根据第一请求帧,向第二设备发送第一响应帧,该第一响应帧包括上述第一感知结果。
本申请实施例中,第一设备进行自发自收感知,获得第一感知结果,并将该第一感知结果分享给请求获取自发自收感知结果的第二设备,从而充分利用设备进行自发自收的感知结果。
在一种可能的实现方式中,若所述第一设备为个人基本服务区控制点或接入点,所述第一帧结构包括以下中的一种:DMG信标帧、数据帧或波束优化协议(beam refinement ptotocol,BRP)帧。
若所述第一设备为站点,所述第一帧结构包括以下中的一种:扇区扫描SSW、Short SSW、BRP或者数据帧。
通过该实施例,可以通过多种类型的帧结构实现自发自收感知。
在一种可能的实现方式中,所述方法还包括:
接收所述第二设备发送的第一信息和第二信息,所述第一信息用于请求所述第一设备进行自发自收感知,所述第二信息用于请求获取目标波束信息和目标位置信息,所述目标波束信息为所述第一设备发送所述第一帧结构的波束信息,所述目标位置信息为所述第一设备发送所述第一帧结构的位置信息;
根据所述第二信息,向所述第二设备发送所述目标波束信息和所述目标位置信息;
所述基于第一帧结构进行自发自收感知,获得第一感知结果,包括:
根据所述第一信息,基于所述第一帧结构进行自发自收感知,获得第一感知结果。
通过该实施例,第一设备向第二设备发送位置信息和波束发送信息,可以被用以同时解读被动感知和自发自收感知的结果,提升了感知效率,并且基于同一帧结构进行被动感知和自发自收感知,可以提升感知性能。
在一种可能的实现方式中,所述第一信息和所述第二信息分别包含于信息请求帧的不同元素中;或者,
所述第一信息和所述第二信息分别包含于不同请求帧中;或者,
所述第一信息和所述第二信息包含于信息请求帧的被动感知信息元素中。
在一种可能的实现方式中,所述方法还包括:
发送第三信息和第四信息,所述第三信息用于宣称所述第一设备具备自发自收感知能力,所述第四信息用于宣称所述第一设备具备被动感知能力。
通过该实施例,可以通过同一流程实现被动感知和自发自收感知。
在一种可能的实现方式中,所述第三信息和所述第四信息包含于第二帧结构中;
若所述第一设备为个人基本服务区控制点或接入点,所述第二帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,DMG信标帧,信息请求帧,信息响应帧,探测请求帧,探测响应帧或数据帧;
若所述第一设备为站点,第二帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,信息请求帧,信息响应帧,探测请求帧,探测响应帧,SSW帧,Short SSW帧或数据帧。
在一种可能的实现方式中,所述方法还包括:
发送第五信息,所述第五信息用于宣称所述第一设备基于所述第一帧结构进行自发自收感知。
通过该实施例,第一设备可以主动发起自发自收感知流程,并且不需要和被动感知绑定,使用灵活。
在一种可能的实现方式中,若所述第一设备为个人基本服务区控制点或接入点,所述第一帧结构为本次或下次BTI中的DMG信标帧,或者,所述第一帧结构为本次或下次数据传输间隔(data transmission interval,DTI)中的数据帧,或者,所述第一帧结构为本次或下次DTI中的BRP;
若所述第一设备为站点,所述第一帧结构为本次或下次关联-波束赋形训练(association beamforming training,A-BFT)中的SSW或Short SSW;或者,所述第一帧结构为本次或下次DTI中的数据帧,或者,所述第一帧结构为本次或下次DTI中的BRP。
在一种可能的实现方式中,所述第五信息包含于第三帧结构中;
若所述第一设备为个人基本服务区控制点或接入点,所述第三帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,DMG信标帧,信息请求帧,信息响应帧,探测请求帧,探测响应帧或数据帧;
若所述第一设备为站点,第三帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,信息请求帧,信息响应帧,探测请求帧,探测响应帧,SSW帧,Short SSW帧或数据帧。
在一种可能的实现方式中,所述第一请求帧还用于请求获取目标波束信息和目标位置信 息,所述目标波束信息为所述第一设备发送所述第一帧结构的波束信息,所述目标位置信息为所述第一设备发送所述第一帧结构时的位置信息,所述方法还包括:
根据所述第一请求帧,向所述第二设备发送所述目标波束信息和所述目标位置信息。
通过该实施例,可以通过同一个请求帧同时请求目标波束信息和目标位置信息,以及请求进行自发自收感知,从而节省传输资源。
在一种可能的实现方式中,所述方法还包括:
接收所述第一设备发送的第二请求帧,所述第二请求帧用于请求获取目标波束信息和目标位置信息,所述目标波束信息为所述第一设备发送所述第一帧结构的波束信息,所述目标位置信息为所述第一设备发送所述第一帧结构时的位置信息;
根据所述第二请求帧,向所述第二设备发送所述目标波束信息和所述目标位置信息。
通过该实施例,可以通过不同请求帧对信息和自发自收感知行为进行请求。
第二方面,本申请实施例提供一种自发自收感知方法,应用于第二设备,该方法包括:
向第一设备发送第一请求帧,所述第一请求帧用于请求获取自发自收感知结果;
接收所述第一设备发送的第一响应帧,所述第一响应帧包括所述第一设备基于第一帧结构进行自发自收感知的第一感知结果。
在一种可能的实现方式中,若所述第一设备为个人基本服务区控制点或接入点,所述第一帧结构包括以下中的一种:DMG信标帧、数据帧或波束优化协议BRP;
若所述第一设备为站点,所述第一帧结构包括以下中的一种:扇区扫描SSW、Short SSW、BRP或者数据帧。
在一种可能的实现方式中,所述方法还包括:
向所述第一设备发送第一信息和第二信息,所述第一信息用于请求所述第一设备进行自发自收感知,所述第二信息用于请求获取目标波束信息和目标位置信息,所述目标波束信息为所述第一设备发送所述第一帧结构的波束信息,所述目标位置信息为所述第一设备发送所述第一帧结构时的位置信息;
接收所述第一设备发送的目标波束信息和目标位置信息;
根据所述目标波束信息和所述目标位置信息,基于所述第一帧结构进行被动感知;
根据所述目标波束信息和所述目标位置信息,解析所述第一感知结果。
在一种可能的实现方式中,所述方法还包括:
接收所述第一设备发送的第三信息和第四信息,所述第三信息用于宣称所述第一设备具备基于所述第一帧结构的自发自收感知能力,所述第四信息用于宣称所述第一设备具备基于所述第一帧结构的被动感知能力;
根据所述第三信息,向所述第一设备发送所述第一信息;
根据所述第三信息和/或所述第四信息,向所述第一设备发送所述第二信息。
在一种可能的实现方式中,所述第三信息和所述第四信息包含于第二帧结构中;
若所述第一设备为个人基本服务区控制点或接入点,所述第二帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,DMG信标帧,信息请求帧,信息响应帧,探测请求帧,探测响应帧或数据帧;
若所述第一设备为站点,第二帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,信息请求帧,信息响应帧,探测请求帧,探测响应帧,SSW帧,Short SSW帧或数据帧。
在一种可能的实现方式中,所述方法还包括:
接收所述第一设备发送的第五信息,所述第五信息用于宣称所述第一设备基于所述第一帧结构进行自发自收感知;
所述向第一设备发送第一请求帧,包括:
根据所述第五信息,向所述第一设备发送所述第一请求帧。
在一种可能的实现方式中,若所述第一设备为个人基本服务区控制点或接入点,所述第一帧结构为本次或下次信标传输间隔(beacon transmission interval,BTI)中的DMG信标帧,或者,所述第一帧结构为本次或下次DTI中的数据帧,或者,所述第一帧结构为本次或下次DTI中的BRP;
若所述第一设备为站点,所述第一帧结构为本次或下次A-BFT中的SSW或Short SSW;或者,所述第一帧结构为本次或下次DTI中的数据帧,或者,所述第一帧结构为本次或下次DTI中的BRP。
在一种可能的实现方式中,所述第五信息包含于第三帧结构中;
若所述第一设备为个人基本服务区控制点或接入点,所述第三帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,DMG信标帧,信息请求帧,信息响应帧,探测请求帧,探测响应帧或数据帧;
若所述第一设备为站点,第三帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,信息请求帧,信息响应帧,探测请求帧,探测响应帧,SSW帧,Short SSW帧或数据帧。
在一种可能的实现方式中,所述第一请求帧还用于请求获取目标波束信息和目标位置信息,所述目标波束信息为所述第一设备发送所述第一帧结构的波束信息,所述目标位置信息为所述第一设备发送所述第一帧结构时的位置信息,所述方法还包括:
接收所述第一设备发送的所述目标波束信息和所述目标位置信息;
根据所述目标波束信息和所述目标位置信息,解析所述第一感知结果。
在一种可能的实现方式中,所述方法还包括:
向所述第一设备发送第二请求帧,所述第二请求帧用于请求获取目标波束信息和目标位置信息,所述目标波束信息为所述第一设备发送所述第一帧结构的波束信息,所述目标位置信息为所述第一设备发送所述第一帧结构时的位置信息;
接收所述第一设备发送的所述目标波束信息和所述目标位置信息;
根据所述目标波束信息和所述目标位置信息,解析所述第一感知结果。
第三方面,本申请实施例提供一种通信装置,该通信装置应用于第一设备,该装置包括:
处理模块,用于基于第一帧结构进行自发自收感知,获得第一感知结果;
收发模块,用于接收第二设备发送的第一请求帧,所述第一请求帧用于请求获取自发自收感知结果;
所述收发模块,还用于根据所述第一请求帧,向所述第二设备发送第一响应帧,所述第一响应帧包括所述第一感知结果。
在一种可能的实现方式中,若所述第一设备为个人基本服务区控制点或接入点,所述第一帧结构包括以下中的一种:DMG信标帧、数据帧或波束优化协议BRP;
若所述第一设备为站点,所述第一帧结构包括以下中的一种:扇区扫描SSW、Short SSW、BRP或者数据帧。
在一种可能的实现方式中,所述收发模块还用于接收所述第二设备发送的第一信息和第二信息,所述第一信息用于请求所述第一设备进行自发自收感知,所述第二信息用于请求获 取目标波束信息和目标位置信息,所述目标波束信息为所述第一设备发送所述第一帧结构的波束信息,所述目标位置信息为所述第一设备发送所述第一帧结构的位置信息;
所述收发模块还用于根据所述第二信息,向所述第二设备发送所述目标波束信息和所述目标位置信息;
所述处理模块具体用于根据所述第一信息,基于所述第一帧结构进行自发自收感知,获得第一感知结果。
在一种可能的实现方式中,所述第一信息和所述第二信息分别包含于信息请求帧的不同元素中;或者,
所述第一信息和所述第二信息分别包含于不同请求帧中;或者,
所述第一信息和所述第二信息包含于信息请求帧的被动感知信息元素中。
在一种可能的实现方式中,所述收发模块还用于发送第三信息和第四信息,所述第三信息用于宣称所述第一设备具备自发自收感知能力,所述第四信息用于宣称所述第一设备具备被动感知能力。
在一种可能的实现方式中,所述第三信息和所述第四信息包含于第二帧结构中;
若所述第一设备为个人基本服务区控制点或接入点,所述第二帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,DMG信标帧,信息请求帧,探测请求帧,探测响应帧,信息响应帧或数据帧;
若所述第一设备为站点,第二帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,信息请求帧,信息响应帧,探测请求帧,探测响应帧,SSW帧,Short SSW帧或数据帧。
在一种可能的实现方式中,所述收发模块还用于发送第五信息,所述第五信息用于宣称所述第一设备基于所述第一帧结构进行自发自收感知。
在一种可能的实现方式中,若所述第一设备为个人基本服务区控制点或接入点,所述第一帧结构为本次或下次BTI中的DMG信标帧,或者,所述第一帧结构为本次或下次DTI中的数据帧,或者,所述第一帧结构为本次或下次DTI中的BRP;
若所述第一设备为站点,所述第一帧结构为本次或下次A-BFT中的SSW或Short SSW;或者,所述第一帧结构为本次或下次DTI中的数据帧,或者,所述第一帧结构为本次或下次DTI中的BRP。
在一种可能的实现方式中,所述第五信息包含于第三帧结构中;
若所述第一设备为个人基本服务区控制点或接入点,所述第三帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,DMG信标帧,信息请求帧,信息响应帧,探测请求帧,探测响应帧或数据帧;
若所述第一设备为站点,第三帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,信息请求帧,信息响应帧,SSW帧,探测请求帧,探测响应帧,Short SSW帧或数据帧。
在一种可能的实现方式中,所述第一请求帧还用于请求获取目标波束信息和目标位置信息,所述目标波束信息为所述第一设备发送所述第一帧结构的波束信息,所述目标位置信息为所述第一设备发送所述第一帧结构时的位置信息;
所述收发模块还用于根据所述第一请求帧,向所述第二设备发送所述目标波束信息和所述目标位置信息。
在一种可能的实现方式中,所述收发模块还用于接收所述第一设备发送的第二请求帧, 所述第二请求帧用于请求获取目标波束信息和目标位置信息,所述目标波束信息为所述第一设备发送所述第一帧结构的波束信息,所述目标位置信息为所述第一设备发送所述第一帧结构时的位置信息;
所述收发模块还用于根据所述第二请求帧,向所述第二设备发送所述目标波束信息和所述目标位置信息。
第四方面,本申请实施例提供一种通信装置,该通信装置应用于第二设备,该装置包括:
处理模块,用于生成第一请求帧,所述第一请求帧用于请求获取自发自收感知结果;
收发模块,用于向第一设备发送第一请求帧,所述第一请求帧用于请求获取自发自收感知结果;
所述收发模块还用于接收所述第一设备发送的第一响应帧,所述第一响应帧包括所述第一设备基于第一帧结构进行自发自收感知的第一感知结果。
在一种可能的实现方式中,若所述第一设备为个人基本服务区控制点或接入点,所述第一帧结构包括以下中的一种:DMG信标帧、数据帧或波束优化协议BRP;
若所述第一设备为站点,所述第一帧结构包括以下中的一种:扇区扫描SSW、Short SSW、BRP或者数据帧。
在一种可能的实现方式中,所述收发模块还用于向所述第一设备发送第一信息和第二信息,所述第一信息用于请求所述第一设备进行自发自收感知,所述第二信息用于请求获取目标波束信息和目标位置信息,所述目标波束信息为所述第一设备发送所述第一帧结构的波束信息,所述目标位置信息为所述第一设备发送所述第一帧结构时的位置信息;
所述收发模块还用于接收所述第一设备发送的目标波束信息和目标位置信息;
所述处理模块还用于根据所述目标波束信息和所述目标位置信息,基于所述第一帧结构进行被动感知;
所述处理模块还用于根据所述目标波束信息和所述目标位置信息,解析所述第一感知结果。
在一种可能的实现方式中,所述收发模块还用于接收所述第一设备发送的第三信息和第四信息,所述第三信息用于宣称所述第一设备具备基于所述第一帧结构的自发自收感知能力,所述第四信息用于宣称所述第一设备具备基于所述第一帧结构的被动感知能力;
在一种可能的实现方式中,所述收发模块还用于根据所述第三信息,向所述第一设备发送所述第一信息;
所述收发模块还用于根据所述第三信息和/或所述第四信息,向所述第一设备发送所述第二信息。
在一种可能的实现方式中,所述第三信息和所述第四信息包含于第二帧结构中;
若所述第一设备为个人基本服务区控制点或接入点,所述第二帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,DMG信标帧,信息请求帧,信息响应帧,探测请求帧,探测响应帧或数据帧;
若所述第一设备为站点,第二帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,信息请求帧,信息响应帧,SSW帧,探测请求帧,探测响应帧,Short SSW帧或数据帧。
在一种可能的实现方式中,所述收发模块还用于接收所述第一设备发送的第五信息,所述第五信息用于宣称所述第一设备基于所述第一帧结构进行自发自收感知;
在一种可能的实现方式中,所述收发模块具体用于根据所述第五信息,向所述第一设备 发送所述第一请求帧。
在一种可能的实现方式中,若所述第一设备为个人基本服务区控制点或接入点,所述第一帧结构为本次或下次BTI中的DMG信标帧,或者,所述第一帧结构为本次或下次DTI中的数据帧,或者,所述第一帧结构为本次或下次DTI中的BRP;
若所述第一设备为站点,所述第一帧结构为本次或下次A-BFT中的SSW或Short SSW;或者,所述第一帧结构为本次或下次DTI中的数据帧,或者,所述第一帧结构为本次或下次DTI中的BRP。
在一种可能的实现方式中,所述第五信息包含于第三帧结构中;
若所述第一设备为个人基本服务区控制点或接入点,所述第三帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,DMG信标帧,信息请求帧,信息响应帧,探测请求帧,探测响应帧或数据帧;
若所述第一设备为站点,第三帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,信息请求帧,信息响应帧,SSW帧,Short SSW帧,探测请求帧,探测响应帧或数据帧。
在一种可能的实现方式中,所述第一请求帧还用于请求获取目标波束信息和目标位置信息,所述目标波束信息为所述第一设备发送所述第一帧结构的波束信息,所述目标位置信息为所述第一设备发送所述第一帧结构时的位置信息;
所述收发模块还用于接收所述第一设备发送的所述目标波束信息和所述目标位置信息;
所述处理模块还用于根据所述目标波束信息和所述目标位置信息,解析所述第一感知结果。
在一种可能的实现方式中,所述收发模块还用于向所述第一设备发送第二请求帧,所述第二请求帧用于请求获取目标波束信息和目标位置信息,所述目标波束信息为所述第一设备发送所述第一帧结构的波束信息,所述目标位置信息为所述第一设备发送所述第一帧结构时的位置信息;
所述收发模块还用于接收所述第一设备发送的所述目标波束信息和所述目标位置信息;
所述处理模块还用于根据所述目标波束信息和所述目标位置信息,解析所述第一感知结果。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于执行上述第一方面、第二方面或其任意可能的实现方式所示的方法。
在执行上述方法的过程中,上述方法中有关发送信息和接收信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息的过程。在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
基于上述原理,举例来说,前述方法中提及的发送请求帧可以理解为处理器输出该请求帧。又例如,接收响应帧可以理解为处理器接收输入的响应帧。
对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作。
在实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储 器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
在一种可能的实现方式中,存储器位于上述通信装置之外。
在一种可能的实现方式中,存储器位于上述通信装置之内。
本申请实施例中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收信号和/或发送信号。示例性的,该收发器可以用于发送请求帧。又如,该收发器还可以用于接收响应帧等。
本申请实施例中,该通信装置可以为上述第一方面、第二方面中的第一设备或第二设备。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理电路和接口电路,该接口电路用于获取数据或输出数据;处理电路用于执行如上述第一方面或第一方面的任意可能的实现方式所示的相应的方法,或者处理电路用于执行如上述第二方面或第二方面的任意可能的实现方式所示的相应的方法。
第七方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第一方面、第二方面或任意可能的实现方式所示的方法被执行。
第八方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第一方面、第二方面或任意可能的实现方式所示的方法被执行。
第九方面,本申请实施例提供一种通信系统,该通信系统包括第一设备和第二设备。可选的,所述第一设备用于执行上述第一方面或第一方面的任意可能的实现方式所示的方法,所述第二设备用于执行上述第二方面或第二方面的任意可能的实现方式所示的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的通信系统的示意图;
图2是本申请实施例提供的信标间隔的结构示意图;
图3是本申请实施例提供的一种自发自收感知方法的流程示意图;
图4是本申请实施例提供的另一种自发自收感知方法的流程示意图;
图5a至图5j为本申请实施例提供的字段结构示意图;
图6是本申请实施例提供的又一种自发自收感知方法的流程示意图;
图7a至图7c为本申请实施例提供的字段结构示意图;
图8至图10是本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖 不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“上述”、“上述”、“该”和“这一”旨在也包括复数表达形式,除非其上下文中明确地有相反指示。还应当理解,本申请中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。本申请中使用的术语“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c。其中a、b和c分别可以是单个,也可以是多个。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
为便于理解本申请实施例的技术方案,下面将对本申请实施例提供的自发自收感知方法的系统架构和/或应用场景进行说明。可理解的,本申请实施例描述的场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
本申请实施例提供一种自发自收感知方法可以应用于无线通信系统中,该无线通信系统可以为无线局域网或蜂窝网;该方法可以由无线通信系统中的通信设备或通信设备中的芯片或处理器实现。该通信设备可以是个人基本服务区控制点(PBSS control point,PCP)或者接入点(access point,AP)设备或站点(station,STA)设备。
参见图1,图1是本申请实施例提供的一种系统架构图。如图1所示,该系统架构包括至少2个WLAN设备(如图1中以包括一个AP和3个STA作为举例说明),其中一个WLAN设备可以进行自发自收感知(如STA),其他WLAN设备(如AP)向进行自发自收感知的WLAN设备请求感知结果。其中,WLAN设备可以支持WLAN通信协议。
本申请中,实现本申请方法的装置可以是WLAN中的PCP/AP或STA,或者是,安装在PCP/AP或STA中的芯片或处理系统。
PCP/AP是一种具有无线通信功能的装置,支持采用WLAN协议进行通信,具有与WLAN网络中其他设备(比如站点或其他接入点)通信的功能,当然,还可以具有与其他设备通信的功能。在WLAN系统中,接入点可以称为接入点站点(AP STA)。该具有无线通信功能的装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在芯片或处理系统的控制下,实现本申请实施例的方法和功能。本申请实施例中的PCP/AP是为STA提供服务的装置,可以支持802.11系列协议。例如,AP可以为通信服务器、路由器、交换机、网桥等通信实体;PCP/AP可以包括各种形式的宏基站,微基站,中继站等,当然PCP/AP还可以为这些各种形式的设备中的芯片和处理系统,从而 实现本申请实施例的方法和功能。
站点STA是一种具有无线通信功能的装置,支持采用WLAN协议进行通信,具有与WLAN网络中的其他站点或接入点通信的能力。在WLAN系统中,站点可以称为非接入点站点(non-access point station,non-AP STA)。例如,STA是允许用户与PCP/AP通信进而与WLAN通信的任何用户通信设备,该装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在芯片或处理系统的控制下,实现本申请实施例的方法和功能。例如,STA可以为平板电脑、桌面型、膝上型、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、手持计算机、上网本、个人数字助理(Personal Digital Assistant,PDA)、手机等可以联网的用户设备,或物联网中的物联网节点,或车联网中的车载通信装置或,娱乐设备,游戏设备或系统,全球定位系统设备等,STA还可以为上述这些终端中的芯片或处理系统。
下面首先介绍本申请实施例中所涉及的术语和技术特征。
一、802.11bf
IEEE 802.11bf是关注无源物体(即目标不携带任何设备)感知的新一代无线标准,11bf基于接收到的信号,对于目标进行相应的参数(如速度,距离,角度等)估计及后续的动作/行为识别。802.11bf包含低频(sub7GHz,实现方式主要依托11ac,11ax,11be及下一代等标准)和高频(60GHz,实现方式主要依托11ad,11ay及下一代等标准)两个大类标准。本申请的技术方案可以适用于在高频(11ad/DMG,11ay/EDMG),也可以适用于低频(sub7GHz对应的标准)上。
由于高频电磁波自身的衰减更强,现有高频标准DMG/EDMG一般使用定向波束进行发送接收,这一点与低频sub7GHz中的标准区别较大。但是相对于低频,高频具有更大的带宽,更高的载频,感知性能较好。定向发送也可以提供一些角度信息,并且可以减少一定的干扰,有助于感知性能的增强。
802.11bf的高频(11ad,11ay)支持单基地(monostatic),双基地(bistatic)和多基地(multistatic)感知模式。
单基地模式是一种自发自收的感知模式,即发射和接收使用同一个设备。该模式下,发射和接收同时位于同一设备之中,可以实现较好的(时间、频率)同步,感知性能较好。
双基地模式是一种收发分置的感知模式,也可以称为被动感知,即发射和接收为两个独立工作的设备。该模式下,发射和接收并不存在同一设备之中,感知性能潜在会收到(不同步)的影响。
多基地模式是一种一/多发多收,或者多发一/多收的感知模式。该模式下存在多个设备联合工作,相当于多个单/双基地模式的混合工作模式。
二、802.11ad/ay中的信标间隔(beacon interval,BI)
在802.11ad/ay中,时间轴被划分成各个BI。图2为信标间隔BI的结构示意图,如图2所示,信标间隔分为信标头指示(beacon header indication,BHI)和数据传输间隔(data transmission interval,DTI)。其中,BHI中又包括信标传输间隔(beacon transmission interval,BTI)、关联-波束赋形训练(association beamforming training,A-BFT)以及公告传输间隔(announcement transmission interval,ATI)。
具体地,PCP/AP会在BTI中按照扇区编号发送多个信标(beacon)帧,用于下行扇区扫描;A-BFT用于STA进行关联,以及上行扇区扫描;ATI用于PCP/AP向STA轮询缓存数据 信息以及向STA分配数据传输间隔(data transmission interval,DTI)中的资源。整个DTI会被分为若干个子区间,子区间会根据接入的形式分为基于竞争接入区间(contention based access period,CBAP)和服务区间(service period,SP),后者是进行调度传输,无需进行竞争。
三、基于DMG Beacon的被动感知
AP首先在Beacon中携带一个sensing short capability element,表明AP支持passive被动感知。如果环境中的STA想要利用AP发送的Beacon信息进行感知,可以向AP发送信息请求Information request帧,请求AP发送Beacon的相关信息。AP通过information response帧向STA发送Beacon的发送信息(如发送时间,发送波束方向等)。STA可以通过这些信息,接收AP发送的Beacon,并根据Beacon的发送信息进行被动感知。
四、SSW帧和Short SSW帧
802.11ad中的波束训练主要在关联波束赋形训练(Association BFT,A-BFT)期间进行。首先,在BTI阶段,PCP/AP在各个方向上发送Beacon帧,该帧中的A-BFT Length字段指示了A-BFT阶段的时隙总长度,收到该帧的STAs会在接下来的A-BFT阶段随机选择[0,A-BFT Length-1]中的一个时隙接入,然后用定向天线依次发送SSW帧(即RXSS),此时,PCP/AP会用准全向天线接收来自各个方向的波束并记录STAs的最佳发射波束。随后,进入扇区级扫描反馈阶段(SSW Feedback),此时PCP/AP会以定向波束向STAs反馈上一阶段(RSS)的训练信息,反馈信息是按照扇区质量进行排序的发起方发送扇区列表,并且包含上一阶段应答方的最佳扇区,此时应答方处于准全向接收模式。最后,进入扇区扫描确认(SSW ACK)阶段,其中在数据传输阶段(DTI)之前做SLS时可以不存在SSW ACK阶段,在DTI阶段做SLS则需要有SSW ACK阶段。在SSW ACK阶段,STAs反馈按照质量排序的应答方发送扇区列表。
此外,为了满足更多用户的接入训练需求,在802.11ay中新加入了EDGM STA类型,与802.11ad中传统DGM STA不同的是,其可在A-BFT阶段所规划的A-BFT slot中既可以传输SSW帧也可以传输Short SSW帧,Short SSW帧相比于SSW帧,其帧长更短,可以让EDGM STA在一个slot中传输更多。
图3是本申请实施例提供的一种自发自收感知方法的流程示意图。该自发自收感知方法可以应用于如图1所示的通信系统中,其中,第一设备可以是如图1所示的PCP/AP,或者,该第一设备可以是如图1所示的STA。如图1所示,该方法包括:
101、第一设备基于第一帧结构进行自发自收感知,获得第一感知结果。
102、第二设备向第一设备发送第一请求帧,该第一请求帧用于请求获取自发自收感知结果。相应的,第一设备接收该第一请求帧。
103、第一设备根据第一请求帧,向第二设备发送第一响应帧,该第一响应帧包括第一感知结果。相应的,第二设备接收该第一响应帧。
其中,第一设备可以是PCP/AP或者STA,若第一设备为PCP/AP,该第一帧结构包括以下中的一种:DMG信标帧、数据帧或者BRP;若第一设备为STA,该第一帧结构为以下中的一种:扇区扫描SSW、Short SSW、BRP或者数据帧。其中,第一帧结构后面可以携带训练字段(Training Field,TRN),该TRN由于会进行扫描,更有助于感知。
示例性的,当PCP/AP具备自发自收感知能力时,可以基于DMG信标帧Beacon、数据帧或BRP进行自发自收感知,获得第一感知结果。当STA具备自发自收感知能力时,可以 基于SSW、Short SSW、数据帧或BRP进行自发自收感知,获得第一感知结果。
在一种可能的设计中,第一设备可以基于第一设备发送的第一帧结构进行自发自收感知,获得第一感知结果,并将第一感知结果发送给第二设备,具体可选的,可以是第二设备通过第一请求帧向第一设备请求获取自发自收感知结果,该第一设备通过第一响应帧向第二设备发送该第一感知结果,可选的,该第一请求帧可以是DMG Sensing Poll帧或者information request帧。进一步,第二设备可以基于该第一设备发送的该第一帧结构进行被动感知passive sensing。其中,该第二设备可以向第一设备请求该第一设备发送该第一帧结构的目标波束信息以及发送该第一帧结构时该第一设备的目标位置信息,目标波束信息包括但不限于波束水平方向,垂直方向,波束水平宽度,波束垂直宽度,波束增益等信息,目标位置信息包括但不限于发送该第一帧结构时第一设备的朝向姿态信息,需要说明的是,该位置信息可以是以第一设备为坐标原点或者以其他坐标为坐标原点所确定的位置坐标。相应的,第一设备将该目标波束信息和该目标位置信息发送给第二设备。第二设备不仅可以利用该目标波束信息和目标位置信息,基于第一帧结构进行被动感知,还可以利用该目标波束信息和目标位置信息对所获取的第一感知结果进行解析或解读,基于同一流程实现被动感知和自发自收感知,从而提升感知效率,并且避免波束信息和位置信息重复传输。进一步,第二设备还可以基于第一设备发送的自发自收感知结果和被动感知结果进行综合感知,增加了同一个时刻的感知分集增益,提高感知性能。
在另一种可能的设计中,第一设备可以宣称将基于第一帧结构进行自发自收感知,第二设备可以通过第一请求帧向第一设备请求自发自收感知的第一感知结果,可选的,该第一请求帧可以是DMG Sensing Poll帧。具体可选的,若第一设备为PCP或AP,该第一帧结构可以为本次或下次BTI中的DMG信标帧,即PCP或AP宣称正在基于本次BTI中的DMG信标帧进行自发自收感知或将基于下次BTI中的DMG信标帧进行自发自收感知,在本次或下次BTI结束之后,STA可以向PCP或AP请求进行自发自收感知的第一感知结果。该第一帧结构还可以是本次或下次DTI中的数据帧,即PCP或AP宣称将基于正在基于本次DTI中的数据帧进行自发自收感知或将基于下次DTI中的数据帧进行自发自收感知,在本次或下次DTI结束之后,STA可以向PCP或AP请求进行自发自收感知的第一感知结果。该第一帧结构还可以是本次或下次DTI中的BRP,即PCP或AP宣称将基于正在基于本次DTI中的BRP进行自发自收感知或将基于下次DTI中的BRP进行自发自收感知,在本次或下次DTI结束之后,STA可以向PCP或AP请求进行自发自收感知的第一感知结果。
若第一设备为STA,该第一帧结构可以为本次或下次A-BFT中的SSW或Short SSW,即STA宣称正在基于本次A-BFT中的SSW或Short SSW进行自发自收感知或将基于下次A-BFT中的SSW或Short SSW进行自发自收感知,在本次或下次A-BFT结束之后,该PCP或AP可以向STA请求进行自发自收感知的第一感知结果。该第一帧结构还可以是本次或下次DTI中的数据帧,即STA宣称正在基于本次DTI中的数据帧进行自发自收感知或将基于下次DTI中的数据帧进行自发自收感知,在本次或下次DTI结束之后,该PCP或AP可以向PCP或AP请求进行自发自收感知的第一感知结果。该第一帧结构还可以为本次或下次DTI中的BRP,即STA宣称正在基于本次DTI中的BRP进行自发自收感知或将基于下次DTI中的BRP进行自发自收感知,在本次或下次DTI结束之后,该PCP或AP可以向STA请求进行自发自收感知的第一感知结果。
需要说明的是,为了对第一感知结果进行解读,该第二设备还可以向第一设备请求发送该第一帧结构的目标波束信息和第一设备发送该第一帧结构时的目标位置信息。
在该种可能的实现方式中,第二设备可以进行被动感知,也可以不进行被动感知,即自发自收感知与被动感知并不绑定,提高自发自收感知方式的灵活性。
图4是本申请实施例提供的另一种自发自收感知方法的流程示意图。图4中的方法流程为图3中的方法的一种可能的实现方式。如图4所示,该方法包括:
201、第一设备通过第三信息宣称具备自发自收感知能力,通过第四信息宣称具备被动感知能力。
在一些实施方式中,第一设备发送第三信息和第四信息,该第三信息用于宣称第一设备具备自发自收感知能力,或者,该第三信息用于指示该第一设备支持自发自收感知。该第四信息用于宣称第一设备具备被动感知能力,或者,该第四信息用于指示该第一设备支持被动感知,其他设备可以向该第一设备请求发送波束信息和位置信息。第一设备可以是通过广播、组播或单播的方式发送该第三信息和第四信息。相应的,第二设备接收该第三信息和第四信息。
其中,该第三信息和第四信息可以包含于第二帧结构中,可选的,该第三信息和第四信息可以包含于第二帧结构的能力元素Capability Element字段中,比如DMG Short Sensing Capability Element字段。
在第一种可选的实施方式中,第一设备为PCP/AP,该PCP/AP基于信标Beacon帧或BRP进行自发自收感知,即第一帧结构为DMG信标帧或BRP。
该PCP/AP可以在第二帧结构的DMG Short Sensing Capability Element字段宣称其具备自发自收感知能力。可选的,该第二帧结构可以是关联申请帧(Association Request Frame),关联响应帧(Association Response Frame),再关联申请(Reassociation Request Frame),再关联响应帧(Reassociation Response Frame),DMG Beacon帧,信息请求帧(Information Request Frame),信息响应帧(Information Response Frame)、探测请求帧(Probe Request),探测响应帧(Probe Response)等帧。
其中,DMG Sensing Short Capabilities Element字段的结构可以如图5a所示,其中,第三信息和第四信息可以包含于DMG Sensing Short Capabilities Element字段的Short Sensing Capabilities字段中,如图5b和如图5c所示,为两种可选的Short Sensing Capabilities字段的结构示意图。其中,Monostatic sensing support子字段用于承载第三信息,也就是说第三信息包含于Monostatic sensing support子字段中,Passive Sensing Support子字段用于承载第四信息,也就是说第四信息包含于Passive Sensing Support子字段。
本申请实施例中,通过在Short Sensing Capabilities字段中新添加一个Monostatic Sensing Support子字段,用来明确AP是否支持自发自收感知。如果Passive Sensing Support为1,且Monostatic Sensing Support为1,该比特位组合表示AP可以支持Beacon Passive Sensing且可以提供基于Beacon的自发自收感知结果。可理解,新增加Monostatic Sensing Support子字段之后,Short Sensing Capabilities中的sensing support字段用于表示支持除被动感知和自发自收感知外的任何一种感知模式。
在第二种可选的实施方式中,第一设备是PCP/AP,该PCP/AP基于数据帧进行自发自收感知,即第一帧结构为数据帧。
在一种可能的实现方式中,该PCP/AP可以在第二帧结构的DMG Short Sensing Capability Element字段宣称其具备自发自收感知能力。可选的,该第二帧结构可以是关联申请帧(Association Request Frame),关联响应帧(Association Response Frame),再关联申请 (Reassociation Request Frame),再关联响应帧(Reassociation Response Frame),DMG Beacon帧,信息请求帧(Information Request Frame),信息响应帧(Information Response Frame),数据帧、探测请求帧(Probe Request),探测响应帧(Probe Response)等帧。具体可选的,该第三信息和第四信息可以包含于DMG Short Sensing Capability Element的Short Sensing Capabilities字段中,具体可以参照第一种可选的实施方式中。
在另一种可能的实现方式中,还可以在DMG信标帧Beacon的Extended Schedule element的对应Allocation field中,采用至少1个bit,指示该Allocation是用于/支持被动感知Passive sensing和自发自收感知monostatic sensing,即第二帧结构为DMG信标帧。如图5d和图5e所示,为Allocation field的两种结构示意图,如图所示,可以采用Allocation Control subfield中的reserved bit承载第三信息和第四信息。可以理解的是,PCP/AP也可以通过DMG Short Sensing Capability Element宣称该PCP/AP支持被动感知Passive sensing,而通过Beacon的Extended Schedule element的对应Allocation field中的bit指示该Allocation支持自发自收感知。
在一种可能的实现方式中,也可以在数据帧中加入至少一个bit来指示该PCP/AP支持被动感知Passive sensing和自发自收感知monostatic sensing,或指示PCP/AP具备被动感知能力和自发自收感知能力,即第二帧结构为数据帧,比如可以在PHY header或MAC header的任意至少一个reserved bit承载第三信息和第四信息。可以理解的是,PCP/AP也可以通过DMG Short Sensing Capability Element宣称该PCP/AP支持Passive sensing,而通过数据帧中加入的一个bit来指示该PCP/AP支持自发自收感知。
在第三种可选的实施方式中,第一设备为STA,该STA基于SSW或Short SSW或BRP进行自发自收感知,即第一帧结构为SSW或Short SSW或BRP。
该STA可以在第二帧结构的DMG Short Sensing Capability Element字段宣称其具备自发自收感知能力,或宣称其支持自发自收感知。可选的,该第二帧结构可以是关联申请帧(Association Request Frame),关联响应帧(Association Response Frame),再关联申请(Reassociation Request Frame),再关联响应帧(Reassociation Response Frame),信息请求帧(Information Request Frame),信息响应帧(Information Response Frame),SSW帧,Short SSW帧,探测请求帧(Probe Request),探测响应帧(Probe Response)等帧中。
其中,DMG Sensing Short Capabilities Element字段的结构可以如图5a所示,其中,第三信息和第四信息可以包含于DMG Sensing Short Capabilities Element字段的Short Sensing Capabilities字段中,如图5b和如图5c所示,为两种可选的Short Sensing Capabilities字段的结构示意图。其中,Monostatic sensing support子字段用于承载第三信息,也就是说第三信息包含于Monostatic sensing support子字段中,Passive Sensing Support子字段用于承载第四信息,也就是说第四信息包含于Passive Sensing Support子字段。具体可参照第一种可选的实施方式的具体描述,在此不再赘述。需要说明的是,如果设备是STA的话,Passive Sensing Support为1,且Monostatic Sensing Support为1,该比特位组合表示STA可以支持Passive Sensing且可以提供自发自收感知结果。
可选的,STA可以在A-BFT过程中发送SSW或者Short SSW,可以使用SSW或者Short SSW的预留比特指示STA支持自发自收感知,或者指示STA具备自发自收感知能力。如图5f所示,为本申请提供的SSW的结构示意图,可以采用该SSW的SSW Feedback字段中的预留比特位指示该STA支持自发自收感知,或指示STA具备自发自收感知能力。如图5g所示,为本申请提供的Short SSW的结构示意图,可以采用该Short SSW中的预留比特位指示 该STA支持自发自收感知,或指示STA具备自发自收感知能力。即通过SSW或者Short SSW中的预留比特位承载或表示第三信息。
在第四种可选的实施方式中,第一设备为STA,该STA基于数据帧进行自发自收感知,即第一帧结构为数据帧。
在一种可能的实现方式中,该STA可以在第二帧结构的DMG Short Sensing Capability Element字段宣称其具备自发自收感知能力。可选的,该第二帧结构可以是关联申请帧(Association Request Frame),关联响应帧(Association Response Frame),再关联申请(Reassociation Request Frame),再关联响应帧(Reassociation Response Frame),信息请求帧(Information Request Frame),信息响应帧(Information Response Frame),SSW帧,Short SSW帧、探测请求帧(Probe Request),探测响应帧(Probe Response)或数据帧等帧中。具体可选的,该第三信息和第四信息可以包含于DMG Short Sensing Capability Element的Short Sensing Capabilities字段中,具体可以参照第一种可选的实施方式中。需要说明的是,如果设备是STA的话,Passive Sensing Support为1,且Monostatic Sensing Support为1,该比特位组合表示STA可以支持被动感知Passive Sensing且可以提供自发自收感知结果。
可选的,STA可以在A-BFT过程中发送SSW帧或者Short SSW帧,可以使用SSW帧或者Short SSW帧的预留比特指示STA支持自发自收感知,或指示STA具备自发自收感知能力。如图5f所示,为本申请提供的SSW的结构示意图,可以采用该SSW的SSW Feedback字段中的预留比特位指示该STA支持自发自收感知,或指示STA具备自发自收感知能力。如图5g所示,为本申请提供的Short SSW的结构示意图,可以采用该Short SSW中的预留比特位指示该STA支持自发自收感知,或指示STA具备自发自收感知能力。
在一种可能的实现方式中,也可以在数据帧中加入至少一个bit来指示该STA支持被动感知Passive sensing和自发自收感知monostatic sensing,或指示STA具备被动感知能力和自发自收感知能力,即第二帧结构为数据帧,比如可以在PHY header或MAC header的任意至少一个reserved bit承载第三信息和第四信息。可以理解的是,STA也可以通过DMG Short Sensing Capability Element宣称该STA支持Passive sensing,而通过数据帧中加入的一个bit来指示该STA支持自发自收感知。
202、第二设备向第一设备发送第一信息和第二信息,该第一信息用于请求第一设备进行自发自收感知,第二信息用于请求获取目标波束信息和目标位置信息,目标波束信息为第一设备发送第一帧结构的波束信息,目标位置信息为第一设备发送第一帧结构的位置信息。相应的,第一设备接收该第一信息和第二信息。
203、第一设备根据第一信息,基于第一帧结构进行自发自收感知,获得第一感知结果。
204、第二设备向第一设备发送第一请求帧,该第一请求帧用于请求获取自发自收感知结果。相应的,第一设备接收该第一请求帧。
205、第一设备向第二设备发送第一响应帧,该第一响应帧包括第一感知结果。相应的,第二设备接收该第一响应帧。
206、第一设备根据第二信息,发送目标波束信息和目标位置信息
207、第二设备根据目标波束信息和目标位置信息,基于第一帧结构进行被动感知。
208、第二设备根据目标波束信息和目标位置信息,解析第一感知结果。
在一些实施例中,第二设备解析第二帧结构中的相关信息,比如第三信息和第四信息,该第二设备通过第三信息确定第一设备支持自发自收感知,该第二设备可以通过第一信息向第一设备请求其进行自发自收感知。第二设备通过第四信息确定第一设备支持被动感知,该 第二设备可以通过第二信息向第一设备请求目标波束信息和目标位置信息,可理解的是,为了便于第二设备解析第一设备的自发自收感知结果,该第二设备也需要向第一设备请求目标波束信息和目标位置信息。
示例性的,第一信息和第二信息可以包含于信息请求information request帧中,例如,第一信息和第二信息分别包含于information request帧的不同元素中,或者,第一信息和第二信息也可以包含于information request帧的被动感知信息元素(例如:DMG Passive Sensing Beacon Info element/DMG Passive Sensing SSW Info element/DMG Passive Sensing Short SSW Info element/DMG Passive Sensing Info element)中,或者,第一信息和所述第二信息可以分别包含于不同请求帧中,比如第二信息包含于information request帧中,而第一信息包含于另一个请求帧中(如DMG Sensing Measurement Setup Request/DMG Sensing Measurement Instance Request/DMG Sensing Request),本申请不作限定。
具体可选的,第二设备向第一设备发送information request帧,请求第一设备自身的目标位置信息(包括发送第一帧结构时的朝向姿态信息)和第一设备发送第一帧结构的目标波束信息(包括波束水平方向,垂直方向,波束水平宽度,波束垂直宽度,波束增益等信息),以利用第一设备后续发送的第一帧结构进行被动感知passive sensing。除此之外,第二设备还可以同时请求第一设备后续在发送第一帧结构时利用第一帧结构进行自发自收感知。待感知完成后,第二设备可以向第一设备请求基于第一帧结构的自发自收感知monostatic sensing的第一感知结果,可理解的是,第二设备请求的第一设备自身的目标位置信息和发送第一帧结构的目标波束信息也可以用于解读或解析第一感知结果。
示例性的,以第一设备为AP或PCP,第二设备为STA,第一帧结构为Beacon作为举例进行说明,STA可以通过Information request帧中包含的DMG Passive Sensing Beacon Info element来请求AP发送Beacon的目标波束信息和AP的目标位置信息等信息。AP会向STA发送Information response帧,该Information response帧中包含DMG Passive Sensing Beacon Info element(描述Beacon的发送时间和AP位置等信息)和一或多个DMG Beacon Sector Descriptors elements(描述Beacon发送的波束信息等信息)。
本申请实施例中,用于请求AP进行自发自收感知的第一信息可以包含于Information request帧的DMG Passive Sensing Beacon Info Element中,即DMG Passive Sensing Beacon Info Element额外包含一个指示信息(即第一信息)来请求AP基于Beacon进行自发自收感知。如图5h所示,即是DMG Passive Sensing Beacon Info Element的结构示意图,本申请的第一信息可以包含于Beacon Info Control字段中,当然也可以是包含于DMG Passive Sensing Beacon Info Element的其他字段中。示例性的,如图5i所示,为Beacon Info Control字段的一种可能的结构示意图,在该Beacon Info Control字段中增加一个比特Monostatic Sensing request用于请求AP进行自发自收感知,即Monostatic Sensing request包含第一信息,第一信息承载在Monostatic Sensing request中。示例性的,如图5j所示,为Beacon Info Control字段的另一种可能的结构示意图,与图5i相比,在图5j中,该Beacon Info Control字段包括The Next Beacon字段,该字段用于指示AP后续发送的目标波束信息是用于描述本次BTI中的Beacon或者是下次BTI中的Beacon,可理解,图5j中的比特Monostatic Sensing request也是用于请求AP进行自发自收感知,即Monostatic Sensing request包含第一信息,第一信息承载在Monostatic Sensing request中。
STA通过Information request帧请求了AP关于其自身的目标位置信息和发送Beacon的目标波束的相关信息,并且在该Information request帧中同时请求AP基于Beacon进行自发 自收的感知。
此时,基于AP发送的目标位置信息和发送Beacon的目标波束的相关信息,STA通过AP发送的Beacon进行被动感知,AP在STA请求下基于Beacon进行自发自收的感知。后续STA,可以向AP请求基于Beacon的自发自收感知结果,即第一感知结果,AP通过第一响应帧反馈第一感知结果,STA收到第一感知结果之后联合被动感知结果进行分析。
可选的,用于承载第一信息的monostatic sensing request bit还可以出现在一个新的element之中。即此时的information request帧包含两个element,一个element请求passive sensing相关信息(即DMG Passive Sensing Beacon Info Element),一个element请求自发自收感知。
需要声明的是,以上请求目标波束信息和目标位置信息与请求AP进行自发自收感知还可以分开两个帧实现,即通过information request/response来交互Beacon的发送波束信息和AP的目标位置信息,STA通过另一个请求帧(如DMG Sensing Measurement Setup Request/DMG Sensing Measurement Instance Request/DMG Sensing Request)请求AP基于Beacon进行自发自收感知,相应的,AP基于该另一个请求帧对应的响应帧反馈自发自收感知结果。可理解,若第一帧结构为BRP,则上述交互流程中的Beacon可被替换为BRP。
类似的,自发自收感知设备为STA,即第一设备为STA,第二设备为AP或PCP,可以采用对应的流程完成相关信息请求反馈的交互。可理解,当自发自收感知设备为STA,Information Request/Response帧中会包含对应的DMG Passive Sensing(SSW/Short SSW/BRP)Info element。对应的,该element中的信息主要用来描述A-BFT中STA发送SSW/Short SSW/BRP的信息。可以在DMG Passive Sensing(SSW/Short SSW/BRP)Info element中增加一比特Monostatic Sensing request用于请求STA进行自发自收感知,该比特可以位于(SSW/Short SSW/BRP)Info Control字段中,或者,也可以是Information Request帧中包括DMG Passive Sensing(SSW/Short SSW/BRP)Info element和另外一个element,该另外一个element包含比特Monostatic Sensing request,用于请求STA进行自发自收感知,或者,还可以是采用Information Request帧请求STA发送SSW/Short SSW/BRP的目标波束信息和STA的目标位置信息,AP通过另一个请求帧(如DMG Sensing Measurement Setup Request/DMG Sensing Measurement Instance Request/DMG Sensing Request)请求STA基于(SSW/Short SSW/BRP)进行自发自收感知。
可以理解的是,如果是PCP/AP或者STA是基于数据帧进行自发自收感知和被动感知,Information Request/Response帧中会包含对应的DMG Passive Sensing(Data PPDU)Info element。对应的,该element中的信息主要用来描述PCP/AP或者STA发送数据帧Data PPDU的相关信息,具体交互流程可以参照前述实施例的描述,在此不再赘述。
第一设备向第二设备发送第一帧结构的目标波束信息和发送第一帧结构时第一设备的目标位置信息,可以被用以同时解读被动感知passive sensing和自发自收感知monostatic sensing的结果。提升了感知效率,并节省了位置信息和波束发送信息交互overhead。并且同时实现了基于同一个Beacon/SSW/Short SSW/数据帧的passive sensing和monostatic sensing,增加了同一个时刻的感知分集增益,相较于独立进行的方式,可以提升感知的性能。
图6是本申请实施例提供的又一种自发自收感知方法的流程示意图。图6中的方法流程为图3中的方法的一种可能的实现方式。如图6所示,该方法包括:
301、第一设备通过第五信息宣称第一设备基于第一帧结构进行自发自收感知。
302、第一设备基于第一帧结构进行自发自收感知,获得第一感知结果。
303、第二设备向第一设备发送第一请求帧,第一请求帧用于请求获取自发自收感知结果。
304、第一设备向第二设备发送第一响应帧,该第一响应帧包括所述第一感知结果。
可选的,还可以包括步骤305;
305、第二设向第一设备发送第二请求帧,第二请求帧用于请求获取目标波束信息和目标位置信息。
306、第一设备向第二设备发送目标波束信息和目标位置信息,所述目标波束信息为所述第一设备发送所述第一帧结构的波束信息,所述目标位置信息为所述第一设备发送所述第一帧结构时的位置信息。
307、第二设备根据目标波束信息和目标位置信息对第一感知结果进行解析。
在一些实施方式中,第一设备发送第五信息,该第五信息用于宣称第一设备将基于第一帧结构进行自发自收感知,或者第五信息用于宣称第一设备正在基于第一帧结构进行自发自收感知。第一设备可以是通过广播、组播或单播的方式发送该第五信息。相应的,第二设备接收该第五信息。
示例性的,若第一设备为PCP或AP,第一帧结构可以为本次或下次BTI中的DMG信标帧,PCP或AP通过第五信息宣称该PCP或AP正在基于本次BTI中的Beacon进行自发自收感知,或者,PCP或AP通过第五信息宣称STA该PCP或AP将基于下次BTI中的Beacon进行自发自收感知。STA在对应BTI结束之后,可以向PCP或AP请求自发自收感知的第一感知结果。为了解析该第一感知结果,STA也可以向PCP或AP请求自发自收感知monostatic sensing过程中PCP或AP发送Beacon的目标波束信息和PCP或AP发送Beacon时该PCP或AP的目标位置信息。
示例性的,若第一设备为PCP或AP,第一帧结构可以为本次或下次DTI中的数据帧,PCP或AP通过第五信息宣称该PCP或AP正在基于本次DTI中的数据帧进行自发自收感知,或者,PCP或AP通过第五信息宣称STA该PCP或AP将基于下次DTI中的数据帧进行自发自收感知。STA在对应DTI结束之后,可以向PCP或AP请求自发自收感知的第一感知结果。为了解析该第一感知结果,STA也可以向PCP或AP请求自发自收感知monostatic sensing过程中PCP或AP发送数据帧的目标波束信息和PCP或AP发送数据帧时该PCP或AP的目标位置信息。
示例性的,若第一设备为PCP或AP,第一帧结构可以为本次或下次DTI中的BRP,PCP或AP通过第五信息宣称该PCP或AP正在基于本次DTI中的BRP进行自发自收感知,或者,PCP或AP通过第五信息宣称该PCP或AP将基于下次DTI中的BRP进行自发自收感知。STA在对应A-BFT结束之后,可以向PCP或AP请求自发自收感知的第一感知结果。为了解析该第一感知结果,STA也可以向PCP或AP请求自发自收感知monostatic sensing过程中PCP或AP发送BRP的目标波束信息和PCP或AP发送BRP时该PCP或AP的目标位置信息。
示例性的,若第一设备为STA,第一帧结构可以为本次或下次A-BFT中的SSW或Short SSW;STA通过第五信息宣称该STA正在基于本次A-BFT中的SSW/Short SSW进行自发自收感知,或者,STA通过第五信息宣称该STA将基于下次A-BFT中的SSW/Short SSW进行自发自收感知。AP在对应A-BFT结束之后,向STA请求STA自发自收感知的第一感知结果。为了解析该第一感知结果,AP也可以向STA申请自发自收感知monostatic sensing过程中STA发送SSW/Short SSW的目标波束信息和STA发送该SSW/Short SSW的目标位置信息。
示例性的,若第一设备为STA,第一帧结构为本次或下次DTI中的数据帧,STA通过第五信息宣称该STA正在基于本次DTI中的数据帧进行自发自收感知,或者,STA通过第五信 息宣称该STA将基于下次A-BFT中的SSW/Short SSW进行自发自收感知。AP在对应DTI结束之后,向STA请求STA自发自收感知的第一感知结果。为了解析该第一感知结果,AP也可以向STA申请自发自收感知monostatic sensing过程中STA发送数据帧的目标波束信息和STA发送该数据帧的目标位置信息。
示例性的,若第一设备为STA,第一帧结构为本次或下次DTI中的BRP,STA通过第五信息宣称该STA正在基于本次DTI中的BRP进行自发自收感知,或者,STA通过第五信息宣称该STA将基于下次DTI中的BRP进行自发自收感知。AP在对应DTI结束之后,向STA请求STA自发自收感知的第一感知结果。为了解析该第一感知结果,AP也可以向STA申请自发自收感知monostatic sensing过程中STA发送BRP的目标波束信息和STA发送该数据帧的目标位置信息。
其中,第二设备可以通过第一请求帧向第一设备请求获取自发自收感知结果,该第一设备通过第一响应帧将自发自收感知的第一感知结果发送给第二设备。可选的,该第一请求帧还用于请求获取目标波束信息和目标位置信息,示例性的,该第一请求帧可以是Information Request帧。可选的,第一请求帧可以是用于请求获取自发自收感知结果,第二设备通过第二请求帧请求获取目标波束信息和目标位置信息,示例性的,该第一请求帧可以是DMG Sensing Poll帧,该第二请求帧可以是Information Request帧。进一步,第二设备根据所获取的目标波束信息和目标位置信息对第一设备的第一感知结果进行解析。
在一些可选的方式中,上述第五信息可以包含于第三帧结构中;若第一设备为PCP或AP,该第三帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,DMG信标帧,信息请求帧,信息响应帧、探测请求帧(Probe Request),探测响应帧(Probe Response)或数据帧等等。若第一设备为STA,第三帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,信息请求帧,信息响应帧,探测请求帧(Probe Request),探测响应帧(Probe Response),SSW帧,Short SSW帧或数据帧等等。
示例性的,该第五信息可以包含于第三帧结构的能力元素Capability Element字段中,比如包含于DMG Short Sensing Capability Element字段中。
可选的,该第五信息可以包含于DMG Short Sensing Capability Element的Short Sensing Capabilities字段中,如图7a、图7b和图7c所示,即是本申请提供的Short Sensing Capabilities字段的结构示意图。如图7a和图7b所示,可以在Short Sensing Capabilities字段中增加Monostatic sensing字段用于承载第五信息,即通过Monostatic sensing字段用来指示相关设备是否正在基于本次发送进行自发自收感知,或者是否将会基于下次发送进行自发自收感知。可理解,Monostatic sensing字段可以只用于指示相关设备正在基于本次发送进行自发自收感知,或者,Monostatic sensing字段也可以只用于指示相关设备将会基于下次发送进行自发自收感知,本申请不作限定。Monostatic sensing字段也可以用来指示相关设备正在基于本次发送进行自发自收感知,或者将会基于下次发送进行自发自收感知。
在一些可选的实现方式中,如图7c所示,还可以在Short Sensing Capabilities字段中增加第一字段(例如:Monostatic sensing with current Beacon)和第二字段(例如:Monostatic sensing with next Beacon),该第一字段用于指示正在基于本次发送的第一帧结构(比如本次BTI中的Beacon,或者本次A-BFT中的SSW或Short SSW)进行自发自收感知,该第二字段用于指示将基于下次发送的第一帧结构(比如下次BTI中的Beacon,或下次A-BFT中的SSW或Short SSW)进行自发自收感知。第五信息包含于第一字段中或第二字段中。
可以理解的是,如果第一设备是PCP/AP,该PCP/AP基于数据帧进行自发自收感知,即第一帧结构为数据帧。一种可能的设计中,该PCP/AP可以在第三帧结构的DMG Short Sensing Capability Element字段宣称其正在基于本次DTI中的数据帧进行自发自收感知,或者将基于下次DTI中的数据帧进行自发自收感知。该第三帧结构可以是关联申请帧(Association Request Frame),关联响应帧(Association Response Frame),再关联申请帧(Reassociation Request Frame),再关联响应帧(Reassociation Response Frame),Beacon帧,信息请求帧(Information Request Frame),信息响应帧(Information Response Frame),数据帧、探测请求帧(Probe Request),探测响应帧(Probe Response)等帧等,具体请参照前述实施例的描述,在此不再赘述。在另一种可能的实现方式中,该PCP/AP也可以在DMG信标帧Beacon的Extended Schedule element的对应Allocation field中,采用至少1个bit,指示该Allocation正在基于本次DTI中的数据帧进行自发自收感知,或基于下次DTI中的数据帧进行自发自收感知。在又一种可能的实现方式中,该PCP/AP也可以在数据帧中加入至少一个bit来指示该PCP/AP正在基于本次DTI中的数据帧进行自发自收感知,或基于下次DTI中的数据帧进行自发自收感知,比如可以在PHY header或MAC header的任意至少一个reserved bit来进行指示。
可以理解的是,如果第一设备是STA,该STA基于数据帧进行自发自收感知,即第一帧结构为数据帧。一种可能的设计中,该STA可以在第三帧结构的DMG Short Sensing Capability Element字段宣称其正在基于本次DTI中的数据帧进行自发自收感知,或者将基于下次DTI中的数据帧进行自发自收感知。该第三帧结构可以是关联申请帧(Association Request Frame),关联响应帧(Association Response Frame),再关联申请(Reassociation Request Frame),再关联响应帧(Reassociation Response Frame),信息请求帧(Information Request Frame),探测请求帧(Probe Request),探测响应帧(Probe Response),信息响应帧(Information Response Frame),SSW帧,Short SSW帧或数据帧等帧中,具体请参照前述实施例的描述,在此不再赘述。
可选的,STA可以使用在A-BFT过程中发送的SSW帧或者Short SSW的预留比特指示STA正在基于本次DTI中的数据帧进行自发自收感知,或者将基于下次DTI中的数据帧进行自发自收感知。
在一种可能的实现方式中,STA也可以在数据帧中加入至少一个bit来指示该STA正在基于本次DTI中的数据帧进行自发自收感知,或者将基于下次DTI中的数据帧进行自发自收感知。比如可以使用PHY header或MAC header的任意至少一个reserved bit进行指示。
可理解的是,本申请的技术方案不仅适用于高频,适用于低频,本申请不作限定。各个技术方案之间的内容也可以相互交叉引用。
以下将介绍本申请实施例提供的通信装置。
本申请根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图8至图10详细描述本申请实施例的通信装置。
图8为本申请实施例提供的一种通信装置100的结构示意图。该通信装置100可以对应实现上述各个方法实施例中由通信装置(例如第一设备和第二设备)实现的功能或者步骤。该通信装置可以包括处理模块110和收发模块120。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。处理模块110和收发模块120可以与该存储单元 耦合,例如,处理模块110可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成。例如,收发模块120可包括发送模块和接收模块。发送模块可以是发射机,接收模块可以是接收机。收发模块120对应的实体可以是收发器。
在一些可能的实施方式中,通信装置100能够对应实现上述方法实施例中第一设备的行为和功能。例如通信装置100可以为第一设备,也可以为应用于第一设备中的部件(例如芯片或者电路)。收发模块120例如可以用于执行图3、图4、图6的实施例中由第一设备所执行的全部接收或发送操作,例如图3所示的实施例中的步骤102和步骤103,图4所示的实施例中的步骤202、204、205以及206,图6所示的实施例中的步骤303、304、305、306,和/或用于支持本文所描述的技术的其它过程。处理模块110用于执行图3、图4、图6的实施例中由第一设备所执行的除了收发操作之外的全部操作,例如图3所示的实施例中的步骤101,图4所示的实施例中的步骤201、203,图6所示的实施例中的步骤301、302。
在一些可能的实施方式中,通信装置100能够对应实现上述方法实施例中第二设备的行为和功能。例如通信装置100可以为第二设备,也可以为应用于第二设备中的部件(例如芯片或者电路)。收发模块120例如可以用于执行图3、图4、图6的实施例中由第二设备所执行的全部接收或发送操作,例如图3所示的实施例中的步骤102和步骤103,图4所示的实施例中的步骤202、204、205、206,图6所示的实施例中的步骤303、304、305、306,和/或用于支持本文所描述的技术的其它过程。处理模块110用于执行图3、图4、图6的实施例中由第二设备所执行的除了收发操作之外的全部操作,例如图4所示的实施例的步骤207、208,图6所示的实施例的步骤307。
以上介绍了本申请实施例的第一设备和第二设备,以下介绍所述第一设备和第二设备可能的产品形态。应理解,但凡具备上述图8所述的通信装置的功能的任何形态的产品,或者,但凡具备上述图8所述的通信装置的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的第一设备和第二设备的产品形态仅限于此。
在一种可能的实现方式中,图8所示的通信装置中,处理模块110可以是一个或多个处理器,收发模块120可以是收发器,或者收发模块120还可以是发送单元和接收单元,发送单元可以是发送器,接收单元可以是接收器,该发送单元和接收单元集成于一个器件,例如收发器。本申请实施例中,处理器和收发器可以被耦合等,对于处理器和收发器的连接方式,本申请实施例不作限定。
图9为本申请实施例提供的另一种通信装置200的结构示意图。图9中的通信装置可以是上述第一设备,也可以是上述第二设备。
如图9所示,该通信装置200包括一个或多个处理器220和收发器210。收发器210可实现收发模块120的功能,处理器220可实现处理模块110的功能。
在图9所示的通信装置的各个实现方式中,收发器可以包括接收机和发射机,该接收机用于执行接收的功能(或操作),该发射机用于执行发射的功能(或操作)。以及收发器用于通过传输介质和其他设备/装置进行通信。
可选的,通信装置200还可以包括一个或多个存储器230,用于存储程序指令和/或数据。存储器230和处理器220耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器220可能和存储器230协同操作。处理器220可可以执行存储器230中存储的程序指令。
本申请实施例中不限定上述收发器210、处理器220以及存储器230之间的具体连接介质。本申请实施例在图9中以存储器230、处理器220以及收发器210之间通过总线240连接,总线在图9中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成等。
本申请实施例中,存储器可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(Random Access Memory,RAM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、只读存储器(Read-Only Memory,ROM)或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)等等。存储器是能够用于携带或存储具有指令或数据结构形式的程序代码,并能够由计算机(如本申请示出的通信装置等)读和/或写的任何存储介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
处理器220主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器230主要用于存储软件程序和数据。收发器210可以包括控制电路和天线,控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当通信装置开机后,处理器220可以读取存储器230中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器220对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器220,处理器220将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
可理解,本申请实施例示出的通信装置还可以具有比图9更多的元器件等,本申请实施例对此不作限定。以上所示的处理器和收发器所执行的方法仅为示例,对于该处理器和收发器具体所执行的步骤可参照上文介绍的方法。
在另一种可能的实现方式中,图8所示的通信装置中,处理模块110可以是一个或多个逻辑电路,收发模块120可以是输入输出接口,又或者称为通信接口,或者接口电路,或接口等等。或者收发模块120还可以是发送单元和接收单元,发送单元可以是输出接口,接收单元可以是输入接口,该发送单元和接收单元集成于一个单元,例如输入输出接口。如图10所示,图10所示的通信装置包括逻辑电路301和接口302。即上述处理模块110可以用逻辑电路301实现,收发模块120可以用接口302实现。其中,该逻辑电路301可以为芯片、处理电路、集成电路或片上系统(system on chip,SoC)芯片等,接口302可以为通信接口、输入输出接口、管脚等。示例性的,图10是以上述通信装置为芯片为例出的,该芯片包括逻辑电路301和接口302。
本申请实施例中,逻辑电路和接口还可以相互耦合。对于逻辑电路和接口的具体连接方式,本申请实施例不作限定。
示例性的,当通信装置用于执行上述第一设备执行的方法或功能或步骤时,逻辑电路301,用于基于第一帧结构进行自发自收感知,获得第一感知结果;接口302,用于接收第一请求帧,以及向第二设备发送第一响应帧。
示例性的,当通信装置用于执行上述第二设备执行的方法或功能或步骤时,接口302,用于向第一设备发送第一请求帧以及接收第一设备发送的第一响应帧;逻辑电路301,用于根据生成第一请求帧。
可理解,本申请实施例示出的通信装置可以采用硬件的形式实现本申请实施例提供的方法,也可以采用软件的形式实现本申请实施例提供的方法等,本申请实施例对此不作限定。
本申请实施例还提供了一种无线通信系统,该无线通信系统包括第一设备和第二设备,该第一设备和该第二设备可以用于执行前述任一实施例(如图3、图4、图6)中的方法。
此外,本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由第一设备执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由第二设备执行的操作和/或处理。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由第一设备执行的操作和/或处理被执行。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由第二设备执行的操作和/或处理被执行。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例提供的方案的技术效果。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机设备(可 以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种自发自收感知方法,应用于第一设备,其特征在于,包括:
    基于第一帧结构进行自发自收感知,获得第一感知结果;
    接收第二设备发送的第一请求帧,所述第一请求帧用于请求获取自发自收感知结果;
    根据所述第一请求帧,向所述第二设备发送第一响应帧,所述第一响应帧包括所述第一感知结果。
  2. 如权利要求1所述的方法,其特征在于,若所述第一设备为个人基本服务区控制点或接入点,所述第一帧结构包括以下中的一种:DMG信标帧、数据帧或波束优化协议BRP;
    若所述第一设备为站点,所述第一帧结构包括以下中的一种:扇区扫描SSW、Short SSW、BRP或者数据帧。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收所述第二设备发送的第一信息和第二信息,所述第一信息用于请求所述第一设备进行自发自收感知,所述第二信息用于请求获取目标波束信息和目标位置信息,所述目标波束信息为所述第一设备发送所述第一帧结构的波束信息,所述目标位置信息为所述第一设备发送所述第一帧结构的位置信息;
    根据所述第二信息,向所述第二设备发送所述目标波束信息和所述目标位置信息;
    所述基于第一帧结构进行自发自收感知,获得第一感知结果,包括:
    根据所述第一信息,基于所述第一帧结构进行自发自收感知,获得第一感知结果。
  4. 如权利要求3所述的方法,其特征在于,所述第一信息和所述第二信息分别包含于信息请求帧的不同元素中;或者,
    所述第一信息和所述第二信息分别包含于不同请求帧中;或者,
    所述第一信息和所述第二信息包含于信息请求帧的被动感知信息元素中。
  5. 如权利要求3或4所述的方法,其特征在于,所述方法还包括:
    发送第三信息和第四信息,所述第三信息用于宣称所述第一设备具备自发自收感知能力,所述第四信息用于宣称所述第一设备具备被动感知能力。
  6. 如权利要求5所述的方法,其特征在于,所述第三信息和所述第四信息包含于第二帧结构中;
    若所述第一设备为个人基本服务区控制点或接入点,所述第二帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,定向多吉比特DMG信标帧,信息请求帧,信息响应帧,探测请求帧,探测响应帧或数据帧;
    若所述第一设备为站点,第二帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,信息请求帧,信息响应帧,探测请求帧,探测响应帧,SSW帧,Short SSW帧或数据帧。
  7. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    发送第五信息,所述第五信息用于宣称所述第一设备基于所述第一帧结构进行自发自收感知。
  8. 如权利要求7所述的方法,其特征在于,若所述第一设备为个人基本服务区控制点或接入点,所述第一帧结构为本次或下次BTI中的DMG信标帧,或者,所述第一帧结构为本次或下次DTI中的数据帧,或者,所述第一帧结构为本次或下次DTI中的BRP;
    若所述第一设备为站点,所述第一帧结构为本次或下次A-BFT中的SSW或Short SSW; 或者,所述第一帧结构为本次或下次DTI中的数据帧,或者,所述第一帧结构为本次或下次DTI中的BRP。
  9. 如权利要求7或8所述的方法,其特征在于,所述第五信息包含于第三帧结构中;
    若所述第一设备为个人基本服务区控制点或接入点,所述第三帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,DMG信标帧,信息请求帧,信息响应帧,探测请求帧,探测响应帧或数据帧;
    若所述第一设备为站点,第三帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,信息请求帧,信息响应帧,探测请求帧,探测响应帧,SSW帧,Short SSW帧或数据帧。
  10. 如权利要求7-9任一项所述的方法,其特征在于,所述第一请求帧还用于请求获取目标波束信息和目标位置信息,所述目标波束信息为所述第一设备发送所述第一帧结构的波束信息,所述目标位置信息为所述第一设备发送所述第一帧结构时的位置信息,所述方法还包括:
    根据所述第一请求帧,向所述第二设备发送所述目标波束信息和所述目标位置信息。
  11. 如权利要求7-9任一项所述的方法,其特征在于,所述方法还包括:
    接收所述第一设备发送的第二请求帧,所述第二请求帧用于请求获取目标波束信息和目标位置信息,所述目标波束信息为所述第一设备发送所述第一帧结构的波束信息,所述目标位置信息为所述第一设备发送所述第一帧结构时的位置信息;
    根据所述第二请求帧,向所述第二设备发送所述目标波束信息和所述目标位置信息。
  12. 一种自发自收感知方法,应用于第二设备,其特征在于,包括:
    向第一设备发送第一请求帧,所述第一请求帧用于请求获取自发自收感知结果;
    接收所述第一设备发送的第一响应帧,所述第一响应帧包括所述第一设备基于第一帧结构进行自发自收感知的第一感知结果。
  13. 如权利要求12所述的方法,其特征在于,若所述第一设备为个人基本服务区控制点或接入点,所述第一帧结构包括以下中的一种:DMG信标帧、数据帧或波束优化协议BRP;
    若所述第一设备为站点,所述第一帧结构包括以下中的一种:扇区扫描SSW、Short SSW、BRP或者数据帧。
  14. 如权利要求12或13所述的方法,其特征在于,所述方法还包括:
    向所述第一设备发送第一信息和第二信息,所述第一信息用于请求所述第一设备进行自发自收感知,所述第二信息用于请求获取目标波束信息和目标位置信息,所述目标波束信息为所述第一设备发送所述第一帧结构的波束信息,所述目标位置信息为所述第一设备发送所述第一帧结构时的位置信息;
    接收所述第一设备发送的目标波束信息和目标位置信息;
    根据所述目标波束信息和所述目标位置信息,基于所述第一帧结构进行被动感知;
    根据所述目标波束信息和所述目标位置信息,解析所述第一感知结果。
  15. 如权利要求14所述的方法,其特征在于,所述方法还包括:
    接收所述第一设备发送的第三信息和第四信息,所述第三信息用于宣称所述第一设备具备基于所述第一帧结构的自发自收感知能力,所述第四信息用于宣称所述第一设备具备基于所述第一帧结构的被动感知能力;
    根据所述第三信息,向所述第一设备发送所述第一信息;
    根据所述第三信息和/或所述第四信息,向所述第一设备发送所述第二信息。
  16. 如权利要求15所述的方法,其特征在于,所述第三信息和所述第四信息包含于第二帧结构中;
    若所述第一设备为个人基本服务区控制点或接入点,所述第二帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,DMG信标帧,信息请求帧,信息响应帧,探测请求帧,探测响应帧或数据帧;
    若所述第一设备为站点,第二帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,信息请求帧,信息响应帧,探测请求帧,探测响应帧,SSW帧,Short SSW帧或数据帧。
  17. 如权利要求12或13所述的方法,其特征在于,所述方法还包括:
    接收所述第一设备发送的第五信息,所述第五信息用于宣称所述第一设备基于所述第一帧结构进行自发自收感知;
    所述向第一设备发送第一请求帧,包括:
    根据所述第五信息,向所述第一设备发送所述第一请求帧。
  18. 如权利要求17所述的方法,其特征在于,若所述第一设备为个人基本服务区控制点或接入点,所述第一帧结构为本次或下次BTI中的DMG信标帧,或者,所述第一帧结构为本次或下次DTI中的数据帧,或者,所述第一帧结构为本次或下次DTI中的BRP;
    若所述第一设备为站点,所述第一帧结构为本次或下次A-BFT中的SSW或Short SSW;或者,所述第一帧结构为本次或下次DTI中的数据帧,或者,所述第一帧结构为本次或下次DTI中的BRP。
  19. 如权利要求17或18所述的方法,其特征在于,所述第五信息包含于第三帧结构中;
    若所述第一设备为个人基本服务区控制点或接入点,所述第三帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,DMG信标帧,信息请求帧,信息响应帧,探测请求帧,探测响应帧或数据帧;
    若所述第一设备为站点,第三帧结构为以下中的一项或多项:关联申请帧,关联响应帧,再关联申请帧,再关联响应帧,信息请求帧,信息响应帧,探测请求帧,探测响应帧,SSW帧,Short SSW帧或数据帧。
  20. 如权利要求17-19任一项所述的方法,其特征在于,所述第一请求帧还用于请求获取目标波束信息和目标位置信息,所述目标波束信息为所述第一设备发送所述第一帧结构的波束信息,所述目标位置信息为所述第一设备发送所述第一帧结构时的位置信息,所述方法还包括:
    接收所述第一设备发送的所述目标波束信息和所述目标位置信息;
    根据所述目标波束信息和所述目标位置信息,解析所述第一感知结果。
  21. 如权利要求17-19任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一设备发送第二请求帧,所述第二请求帧用于请求获取目标波束信息和目标位置信息,所述目标波束信息为所述第一设备发送所述第一帧结构的波束信息,所述目标位置信息为所述第一设备发送所述第一帧结构时的位置信息;
    接收所述第一设备发送的所述目标波束信息和所述目标位置信息;
    根据所述目标波束信息和所述目标位置信息,解析所述第一感知结果。
  22. 一种通信装置,其特征在于,包括:
    处理模块,用于基于第一帧结构进行自发自收感知,获得第一感知结果;
    收发模块,用于接收第二设备发送的第一请求帧,所述第一请求帧用于请求获取自发自 收感知结果;
    所述收发模块,还用于根据所述第一请求帧,向所述第二设备发送第一响应帧,所述第一响应帧包括所述第一感知结果。
  23. 一种通信装置,其特征在于,包括:
    处理模块,用于生成第一请求帧,所述第一请求帧用于请求获取自发自收感知结果;
    收发模块,用于向第一设备发送第一请求帧,所述第一请求帧用于请求获取自发自收感知结果;
    所述收发模块还用于接收所述第一设备发送的第一响应帧,所述第一响应帧包括所述第一设备基于第一帧结构进行自发自收感知的第一感知结果。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被处理器执行时,使所述处理器执行权利要求1至11任意一项所述的方法,或者,使所述处理器执行权利要求12至21任意一项所述的方法。
  25. 一种通信装置,其特征在于,包括处理器和存储器,
    所述存储器,用于存储计算机程序或指令;
    所述处理器,用于执行存储器中的计算机程序或指令,使得权利要求1-11任一项所述的方法被执行,或者,使得权利要求12至21任意一项所述的方法被执行。
PCT/CN2023/081769 2022-03-21 2023-03-16 自发自收感知方法及相关产品 WO2023179437A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210279157.7 2022-03-21
CN202210279157.7A CN116828520A (zh) 2022-03-21 2022-03-21 自发自收感知方法及相关产品

Publications (1)

Publication Number Publication Date
WO2023179437A1 true WO2023179437A1 (zh) 2023-09-28

Family

ID=88099832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081769 WO2023179437A1 (zh) 2022-03-21 2023-03-16 自发自收感知方法及相关产品

Country Status (2)

Country Link
CN (1) CN116828520A (zh)
WO (1) WO2023179437A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112804662A (zh) * 2021-03-18 2021-05-14 成都极米科技股份有限公司 提供无线感知业务的方法、装置、终端设备及存储介质
CN113453355A (zh) * 2020-03-27 2021-09-28 华为技术有限公司 无线局域网感知方法、网络设备及芯片
CN113747461A (zh) * 2020-05-30 2021-12-03 华为技术有限公司 一种感知目标物体的方法及装置
US20220086739A1 (en) * 2020-09-16 2022-03-17 Intel Corporation Position information aided wi-fi sensing
CN115696369A (zh) * 2021-07-23 2023-02-03 维沃移动通信有限公司 感知方法、装置及网络设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113453355A (zh) * 2020-03-27 2021-09-28 华为技术有限公司 无线局域网感知方法、网络设备及芯片
CN113747461A (zh) * 2020-05-30 2021-12-03 华为技术有限公司 一种感知目标物体的方法及装置
US20220086739A1 (en) * 2020-09-16 2022-03-17 Intel Corporation Position information aided wi-fi sensing
CN112804662A (zh) * 2021-03-18 2021-05-14 成都极米科技股份有限公司 提供无线感知业务的方法、装置、终端设备及存储介质
CN115696369A (zh) * 2021-07-23 2023-02-03 维沃移动通信有限公司 感知方法、装置及网络设备

Also Published As

Publication number Publication date
CN116828520A (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
RU2562244C2 (ru) Свойственная управлению доступом к среде поддержка формирования диаграммы направленности
KR101227305B1 (ko) 무선 네트워크에서의 연관 및 재연관을 위한 방법, 장치 및 저장 매체
KR101825852B1 (ko) 무선 통신 빔포밍 장치, 시스템 및 방법
US9999051B2 (en) Wireless communication apparatus, wireless communication method, computer program, and wireless communication system
JP2009501493A (ja) 多入力多出力システムのアンテナ選択
CN102111902A (zh) 利用所配置的传输定向性进行通信的装置、系统和方法
CN114071690B (zh) 信息上报方法、信息接收方法及相关设备
KR20140057908A (ko) 무선 통신 시스템에서 섹터 스위핑을 수행하는 방법 및 장치
WO2020048417A1 (zh) 扇区扫描方法及相关装置
US9351226B2 (en) Communication method and apparatus based on association mechanism in wireless local area network system
WO2018082493A1 (zh) 无线局域网中的调度方法、接入点和站点
WO2020052458A1 (zh) 波束训练的方法和装置
WO2018149346A1 (zh) 确定和用于确定doa的方法以及接入网设备和终端
WO2023179437A1 (zh) 自发自收感知方法及相关产品
WO2022166662A1 (zh) 射频感知方法及相关装置
WO2022166644A1 (zh) 基于mimo波束赋形的感知方法及相关装置
WO2022170784A1 (zh) 一种通信方法及装置
WO2023179368A1 (zh) 感知方法及装置
WO2022105334A1 (zh) 一种波束对准的方法,信息传输的方法以及相关设备
WO2024140129A1 (zh) 波束测量方法及相关装置
WO2022253127A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
EP4207619A1 (en) Cyclic shift delay (csd) determining method and communication apparatus
US20220338026A1 (en) Apparatus, system, and method of communicating a beamformed transmission
WO2024067517A1 (zh) 一种通信方法及装置
WO2023093747A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773685

Country of ref document: EP

Kind code of ref document: A1