WO2022170784A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2022170784A1
WO2022170784A1 PCT/CN2021/124763 CN2021124763W WO2022170784A1 WO 2022170784 A1 WO2022170784 A1 WO 2022170784A1 CN 2021124763 W CN2021124763 W CN 2021124763W WO 2022170784 A1 WO2022170784 A1 WO 2022170784A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
downlink
downlink beam
target
direction information
Prior art date
Application number
PCT/CN2021/124763
Other languages
English (en)
French (fr)
Inventor
刘玉琪
贺超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022170784A1 publication Critical patent/WO2022170784A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and device.
  • the mmWave band can provide transmission rates of up to gigabits per second (Gbps), making it the most promising carrier band for future short-range wireless communications.
  • Gbps gigabits per second
  • the current path loss solution is to make the transmitter and receiver devices working in this frequency band communicate with a large-scale antenna array, and use a large-scale antenna array to concentrate the signal. At a specific direction angle, the path loss is compensated by the antenna gain.
  • the transmitting end device and the receiving end device need to achieve beam alignment through beam scanning, and communicate through the aligned beams. Among them, the transmitting end device and the receiving end device need to beam separately, which is time-consuming and leads to a long preparation time for communication in the millimeter wave frequency band.
  • the present application provides a communication method and apparatus to reduce the preparation time for communication in the millimeter wave frequency band.
  • a communication method is provided. The method is performed by the second communication device.
  • the second communication apparatus includes a second communication device or a component in the second communication device, and the second communication device may be a terminal device, such as a station (station, STA) that is establishing a connection with an access point (access point, AP).
  • the second terminal device supports communication in the millimeter wave frequency band.
  • the method provided by the first aspect includes the second communication apparatus receiving n downlink beams from the first communication apparatus.
  • n is the number of downlink beams of the first communication device
  • the i-th downlink beam carries the signal and the direction information of the i-th downlink beam, 1 ⁇ i ⁇ n.
  • the second communication device may also determine a target downlink beam among the n downlink beams according to the quality of the signal received by the second communication device, and the target downlink beam is the signal received by the second communication device with the best quality downlink beam.
  • the second communication device may further determine a target uplink beam according to the direction information of the target downlink beam, and send data to the first communication device through the target uplink beam.
  • the second communication device can determine the target uplink beam according to the direction information of the target downlink beam, and implement uplink transmission through the target uplink beam. Since in the method provided by the first aspect, the process of determining the target uplink beam does not require the second communication device to perform beam scanning, so the preparation time for communication between the second communication device and the first communication device can be shortened.
  • the second communication device may determine the direction of the target uplink beam according to the direction information of the second communication device and the direction information of the target downlink beam.
  • the direction information of the i-th downlink beam is carried in sector scan information corresponding to the i-th downlink beam.
  • the first communication device and the second communication device are located in the same coordinate system, and the direction information of the target downlink beam indicates an angle in the coordinate system.
  • the first communication device and the second communication device are located in the same coordinate system, and the identifier of the target downlink beam indicates direction information of the target downlink beam.
  • the present application provides another communication method.
  • the method is performed by the first communication device.
  • the first communication apparatus includes a first communication device or a component in the first communication device, and the first communication device may be a network device, for example, an AP that is establishing a connection with the STA.
  • the first terminal device supports communication in the millimeter wave frequency band.
  • the method provided by the second aspect includes the first communication device sending n downlink beams of the first communication device, where 1 ⁇ n ⁇ m, m is the number of downlink beams of the first communication device, and the i-th downlink beam Bearing the signal and the direction information of the i-th downlink beam, 1 ⁇ i ⁇ n.
  • the first communication device may also receive data sent through the target uplink beam from the second communication device.
  • the target uplink beam is an uplink beam determined by the second communication device according to the direction information of the target downlink beam among the n downlink beams, and the target downlink beam is a downlink beam with the best signal quality received by the second communication device .
  • the direction information of the i-th downlink beam is carried in sector scan information corresponding to the i-th downlink beam.
  • the first communication device and the second communication device are located in the same coordinate system, and the direction information of the target downlink beam indicates an angle in the coordinate system.
  • the first communication device and the second communication device are located in the same coordinate system, and the identifier of the target downlink beam indicates direction information of the target downlink beam.
  • the present application provides a communication device, which has the function of implementing the first aspect or the second communication device in any possible design of the first aspect, and the function can be implemented by hardware or by The hardware executes the corresponding software implementation, and the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the communication apparatus may be used to implement a STA.
  • the structure of the communication device includes a processing module and a communication module, and the processing module is configured to support the communication device to perform the first aspect or any design of the first aspect.
  • the communication module is used to support communication between the communication device and other communication devices (eg, the first communication device).
  • the communication module may include a receiving module and/or a transmitting module.
  • the communication device may further include a storage module, which is coupled with the processing module and stores necessary program instructions and data of the communication device.
  • the processing module may be a processor
  • the communication module may be a transceiver
  • the storage module may be a memory.
  • the present application provides a communication device, which has the function of realizing the first communication device in the second aspect or any possible design of the second aspect, and the function can be realized by hardware or by The hardware executes the corresponding software implementation, and the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the communication device can be used to implement an AP.
  • the structure of the communication device includes a processing module and a communication module, and the processing module is configured to support the communication device to perform the first aspect or any design of the first aspect.
  • the communication module is used to support communication between the communication device and other communication devices (eg, the first communication device).
  • the communication module may include a receiving module and/or a transmitting module.
  • the communication device may further include a storage module, which is coupled with the processing module and stores necessary program instructions and data of the communication device.
  • the processing module may be a processor
  • the communication module may be a transceiver
  • the storage module may be a memory.
  • a communication system in a fifth aspect, includes the communication apparatus shown in the third aspect and the fourth aspect.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used for storing computer instructions or programs, and when the computer instructions or programs are run on a computer, the computer is made to execute the above-mentioned first to second aspects.
  • a computer program product which, when run on a computer, causes the computer to perform the methods described in the above-mentioned first to second aspects or any possible designs thereof.
  • a circuit coupled to a memory, for performing the method described in the above-mentioned first to second aspects or any possible designs thereof.
  • the circuit may include a chip circuit, an interface circuit, a chip or a chip system, and the like.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a communication scenario provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a beam training
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of beam direction information provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another beam direction information provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a beam training process provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an SSW frame provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • an access network (AN) device such as a base station (eg, an access point), which may refer to a device in an access network that communicates with a terminal device through one or more cells over an air interface, or, for example, a
  • the network device in the V2X technology is a road side unit (RSU).
  • the RSU can be a fixed infrastructure entity supporting V2X applications and can exchange messages with other entities supporting V2X applications.
  • the network device may be an access point (access point, AP).
  • the AP may be a communication device with a wireless transceiver function, which may provide a wireless local area network (wireless LAN, WLAN) service for a station (station, STA), and may be a device for communicating with the STA.
  • wireless LAN wireless local area network
  • WLAN wireless local area network
  • the AP is specifically, for example, an optical network terminal (optical network terminal, ONT) device in a fiber to the room (fiber to the room, FTTR) home network solution, such as a wireless-fidelity (wireless-fidelity, WIFI) device.
  • ONT optical network terminal
  • FTTR fiber to the room
  • WIFI wireless-fidelity
  • Figure 1 is an example of an FTTR scenario.
  • the network equipment can include the AP shown in Figure 1, such as the main optical modem router integrated into the home, which is arranged in the master bedroom, guest room, living room, study, kitchen, balcony, bathroom, etc. WIFI devices in the area.
  • the network device may be a base station (base transceiver station, BTS) in the global system of mobile communication (GSM) system or code division multiple access (CDMA), or a broadband code division
  • the base station (nodeB, NB) in the multiple access (wideband code division multiple access, WCDMA) system can also be the evolved base station (evolutional NodeB, eNB or eNodeB) in the LTE system, the fifth generation mobile communication technology (the 5th generation , 5G), the next generation node B (next generation node B, gNB) in the new radio (new radio, NR) system (also referred to as the NR system), or may also include cloud radio access network (cloud radio access network, Cloud A centralized unit (centralized unit, CU) and a distributed unit (distributed unit, DU) in a RAN) system are not limited in this embodiment of the present application.
  • the network device may be a relay station, a vehicle-mounted device, a wearable device, and a network
  • the network device supports communication in the millimeter-wave frequency band.
  • the network device uses a receiving element such as a large-scale antenna array to obtain antenna gain by performing beamforming (BF) technology, so as to overcome the problem of millimeter-wave antenna communication. signal attenuation.
  • BF beamforming
  • the entity for implementing the function of the network device may be the network device, or may be a device capable of supporting the network device to implement the function, such as a chip system and/or a transceiver, and the device may be installed on the network in the device.
  • the network equipment and/or components such as a chip system and/or a transceiver in the network equipment may be represented by the second communication device. That is, the actions performed by the first communication apparatus herein may be performed by the network equipment and/or components such as a system-on-a-chip and/or a transceiver in the network equipment as exemplified above.
  • a terminal device is, for example, an entity used to receive or transmit signals.
  • it may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network or communicate with the RAN via a radio access network (RAN).
  • the terminal device may be a wireless communication STA, and the STA may access the network through the AP.
  • STA is a device connected to an AP in the FTTR home network solution shown in Figure 1, such as a virtual reality (VR) device, a personal computer (PC), a tablet computer (portable android device, PAD), a mobile phone , sweeping robots, humidity and temperature sensors, cameras, networked air conditioners or other appliances.
  • the terminal device may also be user equipment (UE), wireless terminal device, mobile terminal device, device-to-device (D2D) terminal device, V2X terminal device, machine-to-machine/machine-type communication (machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (Internet of things, IoT) terminal equipment.
  • UE user equipment
  • D2D device-to-device
  • V2X terminal device machine-to-machine/machine-type communication
  • M2M/MTC machine-to-machine/machine-type communications
  • IoT Internet of things terminal equipment
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes. Wait.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be considered as vehicle-mounted terminal equipment.
  • vehicle-mounted terminal equipment is also called an onboard unit (OBU).
  • OBU onboard unit
  • the terminal device supports communication in the millimeter wave frequency band.
  • the terminal device adopts a receiving element such as a large-scale antenna array, and obtains the antenna gain through the BF technology, so as to overcome the signal attenuation in the communication of the millimeter wave antenna.
  • the terminal device may further include a relay (relay).
  • a relay relay
  • any device capable of data communication with the AP can be regarded as a terminal device.
  • the entity used to implement the function of the terminal device may be the terminal device, or may be a device capable of supporting the terminal device to implement the function, such as a chip system and/or a transceiver, and the device may be installed in the terminal in the device.
  • the second communication device is used as the terminal device to describe the actions performed by the terminal device in the communication method provided by the embodiment of the present application. That is, the actions performed by the second communication apparatus herein may be performed by the terminal device and/or components such as a system-on-a-chip and/or a transceiver in the terminal device as described above.
  • a beam is a communication resource.
  • a beam may correspond to one or more of time resources, space resources and frequency domain resources.
  • the beams can be wide beams, or narrow beams, or other types of beams.
  • the beam-forming technology may be BF technology or other technical means.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, and a hybrid digital/analog beamforming technology. Different beams can be considered as different resources.
  • the same information or different information can be sent through different beams.
  • multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • One or more antenna ports may be included in a beam (that is, a beam may be formed by one or more antenna ports) for transmitting data channels, control channels and sounding signals, etc.
  • a transmit beam may refer to a signal passing through an antenna
  • the distribution of signal strengths formed in different directions in space after transmission, and the receiving beam may refer to the distribution of signal strengths of wireless signals received from an antenna in different directions in space.
  • one or more antenna ports forming a beam can also be regarded as an antenna port set.
  • the beams may include transmit beams and receive beams of the first communication device, and transmit beams and receive beams of the second communication device.
  • the uplink beam refers to the transmission beam of the second communication device and/or the reception beam of the first communication device
  • the downlink beam refers to the second communication device.
  • the transmit beam of the device and/or the receive beam of the first communication device when the first communication device communicates with the second communication device, the uplink beam refers to the transmission beam of the second communication device and/or the reception beam of the first communication device, and the downlink beam refers to the second communication device.
  • the transmit beam of the device and/or the receive beam of the first communication device when the first communication device communicates with the second communication device.
  • FIG. 2 a schematic diagram of a communication system provided by an embodiment of the present application is shown.
  • the first communication device is an AP and the second communication device is an STA as an example for description.
  • the present application does not limit the number of APs and the number of STAs in the communication system.
  • the number of APs is 1 and the number of STAs is multiple.
  • the AP shown in Figure 2 communicates with the STA in the millimeter wave frequency band, beam training needs to be performed.
  • a sector-level sweep (SLS) process and a beam refinement phase (BRP) process need to be performed.
  • the AP and the STA respectively perform beam scanning and transmission in one or more beam units.
  • the AP sends multiple beam-direction sector sweep (SSW) frames in the beacon transmission interval (BTI) time slot, and the initial party sends sector sweep ( initiator-transmit sector sweep, I-TXSS), the AP can therefore be called the initiator.
  • SSW beam-direction sector sweep
  • BTI beacon transmission interval
  • I-TXSS initiator-transmit sector sweep
  • the SSW frame contains the identification (identification, ID) of the beam, such as the identification of the sector (sector).
  • ID identification
  • the STA performs pseudo-omnidirectional reception, records the AP's transmit beam information (such as the sector ID and/or the received signal-to-noise ratio (SNR) of the AP's transmit beam, etc.), and selects the AP's beam based on the SNR. best transmit beam.
  • the optimal transmit beam is the transmit beam with the largest SNR received by the STA.
  • A-BFT association beamforming training
  • the STA After accessing the channel, the STA sends SSW frames in multiple beam directions respectively, and performs the responder-transmit sector sweep (R-TXSS), that is, the beam scan, so the STA can be called the responder.
  • the SSW frame carries the beam identifier sent by the STA, such as the sector ID.
  • the SSW frame also carries the information of the best transmit beam of the AP, such as the sector ID of the best transmit beam of the AP.
  • the AP receives pseudo-omnidirectional reception, and records the information of the transmitted beam of the STA, such as the sector ID and/or the received SNR of the transmitted beam of the STA.
  • the AP After the SSW of the STA is sent, the AP will send an SSW feedback (feedback) frame to the STA on the best sending beam of the AP according to the best sending beam information fed back by the STA.
  • the SSW feedback frame carries the information of the best sending beam of the STA. Information, such as the sector ID of the STA's best transmit beam.
  • the STA sends an SSW acknowledgment (ack) frame to the AP with the best transmit beam of the AP in the data transfer interval (DTI) time slot. So far, the AP and the STA know the best transmit beams of themselves and the other party respectively, and the best transmit beams can be further refined through the BRP process in the future.
  • DTI data transfer interval
  • an announcement transmission interval may exist between the DTI and the A-BFT, and the ATI is the access period for the AP and STA to manage the access based on polling and/or response. If the STA has data transmission, the AP may allocate a transmission time for the STA in the DTI according to the response information indicating that there is data transmission sent by the STA in the ATI.
  • the first communication device and the second communication device need to perform beam scanning (eg sector scanning) respectively, which takes a long time.
  • beam scanning eg sector scanning
  • different second communication devices need to compete for resources to perform uplink beam scanning, that is, Multiple STAs need to perform uplink beam scanning successively, which further leads to a long communication preparation time.
  • an embodiment of the present application provides a communication method.
  • the communication method may be performed by the first communication device and the second communication device.
  • the communication method provided by the embodiment of the present application may include the following steps:
  • the first communication apparatus transmits n downlink beams of the first communication apparatus.
  • n is the number of downlink beams of the first communication device
  • the i-th downlink beam in the n downlink beams carries the signal and the direction information of the i-th downlink beam, 1 ⁇ i ⁇ n.
  • the first communication apparatus when performing downlink beam scanning, sends a signal and direction information of the downlink beam on each downlink beam.
  • the present application does not specifically limit the signal carried by the downlink beam, for example, it may be a reference signal such as a channel state information reference signal (CSI-RS).
  • CSI-RS channel state information reference signal
  • the direction information of the beam in the present application may indicate the beam angle.
  • the direction information may indicate an absolute angle and/or a relative angle.
  • the downlink beams sent by the first communication device include downlink beam #0, downlink beam #1 . . .
  • the angle is, for example, the angle between the downlink beam and the reference direction in the coordinate system.
  • the reference direction is, for example, the north direction. When the angle is zero, the downlink beam direction is the reference direction.
  • each downlink beam is ⁇
  • is the angle between the normal direction and the north direction of the receiving element (such as an array antenna) of the first communication device
  • the beam index of the downlink beam is k
  • the meaning of ⁇ is the angle between the north direction and the downlink beam.
  • the direction information may indicate ⁇ to represent the absolute angle of the downlink beam.
  • the normal direction of the receiving element is related to the structure of the receiving element.
  • the receiving element is a uniform line array
  • the normal direction of the receiving element is the direction carried on the receiving element.
  • the beam index of the downlink beam aligned in the normal direction is defined as #0
  • the downlink beam is the downlink beam #0
  • other downlink beams may also be defined as downlink beam #0 in practical applications.
  • the direction information may also indicate a relative angle.
  • k and ⁇ please refer to The above description.
  • the direction information (eg ⁇ ) of the normal can be indicated individually, or a default value can be adopted.
  • the first communication device may collect and store the direction information of the downlink beam in advance, without having to re-determine the direction information of the downlink beam each time beam scanning is performed.
  • the first communication apparatus may send the direction information of the n downlink beams in a set order. For example, send in descending order of the angle between the downlink beam and the reference direction (or from large to small); or, send in descending order of downlink beam index (or from large to small), for example,
  • the direction information of the downlink beams is sent in the order of downlink beam #0, downlink beam #1...downlink beam #m (downlink beam #m...downlink beam #1, downlink beam #0).
  • the first communication apparatus may also send the direction information of the n downlink beams in random order.
  • the second communication apparatus receives the n downlink beams, and obtains signals and direction information of the n downlink beams. Among them, 1 ⁇ n ⁇ m.
  • the amount of direction information of downlink beams received by the second communication device may be less than or equal to the amount of direction information of downlink beams sent by the first communication device. That is, the number of downlink beams sent by the first communication device may be n1, and the number of downlink beams received by the second communication device may be n2, where 1 ⁇ n2 ⁇ n1 ⁇ m.
  • the second communication apparatus determines a target beam among the n downlink beams according to the quality of the signal received by the second communication apparatus.
  • the target downlink beam is the downlink beam with the best signal quality received by the second communication device.
  • the second communication device may determine the target downlink beam according to the received signal quality parameters of the n downlink beams.
  • the signal quality parameters such as the number of interference sources, the interference strength and/or the signal-to-noise ratio of the downlink signal, can be obtained by the second communication apparatus through measurement or the like when receiving the signal of the downlink beam.
  • the second communication device may determine a downlink beam with the best signal quality as the target downlink beam according to parameters such as the number of interference sources, the interference strength and/or the signal-to-noise ratio of the signals received from the n downlink beams.
  • the second communication apparatus determines the target uplink beam according to the direction information of the target downlink beam.
  • the second communication apparatus determines the direction information of the target uplink beam according to the direction information of the target downlink beam, thereby determining the target uplink beam.
  • the second communication device may determine the direction information of the target uplink beam according to the direction information of the second communication device itself and the direction information of the target downlink beam.
  • the direction information of the second communication device may indicate the angle of the second communication device, for example, the angle between the normal direction of the receiving element of the second communication device and the reference direction (eg north direction) in the coordinate system.
  • the second communication device and the first communication device are in the same coordinate system, and the direction information of the target uplink beam indicates the angle of the target uplink beam in the coordinate system.
  • S104 The second communication apparatus sends data to the first communication apparatus through the target uplink beam.
  • the first communication device receives data from the second communication device through the target uplink beam.
  • the second communication device can determine the target uplink beam according to the direction information of the target downlink beam, and implement uplink transmission according to the target uplink beam. Since the process of determining the target uplink beam does not require the second communication device to perform beam scanning, the preparation time for communication between the second communication device and the first communication device can be shortened.
  • the online time of a single STA needs at least M*T0.
  • the STA does not need to perform beam scanning, and the online time of a single STA is shortened by at least M*T0, so that rapid beam alignment can be achieved.
  • the going online means that the STA successfully accesses the AP.
  • N STAs when at least two STAs perform uplink scanning in an A-BFT time period Collision may occur, and then the contention access mechanism is triggered, which increases the total online time overhead.
  • N STAs (respectively denoted as STA1, STA2...STAN) perform uplink beam scanning successively. Assuming that the minimum duration of beam training for STAs is T, the total online time is greater than N*T.
  • multiple STAs do not need uplink scanning, and thus will not trigger the competition access mechanism, and the PA only needs to perform downlink beam scanning once, and each STA can determine its own target after obtaining the direction information of the target uplink beam.
  • the downlink beam realizes alignment, and its total online time is less than T, which greatly reduces the beam alignment time.
  • the direction information of the downlink beam may be carried in the SSW frame.
  • the direction information of the downlink beam may be carried in a sector direction (sector direction) field in the SSW frame.
  • the direction (direction) indication field occupies 1 bit (bit) in the SSW frame, indicating whether the SSW frame is an SSW frame sent by the initiator or an SSW frame sent by the responder.
  • the CDOWN field occupies 9 bits and indicates the count of a countdown timer, and the count is the remaining number of directional multi-gigabit (DMG) frame transmissions before the end of the I-TXSS/R-TXSS.
  • the sector identification field occupies 6 bits, indicating the sector number where the beam is located.
  • the sector direction field can occupy 9 bits, indicating the beam direction information of the beam.
  • the DMG antenna ID (DMG antenna ID) field can occupy 2 bits, indicating the DMG antenna used by the current transmission beam.
  • the receive sector sweep (RXSS) length (RXSS length) field may occupy 6 bits, indicating the time required for the first communication device to receive the sector sweep of the second communication device (such as the time domain resource length), in multiples
  • the contention scenario of the second communication device is taken as an example, and this time is the minimum time interval for sector scanning of each second communication device.
  • an embodiment of the present application further provides a communication device for executing the above method embodiment.
  • the communication device may be implemented by implementing the first communication device and/or the second communication device provided in the embodiments of the present application.
  • FIG. 9 is a schematic diagram of a possible structure of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus includes: a processing module 910 and a communication module 920 .
  • the communication module 920 may include a sending module and/or a receiving module.
  • the communication module 920 (or the sending module of the communication module 920 ) can be used to send n downlink beams of the first communication device.
  • the communication module 920 (or the receiving module of the communication module 920 ) may also receive data transmitted through the target uplink beam from the second communication device.
  • the communication module 920 (or the receiving module of the communication module 920 ) can be used to receive n downlink beams of the first communication device.
  • the communication module 920 (or the transmission module of the communication module 920) can also be used to transmit data through the target uplink beam.
  • the processing module 910 may be used to generate information, signals or data sent by the communication module 920 (or the sending module of the communication module 920 ), and/or, to process the information, signals or data sent by the communication module 920 (or the receiving module of the communication module 920 ) ) received information, signals or data.
  • FIG. 10 is another schematic structural diagram of a communication apparatus provided in an embodiment of the present application.
  • the communication apparatus 1000 includes a processor 1010 , a memory 1020 , and a communication interface 1030 .
  • the communication apparatus 1000 further includes an input device 1040 and/or an output device 1050 .
  • the processor 1010, the memory 1020, the communication interface 1030, the input device 1040, and the output device 1050 may be connected to each other through a bus or other connection medium.
  • the memory 1020 stores instructions or programs, and the processor 1010 is configured to execute the instructions or programs stored in the memory 1020 .
  • the processor 1010 When the instructions or programs stored in the memory 1020 are executed, the processor 1010 is configured to execute the operations performed by the processing module 910 in the foregoing method embodiments, or in other words, the processing module 910 may be implemented by the processor 1010 .
  • the communication interface 1030 is used to perform the operations performed by the communication module 920 in the above embodiments, or in other words, the communication module 920 can be implemented through the communication interface 1030 .
  • the communication device 900 and/or the communication device 1000 provided in this embodiment of the present application may be used to perform the actions performed by the first communication device and/or the second communication device in the steps shown in S101 to S104 shown in FIG. 4 ,
  • the communication device 900 and/or the communication device 1000 provided in this embodiment of the present application may be used to perform the actions performed by the first communication device and/or the second communication device in the steps shown in S101 to S104 shown in FIG. 4 .
  • processors mentioned in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits ( application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SCRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • memory described herein is intended to include, but not be limited to, these and any other suitable types of memory.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Optical Communication System (AREA)

Abstract

一种通信方法及装置,使得第二通信装置接收来自于第一通信装置的n个下行波束,其中第i个下行波束承载有信号以及该第i个下行波束的方向信息,之后由第二通信装置根据n个下行波束中的目标下行波束的方向信息确定目标上行波束,并通过该目标上行波束向该第一通信装置发送数据,该目标下行波束为该第二通信装置接收到的信号的质量最好的下行波束。由于确定目标上行波束的过程不需要第二通信装置进行波束扫描,因此可缩短第二通信装置与第一通信装置之间通信的准备时长。

Description

一种通信方法及装置
本申请要求于2021年2月10日提交中国国家知识产权局、申请号为202110185410.8、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
当前,互联网多媒体业务发展迅速,对无线通信的传输速率要求越来越高。因此,领域内研究方向聚焦毫米波频段通信。毫米波频段可提供高达吉比特每秒(Gbps)的传输速率,使其成为未来短距无线通信最有发展前景的载波频段。
由于毫米波频段在通信时有很大的路径损耗,目前的路径损耗解决方案是令工作在该频段的发送端设备和接收端设备采用大规模天线阵列进行通信,利用大规模天线阵列将信号集中在特定的方向角度上,通过天线增益实现对于路径损耗的弥补。而在采用大规模阵列天线的情况下,发送端设备和接收端设备需要通过波束(beam)扫描实现波束对准,并通过对准的波束进行通信。其中,发送端设备和接收端设备需要分别进行波束,耗时严重,导致毫米波频段通信的准备时间过长。
发明内容
本申请提供一种通信方法和装置,用以降低毫米波频段通信的准备时长。
第一方面,提供一种通信方法。该方法由第二通信装置执行。其中,第二通信装置包括第二通信设备或第二通信设备中的部件,第二通信设备可以为终端设备,例如是正在与接入点(access point,AP)建立连接的站点(station,STA)。其中,第二终端装置支持毫米波频段通信。
第一方面提供的方法包括,第二通信装置接收来自于第一通信装置的n个下行波束。其中,1≤n≤m,m为该第一通信装置的下行波束的数量,第i个下行波束承载有信号以及该第i个下行波束的方向信息,1≤i≤n。该第二通信装置还可根据该第二通信装置所接收到的信号的质量确定该n个下行波束中的目标下行波束,该目标下行波束为该第二通信装置接收到的信号的质量最好的下行波束。该第二通信装置还可根据该目标下行波束的方向信息确定目标上行波束,并通过该目标上行波束向该第一通信装置发送数据。
采用以上方法,第二通信装置可根据目标下行波束的方向信息确定目标上行波束,通过该目标上行波束实现上行发送。由于第一方面所提供的方法中,确定目标上行波束的过程不需要第二通信装置进行波束扫描,因此可缩短第二通信装置与第一通信装置之间通信的准备时长。
在一种可能的设计中,该第二通信装置可根据该第二通信装置的方向信息和该目标下行波束的方向信息确定该目标上行波束的方向。
在一种可能的设计中,该第i个下行波束的方向信息承载于该第i个下行波束对应的扇区扫描信息。
在一种可能的设计中,该第一通信装置和该第二通信装置位于同一坐标系中,该目标下行波束的方向信息指示该坐标系中的角度。
在一种可能的设计中,该第一通信装置和该第二通信装置位于同一坐标系中,该目标下行波束的标识指示该目标下行波束的方向信息。
第二方面,本申请提供另一种通信方法。该方法由第一通信装置执行。其中,第一通信装置包括第一通信设备或第一通信设备中的部件,第一通信设备可以为网络设备,例如是正在与STA建立连接的AP。其中,第一终端装置支持毫米波频段通信。
第二方面提供的方法包括,第一通信装置发送该第一通信装置的n个下行波束,其中,1≤n≤m,m为该第一通信装置的下行波束的数量,第i个下行波束承载有信号以及该第i个下行波束的方向信息,1≤i≤n。该第一通信装置还可接收来自于该第二通信装置的通过目标上行波束发送的数据。该目标上行波束为该第二通信装置根据该n个下行波束中的目标下行波束的方向信息确定的上行波束,该目标下行波束为该第二通信装置接收到的信号的质量最好的下行波束。
在一种可能的设计中,该第i个下行波束的方向信息承载于该第i个下行波束对应的扇区扫描信息。
在一种可能的设计中,该第一通信装置和该第二通信装置位于同一坐标系中,该目标下行波束的方向信息指示该坐标系中的角度。
在一种可能的设计中,该第一通信装置和该第二通信装置位于同一坐标系中,该目标下行波束的标识指示该目标下行波束的方向信息。
第三方面,本申请提供一种通信装置,该通信装置具有实现上述第一方面或第一方面的任一种可能的设计中第二通信装置的功能,该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块。该通信装置可用于实现STA。
在一种可能的设计中,所述通信装置的结构中包括处理模块和通信模块,所述处理模块被配置为支持该通信装置执行上述第一方面或第一方面的任一种设计中相应的功能。所述通信模块用于支持该通信装置与其他通信设备(如第一通信装置)之间的通信。通信模块可包括接收模块和/或发送模块。所述通信装置还可以包括存储模块,所述存储模块与处理模块耦合,其保存有通信装置必要的程序指令和数据。作为一种示例,处理模块可以为处理器,通信模块可以为收发器,存储模块可以为存储器。
第四方面,本申请提供一种通信装置,该通信装置具有实现上述第二方面或第二方面的任一种可能的设计中第一通信装置的功能,该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块。该通信装置可用于实现AP。
在一种可能的设计中,所述通信装置的结构中包括处理模块和通信模块,所述处理模块被配置为支持该通信装置执行上述第一方面或第一方面的任一种设计中相应的功能。所述通信模块用于支持该通信装置与其他通信设备(如第一通信装置)之间的通信。通信模块可包括接收模块和/或发送模块。所述通信装置还可以包括存储模块,所述存储模块与处理模块耦合,其保存有通信装置必要的程序指令和数据。作为一种示例,处理模块可以为 处理器,通信模块可以为收发器,存储模块可以为存储器。
第五方面,提供一种通信系统,该通信系统包括第三方面以及第四方面所示的通信装置。
第六方面,提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机指令或程序,当该计算机指令或程序在计算机上运行时,使得该计算机执行上述第一方面至第二方面或其任意一种可能的设计中所述的方法。
第七方面,提供一种计算机程序产品,当其在计算机上运行时,使得该计算机执行上述第一方面至第二方面或其任意一种可能的设计中所述的方法。
第八方面,提供一种电路,该电路与存储器耦合,该电路被用于执行上述第一方面至第二方面或其任意一种可能的设计中所述的方法。该电路可包括芯片电路、接口电路、芯片或芯片系统等。
以上第二方面至第八方面及其可能的设计的有益效果可参照第一方面及其可能的设计中的有益效果。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的一种通信场景示意图;
图3为一种波束训练示意图;
图4为本申请实施例提供的一种通信方法的流程示意图;
图5为本申请实施例提供的一种波束方向信息示意图;
图6为本申请实施例提供的另一种波束方向信息示意图;
图7为本申请实施例提供的一种波束训练过程示意图;
图8为本申请实施例提供的一种SSW帧的示意图;
图9为本申请实施例提供的一种通信装置的结构示意图;
图10为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)网络设备:
例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与终端装置通信的设备,或者例如,一种V2X技术中的网络设备为路侧单元(road side unit,RSU)。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。又例如,网络设备可以是接入点(access point,AP)。AP可以是具有无线收发功能的通信设备,其可以为站点(station,STA)提供无线局域网(wireless LAN,WLAN)服务,可以是用于与STA通信的设备。AP具体例如光纤到房间(fiber to the room,FTTR)家庭网络解决方案中的光网络终端(optical network terminal,ONT)设备,如无线保真(wireless-fidelity,WIFI)设备。如图1所示为FTTR 场景的示例,网络设备可包括图1所示的AP,如入户的主光猫路由一体机,布置在主卧、客房、客厅、书房、厨房、阳台、浴室等区域的WIFI设备。
另外,该网络设备可以是全球移动通讯(global system of mobile communication,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(nodeB,NB),还可以是LTE系统中的演进型基站(evolutional NodeB,eNB或eNodeB)、第五代移动通信技术(the 5th generation,5G)、新空口(new radio,NR)系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB),或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。或者该网络设备可以为中继站、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)网络中的网络设备等。
本申请实施例中,网络设备支持毫米波频段通信,比如,网络设备采用通过大规模天线阵列等接收元件,通过进行波束赋形(beamforming,BF)技术获得天线增益,以克服毫米波天线通信中的信号衰减。
本申请实施例中,用于实现网络设备的功能的实体可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统和/或收发器等,该装置可以被安装在网络设备中。
下文中,可通过第二通信装置来代表网络设备和/或网络设备中的芯片系统和/或收发器等组件。也就是说,本文中由第一通信装置执行的动作可由以上示例的网络设备和/或网络设备中的芯片系统和/或收发器等组件执行。
(2)终端设备:
终端设备例如用于接收或发射信号的实体。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信或与RAN进行通信。此外,终端设备可以是无线通信STA,STA可通过AP接入网络。STA具体例如图1所示FTTR家庭网络解决方案中与AP连接的设备,如虚拟现实(virtual reality,VR)设备、个人计算机(personal computer,PC)、平板电脑(portable android device,PAD)、手机、扫地机器人、湿温度传感器、摄像头、可联网空调或其他家电等设备。
该终端设备还可以是用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、V2X终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合 使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(onboard unit,OBU)。
本申请实施例中,终端设备支持毫米波频段通信,比如,终端设备采用大规模天线阵列等接收元件,通过BF技术获得天线增益,以克服毫米波天线通信中的信号衰减。
本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与AP进行数据通信的设备都可以看作终端设备。
本申请实施例中,用于实现终端设备的功能的实体可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统和/或收发器等,该装置可以被安装在终端设备中。
下文中,以第二通信装置作为终端装置,对于本申请实施例提供的通信方法中由终端装置执行的动作进行说明。也就是说,本文中由第二通信装置执行的动作可由以上示例的终端设备和/或终端设备中的芯片系统和/或收发器等组件执行。
(3)波束:
波束是一种通信资源。波束可以对应时间资源、空间资源和频域资源中的一项或多项。
波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是BF技术或者其他技术手段。波束赋形技术可以具体为数字波束赋形技术,模拟波束赋形技术,混合数字/模拟波束赋形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口(即,可以通过一个或多个天线端口形成一个波束),用于传输数据信道,控制信道和探测信号等,例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
对于第一通信装置和第二通信装置之间的无线通信场景,波束可包括第一通信装置的发送波束和接收波束,以及第二通信装置的发送波束和接收波束。
应理解,本申请中,当第一通信装置与第二通信装置进行通信时,上行波束是指第二通信装置的发送波束和/或第一通信装置的接收波束,下行波束是指第二通信装置的发送波束和/或第一通信装置的接收波束。
如图2所示,为本申请实施例提供的一种通信系统的示意。图2中,以第一通信装置是AP,第二通信装置是STA为例进行说明。应理解,本申请不限定通信系统中AP的数量和STA的数量,这里以室内通信场景为例,AP数量为1,STA数量为多个。
当图2所示的AP与STA进行毫米波频段通信时,需要进行波束训练。一种进行波束训练的过程中,需要执行扇区级扫描(sector-level sweep,SLS)过程和波束精炼(beam refinement phase,BRP)过程。SLS过程中,AP和STA分别以一个或多个波束为单位进行波束的扫描发送。如图3所示,在SLS阶段,AP在信标传输间隔(beacon transmission interval,BTI)时隙发送多个波束方向的扇区扫描(sector sweep,SSW)帧,进行初始方发送扇区扫描(initiator-transmit sector sweep,I-TXSS),AP因此可被称为初始方。其中,SSW帧中含有波束的标识(identification,ID),如扇区(sector)标识。STA则进行伪全向接收,并记录AP的发送波束信息(如sector ID和/或接收的AP发送波束的信噪比(signal  to noise ratio,SNR)等信息),并根据SNR选出AP的最佳发送波束。例如,最佳发送波束是STA接收的SNR最大的发送波束。在联合波束赋形训练(association beamforming training,A-BFT)时隙,STA会竞争接入信道。接入信道后,STA在多个波束方向上分别发送SSW帧,进行应答方发送扇区扫描(responder-transmit sector sweep,R-TXSS),即进行波束扫描,STA因此可被称为应答方。其中,SSW帧中携带有STA发送的波束标识,如sector ID。SSW帧还携带AP的最佳发送波束的信息,如AP的最佳发送波束的sector ID。此时AP伪全向接收,并记录STA的发送波束信息,如sector ID和/或接收的STA发送波束的SNR等信息。当STA的SSW发送完后,AP会根据STA反馈的最佳发送波束信息,在AP的最佳发送波束上发送SSW反馈(feedback)帧给STA,SSW反馈帧中携带STA的最佳发送波束的信息,如STA的最佳发送波束的sector ID。STA则在数据传输间隔(data transfer interval,DTI)时隙中用AP的最佳发送波束发送SSW确认(ack)帧给AP。至此,AP和STA分别获知自己和对方的最佳发送波束,后续可通过BRP过程对最佳发送波束进行进一步精炼。
可选的,DTI与A-BFT之间可能存在通知传输间隔(announcement transmission interval,ATI),ATI为AP和STA基于请求和/或应答的轮询管理接入期。若STA有数据传输,则AP可根据STA在ATI内发送的表示有数据传输的应答信息,在DTI内为该STA分配传输时间。
基于以上训练过程可知,在毫米波频谱通信的准备过程(或称上线过程)中,第一通信装置和第二通信装置分别需要进行波束扫描(如扇区扫描),耗时较长。并且,在点对多点主站(point 2multiple point,P2MP)等存在多个第二通信装置的场景中,不同的第二通信装置之间需要进行资源竞争以进行上行波束扫描,也就是说,多个STA需要先后进行上行波束扫描,进一步导致通信准备时间过长。
为了降低通信准备时长,本申请实施例提供一种通信方法。该通信方法可由第一通信装置和第二通信装置执行。
如图4所示,本申请实施例提供的通信方法可包括以下步骤:
S101:第一通信装置发送第一通信装置的n个下行波束。其中,1≤n≤m,m为第一通信装置的下行波束的数量,n个下行波束中的第i个下行波束承载有信号以及第i个下行波束的方向信息,1≤i≤n。换句话说,第一通信装置在进行下行波束扫描时,在每个下行波束上发送信号和该下行波束的方向信息。
其中,本申请对于下行波束承载的信号不进行具体限定,例如可以是信道状态信息参考信号(channel state information reference signal,CSI-RS)等参考信号。
应理解,本申请中波束的方向信息可指示波束角度。具体的,方向信息可指示绝对角度和/或相对角度。
如图5所示,以n=m为例,第一通信装置发送的下行波束包括下行波束#0、下行波束#1……下行波束#m,其中,下行波束的方向信息可以是下行波束在第一通信装置所在的坐标系中的角度。该角度例如下行波束与坐标系中参考方向之间的角度,参考方向例如北向,当角度为零时下行波束方向为参考方向。以参考方向为北向为例,假设每个下行波束的宽度为θ,β为第一通信装置的接收元件(如阵列天线)的法向与北向之间的角度,下行波束的波束索引为k,则波束索引为k的下行波束在该坐标系中的角度表示为α=β+k·θ,α的含义是北向与该下行波束之间的角度。应理解,此时方向信息可指示α以表示该下行波束 的绝对角度。
可选的,接收元件的法向与接收元件的结构有关。比如,接收元件是均匀的线阵,则接收元件的法向是承载于该接收元件的方向。可选的,图5中将法向方向对准的下行波束的波束索引定义为#0,该下行波束即下行波束#0,实际应用中也可将其他下行波束定义为下行波束#0。
另外,方向信息也可以指示相对角度,比如,方向信息指示α’=k·θ,表示该下行波束与第一通信装置的接收元件的法向之间的相对角度,k和θ的定义可参见上前述说明。该法向的方向信息(如β)可单独指示,或采取默认值。
在S101的实施中,第一通信装置可预先对下行波束的方向信息进行采集和存储,而不必在每次执行波束扫描时重新确定下行波束的方向信息。
可选的,S101中,第一通信装置可按照设定的顺序发送n个下行波束的方向信息。比如,按照下行波束与参考方向之间夹角由小到大(或由大到小)的顺序发送;或者,按照下行波束索引由小到大(或由大到小的顺序)发送,比如,按照下行波束#0、下行波束#1……下行波束#m(下行波束#m……下行波束#1、下行波束#0)的先后顺序发送下行波束的方向信息。此外,第一通信装置也可以按照随机顺序发送n个下行波束的方向信息。
相应地,第二通信装置接收n个下行波束,获得n个下行波束的信号和方向信息。其中,1≤n≤m。
应理解,第二通信装置接收的下行波束的方向信息的数量可能少于或等于第一通信装置发送的下行波束的方向信息的数量。也就是说,第一通信装置发送的下行波束的数量可能是n1,第二通信装置接收的下行波束的数量可能是n2,1≤n2≤n1≤m。
S102:第二通信装置根据第二通信装置所接收到的信号的质量,确定n个下行波束中的目标波束。其中,目标下行波束为第二通信装置接收到的信号的质量最好的下行波束。
应理解,第二通信装置可根据接收的n个下行波束的信号质量参数确定目标下行波束。信号质量参数例如下行信号的干扰源数量、干扰强度和/或信噪比等参数,这些参数可由第二通信装置在接收下行波束的信号时通过测量等方式获得。示例性的,第二通信装置可根据接收n个下行波束的信号分别的干扰源数量、干扰强度和/或信噪比等参数,确定信号质量最好的一个下行波束作为目标下行波束。
S103:第二通信装置根据目标下行波束的方向信息确定目标上行波束。
示例性的,第二通信装置在确定目标下行波束后,根据目标下行波束的方向信息确定目标上行波束的方向信息,从而确定目标上行波束。具体的,第二通信装置可根据第二通信装置自身的方向信息和目标下行波束的方向信息,确定目标上行波束的方向信息。
其中,第二通信装置的方向信息可指示第二通信装置的角度,例如,指示第二通信装置的接收元件的法向与坐标系中参考方向(如北向)之间的角度。
应理解,第二通信装置与第一通信装置处在同一个坐标系中,目标上行波束的方向信息指示目标上行波束在该坐标系中的角度。
可选的,以坐标系中参考方向为北向为例,如图6所示,第二通信装置与北向之间的角度δ、目标下行波束与北向之间的角度α以及目标上行波束的角度γ之间满足:
γ=360-δ+180+α
S104:第二通信装置通过目标上行波束向第一通信装置发送数据。
相应地,第一通信装置通过目标上行波束接收来自于第二通信装置的数据。
采用以上方法,第二通信装置可根据目标下行波束的方向信息确定目标上行波束,并根据目标上行波束实现上行发送。由于确定目标上行波束的过程不需要第二通信装置进行波束扫描,可缩短第二通信装置与第一通信装置之间通信的准备时长。
举例来说,在传统的波束训练方案中,假设STA上行扫描波束的个数总共为M个,每次扫描时间间隔为T0,则单个STA上线时间至少需要M*T0。而利用图4所示方法,STA无需进行波束扫描,则单个STA上线时间至少缩短M*T0,因此可实现波束快速对准。其中,上线指的是STA成功接入AP。
另外,如图7所述,对于P2MP等场景下的多个STA需要竞争上行波束扫描资源的问题,在传统的波束训练方案中,当至少两个STA在一个A-BFT时间段进行上行扫描时可能发生碰撞,进而触发竞争接入机制,使得总上线时间开销增大。当有N个STA同时上线时,N个STA(分别记为STA1、STA2……STAN)先后进行上行波束扫描,假设STA进行波束训练的最小时长为T,则总上线时间大于N*T。而采用本发明方案,多个STA无需上行扫描,也就不会触发竞争接入机制,PA也只需要进行一次下行波束扫描,各STA在分别得到目标上行波束的方向信息之后可确定各自的目标下行波束,实现对准,其总上线时间小于T,大大降低波束对准耗时。
在S101中,下行波束的方向信息可承载于SSW帧。
可选的,如图8所示,可以将下行波束的方向信息承载于SSW帧中的扇区方向(sector direction)字段。这里介绍如图8所示SSW帧中的各个字段可能的长度和含义。方向(direction)指示字段占用SSW帧中的1个比特(bit),表示SSW帧是初始方发送的SSW帧还是应答方发送的SSW帧。CDOWN字段占用9bit,指示一个倒数计时器的计数,该计数为I-TXSS/R-TXSS结束之前的剩余的定向多千兆位信标(directional multi-gigabit,DMG)帧传输个数。扇区标识字段占用6bit,表示波束所在的扇区编号。扇区方向字段可占用9bit,指示波束的波束方向信息。DMG天线标识(DMG antenna ID)字段可占用2bit,表示当前发送波束所采用的DMG天线。接收扇区扫描(receive sector sweep,RXSS)长度(RXSS length)字段可占用6bit,表示第一通信装置接收第二通信装置的扇区扫描所需的时间(如时域资源长度),以多个第二通信装置的竞争场景为例,该时间即每个第二通信装置扇区扫描的最小时间间隔。
应理解,以上以下行波束的方向信息承载于SSW帧为例进行说明,本申请并不限定方向信息承载于SSW帧以外的其他信息、消息或信令。
基于相同的发明构思,本申请实施例还提供一种通信装置,用于执行上述方法实施例。应理解,该通信装置可由于实现本申请实施例提供的第一通信装置和/或第二通信装置。
图9为本申请实施例提供的通信装置的可能的结构示意图,如图9所示,该通信装置包括:处理模块910和通信模块920。其中,通信模块920可包括发送模块和/或接收模块。
具体的,当实现第一通信装置时,通信模块920(或通信模块920的发送模块),可用于发送第一通信装置的n个下行波束。通信模块920(或通信模块920的接收模块)还可接收来自于第二通信装置的通过目标上行波束发送的数据。
当实现第二通信装置时,通信模块920(或通信模块920的接收模块),可用于接收第一通信装置的n个下行波束。通信模块920(或通信模块920的发送模块)还可用于通过目标上行波束发送数据。
可选的,处理模块910可用于生成由通信模块920(或通信模块920的发送模块)发 送的信息、信号或数据,和/或,用于处理由通信模块920(或通信模块920的接收模块)所接收的信息、信号或数据。
图10为本申请实施例中提供的通信装置的另一结构示意图,如图10所示,该通信装置1000包括处理器1010,存储器1020、和通信接口1030。可选地,该通信装置1000还包括输入设备1040和/或输出设备1050。其中,处理器1010、存储器1020、通信接口1030以及输入设备1040、输出设备1050可通过总线或其他连接介质相互连接。存储器1020中存储指令或程序,处理器1010用于执行存储器1020中存储的指令或程序。存储器1020中存储的指令或程序被执行时,该处理器1010用于执行上述方法实施例中处理模块910执行的操作,或者说,可通过处理器1010实现处理模块910。通信接口1030用于执行上述实施例中通信模块920执行的操作或者说,可通过通信接口1030实现通信模块920。
需要说明的是,本申请实施例提供的通信装置900和/或通信装置1000可用于执行图4所示S101至S104所示步骤中由第一通信装置和/或第二通信装置执行的动作,为了简洁,在此不再赘述,可参照前述对于方法实施例的说明。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (19)

  1. 一种通信方法,其特征在于,包括:
    第二通信装置接收来自于第一通信装置的n个下行波束,其中,1≤n≤m,m为所述第一通信装置的下行波束的数量,第i个下行波束承载有信号以及所述第i个下行波束的方向信息,1≤i≤n;
    所述第二通信装置根据所述第二通信装置所接收到的信号的质量确定所述n个下行波束中的目标下行波束,所述目标下行波束为所述第二通信装置接收到的信号的质量最好的下行波束;
    所述第二通信装置根据所述目标下行波束的方向信息确定目标上行波束;
    所述第二通信装置通过所述目标上行波束向所述第一通信装置发送数据。
  2. 如权利要求1所述的方法,其特征在于,所述第二通信装置根据所述目标下行波束的方向信息确定目标上行波束,包括:
    所述第二通信装置根据所述第二通信装置的方向信息和所述目标下行波束的方向信息确定所述目标上行波束的方向。
  3. 如权利要求1或2所述的方法,其特征在于,所述第i个下行波束的方向信息承载于所述第i个下行波束对应的扇区扫描信息。
  4. 如权利要求1-3中任一所述的方法,其特征在于,所述第一通信装置和所述第二通信装置位于同一坐标系中,所述目标下行波束的方向信息指示所述坐标系中的角度。
  5. 如权利要求1-4中任一所述的方法,其特征在于,所述第一通信装置和所述第二通信装置位于同一坐标系中,所述目标下行波束的标识ID指示所述目标下行波束的方向信息。
  6. 一种通信方法,其特征在于,包括:
    第一通信装置发送所述第一通信装置的n个下行波束,其中,1≤n≤m,m为所述第一通信装置的下行波束的数量,第i个下行波束承载有信号以及所述第i个下行波束的方向信息,1≤i≤n;
    所述第一通信装置接收来自于第二通信装置的通过目标上行波束发送的数据,所述目标上行波束为所述第二通信装置根据所述n个下行波束中的目标下行波束的方向信息确定的上行波束,所述目标下行波束为所述第二通信装置接收到的信号的质量最好的下行波束。
  7. 如权利要求6所述的方法,其特征在于,所述第i个下行波束的方向信息承载于所述第i个下行波束对应的扇区扫描信息。
  8. 如权利要求6或7所述的方法,其特征在于,所述第一通信装置和所述第二通信装置位于同一坐标系中,所述目标下行波束的方向信息指示所述坐标系中的角度。
  9. 如权利要求6-8中任一所述的方法,其特征在于,所述第一通信装置和所述第二通信装置位于同一坐标系中,所述目标下行波束的标识ID指示所述目标下行波束的方向信息。
  10. 一种通信装置,其特征在于,包括:
    通信模块,用于接收来自于第一通信装置的n个下行波束,其中,1≤n≤m,m为所述第一通信装置的下行波束的数量,第i个下行波束承载有信号以及所述第i个下行波束的方向信息,1≤i≤n;
    处理模块,用于根据所述通信装置所接收到的信号的质量确定所述n个下行波束中的目标下行波束,所述目标下行波束为所述通信装置接收到的信号的质量最好的下行波束;以及,根据所述目标下行波束的方向信息确定目标上行波束;
    所述通信模块,还用于通过所述目标上行波束向所述第一通信装置发送数据。
  11. 如权利要求10所述的通信装置,其特征在于,所述处理模块具体用于:
    根据所述第二通信装置的方向信息和所述目标下行波束的方向信息确定所述目标上行波束的方向。
  12. 如权利要求10或11所述的通信装置,其特征在于,所述第i个下行波束的方向信息承载于所述第i个下行波束对应的扇区扫描信息。
  13. 如权利要求10-12中任一所述的通信装置,其特征在于,所述第一通信装置和所述第二通信装置位于同一坐标系中,所述目标下行波束的方向信息指示所述坐标系中的角度。
  14. 如权利要求10-13中任一所述的通信装置,其特征在于,所述第一通信装置和所述第二通信装置位于同一坐标系中,所述目标下行波束的标识ID指示所述目标下行波束的方向信息。
  15. 一种通信装置,其特征在于,包括:
    发送模块,用于发送第一通信装置的n个下行波束的方向信息,其中,1≤n≤m,m为所述第一通信装置的下行波束的数量,第i个下行波束承载有信号以及所述第i个下行波束的方向信息,1≤i≤n;
    接收模块,用于接收来自于第二通信装置的通过目标上行波束发送的数据,所述目标上行波束为所述第二通信装置根据所述n个下行波束中的目标下行波束的方向信息确定的上行波束,所述目标下行波束为所述第二通信装置接收到的信号的质量最好的下行波束。
  16. 如权利要求15所述的通信装置,其特征在于,所述第i个下行波束的方向信息承载于所述第i个下行波束对应的扇区扫描信息。
  17. 如权利要求15或16所述的通信装置,其特征在于,所述第一通信装置和所述第二通信装置位于同一坐标系中,所述目标下行波束的方向信息指示所述坐标系中的角度。
  18. 如权利要求15-17中任一所述的通信装置,其特征在于,所述第一通信装置和所述第二通信装置位于同一坐标系中,所述目标下行波束的标识ID指示所述目标下行波束的方向信息。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求1-9中任一项所述的方法。
PCT/CN2021/124763 2021-02-10 2021-10-19 一种通信方法及装置 WO2022170784A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110185410.8A CN114916070A (zh) 2021-02-10 2021-02-10 一种通信方法及装置
CN202110185410.8 2021-02-10

Publications (1)

Publication Number Publication Date
WO2022170784A1 true WO2022170784A1 (zh) 2022-08-18

Family

ID=82762213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124763 WO2022170784A1 (zh) 2021-02-10 2021-10-19 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN114916070A (zh)
WO (1) WO2022170784A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116634567B (zh) * 2023-07-25 2023-12-12 华南理工大学 波束管理方法、装置和智能超表面中继系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109076551A (zh) * 2016-04-27 2018-12-21 华为技术有限公司 用于蜂窝时分双工(tdd)毫米波系统的探测参考信号(srs)设计
CN109150273A (zh) * 2017-06-28 2019-01-04 捷开通讯(深圳)有限公司 波束管理方法及装置
US20190097712A1 (en) * 2016-04-18 2019-03-28 Intel Corporation Selection of beamforming directions based on learned performance
CN110492913A (zh) * 2017-01-06 2019-11-22 华为技术有限公司 一种信号传输方法和装置
CN111432476A (zh) * 2019-01-09 2020-07-17 电信科学技术研究院有限公司 一种波束方向的指示方法、基站及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190097712A1 (en) * 2016-04-18 2019-03-28 Intel Corporation Selection of beamforming directions based on learned performance
CN109076551A (zh) * 2016-04-27 2018-12-21 华为技术有限公司 用于蜂窝时分双工(tdd)毫米波系统的探测参考信号(srs)设计
CN110492913A (zh) * 2017-01-06 2019-11-22 华为技术有限公司 一种信号传输方法和装置
CN109150273A (zh) * 2017-06-28 2019-01-04 捷开通讯(深圳)有限公司 波束管理方法及装置
CN111432476A (zh) * 2019-01-09 2020-07-17 电信科学技术研究院有限公司 一种波束方向的指示方法、基站及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIA TEK INC.: "Beam Sweeping and Impacts to Cell-level Mobility", 3GPP TSG-RAN WG2 MEETING #96 R2-168128, 18 November 2016 (2016-11-18), XP051192390 *

Also Published As

Publication number Publication date
CN114916070A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
US11012963B2 (en) Wireless communications method and apparatus
CN109891958B (zh) 用于测距测量的装置、系统和方法
WO2017045384A1 (en) System and method for fast beamforming setup
WO2021052473A1 (zh) 通信方法和通信装置
WO2022048593A1 (zh) 信道测量的方法和装置
WO2020001454A1 (zh) 波束赋形训练的方法和装置
WO2021180091A1 (zh) 一种协作通信的方法和应用于协作通信的装置
WO2021017773A1 (zh) 上报信道状态信息的方法和装置
US11888565B2 (en) Method for sending channel state information and related device
WO2022011555A1 (zh) 用于确定上行传输参数的方法和终端设备
WO2021036773A1 (zh) 一种信号测量方法及装置
WO2022170784A1 (zh) 一种通信方法及装置
WO2020052458A1 (zh) 波束训练的方法和装置
WO2020052459A1 (zh) 波束训练的方法和装置
WO2021204113A1 (zh) 通信方法及装置
WO2021027919A9 (zh) 传输参考信号的方法及设备
WO2021159309A1 (zh) 一种信道测量方法和通信装置
WO2023016332A1 (zh) 一种通信方法以及装置
US11277181B2 (en) Beam training method and apparatus
WO2022012256A1 (zh) 通信的方法及通信装置
WO2020199853A1 (zh) 数据接收和发送方法及装置
US20220345186A1 (en) Method and network device for beam vector selection
WO2022111692A1 (zh) 一种参考信号发送方法、装置
WO2023143153A1 (zh) 管理波束的方法和装置
WO2023208166A1 (zh) 一种定时指示的方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925431

Country of ref document: EP

Kind code of ref document: A1