WO2020052458A1 - 波束训练的方法和装置 - Google Patents

波束训练的方法和装置 Download PDF

Info

Publication number
WO2020052458A1
WO2020052458A1 PCT/CN2019/103971 CN2019103971W WO2020052458A1 WO 2020052458 A1 WO2020052458 A1 WO 2020052458A1 CN 2019103971 W CN2019103971 W CN 2019103971W WO 2020052458 A1 WO2020052458 A1 WO 2020052458A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
sta
aps
time
sector
Prior art date
Application number
PCT/CN2019/103971
Other languages
English (en)
French (fr)
Inventor
韩霄
周培
张睿
龙彦
贾辰龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19859018.4A priority Critical patent/EP3852281A4/en
Publication of WO2020052458A1 publication Critical patent/WO2020052458A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/043Power distribution using best eigenmode, e.g. beam forming or beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems

Definitions

  • the present application relates to the field of communications, and more particularly, to a method and device for beam training.
  • the 60GHz millimeter wave band has abundant available spectrum resources, but due to the increased path loss, the attenuation is very serious. Therefore, a directional communication technology using beamforming (BF) was introduced to provide additional transmit antenna gain or receive antenna gain. To overcome signal attenuation. With beamforming technology, beamforming training (BFT) must be performed first.
  • the BFT process can specifically be a personal basic service set control node (PBSS control point (PCP) / access point (AP) and AP).
  • PCP personal basic service set control node
  • AP access point
  • AP access point
  • a beam training method is beam training between an AP and multiple STAs, the purpose of which is to establish a parallel transmission link between the AP and multiple STAs, which consists of single-input single-output (SISO ) Stage and multiple-input multiple-output (MIMO) stage. Then, for the scenario of multiple APs and multiple STAs, how to manage the beam training process between multiple APs and multiple STAs has become an urgent technical problem.
  • SISO single-input single-output
  • MIMO multiple-input multiple-output
  • the application provides a method and a device for beam training, which can uniformly configure the beam training time of APs, and facilitate management planning of the beam training process.
  • a beam training method including: a first access point AP sends first information, the first information is used to configure beam training time for multiple APs, and beam training for the multiple APs Time is used for beam training by the multiple APs and site STAs within the coverage area of the multiple APs, the multiple APs include the first AP and at least one second AP; the first AP receives at least one Second information sent by the second AP based on the first information, the second information is used to feed back a first sector selection result, and the first sector selection result is that the beam is performed within the beam training time Get it.
  • first information for configuring beam training time of multiple APs is sent by the first AP, so that multiple APs and STAs within the coverage area of the multiple APs Performing the beam training according to the beam training time can uniformly configure the beam training time of the AP, which facilitates management planning of the beam training process, and is conducive to improving the beam training efficiency.
  • the beam training times of the multiple APs are different.
  • the beam training times of the multiple APs may be different, and “different” here may include all differences or partial differences, that is, the beam training times between the multiple APs are different, or the multiple APs There are some APs between them, and the beam training time between these two APs is different, which is not limited in this embodiment of the present application.
  • the beam training times of multiple APs are different, which can avoid interference between multiple APs and STAs during beam training, and avoid resource conflicts used by the APs when transmitting information.
  • the embodiments of the present application do not limit the beam training time between multiple APs. This is because the first AP can schedule the second AP and the STA to be the same without conflict or interference according to the existing information. Beam training is performed in parallel within the time. Therefore, compared with the different beam training time between multiple APs, this can greatly improve the efficiency of beam training.
  • the first information includes at least one of the following information: a time when the second AP performs a sector scan of the initiator; and the second AP round The time when the STA is queried; the time when the second AP sends the second information.
  • the first information may be carried as an element in an existing frame or in a newly defined frame, which is not limited in the embodiment of the present application.
  • the first information may specifically be a virtual cluster beamforming AP setup (VCBF AP setup) frame.
  • VCBF AP setup virtual cluster beamforming AP setup
  • the first information may further include a time when the second AP sends third information, and the third information is used to configure a beam training time of the STA.
  • the first information may further include specific requirements for uplink training and / or downlink training, for example, only uplink training is performed, or only downlink training is performed, or uplink training and downlink training are performed.
  • the second information includes at least one of the following information: identification information of the STA; the plurality of APs corresponding to the STA performing sector scanning Identification information of at least one AP among the plurality of APs; the STA corresponds to a first sector selection result of at least one AP among the plurality of APs.
  • the second information may be carried in an existing frame as an element, or may be carried in a newly defined frame, which is not limited in the embodiment of the present application.
  • the second information may specifically be an AP feedback (AP, FBCK) frame.
  • the second information may include information about multiple STAs.
  • the information is the identification of each STA in the multiple STAs, the identification information of at least one of the multiple APs corresponding to each STA performing sector scanning, and each STA corresponds to at least one of the multiple APs.
  • the first sector selection result of an AP is the identification of each STA in the multiple STAs, the identification information of at least one of the multiple APs corresponding to each STA performing sector scanning, and each STA corresponds to at least one of the multiple APs.
  • the second information may further include the number of STAs corresponding to the second information.
  • sending the first information by the first access point AP includes: sending, by the first AP, the first information to at least one of the second APs So that at least one of the second APs sends third information to the STA, where the third information is used to configure a beam training time of the STA.
  • the first AP may send the first information to the second AP.
  • the second AP After receiving the first information, the second AP sends the third information to the STAs within the coverage area of the second AP according to the configuration in the first information. , Used to configure the STA's beam training time.
  • the method further includes: The first AP sends fourth information to at least one of the second APs according to the second information, so that at least one of the second APs sends the fourth information to the STA, and the fourth information is used for For indicating a second sector selection result of at least one of the second APs, the second sector selection result includes all or part of the first sector selection result of at least one of the second APs.
  • the first AP may sort and summarize the received second information, and send the fourth information to the second AP.
  • the second AP receives the fourth information, and forwards the fourth information to its coverage area. STA.
  • the fourth information indicates a second sector selection result of at least one second AP
  • the second sector selection result may include all of the first sector selection result of at least one second AP Or part.
  • the first sector selection result includes the sector selection result obtained by the second AP based on the sector scan frame measurement sent by the STA associated with the second AP.
  • the sector scanning frame sent by the STA may include a training result obtained by the STA when the AP performs sector scanning, and the training result may be obtained by the STA performing measurement based on the sector scanning frame sent by the AP.
  • the first AP After receiving the second information sent by all the second APs that need feedback, the first AP can obtain multiple first sector selection results, and the first AP integrates the multiple first sector selection results.
  • the first AP may send all the integrated results to the second AP, or may only send the sector selection result of the AP in the coverage area where one or more STAs are located to the second AP. Therefore, the second sector selection result It may include all or part of the first sector selection result, which is not limited in the embodiment of the present application.
  • the foregoing fourth information may be specifically referred to as a forwarding frame or a new sector scan feedback (NEW / SWCK / FBCK) frame.
  • sending the first information by the first access point AP includes: sending, by the first AP, the first information to at least one of the second APs
  • the method further includes: the first AP sends third information to the STA, the third information is used to configure a beam training time of the STA; and receiving at least one of the second AP at the first AP
  • the method further includes: the first AP sends fourth information to the STA, where the fourth information is used to represent at least one of the second APs.
  • a second sector selection result, and the second sector selection result includes all or part of the first sector selection result of at least one of the second APs.
  • the first AP may send first information to at least one of the second APs, and send third information to the STA, so as to configure a beam training time between the first CP, the second AP, and the STA so as to receive at least one
  • the second information sent by the second AP sorts and summarizes the second information, and sends the fourth information to the STA.
  • the third information includes at least one of the following information: a time when the second AP performs a sector scan on the initiator; and the STA performs a responder A time for sending a sector scan; a time for the STA to receive the fourth information.
  • the third information may be carried as an element in an existing frame, or may be carried in a newly defined frame, which is not limited in the embodiment of the present application.
  • the third information may specifically be a virtual cluster beamforming STA setup (VCBF STA setup) frame.
  • the receiving, by the first AP, at least one second information sent by the second AP based on the first information includes: receiving, by the first AP, at least one One second AP centrally feeds back the second information after the last AP in the multiple APs performs beam training.
  • the second AP may poll the STA and receive a sector scan frame (may be called a NEW SSW frame) sent by the STA. Measure the sector scan frame to obtain the first sector scan result, and then immediately send the second information including the first sector scan result to the first AP (can be called an AP FBCK frame), or it can be sent to all STAs. After the sector scanning frame is sent and the sector scanning frame is measured, the second information including all the scanning results of the first sector is collectively reported, which is not limited in this embodiment of the present application.
  • a sector scan frame may be called a NEW SSW frame
  • the second information including the first sector scan result may be called an AP FBCK frame
  • the second information including all the scanning results of the first sector is collectively reported, which is not limited in this embodiment of the present application.
  • a second AP needs to send multiple second information; and for a scheme for centralized reporting, a second AP may measure the first fan obtained by measuring sector scan frames sent by multiple STAs. The area scan result is integrated and reported in a second message, which can simplify the feedback process and save reporting overhead.
  • another beam training method including: a second access point AP receiving first information sent by a first AP, where the first information is used to configure beam training times of multiple APs, and The beam training time is used for beam training by the multiple APs and multiple site STAs within a coverage area of the multiple APs, where the multiple APs include the first AP and the second AP; the second AP The AP sends second information to the first AP according to the first information, where the second information is used to feed back a first sector selection result, and the first sector selection result is within the beam training time Obtained by performing beam training.
  • the first information includes at least one of the following information: a time when the second AP performs a sector scan of the initiator; and the second AP round The time when the STA is queried; the time when the second AP sends the second information.
  • the second information includes at least one of the following information: identification information of the STA; the plurality of APs corresponding to the STA performing sector scanning Identification information of at least one AP among the plurality of APs; the STA corresponds to a first sector selection result of at least one AP among the plurality of APs.
  • the method before the second AP sends second information to the first AP according to the first information, the method further includes: the first The two APs send third information to the STA, and the third information is used to configure a beam training time of the STA.
  • the method further includes: the first The two APs receive fourth information sent by the first AP, where the fourth information is used to indicate a second sector selection result of at least one of the second APs, and the second sector selection result includes at least one of the All or part of the first sector selection result of the second AP; the second AP sends the fourth information to the STA.
  • the third information includes at least one of the following information: the time at which the second AP performs sector scanning by the initiator; and the STA performs the responder. A time for sending a sector scan; a time for the STA to receive the fourth information.
  • the sending, by the second AP, the second information to the first AP according to the first information includes the following steps: After the last AP among the APs performs beam training, the second information is fed back to the first AP.
  • an apparatus for beam training for performing the method in the first aspect or any possible implementation manner of the first aspect.
  • the apparatus includes a unit for performing the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • another apparatus for beam training for performing the method in the second aspect or any possible implementation manner of the second aspect.
  • the apparatus includes a unit for performing the method in the foregoing second aspect or any one of the possible implementation manners of the second aspect.
  • the apparatus includes a transceiver, a memory, and a processor.
  • the transceiver, the memory, and the processor communicate with each other through an internal connection path.
  • the memory is used to store instructions.
  • the processor is used to execute the instructions stored in the memory to control the receiver to receive signals and the transmitter to send signals. And when the processor executes the instructions stored in the memory, the processor is caused to execute the method in the first aspect or any possible implementation manner of the first aspect.
  • the apparatus includes a transceiver, a memory, and a processor.
  • the transceiver, the memory, and the processor communicate with each other through an internal connection path.
  • the memory is used to store instructions.
  • the processor is used to execute the instructions stored in the memory to control the receiver to receive signals and to control the transmitter to send signals. And when the processor executes the instructions stored in the memory, the processor is caused to execute the method in the second aspect or any one of the possible implementation manners of the second aspect.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory is separately provided from the processor.
  • the memory may be a non-transitory memory, such as a read-only memory (ROM), which may be integrated on the same chip as the processor, or may be separately set in different On the chip, the embodiment of the present application does not limit the type of the memory and the way of setting the memory and the processor.
  • ROM read-only memory
  • a beam training system includes the foregoing third aspect or any one of the possible implementations of the third aspect, and the fourth aspect or any possible implementation of the fourth aspect.
  • Device or
  • the system includes the apparatus in the fifth aspect or any one of the possible implementations of the fifth aspect, and the apparatus in the sixth aspect or any one of the possible implementations of the sixth aspect.
  • a computer program product includes computer program code that, when the computer program code is executed by a computer, causes the computer to execute the methods in the foregoing aspects.
  • a computer-readable medium for storing a computer program, the computer program including instructions for performing the methods in the above aspects.
  • a chip including a processor, configured to call and execute instructions stored in the memory from a memory, so that a communication device installed with the chip executes the methods in the above aspects.
  • another chip including: an input interface, an output interface, a processor, and a memory.
  • the input interface, the output interface, the processor, and the memory are connected through an internal connection path.
  • the processor is configured to execute code in the memory, and when the code is executed, the processor is configured to execute the methods in the foregoing aspects.
  • FIG. 1 is a schematic structural diagram of a beacon interval according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a beam training method according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of BPAC training of a basic service set control point / access point cluster according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a frame structure of a request frame and / or a response frame used for BPAC training according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a sector-level scanning SLS phase of beam training according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an AP setup frame according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an STA setup frame according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a new sector scan frame (NEW frame) according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an AP feedback frame (AP frame) according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a beam training feedback forwarding frame (BF, FBCK, forwarding frame) according to an embodiment of the present application.
  • BF beam training feedback forwarding frame
  • FBCK forwarding frame
  • 12 to 14 are schematic flowcharts of a BRP phase of a beam refining phase of beam training according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a new beam refining protocol frame (NEW BRP frame) according to an embodiment of the present application.
  • FIG. 16 is a schematic flowchart of feedback of AP, FBCK, and frame in beam training according to an embodiment of the present application.
  • FIG. 17 is a schematic flowchart of transmitting a BF, FBCK, and forwarding frame during beam training according to an embodiment of the present application.
  • FIG. 18 is a schematic flowchart of a sector-level scanning SLS phase of another beam training according to an embodiment of the present application.
  • FIG. 19 is a schematic flowchart of a sector-level scanning SLS phase of another beam training according to an embodiment of the present application.
  • 20 to 21 are schematic flowcharts of a BRP phase of a beam refining phase of another beam training according to an embodiment of the present application.
  • FIG. 22 is a schematic flowchart of receiving training according to an embodiment of the present application.
  • FIG. 23 is a schematic flowchart of transmission training according to an embodiment of the present application.
  • FIG. 24 is a schematic flowchart of an autonomous responder sector scan according to an embodiment of the present application.
  • FIG. 25 is a schematic block diagram of a device according to an embodiment of the present application.
  • FIG. 26 is a schematic block diagram of another device according to an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various mobile communication systems, such as: universal mobile communication system (UMTS), worldwide interoperability for microwave access (WiMAX) communication system , And future 5G communication systems.
  • UMTS universal mobile communication system
  • WiMAX worldwide interoperability for microwave access
  • 5G communication systems UMTS
  • the technical solution of the embodiment of the present application can also be applied to wireless local area network (WLAN), and the embodiment of the present application can be applied to the Institute of Electrical and Electronics Engineers (IEEE) 802.11 currently adopted by WLAN Any of a series of protocols.
  • IEEE Institute of Electrical and Electronics Engineers
  • a WLAN may include one or more basic service sets (BSS), and the network nodes in the basic service set include an access point (AP) and a station (STA).
  • BSS basic service set
  • AP access point
  • STA station
  • IEEE 802.11ad introduces a personal basic service set (PBSS) and a personal basic service set control node (PBSS control point (PCP)).
  • PBSS personal basic service set
  • PCP personal basic service set control node
  • Each personal basic service set can include an AP / PCP and multiple sites associated with the AP / PCP.
  • the initiating device in this embodiment of the present application may also be called an initiator of the initiator, and the responding device may also be called a responder of the responder, which will not be described one by one below.
  • the initiating device and the responding device are devices with wireless communication functions, and may be a user station (station, STA) in the WLAN.
  • the user station may also be referred to as a user unit, access Terminal, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, user device, or user equipment (UE).
  • the STA may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), or a wireless local area network (PDA).
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PDA wireless local area network
  • the initiating device and the responding device in the embodiments of the present application may also be AP / PCP in the WLAN.
  • the AP / PCP may be used to communicate with the access terminal through a wireless local area network and transmit the data of the access terminal to the network side, or Data from the network side is transmitted to the access terminal.
  • FIG. 1 shows a schematic structural diagram of a beacon interval BI.
  • the beacon interval is divided into a beacon header indication (BHI) and a data transmission interval (DTI).
  • BHI includes a beacon transmission interval (BTI), an association-beamforming training (A-BFT), and an announcement transmission interval (ATI).
  • BTI beacon transmission interval
  • A-BFT association-beamforming training
  • ATI announcement transmission interval
  • PCP / AP sends multiple beacon frames in the BTI according to the sector number for downlink sector scanning; A-BFT is used for STA for association and uplink sector scanning; ATI is used for PCP / AP polls the STA for buffered data information and allocates resources in a data transmission interval (DTI) to the STA.
  • DTI data transmission interval
  • the entire DTI will be divided into several sub-intervals.
  • the sub-intervals will be divided into contention-based access period (CBAP) and service interval (SP) according to the type of access. The latter is for scheduling transmission. No competition is required.
  • the 60GHz millimeter wave band has abundant available spectrum resources, but due to the increased path loss, the attenuation is very serious. Therefore, in high-frequency communication systems, such as 802.11ad / ay, beamforming (BF) directional communication technology is mainly considered. . With beamforming technology, BFT is first performed. The BFT process is mainly divided into the following stages:
  • SLS sector-level sweep
  • the initiator sector scan (ISS) phase is used to train the directional send beam of the initiator, the initiator sends training data in a beam of a certain width, and the responder receives the training data omnidirectionally;
  • the responder sector scan (RSS) phase is used to train the responder's directional transmission beam.
  • the responder sends training data in a beam of a certain width and contains the best transmission sector from the previous stage of the initiator. Information, at this time the initiator quasi-omnidirectionally receives training data;
  • the feedback information is the list of sectors sent by the initiator, sorted by sector quality, and contains the best sector of the responder in the previous stage. Quasi-omnidirectional receiving mode;
  • the SSW-ACK stage may not exist when SLS is performed before the data transfer stage (DTI), and the SSW-ACK stage is required for SLS in the DTI stage.
  • the responder feedbacks the responder sending sector list sorted by quality.
  • the device uses an omnidirectional antenna for omnidirectional transmission or omnidirectional reception.
  • the omnidirectional antenna behaves as a 360 ° uniform radiation in the horizontal direction, that is, it is non-directional and appears to have a certain width in the vertical direction In general, the smaller the lobe width, the larger the gain.
  • the omnidirectional antenna covers a large area, and is generally applied to the station type of suburban district system in the communication system.
  • the directional antenna used by the device for directional transmission or reception is a directional antenna that behaves as radiation in a certain angular range in the horizontal direction, that is, has directivity. As with omnidirectional antennas, the smaller the lobe width, the greater the gain.
  • Directional antennas are generally used in communication systems for long communication distances, small coverage areas, high target densities, and high frequency utilization.
  • BRP Beam refinement protocol
  • the initial setup (BRP setup) phase is used to configure the training information in the subsequent multiple sector detection (MID) and beam combining (BC) stages;
  • MID Multi-sector detection phase.
  • the main function is to train the best receiving beam of the initiator and responder.
  • the method is similar to the training process of the best transmitting beam, except that the training is not sent in a quasi-omnidirectional mode. Data, and receive training data in directional mode;
  • Beam combining (BC) phase the main function is to pair the transmit and receive beams trained separately in the SLS and MID phases to obtain the best transmit and receive beam pairing, so as to find the best directional communication link. At this time, sending and receiving training data both use the directional mode.
  • BC Beam combining
  • At least one round of beam refinement (BRT) phase Beam refinement is performed to iteratively find more refined beam pairs and improve communication link quality.
  • BRP-transmit sector sweep BRP-TXSS
  • This training process is intended to use BRP frames for sending sector scanning and / or receiving beam training.
  • the entire BRP TXSS process includes a series of processes including initialization settings, sender training with feedback, receive training with responders, sender training with responders with feedback, receive training with initiators, and confirmation phases. Part or all. Among them, except for the initial setting phase, the sender's training with feedback, and the confirmation phase are required, the other phases are optional. Its main function is to further refine the beam during data transmission.
  • 802.11ay multi-user multiple-input multiple-output (MU-MIMO) training is beam training performed between an AP and multiple STAs, with the purpose of establishing the AP to multiple STAs.
  • the parallel transmission link is composed of a single-input single-output (SISO) phase and a multiple-input multiple-output (MIMO) phase.
  • SISO single-input single-output
  • MIMO multiple-input multiple-output
  • the SISO phase consists of an initiator-transmit sector-sweep (I-TXSS) sub-phase and a SISO feedback (SISO feedback) sub-phase.
  • I-TXSS initiator-transmit sector-sweep
  • SISO feedback SISO feedback
  • the I-TXSS phase when the initiator sends a short sector scan (SSSW) frame or a sector scan (SSW) frame, all responders can listen (beam training), and then uniformly time-divisionally The result is returned to the initiator through the BRP frame.
  • This process is carried out in an orderly and coordinated manner, avoiding the occurrence of training conflicts in the traditional association beamforming training (A-BFT) stage.
  • the A-BFT phase exists in a beacon interval (BI) of 802.11ad and 802.11ay, and corresponds to the SLS phase in the beamforming process.
  • the A-BFT phase mainly performs the operations of the responder sending the sector scan (responder, sector, sweep, R-
  • the MIMO phase consists of two sub-phases: a downlink MIMO phase and an uplink MIMO phase.
  • the downlink MIMO phase should start after the end of the SISO phase. Based on the feedback information of the SISO phase, if some responders are affected by multi-user interference due to MU-MIMO transmission, the multi-user multiple-input multiple-output beamforming in the downlink MIMO training phase
  • the setup (MU-MIMO, BF, setup) phase will exclude these responders in the next two sub-phases.
  • MIFS medium beamforming interframe space
  • the initiator transmits one or more BRP packets to the remaining responders in the multi-family group, and each BRP is separated by a short interframe space (SIFS) time.
  • SIFS short interframe space
  • the initiator After each responder corresponding to the BRP receives the information, it starts receiving beam training.
  • the initiator After the MBIFS time at the end of the MU-MIMO BF training sub-phase, the initiator starts the MU-MIMO BF feedback sub-phase.
  • This stage uses a polling mechanism.
  • the initiator sends multiple input multiple output beamforming polling (MIMO) BF frames to poll the currently existing responders to obtain MU-MIMO BF feedback frames, which include MU-MIMO BF training Training information for the sub-responder.
  • MIMO multiple input multiple output beamforming polling
  • the initiator After the MBIFS time at the end of the MU-MIMO BF feedback sub-phase, the initiator starts the MU-MIMO BF selection sub-phase. At this stage, the initiator sends MU-MIMO BF selection frames to each responder in the multi-user group, telling them the necessary information to complete the training.
  • the uplink MIMO phase consists of three sub-phases, specifically the MU-MIMO BF setup sub-phase, the MU-MIMO BF training sub-phase, and the MU-MIMO BF selection sub-phase.
  • the MU-MIMO BF setup phase the MU-MIMO BF setup frame is sent by the initiator to each responder in the multi-user group.
  • the basic principle is the same as the downlink.
  • the polling mechanism is still used.
  • the initiator sends MIMO BF poll frames to each responder that is still in the multi-user group. After that, each responder transmits one or more BRP packets to the initiator to complete the training.
  • the initiator sends one or more MU-MIMO BF selection frames to each responder.
  • the frame contains information about the total training results.
  • the completion of the last frame transmission marks the entire MU-MIMO training process. The end.
  • FIG. 2 is a schematic diagram of a communication system according to an embodiment of the present application.
  • the communication system consists of multiple APs forming an AP cluster, and one of the multiple APs is a coordination node (C-AP) of the AP cluster.
  • C-AP coordination node
  • M-AP member node
  • the C-AP can distinguish each M-AP and assign an identity (ID) to it.
  • ID identity
  • STAs exist within the coverage of all or part of the APs.
  • the foregoing communication system may be directed to a mobile scenario or a non-mobile scenario, that is, the STA may be mobile or fixed. Therefore, when the STA can move, the number of STAs within the coverage area of an AP can change in real time. In other words, there may be a moment in time when an AP does not cover any STAs.
  • This embodiment of the present application This is not limited.
  • a set consisting of multiple access points APs can be referred to as a basic service set control point / access point cluster (BSS, PCP / AP, cluster, BPAC).
  • BPAC corresponds to the scenario where there are multiple APs.
  • a coordinating access point C-AP is used to coordinate other member access points M-AP.
  • M-AP is regarded as the C-AP's distributed antenna.
  • the AP provides services for one or more STAs.
  • the BPAC may correspond to a millimeter-wave network scenario, may also correspond to a high-frequency scenario, and may also correspond to other scenarios that require beam training, which is not limited in this embodiment of the present application.
  • the above-mentioned C-AP and M-AP are only used to distinguish the names given to the coordinated access points and other member access points, and the C-AP and M-AP may also have other names, which are not dealt with in this embodiment of the present application.
  • the C-AP can also be called a first AP
  • the M-AP can also be called a second AP
  • the C-AP can also be called a master AP
  • the M-AP can also be called a slave AP
  • the above BPAC is only a term used for the convenience of description herein, and the BPAC may also have other names, which are not limited in the embodiments of the present application.
  • the embodiment of the present application provides a beam training method between multiple APs and multiple STAs.
  • FIG. 3 shows a schematic flowchart of a beam training method 300 according to an embodiment of the present application.
  • the method 300 can be applied to the communication system 200 shown in FIG. 2, but the embodiment of the present application is not limited thereto.
  • the first access point AP sends first information, where the first information is used to configure beam training times of multiple APs, and the beam training times of the multiple APs are used for the multiple APs and the multiple APs.
  • STAs within the coverage area of the AP perform beam training, and the multiple APs include the first AP and at least one second AP;
  • the first AP receives at least one second information sent by the second AP based on the first information, and the second information is used to feed back a first sector selection result, and the first sector selection result. It is obtained by performing beam training within the beam training time.
  • the first AP corresponds to the C-AP in FIG. 2 and the at least one second AP corresponds to the n M-APs in FIG. 2.
  • the at least one second AP specifically represents one second AP or multiple second APs.
  • the first AP may send first information for configuring the beam training time of the multiple APs, and notify the second AP and the STA, so that the multiple APs and STAs including the first AP and the second AP can communicate with each other according to the Beam training is performed at the beam training time, so that the first AP can receive the first sector selection result sent by the second AP.
  • the first sector selection result is obtained by measuring at least one second AP based on a sector scanning frame sent by the STA.
  • the first AP may broadcast the first information.
  • the first AP sends first information for configuring the beam training time of multiple APs, so that multiple APs and STAs within the coverage area of the multiple APs are trained according to the beam.
  • Beam training can be configured at a time, which can uniformly configure the AP's beam training time, which is convenient for management planning of the beam training process, which is conducive to improving beam training efficiency.
  • the first sector selection result includes a sector selection result obtained by the second AP based on a sector scan frame measurement sent by an STA associated with the second AP.
  • the sector scan frame sent by the STA may include training results of the AP corresponding to the beacon frame that the STA can receive, and the training result may be obtained by the STA performing measurement based on the sector scan frame sent by the AP.
  • the beam training time of the multiple APs refers to a beam training time corresponding to each of the multiple APs. That is, the first AP may configure multiple beam training times for multiple APs, respectively.
  • the beam training times of the multiple APs are different.
  • the beam training times of the multiple APs may be different, and “different” here may include all differences or partial differences, that is, the beam training times between the multiple APs are different, or the multiple APs There are some APs between them, and the beam training times between the two APs are different, while the beam training times of the other APs are the same, which is not limited in this embodiment of the present application.
  • the beam training times of multiple APs are different, which can avoid interference between multiple APs and STAs during beam training, and avoid resource conflicts used by the APs when transmitting information.
  • the embodiments of the present application do not limit the beam training time between multiple APs. This is because the first AP can schedule the second AP and the STA to be the same without conflict or interference according to the existing information. Beam training is performed in parallel within the time. Therefore, compared with the different beam training time between multiple APs, this can greatly improve the efficiency of beam training.
  • the first information includes at least one of the following information: a time when the second AP performs a sector scan of the initiator; and the second AP polls the STA. Time; the time when the second AP sends the second information.
  • the first information is sent for a specific second AP, and is used to configure the beam training time of the specific second AP.
  • the number of first information that the first AP needs to send is equal to the at least one first
  • the number of two APs is equal.
  • the above-mentioned first information may include the time when the second AP performs the sector scan (I-IXSS) of the initiator, and the second AP polls the STAs (that is, sends them to the STAs in sequence) Polling at least one of the time of the sector scanning poll (SSW frame) and the time of the second AP sending the second information.
  • the first information may be carried as an element in an existing frame or in a newly defined frame, which is not limited in the embodiment of the present application.
  • the first information may be carried in a virtual cluster beam forming AP setup (VCBF AP AP setup) frame, and the VCBF AP AP setup frame may be a newly defined frame, of course, the frame may also have Other names, such as the AP initialization frame, are not limited in this embodiment of the present application.
  • the first information may further include a time when the second AP sends third information, and the third information is used to configure a beam training time of the STA.
  • the STA may be an STA that is served by the second AP among sites within coverage of multiple APs.
  • the first information may further include specific requirements for uplink training and / or downlink training, for example, only uplink training is performed, or only downlink training is performed, or uplink training and downlink training are performed.
  • the second information includes at least one of the following information: identification information of the STA; identification information of at least one AP of the multiple APs corresponding to the STA performing sector scanning ;
  • the STA corresponds to a sector selection result of at least one of the plurality of APs.
  • the second information is reported by a specific second AP, and its content includes a sector selection result obtained according to the sector scan frame measurement sent by the STA associated with the second AP, and the first AP needs to receive
  • the number of the second information may be equal to the number of the at least one second AP.
  • the second information may include at least one of identification information of the STA, identification information of a partial AP corresponding to the STA performing sector scanning, and a sector selection result of the partial AP corresponding to the STA.
  • the partial AP here is the foregoing.
  • At least one AP among the multiple APs may include a first AP or a second AP, which is not limited in this embodiment of the present application.
  • the sector selection result fed back by the STA in the sector scan frame includes the training results of the STA and the AP corresponding to the beacon frame that it can receive, and the STA may receive
  • a beacon frame sent by the first AP may also receive a beacon frame sent by another second AP, which is not limited in this embodiment of the present application.
  • the second information may be carried in an existing frame as an element, or may be carried in a newly defined frame, which is not limited in the embodiment of the present application.
  • the second information may be specifically carried in an AP feedback (AP feedback, AP FBCK) frame, and the AP FBCK frame may be a newly defined frame, of course, the frame may also have another name, such as an AP report frame, etc.
  • AP feedback AP feedback, AP FBCK
  • AP FBCK AP feedback
  • the frame may also have another name, such as an AP report frame, etc.
  • the embodiments of the present application are not limited.
  • the second information may include information about multiple STAs.
  • the information is the identification of each STA in the multiple STAs, the identification information of at least one of the multiple APs corresponding to each STA performing sector scanning, and each STA corresponds to at least one of the multiple APs.
  • the first sector selection result of an AP is the identification of each STA in the multiple STAs, the identification information of at least one of the multiple APs corresponding to each STA performing sector scanning, and each STA corresponds to at least one of the multiple APs.
  • the second information may further include the number of STAs corresponding to the second information.
  • the first AP may use different beam training procedures.
  • the two beam training processes are introduced below.
  • the first access point AP sending the first information includes: the first AP sends the first information to at least one second AP, so that the at least one second AP sends the third information to the STA
  • the third information is used to configure a beam training time of the STA.
  • the second AP receives the first information sent by the first AP, and the second AP sends the third information to the STA.
  • the first AP may send the first information to the second AP.
  • the second AP After receiving the first information, the second AP sends the third information to the STAs within the coverage area of the second AP according to the configuration in the first information. , Used to configure the STA's beam training time.
  • the method further includes: the first AP sends a fourth to the at least one second AP according to the second information.
  • the second AP receives the fourth information sent by the first AP; the second AP sends the fourth information to the STA.
  • the first AP may sort and summarize the received second information, and send the fourth information to the second AP.
  • the second AP receives the fourth information, and forwards the fourth information to its coverage area. STA.
  • the fourth information indicates a second sector selection result of at least one second AP
  • the second sector selection result may include all of the first sector selection result of at least one second AP Or part.
  • the first sector selection result includes the sector selection result obtained by the second AP based on the sector scan frame measurement sent by the STA associated with the second AP.
  • the sector scan frame sent by the STA may include training results of the AP corresponding to the beacon frame that the STA can receive, and the training result may be obtained by the STA performing measurement based on the sector scan frame sent by the AP.
  • the first AP can obtain multiple first sector selection results.
  • the first AP integrates the multiple first sector selection results.
  • An AP can send all the integrated results to the second AP, or it can only send the sector selection result of the AP in the coverage area where one or more STAs are located to the second AP. Therefore, the second sector selection result can be Including all or part of the first sector selection result, which is not limited in the embodiment of the present application.
  • the foregoing fourth information may be specifically referred to as a forwarding frame or a new sector scan feedback (NEW / SWCK / FBCK) frame.
  • any one of the first information, the second information, the third information, and the fourth information involved in the embodiments of the present application may be carried as an element in an existing frame, or may be carried in an existing frame. In the newly designed frame, the embodiments of the present application are not specifically limited.
  • the first access point AP sending the first information includes: the first AP sending the first information to at least one second AP;
  • the method further includes: the first AP sends third information to the STA, the third information is used to configure a beam training time of the STA;
  • the method further includes: the first AP sends fourth information to the STA, and the fourth information is used to indicate the first information of the at least one second AP.
  • Two sector selection results, and the second sector selection results include all or part of the first sector selection results of at least one of the second APs.
  • the first AP may send first information to at least one of the second APs, and send third information to the STA, so as to configure a beam training time between the first CP, the second AP, and the STA so as to receive at least one
  • the second information sent by the second AP sorts and summarizes the second information, and sends the fourth information to the STA.
  • the above-mentioned process 1 may be applied to a case where the first AP cannot communicate with all STAs, and the above-mentioned process 2 may be applied to a case where the first AP can communicate with all STAs.
  • the embodiments of the present application do not exclude that when the first AP is able to communicate with all STAs, the beam training method of process 1 is still adopted.
  • the third information includes at least one of the following information: the time when the second AP performs the sector scan sent by the initiator; the time when the STA performs the sector scan sent by the responder; the STA receives the fourth information time.
  • the third information is sent by a specific AP for a specific STA, and is used to configure a beam training time of the specific STA.
  • the number of the third information is equal to the number of STAs that need to be beam-trained.
  • the third information may include a time when the second AP performs an initiator-sector scan (I-TXSS), a time when the STA performs a responder-sector scan (R-TXSS), and the STA receives the fourth information. At least one of the time is not limited in the embodiment of the present application.
  • the third information may be carried as an element in an existing frame, or may be carried in a newly defined frame, which is not limited in the embodiment of the present application.
  • the third information may be specifically carried in a virtual cluster beamforming STA setup (VCBF STA setup) frame, and the VCBF STA setup frame may be a newly defined frame.
  • the frame may also have other names, such as an STA initialization frame, which is not limited in this embodiment of the present application.
  • the receiving, by the first AP, at least one second information sent by the second AP based on the first information includes: receiving, by the first AP, at least one second AP The second information that is collectively fed back after the last AP of the multiple APs performs beam training.
  • the sending, by the second AP, the second information to the first AP according to the first information includes: after the second AP performs beam training on the last AP of the multiple APs, the second AP sends The first AP feeds back the second information.
  • the second AP may poll the STA and receive a sector scan frame (may be called a NEW SSW frame) sent by the STA. Measure the sector scan frame to obtain the first sector scan result, and then immediately send the second information including the first sector scan result to the first AP (can be called an AP FBCK frame), or it can be sent to all STAs. After the sector scanning frame is sent and the sector scanning frame is measured, the second information including all the scanning results of the first sector is collectively reported, which is not limited in this embodiment of the present application.
  • a sector scan frame may be called a NEW SSW frame
  • the second information including the first sector scan result may be called an AP FBCK frame
  • the second information including all the scanning results of the first sector is collectively reported, which is not limited in this embodiment of the present application.
  • a second AP needs to send multiple second information; and for a scheme for centralized reporting, a second AP may measure the first fan obtained by measuring sector scan frames sent by multiple STAs. The area scan result is integrated and reported in a second message, which can simplify the feedback process and save reporting overhead.
  • the first AP is a C-AP and the second AP is an M-AP as an example, and the present application is described in detail in combination with specific embodiments.
  • This embodiment can be applied to the communication system shown in FIG. 2.
  • the C-AP manages and coordinates n M-APs so as to complete beam training between the n + 1 APs and m STAs.
  • FIG. 4 shows a schematic flowchart of basic service set control point / access point cluster BPAC training according to an embodiment of the present application.
  • the C-AP can send BPAC training request frames to each M-AP in turn in BTI to ask each M-AP, which time can be vacated for virtual AP cluster beamforming training service window (virtual cluster (BFT, SP, VCSP).
  • BFT, SP, VCSP virtual cluster
  • the M-APs can feedback the BPAC training response (BPAC training frame) frame to the C-AP in their respective BTIs.
  • BFT virtual AP cluster
  • SP virtual cluster
  • VCSP virtual cluster
  • the beam training sequence regarding the M-AP may be determined by the cluster time offset of each M-AP.
  • the M-AP negotiates with the C-AP to obtain its own cluster time offset index (cluster time offset).
  • cluster time offset index specifies that each M-AP
  • the sequence of sending beacon frames in the BPAC can be used as a basis for judging the sequence of beam training performed by the M-AP.
  • the BPAC training request frame may specifically include an allocation start field and an allocation block duration field, which are used to allocate time for virtual AP cluster beamforming training to an M-AP.
  • the BPAC training request frame may further include a BPAC member role field, a BPCA BF allocation request field, and a ClusterMaxMem field.
  • the BPAC member role field may be an AP role definition in a BPAC scenario, and is used to indicate that the AP sending the BPAC request frame is an M-AP or C-AP;
  • the BPAC BFallocation requested field indicates that the C-AP is assigned to the M-AP Time;
  • the ClusterMaxMem field indicates the maximum number of nodes that can be added to the BPAC scenario.
  • the above BPAC training response frame may specifically include a BPCA BF allocation response field, which is used to indicate whether the M-AP that feeds back the BPAC training response frame accepts the time allocated by the C-AP.
  • the BPAC training response frame may further include a BPAC member role field, and the BPAC member role field may be a role definition of each AP in a BPAC scenario, and is used to indicate whether the AP is an M-AP or a C- AP.
  • FIG. 5 is a schematic diagram of a frame structure of a request frame and / or a response frame used for BPAC training according to an embodiment of the present application.
  • the BPAC training request frame and the BPAC training response frame may include a combination of one or more of the following information:
  • Element ID The ID used to mark and distinguish elements.
  • Length It is used to indicate the length of the element.
  • BPAC member role It is used to indicate whether the AP sending the element is C-AP or M-AP, that is, C-AP / M-AP can be distinguished.
  • ClusterMaxMem field used to indicate the maximum number of APs that can be accepted in the BPAC.
  • BPCA BF allocation request (BPAC, BF, allocation, requested) field: used to indicate whether the frame contains a request for beam training.
  • Allocation start used to indicate the starting point (time) of the beam training performed by the allocated M-AP.
  • Allocation block duration Used to indicate the duration of an allocated block.
  • Number of blocks Used to indicate how many blocks are allocated.
  • Allocation block period indicates the interval between two blocks that belong to the same allocation.
  • the BPAC member role can be used to indicate whether the frame is sent by C-AP or M-AP, thereby distinguishing whether the frame is a BPAC training request frame or a BPAC. Training response frame.
  • the BPAC BFallocation and response field in the BPAC training response frame may be equivalent to the BPAC BFallocation and requested field in the BPAC training request frame.
  • allocation start and allocation block duration can be defaulted.
  • the C-AP can set the BPAC in the BPAC training request frame to 0, and set M- through the allocation start and allocation block in the BPAC training request frame. AP's beam training time. If the M-AP accepts the time set by the C-AP, it sets the BPAC, BF, and location requested in the BPAC training response frame to 1, and feeds it back to the C-AP. Otherwise, the M-AP sets the BPAC, BF, and location requested in the BPAC training response frame to 0, indicating that the M-AP does not accept the time allocated by the C-AP.
  • the C-AP receives the BPAC, BF, and location requested of the M-AP as 1, it sets the BPAC, BF, and location requested in the BPAC training request frame to 1, as a BPAC training confirmation frame, and feeds back to the M-AP. Otherwise, the C-AP restarts setting the time for the M-AP, that is, sets the BPAC in the BPAC training request frame to 0, and sets the time through the allocation start and allocation block duration in the BPAC training request frame.
  • 0 and 1 are only for example. In other embodiments, 1 may also be used to indicate that the M-AP does not accept the time allocated by the C-AP, and 0 indicates the time that the M-AP receives the C-AP allocation. It can also be expressed by other bits, which is not limited in the embodiment of the present application.
  • each M-AP After completing BPAC training, each M-AP knows the specific STAs and training sequences that need to be beam-trained, and then performs beam training.
  • the specific training process can be divided into the following situations.
  • FIG. 6 shows a schematic flowchart of a sector-level scanning SLS stage of beam training according to an embodiment of the present application.
  • the SLS stage is divided into the following three stages.
  • the C-AP will broadcast the VCBF AP setup frame (that is, the above-mentioned first information) to n M-APs, and accordingly, the n M-APs that receive the VCBF AP setup frame will broadcast the VCBF STA setup frame (the above-mentioned third Information) to all STAs associated with it in order to configure the beam training time of the M-AP and STA.
  • the VCBF AP setup frame that is, the above-mentioned first information
  • n M-APs that receive the VCBF AP setup frame will broadcast the VCBF STA setup frame (the above-mentioned third Information) to all STAs associated with it in order to configure the beam training time of the M-AP and STA.
  • the above-mentioned VCBF AP AP setup frame may include the time for each M-AP to send the sector-scanning I-TXSS for each M-AP, the time for each M-AP to poll the STA, and each M-AP. Time when the AP FBCK frame was sent.
  • the VCBF AP setup frame may also include the time when each M-AP sends a STA setup frame, and may also include specific requirements for uplink training (UL training) and / or downlink training (DL training). For example, only The uplink training, or only the downlink training, or the uplink training and the downlink training, is not limited in the embodiment of the present application.
  • the M-AP can obtain the specific time for each AP to perform I-TXSS, the specific time for M-AP to poll each STA, the specific time for each M-AP to transmit AP and FBCK frames, Specific requirements for upward training and downward training.
  • the frame format of the VCBF AP setup frame may be as shown in FIG. 7.
  • the VCBF AP setup frame includes the following fields:
  • Frame control The first three subfields are protocol version, type, and subtype, and the remaining subfields depend on the settings of the type and subtype.
  • sender address (transmitter address, TA)
  • Information field of M-AP for example, information field of M-AP1, M-AP1info
  • FCS Frame check sequence
  • AP ID It is usually the MAC address of the AP, and it can also be the ID of the AP in the BPAC;
  • STA setup start time STA setup time
  • STA setup duration STA setup duration
  • I-TXSS start time I-TXSS start time
  • I-TXSS duration I-TXSS duration
  • Polling start time Pl start time
  • polling duration polling duration
  • AP FBCK frame transmission start time (AP FBCK start time)
  • AP FBCK frame transmission duration (AP FBCK duration).
  • the information of each M-AP may further include: an uplink and / or downlink training (DL / UL training) indication field, which is used to indicate current training requirements, for example, only uplink training is performed, or, Perform only downward training, or perform upward training and downward training.
  • DL / UL training downlink training
  • the design of the frame structure in the embodiment of the present application is only an exemplary description, and does not limit the protection scope of the present application.
  • the frame structure including the foregoing information may be a new frame structure, or may be The existing and improved frame structure is not limited in this embodiment of the present application.
  • the subsequent frame structure is the same, and will not be described again.
  • the VCBF STA setup frame is for a specific STA, and may include the M-AP that sends the VCBF STA setup setup frame to the STA, the time when the initiator sends the sector scan I-TXSS, and the STA sends the responder. The time of the sector scan R-TXSS and the time when the STA receives the NEW SWB FBCK frame (that is, the fourth information described above).
  • the VCBF STA setup frame may also include the number of NEW SSW frames, and may also include specific requirements for uplink training and / or downlink training, for example, only uplink training is performed, or only downlink training is performed, or, The uplink training and the downlink training are not limited in this embodiment of the present application.
  • each STA can obtain the specific time when the M-AP associated with it performs I-TXSS, the specific time when each STA performs R-TXSS, and the specific time required by each STA to send a NEW SSW frame Quantity and specific requirements for up and down training.
  • the frame format of the VCBF STA setup frame may be as shown in FIG. 8.
  • the VCBF STA setup frame includes the following fields:
  • Frame control The first three subfields are protocol version, type, and subtype, and the remaining subfields depend on the settings of the type and subtype.
  • Receiver address (receiver address, RA), which can be the MAC address of the receiver, or the ID of the receiver in the BPAC.
  • the sender address (transmitter address, TA), which can be the sender's MAC address, or the sender's ID in the BPAC.
  • FCS Frame check sequence
  • I-TXSS start time I-TXSS start time
  • I-TXSS duration I-TXSS duration
  • R-TXSS start time R-TXSS start time
  • R-TXSS duration R-TXSS duration
  • the information of each M-AP may further include: an uplink and / or downlink training (DL / UL training) indication field, which is used to indicate current training requirements, for example, only uplink training is performed, or, Perform only downward training, or perform upward training and downward training
  • DL / UL training downlink training
  • the initiator sends the sector scan phase (I-TXSS phase)
  • each AP (including C-AP and M-AP) will send sector scan (SSW) frames in sequence in the order specified when the VCSP was previously formed.
  • SSW sector scan
  • the so-called sector scan is that the sender divides the signal propagation area from a circular area into several fan-shaped areas, and sends training data once in each sector.
  • the responder sends the sector scanning phase (R-TXSS phase) and feedback phase (SSW FBCK phase)
  • the responder sends the sector scanning phase, which is the R-TXSS phase.
  • the M-AP polls the STAs associated with it according to the time set in the initialization setting phase. STA will send NEW SSW frames.
  • the NEW SSW frame is sent by the STA, and includes the sector selection result obtained by the STA measuring the SSW frame sent by the AP. Therefore, the NEW SSW frame may include the number of antennas fed back by the STA (number of antennas) and information corresponding to each antenna (per antenna). The information corresponding to each antenna may include a sector selection result and a corresponding antenna index.
  • n APs can be regarded as one AP and distinguished by the antenna index. Therefore, the number of the aforementioned antennas can also be the number of the APs, the aforementioned antenna index can also be the AP index, and the antenna identifier can also be It is an AP identifier, which is not limited in this embodiment of the present application.
  • the frame format of the NEW SSW frame is shown in FIG. 9.
  • the SSW FBCK part in the SSW frame is changed from 3 bytes of a fixed length to a variable byte length, thereby forming a NEW SSW frame shown in FIG. 9.
  • the number (number of domain) field will identify the number of destination APs that the NEW SSW frame will be sent to; if the VCSP stage has been informed before the STA that it can receive the number of beacon frames sent by the AP, number of antenna This domain may not be present.
  • the NEW SSW frame may also include the number of antennas and specific information for each antenna. The specific information for each antenna may include the antenna index, sector selection, and signal-to-noise ratio (SNR) report. Send to M-AP.
  • each antenna information may include a sector selection field, antenna identification (such as AP identification) field, and SNR report field corresponding to each antenna (that is, each AP), where the sector selection field may be Sector identification and / or beam identification.
  • each antenna information may include a countdown (CDOWN) field, an antenna identifier (such as an AP identifier) field, and an SNR report field corresponding to each antenna (that is, each AP), where:
  • the CDOWN field may be the CDOWN value corresponding to the sector and / or beam selected by the STA, and the AP can determine the sector and / or beam selected by the STA according to the CDOWN value.
  • the CDOWN field is a counter and may be included in the SSW frame sent by the AP to the STA in the I-TXSS phase, and is used to indicate the transmission amount of the remaining SSW frame from the end of TXSS or RXSS.
  • the SSW frame may further include a sector identifier and / or a beam identifier. Therefore, the CDOWN value may be used to determine a sector identifier and / or a beam identifier corresponding to the SSW frame that sends the CDOWN value.
  • the value range of this field can be between 0 and 511, and it is decreased by 1 in the order of the SSW frame transmission, and is 0 in the last SSW frame.
  • each antenna information can include the ID of AP1, the sector selection result and the SNR report corresponding to AP1, and the AP2 Identification, sector selection result and SNR report corresponding to AP2.
  • the sector selection result may be directly represented by a sector identifier and / or a beam identifier, or may be represented by a CDOWN value, which is not limited in this embodiment of the present application.
  • each M-AP sends an AP FBCK frame (that is, the above-mentioned second information) to the C-AP to implement feedback. Therefore, the C-AP can collect all M-APs and their associations. STA's sector selection results.
  • the AP FBCK frame may include an identifier of the STA, an identifier of the AP corresponding to the sector scanning performed by the STA, and a sector selection result corresponding to the STA corresponding to the AP. Since the AP FBCK frame is fed back to the C-AP by a specific M-AP, the M-AP can summarize the sector selection results sent by multiple STAs through the NEW SSW frame, and integrate them in one AP. It is reported to the C-AP in the FBCK frame.
  • FIG. 10 shows sector selection results of X STAs, where X is an integer greater than or equal to 1 and less than or equal to m.
  • the X STAs are STAs located within the coverage area of the M-AP, and each STA can receive a beacon frame sent by some APs, and the STA will perform beam training with these APs, thereby obtaining a fan of the STAs corresponding to the APs.
  • Zone selection results Therefore, in the AP FBCK frame, for each of the X STAs, it is necessary to indicate the identity of the AP corresponding to the STA and the corresponding sector selection result.
  • the identifier of the AP corresponding to the STA is the antenna identifier (for example, AP identifier) field in FIG. 10, and the sector selection result corresponding to the AP of the STA is the antenna corresponding to the AP in FIG. 10
  • the identification field is adjacent to the sector selection field or the CDOWN field.
  • the AP FBCK frame may further include an SNR report.
  • the STA1 antenna information may include the number of antennas corresponding to the STA1 (that is, the number of APs), the STA1 corresponding to the sector selection field of each antenna (that is, each AP), and the STA1 corresponding to the An antenna identification (eg, AP identification) field and an SNR report field, where the sector selection field may be a sector identification and / or a beam identification.
  • the STA1 antenna information may include the number of antennas (that is, the number of APs) corresponding to the STA1, and the STA1 corresponding to the countdown (CDOWN) of each antenna (that is, each AP).
  • the CDOWN field can be the CDOWN value corresponding to the sector and / or beam selected by the STA, and the C-AP can be determined based on the CDOWN value The sector and / or beam selected by the STA.
  • the antenna information field of STA1 may include the number of antennas field, and the number of antennas field indicates the STA1
  • the number of APs involved in the sector selection result is three.
  • the antenna information field of STA1 may further include three sector selection fields or CDOWN fields, and the three sector selection fields or CDOWN fields indicate the sector selection results of the three APs, respectively.
  • the antenna information field may also include antenna identification fields corresponding to the three STAs 1. This field may be used for the three APs involved in the sector selection result of the STA1, respectively. logo.
  • the sector selection field or the CDOWN field of the STA 1 for the AP 1 may be adjacent to the identification field of the AP 1. In this way, the C-AP receiving the AP FBCK frame can accurately obtain the sector selection result between each STA and each AP.
  • the C-AP After the C-AP collects the AP and FBCK frames reported by all APs, the C-AP collates and summarizes the received AP and FBCK frames, generates a BF FBCK forwarding frame, and sends the BF FBCK forwarding frame to all M-APs. (That is, the above-mentioned fourth information), the BF FBCK forwarding frame includes training information of all APs and STAs collected by the C-AP, including key information such as sector selection, antenna information, and SNR.
  • the frame format of the BF, FBCK, and forwarding frame is shown in FIG. 11. Similar to the frame format of the above-mentioned AP FBCK frame, the BF FBCK forwarding frame mainly modifies the forwarding field to include the relevant information of all STA antennas under the M-AP and the transmission sector selection information. To repeat.
  • FIG. 12 to FIG. 14 show schematic flowcharts of a BRP phase of a beam refining phase of beam training according to an embodiment of the present application.
  • the BRP phase may include the following four phases.
  • the C-AP will broadcast VCBF AP setup frames to all M-APs.
  • the frame format of VCBF AP setup frames is similar to the SLS phase. More details. In a possible implementation manner, the frame format of the VCBF AP setup frame may be as shown in FIG. 7.
  • All APs will broadcast the NEW BRP frame (NEW BRP frame w / setup) with the setup function to the STA, where w / in the NEW BRP frame w / setup stands for. It should be understood that the frame may also have other names, and the name of the frame is not limited in this application. Because C-APs cannot communicate directly with all STAs, after all APs broadcast the NEW / BRP frame / setup, each AP polls the STAs associated with it in accordance with the time specified in the VCBF AP / Setup frame. Send a BRP frame w / setup frame until all STAs have sent a BRP frame w / setup frame or the duration of this phase ends.
  • the above NEW BRP frame / setup may include the time when the M-AP sending the VCBF STA setup frame to the STA sends the sector scan I-TXSS to the initiator, the time the STA sends the sector scan R-TXSS to the responder, and Time when the STA receives the NEW SWB FBCK frame (that is, the fourth information described above).
  • the NEW BRP frame / setup may further include the number of BRP and FBCK frames.
  • the frame format of the NEW / BRP frame / setup may be as shown in FIG. 13.
  • the NEW BRP frame / setup includes the following fields:
  • Unprotected DMG action It is used to mark whether the frame belongs to an announcement frame or a BRP frame. For example, the unprotected DMG action field is equal to 0 to indicate that the frame is an announce frame, and the unprotected DMG action field is equal to 1. Indicates that the frame is a BRP frame.
  • Dialogue token When there are multiple dialogue requests in parallel, the dialogue token is used to mark which response the specific response is for.
  • BRP request field Contains a lot of parameters and commands related to beam training in the BRP phase, and is used to configure the beam training in the BRP phase.
  • the BRP request field is for a directional multi-gigabit (DMG) device.
  • DMG is a new name for the device in the 11ad standard.
  • the beacon frame in the 11ad standard can be called the DMG, Beacon, 11ad standard.
  • the STA in the middle can be called a DMG STA.
  • DMG beam refinement element Contains some parameters and configuration related to BRP beam refinement, used to configure BRP refinement.
  • Zero or multi-channel measurement feedback elements It is used to carry channel measurement feedback data and is feedback for DMG equipment.
  • EDMG partial sector-level scanning element (EDMG partial sector element): When the link fails, the sector scanning length required to restore the link.
  • EDMG BRP request element Similar to 4), but it is only for enhanced directional multi-gigabit (EDMG) equipment. That is, 4) is the configuration of the BRP in the 11ad standard, and 8) is the configuration of the BRP in the 11ay standard.
  • DMG refers to a device that supports the 11ad standard
  • EDMG refers to a device that supports the 11ay standard
  • a device that supports the 11ay standard can be backward compatible with the 11ad standard.
  • Zero or more EDMG channel measurement feedback elements It is used to carry channel measurement feedback data, which is similar to 6), but here it is fed back to the EDMG device.
  • the VCBF STA setup elements may include the following fields:
  • I-TXSS start time I-TXSS start time
  • I-TXSS duration I-TXSS duration
  • R-TXSS start time R-TXSS start time
  • number of BRP FBCK frames number of BRP FBCK frames
  • the present embodiment improves the original BRP frame / setup frame for the BPAC scenario, and forms the NEW BRP frame / setup shown in FIG. 15.
  • the new BRP frame w / setup adds a VCBF, STA, and setup elements field, which contains the M-AP's specific time for the initiator to send a sector scan (I-TXSS), STA The specific time when the responder sends a sector scan (R-TXSS) and the number of BRPs and FBCKs that the STA needs to transmit.
  • the initiator BRP TXSS phase is performed.
  • all APs send EDMG BRP-TX packets according to the specified time point in the VC AP BF setup frame, and then poll the STAs associated with them to send BRP FBCK (also known as BRP frame / feedback) frames.
  • BRP FBCK also known as BRP frame / feedback
  • each M-AP will send the AP-BRP and FBCK frames to the C-AP to feed back the training information of the beam refinement.
  • the frame format of the AP-BRP and FBCK frames is similar to that of the AP and FBCK frames in the SLS phase, and is not repeated here.
  • the frame format of the AP, BRP, and FBCK frame is shown in FIG. 10.
  • the C-AP can collect and learn all the training information of the M-AP and STA, including sector antenna and SNR information.
  • the C-AP After receiving the AP BRP and FBCK frames sent by all M-APs, the C-AP will send BF and FBCK forwarding frames to all M-APs.
  • This frame contains all AP and STA training information collected by the C-AP, including the fan Key information such as zone selection, antenna information and SNR.
  • the frame format of the BF, FBCK, and forwarding frame is shown in FIG. 11.
  • the M-AP will send BRP frames / ACK frames to the STAs associated with it to provide feedback on the beam refinement results.
  • FIG. 16 shows a schematic flowchart of feeding back an AP / FBCK frame during beam training according to an embodiment of the present application.
  • the feedback mode on the left is one-by-one feedback, that is, each M-AP sends AP FBCK frames to the C-AP at different time periods, and the feedback mode on the right is parallel feedback, and each M-AP sends parallel C-APs.
  • APs send their own AP FBCK frames, which are not limited in this embodiment of the present application.
  • FIG. 17 shows a schematic flowchart of transmitting a BF, FBCK, and forwarding frame during beam training according to an embodiment of the present application.
  • the feedback method on the left is one-by-one feedback, that is, the C-AP sends BF, FBCK, and forwarding frames to each M-AP at different time periods.
  • the feedback method on the right is simultaneous feedback.
  • the AP sends a BF, FBCK, and forwarding frame, which is not limited in this embodiment of the present application.
  • multiple AP groups are formed into an AP cluster, and the C-APs therein collectively collect feedback information of all M-APs, and then send them to each STA in a unified manner.
  • the time for beam training of the M-AP the training sequence issues, feedback time, and feedback format issues involved in the subsequent training process are arranged in advance during the initialization setting stage, which can avoid invalid training caused by collision interference to the greatest extent.
  • the specific information of the antenna is added to the traditional feedback frame, so that the M-AP can report more complete training information during feedback, making the entire training process more efficient.
  • the C-AP contacts the M-AP to perform the polling method, allowing the M-AP to train with its associated STAs to ensure the stability of the training.
  • the C-AP broadcasts VCBF AP setup frames and VCBF STA setup frames.
  • the VCBF AP setup frame in addition to the conventional fields (for example, frame header, duration, and address of the transceiver device), the VCBF AP setup frame also includes some special fields, such as a field identifying the number of M-APs in the BPAC scenario and Fields specific to each M-AP.
  • a field identifying the number of M-APs in the BPAC scenario and Fields specific to each M-AP.
  • M-AP1 info field of the VCBF AP setup frame as an example, this field contains the ID of the M-AP1, usually the MAC address of the M-AP1; and this field also specifies the start beam of the M-AP1 The start time and duration of each sub-phase in the training SLS phase.
  • the setup STA field contains the start time and duration of each sub-phase in the SLS phase that the C-AP tells each STA to perform beam training, and Informed sector scan feedback.
  • the initial setup phase has been completed, and its significance lies in that the C-AP has made an overall deployment plan for the subsequent training.
  • the frame structures of these two types of frames are the same as those in the first case, and are not repeated here.
  • a sector scanning phase which includes a sender sending sector scanning and a responding party sending sector scanning, namely, I-TXSS and R-TXSS phases.
  • each AP (including C-AP and M-AP) will send sector scan frames, that is, SSW, in the order specified before the VCSP was formed.
  • SSW sector scan frames
  • the so-called sector scan is that the sender divides the signal propagation area from a circular area into several fan-shaped areas, and sends training data once in each sector.
  • each AP completes the sector scan in the I-TXSS phase, it enters the sector scan in the R-TXSS phase.
  • the C-AP can directly poll each STA, make it perform R-TXSS phase training, and send SSW frames. It is worth mentioning that, whether in the I-TXSS phase or the R-TXSS phase, the AP and STA send SSW frames in directional directions according to sector division, and receive quasi-omnidirectional NEW SSW frames. Therefore, after the M-AP quasi-omnidirectionally receives the NEW SSW frame, the M-AP sends an AP FBCK frame to the C-AP. Its function is that each M-AP feeds back its own SSW feedback information to the C-AP.
  • the C-AP After collecting the feedback information of each M-AP, the C-AP sends a NEW SSW FBCK frame to the polled STA.
  • the sector-level scanning phase of this embodiment basically ends. At the end of this phase, each AP and STA can be trained to learn their best sending sector.
  • the M-AP may immediately send an AP FBCK frame to the C-AP for training feedback And continue to cycle this process until all STAs are polled again.
  • the M-AP sends the AP FBCK frame to the C-AP, reports its own training results, and After that, the C-AP will send New SSW-FBCK frames to all STAs as feedback on the entire training result.
  • the C-AP can quickly obtain the feedback information from the M-AP, so as to integrate the acquired information first; and with the centralized feedback method, the M-AP can send information based on the information sent by multiple STAs.
  • the information obtained by measuring the sector scan frames is collated and sent together in an AP FBCK, which reduces the signaling overhead and makes the training process more concise and efficient.
  • the embodiments of the present application combine all APs in a range as one AP cluster, and use C-AP and M-AP to distinguish them internally, which can avoid potential collision problems during beam training.
  • the C-AP can directly communicate with all STAs. Therefore, the entire SLS phase is controlled by the C-AP globally, which avoids collisions and interference to the greatest extent, and can greatly improve the multi-AP and multi-STA scenario Efficiency of down-beam training.
  • FIG. 20 and FIG. 21 are schematic flowcharts of a BRP phase of a beam refining phase of another beam training according to an embodiment of the present application.
  • the C-AP broadcasts VCBF AP AP setup frames and VCBF STA setup frames, which contain the specific time each AP polls for STAs during subsequent training, and the polled STAs send NEW BRP frames, then the M-AP reports training information, and receives BF, FBCK, and forwarding frames from the C-AP.
  • each AP sends a NEW BRP and FBCK frame to the STAs associated with it as feedback on the training results, and polls each STA for receiving feedback.
  • each AP and STA can determine their own best receiving sector or best receiving beam.
  • the new BRP frame in this embodiment may also be replaced by multiple BRP frames.
  • the specific number may be the number of frames received by the STA plus 1, where the extra 1 represents C. -AP.
  • STAs may not be able to receive frames sent by all APs, you can also tell each STA how many APs there are in the scene during the initial initialization phase, and the STAs can know how many BRP frames they should send during the training phase. .
  • the antenna may be in an omnidirectional working mode, that is, both the AP and the STA send data frames to the surroundings 360 degrees, and may also be in a directional working mode.
  • the best transmitting sector and the best receiving sector of the sender and receiver can be paired by changing the working mode of the antenna, that is, an actual link is formed in the transmission process to provide system gain.
  • This embodiment also proposes three beam thinning training schemes, which are: receiving training, sending training, and sending and receiving training.
  • the receiving training may be as shown in FIG. 22,
  • the sending training may be as shown in FIG. 23, and the sending and receiving training may be a combination of FIG. 22 and FIG. 23.
  • each AP sends a BRP frame to inform the STA that it wants to receive training.
  • the STA After receiving the BRP frame, the STA will send a NEW BRP frame with a receiving training (TRN-R) field in turn as a response to the AP's receiving training after receiving the polling frame, and at the same time request the AP to send beam training .
  • TRN-R receiving training
  • the M-AP After all APs receive the NEW BRP frame with the TRN-R field, the M-AP reports specific training information to the C-AP, and then the C-AP sends a forwarding frame to all M-APs. Can further refine their own receive sectors.
  • All APs send a NEW BRP frame with a transmission training (TRN-R) field to the STA as a response to receiving training, and at the same time inform the STA that it is ready to send training.
  • TRN-R transmission training
  • the STA receiving the frame sends a NEW BRP frame with a TRN-T field to the associated AP under the polling schedule to perform transmission training, and informs the AP that it is ready to send training.
  • the M-AP After all APs receive the NEW BRP frame with the TRN-T field, the M-AP reports specific training information to the C-AP, and then the C-AP sends a forwarding frame to all M-APs. It is possible to know the transmission beam of the STA which is further refined.
  • All APs send a NEW BRP frame with a TRN-T field to the STA as a response to sending training, and inform the STA to perform receiving training.
  • each STA Under the polling schedule, each STA sends a NEW BRP frame with a TRN-R field to the associated AP in order. At this point, the STA can further refine its receiving sector.
  • the M-AP After receiving the feedback from the STA, the M-AP reports specific training information to the C-AP, and then the C-AP sends a forwarding frame to all M-APs. At this point, each AP can further refine its own transmission beam.
  • receiving and sending training is a combined process of receiving training and sending training, the details of receiving training and sending training will not be repeated in this article.
  • An embodiment of the present application further provides a process of responding to a sector scan (responder sector sweep, unsolicited RSS) spontaneously. The process may be as shown in FIG. 24.
  • STA, ..., and STA are spontaneous STAs, and these STAs can obtain the training results of I-TXSS (that is, obtain the training information sent by each AP's sectors).
  • unsolicited STA can perform R-TXSS training, but because it is spontaneous training, it cannot perform ordered scheduling through C-AP or M-AP. It can only compete randomly in a time slot like in A-BFT.
  • the embodiment of the present application can listen to the training information in the beacon frame for those STAs who have missed the above beam training process, and can perform beam training spontaneously in the DTI phase through competition. Finally, it can also use the beam with the associated M-AP Perform data transmission to increase gain.
  • FIG. 25 illustrates a beam training apparatus 2500 provided in an embodiment of the present application.
  • the apparatus 2500 may be an AP in the foregoing embodiment or a chip in an AP.
  • the device 2500 includes: a sending unit 2510 and a receiving unit 2520.
  • the device 2500 is configured to implement each process and step corresponding to the first AP in the foregoing method embodiment.
  • the sending unit 2510 is configured to send first information, where the first information is used to configure beam training times for multiple APs, and the beam training times for the multiple APs are used for the multiple APs and the multiple APs. STAs within the coverage area of the AP perform beam training.
  • the multiple APs include the device and at least one second AP.
  • the receiving unit 2520 is configured to receive at least one first AP sent by the second AP based on the first information. Two pieces of information, the second information is used to feed back a first sector selection result, and the first sector selection result is obtained by performing beam training within the beam training time.
  • the first information includes at least one of the following information: a time when the second AP performs a sector scan of the initiator; a time when the second AP polls the STA; the second AP The time at which the second information is sent.
  • the second information includes at least one of the following information: identification information of the STA; identification information of at least one AP among the multiple APs corresponding to the STA performing sector scanning; the STA A first sector selection result corresponding to at least one of the plurality of APs.
  • the sending unit 2510 is specifically configured to send the first information to at least one of the second APs, so that at least one of the second APs sends third information to the STA, and the third The information is used to configure a beam training time of the STA.
  • the sending unit 2510 is further configured to send fourth information to at least one of the second APs according to the second information, so that at least one of the second APs sends the first information to the STA.
  • the fourth information is used to indicate a second sector selection result of at least one of the second APs
  • the second sector selection result includes the first sector selection of at least one of the second APs All or part of the result.
  • the sending unit 2510 is specifically configured to: send the first information to the STA; send third information to the STA, where the third information is used to configure a beam training time of the STA; and Sending, by the STA, fourth information, where the fourth information is used to indicate a second sector selection result of at least one of the second APs, and the second sector selection result includes the at least one of the second APs
  • the first sector selects all or part of the result.
  • the third information includes at least one of the following information: the time at which the second AP performs the sector scan sent by the initiator; the time at which the STA performs the sector scan sent by the responder; and the STA receives The time of the fourth message is described.
  • the device 2500 is configured to implement each process and step corresponding to the second AP in the foregoing method embodiment.
  • the receiving unit 2520 is configured to receive first information sent by a first AP, where the first information is used to configure beam training times for multiple APs, and the beam training time is used for the multiple APs and the multiple APs.
  • Multiple station STAs within the coverage area of the AP perform beam training, the multiple APs include the first AP and the device; and the sending unit 2510 is configured to send the first AP to the first AP according to the first information Sending second information, the second information is used to feedback a first sector selection result, and the first sector selection result is obtained by performing beam training within the beam training time.
  • the first information includes at least one of the following information: a time when the device performs sector scanning of the initiator; a time when the device polls the STA; and the device sends the second information time.
  • the second information includes at least one of the following information: identification information of the STA; identification information of at least one AP of the plurality of APs corresponding to the STA performing sector scanning; the STA A first sector selection result corresponding to at least one of the plurality of APs.
  • the sending unit 2510 is further configured to send third information to the STA, where the third information is used to configure a beam training time of the STA.
  • the receiving unit 2520 is further configured to receive fourth information sent by the first AP, where the fourth information is used to indicate a second sector selection result of at least one of the devices, and the second The sector selection result includes all or part of the first sector selection result of at least one of the devices; the sending unit 2510 is further configured to: send the fourth information to the STA.
  • the third information includes at least one of the following information: the time when the device performs the sector scan sent by the initiator; the time when the STA performs the sector scan sent by the responder; and the STA receives the first Time for four messages.
  • the apparatus for beam training in the embodiment of the present application sends first information for configuring beam training times of multiple APs through a first AP, so that multiple APs and STAs within a coverage area of the multiple APs perform the training according to the beam training time.
  • Beam training can uniformly configure the beam training time of the AP, which facilitates management planning of the beam training process, which is conducive to improving beam training efficiency.
  • the device 2500 here is embodied in the form of a functional unit.
  • the term "unit” herein may refer to an application-specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor, or a group of processors) for executing one or more software or firmware programs. Processors, etc.) and memory, merge logic, and / or other suitable components that support the functions described.
  • ASIC application-specific integrated circuit
  • processor such as a shared processor, a proprietary processor, or a group of processors
  • processors such as a shared processor, a proprietary processor, or a group of processors
  • memory merge logic, and / or other suitable components that support the functions described.
  • the device 2500 may be specifically the first AP or the second AP in the foregoing embodiment, and the device 2500 may be used to perform the same method as the first AP or the second AP in the foregoing method embodiment.
  • the processes and / or steps corresponding to the AP are not repeated here in
  • the apparatus 2500 of each of the foregoing solutions has a function of implementing corresponding steps performed by the first AP or the second AP in the foregoing method; the functions may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transmitting unit may be replaced by a transmitter, the receiving unit may be replaced by a receiver, and other units, such as a determining unit, may be replaced by a processor and executed separately. Sending and receiving operations and related processing operations in various method embodiments.
  • the device in FIG. 25 may also be a chip or a chip system, for example, a system on chip (SoC).
  • the receiving unit and the transmitting unit may be the transceiver circuit of the chip, which is not limited herein.
  • FIG. 26 illustrates another beam training apparatus 2600 according to an embodiment of the present application.
  • the device 2600 includes a processor 2610, a transceiver 2620, and a memory 2630.
  • the processor 2610, the transceiver 2620, and the memory 2630 communicate with each other through an internal connection path.
  • the memory 2630 is used to store instructions, and the processor 2610 is used to execute the instructions stored in the memory 2630 to control the transceiver 2620 to send signals and / Or receive a signal.
  • the apparatus 2600 is configured to implement each process and step corresponding to the first AP in the foregoing method embodiment.
  • the processor 2610 is configured to send first information through the transceiver 2620, where the first information is used to configure beam training times of multiple APs, and the beam training times of the multiple APs are used for the multiple APs.
  • the multiple APs include the device and at least one second AP; receiving at least one of the second APs through the transceiver 2620 based on the first AP Second information sent by an information, the second information is used to feedback a first sector selection result, and the first sector selection result is obtained by performing beam training within the beam training time.
  • the device 2600 is configured to implement each process and step corresponding to the second AP in the foregoing method embodiment.
  • the processor 2610 is configured to receive, through the transceiver 2620, first information sent by a first AP, where the first information is used to configure beam training times for multiple APs, and the beam training time is used for the multiple APs.
  • the multiple APs include the first AP and the device; and according to the first information, the transceiver 2620 sends a The first AP sends second information, and the second information is used to feed back a first sector selection result, where the first sector selection result is obtained by performing beam training within the beam training time.
  • the device 2600 may be specifically the first AP or the second AP in the foregoing embodiment, and may be used to execute each step and / or process corresponding to the first AP or the second AP in the foregoing method embodiment.
  • the memory 2630 may include a read-only memory and a random access memory, and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory. For example, the memory may also store information about the type of device.
  • the processor 2610 may be configured to execute an instruction stored in a memory, and when the processor 2610 executes an instruction stored in a memory, the processor 2610 is configured to execute the foregoing method embodiment corresponding to the first AP or the second AP Steps and / or processes.
  • the processor of the above device may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and application-specific integrated circuits. (ASIC), field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software units in the processor.
  • the software unit may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor executes instructions in the memory and completes the steps of the foregoing method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • At least one means one or more, and “multiple” means two or more.
  • “And / or” describes the association relationship of related objects, and indicates that there can be three kinds of relationships. For example, A and / or B can indicate: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural. The character “/” generally indicates that the related objects are an "or” relationship. "At least one or more of the following” or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • At least one item (a) of a, b, or c may represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, and c may be single or multiple.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions in the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • the integrated unit When the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology, or all or part of the technical solution may be embodied in the form of a software product, which is stored in a storage medium
  • Included are instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memories (ROMs), random access memories (RAMs), magnetic disks or compact discs and other media that can store program codes .

Abstract

本申请提供了一种波束训练的方法和装置,该方法包括:第一接入点AP发送第一信息,该第一信息用于配置多个AP的波束训练时间,该多个AP的波束训练时间用于该多个AP和该多个AP覆盖范围内的站点STA进行波束训练,该多个AP包括该第一AP和至少一个第二AP;该至少一个第二AP根据该第一信息向该第一AP发送第二信息,该第一AP接收该第二信息,该第二信息用于反馈第一扇区选择结果,该第一扇区选择结果为在该波束训练时间内进行波束训练得到的。本申请实施例的波束训练的方法和装置,能够统一配置AP的波束训练时间,便于对波束训练过程进行管理规划。

Description

波束训练的方法和装置
本申请要求于2018年9月14日提交中国专利局、申请号为201811076943.7、申请名称为“波束训练的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及一种波束训练的方法和装置。
背景技术
60GHz毫米波频段有着丰富的可用频谱资源,但是由于路径损耗增大,衰减非常严重,于是引入了采用波束赋形(beamforming,BF)的定向通信技术,来提供额外的发送天线增益或接收天线增益以克服信号衰减。采用波束赋形技术,首先要进行波束赋形训练(beamforming training,BFT),BFT的过程具体可以为个人基本服务集控制节点(PBSS control point,PCP)/接入点(access point,AP)与站点(station,STA)双方的收发波束对齐的过程。
一种波束训练方法是一个AP与多个STA之间的波束训练,目的是建立该AP到多个STA之间的并行传输链路,其由单输入单输出(single-input single-output,SISO)阶段和多输入多输出(multiple-input multiple-output,MIMO)阶段两个阶段构成。那么,针对多AP多STA的场景,如何管理多个AP和多个STA之间的波束训练过程,已成为一项亟待解决的技术问题。
发明内容
本申请提供一种波束训练的方法和装置,能够统一配置AP的波束训练时间,便于对波束训练过程进行管理规划。
第一方面,提供了一种波束训练的方法,包括:第一接入点AP发送第一信息,所述第一信息用于配置多个AP的波束训练时间,所述多个AP的波束训练时间用于所述多个AP和所述多个AP覆盖范围内的站点STA进行波束训练,所述多个AP包括所述第一AP和至少一个第二AP;所述第一AP接收至少一个所述第二AP基于所述第一信息发送的第二信息,所述第二信息用于反馈第一扇区选择结果,所述第一扇区选择结果为在所述波束训练时间内进行波束训练得到的。
本申请实施例的控制多接入点AP波束训练的方法,通过第一AP发送用于配置多个AP的波束训练时间的第一信息,以便多个AP和该多个AP覆盖范围内的STA按照该波束训练时间进行波束训练,能够统一配置AP的波束训练时间,便于对波束训练过程进行管理规划,从而有利于提高波束训练效率。
作为一个可选的实施例,所述多个AP的波束训练时间不同。
具体地,该多个AP的波束训练时间可以不同,这里的“不同”可以包括全部不同,也可以包括部分不同,即该多个AP两两之间的波束训练时间不同,或者该多个AP之间存在一部分AP,这一部分AP两两之间的波束训练时间不同,本申请实施例对此不作限定。在本申请实施例中,多个AP的波束训练时间不同,能够避免多个AP与STA在进行波束训练的时候彼此之间的干扰,避免AP在发送信息时所采用的资源冲突。
应理解,本申请实施例对多个AP之间的波束训练时间不同并不作限定,这是由于第一AP可以根据已有信息,调度第二AP和STA在不冲突或不会产生干扰的相同的时间内并行地进行波束训练。因此,与多个AP之间的波束训练时间不同相比,这样能够大大提高波束训练的效率。
结合第一方面,在第一方面的某些实现方式中,所述第一信息包括下列信息中的至少一个:所述第二AP进行发起方发送扇区扫描的时间;所述第二AP轮询所述STA的时间;所述第二AP发送所述第二信息的时间。
该第一信息可以作为一个元素(element)携带于现有的帧中,也可以携带在一个新定义的帧中,本申请实施例对此不作限定。可选地,该第一信息具体可以为虚拟簇波束赋形AP设置(virtual cluster AP setup,VCBF AP setup)帧。
可选地,该第一信息还可以包括:所述第二AP发送第三信息的时间,所述第三信息用于配置所述STA的波束训练时间。
可选地,该第一信息还可以包括:上行训练和/或下行训练的具体要求,例如,只进行上行训练,或者,只进行下行训练,或者,进行上行训练和下行训练。
结合第一方面,在第一方面的某些实现方式中,所述第二信息包括下列信息中的至少一个:所述STA的标识信息;所述STA进行扇区扫描对应的所述多个AP中的至少一个AP的标识信息;所述STA对应与所述多个AP中的至少一个AP的第一扇区选择结果。
该第二信息可以作为一个元素(element)携带于现有的帧中,也可以携带在一个新定义的帧中,本申请实施例对此不作限定。可选地,该第二信息具体可以为AP反馈(AP feedback,AP FBCK)帧。
还应理解,由于第二AP可以接收到多个STA发送的扇区扫描帧,并对该扇区扫描帧进行测量,获得上述第一扇区选择结果,上述第二信息可以包括多个STA的信息,分别为多个STA中每个STA的标识、每个STA进行扇区扫描对应的所述多个AP中的至少一个AP的标识信息、每个STA对应与所述多个AP中的至少一个AP的第一扇区选择结果。
可选地,该第二信息还可以包括第二信息对应的STA的个数。
结合第一方面,在第一方面的某些实现方式中,所述第一接入点AP发送第一信息,包括:所述第一AP向至少一个所述第二AP发送所述第一信息,以使得至少一个所述第二AP向所述STA发送第三信息,所述第三信息用于配置所述STA的波束训练时间。
具体地,第一AP可以向第二AP发送第一信息,第二AP在接收到第一信息之后,根据该第一信息中的配置,向该第二AP覆盖范围内的STA发送第三信息,用于配置STA的波束训练时间。
结合第一方面,在第一方面的某些实现方式中,在所述第一AP接收至少一个所述第二AP基于所述第一信息发送的第二信息之后,所述方法还包括:所述第一AP根据所述第二信息,向至少一个所述第二AP发送第四信息,以使得至少一个所述第二AP向所述 STA发送所述第四信息,所述第四信息用于表示至少一个所述第二AP的第二扇区选择结果,所述第二扇区选择结果包括至少一个所述第二AP的所述第一扇区选择结果的全部或部分。
具体地,第一AP可以对所接收到的第二信息进行整理汇总,向第二AP发送第四信息,该第二AP接收该第四信息,并将该第四信息转发给其覆盖范围内的STA。
应理解,该第四信息表示至少一个第二AP的第二扇区选择结果,其中,该第二扇区选择结果可以包括至少一个所述第二AP的所述第一扇区选择结果的全部或部分。换句话说,针对某个特定的第二AP而言,第一扇区选择结果包括该第二AP基于该第二AP所关联的STA发送的扇区扫描帧测量获得的扇区选择结果。该STA发送的扇区扫描帧可以包括该AP进行扇区扫描时,STA所获得的训练结果,该训练结果可以是STA基于AP发送的扇区扫描帧进行测量获得的。第一AP在接收完需要进行反馈的所有第二AP发送的第二信息之后,可以获得多个第一扇区选择结果,该第一AP对该多个第一扇区选择结果进行整合,该第一AP可以向第二AP发送整合后的所有结果,也可以仅向第二AP发送其中一个或多个STA所处覆盖范围的AP的扇区选择结果,因此,该第二扇区选择结果可以包括第一扇区选择结果的全部或部分,本申请实施例对此不作限定。
在一种可能的实现方式中,上述第四信息具体可以称为转发(forwarding)帧或新扇区扫描反馈(NEW SSW FBCK)帧。
结合第一方面,在第一方面的某些实现方式中,所述第一接入点AP发送第一信息,包括:所述第一AP向至少一个所述第二AP发送所述第一信息;所述方法还包括:所述第一AP向所述STA发送第三信息,所述第三信息用于配置所述STA的波束训练时间;在所述第一AP接收至少一个所述第二AP基于所述第一信息发送的第二信息之后,所述方法还包括:所述第一AP向所述STA发送第四信息,所述第四信息用于表示至少一个所述第二AP的第二扇区选择结果,所述第二扇区选择结果包括至少一个所述第二AP的所述第一扇区选择结果的全部或部分。
具体地,该第一AP可以向至少一个所述第二AP发送第一信息,向STA发送第三信息,从而配置第一CP、第二AP与STA之间的波束训练时间,以便接收至少一个第二AP发送的第二信息,再对第二信息进行整理汇总,向STA发送第四信息。
结合第一方面,在第一方面的某些实现方式中,所述第三信息包括下列信息中的至少一个:所述第二AP进行发起方发送扇区扫描的时间;所述STA进行应答方发送扇区扫描的时间;所述STA接收所述第四信息的时间。
该第三信息可以作为一个元素(element)携带于现有的帧中,也可以携带在一个新定义的帧中,本申请实施例对此不作限定。在一种可能的实现方式中,该第三信息具体可以为虚拟簇波束赋形STA设置(virtual cluster STA setup,VCBF STA setup)帧。
结合第一方面,在第一方面的某些实现方式中,所述第一AP接收至少一个所述第二AP基于所述第一信息发送的第二信息,包括:所述第一AP接收至少一个所述第二AP在所述多个AP中的最后一个AP进行波束训练之后集中反馈的所述第二信息。
具体地,存在多个第二AP,对于其中的某个第二AP而言,该第二AP可以轮询STA,接收该STA发送的扇区扫描帧(可以称为NEW SSW帧),对该扇区扫描帧进行测量,获得上述第一扇区扫描结果,然后立即向第一AP发送包括该第一扇区扫描结果的上述第 二信息(可以称为AP FBCK帧),也可以在所有STA发送完扇区扫描帧,并对该扇区扫描帧进行测量之后,再集中上报包括所有第一扇区扫描结果的第二信息,本申请实施例对此不作限定。
应理解,对于立即上报的方案,一个第二AP需要发送多个第二信息;而对于集中上报的方案,一个第二AP可以将根据多个STA发送的扇区扫描帧测量获得的第一扇区扫描结果整合在一个第二信息中上报,能够简化反馈流程,节省上报开销。
第二方面,提供了另一种波束训练的方法,包括:第二接入点AP接收第一AP发送的第一信息,所述第一信息用于配置多个AP的波束训练时间,所述波束训练时间用于所述多个AP和所述多个AP覆盖范围内的多个站点STA进行波束训练,所述多个AP包括所述第一AP和所述第二AP;所述第二AP根据所述第一信息,向所述第一AP发送第二信息,所述第二信息用于反馈第一扇区选择结果,所述第一扇区选择结果为在所述波束训练时间内进行波束训练得到的。
结合第二方面,在第二方面的某些实现方式中,所述第一信息包括下列信息中的至少一个:所述第二AP进行发起方发送扇区扫描的时间;所述第二AP轮询所述STA的时间;所述第二AP发送所述第二信息的时间。
结合第二方面,在第二方面的某些实现方式中,所述第二信息包括下列信息中的至少一个:所述STA的标识信息;所述STA进行扇区扫描对应的所述多个AP中的至少一个AP的标识信息;所述STA对应与所述多个AP中的至少一个AP的第一扇区选择结果。
结合第二方面,在第二方面的某些实现方式中,在所述第二AP根据所述第一信息,向所述第一AP发送第二信息之前,所述方法还包括:所述第二AP向所述STA发送第三信息,所述第三信息用于配置所述STA的波束训练时间。
结合第二方面,在第二方面的某些实现方式中,在所述第二AP根据所述第一信息,向所述第一AP发送第二信息之后,所述方法还包括:所述第二AP接收所述第一AP发送的第四信息,所述第四信息用于表示至少一个所述第二AP的第二扇区选择结果,所述第二扇区选择结果包括至少一个所述第二AP的所述第一扇区选择结果的全部或部分;所述第二AP向所述STA发送所述第四信息。
结合第二方面,在第二方面的某些实现方式中,所述第三信息包括下列信息中的至少一个:所述第二AP进行发起方发送扇区扫描的时间;所述STA进行应答方发送扇区扫描的时间;所述STA接收所述第四信息的时间。
结合第二方面,在第二方面的某些实现方式中,所述第二AP根据所述第一信息,向所述第一AP发送第二信息,包括:所述第二AP在所述多个AP中的最后一个AP进行波束训练之后向所述第一AP反馈所述第二信息。
第三方面,提供了一种波束训练的装置,用于执行第一方面或第一方面任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第一方面或第一方面的任一种可能的实现方式中的方法的单元。
第四方面,提供了另一种波束训练的装置,用于执行第二方面或第二方面任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第二方面或第二方面的任一种可能的实现方式中的方法的单元。
第五方面,提供了另一种波束训练的装置,该装置包括:收发器、存储器和处理器。 其中,该收发器、该存储器和该处理器通过内部连接通路互相通信,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发送器发送信号,并且当该处理器执行该存储器存储的指令时,使得该处理器执行第一方面或第一方面的任一种可能的实现方式中的方法。
第六方面,提供了另一种波束训练的装置,该装置包括:收发器、存储器和处理器。其中,该收发器、该存储器和该处理器通过内部连接通路互相通信,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发送器发送信号,并且当该处理器执行该存储器存储的指令时,使得该处理器执行第二方面或第二方面的任一种可能的实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第七方面,提供了一种波束训练的系统,该系统包括上述第三方面或第三方面的任一种可能实现方式中的装置以及第四方面或第四方面中的任一种可能实现方式中的装置;或者
该系统包括上述第五方面或第五方面的任一种可能实现方式中的装置以及第六方面或第六方面中的任一种可能实现方式中的装置。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被计算机运行时,使得所述计算机执行上述各方面中的方法。
第九方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行上述各方面中的方法的指令。
第十方面,提供了一种芯片,包括处理器,用于从存储器中调用并运行所述存储器中存储的指令,使得安装有所述芯片的通信设备执行上述各方面中的方法。
第十一方面,提供另一种芯片,包括:输入接口、输出接口、处理器和存储器,所述输入接口、输出接口、所述处理器以及所述存储器之间通过内部连接通路相连,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器用于执行上述各方面中的方法。
附图说明
图1是本申请实施例的信标间隔的结构示意图。
图2是本申请实施例的一种通信系统的示意图。
图3是本申请实施例的波束训练的方法的示意性流程图。
图4是本申请实施例的基本服务集控制点/接入点簇BPAC训练的示意性流程图。
图5是本申请实施例用于BPAC训练的请求帧和/或响应帧的帧结构示意图。
图6是本申请实施例的波束训练的扇区级扫描SLS阶段的示意性流程图。
图7是本申请实施例的AP设置帧(AP setup frame)的结构示意图。
图8是本申请实施例的STA设置帧(STA setup frame)的结构示意图。
图9是本申请实施例的新扇区扫描帧(NEW SSW frame)的结构示意图。
图10是本申请实施例的AP反馈帧(AP FBCK frame)的结构示意图。
图11是本申请实施例的波束训练反馈转发帧(BF FBCK forwarding frame)的结构示意图。
图12至图14是本申请实施例的波束训练的波束精炼阶段BRP阶段的示意性流程图。
图15是本申请实施例的新波束精炼协议帧(NEW BRP frame)的结构示意图。
图16是本申请实施例的波束训练中反馈AP FBCK frame的示意性流程图。
图17是本申请实施例的波束训练中发送BF FBCK forwarding frame的示意性流程图。
图18是本申请实施例的另一波束训练的扇区级扫描SLS阶段的示意性流程图。
图19是本申请实施例的另一波束训练的扇区级扫描SLS阶段的示意性流程图。
图20至图21是本申请实施例的另一波束训练的波束精炼阶段BRP阶段的示意性流程图。
图22是本申请实施例的接收训练的示意性流程图。
图23是本申请实施例的发送训练的示意性流程图。
图24是本申请实施例的自发的响应方扇区扫描的示意性流程图。
图25是本申请实施例的装置的示意性框图。
图26是本申请实施例的另一装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本申请实施例的技术方案可以应用于各种移动通信系统,例如:通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、以及未来的5G通信系统等。本申请实施例的技术方案还可以应用于无线局域网(wireless local area network,WLAN),并且本申请实施例可以适用于WLAN当前采用的国际电工电子工程学会(institute of electrical and electronics engineers,IEEE)802.11系列协议中的任意一种协议。
WLAN可以包括一个或多个基本服务集(basic service set,BSS),基本服务集中的网络节点包括接入点(access point,AP)和站点(station,STA)。IEEE 802.11ad在原有的BSS基础上,引入个人基本服务集(personal basic service set,PBSS)和个人基本服务集控制节点(PBSS control point,PCP)。每个个人基本服务集可以包含一个AP/PCP和多个关联于该AP/PCP的站点。
应理解,本申请实施例中的发起设备也可以称为发起方initiator,应答设备也可以称为应答方responder,下文不再一一说明。
具体地,以WLAN为例,本申请实施例中发起设备和应答设备是具有无线通信功能的设备,可以是WLAN中用户站点(station,STA),该用户站点也可以称为用户单元、接入终端、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、用户装置或用户设备(user equipment,UE)。该STA可以是蜂窝电话、 无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线局域网(例如Wi-Fi)通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备。
另外,本申请实施例中的发起设备和应答设备也可以是WLAN中AP/PCP,AP/PCP可用于与接入终端通过无线局域网进行通信,并将接入终端的数据传输至网络侧,或将来自网络侧的数据传输至接入终端。
以下,为了便于理解和说明,作为示例而非限定,将以本申请的波束训练的方法和装置在WLAN系统中的执行过程和动作进行说明。
下面先对本申请所涉及的相关技术进行介绍。
1、信标间隔(beacon interval,BI)
图1示出了信标间隔BI的结构示意图,如图1所示,信标间隔分为信标头指示(beacon header indication,BHI)和数据传输间隔(data transmission interval,DTI)。其中,BHI中又包括信标传输间隔(beacon transmission interval,BTI)、关联-波束赋形训练(association beamforming training,A-BFT)以及公告传输间隔(announcement transmission interval,ATI)。
具体地,PCP/AP会在BTI中按照扇区编号发送多个信标(beacon)帧,用于下行扇区扫描;A-BFT用于STA进行关联,以及上行扇区扫描;ATI用于PCP/AP向STA轮询缓存数据信息以及向STA分配数据传输间隔(data transmission interval,DTI)中的资源。整个DTI会被分为若干个子区间,子区间会根据接入的形式分为基于竞争接入期间(contention based access period,CBAP)和服务区间(service period,SP),后者是进行调度传输,无需进行竞争。
2、波束赋形训练(beamforming training,BFT)
60GHz毫米波频段有着丰富的可用频谱资源,但是由于路径损耗增大,衰减非常严重,于是在高频通信系统中,例如802.11ad/ay主要考虑采用波束赋形(beamforming,BF)的定向通信技术。采用波束赋形技术,首先要进行BFT,BFT过程主要分为以下阶段:
1)扇区级扫描(sector-level sweep,SLS)阶段,由以下四部分组成:
发起方扇区扫描(initiator sector sweep,ISS)阶段,用来训练发起方的定向发送波束,发起方以一定宽度的波束定向发送训练数据,应答方准全向接收训练数据;
应答方扇区扫描(responder sector sweep,RSS)阶段,用来训练应答方的定向发送波束,应答方以一定宽度的波束定向发送训练数据,并且包含了发起方上一阶段的最佳发送扇区信息,此时发起方准全向接收训练数据;
扇区扫描反馈(sector sweep feedback,SSW-Feedback)阶段,反馈信息是按照扇区质量进行排序的发起方发送扇区列表,并且包含上一阶段应答方的最佳扇区,此时应答方处于准全向接收模式;
扇区扫描确认(sector sweep acknowledgment,SSW-ACK)阶段,在数据传输阶段(data transfer interval,DTI)之前做SLS时可以不存在SSW ACK阶段,在DTI阶段做SLS则需要有SSW-ACK阶段。在SSW-ACK阶段,应答方反馈按照质量排序的应答方发送扇区列表。
应理解,设备进行全向发送或全向接收所采用的是全向天线,全向天线在水平方向上 表现为360°都均匀辐射,也就是无方向性,在垂直方向上表现为有一定宽度的波束,一般情况下波瓣宽度越小,增益越大。全向天线覆盖范围大,在通信系统中一般应用于郊县大区制的站型。对应地,设备进行定向发送或定向接收所采用的是定向天线,在水平方向上表现为一定角度范围辐射,也就是有方向性。同全向天线一样,波瓣宽度越小,增益越大。定向天线在通信系统中一般应用于通信距离远,覆盖范围小,目标密度大,频率利用率高的环境。
2)波束精炼协议(beam refinement protocol,BRP)阶段,该阶段主要分为:
初始化设置(BRP setup)阶段,用于配置后续多扇区探测(multiple sector ID detection,MID)和波束配对(beam combining,BC)阶段的训练信息;
多扇区探测(multiple sector ID detection,MID)阶段,主要功能是训练发起方与应答方的最佳接收波束,方法与最佳发送波束的训练过程类似,只不过不采用准全向模式发送训练数据,而采用定向模式接收训练数据;
波束配对(beam combining,BC)阶段,主要功能是将SLS与MID阶段分别训练得到的收发波束进行配对以获得最佳的收发波束配对,从而找到最佳的定向通信链路。此时,发送与接收训练数据都采用定向模式。
至少一轮的波束细化(beam refinement transaction,BRT)阶段:进行波束细化,从而迭代找到更加精细化的波束对,提升通信链路质量。
另外,在802.11ay中提出了波束精炼阶段发送扇区扫描(BRP-transmit sector sweep,BRP-TXSS)的训练过程,该训练过程意在使用BRP帧进行发送扇区扫描和/或接收波束训练。在802.11ay中,整个BRP TXSS流程包含初始化设置、带反馈的发起方发送训练、应答方的接收训练、带反馈的应答方的发送训练、发起方的接收训练和确认阶段等一系列过程中的一部分或者全部。其中,除了初始化设置阶段、带反馈的发起方发送训练以及确认阶段是必须的,其余阶段都是可选的。其主要功能也是将数据传输过程当中的波束进一步细化。
802.11ay的多用户多输入多输出(multi-user multiple-input multiple-output,MU-MIMO)训练是一个AP与多个STA之间进行的波束训练,目的是建立该AP到多个STA之间的并行传输链路,其由单输入单输出(single-input single-output,SISO)阶段和多输入多输出(multiple-input multiple-output,MIMO)阶段两个阶段构成。
SISO阶段由发起方发送扇区扫描(initiator transmit sector sweep,I-TXSS)子阶段和SISO反馈(SISO feedback)子阶段组成。在I-TXSS阶段,initiator发送短扇区扫描(short sector sweep,SSSW)帧或者扇区扫描(sector sweep,SSW)帧时,所有的responders都可以监听(进行波束训练),然后再统一时分地通过BRP帧反馈给initiator结果。这个过程是有序地协调地进行的,避免了传统关联波束赋形训练(association beamforming training,A-BFT)阶段训练的冲突的产生。A-BFT阶段存在于802.11ad和802.11ay的一个信标间隔(beacon interval,BI)内,对应于波束赋形过程中的SLS阶段。A-BFT阶段主要进行应答方发送扇区扫描(responder transmit sector sweep,R-TXSS)与扇区扫描反馈(SSW feedback)的操作。
而MIMO阶段则由下行MIMO阶段和上行MIMO阶段两个子阶段组成。
下行MIMO阶段应在SISO阶段结束后开始,基于SISO阶段的feedback信息,若某 些responder由于MU-MIMO的传输导致传输受到多用户干扰,则下行MIMO训练阶段的多用户多输入多输出波束赋形设置(MU-MIMO BF setup)阶段会在接下来的两个子阶段中,将这些responder排除在外。在MU-MIMO BF setup子阶段结束时的媒介波束赋形帧间间隔(medium beamforming interframe space,MBIFS)时间后,initiator启动多用户多输入多输出波束赋形训练(MU-MIMO BF training)子阶段。在此阶段,initiator向多户组内剩下的responder传输一个或多个BRP包,每个BRP由短帧间间隔(short interframe space,SIFS)时间隔开。每个与BRP对应的responder在接收到信息后,开始接收波束训练。在MU-MIMO BF training子阶段结束时的MBIFS时间后,initiator启动多用户多输入多输出波束赋形反馈(MU-MIMO BF feedback)子阶段。此阶段采用了轮询机制,initiator通过发送多输入多输出波束赋形轮询(MIMO BF poll)帧去轮询当前存在的responder,获取MU-MIMO BF feedback帧,帧中包含MU-MIMO BF training子阶段responder的训练信息。在MU-MIMO BF feedback子阶段结束时的MBIFS时间后,initiator启动多用户多输入多输出波束赋形选择(MU-MIMO BF selection)子阶段。在此阶段,initiator给每个在多用户组内的responder发送MU-MIMO BF selection帧,告诉它们完成训练必需的信息。
上行MIMO阶段由三个子阶段组成,具体为MU-MIMO BF setup子阶段、MU-MIMO BF training子阶段以及MU-MIMO BF selection子阶段。在MU-MIMO BF setup子阶段,MU-MIMO BF setup帧会被initiator发给每个在多用户组内的responder,基本原理与下行一致。在MU-MIMO BF training子阶段,依然采用轮询机制,initiator给每个依然在多用户组内的responder发送MIMO BF poll帧,之后每个responder传输一个或多个BRP包给initiator完成一次训练。在MU-MIMO BF selection子阶段,initiator给每个responder发送一个或多个MU-MIMO BF selection帧,帧中包含训练总结果的信息,最后一个帧传输的完成,标志着整个MU-MIMO训练过程的结束。
图2示出了本申请实施例的一种通信系统的示意图。如图2所示,该通信系统由多个AP构成一个AP簇,并且该多个AP中的某一个AP为该AP簇的协调节点(coordination AP,C-AP),其余AP在接下来的波束训练过程中将作为成员节点(member AP,M-AP)发挥作用。C-AP作为该AP簇的管理者,能够对各个M-AP加以区分并且为其分配标识(identity,ID)。针对上述多个AP,其中的全部或部分AP的覆盖范围内还存在一个或多个STA。具体地,在图2所示的通信系统中,该通信系统共存在1个C-AP、n个M-AP以及m个STA,m和n均为大于或等于1的整数。
应理解,上述通信系统可以针对移动场景,也可以针对非移动场景,即STA可以是移动的,也可以是固定的。因此,在STA可以移动的情况下,一个AP覆盖范围内的STA的数量可以是实时变化的,换句话说,可能存在某个时刻,存在某个AP并未覆盖到任何STA,本申请实施例对此不作限定。
由多个接入点AP构成的集合可以称为一个基本服务集控制点/接入点簇(BSS PCP/AP cluster,BPAC)。BPAC对应于存在多AP的场景,在BPAC中,由一个协调接入点C-AP来协调其他成员接入点M-AP,将M-AP看作为C-AP的分布式天线一样,多个AP为一个或多个STA提供服务。此外,BPAC可以对应于毫米波网络场景,也可以对应于高频场景,还可以对应于其他需要进行波束训练的场景,本申请实施例对此不作限定。
应理解,上述C-AP和M-AP仅仅是为了区分协调接入点和其他成员接入点所起的名 称,C-AP和M-AP还可以具有其他名称,本申请实施例对此不作限定。例如,C-AP还可以被称为第一AP,M-AP还可以被称为第二AP;又例如,C-AP还可以被称为主AP,M-AP还可以被称为从AP。此外,上述BPAC仅仅是本文为了便于描述所采用的术语,BPAC还可以具有其他名称,本申请实施例对此也不作限定。
在上述通信系统中,由于需要采用波束赋形技术进行数据传输,在传输数据之前各个AP和各个STA之间需要进行波束训练。考虑到已有的单AP多STA无法直接套用到多AP多STA的场景,本申请实施例提供了一种多AP和多STA之间的波束训练方法。
图3示出了本申请实施例的波束训练的方法300的示意性流程图。该方法300可以应用于图2所示的通信系统200,但本申请实施例不限于此。
S310,第一接入点AP发送第一信息,所述第一信息用于配置多个AP的波束训练时间,所述多个AP的波束训练时间用于所述多个AP和所述多个AP覆盖范围内的站点STA进行波束训练,所述多个AP包括所述第一AP和至少一个第二AP;
S320,所述第一AP接收至少一个所述第二AP基于所述第一信息发送的第二信息,所述第二信息用于反馈第一扇区选择结果,所述第一扇区选择结果为在所述波束训练时间内进行波束训练得到的。
具体地,在BPAC包括的多个AP中,存在第一AP和至少一个第二AP,第一AP对应图2中的C-AP,至少一个第二AP对应图2中的n个M-AP。应理解,上述至少一个第二AP具体表示一个第二AP或者多个第二AP。对于上述多个AP中的某个特定AP而言,该AP的覆盖范围内可以存在一定数量的STA,本申请假设在该BPAC中共存在m个STA,这m个STA分别位于不同的AP的覆盖范围内。第一AP可以发送用于配置上述多个AP的波束训练时间的第一信息,告知第二AP和STA,以便于包括该第一AP和第二AP的多个AP与STA之间能够按照该波束训练时间进行波束训练,使得该第一AP可以接收到第二AP发送的第一扇区选择结果。该第一扇区选择结果为至少一个第二AP基于STA发送的扇区扫描帧进行测量获得的。在一种可能的实现方式中,上述第一AP发送第一信息,可以是第一AP广播该第一信息。
因此,本申请实施例的波束训练的方法,通过第一AP发送用于配置多个AP的波束训练时间的第一信息,以便多个AP和该多个AP覆盖范围内的STA按照该波束训练时间进行波束训练,能够统一配置AP的波束训练时间,便于对波束训练过程进行管理规划,从而有利于提高波束训练效率。
应理解,由于BPAC中存在需要进行反馈的至少一个第二AP,上述第二信息为该至少一个第二AP中的每个第二AP分别向该第一AP发送的,因此,该第二信息的个数与BPAC中需要进行反馈的第二AP的个数相等,对应地,第一扇区选择结果的个数也与BPAC中需要进行反馈的第二AP的个数相等。针对某个特定的第二AP而言,第一扇区选择结果包括该第二AP基于该第二AP所关联的STA所发送的扇区扫描帧测量获得的扇区选择结果。该STA发送的扇区扫描帧可以包括该STA与该STA所能够接收到beacon帧对应的AP的训练结果,该训练结果可以是STA基于AP发送的扇区扫描帧进行测量获得的。
多个AP的波束训练时间指的是多个AP中的每一个AP对应一个波束训练时间。也就是说,第一AP可以分别针对多个AP配置多个波束训练时间。
作为一个可选的实施例,所述多个AP的波束训练时间不同。
具体地,该多个AP的波束训练时间可以不同,这里的“不同”可以包括全部不同,也可以包括部分不同,即该多个AP两两之间的波束训练时间不同,或者该多个AP之间存在一部分AP,这一部分AP两两之间的波束训练时间不同,而另外一部分AP的波束训练时间相同,本申请实施例对此不作限定。在本申请实施例中,多个AP的波束训练时间不同,能够避免多个AP与STA在进行波束训练的时候彼此之间的干扰,避免AP在发送信息时所采用的资源冲突。
应理解,本申请实施例对多个AP之间的波束训练时间不同并不作限定,这是由于第一AP可以根据已有信息,调度第二AP和STA在不冲突或不会产生干扰的相同的时间内并行地进行波束训练。因此,与多个AP之间的波束训练时间不同相比,这样能够大大提高波束训练的效率。
作为一个可选的实施例,针对一个第二AP,所述第一信息包括下列信息中的至少一个:该第二AP进行发起方发送扇区扫描的时间;该第二AP轮询所述STA的时间;该第二AP发送所述第二信息的时间。
应理解,第一信息是针对某个特定的第二AP发送的,用于配置该特定的第二AP的波束训练时间,该第一AP需要发送的第一信息的个数与上述至少一个第二AP的个数相等。具体地,针对某个特定的第二AP,上述第一信息可以包括该第二AP进行发起方发送扇区扫描(I-IXSS)的时间、该第二AP轮询STA(即依次向STA发送轮询扇区扫描poll SSW帧)的时间以及该第二AP发送第二信息的时间中的至少一个。
该第一信息可以作为一个元素(element)携带于现有的帧中,也可以携带在一个新定义的帧中,本申请实施例对此不作限定。可选地,该第一信息可以携带在虚拟簇波束赋形AP设置(virtual cluster AP setup,VCBF AP setup)帧中,该VCBF AP setup帧可以为一个新定义的帧,当然该帧还可以有其他名称,例如AP初始化帧等,本申请实施例不作限定。
可选地,针对一个第二AP,该第一信息还可以包括:该第二AP发送第三信息的时间,第三信息用于配置STA的波束训练时间。该STA可以为多个AP覆盖范围内的站点中由该第二AP提供服务的STA。可选地,该第一信息还可以包括:上行训练和/或下行训练的具体要求,例如,只进行上行训练,或者,只进行下行训练,或者,进行上行训练和下行训练。
作为一个可选的实施例,所述第二信息包括下列信息中的至少一个:所述STA的标识信息;所述STA进行扇区扫描对应的所述多个AP中的至少一个AP的标识信息;所述STA对应与所述多个AP中的至少一个AP的扇区选择结果。
应理解,第二信息是某个特定的第二AP上报的,其内容包括根据该第二AP所关联的STA发送的扇区扫描帧测量获得的扇区选择结果,该第一AP需要接收的第二信息的个数可以与上述至少一个第二AP的个数相等。具体地,上述第二信息可以包括STA的标识信息、该STA进行扇区扫描对应的部分AP的标识信息以及该STA对应的部分AP的扇区选择结果中的至少一个,这里的部分AP即上述多个AP中的至少一个AP,可以包括第一AP,也可以包括第二AP,本申请实施例对此不作限定。换句话说,对于某个特定的STA而言,该STA在扇区扫描帧中所反馈的扇区选择结果包括该STA与所能够接收到 beacon帧对应的AP的训练结果,而该STA可能接收到第一AP发送的beacon帧,也可能接收到其他第二AP发送的beacon帧,本申请实施例对此不作限定。
该第二信息可以作为一个元素(element)携带于现有的帧中,也可以携带在一个新定义的帧中,本申请实施例对此不作限定。可选地,该第二信息具体可以携带在AP反馈(AP feedback,AP FBCK)帧,该AP FBCK帧可以为一个新定义的帧,当然该帧还可以有其他名称,例如AP上报帧等,本申请实施例不限定。
还应理解,由于第二AP可以接收到多个STA发送的扇区扫描帧,并对该扇区扫描帧进行测量,获得上述第一扇区选择结果,上述第二信息可以包括多个STA的信息,分别为多个STA中每个STA的标识、每个STA进行扇区扫描对应的所述多个AP中的至少一个AP的标识信息、每个STA对应与所述多个AP中的至少一个AP的第一扇区选择结果。
可选地,该第二信息还可以包括第二信息对应的STA的个数。
在BPAC中,根据通信环境的不同,第一AP可能采用不同的波束训练流程。下面分别介绍两种波束训练流程。
流程一
作为一个可选的实施例,第一接入点AP发送第一信息,包括:第一AP向至少一个第二AP发送第一信息,以使得至少一个第二AP向所述STA发送第三信息,所述第三信息用于配置所述STA的波束训练时间。则对应地,所述第二AP接收第一AP发送的第一信息,所述第二AP向所述STA发送第三信息。
具体地,第一AP可以向第二AP发送第一信息,第二AP在接收到第一信息之后,根据该第一信息中的配置,向该第二AP覆盖范围内的STA发送第三信息,用于配置STA的波束训练时间。
作为一个可选的实施例,在第一AP接收至少一个第二AP基于第一信息发送的第二信息之后,方法还包括:第一AP根据第二信息,向至少一个第二AP发送第四信息,以使得至少一个第二AP向所述STA发送所述第四信息,第四信息用于表示至少一个第二AP的第二扇区选择结果,第二扇区选择结果包括至少一个第二AP的第一扇区选择结果的全部或部分。则对应地,第二AP接收第一AP发送的第四信息;第二AP向所述STA发送第四信息。
具体地,第一AP可以对所接收到的第二信息进行整理汇总,向第二AP发送第四信息,该第二AP接收该第四信息,并将该第四信息转发给其覆盖范围内的STA。
应理解,该第四信息表示至少一个第二AP的第二扇区选择结果,其中,该第二扇区选择结果可以包括至少一个所述第二AP的所述第一扇区选择结果的全部或部分。换句话说,针对某个特定的第二AP而言,第一扇区选择结果包括该第二AP基于该第二AP所关联的STA发送的扇区扫描帧测量获得的扇区选择结果。该STA发送的扇区扫描帧可以包括该STA与该STA所能够接收到beacon帧对应的AP的训练结果,该训练结果可以是STA基于AP发送的扇区扫描帧进行测量获得的。第一AP在接收完需要进行反馈的第二AP发送的第二信息之后,可以获得多个第一扇区选择结果,该第一AP对该多个第一扇区选择结果进行整合,该第一AP可以向第二AP发送整合后的所有结果,也可以仅向第二AP发送其中一个或多个STA所处覆盖范围的AP的扇区选择结果,因此,该第二扇区选择结果可以包括第一扇区选择结果的全部或部分,本申请实施例对此不作限定。
在一种可能的实现方式中,上述第四信息具体可以称为转发(forwarding)帧或新扇区扫描反馈(NEW SSW FBCK)帧。
需要说明的是,本申请实施例中涉及的第一信息、第二信息、第三信息、第四信息中的任何一个都可以作为一个element携带在一个现有的帧中,还可以携带在一个新设计的帧中,本申请实施例并不具体限定。
流程二
作为一个可选的实施例,第一接入点AP发送第一信息,包括:第一AP向至少一个第二AP发送所述第一信息;
所述方法还包括:第一AP向所述STA发送第三信息,第三信息用于配置所述STA的波束训练时间;
在第一AP接收至少一个第二AP基于所述第一信息发送的第二信息之后,方法还包括:第一AP向STA发送第四信息,第四信息用于表示至少一个第二AP的第二扇区选择结果,第二扇区选择结果包括至少一个所述第二AP的所述第一扇区选择结果的全部或部分。
具体地,该第一AP可以向至少一个所述第二AP发送第一信息,向STA发送第三信息,从而配置第一CP、第二AP与STA之间的波束训练时间,以便接收至少一个第二AP发送的第二信息,再对第二信息进行整理汇总,向STA发送第四信息。
在一种可能的实现方式中,上述流程一可以应用于第一AP不能与所有STA进行通信的情况,上述流程二可以应用于第一AP能够与所有STA进行通信的情况。但应理解,本申请实施例并不排除在第一AP能够与所有STA进行通信时,仍然采用流程一的波束训练方法。
作为一个可选的实施例,第三信息包括下列信息中的至少一个:第二AP进行发起方发送扇区扫描的时间;STA进行应答方发送扇区扫描的时间;STA接收所述第四信息的时间。
应理解,第三信息是特定的AP针对某个特定的STA发送的,用于配置该特定的STA的波束训练时间,该第三信息的个数与需要进行波束训练的STA的个数相等。具体地,上述第三信息可以包括第二AP进行发起方发送扇区扫描(I-TXSS)的时间、该STA进行应答方发送扇区扫描(R-TXSS)的时间以及该STA接收第四信息的时间中的至少一个,本申请实施例对此不作限定。
该第三信息可以作为一个元素(element)携带于现有的帧中,也可以携带在一个新定义的帧中,本申请实施例对此不作限定。在一种可能的实现方式中,该第三信息具体可以携带在虚拟簇波束赋形STA设置(virtual cluster STA setup,VCBF STA setup)帧中,该VCBF STA setup帧可以为一个新定义的帧,当然该帧还可以有其他名称,例如STA初始化帧等,本申请实施例不作限定。
作为一个可选的实施例,所述第一AP接收至少一个所述第二AP基于所述第一信息发送的第二信息,包括:所述第一AP接收至少一个所述第二AP在所述多个AP中的最后一个AP进行波束训练之后集中反馈的所述第二信息。则对应地,所述第二AP根据所述第一信息,向所述第一AP发送第二信息,包括:所述第二AP在所述多个AP中的最后一个AP进行波束训练之后向所述第一AP反馈所述第二信息。
具体地,存在多个第二AP,对于其中的某个第二AP而言,该第二AP可以轮询STA,接收该STA发送的扇区扫描帧(可以称为NEW SSW帧),对该扇区扫描帧进行测量,获得上述第一扇区扫描结果,然后立即向第一AP发送包括该第一扇区扫描结果的上述第二信息(可以称为AP FBCK帧),也可以在所有STA发送完扇区扫描帧,并对该扇区扫描帧进行测量之后,再集中上报包括所有第一扇区扫描结果的第二信息,本申请实施例对此不作限定。
应理解,对于立即上报的方案,一个第二AP需要发送多个第二信息;而对于集中上报的方案,一个第二AP可以将根据多个STA发送的扇区扫描帧测量获得的第一扇区扫描结果整合在一个第二信息中上报,能够简化反馈流程,节省上报开销。
下面,为便于理解,以第一AP为C-AP、第二AP为M-AP为例,结合具体实施例对本申请进行详细说明。
本实施例可以应用于图2所示的通信系统中,在图2所示的通信系统中,存在1个C-AP、n个M-AP和m个STA。由C-AP对n个M-AP进行管理协调,以便完成该n+1个AP和m个STA之间的波束训练。
在进行波束训练之前,可以由C-AP先建立BPAC,即进行BPAC训练。图4示出了本申请实施例的基本服务集控制点/接入点簇BPAC训练的示意性流程图。C-AP可以在BTI里依次向每个M-AP发送BPAC训练请求(BPAC training request)帧询问各个M-AP,哪些时间可以空出用于分配成虚拟AP簇波束赋形训练服务窗口(virtual cluster BFT SP,VCSP)。然后,M-AP可以在各自的BTI里向C-AP反馈BPAC训练响应(BPAC training response)帧,协商完成之后,C-AP将在下一个BTI中广播BPAC训练确认帧,即将VCSP广播给所有M-AP。
可选地,关于M-AP的波束训练顺序可以由M-AP各自的簇时间偏移量(cluster time offset)来决定。具体地,在建立BPAC的过程中,M-AP与C-AP协商得到自身的簇时间偏移量标识(cluster time offset index),该簇时间偏移量标识规定了每个M-AP在这个BPAC中发送beacon帧的次序,可以以此作为判断M-AP进行波束训练顺序的依据。
上述BPAC训练请求帧具体可以包括分配起点(allocation start)字段和分配块持续时间(allocation block duration)字段,用于为某个M-AP分配用于虚拟AP簇波束赋形训练的时间。
可选地,该BPAC训练请求帧还可以包括BPAC成员角色(BPAC member role)字段、BPCA BF分配请求(BPAC BF allocation requested)字段和节点最大数量(ClusterMaxMem)字段。其中,BPAC member role字段可以为AP在BPAC场景下的角色定义,用来指示发送该BPAC请求帧的AP是M-AP或者C-AP;BPAC BF allocation requested字段指示C-AP为M-AP分配时间;ClusterMaxMem字段表明了能够加入到该BPAC场景下的节点的最大数量。
上述BPAC训练响应帧具体可以包括BPCA BF分配响应(BPAC BF allocation response)字段,用于表示反馈该BPAC训练响应帧的M-AP是否接受该C-AP所分配的时间。可选地,该BPAC训练响应帧还可以包括BPAC成员角色(BPAC member role)字段,BPAC member role字段可以为各个AP在BPAC场景下的角色定义,用来指示该AP是M-AP或者C-AP。
在一种可能的实现方式中,上述BPAC训练请求帧和上述BPAC训练响应帧的帧结构相同。图5示出了本申请实施例用于BPAC训练的请求帧和/或响应帧的帧结构示意图。如图5所示,该BPAC训练请求帧和BPAC训练响应帧中可以包括如下信息中的一项或多项的组合:
1、元素ID(element ID):用于标记和区分元素(element)的ID。
2、长度(length):用于指示该element的长度。
3、BPAC成员角色(BPAC member role):用于指示发送该element的AP为C-AP还是M-AP,即,可以区分C-AP/M-AP。
4、节点最大数量(ClusterMaxMem)字段:用于指示该BPAC内能够接纳的最大AP数目。
5、BPCA BF分配请求(BPAC BF allocation requested)字段:用于指示该帧是否包含了请求进行波束训练。
6、分配起点(allocation start):用于指示分配的M-AP进行波束训练的起点(时间)。
7、分配块持续时间(allocation block duration):用于指示分配的一个块(block)的时长。
8、块个数(number of blocks):用于指示具体分配了多少个块。
9、分配块周期(allocation block period):表示属于同一个分配的两个块的间隔。
10、保留位:预留给未来拓展功能使用。
具体地,当BPAC训练请求帧和BPAC训练响应帧采用相同的帧结构时,可以通过BPAC member role指示发送该帧的是C-AP还是M-AP,从而区分该帧为BPAC训练请求帧还是BPAC训练响应帧。此外,BPAC训练响应帧中的BPAC BF allocation response字段可以相当于BPAC训练请求帧中的BPAC BF allocation requested字段。在BPAC训练响应帧中,allocation start和allocation block duration可以缺省。
例如,对于某个特定的M-AP而言,C-AP可以将BPAC训练请求帧中的BPAC BF allocation requested设为0,并通过BPAC训练请求帧中的allocation start和allocation block duration来设置M-AP的波束训练时间。该M-AP如果接受该C-AP所设定的时间,就将BPAC训练响应帧中的BPAC BF allocation requested设为1,反馈给C-AP。否则,该M-AP将BPAC训练响应帧中的BPAC BF allocation requested设为0,表示该M-AP不接受该C-AP所分配的时间。若C-AP接收到M-AP的BPAC BF allocation requested为1,则将BPAC训练请求帧中的BPAC BF allocation requested设为1,作为BPAC训练确认帧,反馈给该M-AP。否则,该C-AP重新开始为M-AP设置时间,即将BPAC训练请求帧中的BPAC BF allocation requested设为0,并通过BPAC训练请求帧中的allocation start和allocation block duration来设置时间。
应理解,上述0和1仅仅为了进行举例,在其他实施例中,也可以采用1表示M-AP不接受C-AP所分配的时间,用0表示M-AP接收该C-AP分配的时间,还可以采用其他比特来表示,本申请实施例对此不作限定。
在完成BPAC训练之后,每个M-AP就知道具体的需要进行波束训练的STA以及训练顺序,接下来就进行波束训练,具体的训练过程可以分为以下几种情况。
情况一、C-AP无法和所有STA直接进行通信
扇区级扫描SLS阶段
图6示出了本申请实施例的波束训练的扇区级扫描SLS阶段的示意性流程图,该SLS阶段分为如下三个阶段。
1、初始化设置阶段(setup phase)
该阶段C-AP会广播VCBF AP setup帧(即上述第一信息)给n个M-AP,相应地,接收VCBF AP setup帧的n个M-AP会广播VCBF STA setup帧(即上述第三信息)给所有与其关联的STA,以便配置M-AP和STA的波束训练时间。
具体地,上述VCBF AP setup帧可以包括n个M-AP中每个M-AP进行发起方发送扇区扫描I-TXSS的时间、每个M-AP轮询STA的时间以及每个M-AP发送AP FBCK帧的时间。可选地,该VCBF AP setup帧也可以包括每个M-AP发送STA setup帧的时间,还可以包括上行训练(UL training)和/或下行训练(DL training)的具体要求,例如,只进行上行训练,或者,只进行下行训练,或者,进行上行训练和下行训练,本申请实施例对此不作限定。
因此,通过接收VCBF AP setup帧,M-AP能够获得每个AP进行I-TXSS的具体时间、M-AP轮询每个STA的具体时间、每个M-AP传送AP FBCK帧的具体时间以及上行训练和下行训练的具体要求。
在一种可能的实现方式中,VCBF AP setup帧的帧格式可以如图7所示。该VCBF AP setup帧中包括下列字段:
1)帧控制(frame control):前三个子字段是协议版本(protocol version)、类型(type)和子类型(subtype),其余子字段取决于类型和子类型的设置。
2)时间长度(duration)
3)接收方地址(receiver address,RA)
4)发送方地址(transmitter address,TA)
5)M-AP的数量(number of M-AP)
6)M-AP的信息字段,例如M-AP1的信息字段,M-AP 1info
7)帧校验序列(frame check sequence,FCS):用于接收帧的网卡或接口判断是否发生了错误。
其中,n个M-AP中每个M-AP的信息都可以包括如下字段:
AP的标识(AP ID):通常为AP的MAC地址,还可以为AP在BPAC中的ID;
STA setup帧发送开始时间(STA setup start time)和STA setup帧发送持续时间(STA setup duration)、I-TXSS开始时间(I-TXSS start time)和I-TXSS持续时间(I-TXSS duration)、轮询开始时间(poll start time)和轮询持续时间(poll duration);
AP FBCK帧发送开始时间(AP FBCK start time)、AP FBCK帧发送持续时间(AP FBCK duration)。
可选地,上述每个M-AP的信息还可以包括:上行和/或下行训练(DL/UL training)指示字段,该字段用于指示当前的训练要求,例如,只进行上行训练,或者,只进行下行训练,或者,进行上行训练和下行训练。
应理解,本申请实施例关于帧结构的设计仅仅为示例性说明,并不会对本申请的保护范围造成限定,可选地,包括上述信息的帧结构可以为一个新的帧结构,也可以为已有的、 经改进后的帧结构,本申请实施例对此不作限定。后续的帧结构同样如此,不再赘述。
类似地,VCBF STA setup帧是针对特定的STA而言的,可以包括向该STA发送该VCBF STA setup帧的M-AP进行发起方发送扇区扫描I-TXSS的时间、该STA进行应答方发送扇区扫描R-TXSS的时间以及该STA接收NEW SSW FBCK帧(即上述第四信息)的时间。可选地,该VCBF STA setup帧也可以包括NEW SSW帧的个数,还可以包括上行训练和/或下行训练的具体要求,例如,只进行上行训练,或者,只进行下行训练,或者,进行上行训练和下行训练,本申请实施例对此不作限定。
因此,通过接收VCBF STA setup帧,每个STA能够获得与其关联的M-AP进行I-TXSS的具体时间、每个STA进行R-TXSS的具体时间以及每个STA需要发送的NEW SSW帧的具体数量以及上行训练和下行训练的具体要求。
在一种可能的实现方式中,VCBF STA setup帧的帧格式可以如图8所示。该VCBF STA setup帧中包括下列字段:
1)帧控制(frame control):前三个子字段是协议版本(protocol version)、类型(type)和子类型(subtype),其余子字段取决于类型和子类型的设置。
2)时间长度(duration)
3)接收方地址(receiver address,RA),可以为接收方的MAC地址,还可以为接收方在BPAC中的ID。
4)发送方地址(transmitter address,TA),可以为发送方的MAC地址,还可以为发送方在BPAC中的ID。
5)STA初始化设置(setup for STA)
6)帧校验序列(frame check sequence,FCS):用于接收帧的网卡或接口判断是否发生了错误。
其中,STA初始化设置可以包括如下字段:
I-TXSS开始时间(I-TXSS start time)和I-TXSS持续时间(I-TXSS duration)、R-TXSS开始时间(R-TXSS start time)和R-TXSS持续时间(R-TXSS duration)、NEW SSW帧的个数(number of NEW SSW)。
可选地,上述每个M-AP的信息还可以包括:上行和/或下行训练(DL/UL training)指示字段,该字段用于指示当前的训练要求,例如,只进行上行训练,或者,只进行下行训练,或者,进行上行训练和下行训练
2、发起方发送扇区扫描阶段(I-TXSS phase)
在I-TXSS阶段,每个AP(包括C-AP与M-AP)都会按照之前形成VCSP时规定的顺序依次发送扇区扫描(SSW)帧。所谓扇区扫描,就是发送方将信号传播区域由一个圆形区域划分为若干个扇形区域,并在每个扇区都发送一次训练数据。
3、应答方发送扇区扫描阶段(R-TXSS phase)和反馈阶段(SSW FBCK phase)
在I-TXSS阶段完成以后,进入应答方发送扇区扫描阶段,即R-TXSS阶段。在R-TXSS阶段,由于在本实施例当中,C-AP无法与所有STA直接进行通信,因此,由M-AP按照初始化设置阶段设置的时间来轮询与其关联的STA,被轮询到的STA会发送NEW SSW帧。
该NEW SSW帧是STA发送的,包括该STA对AP发送的SSW帧进行测量获得的扇 区选择结果。因此,该NEW SSW帧可以包括STA所反馈的天线的数量(number of antenna)以及每个天线对应的信息(per antenna info)。其中,每个天线对应的信息可以包括扇区选择(sector select)结果和对应的天线索引(antenna index)。
应理解,在BPAC中,n个AP可以被看做一个AP,通过天线索引来进行区分,因此,上述天线的数量也可以为AP的数量,上述天线索引也可以为AP索引,天线标识也可以为AP标识,本申请实施例对此不作限定。
在一种可能的实现方式中,NEW SSW帧的帧格式如图9所示。本实施例将SSW帧当中的SSW FBCK部分,由固定长度的3字节改为字节长度可变,从而形成了图9所示的NEW SSW帧。由于C-AP无法与所有STA直接通信,而且由M-AP来代替C-AP进行轮询,因此,如果没有在之前的VCSP阶段告知STA它能收到多少M-AP发送的Beacon帧,天线数量(number of antenna)这一域将标识该NEW SSW帧将发送的目的AP的数量了;若在之前的VCSP阶段已经告知了STA它能收到AP发送的beacon帧的数量的话,number of antenna这一域可以不出现。该NEW SSW帧还可以包括天线的数量以及每根天线的具体信息,每个天线的具体信息可以包括天线索引、扇区选择以及信噪比(signal-to-noise ratio,SNR)报告,由STA发送给M-AP。
在一种设计中,每个天线信息可以包括对应于每个天线(即每个AP)的扇区选择字段、天线标识(例如AP标识)字段和SNR报告字段,其中,扇区选择字段可以为扇区标识和/或波束(beam)标识。在另一种设计中,每个天线信息可以包括对应于每个天线(即每个AP)的倒计数(count down,CDOWN)字段、天线标识(例如AP标识)字段和SNR报告字段,其中,CDOWN字段可以为STA所选择的扇区和/或波束对应的CDOWN值,AP根据该CDOWN值即可确定STA所选择的扇区和/或波束。
应理解,CDOWN字段为计数器,可以包括在I-TXSS阶段AP发送给STA的SSW帧中,用于表示距TXSS或RXSS结束的剩余SSW帧的传输量。该SSW帧中还会包括扇区标识和/或波束标识。因此,CDOWN值可以用于确定发送该CDOWN值的SSW帧对应的扇区标识和/或波束标识。可选地,该字段的取值范围可以在0到511之间,且按照SSW帧的发送顺序依次减1,在最后一个SSW帧中为0。
例如,天线数量为2,即AP的数量为2,假设分别为AP 1和AP 2,那么每个天线信息可以包括AP 1的标识、AP 1对应的扇区选择结果和SNR报告、AP 2的标识、AP 2对应的扇区选择结果和SNR报告。扇区选择结果可以直接用扇区标识和/或波束标识表示,也可以用CDOWN值表示,本申请实施例对此不作限定。
在反馈阶段(SSW FBCK phase),每个M-AP向C-AP发送AP FBCK帧(即上述第二信息)来实现反馈,因此,该C-AP能够收集到所有M-AP和其相关联的STA的扇区选择结果。
具体地,该AP FBCK帧可以包括:STA的标识、STA进行扇区扫描对应的AP的标识以及STA对应与该AP的扇区选择结果。由于AP FBCK帧是某个特定的M-AP反馈给C-AP的,该M-AP可以将所收集到的多个STA分别通过NEW SSW帧发送的扇区选择结果进行汇总,整合在一个AP FBCK帧中上报给C-AP。
在一种可能的实现方式中,AP FBCK帧的帧格式如图10所示。图10示出了X个STA的扇区选择结果,X为大于或等于1,且小于或等于m的整数。该X个STA为位于该 M-AP覆盖范围内的STA,且每个STA能够接收到一些AP发送的beacon帧,该STA会与这些AP进行波束训练,从而获得该STA对应于这些AP的扇区选择结果。因此,在AP FBCK帧中,针对这X个STA中的每个STA,需要指示该STA对应的AP的标识以及对应的扇区选择结果。对于某个特定的STA而言,该STA对应的AP的标识为图10中的天线标识(例如AP标识)字段,该STA对应于该AP的扇区选择结果为图10中与该AP的天线标识字段相邻的扇区选择字段或CDOWN字段。可选地,该AP FBCK帧还可以包括SNR报告。
在一种设计中,STA 1天线信息可以包括该STA 1对应的天线数量(即AP的数量)、该STA 1对应于每个天线(即每个AP)的扇区选择字段、STA 1对应的天线标识(例如AP标识)字段和SNR报告字段,其中,扇区选择字段可以为扇区标识和/或波束(beam)标识。在另一种设计中,STA 1天线信息可以包括该STA 1对应的天线数量(即AP的数量)、该STA 1对应于每个天线(即每个AP)的倒计数(count down,CDOWN)字段、STA 1对应的天线标识(例如AP标识)字段和SNR报告字段,其中,CDOWN字段可以为STA所选择的扇区和/或波束对应的CDOWN值,C-AP根据该CDOWN值即可确定STA所选择的扇区和/或波束。
例如,在图10中,针对STA 1,假设M-AP需反馈STA 1针对3个AP的扇区选择结果,则STA 1的天线信息字段可以包括天线数量字段,该天线数量字段指示该STA 1的扇区选择结果所涉及的AP的个数为3。STA 1的天线信息字段还可包括3个扇区选择字段或CDOWN字段,这3个扇区选择字段或CDOWN字段分别指示了这3个AP的扇区选择结果。为了对3个AP的扇区选择结果进行区分,该天线信息字段还可以包括3个STA 1对应的天线标识字段,该字段可以分别为该STA1的扇区选择结果所涉及的这3个AP的标识。具体地,针对上述3个AP中的AP 1,STA 1针对AP 1的扇区选择字段或CDOWN字段可以与该AP 1的标识字段相邻。这样,接收到该AP FBCK帧的C-AP,就可以准确地获取各个STA与各个AP之间的扇区选择结果。
在C-AP在收集完所有AP上报的AP FBCK帧之后,该C-AP会对接收到的AP FBCK帧进行整理汇总,生成BF FBCK forwarding帧,并向所有M-AP发送该BF FBCK forwarding帧(即上述第四信息),该BF FBCK forwarding帧包含了C-AP收集到的所有AP与STA的训练信息,包括扇区选择、天线信息和SNR等关键信息。
在一种可能的实现方式中,BF FBCK forwarding帧的帧格式如图11所示。与上述AP FBCK帧的帧格式类似,BF FBCK forwarding帧主要修改了转发(forwarding)字段,将M-AP下所有的STA天线的相关信息以及发送扇区选择信息都包含在内,此处不再赘述。
波束精炼BRP阶段
在上述过程完成以后,每个AP与每个STA就能够获知各自的最佳发送扇区,接着进行波束精炼阶段。图12至图14示出了本申请实施例的波束训练的波束精炼阶段BRP阶段的示意性流程图,如图12至图14所示,BRP阶段可以包括如下四个阶段。
1、初始化设置(setup)阶段
与SLS阶段类似,C-AP和M-AP需要训练之前先进行初始化设置,C-AP会广播VCBF AP setup帧给所有M-AP,VCBF AP setup帧的帧格式与SLS阶段类似,此处不再赘述。在一种可能的实现方式中,VCBF AP setup帧的帧格式可以如图7所示。
所有AP会广播带有setup功能的NEW BRP帧(NEW BRP frame w/setup)给STA,其中,NEW BRP frame w/setup中的w/代表with。应理解,该帧还可以具有其他名称,本申请对帧的命名并不作限定。由于C-AP无法与所有STA直接进行通信,因此,在所有AP广播NEW BRP frame w/setup之后,按照VCBF AP Setup帧当中规定好的时间点,每个AP轮询与其关联的STA,令其发送BRP frame w/setup帧,直到所有STA均发送了BRP frame w/setup帧或是本阶段持续时间结束。
上述NEW BRP frame w/setup可以包括向该STA发送该VCBF STA setup帧的M-AP进行发起方发送扇区扫描I-TXSS的时间、该STA进行应答方发送扇区扫描R-TXSS的时间以及该STA接收NEW SSW FBCK帧(即上述第四信息)的时间。可选地,该NEW BRP frame w/setup还可以包括BRP FBCK帧的个数。
在一种可能的实现方式中,NEW BRP frame w/setup的帧格式可以如图13所示。该NEW BRP frame w/setup中包括下列字段:
1)种类(category):用于标记帧的类型。
2)无保护的DMG动作(unprotected DMG action):用于标记该帧属于通知(announce)帧还是属于BRP帧,例如,unprotected DMG action字段等于0表示该帧为announce帧,unprotected DMG action字段等于1表示该帧为BRP帧。
3)对话令牌(dialog token):当有并行的多个对话请求时,对话令牌用于标记当前的响应是针对具体哪个请求的响应。
4)BRP请求域(BRP request field):包含了很多与BRP阶段进行波束训练相关的参数以及命令,用于配置BRP阶段的波束训练等。
应理解,BRP请求域是针对定向多吉比特(directional multi-gigabit,DMG)设备的,DMG是11ad标准中对设备的一个新的称呼,11ad标准中的beacon帧可以被称为DMG Beacon,11ad标准中的STA可以被称为DMG STA。
5)DMG波束精炼元素(DMG beam refinement element):包含一些与BRP阶段波束精炼相关的参数和配置,用于配置BRP精炼。
6)零或多信道测量反馈元素(zero or more channel measurement feedback elements):用于携带信道测量反馈数据,针对DMG设备反馈的。
7)EDMG部分扇区级扫描元素(EDMG partial sector level sweep element):当链路失败后恢复链路需要的扇区扫描长度。
8)EDMG BRP请求元素(EDMG BRP request element)(可选地):与4)类似,只不过是针对增强型定向多吉比特(enhanced directional multi-gigabit,EDMG)设备的。也就是说,4)是配置11ad标准中的BRP,8)是配置11ay标准中的BRP。
应理解,DMG是指支持11ad标准的设备,EDMG是指支持11ay标准的设备,其中支持11ay标准的设备可以向下兼容11ad标准。
9)零或多EDMG信道测量反馈元素(zero or more EDMG channel measurement feedback elements):用于携带信道测量反馈数据,与6)类似,只不过这里是反馈EDMG设备的。
10)VCBF STA设置元素(VCBF STA setup elements)
其中,该VCBF STA setup elements可以包括如下字段:
I-TXSS开始时间(I-TXSS start time)和I-TXSS持续时间(I-TXSS duration),R-TXSS开始时间(R-TXSS start time),BRP FBCK帧的个数(number of BRP FBCK)
应理解,本实施例针对BPAC场景对原始的BRP frame w/setup帧进行了改进,形成了图15所示的NEW BRP frame w/setup。与原始的BRP frame w/setup帧相比,NEW BRP frame w/setup添加了VCBF STA setup elements字段,该字段包含了M-AP进行发起方发送扇区扫描(I-TXSS)的具体时间、STA开始应答方发送扇区扫描(R-TXSS)的具体时间以及STA需要传输的BRP FBCK的数量。
2、发起方波束精炼发送扇区扫描(Initiator BRP TXSS)阶段
在所有AP都接收到来自STA的BRP frame w/setup帧或是初始化阶段持续时间结束以后,进行Initiator BRP TXSS阶段。在该阶段,所有AP根据VC AP BF setup帧当中规定好的时间点,发送EDMG BRP-TX包,并且随后轮询与其关联的STA发送BRP FBCK(又称BRP frame w/feedback)帧。
在这之后,每个M-AP会通过向C-AP发送AP BRP FBCK帧来反馈波束精炼的训练信息,AP BRP FBCK帧的帧格式与SLS阶段的AP FBCK帧类似,此处不再赘述。在一种可能的实现方式中,AP BRP FBCK帧的帧格式如图10所示。
因此,C-AP能够收集并且获知所有的M-AP与STA的训练信息,包括扇区天线以及SNR等信息。当收到所有M-AP发送的AP BRP FBCK帧以后,C-AP会向所有M-AP发送BF FBCK forwarding帧,该帧包含了C-AP收集到的所有AP与STA的训练信息,包括扇区选择、天线信息和SNR等关键信息。在一种可能的实现方式中,BF FBCK forwarding帧的帧格式如图11所示。最后,M-AP会向与其关联的STA发送BRP frames w/ACK帧,进行波束精炼结果的反馈。
值得一提的是,如果C-AP与各M-AP在之前的MU-MIMO阶段如果已经进行过训练了,此时C-AP与M-AP已经获知在C-AP与M-AP相互通信的过程当中所有AP的最佳发送扇区与最佳接收扇区,因此,在反馈阶段可以采用一种简化的方式,即从所有M-AP依次反馈变为所有M-AP并行发送AP FBCK帧,因为之前已经进行过波束训练,可以确保此时不会产生干扰。同理,在C-AP发送BF FBCK forwarding帧时,也可以由依次发送改为并行发送,提高训练效率。
图16示出了本申请实施例的波束训练中反馈AP FBCK frame的示意性流程图。如图16所示,左侧的反馈方式为逐个反馈,即各个M-AP在不同时间段向C-AP发送AP FBCK帧,右侧的反馈方式为并行反馈,各个M-AP并行向C-AP发送各自的AP FBCK帧,本申请实施例对此不作限定。
图17示出了本申请实施例的波束训练中发送BF FBCK forwarding frame的示意性流程图。如图17所示,左侧的反馈方式为逐个反馈,即C-AP在不同时间段向各个M-AP发送BF FBCK forwarding帧,右侧的反馈方式为同时反馈,C-AP同时向各个M-AP发送BF FBCK forwarding帧,本申请实施例对此不作限定。
本申请实施例通过将多个AP组建成一个AP簇,由其中的C-AP统一收集所有M-AP的反馈信息,再统一发送给各个STA,利用C-AP的统筹全局的优势,统一控制M-AP进行波束训练的时间,在初始化设置阶段将后续训练流程当中涉及到的训练顺序问题、反馈时间及反馈格式等问题提前安排,能够最大程度地避免碰撞干扰造成的无效训练。另外, 在反馈的过程中通过在传统的反馈帧当中添加天线的具体信息,以便M-AP在反馈的时候能上报更完整的训练信息,让整个训练过程变得更加高效。此外,在C-AP无法与所有STA直接进行通信的情况下,通过C-AP联系M-AP代为轮询的方法,让M-AP与其关联STA进行训练,保证了训练的稳定性。
情况二、C-AP能够和所有STA直接进行通信
扇区级扫描SLS阶段
1、初始化设置阶段(setup phase)
该阶段C-AP会广播VCBF AP setup帧与VCBF STA setup帧。其中,VCBF AP setup帧当中除了常规的字段(例如,帧头、持续时间、收发设备的地址)之外,还包括一些特殊字段,例如,标识该BPAC场景下的M-AP的数量的字段以及各个M-AP具体信息的字段。以VCBF AP setup帧的M-AP 1 info字段为例,该字段包含了M-AP 1的ID,通常为M-AP 1的MAC地址;并且在该字段中还规定了M-AP 1开始波束训练的SLS阶段下各个子阶段的开始时间和持续时间。类似地,在VCBF STA setup帧当中,除了常规字段之外,在setup for STA字段当中,包含了C-AP告知各个STA进行波束训练SLS阶段下各个子阶段的开始时间与持续时间,并且对STA进行的扇区扫描反馈进行了告知。当M-AP与STA收到相应的setup帧之后,初始化设置阶段就已经完成了,其意义便在于C-AP为接下来的训练做了整体的部署规划。这两种帧的帧结构分别与情况一中的相同,此处不再赘述。
2、扇区扫描阶段
在初始化设置阶段完成以后,进行扇区扫描阶段,该阶段包括发送方发送扇区扫描和应答方发送扇区扫描,即I-TXSS和R-TXSS阶段。在I-TXSS阶段,每个AP(包括C-AP与M-AP)都会按照之前形成VCSP时规定的顺序依次发送扇区扫描帧,即SSW。所谓扇区扫描,就是发送方将信号传播区域由一个圆形区域划分为若干个扇形区域,并在每个扇区都发送一次训练数据。在每个AP都完成I-TXSS阶段的扇区扫描之后,便进入R-TXSS阶段的扇区扫描。
在本实施例当中,由于所有STA都能与C-AP直接进行通信,因此,C-AP可以通过直接轮询每一个STA,令其进行R-TXSS阶段训练,并且发送SSW帧。值得一提的是,无论是I-TXSS阶段还是R-TXSS阶段,AP与STA都是按照扇区划分来定向发送SSW帧,而准全向接收NEW SSW帧。因此,在M-AP准全向接收到NEW SSW帧之后,M-AP会向C-AP发送一个AP FBCK帧,其功能是各个M-AP向C-AP反馈各自的SSW反馈信息,最后,收集了各个M-AP的反馈信息之后的C-AP向被轮询到的STA发送一个NEW SSW FBCK帧。当每个STA都被轮询过以后,本实施例的扇区级扫描阶段基本结束,在该阶段结束的时候,每个AP与STA都能经过训练,获知自己的最佳发送扇区。
在一种可能的实现方式中,如图18所示,上述每个STA被轮询并且向M-AP发送了NEW SSW帧之后,M-AP可以立即向C-AP发送AP FBCK帧进行训练反馈,并且不断循环这个过程直到所有STA都被轮询一遍。
在另一种可能的实现方式中,如图19所示,当所有STA均完成了NEW SSW帧的发送之后,M-AP才向C-AP发送AP FBCK帧,上报自己的训练结果,并且在这之后,C-AP会向所有STA发送New SSW-FBCK帧作为整个训练结果的反馈。
采用立即反馈的方式,C-AP可以较快获得到M-AP反馈的信息,从而先对已获取的信息进行整合;而采用集中反馈的方式,可以由M-AP将根据多个STA发送的扇区扫描帧进行测量获得的信息进行整理,汇总在一个AP FBCK中发送,从而减少信令开销,使得训练流程更加简洁高效。
本申请实施例将一个范围内的所有AP联合起来,视为一个AP簇,并且在内部利用C-AP和M-AP加以区分,能够避免波束训练过程当中潜在的碰撞问题。在本实施例中,C-AP能够直接和所有STA直接进行通信,因此,整个SLS阶段都由C-AP进行全局掌控,最大程度上避免了碰撞和干扰,可以极大地提高多AP多STA场景下波束训练的效率。
波束精炼BRP-TXSS阶段
图20和图21示出了本申请实施例的另一波束训练的波束精炼阶段BRP阶段的示意性流程图。如图20和图21所示,由C-AP广播VCBF AP setup帧与VCBF STA setup帧,其中包含了在后续训练过程中每个AP轮询STA的具体时间,被轮询到的STA发送NEW BRP帧,随后M-AP上报训练信息,并且接收来自C-AP的BF FBCK forwarding帧。在这之后,每个AP发送NEW BRP FBCK帧给与其关联的STA作为训练结果反馈,并且轮询各个STA进行接收反馈。至此,每个AP与STA就能确定自己的最佳接收扇区或是最佳接收波束了。
需要指出的是,本实施例当中的NEW BRP帧也可以用多个BRP帧来代替,具体的个数可以是STA收到的帧的个数再加上1,其中,这个多加的1表示C-AP。但是,鉴于STA可能无法收到所有AP发送的帧,因此,也可以在最开始初始化设置阶段告知每个STA该场景下有多少个AP,STA就可以获知自己该在训练阶段发送多少个BRP帧。
应理解,训练过程中天线可以处于全向工作模式,即无论AP还是STA均360度地向周边发送数据帧,也可以处于定向工作模式。本申请实施例可以通过将天线的工作模式转变,将收发双方的最佳发送扇区与最佳接收扇区进行配对,即在传输过程中形成实际链路,提供系统增益。
本实施例还提出了三种波束细化训练方案,分别是:接收训练、发送训练以及收发训练。具体地,接收训练可以如图22所示,发送训练可以如图23所示,收发训练可以是图22和图23的结合。
具体地,以收发训练为例:
1)在该阶段开始时,每个AP发送BRP帧,告知STA欲进行接收训练。
2)收到BRP帧的STA会在收到轮询帧之后依次发送带接收训练(receive training,TRN-R)字段的NEW BRP帧作为AP发起接收训练的回应,并且同时请求AP进行发送波束训练。
3)当所有AP都收到带TRN-R字段的NEW BRP帧之后,M-AP向C-AP上报具体的训练信息,随后C-AP发送forwarding帧给所有M-AP,至此每个AP都能将自己的接收扇区进一步细化。
4)所有AP向STA发送带发送训练(transmit training,TRN-R)字段的NEW BRP帧作为接收训练的回应,同时告知STA自己已经做好发送训练的准备。
5)收到该帧的STA在轮询调度下发送带TRN-T字段的NEW BRP帧给关联AP,以此进行发送训练,并且告知AP自己已经做好发送训练的准备。
6)当所有AP都收到带TRN-T字段的NEW BRP帧之后,M-AP向C-AP上报具体的训练信息,随后C-AP发送forwarding帧给所有M-AP,至此每个AP都能够获知进一步细化的STA的发送波束。
7)所有AP向STA发送带TRN-T字段的NEW BRP帧作为发送训练的回应,并且告知STA进行接收训练。
8)在轮询调度下,每个STA按顺序发送带TRN-R字段的NEW BRP帧给关联AP,至此STA能够将自己的接收扇区进一步细化。
9)在收到STA的反馈之后,M-AP向C-AP上报具体的训练信息,随后C-AP发送forwarding帧给所有M-AP,至此每个AP都能进一步细化自己的发送波束。
由于收发训练是接收训练和发送训练综合起来的流程,对于接收训练和发送训练,本文不再详细赘述。
此外,在某些特殊情况下,可能会导致有些STA无法与AP及时进行训练,例如,超时等情况。本申请实施例还提供了一种自发的响应方扇区扫描(responder sector sweep,unsolicited RSS)的过程,其过程可以如图24所示。
在BTI阶段,假设STA i,…,STA j为自发的STA,这些STA通过发送给其它STAs的beacon帧可以获得I-TXSS的训练结果(即获得了各个AP的发送sectors对其训练信息),那么在DTI,unsolicited STA可以进行R-TXSS训练,但是由于是自发的训练,无法通过C-AP或是M-AP进行有序调度,只能像在A-BFT中那样时隙化地随机竞争。但是,本申请实施例能够将那些错过上述波束训练流程的STA进行收听beacon帧当中的训练信息,在DTI阶段通过竞争的方式自发地进行波束训练,最后也能与相关联的M-AP利用波束进行数据传输,提高增益。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中结合图1至图24,详细描述了根据本申请实施例的波束训练的方法,下面将结合图25至图26,详细描述根据本申请实施例的波束训练的装置。
图25示出了本申请实施例提供的波束训练的装置2500,该装置2500可以是前述实施例中的AP,也可以为AP中的芯片。该装置2500包括:发送单元2510和接收单元2520。
在一种可能的设计中,装置2500用于实现上述方法实施例中的第一AP对应的各个流程和步骤。
其中,该发送单元2510用于发送第一信息,所述第一信息用于配置多个AP的波束训练时间,所述多个AP的波束训练时间用于所述多个AP和所述多个AP覆盖范围内的站点STA进行波束训练,所述多个AP包括所述装置和至少一个第二AP;该接收单元2520用于接收至少一个所述第二AP基于所述第一信息发送的第二信息,所述第二信息用于反馈第一扇区选择结果,所述第一扇区选择结果为在所述波束训练时间内进行波束训练得到的。
可选地,所述第一信息包括下列信息中的至少一个:所述第二AP进行发起方发送扇区扫描的时间;所述第二AP轮询所述STA的时间;所述第二AP发送所述第二信息的时间。
可选地,所述第二信息包括下列信息中的至少一个:所述STA的标识信息;所述STA 进行扇区扫描对应的所述多个AP中的至少一个AP的标识信息;所述STA对应与所述多个AP中的至少一个AP的第一扇区选择结果。
可选地,所述发送单元2510具体用于:向至少一个所述第二AP发送所述第一信息,以使得至少一个所述第二AP向所述STA发送第三信息,所述第三信息用于配置所述STA的波束训练时间。
可选地,所述发送单元2510还用于:根据所述第二信息,向至少一个所述第二AP发送第四信息,以使得至少一个所述第二AP向所述STA发送所述第四信息,所述第四信息用于表示至少一个所述第二AP的第二扇区选择结果,所述第二扇区选择结果包括至少一个所述第二AP的所述第一扇区选择结果的全部或部分。
可选地,所述发送单元2510具体用于:向所述STA发送所述第一信息;向所述STA发送第三信息,所述第三信息用于配置所述STA的波束训练时间;向所述STA发送第四信息,所述第四信息用于表示至少一个所述第二AP的第二扇区选择结果,所述第二扇区选择结果包括至少一个所述第二AP的所述第一扇区选择结果的全部或部分。
可选地,所述第三信息包括下列信息中的至少一个:所述第二AP进行发起方发送扇区扫描的时间;所述STA进行应答方发送扇区扫描的时间;所述STA接收所述第四信息的时间。
在另一种可能的设计中,装置2500用于实现上述方法实施例中的第二AP对应的各个流程和步骤。
其中,该接收单元2520用于接收第一AP发送的第一信息,所述第一信息用于配置多个AP的波束训练时间,所述波束训练时间用于所述多个AP和所述多个AP覆盖范围内的多个站点STA进行波束训练,所述多个AP包括所述第一AP和所述装置;该发送单元2510,用于根据所述第一信息,向所述第一AP发送第二信息,所述第二信息用于反馈第一扇区选择结果,所述第一扇区选择结果为在所述波束训练时间内进行波束训练得到的。
可选地,所述第一信息包括下列信息中的至少一个:所述装置进行发起方发送扇区扫描的时间;所述装置轮询所述STA的时间;所述装置发送所述第二信息的时间。
可选地,所述第二信息包括下列信息中的至少一个:所述STA的标识信息;所述STA进行扇区扫描对应的所述多个AP中的至少一个AP的标识信息;所述STA对应与所述多个AP中的至少一个AP的第一扇区选择结果。
可选地,所述发送单元2510还用于:向所述STA发送第三信息,所述第三信息用于配置所述STA的波束训练时间。
可选地,所述接收单元2520还用于:接收所述第一AP发送的第四信息,所述第四信息用于表示至少一个所述装置的第二扇区选择结果,所述第二扇区选择结果包括至少一个所述装置的所述第一扇区选择结果的全部或部分;所述发送单元2510还用于:向所述STA发送所述第四信息。
可选地,所述第三信息包括下列信息中的至少一个:所述装置进行发起方发送扇区扫描的时间;所述STA进行应答方发送扇区扫描的时间;所述STA接收所述第四信息的时间。
本申请实施例的波束训练的装置,通过第一AP发送用于配置多个AP的波束训练时 间的第一信息,以便多个AP和该多个AP覆盖范围内的STA按照该波束训练时间进行波束训练,能够统一配置AP的波束训练时间,便于对波束训练过程进行管理规划,从而有利于提高波束训练效率。
应理解,这里的装置2500以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置2500可以具体为上述实施例中的第一AP或第二AP,装置2500可以用于执行上述方法实施例中与第一AP或第二AP对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置2500具有实现上述方法中第一AP或第二AP执行的相应步骤的功能;所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如发送单元可以由发射机替代,接收单元可以由接收机替代,其它单元,如确定单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
在本申请的实施例,图25中的装置也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。对应的,接收单元和发送单元可以是该芯片的收发电路,在此不做限定。
图26示出了本申请实施例提供的另一波束训练的装置2600。该装置2600包括处理器2610、收发器2620和存储器2630。其中,处理器2610、收发器2620和存储器2630通过内部连接通路互相通信,该存储器2630用于存储指令,该处理器2610用于执行该存储器2630存储的指令,以控制该收发器2620发送信号和/或接收信号。
在一种可能的设计中,装置2600用于实现上述方法实施例中的第一AP对应的各个流程和步骤。
其中,该处理器2610用于:通过该收发器2620发送第一信息,所述第一信息用于配置多个AP的波束训练时间,所述多个AP的波束训练时间用于所述多个AP和所述多个AP覆盖范围内的站点STA进行波束训练,所述多个AP包括所述装置和至少一个第二AP;通过该收发器2620接收至少一个所述第二AP基于所述第一信息发送的第二信息,所述第二信息用于反馈第一扇区选择结果,所述第一扇区选择结果为在所述波束训练时间内进行波束训练得到的。
在另一种可能的设计中,装置2600用于实现上述方法实施例中的第二AP对应的各个流程和步骤。
其中,该处理器2610用于:通过该收发器2620接收第一AP发送的第一信息,所述第一信息用于配置多个AP的波束训练时间,所述波束训练时间用于所述多个AP和所述多个AP覆盖范围内的多个站点STA进行波束训练,所述多个AP包括所述第一AP和所述装置;根据所述第一信息,通过该收发器2620向所述第一AP发送第二信息,所述第二信息用于反馈第一扇区选择结果,所述第一扇区选择结果为在所述波束训练时间内进行波束训练得到的。
应理解,装置2600可以具体为上述实施例中的第一AP或第二AP,并且可以用于执 行上述方法实施例中与第一AP或第二AP对应的各个步骤和/或流程。可选地,该存储器2630可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器2610可以用于执行存储器中存储的指令,并且当该处理器2610执行存储器中存储的指令时,该处理器2610用于执行上述与该第一AP或第二AP对应的方法实施例的各个步骤和/或流程。
应理解,在本申请实施例中,上述装置的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件单元组合执行完成。软件单元可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c或a-b-c,其中a,b,c可以是单个,也可以是多个。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的 部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (30)

  1. 一种波束训练的方法,其特征在于,包括:
    第一接入点AP发送第一信息,所述第一信息用于配置多个AP的波束训练时间,所述多个AP的波束训练时间用于所述多个AP和所述多个AP覆盖范围内的站点STA进行波束训练,所述多个AP包括所述第一AP和至少一个第二AP;
    所述第一AP接收至少一个所述第二AP基于所述第一信息发送的第二信息,所述第二信息用于反馈第一扇区选择结果,所述第一扇区选择结果为在所述波束训练时间内进行波束训练得到的。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息包括下列信息中的至少一个:
    所述第二AP进行发起方发送扇区扫描的时间;
    所述第二AP轮询所述STA的时间;
    所述第二AP发送所述第二信息的时间。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二信息包括下列信息中的至少一个:
    所述STA的标识信息;
    所述STA进行扇区扫描对应的所述多个AP中的至少一个AP的标识信息;
    所述STA对应与所述多个AP中的至少一个AP的第一扇区选择结果。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一接入点AP发送第一信息,包括:
    所述第一AP向至少一个所述第二AP发送所述第一信息,以使得至少一个所述第二AP向所述STA发送第三信息,所述第三信息用于配置所述STA的波束训练时间。
  5. 根据权利要求4所述的方法,其特征在于,在所述第一AP接收至少一个所述第二AP基于所述第一信息发送的第二信息之后,所述方法还包括:
    所述第一AP根据所述第二信息,向至少一个所述第二AP发送第四信息,以使得至少一个所述第二AP向所述STA发送所述第四信息,所述第四信息用于表示至少一个所述第二AP的第二扇区选择结果,所述第二扇区选择结果包括至少一个所述第二AP的所述第一扇区选择结果的全部或部分。
  6. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一接入点AP发送第一信息,包括:
    所述第一AP向至少一个所述第二AP发送所述第一信息;
    所述方法还包括:
    所述第一AP向所述STA发送第三信息,所述第三信息用于配置所述STA的波束训练时间;
    在所述第一AP接收至少一个所述第二AP基于所述第一信息发送的第二信息之后,所述方法还包括:
    所述第一AP向所述STA发送第四信息,所述第四信息用于表示至少一个所述第二 AP的第二扇区选择结果,所述第二扇区选择结果包括至少一个所述第二AP的所述第一扇区选择结果的全部或部分。
  7. 根据权利要求4至6中任一项所述的方法,其特征在于,所述第三信息包括下列信息中的至少一个:
    所述第二AP进行发起方发送扇区扫描的时间;
    所述STA进行应答方发送扇区扫描的时间;
    所述STA接收所述第四信息的时间。
  8. 一种波束训练的方法,其特征在于,包括:
    第二接入点AP接收第一AP发送的第一信息,所述第一信息用于配置多个AP的波束训练时间,所述波束训练时间用于所述多个AP和所述多个AP覆盖范围内的多个站点STA进行波束训练,所述多个AP包括所述第一AP和所述第二AP;
    所述第二AP根据所述第一信息,向所述第一AP发送第二信息,所述第二信息用于反馈第一扇区选择结果,所述第一扇区选择结果为在所述波束训练时间内进行波束训练得到的。
  9. 根据权利要求8所述的方法,其特征在于,所述第一信息包括下列信息中的至少一个:
    所述第二AP进行发起方发送扇区扫描的时间;
    所述第二AP轮询所述STA的时间;
    所述第二AP发送所述第二信息的时间。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第二信息包括下列信息中的至少一个:
    所述STA的标识信息;
    所述STA进行扇区扫描对应的所述多个AP中的至少一个AP的标识信息;
    所述STA对应与所述多个AP中的至少一个AP的第一扇区选择结果。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,在所述第二AP根据所述第一信息,向所述第一AP发送第二信息之前,所述方法还包括:
    所述第二AP向所述STA发送第三信息,所述第三信息用于配置所述STA的波束训练时间。
  12. 根据权利要求11所述的方法,其特征在于,在所述第二AP根据所述第一信息,向所述第一AP发送第二信息之后,所述方法还包括:
    所述第二AP接收所述第一AP发送的第四信息,所述第四信息用于表示至少一个所述第二AP的第二扇区选择结果,所述第二扇区选择结果包括至少一个所述第二AP的所述第一扇区选择结果的全部或部分;
    所述第二AP向所述STA发送所述第四信息。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第三信息包括下列信息中的至少一个:
    所述第二AP进行发起方发送扇区扫描的时间;
    所述STA进行应答方发送扇区扫描的时间;
    所述STA接收所述第四信息的时间。
  14. 一种波束训练的装置,其特征在于,包括:
    发送单元,用于发送第一信息,所述第一信息用于配置多个AP的波束训练时间,所述多个AP的波束训练时间用于所述多个AP和所述多个AP覆盖范围内的站点STA进行波束训练,所述多个AP包括所述装置和至少一个第二AP;
    接收单元,用于接收至少一个所述第二AP基于所述第一信息发送的第二信息,所述第二信息用于反馈第一扇区选择结果,所述第一扇区选择结果为在所述波束训练时间内进行波束训练得到的。
  15. 根据权利要求14所述的装置,其特征在于,所述第一信息包括下列信息中的至少一个:
    所述第二AP进行发起方发送扇区扫描的时间;
    所述第二AP轮询所述STA的时间;
    所述第二AP发送所述第二信息的时间。
  16. 根据权利要求14或15所述的装置,其特征在于,所述第二信息包括下列信息中的至少一个:
    所述STA的标识信息;
    所述STA进行扇区扫描对应的所述多个AP中的至少一个AP的标识信息;
    所述STA对应与所述多个AP中的至少一个AP的第一扇区选择结果。
  17. 根据权利要求14至16中任一项所述的装置,其特征在于,所述发送单元具体用于:
    向至少一个所述第二AP发送所述第一信息,以使得至少一个所述第二AP向所述STA发送第三信息,所述第三信息用于配置所述STA的波束训练时间。
  18. 根据权利要求17所述的装置,其特征在于,所述发送单元还用于:
    根据所述第二信息,向至少一个所述第二AP发送第四信息,以使得至少一个所述第二AP向所述STA发送所述第四信息,所述第四信息用于表示至少一个所述第二AP的第二扇区选择结果,所述第二扇区选择结果包括至少一个所述第二AP的所述第一扇区选择结果的全部或部分。
  19. 根据权利要求14至18中任一项所述的装置,其特征在于,所述发送单元具体用于:
    向所述STA发送所述第一信息;
    向所述STA发送第三信息,所述第三信息用于配置所述STA的波束训练时间;
    向所述STA发送第四信息,所述第四信息用于表示至少一个所述第二AP的第二扇区选择结果,所述第二扇区选择结果包括至少一个所述第二AP的所述第一扇区选择结果的全部或部分。
  20. 根据权利要求17至19中任一项所述的装置,其特征在于,所述第三信息包括下列信息中的至少一个:
    所述第二AP进行发起方发送扇区扫描的时间;
    所述STA进行应答方发送扇区扫描的时间;
    所述STA接收所述第四信息的时间。
  21. 一种波束训练的装置,其特征在于,包括:
    接收单元,用于接收第一AP发送的第一信息,所述第一信息用于配置多个AP的波束训练时间,所述波束训练时间用于所述多个AP和所述多个AP覆盖范围内的多个站点STA进行波束训练,所述多个AP包括所述第一AP和所述装置;
    发送单元,用于根据所述第一信息,向所述第一AP发送第二信息,所述第二信息用于反馈第一扇区选择结果,所述第一扇区选择结果为在所述波束训练时间内进行波束训练得到的。
  22. 根据权利要求21所述的装置,其特征在于,所述第一信息包括下列信息中的至少一个:
    所述装置进行发起方发送扇区扫描的时间;
    所述装置轮询所述STA的时间;
    所述装置发送所述第二信息的时间。
  23. 根据权利要求21或22所述的装置,其特征在于,所述第二信息包括下列信息中的至少一个:
    所述STA的标识信息;
    所述STA进行扇区扫描对应的所述多个AP中的至少一个AP的标识信息;
    所述STA对应与所述多个AP中的至少一个AP的第一扇区选择结果。
  24. 根据权利要求21至23中任一项所述的装置,其特征在于,所述发送单元还用于:
    向所述STA发送第三信息,所述第三信息用于配置所述STA的波束训练时间。
  25. 根据权利要求24所述的装置,其特征在于,所述接收单元还用于:
    接收所述第一AP发送的第四信息,所述第四信息用于表示至少一个所述装置的第二扇区选择结果,所述第二扇区选择结果包括至少一个所述装置的所述第一扇区选择结果的全部或部分;
    所述发送单元还用于:
    向所述STA发送所述第四信息。
  26. 根据权利要求24或25所述的装置,其特征在于,所述第三信息包括下列信息中的至少一个:
    所述装置进行发起方发送扇区扫描的时间;
    所述STA进行应答方发送扇区扫描的时间;
    所述STA接收所述第四信息的时间。
  27. 一种装置,其特征在于,包括:处理器、存储器以及存储在存储器上并可在处理器上运行的指令,当所述指令被运行时,使得所述装置执行权利要求1至13中任一项所述的方法。
  28. 一种通信系统,其特征在于,包括:权利要求14至20中任一项所述的装置以及权利要求21至26中任一项所述的装置。
  29. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行权利要求1至13中任一项所述的方法。
  30. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行权利要求1至13中任一项所述的方法。
PCT/CN2019/103971 2018-09-14 2019-09-02 波束训练的方法和装置 WO2020052458A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19859018.4A EP3852281A4 (en) 2018-09-14 2019-09-02 METHOD AND DEVICE FOR RADIATION TRAINING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811076943.7 2018-09-14
CN201811076943.7A CN110912592B (zh) 2018-09-14 2018-09-14 波束训练的方法和装置

Publications (1)

Publication Number Publication Date
WO2020052458A1 true WO2020052458A1 (zh) 2020-03-19

Family

ID=69777383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103971 WO2020052458A1 (zh) 2018-09-14 2019-09-02 波束训练的方法和装置

Country Status (3)

Country Link
EP (1) EP3852281A4 (zh)
CN (1) CN110912592B (zh)
WO (1) WO2020052458A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11533092B2 (en) 2017-06-16 2022-12-20 Panasonic Intellectual Property Corporation Of America Wireless communication apparatus and wireless communication method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113453268B (zh) * 2020-03-26 2023-06-02 华为技术有限公司 空间复用的方法、装置、计算机可读存储介质和芯片
WO2021196053A1 (zh) * 2020-03-31 2021-10-07 华为技术有限公司 波束确定方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160174206A1 (en) * 2013-07-11 2016-06-16 Interdigital Patent Holdings, Inc. Method and apparatus for supporting sectorization coordination
CN106685504A (zh) * 2015-11-09 2017-05-17 华为技术有限公司 设备间协作方法、波束训练方法及装置
CN108023618A (zh) * 2016-11-01 2018-05-11 华为技术有限公司 基于mimo天线的波束训练方法及装置
CN108023627A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 波束赋形训练方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016524377A (ja) * 2013-05-03 2016-08-12 インターデイジタル パテント ホールディングス インコーポレイテッド WiFiセクタ化MAC強化のための方法
US10103796B2 (en) * 2013-12-27 2018-10-16 Intel IP Corporation Apparatus, system and method of selectively responding to wireless transmissions
JP6628652B2 (ja) * 2016-03-16 2020-01-15 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 仮想基地局装置及び通信方法
MY193402A (en) * 2016-07-21 2022-10-11 Interdigital Patent Holdings Inc Multiple input multiple output (mimo) setup in millimeter wave (mmw) wlan systems
WO2018147904A1 (en) * 2017-02-13 2018-08-16 Intel IP Corporation Enhanced group identification for downlink multi-user multiple input and multiple output
CN110636631B (zh) * 2018-06-25 2023-08-22 华为技术有限公司 传输调度的方法、相关装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160174206A1 (en) * 2013-07-11 2016-06-16 Interdigital Patent Holdings, Inc. Method and apparatus for supporting sectorization coordination
CN106685504A (zh) * 2015-11-09 2017-05-17 华为技术有限公司 设备间协作方法、波束训练方法及装置
CN108023618A (zh) * 2016-11-01 2018-05-11 华为技术有限公司 基于mimo天线的波束训练方法及装置
CN108023627A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 波束赋形训练方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MOHAMED, E.M. ET AL.: "2015 IEEE 26th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)", WIFI ASSISTED MULTI-WIGIG AP COORDINATION FOR FUTURE MULTI-GBPS WLANS, 30 August 2015 (2015-08-30), pages 1980 - 1983, XP032822288 *
See also references of EP3852281A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11533092B2 (en) 2017-06-16 2022-12-20 Panasonic Intellectual Property Corporation Of America Wireless communication apparatus and wireless communication method

Also Published As

Publication number Publication date
CN110912592B (zh) 2023-02-03
EP3852281A1 (en) 2021-07-21
CN110912592A (zh) 2020-03-24
EP3852281A4 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
KR102165810B1 (ko) 무선랜에서 간섭 정렬을 이용하는 통신 방법
US11588536B2 (en) Systems and methods for beamforming training in wireless local area networks
EP3241283B1 (en) Fast association in millimeter wave wireless local area network systems
US11088743B2 (en) Beamforming training method and apparatus
WO2021190329A1 (zh) 空间复用的方法、装置、计算机可读存储介质和芯片
US20230337283A1 (en) Wireless communication terminal and wireless communication method for multiuser edca operation
JP7418716B2 (ja) 周波数領域においてtxopを共有する単一bss内の局の協調
US20140029593A1 (en) Method and System for Optimal Beamforming in Wireless Networks
WO2020052458A1 (zh) 波束训练的方法和装置
CN112243592A (zh) 通过较低频带信令调度和触发毫米波发现协助
CN114760641A (zh) 传输工作信道指示的方法和系统
KR20220158029A (ko) 주파수 도메인에서 공유 txop를 갖는 obss 내의 코디네이션된 스테이션들
CN113037400A (zh) 信道探测方法及装置
US20210204145A1 (en) Beam training method and apparatus
WO2015081718A1 (zh) 无线网络的通信处理方法及装置
US20220248427A1 (en) Communication method and apparatus
WO2018082493A1 (zh) 无线局域网中的调度方法、接入点和站点
US20220302963A1 (en) Sharing Transmission Opportunity with Beamforming
CN108260180B (zh) 传输方法、站点和接入点
WO2022170784A1 (zh) 一种通信方法及装置
KR20230014753A (ko) 시간 도메인에 걸쳐 dl과 ul 사이의 공유 txop로 코디네이션된 wifi 스테이션들
WO2020248867A1 (zh) 波束训练的方法和装置
TWI832377B (zh) 通信方法及相關裝置
WO2023179368A1 (zh) 感知方法及装置
WO2024067517A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019859018

Country of ref document: EP

Effective date: 20210414