WO2020048417A1 - 扇区扫描方法及相关装置 - Google Patents

扇区扫描方法及相关装置 Download PDF

Info

Publication number
WO2020048417A1
WO2020048417A1 PCT/CN2019/103978 CN2019103978W WO2020048417A1 WO 2020048417 A1 WO2020048417 A1 WO 2020048417A1 CN 2019103978 W CN2019103978 W CN 2019103978W WO 2020048417 A1 WO2020048417 A1 WO 2020048417A1
Authority
WO
WIPO (PCT)
Prior art keywords
initiator
responder
sector scanning
sector
indication information
Prior art date
Application number
PCT/CN2019/103978
Other languages
English (en)
French (fr)
Inventor
黄国刚
韩霄
李云波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020048417A1 publication Critical patent/WO2020048417A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0491Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more sectors, i.e. sector diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming

Definitions

  • the present application relates to communication technologies, and in particular, to a sector scanning method and related devices in a wireless communication system.
  • Wireless local area networks typically work in unlicensed spectrum, including low-frequency channels and high-frequency channels.
  • the wireless signal transmitted on the low-frequency channel has relatively slow attenuation and good penetration, but the spectrum resources of the low-frequency channel are limited, so the transmission rate is limited.
  • the wireless signal transmitted on the high-frequency channel decays relatively quickly and has a poor penetration effect, but the high-frequency channel is rich in spectrum resources, and the transmission rate is high in the short range.
  • initiators and responders with multiple transmit and receive sectors can use BeamForming (BF) training, also known as sector scanning, to align the transmit and receive sectors of the initiator and responder. Aligning the sending and receiving sectors to send and receive data can effectively increase the gain of the sending and receiving antennas to overcome signal attenuation and increase the transmission distance on the high-frequency channel.
  • BF BeamForming
  • the initiator and responder may continue to blindly switch sectors for sector scanning, which makes it time-consuming for the initiator and responder to perform sector scanning on the high-frequency channel. Longer, resulting in lower sector scanning efficiency.
  • the present application provides a sector scanning method and related devices to improve sector scanning efficiency on a high-frequency channel.
  • an embodiment of the present application provides a sector scanning method, including:
  • the initiator sends the first frame including the sector scanning parameters of the initiator to the responder on the first channel, and also receives the second frame including the sector scanning parameters of the responder on the first channel. ;
  • the initiator performs sector scanning on the second channel according to the sector scanning parameters of the responder; the frequency of the second channel is higher than the frequency of the first channel.
  • an embodiment of the present application may further provide a sector scanning method, including:
  • the responder receives the first frame from the initiator including the sector scanning parameters of the initiator on the first channel, and sends a second frame including the sector scanning parameters of the responder to the initiator on the first channel. frame;
  • the responder performs sector scanning on the second channel according to the sector scanning parameters of the initiator; the frequency of the second channel is higher than the frequency of the first channel.
  • This method can reduce the overhead of signaling interaction on the high-frequency channel, and can also enable the initiator and responder to perform sector scanning on the high-frequency channel according to the sector scanning parameters of the peer end, so that the initiator and responder can perform
  • the accurate sector scanning on the frequency channel avoids the blind switching of sectors, thereby effectively reducing the time consuming for sector training on the high frequency channel and improving the efficiency of high frequency sector training.
  • the devices at the sending and receiving ends can use the respective optimal transmitting sectors and optimal receiving sectors to communicate with the peer device on the high-frequency channel, that is, The directional transmission and reception of the equipment at both ends of the transceiver are realized, and the information transmission distance on the high-frequency channel is increased.
  • the sector scanning parameters of the initiator include at least one of the following information:
  • the start time of the sector scan by the initiator the number of sectors of the initiator, the number of antennas of the initiator, indication information of the antenna mutuality of the initiator, and the indication of the antenna mode heterogeneity of the initiator Information, the length of the training frame for sector scanning by the initiator, and the training mode indication information of the initiator;
  • the number of sectors of the initiator is the number of sectors used by the initiator for sector scanning
  • the number of antennas of the initiator is the number of antennas used by the initiator for sector scanning
  • the indication information of the antenna mutuality of the initiator is used to indicate whether the optimal transmitting antenna of the initiator is the optimal receiving antenna of the initiator;
  • the indication information of the antenna pattern mutuality of the initiator is used to indicate whether the antenna weight corresponding to the transmitting antenna mode of the initiator is the antenna weight corresponding to the receiving antenna mode of the initiator;
  • the training mode indication information of the initiator is used to indicate whether the training mode of the initiator is a training mode directed at one end or a training mode directed at both ends.
  • the sector scanning parameters of the initiator include the starting time of the sector scanning by the initiator and the length of the training frame of the sector scanning by the initiator.
  • the initiator and the responder can make the initiator and the responder based on the starting time and the
  • the length of the training frame realizes synchronous sector switching, which enables the initiator and responder to use the same frequency or tempo for sector switching, achieves accurate sector switching between the initiator and responder, and reduces fanning on high-frequency channels.
  • the time consuming of zone scanning improves the efficiency of sector scanning.
  • the sector scanning parameters of the initiator further include:
  • Indication information of the sector scanning mode of the initiator wherein, the indication information of the sector scanning mode of the initiator is used to indicate the number of times the responder sends in each sector and the number of sector scans by the initiator Corresponding relationship.
  • the sector scanning parameters of the initiator further include at least one of the following information:
  • Frame type of the first frame indication information of whether the initiator requests scanning of the transmitting sector, indication information of whether the initiator requests scanning of the receiving sector, indication information of the feedback type, whether the first frame carries the information of the receiving end Instruction information of the training sequence and length instruction information of the training sequence;
  • the feedback type indication information is used to indicate whether the transmission method of the feedback information between the initiator and the responder uses the tunnel transparent transmission mechanism OCT.
  • a sector scanning parameter of the responder includes at least one of the following information:
  • the start time of sector scanning by the responder the number of sectors of the responder, the number of antennas of the responder, the indication information of antenna reciprocity of the responder, and the indication of reciprocity of antenna pattern of the responding node Information, the length of the training frame for sector scanning by the responder, and the training mode indication information of the responder;
  • the number of sectors of the responder is the number of sectors used by the responder for sector scanning
  • the number of antennas of the responder is the number of antennas used by the responder for sector scanning
  • the indication information of the antenna mutuality of the responder is used to indicate whether the optimal transmitting antenna of the responder is the optimal receiving antenna of the responder;
  • the indication information of the antenna pattern mutuality of the responder is used to indicate whether the antenna weight corresponding to the transmitting antenna mode of the responder is the antenna weight corresponding to the receiving antenna mode of the responder;
  • the training mode indication information of the responder is used to indicate whether the training mode of the responder is a training mode oriented at one end or a training mode oriented at both ends.
  • the sector scanning parameters of the responder when the training mode indication information of the responder is used to indicate that the training mode of the responder is a training mode with both ends oriented, the sector scanning parameters of the responder further include:
  • Indication information of the sector scanning mode of the responder wherein, the indication information of the sector scanning mode of the responder is used to indicate the number of sending times of the initiator in each sector and the number of sector scanning times of the responder Corresponding relationship.
  • the sector scanning parameters of the responder further include at least one of the following information:
  • Frame type of the second frame indication information of whether the responder requests a transmission sector scan, indication information of whether the responder requests a reception sector scan, indication information of a feedback type, whether the second frame carries a Instruction information of the training sequence and length instruction information of the training sequence;
  • the feedback type indication information is used to indicate whether the transmission method of the feedback information between the initiator and the responder uses the tunnel transparent transmission mechanism OCT.
  • an embodiment of the present application may further provide a sector scanning method, including:
  • the network device sends a beacon frame including the sector scanning parameters of the network device to the user equipment on the first channel, and performs sector scanning on the second channel according to the sector scanning parameters of the network device, the second channel Is higher than the frequency of the first channel.
  • an embodiment of the present application may further provide a sector scanning method, including:
  • the user equipment receives a beacon frame from a network device including a sector scanning parameter of the network device on a first channel; and performs sector scanning on a second channel according to the sector scanning parameter of the network device, the second channel
  • the frequency of the channel is higher than the frequency of the first channel.
  • the sector scanning method can reduce the overhead of signaling interaction on a high-frequency channel, and enables the user equipment to know the sector scanning parameters of the network equipment in advance, so that the network equipment and the user equipment can use the sector scanning parameters of the network equipment to Sector scanning on the high-frequency channel enables accurate sector scanning of network equipment and user equipment on the high-frequency channel, avoiding blind switching of sectors, thereby effectively reducing the time required for sector training on the high-frequency channel. To improve the efficiency of high-frequency sector training.
  • the sector scanning parameters of the network device include at least one of the following information:
  • Start time of sector scanning by the network device the number of sectors of the network device, the number of antennas of the network device, indication information of antenna diversity of the network device, indication of antenna mode diversity of the network device Information, the length of the training frame for sector scanning performed by the network device, and training mode indication information of the network device;
  • the number of sectors of the network device is the number of sectors used by the network device for sector scanning
  • the number of antennas of the network device is the number of antennas used by the network device for sector scanning
  • the indication information of the antenna diversity of the network device is used to indicate whether the optimal transmitting antenna of the network device is the optimal receiving antenna of the network device;
  • the indication information of antenna network mutuality of the network device is used to indicate whether the antenna weight corresponding to the transmitting antenna mode of the network device is the antenna weight corresponding to the receiving antenna mode of the network device;
  • the training mode indication information of the network device is used to indicate whether the training mode of the network device is a training mode directed at one end or a training mode directed at both ends.
  • the sector scanning parameters of the network device include the starting time of the sector scanning of the network device and the length of the training frame of the sector scanning of the network device, so that the network device and the user equipment can make the network device and the user equipment based on the starting time and the
  • the length of the training frame realizes synchronous sector switching, enabling network equipment and user equipment to use the same frequency or beat for sector switching, enabling accurate sector switching of network equipment and user equipment, and reducing fanning on high-frequency channels.
  • the time consuming of zone scanning improves the efficiency of sector scanning.
  • the sector scanning parameters of the network device further include:
  • Indication information of the sector scanning mode of the network device and indication information of the number of repetitions
  • Instruction information of the sector scanning mode of the network device which is used to indicate a correspondence between the number of times the user equipment sends in each sector and the number of sector scanning performed by the network device;
  • the indication information of the number of repetitions is used to indicate the number of times that the user equipment sends in each sector, or the number of times that the network device performs sector scanning.
  • the sector scanning parameters of the network device further include at least one of the following information:
  • Indication information of feedback type indication information of whether the beacon frame carries a training sequence at the receiving end, and length indication information of the training sequence
  • the feedback type indication information is used to indicate whether the transmission method of the feedback information between the network device and the user equipment uses a tunnel transparent transmission mechanism OCT.
  • an embodiment of the present application may further provide a sector scanning apparatus on an initiator or a network device side.
  • the device may be an initiator device or a chip in the initiator device.
  • the initiator can be a network device or a user device.
  • the device may be a network device, or a chip in the network device.
  • the apparatus can implement any function related to the initiator in any implementation manner in the first aspect, or any function related to a network device in any implementation manner in the third aspect.
  • This function can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the initiator device when the apparatus is an initiator device or a network device, the initiator device may include a processor and a transceiver, and the processor may also be called a controller may be configured to support the initiator device or The network device performs the corresponding function in the above method.
  • the transceiver includes a low-frequency transceiver and a high-frequency transceiver. The low-frequency transceiver is used to support communication between the initiator device and the responder device on a low-frequency channel to send the information involved in the above method to the responder device on the low-frequency channel.
  • a high-frequency transceiver is used to support sector scanning of the initiator and the responder on a high-frequency channel; or, it is used to support sector scanning of a network device and a user equipment on a high-frequency channel.
  • the initiator device may further include a memory, which is used for coupling with the processor, and stores the program instructions and data necessary for the initiator device or the network device.
  • the apparatus includes: a processor, a memory, a transceiver, and an antenna.
  • the processor is also called a controller, which is mainly used to control the entire device and execute computer program instructions to support the device to perform the actions described in any one of the first or third method embodiments described above.
  • the memory is mainly used to store and save necessary program instructions and data of the initiator device or the network device.
  • the transceiver is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to transmit and receive radio frequency signals in the form of electromagnetic waves.
  • the apparatus when the apparatus is a chip in an initiator device or a network device, the chip includes: a processing module and a transceiver module, and the processing module may be, for example, a processor and a controller, such as Can be used to generate various types of messages and signaling, and after the various types of messages are encapsulated in accordance with the protocol, encoding, modulation, amplification, and other processing are performed, the processor can also be used to demodulate, decode, and decapsulate to obtain signaling and Message; the transceiver module may be, for example, an input / output interface, a pin, or a circuit on the chip.
  • the processing module may be, for example, a processor and a controller, such as Can be used to generate various types of messages and signaling, and after the various types of messages are encapsulated in accordance with the protocol, encoding, modulation, amplification, and other processing are performed, the processor can also be used to demodulate, decode, and decapsulate to obtain signal
  • the processing module can execute computer execution instructions stored in the storage unit to support the initiator device or the network device to perform the corresponding functions in the foregoing method.
  • the storage unit may be a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit located outside the chip in the initiator device or a network device, such as a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), and so on.
  • the processor mentioned above may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more An integrated circuit for controlling program execution of the sector scanning method of the first aspect or the third aspect described above.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • an embodiment of the present application provides a sector scanning apparatus applied to a responder or a user equipment side.
  • the apparatus may be a responder device, or may be a chip in the responder device.
  • the device may be a user equipment or a chip in the user equipment.
  • the apparatus has any function for realizing the responder involved in any one of the implementation methods of the second aspect, or any function of user equipment involved in any of the implementation methods of the fourth aspect.
  • This function can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the apparatus may be a responder device or a user device, and the responder device or the user device may include a processor and a transceiver.
  • the processor is also called a controller, and may be configured to support The responder device or user device performs the corresponding function in the above method.
  • the transceiver includes a low-frequency transceiver and a high-frequency transceiver. The low-frequency transceiver is used to support communication between the responder device and the initiator device to receive the information or instructions involved in the above method transmitted by the initiator device on the low-frequency channel, and send the above method to the initiator on the low-frequency channel.
  • a high-frequency transceiver is used to support sector scanning of the initiator and the responder on a high-frequency channel; or, it is used to support sector scanning of a network device and a user equipment on a high-frequency channel.
  • the responder device may further include a memory, which is used for coupling with the processor, and stores the program instructions and data necessary for the responder device or the user device.
  • the apparatus includes: a processor, a memory, a transceiver, and an antenna.
  • the processor is mainly used to control the entire device and execute computer program instructions to support the device to perform the actions described in any one of the second or fourth method embodiments described above.
  • the memory is mainly used to store and save the necessary program instructions and data of the responder device or the user device.
  • the transceiver is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to transmit and receive radio frequency signals in the form of electromagnetic waves.
  • the device may be a chip in a responder device or a user device, and the chip includes a processing module and a transceiver module.
  • the processing module may be, for example, a processor and a controller, for example, It can be used to generate all kinds of messages and signaling, and encode, modulate, and amplify the various messages after being encapsulated according to the protocol.
  • the processor can also be used to demodulate, decode, and decapsulate to obtain signaling and messages
  • the transceiver module may be, for example, an input / output interface, a pin, or a circuit on the chip.
  • the processing module can execute computer execution instructions stored in the storage unit to support a responder device or a user device to perform a corresponding function in the foregoing method.
  • the storage unit may be a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the responder device or user equipment, Such as ROM or other types of static storage devices that can store static information and instructions, RAM, etc.
  • the processor mentioned above may be a CPU, a microprocessor, an ASIC, or an integrated circuit for executing one or more programs for controlling the sector scanning method of the second aspect or the fourth aspect. .
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores instructions, and the instructions may be executed by one or more processors on a processing circuit.
  • the computer When running on a computer, the computer is caused to execute the sector scanning method in any possible implementation manner of any one of the first aspect, the second aspect, the third aspect, or the fourth aspect described above.
  • an embodiment of the present application provides a computer program product containing instructions, which when run on a computer, causes the computer to execute any one of the first aspect, the second aspect, the third aspect, or the fourth aspect
  • the sector scanning method in any possible implementation.
  • the present application provides a chip system including a processor, configured to support an initiator device to implement the foregoing first aspect, or to support a responder device to implement the functions related to the foregoing second aspect, or to support
  • the network device performs the functions related to the third aspect, or supports the user equipment to perform the functions related to the fourth aspect, such as generating or processing data and / or information related to the foregoing aspects.
  • the chip system further includes a memory, and the memory is configured to store program instructions and data necessary for the data sending device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a chip, including a processor, configured to call and run instructions stored in the memory from a memory, so that a device installed with the chip executes the methods in the foregoing aspects.
  • an embodiment of the present application provides another chip, including: an input interface, an output interface, a processor, and a memory.
  • the input interface, the output interface, the processor, and the memory are connected through an internal connection path.
  • the processor is configured to execute code in the memory, and when the code is executed, the processor is configured to execute the methods in the foregoing aspects.
  • an embodiment of the present application provides a network system including: an initiator device and a responder device; the initiator device and the responder device are connected, and the initiator device is any one of the initiator devices described above, and executes the foregoing
  • each second terminal device of the responder device is any one of the responder devices described above, and executes the fan executed by the responder according to any one of the second aspects.
  • Zone scanning method In the sector scanning method performed by the initiator according to the first aspect, each second terminal device of the responder device is any one of the responder devices described above, and executes the fan executed by the responder according to any one of the second aspects.
  • an embodiment of the present application may further provide a network system, including: a network device and a user device; the network device and the user device are connected, and the network device is any one of the network devices described above, and performs the functions described in the third aspect above.
  • the sector scanning method performed by the network device described above, the user equipment is any one of the network devices described above, and the sector scanning method performed by the user equipment according to any of the fourth aspect is performed.
  • the sector scanning method and related device can send the first frame including the sector scanning parameters of the initiator on the first channel through the responder on the first channel, and receive the responder on the first channel.
  • the second frame including the sector scanning parameters of the responder returned on the above may enable the initiator to perform sector scanning parameters on the second channel according to the sector scanning parameters of the responding party, so that the responding party may The sector scanning parameter of the initiator performs sector scanning on the second channel.
  • the initiator and the responder exchange their respective sector scanning parameters on the low-frequency channel in advance, which reduces the overhead of signaling interaction on the high-frequency channel, and enables the initiator and the responder to know the sector in advance Scanning parameters and accurate sector scanning on high-frequency channels, avoiding blind switching of sectors, thereby effectively reducing the time consuming of sector scanning on high-frequency channels and improving the efficiency of sector scanning.
  • FIG. 1 is a schematic diagram of an application scenario of a WLAN provided by embodiments of the present application.
  • FIG. 2 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a user equipment according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a scenario in which information is transmitted between devices by using OCT according to an embodiment of the present application
  • FIG. 5 is a flowchart of a sector scanning method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a frame structure of a request frame for beamforming training according to an embodiment of the present application
  • FIG. 7 is a schematic structural diagram of a directional beamforming training control element in a request frame for beamforming training according to an embodiment of the present application
  • FIG. 8 is a schematic diagram of a frame structure of a response frame for beamforming training according to an embodiment of the present application.
  • FIG. 9 is a first signaling flowchart for performing sector scanning on sites 1 and 2 in a sector scanning method according to an embodiment of the present application.
  • FIG. 10 is a second signaling flowchart of site scanning performed by a site 1 and a site 2 in a sector scanning method according to an embodiment of the present application;
  • FIG. 11 is a third signaling flowchart of site scanning performed by site 1 and site 2 in a sector scanning method according to an embodiment of the present application;
  • FIG. 12 is a flowchart of another sector scanning method according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of preset sub-elements of a multi-bandwidth element in a beacon frame according to an embodiment of the present application
  • FIG. 14 is a first signaling flowchart of sector scanning performed by an AP and a station in a sector scanning method according to an embodiment of the present application;
  • 15 is a second signaling flowchart of sector scanning performed by an AP and a station in a sector scanning method according to an embodiment of the present application;
  • 16 is a signaling flowchart of sector scanning performed by an AP and a station in another sector scanning method according to an embodiment of the present application;
  • FIG. 17 is a first schematic structural diagram of a sector scanning device according to an embodiment of the present application.
  • FIG. 18 is a first structural diagram of a possible product form of a sector scanning device according to an embodiment of the present application.
  • FIG. 19 is a second schematic structural diagram of a sector scanning device according to an embodiment of the present application.
  • FIG. 20 is a second structural diagram of a possible product form of the sector scanning device according to the embodiment of the present application.
  • Embodiments of the present application provide a sector scanning method, initiator and responder equipment, network equipment, and user equipment.
  • the network equipment is a wireless communication device with a wireless transceiver function, which may include, but is not limited to, an evolved Node B.
  • eNode B evolved Node B, eNB
  • radio network controller RNC
  • node B Node B, NB
  • base station controller BSC
  • base transceiver station BTS
  • Home base station e.g., home NodeB, or home NodeB, HNB
  • baseband unit BBU
  • AP access point
  • WIFI wireless fidelity
  • a wireless relay node, a wireless backhaul node, a transmission point (TP), or a transmission and reception point (TRP), etc. may also be a base station that supports the 5G protocol.
  • User equipment is a kind of communication device with wireless transceiver function.
  • User equipment can also be called a station, which can be a wireless sensor, a wireless communication terminal, or a mobile terminal, such as a mobile phone that supports WIFI communication functions (or a "cellular" phone) And computers with wireless communication capabilities.
  • a station can be a wireless sensor, a wireless communication terminal, or a mobile terminal, such as a mobile phone that supports WIFI communication functions (or a "cellular" phone) And computers with wireless communication capabilities.
  • it can be a portable, compact, handheld, computer built-in, wearable, or vehicle-mounted wireless communication device that supports WiFi communication functions, and they exchange communication data such as voice and data with the wireless access network.
  • FIG. 1 is a schematic diagram of a WLAN application scenario provided by an embodiment of the present application.
  • the WLAN includes one or more basic service sets.
  • a basic service set may include a network device and at least one user equipment.
  • the signal transmission distances of different frequency channels are different, so the coverage ranges of network devices are different.
  • the coverage range of the high-frequency channel with BF training is larger than the coverage range of the high-frequency channel without BF training, and the coverage range of the low-frequency channel may be greater than that of the high-frequency channel with BF training.
  • the equipment for example, network equipment and user equipment
  • the equipment may be a device with a dual-mode communication function, that is, a low-frequency (LF) channel communication mode, and a high-frequency (high frequency, HF) channel communication mode equipment.
  • FIG. 2 is a schematic structural diagram of a network device according to an embodiment of the present application. As shown in FIG. 2, the network device includes a controller, an HF module, and an LF module.
  • the HF module can be used to generate and send high-frequency signals
  • the LF module can be used to generate and send low-frequency signals.
  • the controller can store common information of the HF module and the LF module.
  • the HF module may include: an HF Media Access Control (MAC) layer module and an HF physical (PHY) layer module; the LF module may include: an LF MAC layer module and an LF PHY layer module.
  • the controller can control and coordinate the HF module and the LF module.
  • the HF module and the LF module may be located in the same chip in the network equipment, or may be located in separate chips.
  • FIG. 3 is a schematic structural diagram of a user equipment according to an embodiment of the present application.
  • the user equipment includes a controller, an HF module, and an LF module.
  • the HF module can be used to generate and send high-frequency signals, and the LF module can be used to generate and send low-frequency signals.
  • the controller can store common information of the HF module and the LF module.
  • HF module may include: HF MAC layer module and HF PHY layer module;
  • LF module may include: LF MAC layer module and LF PHY layer module.
  • the controller can control and coordinate the HF module and the LF module.
  • the HF module and the LF module may be located in the same chip in the user equipment, or may be located in separate chips, respectively.
  • both parties of the communication can be dual-mode devices. If the devices on both sides of the communication support the On-Channel Tunneling (OCT) mechanism, the devices on both sides of the communication can use OCT technology.
  • OCT On-Channel Tunneling
  • the information on the high frequency channel is transmitted on the low frequency channel.
  • FIG. 4 is a schematic diagram of a scenario in which information is transmitted between devices using OCT according to an embodiment of the present application. As shown in FIG. 4, the device 1 may use OCT to transmit the transmission information of the high-frequency channel to the management entity of the LF MAC layer module of the device 1, which is also called a low-frequency Media Access Control Management Entity (MLME). ).
  • MLME Media Access Control Management Entity
  • the LF PHY layer module of the device 1 After the MAC layer processing is performed by the management entity of the LF MAC layer module of the device 1, the LF PHY layer module of the device 1 performs the physical layer processing to be encapsulated into a low frequency transmission frame, and is grouped by the low frequency transmitter of the device 1 Mode to the low-frequency receiver of device 2. After the low-frequency receiver of the device 2 receives the low-frequency transmission frame, it is processed by the LF PHY layer module of the device 2 and the LF MAC layer module of the device 2 in order, and the obtained information is transmitted to the management of the HF MAC layer module of the device 2.
  • the entity also known as high-frequency MLME, realizes the transmission of high-frequency information.
  • both communication parties may also be referred to as an initiator and a responder. That is, the initiator can be a user device or a network device, and the responder can also be a user device or a network device.
  • the initiator and the responder exchange their respective sector scanning parameters on the low-frequency channel in advance, which reduces the overhead of signaling interaction on the high-frequency channel, and enables the initiator and the responder to know the counterparty's sector in advance.
  • Scanning parameters can enable sector scanning on the high-frequency channel according to the sector scanning parameters of the opposite end, that is, the initiator can perform sector scanning on the high-frequency channel according to the sector scanning parameters of the responder, and the responding party can perform
  • the sector scanning parameter of the initiator performs sector scanning on the high-frequency channel to achieve accurate sector scanning of the initiator and responder on the high-frequency channel, and avoids blind switching of sectors, thereby effectively reducing high-frequency It takes time to perform sector training on the channel and improves the efficiency of high-frequency sector training.
  • FIG. 5 is a flowchart of a sector scanning method according to an embodiment of the present application. As shown in FIG. 5, the sector scanning method may include the following:
  • the initiator sends a first frame to the responder on the first channel.
  • the first frame includes: sector scanning parameters of the initiator.
  • the sector scanning parameter of the initiator is used to enable the responder to perform sector scanning on the second channel according to the sector scanning parameter of the initiator.
  • the initiator may be a network device or a user device
  • the responder may be a network device or a user device.
  • the responder is a network device
  • the responder can be a network device or a user device.
  • the initiator may also be called a requester or a requester, and the responder may also be called a responder.
  • Both the initiator and the responder may be dual-mode communication devices, that is, if the initiator and the responder support the communication mode of the first channel, they also support the communication mode of the second channel.
  • the first channel may be a low-frequency channel, and the low-frequency channel may be, for example, a 2.4 GHz channel or a 5.8 GHz channel. Of course, the low-frequency channel may also be other low-frequency channels. The foregoing is merely an example, and this application does not limit this.
  • the second channel may be a high-frequency channel, and the high-frequency channel may be, for example, a millimeter wave channel, such as a 60 GHz channel. Of course, the high-frequency channel may also be a channel of other frequencies. The above is merely an example, and this application does not limit this.
  • the bandwidth of the second channel may be higher than or equal to a preset channel bandwidth, and the preset channel bandwidth may be a single channel bandwidth in a high-frequency channel. For example, the bandwidth of the second channel may be a single-channel bandwidth in a high-frequency channel, or may be an integer multiple, such as 2 times a single-channel bandwidth in a high-frequency channel.
  • the first frame sent on the first channel is sent omnidirectionally. Because the low-frequency channel, that is, the attenuation of the signal transmitted on the first channel is small, the first frame including the sector scanning parameters of the initiator is transmitted on the first channel in an omnidirectional manner, which can ensure the initiator's The sector scanning parameters reach the responder accurately, which ensures that the responder can accurately scan the sector on the second channel.
  • the sector scanning parameters of the initiator included in the first frame transmitted on the low frequency channel are actually parameters for sector scanning of the high frequency channel.
  • the initiator may use the OCT technology to send the first frame including the sector scanning parameters of the initiator to the responder on the first channel.
  • the initiator may also adopt other technologies.
  • the sector scanning parameters of the initiator are sent to the responder on the first channel, as long as the responder can obtain the sector scanning parameters of the initiator.
  • the initiator can pass the sector scanning parameters of the initiator to the management entity of the initiator's LF MAC layer module, which is also called low-frequency MLME.
  • the LF PHY layer module of the initiator performs the physical layer processing to encapsulate it into a low-frequency transmission frame, that is, the first frame, and uses the low-frequency transmitter of the initiator to The packet is transmitted to the low-frequency receiver of the responder.
  • the responder receives a first frame from the initiator on the first channel, and the first frame includes: a sector scanning parameter of the initiator.
  • the responder may use the OCT technology to receive the first frame from the initiator including the sector scanning parameters of the initiator on the first channel.
  • the responder may also use other technologies to receive the sector scanning parameters of the initiator from the initiator on the first channel, as long as the responder can obtain the sector scanning parameters of the initiator.
  • the responder After the responder receives the first frame, it can be processed by the responder's LF PHY layer module and the responder's LF MAC layer module in order, and then the obtained information is transmitted to the responder's HF MAC layer module management entity. , Also known as high-frequency MLME, to obtain sector scanning parameters of the initiator.
  • the responder also sends a second frame to the initiator on the first channel, where the second frame includes: sector scanning parameters of the responder.
  • the first frame may be, for example, a management frame on the first channel
  • the second frame may be, for example, a management frame on the first channel
  • the first frame may be a request frame, such as a beamforming training request (beam forming_training_request) frame
  • the second frame may be a response frame, such as a beamforming training response (beam forming_training_response) frame.
  • the responder may adopt the OCT technology, and send the second frame including the sector scanning parameters of the responder to the initiator on the first channel.
  • the responder may also adopt other technologies.
  • the sector scanning parameters of the responder are sent to the initiator on the first channel, as long as the initiator can obtain the sector scanning parameters of the responder.
  • the responder can pass the sector scanning parameters of the responder to the management entity of the responder's LF MAC layer module, which is also called low-frequency MLME. Because the LF MAC layer module of the initiator performs MAC layer processing, the LF PHY layer module of the responder performs physical layer processing to encapsulate the low-frequency transmission frame, that is, the second frame, and uses the low-frequency transmitter of the responder to group the packets. To the low frequency receiver of the initiator.
  • the second frame sent on the first channel is sent omnidirectionally. Because the low-frequency channel, that is, the attenuation of the signal transmitted on the first channel is small, then the second frame including the sector scanning parameters of the responder is sent on the first channel in an omnidirectional manner, which can ensure the response of the responder.
  • the sector scanning parameters accurately reach the initiator, which ensures that the initiator can accurately scan the sector on the second channel.
  • the initiator receives the second frame from the responder on the first channel, and the second frame includes: a sector scanning parameter of the responder.
  • the initiator may use the OCT technology to receive, on the first channel, the second frame sent from the responder and including the sector scanning parameters of the responder.
  • the initiator may also use other technologies to receive the sector scanning parameters of the responder from the responder on the first channel, as long as the responder can obtain the sector scanning parameters of the responder.
  • the initiator After the initiator receives the second frame, it can be processed by the LF PHY layer module of the initiator and the LF MAC layer module of the responder in order, and then the obtained information is transmitted to the management entity of the HF MAC layer module of the initiator. , Also known as high-frequency MLME, to obtain the sector scanning parameters of the responding party.
  • the responder can obtain the sector scanning parameters of the initiator, and by executing the above S503 and S504, the initiator can obtain the sector scanning parameters of the responder. That is, the solution in the embodiment of the present application can enable the initiator and the responder to interact through the first frame and the second frame, so that the initiator and the responder can know the sector scanning parameters of the other party.
  • the initiator performs sector scanning on the second channel according to the sector scanning parameters of the responder, and the frequency of the second channel is higher than the frequency of the first channel.
  • the initiator obtains the sector scanning parameters of the responder based on the second frame returned by the responder, and performs sector scanning on the second channel according to the sector scanning parameters of the responder. Since the sector scanning process is also affected by its own sector scanning parameters, the initiator can also perform the sector scanning on the second channel according to the sector scanning parameters of the responder, and can also combine the initiation Sector scanning parameters.
  • the initiator can scan the receiving sector and the transmitting sector of the initiator on the second channel according to the sector scanning parameters of the responder. For example, the initiator may receive a plurality of training frames sent by the responder on the second channel according to the sector scanning parameters of the responder, to perform a receive sector scan of the initiator. By scanning the receiving sector of the initiator, the initiator can determine the optimal receiving sector of the initiator and the optimal transmitting sector of the responder.
  • each training frame may have one reflection sector, that is, the responder is on the second channel and in multiple transmission sectors.
  • each transmission sector at least one training frame is transmitted.
  • the at least one training frame sent in each transmission sector has the same transmission sector. Training frames transmitted in different transmission sectors may have different transmission sectors.
  • the initiator can switch the receiving sector according to the sector scanning parameters of the responder, use multiple receiving sectors on the second channel to receive training frames sent by the responder in sequence, and The receiving conditions of the training frames in the zone determine the optimal receiving sector of the initiator.
  • the transmitting sector corresponding to the training frame received in the optimal receiving sector of the initiator is the optimal transmitting sector of the responding party.
  • the optimal receiving sector of the initiator may be a receiving sector corresponding to the strongest received signal quality and highest signal-to-noise ratio of the training frames in the plurality of receiving sectors received by the initiator.
  • the initiator may also send one or more training frames on the second channel according to the sector scanning parameters of the responder to scan the transmitting sector of the initiator, so that the responder scans according to the sector of the initiator
  • the parameter performs scanning of the receiving sector of the responder on the second channel.
  • the training frame shown above may be a Sector Sweeping (SSW) frame.
  • SSW Sector Sweeping
  • the responder performs sector scanning on the second channel according to the sector scanning parameters of the initiator.
  • the responder obtains the sector scanning parameters of the initiator based on the first frame sent by the initiator, and performs sector scanning on the second channel according to the sector scanning parameters of the initiator. Since the sector scanning process is also affected by its own sector scanning parameters, the responder can also perform the sector scanning on the second channel according to the sector scanning parameters of the initiator, and can also combine itself with the The sector scanning parameters of this responder.
  • the responder may scan the receiving sector and the transmitting sector of the responder on the second channel according to the sector scanning parameters of the initiator. For example, the responder may send multiple training frames on the second channel according to the sector scanning parameters of the initiator to scan the transmitting sector of the responder, so that the initiator scans according to the sector of the responder. The parameter scans the receiving sector of the initiator on the second channel.
  • the responder may also receive one or more training frames sent by the initiator on the second channel according to the sector scanning parameters of the initiator to perform a reception sector scan of the responder. By scanning the receiving sector of the responder, the responder can determine the optimal receiving sector of the responder and the optimal transmitting sector of the initiator.
  • the initiator can be determined to receive the fan.
  • the optimal transmitting sector of the responder determined by the area scan is the optimal receiving sector of the responder; if the initiator determines that the initiator also supports antenna diversity and antenna mode according to the sector scanning parameters of the initiator If it is different, it can be determined that the initiator's optimal receiving sector determined by scanning the receiving sector is the optimal transmitting sector of the initiator. Therefore, the initiator may use the optimal transmission sector of the initiator to send the training frame to the responder within the time period corresponding to the optimal transmission sector of the responder on the second channel.
  • the training frame may also carry the optimal transmission sector of the responder.
  • the responder may switch the receiving sector according to the sector scanning parameters of the initiator, and sequentially receive multiple training sectors on the second channel to receive the training frame sent by the initiator. Once the training frame is received, Then, the optimal transmitting sector of the responder and the optimal receiving sector of the responder can be determined.
  • the initiator may send a plurality of training frames on the second channel, and each training frame may have a transmission sector, that is, the initiator On the second channel, at least one training frame is transmitted in each of a plurality of transmission sectors.
  • the at least one training frame sent in each transmission sector has the same transmission sector.
  • the responder may switch the receiving sector according to the sector scanning parameters of the initiator, use multiple receiving sectors on the second channel to receive training frames sent by the initiator in sequence, and The receiving conditions of the training frames in the zone determine the optimal receiving sector of the responder.
  • the transmitting sector corresponding to the training frame received in the optimal receiving sector of the responder is the optimal transmitting sector of the initiator.
  • the optimal receiving sector of the initiator may be a receiving sector corresponding to the strongest received signal quality and highest signal-to-noise ratio of the training frames in the plurality of receiving sectors received by the initiator.
  • the initiator can determine the optimal receiving sector of the initiator and the optimal transmitting sector of the responder, and by performing the above S506, the responder can determine the optimal receiving sector of the responder and the The optimal transmitting sector of the initiator.
  • the initiator can send the responder's
  • the information of the optimal transmission sector is carried in the training frame on the second channel and sent to the responder, so that the responder knows the optimal transmission sector of the responder.
  • the responder may send a feedback frame such as a sector scanning feedback (SSWFeedback, SSWFeedback) frame to the initiator on the second channel to carry the initiator
  • a feedback frame such as a sector scanning feedback (SSWFeedback, SSWFeedback) frame
  • SSWFeedback sector scanning feedback
  • the optimal transmission sector information of the initiator causes the initiator to receive the feedback frame on the second channel, so as to obtain the information of the optimal transmission sector of the initiator.
  • the initiator After the initiator receives the feedback frame, it can also send an acknowledgement (ACK) frame to the responder on the second channel to inform the responder that the initiator has received the feedback frame.
  • ACK acknowledgement
  • the responder may also use the OCT to send a feedback frame including information on the optimal transmission sector of the initiator to the initiator on the first channel,
  • the initiator is caused to receive the feedback frame on the first channel by using the OCT, so as to obtain information about the optimal transmission sector of the initiator.
  • the initiator may also use OCT to send an ACK frame to the responder on the first channel to inform the responder that the initiator has received the feedback frame.
  • the initiator can determine the optimal receiving sector of the initiator.
  • the sector scanning parameters of the initiator determine that the initiator supports antenna mutuality, and then it can be determined that the optimal receiving sector of the initiator is the optimal transmitting sector of the initiator.
  • the responder can determine the optimal receiving sector of the responder. If the responder determines that the responder supports antenna mutuality according to the sector scanning parameters of the responder, the optimal of the responder can be determined The receiving sector is the optimal transmitting sector of the responder.
  • the initiator knows the optimal transmitting sector and the optimal receiving sector of the initiator, it can use the optimal transmitting sector of the initiator to send information to the responder on the high-frequency channel and adopt the information on the high-frequency channel.
  • the initiator's optimal receiving sector receives the information sent by the responder. If the responder knows the responding party's optimal transmitting sector and optimal receiving sector, it can use the responding party's optimal transmitting sector to send information to the initiator on the high-frequency channel and use it on the high-frequency channel.
  • the optimal receiving sector of the responder receives the information sent by the responder. In this way, the devices at the sending and receiving ends can use the respective optimal transmitting sectors and optimal receiving sectors to communicate with the peer device on the high-frequency channel. The transmission distance of information on the frequency channel.
  • the sector scanning method provided in the embodiment of the present application can send the first frame including the sector scanning parameters of the initiator on the first channel through the responder on the first channel, and receive the response frame returned by the responder on the first channel.
  • the second frame including the sector scanning parameters of the responder may enable the initiator to perform sector scanning parameters on the second channel according to the sector scanning parameters of the responder, so that the responder may The sector scanning parameter performs sector scanning on the second channel.
  • the initiator and the responder exchange their respective sector scanning parameters on the low-frequency channel in advance, which reduces the overhead of signaling interaction on the high-frequency channel, and enables the initiator and the responder to know the sector in advance Scanning parameters and accurate sector scanning on high-frequency channels, avoiding blind switching of sectors, thereby effectively reducing the time consuming of sector scanning on high-frequency channels and improving the efficiency of sector scanning.
  • the sector scanning parameters of the initiator as shown above may include at least one of the following information: the starting time of the sector scanning performed by the initiator, the Number of sectors (number of sectors), number of antennas of the initiator (number of antennas), indication information of antenna reciprocity of the initiator (antenna reciprocity), antenna pattern reciprocity of the initiator (antenna pattern reciprocity ), The training frame length of the initiator for sector scanning, and the training mode indication information of the initiator.
  • the number of sectors of the initiator is the number of sectors used by the initiator for sector scanning.
  • the sector scanning parameters of the initiator include the starting time of the sector scanning by the initiator and the length of the training frame of the sector scanning by the initiator.
  • the initiator and responder can also make the initiator and responder based on the starting time and The length of the training frame realizes synchronous sector switching, which enables the initiator and responder to use the same frequency or beat to perform sector switching, realizes accurate sector switching between the initiator and responder, and reduces the frequency of high-frequency channels.
  • the time consuming of sector scanning improves the efficiency of sector scanning.
  • the number of antennas of the initiator is the number of antennas used by the initiator for sector scanning.
  • the indication information of the antenna mutuality of the initiator is used to indicate whether the optimal transmitting antenna of the initiator is the optimal receiving antenna of the initiator. For example, if the indication information of the antenna dissimilarity of the initiator is used to indicate that the optimal transmitting antenna of the initiator is the optimal receiving antenna of the initiator, the initiator supports the antenna dissimilarity. If the indication information of the antenna dissimilarity of the initiator is used to indicate that the optimal transmitting antenna of the initiator is not the optimal receiving antenna of the initiator, the initiator does not support the antenna dissimilarity.
  • the indication information of the antenna pattern mutuality of the initiator is used to indicate whether the antenna weight corresponding to the transmitting antenna mode of the initiator is the antenna weight corresponding to the receiving antenna mode of the initiator. For example, if the indication information of the antenna mode mutuality of the initiator is used to indicate that the antenna weight corresponding to the transmitting antenna mode of the initiator is the antenna weight corresponding to the receiving antenna mode of the initiator, the initiator supports the antenna mode. Mutuality. If the indication information of the antenna mode mutuality of the initiator is used to indicate that the antenna weight corresponding to the transmitting antenna mode of the initiator is not the antenna weight corresponding to the receiving antenna mode of the initiator, the initiator does not support mutual antenna opposite sex.
  • the training frame for sector scanning may be, for example, an SSW frame, and the length of the training frame for sector scanning performed by the initiator may be used to indicate the length of each SSW frame, for example.
  • the training mode indication information of the initiator is used to indicate whether the training mode of the initiator is a training mode directed at one end or a training mode directed at both ends. For example, if the indication information of the training mode of the initiator is 0, it can be determined that when the initiator performs a sector scan, one of the initiator and the responder adopts a directional transmission method, and the other end adopts an omnidirectional reception method. Or, one end uses omnidirectional transmission, and the other end uses directional reception. If the instruction information of the training mode of the initiator is 1, it can be determined that when the initiator performs a sector scan, one of the initiator and the responder uses a directional transmission method, and the other end uses a directional reception method.
  • the sector scanning parameter of the initiator can also include:
  • Indication information of the sector scanning mode of the initiator wherein, the indication information of the sector scanning mode of the initiator is used to instruct the responder to send the number of transmissions in each sector with the initiator. Correspondence between the number of sector scans.
  • the initiator's scan mode indication information is 0, which can be used to instruct the responder to send N training frames in each sector, and the initiator performs a sector scan; the initiator's scan mode The indication information is 1, which can be used to instruct the responder to initiate a training frame once in each sector, and repeat N sector scans on the initiator.
  • N is the number of sectors of the initiator.
  • the scanning mode indication information of the initiator can be used to indicate that the initiator and the responder are 5 * Scan in 4 mode or 4 * 5 mode.
  • the 5 * 4 mode can be: after the responder can send 5 SSW frames in the transmitting sector 1, the initiator performs a sector scan in the 5 receiving sectors; the responder sends in the transmitting sector 2 and sends After 5 SSW frames, the initiator performs a sector scan in 5 receiving sectors; the responder can send 5 SSW frames in transmitting sector 3, and the initiator performs a sector in 5 receiving sectors Scanning: After the responder sends 5 SSW frames in the transmitting sector 4, the initiator performs a sector scan in the 5 receiving sectors. During the entire sector scanning process, the responder sends 5 SSW frames in each transmission sector. Since the responder has 4 transmission sectors, the number of SSW frames sent by the responder is 20.
  • the 4 * 5 mode can be: the responder sends 1 SSW frame in the transmission sector 1, 1 SSW frame in the transmission sector 2, and 1 SSW frame in the transmission sector 3, and the transmission fan One SSW frame is performed in zone 4, and the initiator performs the first sector scan in five receiving sectors. Repeat until the initiator performs 5 sector scans in 5 receiving sectors. Because in each sector scanning process, the responder sends 1 SSW frame in each transmitting sector, then in 4 transmitting sectors, the response is convenient to send 4 SSW frames, then 5 sector scanning, then The number of SSW frames sent by the responder is 20.
  • the sector scanning parameters of the initiator may further include at least one of the following information:
  • the frame type of the first frame the initiator's request for a transmission sector scan (IsInitiator, Transmit Sector, Sweep, IsTXSS) indication information, the initiator's request for a receive sector scan (IsResponder, Transmit sector Sweep, IsRXSS) Indication information, indication type of Feedback type, indication whether the first frame carries a training sequence (Training–receive, TRN-R) at the receiving end, and training length (Training–length, TRN-LEN) ) Instructions.
  • IsInitiator, Transmit Sector, Sweep, IsTXSS transmission sector scan
  • IsResponder Transmit sector Sweep
  • IsRXSS Indication information
  • indication type of Feedback type indication whether the first frame carries a training sequence (Training–receive, TRN-R) at the receiving end, and training length (Training–length, TRN-LEN) Instructions.
  • the frame type of the first frame may indicate that the first frame is a request frame, for example.
  • the indication information of the IsTXSS is 1, it can be used to instruct the initiator to request a transmission sector scan. If the indication information of the IsTXSS is 0, it can be used to indicate that the initiator has not requested a scanning of the transmitting sector. If the indication information of the IsRXSS is 1, it can be used to instruct the initiator to request a reception sector scan. If the indication information of the IsRXSS is 0, it can be used to indicate that the initiator has not requested a reception sector scan.
  • the feedback type indication information may be used to indicate whether the transmission method of the feedback information between the initiator and the responder uses OCT.
  • the feedback information from the responder to the initiator can be transmitted, for example, through an SSW feedback frame.
  • the feedback type indication information can be used to indicate whether the transmission method of the SSW feedback frame uses OCT, that is, it is used to indicate that the SSW feedback frame is For transmission on two channels, OCT is still used for transmission on the first channel.
  • the feedback information from the initiator to the responder can be transmitted through an ACK frame, for example.
  • the feedback type indication information can also be used to indicate whether the transmission mode of the ACK frame uses OCT, that is, it is used to indicate that the ACK frame is on the second channel For transmission, OCT is still used for transmission on the first channel.
  • the sector scanning parameter of the initiator may be carried in a preset position in the first frame.
  • the first frame is a request frame, such as a request frame for beamforming training.
  • FIG. 6 is a schematic diagram of a frame structure of a request frame for beamforming training according to an embodiment of the present application.
  • the request frame for beamforming training may include: 1 byte Category, 1 Byte function (Action), 1 byte dialog token (Dialog token) and preset byte directional beamforming training control element (Directional control control element).
  • the preset byte may be greater than or equal to 1 byte, for example.
  • the dialogue token may be a session value corresponding to the request frame of the beamforming training, and may be used to match the request frame of the beamforming training to distinguish the request frame of the beamforming training from other request frames. To avoid confusion.
  • the scanning parameters of the initiator can be carried in the directional beamforming training control element shown in FIG. 6.
  • FIG. 7 is a schematic structural diagram of a directional beamforming training control element in a request frame for beamforming training according to an embodiment of the present application.
  • the directional beamforming training control element may include: an element ID field, a length field, a dialog token field, a frame type field, and a start Time (Starting Time) field, Number of sectors (Number of sectors), Number of antennas (Number of antennas) field, IsTXSS indication field, IsRXSS indication field, Antenna reciprocity field, Antenna pattern reciprocity (Antenna pattern Reciprocity field, Training frame length field, Feedback type field, Training mode field, TRN mode field, Beam Tracking Request field, Training sequence length (TRN-LEN) Field, Sweeping mode field, and Repeat Times field.
  • the frame type field, the IsTXSS indication field, the IsRXSS indication field, the Feedback type field, the beam tracking request field, the length field of the training sequence, the scanning mode field, and the number of repetitions field can be optional fields, that is, That is, in the beamforming training control element in the first frame, the optional field may or may not be included.
  • the frame type field is used for carrying, and the frame type of the first frame is used to indicate that the first frame is a request frame.
  • the start time field may be carried, and the start time of the sector scanning by the initiator.
  • the number of sectors field may carry the number of sectors of the initiator.
  • the number of antennas field can be carried, and the number of antennas of the initiator.
  • the IsTXSS indication field may carry indication information of whether the initiator requests scanning of the transmitting sector.
  • the IsRXSS indication field may carry indication information of whether the initiator requests scanning of a receiving sector.
  • the antenna dissimilarity field may carry indication information of the antenna dissimilarity of the initiator.
  • the antenna mode dissimilarity field may carry information indicating the antenna mode dissimilarity of the initiator.
  • the training frame length field may be carried, and the length of the training frame for the sector scanning performed by the initiator.
  • the feedback type field may carry indication information of the feedback type.
  • the training mode field may carry training mode indication information of the initiator.
  • the training mode indication information of the initiator is used to indicate that the training mode of the initiator is an end-oriented training mode. If the value of the training mode field is 0, the directional beamforming training
  • the control element may include: a beam tracking request field.
  • the beam tracking request field may carry, and whether the first frame carries indication information of a training sequence at a receiving end.
  • the directional beamforming training control element may further include: a length field of the training sequence.
  • the length field of the training sequence may carry, and the length indication information of the training sequence.
  • the training mode indication information of the initiator is used to indicate that the training mode of the initiator is a two-directional training mode. If the value of the training mode field is 1, the directional beamforming is performed.
  • the training control element may further include: a scan mode field.
  • the scan mode field may carry indication information of a sector scan mode of the initiator.
  • the scanning mode indication information of the initiator When the scanning mode indication information of the initiator is carried in the scanning mode field, it is used to instruct the responder to initiate a training frame in each sector, and repeat N sector scans on the initiator.
  • N is The number of sectors of the initiator, the directional beamforming training control element may further include: a Repeat Times field.
  • the field of the number of repetitions may be used to indicate the number of repetitions of the sector scanning performed by the initiator, that is, N. It can be understood that the responder can obtain the number of repetitions of the sector scanning by the initiator according to the number of sectors of the initiator, and therefore, the repetition number field may not be included.
  • the sector scanning parameters of the responder as shown above may include at least one of the following information:
  • the start time of sector scanning by the responder the number of sectors of the responder, the number of antennas of the responder, the indication information of antenna reciprocity of the responder, and the indication of reciprocity of antenna pattern of the responding node Information, the length of the training frame for sector scanning performed by the responder, and the training mode indication information of the responder.
  • the sector scanning parameters of the responder include the start time of the sector scanning by the responder and the length of the training frame of the sector scanning by the responder, so that the initiator and the responder can make the
  • the length of the training frame realizes synchronous sector switching, which enables the initiator and responder to use the same frequency or tempo for sector switching, achieves accurate sector switching between the initiator and responder, and reduces fanning on high-frequency channels.
  • the time consuming of zone scanning improves the efficiency of sector scanning.
  • the number of sectors of the responder is the number of sectors used by the responder for sector scanning.
  • the number of antennas of the responder is the number of antennas used by the responder for sector scanning.
  • the indication information of the antenna mutuality of the responder is used to indicate that the optimal transmitting antenna of the responder is the optimal receiving antenna of the responder. For example, if the indication information of the antenna mutuality of the responder is used to indicate that the optimal transmit antenna of the responder is the optimal receive antenna of the responder, the responder supports the mutuality of the antennas. If the indication information of the antenna mutuality of the responder is used to indicate that the optimal transmit antenna of the responder is not the optimal receive antenna of the responder, the responder does not support the antenna diversity.
  • the indication information of the antenna pattern mutuality of the responder is used to indicate that the antenna weight corresponding to the transmitting antenna mode of the responder is the antenna weight corresponding to the receiving antenna mode of the responder. For example, if the indication information of the antenna pattern mutuality of the responder is used to indicate that the antenna weight corresponding to the transmitting antenna mode of the responder is the antenna weight corresponding to the receiving antenna mode of the responding party, the responder supports the antenna mode. Mutuality. If the indication information of the antenna mode mutuality of the responder is used to indicate that the antenna weight corresponding to the transmitting antenna mode of the responder is not the antenna weight corresponding to the receiving antenna mode of the responder, the responder does not support the mutual antenna opposite sex.
  • the training frame for performing sector scanning may be, for example, an SSW frame, and the length of the training frame for performing sector scanning by the responder may be used, for example, to indicate the length of each SSW frame.
  • the training mode indication information of the responder is used to indicate whether the training mode of the responder is a training mode oriented at one end or a training mode oriented at both ends. For example, if the instruction information of the training mode of the responder is 0, it can be determined that when the responder performs a sector scan, one of the initiator and the responder adopts a directional transmission method, and the other end adopts an omnidirectional reception method. Method, or one end uses the omnidirectional transmission method, and the other end uses the directional reception method. If the instruction information of the responder's training mode is 1, it can be determined that when the responder performs a sector scan, one of the initiator and the responder uses a directional transmission method, and the other end uses a directional reception method.
  • the sector scanning parameters of the responder may further include:
  • Indication information of the sector scanning mode of the responder wherein, the indication information of the sector scanning mode of the responder is used to indicate the number of sending times of the initiator in each sector and the number of sector scanning times of the responder Corresponding relationship.
  • the sector scanning mode indication information of the responder is 0, which can be used to instruct the initiator to send N training frames in each sector, and the responder performs a sector scan; the sector of the responder The scanning mode indication information is 1, which can be used to instruct the initiator to initiate a training frame once in each sector, and repeat N sector scans on the responder.
  • N is the number of sectors of the responder.
  • the sector scanning parameters of the responder may further include at least one of the following information:
  • Frame type of the second frame indication information of whether the responder requests a transmission sector scan, indication information of whether the responder requests a reception sector scan, indication information of a feedback type, whether the second frame carries a Instruction information of a training sequence and length instruction information of the training sequence.
  • the frame type of the second frame may indicate that the second frame is a response frame, for example.
  • the indication information of whether the responder requests a transmission sector scan is 1, it can be used to instruct the responder to request a transmission sector scan. If the indication information of whether the responder requests scanning of the transmission area is 0, it can be used to indicate that the responder has not requested scanning of the transmission sector. If the indication information of whether the responder requests scanning of the receiving sector is 1, it can be used to indicate that the responding party requests scanning of the receiving sector. If the indication information of whether the responder requests scanning of the receiving sector is 0, it can be used to indicate that the responding party has not requested scanning of the receiving sector.
  • the training frame for performing sector scanning may be, for example, an SSW frame, and the length of the training frame for performing sector scanning by the responder may be used, for example, to indicate the length of each SSW frame.
  • the feedback type indication information may be used to indicate whether the transmission method of the feedback information between the initiator and the responder uses OCT.
  • the feedback information from the responder to the initiator can be transmitted through the SSW feedback frame, for example, the feedback type indication information can be used to indicate whether the transmission method of the SSW feedback frame adopts OCT, that is, it is used to indicate that the SSW feedback frame For transmission on two channels, OCT is still used for transmission on the first channel.
  • the feedback information from the initiator to the responder can be transmitted through an ACK frame, for example.
  • the feedback type indication information can also be used to indicate whether the transmission mode of the ACK frame uses OCT, that is, it is used to indicate that the ACK frame is on the second channel. For transmission, OCT is still used for transmission on the first channel.
  • the sector scanning parameters of the responder may be carried at a preset position in the second frame.
  • the second frame is a response frame, such as a response frame for beamforming training.
  • FIG. 8 is a schematic diagram of a frame structure of a response frame for beamforming training according to an embodiment of the present application.
  • the response frame for the beamforming training may include: 1 byte Category, 1 Byte Function (Action), 1 Byte Dialog Token, 2 Byte Status Code, and Preset Byte Training Control Element (Directional BF Training Control Element) .
  • the preset byte may be greater than or equal to 1 byte, for example.
  • the status number can be used to feedback whether the request of the initiator is successful.
  • the specific structure of the directional beamforming training control element may be similar to that in FIG. 7 described above. For details, refer to the foregoing, and details are not described herein again.
  • FIG. 9 is a first signalling flowchart of sector scanning performed by stations 1 and 2 in a sector scanning method according to an embodiment of the present application.
  • the initiator and the responder are both user equipment.
  • the initiator can be site 2 and the responder can be site 1.
  • site 2 can use OCT to send a request frame to site 1 on the first channel.
  • request frames for beamforming training.
  • station 1 uses OCT to receive the request frame sent by station 2 on the first channel.
  • the request frame includes: sector scanning parameters of station 2.
  • the station 1 may use the OCT to return a response frame to the station 2 on the first channel, such as a response frame for beamforming training.
  • Station 2 may use OCT to receive the response frame sent by station 1 on the first channel.
  • the response frame includes: sector scanning parameters of station 1.
  • Station 1 may send multiple SSW frames to station 2 in multiple transmission sectors on the second channel according to the sector scanning parameters of station 2 in the first stage shown in FIG. Sector scanning parameters of the second channel to receive the multiple SSW frames in multiple receiving sectors on the second channel, and then determine the optimal receiving sector for the site 2 and the site 1 based on the reception of the multiple SSW frames.
  • Optimal transmission sector may be sent to station 2 in multiple transmission sectors on the second channel according to the sector scanning parameters of station 2 in the first stage shown in FIG.
  • Sector scanning parameters of the second channel to receive the multiple SSW frames in multiple receiving sectors on the second channel, and then determine the optimal receiving sector for the site 2 and the site 1 based on the reception of the multiple SSW frames.
  • Optimal transmission sector may be any suitable transmission sector.
  • Station 2 can send multiple SSW frames to station 1 in multiple transmission sectors on the second channel according to the sector scanning parameters of station 1 in the second stage shown in FIG. Sector scanning parameters of the second channel to receive the multiple SSW frames in multiple receiving sectors on the second channel, and then determine the optimal receiving sector for the site 1 and the site 2 based on the reception of the multiple SSW frames.
  • Optimal transmission sector In the second phase, each SSW frame sent by the station 2 may carry information of the optimal transmission sector of the station 1 determined by the station 2 in the first phase.
  • the station 1 can also send the SSW feedback carrying the optimal transmission sector of the station 2 on the second channel according to the sector scanning parameters of the station 2. frame.
  • the station 2 When the station 2 receives the SSW feedback frame, it can also feed back an SSW acknowledgement frame to the station 1 on the second channel to instruct it to receive the SSW feedback frame.
  • FIG. 10 is a second signaling flowchart of sector scanning performed by stations 1 and 2 in a sector scanning method according to an embodiment of the present application.
  • the initiator and the responder are both user equipment.
  • the initiator can be site 2 and the responder can be site 1.
  • site 2 can use OCT to send a request frame to site 1 on the first channel.
  • request frames for beamforming training.
  • station 1 uses OCT to receive the request frame sent by station 2 on the first channel.
  • the request frame includes: sector scanning parameters of station 2.
  • the station 1 may use the OCT to return a response frame to the station 2 on the first channel, such as a response frame for beamforming training.
  • Station 2 may use OCT to receive the response frame sent by station 1 on the first channel.
  • the response frame includes: sector scanning parameters of station 1.
  • Station 1 can send multiple SSW frames to station 2 in multiple transmission sectors on the second channel according to the sector scanning parameters of station 2 in the first stage shown in FIG. Sector scanning parameters of the second channel to receive the multiple SSW frames in multiple receiving sectors on the second channel, and then determine the optimal receiving sector for the site 2 and the site 1 based on the reception of the multiple SSW frames.
  • Optimal transmission sector Optimal transmission sector.
  • station 2 can determine the optimal receiving fan of station 2 if it determines that the station 2 supports antenna dissimilarity and antenna pattern dissimilarity according to the sector scanning parameters of the station 2.
  • the area is the optimal transmission sector of the station 2. If it is determined that the station 1 supports antenna dissimilarity and antenna pattern disparity according to the sector scanning parameters of the station 1, the optimal transmission sector of the station 1 can be determined. That is, the optimal receiving sector of the station 1 can send an SSW frame to the station 1 within the time period corresponding to the optimal transmitting sector of the station 1 on the second channel.
  • the station 1 receives the SSW frame in multiple receiving sectors on the second channel according to the sector scanning parameters of the station 2. If the SSW frame is received, the optimal SSW frame carried by the SSW frame can be obtained. Transmission sector.
  • station 1 can determine that the site 1 supports antenna dissimilarity and antenna pattern dissimilarity according to the sector scanning parameters of the site 1, then it can be determined that the optimal transmitting sector of the site 1 is the optimal receiving of the site 1. Sector.
  • FIG. 11 is a signaling flow chart 3 of a sector scanning performed by a site 1 and a site 2 in a sector scanning method according to an embodiment of the present application.
  • the initiator and the responder are both user equipment.
  • the initiator can use station 2 as the initiator and use OCT to send a request frame to station 1 on the first channel, as in beamforming training.
  • Request frame As a responder, station 1 uses OCT to receive the request frame sent by station 2 on the first channel.
  • the request frame includes: sector scanning parameters of station 2.
  • the station 1 may use the OCT to return a response frame to the station 2 on the first channel, such as a response frame for beamforming training.
  • Station 2 may use OCT to receive the response frame sent by station 1 on the first channel.
  • the response frame includes: sector scanning parameters of station 1.
  • Station 1 may send multiple SSW frames to station 2 in multiple transmission sectors on the second channel according to the sector scanning parameters of station 2 in the first stage shown in FIG. 11, so that station 2 Sector scanning parameters of the second channel to receive the multiple SSW frames in multiple receiving sectors on the second channel, and then determine the optimal receiving sector for the site 2 and the site 1 based on the reception of the multiple SSW frames.
  • Optimal transmission sector may be sent to station 2 in multiple transmission sectors on the second channel according to the sector scanning parameters of station 2 in the first stage shown in FIG. 11, so that station 2 Sector scanning parameters of the second channel to receive the multiple SSW frames in multiple receiving sectors on the second channel, and then determine the optimal receiving sector for the site 2 and the site 1 based on the reception of the multiple SSW frames.
  • Optimal transmission sector may be any suitable transmission sector.
  • the optimal receiving fan of the station 2 can be determined.
  • the zone is the optimal transmission sector for this site 2.
  • station 2 also uses OCT to send an SSW feedback frame to station 1 on the first channel, so that station 1 uses OCT to receive the SSW feedback frame on the first channel.
  • the SSW feedback frame includes information of the optimal transmission sector of station 1. If station 1 determines that the station 1 supports antenna dissimilarity and antenna pattern dissimilarity according to the sector scanning parameters of the station 1, the station 1 may be determined.
  • the optimal transmitting sector is the optimal receiving sector of the site 1.
  • the station 1 When the station 1 receives the SSW feedback frame, it may also use the OCT to feedback the SSW acknowledgement frame to the station 2 on the first channel to instruct it to receive the SSW feedback frame.
  • the network device can also send the sector scanning parameters of the network device to the user equipment in advance on the low-frequency channel, which reduces the overhead of signaling interaction on the high-frequency channel, and enables the user equipment to know the Sector scanning parameters enable network equipment and user equipment to perform sector scanning on high-frequency channels according to the sector scanning parameters of the network equipment, to achieve accurate sector scanning of network equipment and user equipment on high-frequency channels, and The blind switching of sectors is avoided, thereby effectively reducing the time required for sector training on high-frequency channels and improving the efficiency of high-frequency sector training.
  • FIG. 12 is a flowchart of another sector scanning method according to an embodiment of the present application. As shown in FIG. 12, the sector scanning method may include the following:
  • the network device sends a beacon frame to the user equipment on the first channel, where the beacon frame includes: sector scanning parameters of the network device.
  • the sector scanning parameter of the network device may be used to enable the user equipment to perform sector scanning on the second channel according to the sector scanning parameter of the network device.
  • the network device and the user equipment may both be dual-mode communication devices, that is, if the network device and the user equipment support the communication mode of the first channel, they may also support the communication mode of the second channel.
  • first channel and the second channel is similar to that described in S601 in the foregoing embodiment, and details are not described herein again.
  • the method may include:
  • the user equipment receives a beacon frame from a network device on the first channel, and the beacon frame includes a sector scanning parameter of the network device.
  • the network device performs sector scanning on the second channel according to the sector scanning parameters of the network device, and the frequency of the second channel is higher than the frequency of the first channel.
  • the user equipment performs sector scanning on the second channel according to the sector scanning parameters of the network device, and the frequency of the second channel is higher than the frequency of the first channel.
  • the network device may scan the transmitting sector of the network device on the second channel according to the sector scanning parameter of the network device, that is, send to the user equipment on the second channel according to the sector scanning parameter of the network device.
  • the user equipment may receive the training frame sent by the network device on the second channel according to the sector scanning parameters of the network device, and perform the receiving sector scanning of the user equipment.
  • the user equipment may also send a training frame to the network device on the second channel according to the sector scanning parameters of the network device, so as to perform a transmission sector scan of the user equipment.
  • the network device may receive the training frame sent by the user equipment on the second channel according to the sector scanning parameter of the network device, and perform the receiving sector scanning of the network device.
  • the training frame may be a beacon frame or an SSW frame. If the beacon frame transmitted on the first channel only includes information to be transmitted on the low-frequency beacon frame, the training frame may be a high-frequency beacon frame; if the beacon frame transmitted on the first channel includes: For the information to be transmitted and the information to be transmitted for the high-frequency beacon frame, the training frame may be an SSW frame.
  • the network device can determine the optimal transmitting sector of the user equipment and the optimal receiving sector of the network device, so that the user equipment determines the optimal receiving sector of the user equipment and the optimal of the network device. Transmission sector.
  • the user equipment can carry the information of the optimal transmission sectors of the network equipment on the second channel.
  • the training frame is sent to the network device so that the network device knows the optimal transmission sector of the network device.
  • the information of the optimal transmission sector of the user equipment can be carried by the network device in a feedback frame such as a Sector Scanning Feedback (SSWFeedback) frame and sent to the user.
  • a feedback frame such as a Sector Scanning Feedback (SSWFeedback) frame and sent to the user.
  • Equipment so that the user equipment knows the optimal transmission sector of the user equipment.
  • the user equipment may also send a confirmation frame to the network device to inform the network device that the user equipment has received the feedback frame.
  • the network device may send the feedback frame including the optimal transmission sector of the user equipment to the user equipment on the second channel, and then the user equipment may also receive the optimal transmission including the user equipment sent by the network equipment on the second channel.
  • the feedback frame of the transmitting sector may be sent by the network equipment on the second channel.
  • the network device may also use the OCT to send a feedback frame including the optimal transmission sector of the user equipment to the user equipment on the first channel, so the user equipment also needs to use the OCT to receive the user equipment including the user equipment sent by the network equipment on the first channel. Feedback frame of the optimal transmission sector.
  • the sector scanning method provided in the embodiment of the present application can send a beacon frame including a sector scanning parameter of the network device to a user equipment on a low frequency channel through a network device, thereby reducing signaling overhead on a high frequency channel, and
  • the network device and the user equipment can perform accurate sector scanning on the high-frequency channel according to the sector scanning parameters of the network device, avoiding blind switching of the sector, thereby effectively reducing the fan on the high-frequency channel.
  • Zone training is time consuming and improves sector training efficiency.
  • the sector scanning parameters of the network device as shown above may include at least one of the following information:
  • Start time of sector scanning by the network device the number of sectors of the network device, the number of antennas of the network device, indication information of antenna diversity of the network device, indication of antenna mode diversity of the network device Information, the length of the training frame for sector scanning performed by the network device, and training mode indication information of the network device;
  • the sector scanning parameters of the network device include the starting time of the sector scanning of the network device and the length of the training frame of the sector scanning of the network device, so that the network device and the user equipment can make the network device and the user equipment based on the starting time and the
  • the length of the training frame realizes synchronous sector switching, enabling network equipment and user equipment to use the same frequency or beat for sector switching, enabling accurate sector switching of network equipment and user equipment, and reducing fanning on high-frequency channels.
  • the time consuming of zone scanning improves the efficiency of sector scanning.
  • the number of sectors of the network device is the number of sectors used by the network device for sector scanning.
  • the number of antennas of the network device is the number of antennas used by the network device for sector scanning.
  • the indication information of antenna mutuality of the network device is used to indicate whether the optimal transmitting antenna of the network device is the optimal receiving antenna of the network device. For example, if the indication information of the antenna mutuality of the network device is used to indicate that the optimal transmitting antenna of the network device is the optimal receiving antenna of the network device, the network device supports the mutuality of the antennas. If the indication information of the antenna mutuality of the network device is used to indicate that the optimal transmitting antenna of the network device is not the optimal receiving antenna of the network device, the network device does not support the mutuality of the antennas.
  • the indication information of antenna network mutuality of the network device is used to indicate whether the antenna weight corresponding to the transmitting antenna mode of the network device is the antenna weight corresponding to the receiving antenna mode of the network device. For example, if the indication information of the antenna mode mutuality of the network device is used to indicate that the antenna weight corresponding to the transmitting antenna mode of the network device is the antenna weight corresponding to the receiving antenna mode of the network device, the network device supports the antenna mode. Mutuality. If the indication information of the antenna mode mutuality of the network device is used to indicate that the antenna weight corresponding to the transmitting antenna mode of the network device is not the antenna weight corresponding to the receiving antenna mode of the network device, the network device does not support the mutual antenna opposite sex.
  • the training mode indication information of the network device is used to indicate whether the training mode of the network device is a training mode directed at one end or a training mode directed at both ends. For example, if the instruction information of the training mode of the network device is 0, it can be determined that when the network device performs sector scanning, one end of the network device and the user device adopts a directional transmission method, and the other end adopts an omnidirectional reception method. Or, one end uses omnidirectional transmission, and the other end uses directional reception. If the instruction information of the training mode of the network device is 1, it can be determined that when the network device performs sector scanning, one end of the network device and the user device adopts a directional transmission method, and the other end adopts a directional reception method.
  • the sector scanning parameter of the network device when the training mode indication information of the network device is used to indicate that the training mode of the network device is a training mode with both ends oriented, the sector scanning parameter of the network device It can also include:
  • Indication information of the sector scanning mode of the network device and indication information of the number of repetitions
  • the indication information of the sector scanning mode of the network device is used to indicate a correspondence between the number of transmissions of the user equipment in each sector and the number of sector scanning performed by the network device.
  • the indication information of the scan mode of the network device is 0, which can be used to instruct the user equipment to send N training frames in each sector, and the network device performs a sector scan; the scan mode of the network device
  • the indication information is 1, which can be used to instruct the user equipment to send a training frame once in each sector, and repeat N sector scans on the network equipment.
  • N may be the number of sectors of the network device.
  • the indication information of the number of repetitions is used to indicate the number of times that the network device performs sector scanning.
  • the sector scanning parameters of the network device may further include at least one of the following information:
  • Indication information of feedback type indication information of whether the beacon frame carries a training sequence at the receiving end, and length indication information of the training sequence
  • the feedback type indication information is used to indicate whether the transmission method of the feedback information between the network device and the user equipment adopts OCT.
  • the feedback information that the network device feeds back to the user equipment can be transmitted, for example, through an SSW feedback frame.
  • the feedback type indication information can be used to indicate whether the transmission method of the SSW feedback frame adopts OCT, that is, it is used to indicate that the SSW feedback frame is For transmission on two channels, OCT is still used for transmission on the first channel.
  • the feedback information from the user equipment to the network device can be transmitted through an ACK frame, for example.
  • the feedback type indication information can also be used to indicate whether the transmission method of the ACK frame adopts OCT, that is, it is used to indicate that the ACK frame is transmitted on the second channel. , Or use OCT for transmission on the first channel.
  • the sector scanning parameter of the network device may be carried in a preset subelement in a multi-band element in a beacon frame transmitted on the first channel.
  • a sub-element is added to the beacon frame on the first channel, which is also called a low-frequency beacon frame, and is used to carry sector scanning parameters of the network device.
  • FIG. 13 is a schematic structural diagram of preset sub-elements of a multi-bandwidth element in a beacon frame according to an embodiment of the present application.
  • the preset sub-elements of the multi-bandwidth element in the beacon frame may include: an Element ID field, a Length field, a Starting Time field, and a number of sectors ( The number of antennas field, the number of antennas field, the TRN-R indication field, the training frame length field, the training mode field, and the scanning mode field are repeated number fields.
  • the TRN-R indication field and the scanning mode field are repeated fields, which may be optional fields, that is, the optional field may be included in a preset sub-element of a multi-bandwidth element in a beacon frame. , This optional field may not be included.
  • the start time field is portable, and the start time of the sector scan performed by the network device.
  • the number of sectors field can be carried, and the number of sectors of the network device.
  • the number of antennas field can be carried, and the number of antennas of the network device.
  • the TRN-R indication field may be carried, and whether the beacon frame carries indication information of a training sequence at a receiving end.
  • the training frame long field can be carried, and the length of the training frame for the network device to perform sector scanning.
  • the training mode indication information of the network device is used to indicate that the training mode of the network device is a two-directional training mode. If the value of the training mode field is 1, the preset sub-element A scan mode field can also be included.
  • the scan mode field may carry indication information of the scan mode of the network device.
  • the directional beamforming training control element may further include: a number of repetitions field.
  • the number of repetitions field can be used to indicate the number of repetitions of the sector scan performed by the network device, that is, N.
  • the following describes another implementation manner provided in the embodiment of the present application by using two specific examples, that is, sending a sector scanning parameter of a network device to a user equipment through a network device, and then performing a sector scanning scheme.
  • an AP is used as a network device
  • a station is used as a user device.
  • FIG. 14 is a first signaling flowchart of sector scanning performed by an AP and a station in a sector scanning method according to an embodiment of the present application.
  • the AP may send a beacon frame to the station on the first channel, and the station receives the beacon frame sent by the AP on the first channel.
  • the beacon frame transmitted on the first channel includes: sector scanning parameters of the AP.
  • the AP can send multiple beacon frames, i.e., high-frequency beacons, to the site in multiple transmission sectors on the second channel according to the sector scanning parameters of the AP Frame, so that the station receives the multiple beacon frames in multiple receiving sectors on the second channel according to the sector scanning parameters of the AP, and then determines the optimal reception of the station according to the reception conditions of the multiple beacon frames Sector, and the optimal transmit sector of the AP.
  • multiple beacon frames i.e., high-frequency beacons
  • the station can send multiple APs to the AP in multiple transmit sectors on the second channel during the association-beamforming training (A-BFT) period shown in FIG. 14 according to the AP's sector scanning parameters.
  • SSW frames so that the AP receives the multiple SSW frames in multiple receiving sectors on the second channel according to the sector scanning parameters of AP1, and then determines the optimal reception of the AP according to the reception conditions of the multiple SSW frames Sector, and the optimal transmission sector for the site.
  • the SSW frame may carry information about the optimal transmission sector of the AP determined by the station in the BTI.
  • the AP may also send an SSW feedback frame carrying the optimal transmission sector of the station to the station on the second channel during the A-BFT period.
  • the station may also feed back the SSW acknowledgement frame to the AP on the second channel during the A-BFT period to instruct it to receive the SSW feedback frame.
  • FIG. 15 is a second signaling flowchart of sector scanning performed by an AP and a station according to an embodiment of the present application.
  • the AP may send a beacon frame to the station on the first channel, and the station receives the beacon frame sent by the AP on the first channel.
  • the beacon frame transmitted on the first channel includes: sector scanning parameters of the AP.
  • the beacon frame transmitted on the first channel may further include: information to be transmitted on the beacon frame on the second channel, which is also referred to as a signal of the high-frequency channel The transmission content of the frame. In this way, the to-be-transmitted information of the beacon frame on the second channel is also transmitted on the first channel, which can further reduce the signaling overhead of the second channel, that is, the high-frequency channel.
  • the operation of the AP and the station in the BTI is similar to that of the above FIG. 14, except that the beacon frame is used as the training frame in the above FIG. 14 transmitted, and the SSW frame is used as the training in the example in FIG. frame.
  • the beacon frame is used as the training frame in the above FIG. 14 transmitted
  • the SSW frame is used as the training in the example in FIG. frame.
  • a user equipment can receive a downlink frame sent by a network device on the high-frequency channel, and the network device may be at a high frequency because the user equipment ’s transmit power and antenna gain are small. No uplink frame sent by the user equipment is received on the channel.
  • the embodiments of the present application may further provide a sector scanning method, which is used to implement sector scanning between the network equipment and the user equipment.
  • FIG. 16 is a signaling flowchart of sector scanning performed by an AP and a station in another sector scanning method according to an embodiment of the present application. In the example in FIG. 16, the AP continues to be used as the network device and the station is used as the user equipment.
  • the AP can send multiple beacon frames, that is, high-frequency beacon frames, to the station in multiple transmission sectors on the second channel, so that the station is in the second
  • the channel receives the multiple beacon frames with multiple receiving sectors, and determines the optimal receiving sector of the site and the optimal transmitting sector of the AP according to the receiving conditions of the multiple beacon frames.
  • the station may use the OCT to transmit the SSW feedback frame to the AP on the first channel.
  • the AP may use the OCT to receive the SSW feedback frame sent by the station on the second channel to determine the optimal transmission sector of the AP.
  • the AP may also use OCT to send an SSW acknowledgement frame to the station on the first channel to indicate that the AP received the SSW feedback frame.
  • the station may use the OCT to receive the SSW acknowledgement frame on the first channel.
  • the first channel may be a low-frequency channel
  • the second channel may be a high-frequency channel.
  • the SSW feedback frame may carry parameters of the receiving sector.
  • the parameters of the receiving sector may include an identifier of the receiving sector, an antenna identifier corresponding to the receiving sector, and the like.
  • the SSW feedback frame may include: a number of fields field and an information field corresponding to the N received sectors.
  • the information field corresponding to each receiving sector may include a sector identification field and an antenna identification field.
  • the sector identification field may carry the identifier of each receiving sector.
  • the antenna identification field may carry an identification of the antenna corresponding to each receiving sector.
  • the station After receiving the SSW confirmation frame, the station can use the optimal receiving sector of the AP to the AP within the time period corresponding to the optimal transmitting sector of the AP according to the parameters of the receiving sector indicated in the SSW feedback.
  • the SSW feedback frame may include information of an optimal transmission sector of the AP.
  • the AP can determine the dwell time in each receiving sector according to the parameters of the receiving sector indicated by the SSW feedback frame, and receive the SSW frame sent by the station on the second channel to realize the scanning of the receiving sector of the AP To determine the optimal receiving sector of the AP and the optimal transmitting sector of the station.
  • the station may use the OCT to transmit the parameters of the receiving sector to the AP on the low frequency channel, so that the AP receives the SSW frame sent by the station on the high frequency channel based on the parameters of the receiving sector, avoiding
  • the unreachable problem of asymmetric links enables stations and APs to perform accurate sector scanning on high-frequency channels, and avoids blind switching of sectors, thereby effectively reducing the time consuming of sector scanning on high-frequency channels. To improve the efficiency of sector scanning.
  • FIG. 17 is a first schematic structural diagram of a sector scanning device according to an embodiment of the present application. As shown in FIG. 17, the sector scanning device 1700 may include:
  • the low-frequency module 1701 is configured to send a first frame to a responder on a first channel; the first frame includes: a sector scanning parameter of the initiator; and receiving the response on the first channel
  • the second frame sent by the party, the second frame includes: sector scanning parameters of the responding party;
  • the high-frequency module 1702 is configured to perform sector scanning on the second channel according to the sector scanning parameters of the responder; the frequency of the second channel is higher than the frequency of the first channel.
  • the low-frequency module 1701 is configured to send a beacon frame to the user equipment on the first channel;
  • the beacon frame includes: a sector scanning parameter of the network device;
  • the high-frequency module 1702 is configured to perform sector scanning on the second channel according to the sector scanning parameters of the network device; the frequency of the second channel is higher than the frequency of the first channel.
  • the above sector scanning device 1700 further includes: a processing module 1703, configured to generate information to be sent, and / or process the received information, and may also be used to control the high frequency module 1702 according to the sector scanning parameters of the network device. A sector scan is performed on the second channel.
  • the sector scanning device 1700 has any function of the initiator or network device in the method described in any one of FIG. 5 to FIG. 16, and the arbitrary function may refer to any of the functions described in any of FIG. 5 to FIG. 16. The method is not repeated here.
  • the sector scanning device may be implemented in various product forms.
  • the sector scanning device may be configured as a general-purpose processing system; for example, the sector scanning device may be implemented by a general It is implemented by a bus architecture; for example, the sector scanning device may be implemented by an ASIC (Application Specific Integrated Circuit) and so on.
  • ASIC Application Specific Integrated Circuit
  • FIG. 18 is a first structural diagram of a possible product form of the sector scanning device according to the embodiment of the present application.
  • the sector scanning device includes a processor 1802 and a transceiver 1804; optionally, the sector scanning device may further include a storage medium 1803.
  • the transceiver 1804 includes a low-frequency transceiver and a high-frequency transceiver.
  • the low-frequency transceiver is used to support communication between the initiator device and the responder device on the low-frequency channel, so as to send the information or instructions involved in the above method to the responder device on the low-frequency channel, and receive the response from the responder device on the low-frequency channel.
  • Information or instructions or, used to support communication between the network device and the user equipment on a low frequency channel to send a beacon frame to the user equipment on the low frequency channel.
  • a high-frequency transceiver is used to support sector scanning of the initiator and the responder on a high-frequency channel; or, it is used to support sector scanning of a network device and a user equipment on a high-frequency channel.
  • the sector scanning device is also implemented by a general-purpose processor, that is, commonly known as a chip.
  • the general-purpose processor includes: a processor 1802 and a transceiving interface 1805 / transceiving pin 1806; optionally, the general-purpose processor may further include a storage medium 1803.
  • the transceiver interface 1805 includes a low-frequency transceiver interface and a high-frequency transceiver interface.
  • the low-frequency transceiver interface is used to support communication between the initiator device and the responder device on the low-frequency channel, so as to send the information or instructions involved in the above method to the responder device on the low-frequency channel, and receive the responder device on the low-frequency channel.
  • a high-frequency transceiver interface is used to support sector scanning of the initiator and the responder on a high-frequency channel; or, it is used to support sector scanning of a network device and a user equipment on a high-frequency channel.
  • the transceiver pin 1806 includes a low-frequency transceiver pin and a high-frequency transceiver pin.
  • the low-frequency transceiver pin is used to support communication between the initiator device and the responder device on the low-frequency channel, so as to send the information or instructions involved in the above method to the responder device on the low-frequency channel, and receive the responder on the low-frequency channel Information or instructions sent by the device; or used to support communication on the low frequency channel between the network device and the user device to send a beacon frame to the user device on the low frequency channel.
  • a high-frequency transceiver pin is used to support sector scanning of the initiator and the responder on a high-frequency channel; or, it is used to support sector scanning of a network device and a user equipment on a high-frequency channel.
  • the sector scanning device can also be implemented using the following: one or more Field-Programmable Gate Array (FPGA), Programmable Logic Device (PLD) ), Controller, state machine, gate logic, discrete hardware components, any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • FPGA Field-Programmable Gate Array
  • PLD Programmable Logic Device
  • Controller state machine
  • gate logic discrete hardware components, any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • an embodiment of the present application further provides a computer-readable storage medium.
  • the computer-readable storage medium may include instructions that, when run on a computer, cause the computer to execute the sector scanning method performed by any of the initiators in FIG. 5 to FIG. 16 in the foregoing embodiment.
  • the embodiment of the present application further provides a computer program product including instructions, which when executed on a computer, causes the computer to execute a message executed by any initiator or network device in FIG. 5 to FIG. 16 in the foregoing embodiment.
  • Sector scanning method any initiator or network device in FIG. 5 to FIG. 16 in the foregoing embodiment.
  • the functions of the computer program product may be implemented by hardware or software. When implemented by software, these functions may be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable storage medium. .
  • the sector scanning device, the computer-readable storage medium, and the computer program product in the embodiments of the present application can execute the sector scanning method performed by any of the initiators or network devices shown in FIG. 5 to FIG. 16 above. The effect is described above, and is not repeated here.
  • FIG. 19 is a second schematic structural diagram of a sector scanning device according to an embodiment of the present application. As shown in FIG. 19, the sector scanning device 1900 may include:
  • the low-frequency module 1901 is configured to receive a first frame from an initiator on a first channel, where the first frame includes: a sector scanning parameter of the initiator; and sends the The initiator sends a second frame, and the second frame includes: sector scanning parameters of the responder;
  • the high-frequency module 1902 performs sector scanning on the second channel according to the sector scanning parameters of the initiator; the frequency of the second channel is higher than the frequency of the first channel.
  • the low-frequency module 1901 is configured to receive a beacon frame from a network device on a first channel, where the beacon frame includes: a sector scanning parameter of the network device;
  • the high-frequency module 1902 performs sector scanning on the second channel according to the sector scanning parameters of the network device; the frequency of the second channel is higher than the frequency of the first channel.
  • the above sector scanning device 1900 further includes:
  • the processing module 1903 is configured to generate information to be sent and / or process the received information, and may also be used to control the high-frequency module 1902 to perform sector scanning on the second channel according to the sector scanning parameters of the network device. .
  • the sector scanning device 1900 has any function of a responder or a user equipment in the method described in any one of FIG. 5 to FIG. 16, and the arbitrary function may refer to any of the functions described in any of FIG. 5 to FIG. 16. The method is not repeated here.
  • the sector scanning device may be implemented in various product forms.
  • the sector scanning device may be configured as a general-purpose processing system; for example, the sector scanning device may be implemented by a general It is implemented by a bus architecture; for example, the sector scanning device may be implemented by an ASIC (Application Specific Integrated Circuit) and so on.
  • ASIC Application Specific Integrated Circuit
  • FIG. 20 is a second structural diagram of a possible product form of the sector scanning device according to the embodiment of the present application.
  • the sector scanning device includes a processor 2002 and a transceiver 2004; optionally, the sound sector scanning device may further include a storage medium 2003.
  • the transceiver 2004 includes a low-frequency transceiver and a high-frequency transceiver.
  • the low-frequency transceiver is used to support communication between the initiator device and the responder device on a low-frequency channel, so as to send the information or instructions involved in the above method to the initiator device on the low-frequency channel, and receive the initiator device's transmission on the low-frequency channel Information or instructions; or, used to support communication between a network device and a user equipment on a low frequency channel to receive a beacon frame sent by the network device on the low frequency channel.
  • a high-frequency transceiver is used to support sector scanning of the initiator and the responder on a high-frequency channel; or, it is used to support sector scanning of a network device and a user equipment on a high-frequency channel.
  • the sector scanning device is also implemented by a general-purpose processor, that is, commonly known as a chip.
  • the general-purpose processor includes: a processor 2002 and a transceiving interface 2005 / transceiving pin 2006; optionally, the general-purpose processor may further include a storage medium 2003.
  • the transceiver interface 2005 includes a low-frequency transceiver interface and a high-frequency transceiver interface.
  • the low-frequency transceiver interface is used to support communication on the low-frequency channel between the initiator device and the responder device, so as to send the information or instructions involved in the above method to the initiator device on the low-frequency channel, and receive the initiator device on the low-frequency channel.
  • a high-frequency transceiver interface is used to support sector scanning of the initiator and the responder on a high-frequency channel; or, it is used to support sector scanning of a network device and a user equipment on a high-frequency channel.
  • the transceiver pin 2006 includes a low-frequency transceiver pin and a high-frequency transceiver pin.
  • the low-frequency transceiver pin is used to support communication between the initiator device and the responder device on a low-frequency channel, so as to send the information or instructions involved in the above method to the initiator device on the low-frequency channel, and receive the initiator on the low-frequency channel.
  • Information or instructions sent by the device or used to support communication between the network device and the user device on a low frequency channel to receive beacon frames sent by the network device on the low frequency channel.
  • a high-frequency transceiver pin is used to support sector scanning of the initiator and the responder on a high-frequency channel; or, it is used to support sector scanning of a network device and a user equipment on a high-frequency channel.
  • the sector scanning device may also be implemented using the following: one or more FPGA, PLD, controller, state machine, gate logic, discrete hardware components, any other suitable circuit, or capable of Any combination of circuits that perform the various functions described throughout this application.
  • an embodiment of the present application further provides a computer-readable storage medium.
  • the computer-readable storage medium may include instructions that, when run on a computer, cause the computer to execute the sector scanning method performed by any respondent or user equipment in FIG. 5 to FIG. 16 in the foregoing embodiment.
  • the embodiment of the present application further provides a computer program product including instructions, which when executed on a computer, causes the computer to execute a message executed by any respondent or user equipment in FIG. 5 to FIG. 16 in the foregoing embodiment.
  • Sector scanning method
  • the functions of the computer program product may be implemented by hardware or software. When implemented by software, these functions may be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable storage medium. .
  • the sector scanning device, computer-readable storage medium, and computer program product according to the embodiments of the present application can execute the sector scanning method performed by any of the responders or user equipment shown in FIG. 5 to FIG. 16 above, and its specific implementation process is beneficial. The effect is described above, and is not repeated here.
  • the embodiment of the present application may further provide a network system, and the network system may include an initiator device and a responder device.
  • the initiator device and the responder device are connected; the initiator device may be the sector scanning device described in any of FIG. 17 or 18 above to perform the sector scanning method performed by any initiator in FIG. 5 to FIG. 11 above, specifically For implementation, refer to the above description, which is not repeated here.
  • the responder device may be the sector scanning device described in any one of FIG. 19 or 20 above to perform the sector scanning method performed by any responder in FIG. 5 to FIG. 11 above. For specific implementation, refer to the above, and details are not described herein again. .
  • the system can implement the sector scanning method between the initiator and the responder in any one of the embodiments described above.
  • the specific implementation process and beneficial effects refer to the foregoing, and details are not described herein again.
  • the embodiment of the present application may further provide a network system, and the network system may include a network device and a user device.
  • the network device and the user equipment are connected; the network device may be the sector scanning device described in any one of FIG. 17 or 18 above to perform the sector scanning method performed by any of the network devices in FIG. 12 to FIG. , Will not repeat them here.
  • the user equipment may be the sector scanning apparatus described in any one of FIG. 19 or 20 to perform the sector scanning method performed by any of the user equipment in FIG. 12 to FIG. 16.
  • FIG. 19 or 20 For specific implementation, refer to the foregoing, and details are not described herein again.
  • the system can implement the sector scanning method between the network device and the user equipment in any one of the embodiments described above.
  • all or part may be implemented by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on a computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions include storage in a computer-readable storage medium, or transmission from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission by wire (for example, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (for example, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes one or more available medium integration.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (SSD)), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种扇区扫描方法及相关装置,该扇区扫描方法包括发起方在第一信道上向响应方发送发起方的扇区扫描参数,并在第一信道上接收响应方发送的响应方的扇区扫描参数,根据响应方的扇区扫描参数在第二信道上进行扇区扫描;第二信道的频率高于第一信道的频率。本申请可减小高频信道的扇区训练耗时,提高扇区训练效率。

Description

扇区扫描方法及相关装置
本申请要求于2018年09月07日提交中国专利局、申请号为201811044765X、申请名称为“扇区扫描方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及无线通信系统中的扇区扫描方法及相关装置。
背景技术
无线局域网(Wireless Local Area Network,WLAN)通常工作在非授权频谱,其中,包括低频信道及高频信道。在低频信道上传输的无线信号衰减相对较慢,穿透效果好,但是低频信道的频谱资源有限,因此传输速率受到限制。而在高频信道上传输的无线信号衰减相对较快,穿透效果较差,但是高频信道的频谱资源丰富,在近距离范围内,传输速率较高。
在高频信道上,具有多个收发扇区的发起方和响应方可采用波束赋形(BeamForming,BF)训练,也称扇区扫描,进行发起方和响应方收发扇区的对齐,根据该对齐的收发扇区进行数据收发可有效提高收发天线的增益用以克服信号衰减,提高高频信道上的传输距离。
在高频信道上的波束赋形训练过程中,发起方和响应方可能会不断盲目地切换扇区,以进行扇区扫描,这使得高频信道上发起方和响应方进行扇区扫描耗时较长,导致扇区扫描效率较低。
发明内容
本申请提供一种扇区扫描方法及相关装置,以提高高频信道上的扇区扫描效率。
在第一方面,本申请实施例提供一种扇区扫描方法,包括:
发起方在第一信道上向响应方发送包括该发起方的扇区扫描参数的第一帧,还在第一信道上接收该响应方发送的包括该响应方的扇区扫描参数的第二帧;
该发起方根据该响应方的扇区扫描参数,在第二信道上进行扇区扫描;该第二信道的频率高于该第一信道的频率。
在第二方面,本申请实施例还可提供一种扇区扫描方法,包括:
响应方在第一信道上接收来自发起方的包括该发起方的扇区扫描参数的第一帧,并在该第一信道上向该发起方发送包括该响应方的扇区扫描参数的第二帧;
该响应方根据该发起方的扇区扫描参数,在第二信道上进行扇区扫描;该第二信道的频率高于该第一信道的频率。
该方法,可降低高频信道上信令交互的开销,还可使得发起方和响应方各自根据对端的扇区扫描参数在高频信道上进行扇区扫描,实现该发起方和响应方在高频信道上的精准 扇区扫描,避免了扇区的盲目切换,从而有效减小了高频信道上进行扇区训练的耗时,提高高频扇区训练效率。
在进行发起方和响应方精确扇区扫描的情况下,便可使得收发两端的设备在高频信道上分别采用各自的最优发射扇区以及最优接收扇区与对端设备进行通信,即实现了收发两端设备的定向收发,提高了高频信道上的信息传输距离。
在上述第一方面或第二方面任一所述的扇区扫描方法的基础上,在一种实现方式中,该发起方的扇区扫描参数包括如下至少一种信息:
该发起方进行扇区扫描的起始时间、该发起方的扇区个数、该发起方的天线个数、该发起方的天线互异性的指示信息、该发起方的天线模式互异性的指示信息、该发起方进行扇区扫描的训练帧的长度、该发起方的训练模式指示信息;
其中,该发起方的扇区个数为该发起方用于进行扇区扫描的扇区个数;
该发起方的天线个数为该发起方用于进行扇区扫描的天线个数;
该发起方的天线互异性的指示信息用于指示:该发起方的最优发送天线是否为该发起方的最优接收天线;
该发起方的天线模式互异性的指示信息用于指示:该发起方的发送天线模式对应的天线权重是否为该发起方的接收天线模式对应的天线权重;
该发起方的训练模式指示信息,用于指示该发起方的训练模式为一端定向的训练模式,还是两端都定向的训练模式。
该发起方的扇区扫描参数中包括有该发起方进行扇区扫描的起始时间以及该发起方进行扇区扫描的训练帧的长度,可使得发起方和响应方基于该起始时间以及该训练帧的长度,实现同步扇区切换,使得发起方和响应方采用相同的频率或节拍进行扇区切换,实现了发起方与响应方的精准扇区切换,减小了高频信道上进行扇区扫描的耗时,提高扇区扫描的效率。
在另一种可实现方式中,当该发起方的训练模式指示信息用于指示该发起方的训练模式为两端都定向的训练模式时,该发起方的扇区扫描参数还包括:
该发起方的扇区扫描模式的指示信息;其中,该发起方的扇区扫描模式的指示信息,用于指示该响应方在每个扇区内的发送次数与该发起方进行扇区扫描次数的对应关系。
在又一种可实现方式中,该发起方的扇区扫描参数还包括如下至少一种信息:
该第一帧的帧类型、该发起方是否请求进行发射扇区扫描的指示信息、该发起方是否请求进行接收扇区扫描的指示信息、反馈类型的指示信息、该第一帧是否携带接收端的训练序列的指示信息、该训练序列的长度指示信息;
其中,该反馈类型的指示信息,用于指示该发起方与该响应方之间反馈信息的传输方式是否采用隧道透传机制OCT。
在上述第一方面或第二方面任一所述的扇区扫描方法的基础上,在一种实现方式中,该响应方的扇区扫描参数包括如下中的至少一种信息:
该响应方进行扇区扫描的起始时间、该响应方的扇区个数、该响应方的天线个数、该响应方的天线互异性的指示信息、该响应节点的天线模式互异性的指示信息、该响应方进行扇区扫描的训练帧的长度、该响应方的训练模式指示信息;
其中,该响应方的扇区个数为该响应方用于进行扇区扫描的扇区个数;
该响应方的天线个数为该响应方用于进行扇区扫描的天线个数;
该响应方的天线互异性的指示信息用于指示:该响应方的最优发送天线是否为该响应方的最优接收天线;
该响应方的天线模式互异性的指示信息用于指示:该响应方的发送天线模式对应的天线权重是否为该响应方的接收天线模式对应的天线权重;
该响应方的训练模式指示信息,用于指示该响应方的训练模式为一端定向的训练模式,还是两端都定向的训练模式。
在另一种可实现方式中,当该响应方的训练模式指示信息用于指示该响应方的训练模式为两端都定向的训练模式时,该响应方的扇区扫描参数还包括:
该响应方的扇区扫描模式的指示信息;其中,该响应方的扇区扫描模式的指示信息,用于指示该发起方在每个扇区内的发送次数与该响应方进行扇区扫描次数的对应关系。
在又一种可实现方式中,该响应方的扇区扫描参数还包括如下至少一种信息:
该第二帧的帧类型、该响应方是否请求进行发射扇区扫描的指示信息、该响应方是否请求进行接收扇区扫描的指示信息、反馈类型的指示信息、该第二帧是否携带接收端的训练序列的指示信息、该训练序列的长度指示信息;
其中,该反馈类型的指示信息,用于指示该发起方与该响应方之间反馈信息的传输方式是否采用隧道透传机制OCT。
第三方面,本申请实施例还可提供一种扇区扫描方法,包括:
网络设备在第一信道向用户设备发送包括有该网络设备的扇区扫描参数的信标帧,并根据该网络设备的扇区扫描参数,在第二信道上进行扇区扫描,该第二信道的频率高于该第一信道的频率。
第四方面,本申请实施例还可提供一种扇区扫描方法,包括:
用户设备在第一信道上接收来自网络设备的包括该网络设备的扇区扫描参数的信标帧;并根据该网络设备的扇区扫描参数,在第二信道上进行扇区扫描,该第二信道的频率高于该第一信道的频率。
该扇区扫描方法,可降低高频信道上信令交互的开销,且使得用户设备可提前获知网络设备的扇区扫描参数,使得网络设备和用户设备可根据该网络设备的扇区扫描参数在高频信道上进行扇区扫描,实现网络设备和用户设备在高频信道上的精准扇区扫描,而避免了扇区的盲目切换,从而有效减小高频信道上进行扇区训练的耗时,提高高频扇区训练效率。
在上述第三方面或第四方面提供的扇区扫描方法的基础上,其中,该网络设备的扇区扫描参数包括如下中的至少一种信息:
该网络设备进行扇区扫描的起始时间、该网络设备的扇区个数、该网络设备的天线个数、该网络设备的天线互异性的指示信息、该网络设备的天线模式互异性的指示信息、该网络设备进行扇区扫描的训练帧的长度、该网络设备的训练模式指示信息;
其中,该网络设备的扇区个数为该网络设备用于进行扇区扫描的扇区个数;
该网络设备的天线个数为该网络设备用于进行扇区扫描的天线个数;
该网络设备的天线互异性的指示信息用于指示:该网络设备的最优发送天线是否为该网络设备的最优接收天线;
该网络设备的天线模式互异性的指示信息用于指示:该网络设备的发送天线模式对应的天线权重是否为该网络设备的接收天线模式对应的天线权重;
该网络设备的训练模式指示信息,用于指示该网络设备的训练模式为一端定向的训练模式,还是两端都定向的训练模式。
该网络设备的扇区扫描参数中包括有该网络设备进行扇区扫描的起始时间以及该网络设备进行扇区扫描的训练帧的长度,可使得网络设备和用户设备基于该起始时间以及该训练帧的长度,实现同步扇区切换,使得网络设备和用户设备采用相同的频率或节拍进行扇区切换,实现了网络设备和用户设备的精准扇区切换,减小了高频信道上进行扇区扫描的耗时,提高扇区扫描的效率。
可选的,当该网络设备的训练模式指示信息用于指示该网络设备的训练模式为两端都定向的训练模式时,该网络设备的扇区扫描参数还包括:
该网络设备的扇区扫描模式的指示信息,和,重复次数的指示信息;
该网络设备的扇区扫描模式的指示信息,用于指示该用户设备在每个扇区内的发送次数与该网络设备进行扇区扫描次数的对应关系;
该重复次数的指示信息,用于指示该用户设备在每个扇区内的发送次数,或者,该网络设备进行扇区扫描次数。
可选的,网络设备的扇区扫描参数还包括如下至少一种信息:
反馈类型的指示信息、该信标帧是否携带接收端的训练序列的指示信息、该训练序列的长度指示信息;
其中,该反馈类型的指示信息,用于指示该网络设备与该用户设备之间反馈信息的传输方式是否采用隧道透传机制OCT。
第五方面,本申请实施例还可提供一种发起方或网络设备侧的扇区扫描装置。在一种方式中,装置可以是发起方设备,也可以是发起方设备内的芯片。该发起方可以为网络设备,也可以为用户设备。在另一种方式中,该装置可以是网络设备,也可以是网络设备内的芯片。
该装置能实现上述第一方面中任一实现方式涉及发起方的任意功能,或第三方面中任一实现方式涉及网络设备的任意功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实现方式中,当该装置为发起方设备或网络设备时,发起方设备可包括:处理器和收发器,所述处理器又称控制器可被配置为支持发起方设备或网络设备执行上述方法中相应的功能。收发器包括低频收发器和高频收发器,低频收发器用于支持发起方设备与响应方设备之间在低频信道上的通信,以在低频信道上向响应方设备发送上述方法中所涉及的信息或指令,并低频信道上接收响应方设备发送的信息或指令;或者,用于支持网络设备与用户设备之间在低频信道上的通信,以在低频信道上向用户设备发送上述方法中所涉及的信息或指令。高频收发器,用于支持该发起方和该响应方在高频信道上的扇区扫描;或者,用于支持网络设备与用户设备在高频信道上的扇区扫描。可选的,发起方设备还可以包括存储器,所述存储器用于与处理器耦合,其保存发起方设备或网络设备必要的程序指令和数据。
在一种可能的实现方式中,该装置包括:处理器、存储器、收发机、天线。其中,处 理器也称控制器,主要用于对整个装置进行控制,执行计算机程序指令,以支持装置执行上述第一方面或第三方面中任一方法实施例中所描述的动作等。存储器主要用于存储保存发起方设备或网络设备必要的程序指令和数据。收发机主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。
在一种可能的实现方式中,当该装置为发起方设备或网络设备内的芯片时,该芯片包括:处理模块和收发模块,所述处理模块例如可以是处理器,又称控制器,例如,可用于生成各类消息和信令,并对各类消息按照协议封装后,进行编码,调制,放大等处理,所述处理器还可以用于解调,解码,解封装后获得信令和消息;所述收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。该处理模块可执行存储单元存储的计算机执行指令,以支持发起方设备或网络设备执行上述方法中相应的功能。可选地,所述存储单元可以为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是发起方设备或网络设备内的位于芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第一方面或第三方面的扇区扫描方法的程序执行的集成电路。
第六方面,本申请实施例提供一种应用于响应方或用户设备侧的扇区扫描装置。在一种方式中,该装置可以响应方设备,也可以是响应方设备内的芯片。在另一种方式中,该装置可以是用户设备,也可以是用户设备内的芯片。
该装置具有实现上述第二方面中任一实现方式所涉及响应方的任意功能,或第四方面中任一实现方式所涉及用户设备的任意功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实现方式中,该装置可为响应方设备或用户设备,该响应方设备或用户设备可包括:处理器和收发器,所述处理器又称控制器,可被配置为支持响应方设备或用户设备执行上述方法中相应的功能。收发器包括低频收发器和高频收发器。低频收发器用于支持响应方设备与发起方设备之间的通信,以接收发起方设备在低频信道上传输的上述方法中所涉及的信息或指令,并在低频信道上向发起方发送上述方法中所涉及的信息或指令;或者,用于支持网络设备与用户设备之间的通信,以接收网络设备在低频信道上传输的上述方法中所涉及的信息或指令。高频收发器,用于支持该发起方和该响应方在高频信道上的扇区扫描;或者,用于支持网络设备与用户设备在高频信道上的扇区扫描。可选的,响应方设备还可以包括存储器,所述存储器用于与处理器耦合,其保存响应方设备或用户设备必要的程序指令和数据。
在一种可能的实现方式中,该装置包括:处理器、存储器、收发机、天线。其中,处理器主要用于对整个装置进行控制,执行计算机程序指令,以支持装置执行上述第二方面或第四方面中任一方法实施例中所描述的动作等。存储器主要用于存储保存响应方设备或用户设备必要的程序指令和数据。收发机主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。
在一种可能的实现方式中,该装置可以为响应方设备或用户设备内的芯片,该芯片包 括:处理模块和收发模块,所述处理模块例如可以是处理器,又称控制器,例如,可用于生成各类消息和信令,并对各类消息按照协议封装后,进行编码,调制,放大等处理,所述处理器还可以用于解调,解码,解封装后获得信令和消息;所述收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。该处理模块可执行存储单元存储的计算机执行指令,以支持响应方设备或用户设备执行上述方法中相应的功能。可选地,所述存储单元可以为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述响应方设备或用户设备内的位于所述芯片外部的存储单元,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。
其中,上述任一处提到的处理器,可以是一个CPU,微处理器,ASIC,或一个或多个用于控制上述第二方面或第四方面的扇区扫描方法的程序执行的集成电路。
第七方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,所述指令可以由处理电路上的一个或多个处理器执行。当其在计算机上运行时,使得计算机执行上述第一方面、第二方面、第三方面或第四方面中任一方面中的任意可能的实现方式中的扇区扫描方法。
第八方面,本申请实施例提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行第一方面、第二方面、第三方面或第四方面中任一方面中的任意可能的实现方式中的扇区扫描方法。
第九方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持发起方设备实现上述第一方面、或者,支持响应方设备实现上述第二方面所涉及的功能,或者支持网络设备执行上述第三方面所涉及的功能,或者,支持用户设备执行上述第四方面所涉及的功能,例如生成或处理上述各方面中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存数据发送设备必要的程序指令和数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十方面,本申请实施例提供了一种芯片,包括处理器,用于从存储器中调用并运行所述存储器中存储的指令,使得安装有所述芯片的装置执行上述各方面中的方法。
第十一方面,本申请实施例提供另一种芯片,包括:输入接口、输出接口、处理器和存储器,所述输入接口、输出接口、所述处理器以及所述存储器之间通过内部连接通路相连,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器用于执行上述各方面中的方法。
第十二方面,本申请实施例提供一种网络系统,包括:发起方设备以及响应方设备;发起方设备以及响应方设备连接,发起方设备为上述任一所述的发起方设备,执行上述第一方面所述的发起方执行的扇区扫描方法,响应方设备每个第二终端设备为上述任一所述的响应方设备,执行上述第二方面任一所述的响应方执行的扇区扫描方法。
第十三方面,本申请实施例还可提供一种网络系统,包括:网络设备以及用户设备;网络设备以及用户设备连接,网络设备为上述任一所述的网络设备,执行上述第三方面所述的网络设备执行的扇区扫描方法,用户设备为上述任一所述的网络设备,执行上述第四方面任一所述的用户设备执行的扇区扫描方法。
本申请实施例提供的扇区扫描方法及相关装置,可通过发起方在第一信道上响应方发送包括该发起方的扇区扫描参数的第一帧,并接收该响应方在该第一信道上返回的包括该 响应方的扇区扫描参数的第二帧,可使得该发起方可根据该响应方的扇区扫描参数,该第二信道上进行扇区扫描参,使得响应方可根据该发起方的扇区扫描参数在该第二信道上进行扇区扫描。该扇区扫描方法,该发起方和响应方通过提前在低频信道上交互各自的扇区扫描参数,降低了高频信道上信令交互的开销,且使得该发起方和响应方提前获知扇区扫描参数,并在高频信道上进行精准的扇区扫描,而避免了扇区的盲目切换,从而有效减小了高频信道上进行扇区扫描的耗时,提高扇区扫描的效率。
附图说明
图1为本申请各实施例提供的一种WLAN的应用场景示意图;
图2为本申请实施例提供的一种网络设备的结构示意图;
图3为本申请实施例提供的一种用户设备的结构示意图;
图4为本申请实施例提供的一种设备间采用OCT传输信息的场景示意图;
图5为本申请实施例提供的一种扇区扫描方法的流程图;
图6为本申请实施例提供的一种波束赋形训练的请求帧的帧结构示意图;
图7为本申请实施例提供的一种波束赋形训练的请求帧中的定向波束赋形训练控制元素的结构示意图;
图8为本申请实施例提供的一种波束赋形训练的响应帧的帧结构示意图;
图9为本申请实施例提供的一种扇区扫描方法中站点1和站点2进行扇区扫描的信令流程图一;
图10为本申请实施例提供的一种扇区扫描方法中站点1和站点2进行扇区扫描的信令流程图二;
图11为本申请实施例提供的一种扇区扫描方法中站点1和站点2进行扇区扫描的信令流程图三;
图12为本申请实施例提供的另一种扇区扫描方法的流程图;
图13为本申请实施例提供的一种信标帧中多带宽元素的预设子元素的结构示意图;
图14为本申请实施例提供的一种扇区扫描方法中AP和站点进行扇区扫描的信令流程图一;
图15为本申请实施例提供的一种扇区扫描方法中AP和站点进行扇区扫描的信令流程图二;
图16为本申请实施例提供的又一种扇区扫描方法中AP与站点进行扇区扫描的信令流程图;
图17为本申请实施例提供的一种扇区扫描装置的结构示意图一;
图18为本申请实施例所述的扇区扫描装置可能的产品形态的结构图一;
图19为本申请实施例提供的一种扇区扫描装置的结构示意图二;
图20为本申请实施例所述的扇区扫描装置可能的产品形态的结构图二。
具体实施方式
本申请各实施例提供一种扇区扫描方法、发起方及响应方设备、网络设备及用户设备, 其中,网络设备为具有无线收发功能的无线通信装置,可以包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band Unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为支持5G协议的基站等。用户设备是一种具有无线收发功能的通信装置,用户设备还可以称为站点,可以是无线传感器、无线通信终端或移动终端,如支持WIFI通讯功能的移动电话(或称为“蜂窝”电话)和具有无线通信功能的计算机。例如,可以是支持WiFi通讯功能的便携式、袖珍式、手持式、计算机内置的,可穿戴的,或者车载的无线通信装置,它们与无线接入网交换语音、数据等通信数据。
应理解,本申请实施例提供的方法和装置,可适用于各种无线通信系统中,例如,无线局域网(Wireless Local Area Networks,WLAN)系统,该通信系统可以进行波束赋形训练,例如802.11ad标准、802.11ay标准及其标准的后续改进标准的WLAN系统。以WLAN为例,图1为本申请实施例提供的一种WLAN的应用场景示意图。如图1所示,该WLAN中包括一个或多个基本服务集,一个基本服务集可包括一个网络设备、至少一个用户设备。
参见图1可知,不同频率信道的信号传输距离不同,因此网络设备的覆盖范围不同。其中,具有BF训练的高频信道的覆盖范围,大于无BF训练的高频信道的覆盖范围,而低频信道的覆盖范围可大于该具有BF训练的高频信道的覆盖范围。
本申请下述各实施例提供的方案可适用于用户设备与网络设备之间的通信,用户设备与用户设备之间的通信,还可以适用于网络设备与网络设备之间的通信。
本申请下述各实施例所涉及的设备(例如网络设备,和,用户设备)可以为具有双模通信功能的设备,也就是具有低频(low frequency,LF)信道通信模式,和高频(high frequency,HF)信道通信模式的设备。图2为本申请实施例提供的一种网络设备的结构示意图。如图2所示,该网络设备包括控制器(controller)、HF模块及LF模块,HF模块可用于生成和发送高频信号,LF模块可用于生成和发送低频信号。其中,该控制器可存储有HF模块和LF模块的公共信息(common info)。HF模块可包括:HF介质访问控制(Media Access Control,MAC)层模块和HF物理(Physical layer,PHY)层模块;LF模块可包括:LF MAC层模块和LF PHY层模块。控制器可对该HF模块和该LF模块进行控制和协调。该HF模块和该LF模块可位于网络设备内的同一个芯片中,也可分别位于一个独立的芯片中。
图3为本申请实施例提供的一种用户设备的结构示意图。如图3所示,该用户设备包括控制器(controller)、HF模块及LF模块,HF模块可用于生成和发送高频信号,LF模块可用于生成和发送低频信号。其中,该控制器可存储有HF模块和LF模块的公共信息。HF模块可包括:HF MAC层模块和HF PHY层模块;LF模块可包括:LF MAC层模块和LF PHY层模块。控制器可对该HF模块和该LF模块进行控制和协调。该HF模块和该LF模块可位于用户设备内的同一个芯片中,也可分别位于一个独立的芯片中。
无论是网络设备还是用户设备,其通信双方均可以为双模设备,若该通信双方的设备均支持隧道透传机制(On-Channel Tunneling,OCT),则该通信双方的设备可采用OCT 技术,在低频信道上传输高频信道上的信息。图4为本申请实施例提供的一种设备间采用OCT传输信息的场景示意图。如图4所示,设备1可采用OCT,将高频信道的传输信息,传递至设备1的LF MAC层模块的管理实体,又称低频的介质访问控制管理实体(Media Access Control Management Entity,MLME)。由该设备1的LF MAC层模块的管理实体进行MAC层处理后,由该设备1的LF PHY层模块进行物理层处理,以封装成低频传输帧,并通过设备1的低频发射机以分组的方式传输至设备2的低频接收机。该设备2的低频接收机接收该低频传输帧后,依次由设备2的LF PHY层模块、设备2的LF MAC层模块进行处理后,将得到的信息传输至设备2的HF MAC层模块的管理实体,又称高频的MLME,从而实现高频信息的传输。
在本申请实施例中,通信双方还可以称为发起方和响应方。也就是说,发起方可以为用户设备或网络设备,响应方也可以为用户设备或网络设备。本申请实施例中,发起方和响应方提前在低频信道上交互各自的扇区扫描参数,降低了高频信道上信令交互的开销,且使得发起方和响应方可提前获知对方的扇区扫描参数,可使得各自根据对端的扇区扫描参数在高频信道上进行扇区扫描,即发起方可根据该响应方的扇区扫描参数在高频信道上进行扇区扫描,响应方可根据发起方的扇区扫描参数在高频信道上进行扇区扫描,实现发起方和响应方在高频信道上的精准扇区扫描,而避免了扇区的盲目切换,从而有效减小了高频信道上进行扇区训练的耗时,提高高频扇区训练效率。
如下结合多个示例,对本申请实施例所提供的扇区扫描方法进行说明。
图5为本申请实施例提供的一种扇区扫描方法的流程图。如图5所示,该扇区扫描方法可包括如下:
S501、发起方在第一信道上向响应方发送第一帧;该第一帧包括:该发起方的扇区扫描参数。
该发起方的扇区扫描参数,用于使得响应方可根据该发起方的扇区扫描参数在第二信道上进行扇区扫描。
在该种实现方式中,该发起方可以为网络设备,也可以为用户设备,该响应方可以为网络设备,也可以为用户设备。例如,若发起方为网络设备,则该响应方为网络设备;若该发起方为用户设备,则该响应方可以为网络设备或用户设备。其中,该发起方还可称为请求方或者请求端,该响应方还可称为响应端。
该发起方和该响应方均可以为双模通信设备,即该发起方和响应方在支持第一信道的通信模式的情况下,还支持第二信道的通信模式。
该第一信道可以为低频信道,该低频信道例如可以为2.4GHz频道、也可以为5.8GHz频道。当然,该低频信道还可以为其他低频的信道,上述仅为示例,本申请不对此进行限制。该第二信道可以为高频信道,该高频信道例如可以为毫米波信道,如60GHz信道。当然,该高频信道还可以为其他频率的信道,上述仅为示例,本申请不对此进行限制。该第二信道的带宽可高于或等于预设信道带宽,该预设信道带宽可以为高频信道下的单信道带宽。举例来说,该第二信道的带宽可以为高频信道下的单信道带宽,也可以为整数倍如2倍的高频信道下的单信道带宽。
可选的,在第一信道上发送的第一帧为全向发送的。由于低频信道,即该第一信道上传输的信号的衰减较小,那么在该第一信道上采用全向方式发送包括该发起方的扇区扫描 参数的第一帧,可保证了发起方的扇区扫描参数准确达到响应方,保证了响应方在第二信道上的精确扇区扫描。
由于低频信道通常无需进行扇区扫描,在该低频信道上传输的第一帧中所包括的发起方的扇区扫描参数实际为用于对高频信道进行扇区扫描的参数。
在本申请实施例中,该发起方可采用OCT技术,在该第一信道上向该响应方发送包括有该发起方的扇区扫描参数的该第一帧。该发起方也可采用其它的技术,该第一信道上向响应方发送该发起方的扇区扫描参数,只要该响应方可获取该发起方的扇区扫描参数即可。该发起方可将该发起方的扇区扫描参数,传递至发起方的LF MAC层模块的管理实体,又称低频的MLME。由于该发起方的LF MAC层模块进行MAC层处理后,由该发起方的LF PHY层模块进行物理层处理,以封装成低频传输帧即该第一帧,并通过发起方的低频发射机以分组的方式传输至响应方的低频接收机。
S502、响应方在该第一信道上接收来自发起方的第一帧,该第一帧包括:该发起方的扇区扫描参数。
对于该响应方来说,该响应方可采用OCT技术,在该第一信道上接收来自发起方发送的包括该发起方的扇区扫描参数的该第一帧。该响应方也可采用其它的技术,在该第一信道上接收来自该发起方的该发起方的扇区扫描参数,只要该响应方可获取该发起方的扇区扫描参数即可。
该响应方在接收到该第一帧后,可依次由响应方的LF PHY层模块、响应方的LF MAC层模块进行处理后,将得到的信息传输至响应方的HF MAC层模块的管理实体,又称高频的MLME,从而得到该发起方的扇区扫描参数。
S503、响应方还该第一信道上向发起方发送第二帧,该第二帧包括:该响应方的扇区扫描参数。
该第一帧例如可以为该第一信道上的管理帧,该第二帧例如也可以为该第一信道上的管理帧。例如,该第一帧可以为请求帧,如波束赋形训练请求(beam forming_training_request)帧,该第二帧可以为响应帧,如波束赋形训练响应(beam forming_training_response)帧。
在本申请实施例中,该响应方可采用OCT技术,在该第一信道上向该发起方发送包括有该响应方的扇区扫描参数的该第二帧。该响应方也可采用其它的技术,该第一信道上向发起方发送该响应方的扇区扫描参数,只要该发起方可获取该响应方的扇区扫描参数即可。
该响应方可将该响应方的扇区扫描参数,传递至响应方的LF MAC层模块的管理实体,又称低频的MLME。由于该发起方的LF MAC层模块进行MAC层处理后,由响应方的LF PHY层模块进行物理层处理,以封装成低频传输帧即该第二帧,并通过响应方的低频发射机以分组的方式传输至发起方的低频接收机。
可选的,在第一信道上发送的第二帧为全向发送的。由于低频信道,即该第一信道上传输的信号的衰减较小,那么在该第一信道上采用全向方式发送包括该响应方的扇区扫描参数的第二帧,可保证了响应方的扇区扫描参数准确达到发起方,保证了发起方在第二信道上的精确扇区扫描。
S504、发起方在该第一信道上接收来自响应方的该第二帧,该第二帧包括:该响应方的扇区扫描参数。
对于该发起方来说,该发起方可采用OCT技术,在该第一信道上接收来自响应方发送的包括该响应方的扇区扫描参数的该第二帧。该发起方也可采用其它的技术,在该第一信道上接收来自该响应方的该响应方的扇区扫描参数,只要该响应方可获取该响应方的扇区扫描参数即可。
该发起方在接收到该第二帧后,可依次由发起方的LF PHY层模块、响应方的LF MAC层模块进行处理后,将得到的信息传输至发起方的HF MAC层模块的管理实体,又称高频的MLME,从而得到该响应方的扇区扫描参数。
通过执行上述S501和S502,可使得响应方获知该发起方的扇区扫描参数,通过执行上述S503和S504使得发起方获知该响应方的扇区扫描参数。即本申请实施例的方案,可使得发起方和响应方通过第一帧和第二帧进行交互,使得发起方和响应方获知对方的扇区扫描参数。
S505、发起方根据该响应方的扇区扫描参数,在第二信道上进行扇区扫描,该第二信道的频率高于该第一信道的频率。
发起方在基于响应方返回的第二帧获取该响应方的扇区扫描参数,并根据该响应方的扇区扫描参数,在该第二信道上进行扇区扫描。由于扇区扫描过程还受自身的扇区扫描参数的影响,因而,该发起方可根据该响应方的扇区扫描参数在该第二信道上进行扇区扫描的过程中,还可结合该发起方的扇区扫描参数。
该发起方可根据该响应方的扇区扫描参数,在该第二信道上,进行该发起方的接收扇区的扫描以及发射扇区的扫描。示例地,该发起方可根据该响应方的扇区扫描参数,在该第二信道上接收响应方发送的多个训练帧,以进行该发起方的接收扇区扫描。通过该发起方的接收扇区扫描,该发起方可确定该发起方的最优接收扇区以及该响应方的最优发射扇区。其中,该响应方在该第二信道上所发送的该多个训练帧中,每个训练帧可具有一个反射扇区,即,该响应方在该第二信道上,在多个发射扇区内的每个发射扇区内,发射至少一个训练帧。该每个发射扇区内发送的该至少一个训练帧具有同一个发射扇区。不同发射扇区内发射的训练帧,可具有不同的发射扇区。
该发起方可根据该响应方的扇区扫描参数,进行接收扇区的切换,以该第二信道上依次采用多个接收扇区接收该响应方发送的训练帧,并根据在多个接收扇区内训练帧的接收情况,确定该发起方的最优接收扇区,该发起方的最优接收扇区内接收到的训练帧对应的发射扇区即为该响应方的最优发射扇区。该发起方的最优接收扇区可以为该发起方接收到的该多个接收扇区内的训练帧的接收信号质量最强、信噪比最高等对应的接收扇区。
该发起方还可根据该响应方的扇区扫描参数,在第二信道上发送一个或多个训练帧,以进行发起方的发射扇区的扫描,使得响应方根据该发起方的扇区扫描参数在该第二信道上进行响应方的接收扇区扫描。
如上所示的训练帧可以为扇区扫描(Sector Sweeping,SSW)帧。
S506、响应方根据该发起方的扇区扫描参数,在该第二信道上进行扇区扫描。
响应方在基于发起方所发送的第一帧获取该发起方的扇区扫描参数,根据该发起方的扇区扫描参数,在该第二信道上进行扇区扫描。由于扇区扫描过程还受自身的扇区扫描参数的影响,因而,该响应方可根据该发起方的扇区扫描参数在该第二信道上进行扇区扫描的过程中,还可结合自身即该响应方的扇区扫描参数。
该响应方可根据该发起方的扇区扫描参数,在该第二信道上,进行该响应方的接收扇区的扫描以及发射扇区的扫描。示例地,该响应方可根据该发起方的扇区扫描参数,在第二信道上发送多个训练帧,以进行响应方的发射扇区的扫描,使得发起方根据该响应方的扇区扫描参数在该第二信道上进行发起方的接收扇区扫描。
该响应方还可根据该发起方的扇区扫描参数,在该第二信道上接收发起方发送的一个或多个训练帧,以进行该响应方的接收扇区扫描。通过该响应方的接收扇区扫描,该响应方可确定该响应方的最优接收扇区以及该发起方的最优发射扇区。
在一种示例中,对于该一个训练帧,若该发起方根据该响应方的扇区扫描参数确定该响应方支持天线的互异性以及天线模式的互异性,便可确定该发起方进行接收扇区扫描所确定的响应方的最优发射扇区即为该响应方的最优接收扇区;若该发起方根据该发起方的扇区扫描参数确定该发起方也支持天线互异性以及天线模式的互异性,则可确定该发起方进行接收扇区扫描所确定该发起方的最优接收扇区即为该发起方的最优发射扇区。因而,该发起方可在该第二信道上,在该响应方的最优发射扇区对应的时间段内,采用该发起方的最优发射扇区向响应方发送该训练帧。该训练帧还可携带有该响应方的最优发射扇区。
该响应方可根据该发起方的扇区扫描参数,进行接收扇区的切换,以该第二信道上依次采用多个接收扇区接收该发起方发送的训练帧,一旦接收到该训练帧,便可确定该响应方的最优发射扇区,以及该响应方的最优接收扇区。
在另一种示例中,若对于多个训练帧,该发起方可在该第二信道上所发送的该多个训练帧中,每个训练帧可具有一个发射扇区,即,该发起方在该第二信道上,在多个发射扇区内的每个发射扇区内,发射至少一个训练帧。该每个发射扇区内发送的该至少一个训练帧具有同一个发射扇区。
该响应方可根据该发起方的扇区扫描参数,进行接收扇区的切换,以该第二信道上依次采用多个接收扇区接收该发起方发送的训练帧,并根据在多个接收扇区内训练帧的接收情况,确定该响应方的最优接收扇区,该响应方的最优接收扇区内接收到的训练帧对应的发射扇区即为该发起方的最优发射扇区。该发起方的最优接收扇区可以为该发起方接收到的该多个接收扇区内的训练帧的接收信号质量最强、信噪比最高等对应的接收扇区。
通过执行上述S505可使得该发起方确定该发起方的最优接收扇区以及该响应方的最优发射扇区,通过执行上述S506可使得响应方确定该响应方的最优接收扇区以及该发起方的最优发射扇区。
为使得发起方和响应方可获知各自的最优发射扇区,在一种实现方式中,可在通过上述S506进行响应方的接收扇区扫描的过程中,由该发起方将该响应方的最优发射扇区的信息携带在该第二信道上的训练帧中,发送至响应方,使得响应方获知该响应方的最优发射扇区。
在通过执行上述S506进行响应方的接收扇区扫描后,该响应方可在该第二信道上向发起方发送反馈帧如扇区扫描反馈(Sector Sweeping Feedback,SSW Feedback)帧中携带该发起方的最优发射扇区的信息,使得发起方在该第二信道上接收该反馈帧,从而获知该发起方的最优发射扇区的信息。该发起方在接收到该反馈帧后,还可在该第二信道上向响应方发送确认(Acknowledgement,ACK)帧,以告知该响应方,该发起方已接收到该反馈帧。
在通过执行上述S606进行响应方的接收扇区扫描后,该响应方还可采用OCT,在该第一信道上向该发起方发送包括该发起方的最优发射扇区的信息的反馈帧,使得发起方采用OCT在该第一信道上接收该反馈帧,从而获知该发起方的最优发射扇区的信息。该发起方在接收到该反馈帧后,还可采用OCT,在该第一信道上向响应方发送ACK帧,以告知该响应方,该发起方已接收到该反馈帧。
为使得发起方和响应方可获知各自的最优发射扇区,在另一种实现方式中,通过执行上述S505可使得该发起方确定该发起方的最优接收扇区,若该发起方根据该发起方的扇区扫描参数确定该发起方支持天线互异性,则可确定该发起方的最优接收扇区为该发起方的最优发射扇区。通过执行上述S506可使得响应方确定该响应方的最优接收扇区,若该响应方根据该响应方的扇区扫描参数确定该响应方支持天线互异性,则可确定该响应方的最优接收扇区为该响应方的最优发射扇区。
若发起方获知该发起方的最优发射扇区以及最优接收扇区,便可在高频信道上采用该发起方的最优发射扇区向响应方发送信息,并在高频信道上采用该发起方的最优接收扇区接收响应方所发送的信息。若响应方获知该响应方的最优发射扇区以及最优接收扇区,便可在高频信道上采用该响应方的最优发射扇区向发起方发送信息,并在高频信道上采用该响应方的最优接收扇区接收响应方所发送的信息。如此,便可使得收发两端的设备在高频信道上分别采用各自的最优发射扇区以及最优接收扇区与对端设备进行通信,即实现了收发两端设备的定向收发,提高了高频信道上的信息传输距离。
本申请实施例提供的扇区扫描方法,可通过发起方在第一信道上响应方发送包括该发起方的扇区扫描参数的第一帧,并接收该响应方在该第一信道上返回的包括该响应方的扇区扫描参数的第二帧,可使得该发起方可根据该响应方的扇区扫描参数,该第二信道上进行扇区扫描参,使得响应方可根据该发起方的扇区扫描参数在该第二信道上进行扇区扫描。该扇区扫描方法,该发起方和响应方通过提前在低频信道上交互各自的扇区扫描参数,降低了高频信道上信令交互的开销,且使得该发起方和响应方提前获知扇区扫描参数,并在高频信道上进行精准的扇区扫描,而避免了扇区的盲目切换,从而有效减小了高频信道上进行扇区扫描的耗时,提高扇区扫描的效率。
在一个可能的实现方式中,如上所示的该发起方的扇区扫描参数可包括如下中的至少一种信息:该发起方进行扇区扫描的起始时间(Starting time)、该发起方的扇区个数(number of sectors)、该发起方的天线个数(number of antennas)、该发起方的天线互异性(antenna reciprocity)的指示信息、该发起方的天线模式互异性(antenna pattern reciprocity)的指示信息、该发起方进行扇区扫描的训练帧的长度(training frame length)、该发起方的训练模式(Training mode)指示信息。
其中,该发起方的扇区个数为该发起方用于进行扇区扫描的扇区个数。
该发起方的扇区扫描参数中包括有该发起方进行扇区扫描的起始时间以及该发起方进行扇区扫描的训练帧的长度,还可使得发起方和响应方基于该起始时间以及该训练帧的长度,实现同步扇区切换,使得发起方和响应方采用相同的频率或节拍进行扇区切换,实现了发起方与响应方的精准扇区切换,减小了高频信道上进行扇区扫描的耗时,提高扇区扫描的效率。
该发起方的天线个数为该发起方用于进行扇区扫描的天线个数。
该发起方的天线互异性的指示信息用于指示:该发起方的最优发送天线是否为该发起方的最优接收天线。示例地,若该发起方的天线互异性的指示信息用于指示:该发起方的最优发送天线为该发起方的最优接收天线,则该发起方支持天线的互异性。若该发起方的天线互异性的指示信息用于指示:该发起方的最优发送天线不为该发起方的最优接收天线,则该发起方不支持天线的互异性。
该发起方的天线模式互异性的指示信息用于指示:该发起方的发送天线模式对应的天线权重是否为该发起方的接收天线模式对应的天线权重。示例地,若该发起方的天线模式互异性的指示信息用于指示:该发起方的发送天线模式对应的天线权重为该发起方的接收天线模式对应的天线权重,则该发起方支持天线模式的互异性。若该发起方的天线模式互异性的指示信息用于指示:该发起方的发送天线模式对应的天线权重不为该发起方的接收天线模式对应的天线权重,则该发起方不支持天线的互异性。
进行扇区扫描的训练帧例如可以为SSW帧,则该发起方进行扇区扫描的训练帧的长度,例如可用于指示每个SSW帧的长度。
该发起方的训练模式的指示信息,用于指示该发起方的训练模式为一端定向的训练模式,还是两端都定向的训练模式。示例地,若该发起方的训练模式的指示信息为0,则可确定发起方进行扇区扫描时,发起方和响应方中,一端采用定向发送的方式,而另一端采用全向接收的方式,或者,一端采用全向发送的方式,而另一端采用定向接收的方式。若该发起方的训练模式的指示信息为1,则可确定发起方进行扇区扫描时,发起方和响应方中,一端采用定向发送的方式,而另一端采用定向接收的方式。
可选的,当上述该发起方的扇区扫描参数中,发起方的训练模式指示信息用于指示该发起方的训练模式为两端都定向的训练模式时,该发起方的扇区扫描参数还可包括:
该发起方的扇区扫描模式(sweeping mode)的指示信息;其中,该发起方的扇区扫描模式的指示信息,用于指示该响应方在每个扇区内的发送次数与该发起方进行扇区扫描次数的对应关系。
示例地,该发起方的扫描模式的指示信息为0,可用于指示该响应方在每个扇区内发送N次训练帧,而该发起方进行一次扇区扫描;该发起方的扫描模式的指示信息为1,可用于指示该响应方在每个扇区内发起一次训练帧,而在该发起方重复进行N次扇区扫描。N为发起方的扇区个数。
例如,若发起方的接收扇区个数为5,响应方的发射扇区个数为4,则该发起方的扫描模式的指示信息可用于指示,该发起方和该响应方是以5*4模式进行扫描,还是4*5的模式进行扫描。
其中,5*4模式可以为:响应方可在发射扇区1内发送5个SSW帧后,发起方在5个接收扇区内进行一次扇区扫描;响应方在发射扇区2内,发送5个SSW帧后,发起方在5个接收扇区内进行一次扇区扫描;响应方可在发射扇区3内发送5个SSW帧后,发起方在5个接收扇区内进行一次扇区扫描;响应方在发射扇区4内,发送5个SSW帧后,发起方在5个接收扇区内进行一次扇区扫描。整个扇区扫描过程中,响应方在每个发射扇区内发送5个SSW帧,由于该响应方具有4个发射扇区,那么响应方发送的SSW帧的个数为20。
其中,4*5模式可以为:响应方在发射扇区1内发送1个SSW帧,在发射扇区2内发送1个SSW帧,在发射扇区3内发送1个SSW帧,在发射扇区4内进行1次SSW帧,发起方在5个接收扇区内进行第一次扇区扫描。重复执行,直至发起方在5个接收扇区内进行5次扇区扫描。由于在每次扇区扫描过程中,响应方在每个发射扇区发送1个SSW帧,那么在4个发射扇区内,响应方便发送了4个SSW帧,那么5次扇区扫描,则响应方发送的SSW帧的个数为20。
可选的,该发起方的扇区扫描参数还可包括如下至少一种信息:
该第一帧的帧类型、该发起方是否请求进行发射扇区扫描(Is Initiator Transmit Sector Sweep,IsTXSS)的指示信息、该发起方是否请求进行接收扇区扫描(Is Responder Transmit Sector Sweep,IsRXSS)的指示信息、反馈类型(Feedback Type)的指示信息、该第一帧是否携带接收端的训练序列(Training–receive,TRN-R)的指示信息、该训练序列的长度(Training–length,TRN-LEN)指示信息。
可选的,该第一帧的帧类型例如可指示该第一帧为请求帧。
例如,若该IsTXSS的指示信息为1,则可用于指示发起方请求进行发射扇区扫描。若该IsTXSS的指示信息为0,则可用于指示发起方未请求进行发射扇区扫描。若该IsRXSS的指示信息为1,则可用于指示该发起方请求进行接收扇区扫描。若该IsRXSS的指示信息为0,则可用于指示该发起方未请求进行接收扇区扫描。
反馈类型的指示信息,可用于指示该发起方与该响应方之间反馈信息的传输方式是否采用OCT。该响应方反馈至发起方的反馈信息例如可通过SSW反馈帧传输,则该反馈类型的指示信息,可用于指示该SSW反馈帧的传输方式是否采用OCT,即用于指示SSW反馈帧是在第二信道上传输,还是采用OCT在第一信道上进行传输。该发起方至该响应方的反馈信息例如可通过ACK帧传输,则该反馈类型的指示信息,还可用于指示ACK帧的传输方式是否采用OCT,即用于指示ACK帧是在第二信道上传输,还是采用OCT在第一信道上进行传输。
该发起方的扇区扫描参数可携带于该第一帧中的预设位置。例如,该第一帧为请求帧,如波束赋形训练的请求帧。图6为本申请实施例提供的一种波束赋形训练的请求帧的帧结构示意图,如图6所示,该波束赋形训练的请求帧可包括:1字节的类别(Category)、1字节的功能(Action)、1字节的对话令牌(Dialog Token)以及预设字节的定向波束赋形训练控制元素(Directional BF Training Control element)。该预设字节例如可大于或等于1字节。其中,对话令牌可以为该波束赋形训练的请求帧对应的会话值,可用于匹配该波束赋形训练的请求帧,以将该波束赋形训练的请求帧与其它的请求帧进行区分,以避免混淆。
该发起方的扫描参数可携带于如图6所示的定向波束赋形训练控制元素中。
图7为本申请实施例提供的一种波束赋形训练的请求帧中的定向波束赋形训练控制元素的结构示意图。如图7所示,该定向波束赋形训练控制元素可包括:元素标识(Element ID)字段、长度(Length)字段、对话令牌(Dialog Token)字段、帧类型(Frame type)字段、起始时间(Starting Time)字段、扇区个数(Number of sectors)、天线个数(Number of antennas)字段、IsTXSS指示字段、IsRXSS指示字段、天线互异性(Antenna reciprocity)字段、天线模式互异性(Antenna pattern Reciprocity)字段、训练帧长(Training frame length)字段、反馈类型(Feedback type)字段、训练模式(TRN mode)字段、波束追踪 请求(Beam Tracking Request)字段、训练序列的长度(TRN-LEN)字段、扫描模式(Sweeping mode)字段以及重复次数(Repeat Times)字段。
其中,帧类型字段、IsTXSS指示字段、IsRXSS指示字段、反馈类型(Feedback type)字段、波束追踪请求字段、训练序列的长度字段、扫描模式字段以及重复次数字段,可以为可选的字段,也就是说,在第一帧中的向波束赋形训练控制元素中,可包括该可选的字段,也可不包括该可选的字段。
帧类型字段用于携带,该第一帧的帧类型,即用于指示该第一帧为请求帧。
该起始时间字段可携带,该发起方进行扇区扫描的起始时间。
该扇区个数字段可携带,该发起方的扇区个数。该天线个数字段可携带,该发起方的天线个数。
该IsTXSS指示字段可携带,该发起方是否请求进行发射扇区扫描的指示信息。
该IsRXSS指示字段可携带,该发起方是否请求进行接收扇区扫描的指示信息。
该天线互异性字段可携带,该发起方的天线互异性的指示信息。
该天线模式互异性字段可携带,该发起方的天线模式互异性的指示信息。
该训练帧长字段可携带,该发起方进行扇区扫描的训练帧的长度。
该反馈类型字段,可携带反馈类型的指示信息。
该训练模式字段,可携带该发起方的训练模式指示信息。
当该训练模式字段所携带的,该发起方的训练模式指示信息用于指示该发起方的训练模式为一端定向的训练模式,如该训练模式字段的值为0,则该定向波束赋形训练控制元素可包括:波束追踪请求字段。其中,该波束追踪请求字段可携带,该第一帧是否携带接收端的训练序列的指示信息。
当该波束追踪请求字段所携带的指示信息,指示该第一帧携带接收端的训练序列,则该定向波束赋形训练控制元素还可包括:训练序列的长度字段。其中,该训练序列的长度字段可携带,该训练序列的长度指示信息。
当该训练模式字段所携带的,该发起方的训练模式指示信息用于指示该发起方的训练模式为两端定向的训练模式,如该训练模式字段的值为1,则该定向波束赋形训练控制元素还可包括:扫描模式字段。其中,该扫描模式字段可携带,该发起方的扇区扫描模式的指示信息。
当该扫描模式字段所携带的该发起方的扫描模式的指示信息,用于指示该响应方在每个扇区内发起一次训练帧,而在该发起方重复进行N次扇区扫描,N为发起方的扇区个数,则该定向波束赋形训练控制元素还可包括:重复次数(Repeat Times)字段。
该重复次数的字段可用于指示该发起方进行扇区扫描的重复次数,即N。可以理解的,响应方可根据发起方的扇区个数获得发起方进行扇区扫描的重复次数,因此,也可以不包括该重复次数字段。
一个可能的实现方式中,如上所示的该响应方的扇区扫描参数可包括如下中的至少一种信息:
该响应方进行扇区扫描的起始时间、该响应方的扇区个数、该响应方的天线个数、该响应方的天线互异性的指示信息、该响应节点的天线模式互异性的指示信息、该响应方进 行扇区扫描的训练帧的长度、响应方的训练模式指示信息。
该响应方的扇区扫描参数中包括有该响应方进行扇区扫描的起始时间以及该响应方进行扇区扫描的训练帧的长度,可使得发起方和响应方基于该起始时间以及该训练帧的长度,实现同步扇区切换,使得发起方和响应方采用相同的频率或节拍进行扇区切换,实现了发起方与响应方的精准扇区切换,减小了高频信道上进行扇区扫描的耗时,提高扇区扫描的效率。
其中,该响应方的扇区个数为该响应方用于进行扇区扫描的扇区个数。
该响应方的天线个数为该响应方用于进行扇区扫描的天线个数。
该响应方的天线互异性的指示信息用于指示:该响应方的最优发送天线为该响应方的最优接收天线。示例地,若该响应方的天线互异性的指示信息用于指示:该响应方的最优发送天线为响应方的最优接收天线,则响应方支持天线的互异性。若该响应方的天线互异性的指示信息用于指示:该响应方的最优发送天线不为该响应方的最优接收天线,则该响应方不支持天线的互异性。
该响应方的天线模式互异性的指示信息用于指示:该响应方的发送天线模式对应的天线权重为该响应方的接收天线模式对应的天线权重。示例地,若该响应方的天线模式互异性的指示信息用于指示:该响应方的发送天线模式对应的天线权重为该响应方的接收天线模式对应的天线权重,则该响应方支持天线模式的互异性。若该响应方的天线模式互异性的指示信息用于指示:该响应方的发送天线模式对应的天线权重不为该响应方的接收天线模式对应的天线权重,则该响应方不支持天线的互异性。
进行扇区扫描的训练帧例如可以为SSW帧,则该响应方进行扇区扫描的训练帧的长度,例如可用于指示每个SSW帧的长度。
该响应方的训练模式指示信息,用于指示该响应方的训练模式为一端定向的训练模式,还是两端都定向的训练模式。示例地,若该响应方的训练模式的指示信息为0,则可确定该响应方进行扇区扫描时,发起方和响应方中,一端采用定向发送的方式,而另一端采用全向接收的方式,或者,一端采用全向发送的方式,而另一端采用定向接收的方式。若该响应方的训练模式的指示信息为1,则可确定该响应方进行扇区扫描时,发起方和响应方中,一端采用定向发送的方式,而另一端采用定向接收的方式。
可选的,当该响应方的训练模式指示信息用于指示该响应方的训练模式为两端都定向的训练模式时,该响应方的扇区扫描参数还可包括:
该响应方的扇区扫描模式的指示信息;其中,该响应方的扇区扫描模式的指示信息,用于指示该发起方在每个扇区内的发送次数与该响应方进行扇区扫描次数的对应关系。
示例地,该响应方的扇区扫描模式的指示信息为0,可用于指示发起方在每个扇区内发送N次训练帧,而该响应方进行一次扇区扫描;该响应方的扇区扫描模式的指示信息为1,可用于指示该发起方在每个扇区内发起一次训练帧,而在该响应方重复进行N次扇区扫描。N为响应方的扇区个数。
可选的,该响应方的扇区扫描参数还可包括如下至少一种信息:
该第二帧的帧类型、该响应方是否请求进行发射扇区扫描的指示信息、该响应方是否请求进行接收扇区扫描的指示信息、反馈类型的指示信息、该第二帧是否携带接收端的训练序列的指示信息、该训练序列的长度指示信息。
可选的,该第二帧的帧类型例如可指示该第二帧为响应帧。
例如,若该响应方是否请求进行发射扇区扫描的指示信息为1,则可用于指示响应方请求进行发射扇区扫描。若该响应方是否请求进行发射区扫描的指示信息为0,则可用于指示响应方未请求进行发射扇区扫描。若该响应方是否请求进行接收扇区扫描的指示信息为1,则可用于指示该响应方请求进行接收扇区扫描。若该响应方是否请求进行接收扇区扫描的指示信息为0,则可用于指示该响应方未请求进行接收扇区扫描。
进行扇区扫描的训练帧例如可以为SSW帧,则该响应方进行扇区扫描的训练帧的长度,例如可用于指示每个SSW帧的长度。
反馈类型的指示信息,可用于指示该发起方与该响应方之间反馈信息的传输方式是否采用OCT。该响应方反馈至发起方的反馈信息例如可通过SSW反馈帧传输,则该反馈类型的指示信息,可用于指示该SSW反馈帧的传输方式是否采用OCT,即用于指示SSW反馈帧是在第二信道上传输,还是采用OCT在第一信道上进行传输。该发起方至该响应方的反馈信息例如可通过ACK帧传输,则该反馈类型的指示信息,还可用于指示ACK帧的传输方式是否采用OCT,即用于指示ACK帧是在第二信道上传输,还是采用OCT在第一信道上进行传输。
该响应方的扇区扫描参数可携带于该第二帧中的预设位置。例如,该第二帧为响应帧,如波束赋形训练的响应帧。图8为本申请实施例提供的一种波束赋形训练的响应帧的帧结构示意图,如图8所示,该波束赋形训练的响应帧可包括:1字节的类别(Category)、1字节的功能(Action)、1字节的对话令牌(Dialog Token)、2字节的状态编号(Status Code)以及预设字节的定向波束赋形训练控制元素(Directional BF Training Control element)。该预设字节例如可大于或等于1字节。其中,状态编号可用于反馈该发起方的请求是否成功。该定向波束赋形训练控制元素的具体结构可以与上述图7类似,具体参见上述,在此不再赘述。
如下通过三个具体示例的对本申请实施例提供的该一种实现方式,即通过发起方和响应方交互各自的扇区扫描参数,进而进行扇区扫描的方案进行说明。如下示例中所涉及到的扇区扫描参数包括的具体信令信息已在前面实施例中详细描述,此处不再赘述。
图9为本申请实施例提供的一种扇区扫描方法中站点1和站点2进行扇区扫描的信令流程图一。在该图9的示例中,发起方和响应方均为用户设备,发起方可以为站点2,响应方可以为站点1,则站点2可采用OCT在第一信道上向站点1发送请求帧,如波束赋形训练的请求帧。站点1作为响应方,采用OCT在第一信道上接收站点2发送的请求帧。该请求帧中包括:站点2的扇区扫描参数。
站点1在接收到该请求帧,获取该站点2的扇区扫描参数后,可采用OCT在第一信道上向站点2返回响应帧,如波束赋形训练的响应帧。站点2可采用OCT在第一信道上接收站点1发送的响应帧。该响应帧中包括:站点1的扇区扫描参数。
站点1可在图9所示的第一阶段内,根据该站点2的扇区扫描参数,在第二信道上以多个发射扇区向站点2发送多个SSW帧,使得站点2根据站点1的扇区扫描参数,在第二信道上以多个接收扇区接收该多个SSW帧,继而根据该多个SSW帧的接收情况,确定该站点2的最优接收扇区,以及该站点1的最优发射扇区。
站点2可在图9所示的第二阶段内,根据该站点1的扇区扫描参数,在第二信道上以 多个发射扇区向站点1发送多个SSW帧,使得站点1根据站点2的扇区扫描参数,在第二信道上以多个接收扇区接收该多个SSW帧,继而根据该多个SSW帧的接收情况,确定该站点1的最优接收扇区,以及该站点2的最优发射扇区。其中,第二阶段内,站点2所发送的每个SSW帧可携带该站点2在第一阶段所确定的该站点1的最优发射扇区的信息。
站点1在确定该站点2的最优发射扇区后,还可根据该站点2的扇区扫描参数,在第二信道上向站点2发送携带有该站点2的最优发射扇区的SSW反馈帧。
站点2在接收到该SSW反馈帧的情况下,还可第二信道上向站点1反馈SSW确认帧,以指示其接收该SSW反馈帧。
图10为本申请实施例提供的一种扇区扫描方法中站点1和站点2进行扇区扫描的信令流程图二。在该图10的示例中,发起方和响应方均为用户设备,发起方可以为站点2,响应方可以为站点1,则站点2可采用OCT在第一信道上向站点1发送请求帧,如波束赋形训练的请求帧。站点1作为响应方,采用OCT在第一信道上接收站点2发送的请求帧。该请求帧中包括:站点2的扇区扫描参数。
站点1在接收到该请求帧,获取该站点2的扇区扫描参数后,可采用OCT在第一信道上向站点2返回响应帧,如波束赋形训练的响应帧。站点2可采用OCT在第一信道上接收站点1发送的响应帧。该响应帧中包括:站点1的扇区扫描参数。
站点1可在图10所示的第一阶段内,根据该站点2的扇区扫描参数,在第二信道上以多个发射扇区向站点2发送多个SSW帧,使得站点2根据站点1的扇区扫描参数,在第二信道上以多个接收扇区接收该多个SSW帧,继而根据该多个SSW帧的接收情况,确定该站点2的最优接收扇区,以及该站点1的最优发射扇区。
站点2可在图10所示的第二阶段内,若根据该站点2的扇区扫描参数确定该站点2支持天线互异性以及天线模式的互异性,则可确定该站点2的最优接收扇区即为该站点2的最优发射扇区;若根据该站点1的扇区扫描参数确定该站点1支持天线互异性以及天线模式的互异性,则可确定该站点1的最优发射扇区即为该站点1的最优接收扇区,因而可在第二信道上该站点1的最优发射扇区对应的时间段内以该站点2的最优接收扇区向站点1发送SSW帧,使得站点1根据站点2的扇区扫描参数,在第二信道上以多个接收扇区接收该SSW帧,若接收到该SSW帧,便可获知该SSW帧所携带的该站点1的最优发射扇区。
若站点1可根据该站点1的扇区扫描参数,确定该站点1支持天线互异性以及天线模式的互异性,则可确定该站点1的最优发射扇区即为该站点1的最优接收扇区。
图11为本申请实施例提供的一种扇区扫描方法中站点1和站点2进行扇区扫描的信令流程图三。在该图11对应的示例中,发起方和响应方均为用户设备,发起方可将站点2可作为发起方,采用OCT在第一信道上向站点1发送请求帧,如波束赋形训练的请求帧。站点1作为响应方,采用OCT在第一信道上接收站点2发送的请求帧。该请求帧中包括:站点2的扇区扫描参数。
站点1在接收到该请求帧,获取该站点2的扇区扫描参数后,可采用OCT在第一信道上向站点2返回响应帧,如波束赋形训练的响应帧。站点2可采用OCT在第一信道上接收站点1发送的响应帧。该响应帧中包括:站点1的扇区扫描参数。
站点1可在图11所示的第一阶段内,根据该站点2的扇区扫描参数,在第二信道上以 多个发射扇区向站点2发送多个SSW帧,使得站点2根据站点1的扇区扫描参数,在第二信道上以多个接收扇区接收该多个SSW帧,继而根据该多个SSW帧的接收情况,确定该站点2的最优接收扇区,以及该站点1的最优发射扇区。
站点2可在图11所示的第二阶段内,若根据该站点2的扇区扫描参数确定该站点2支持天线互异性以及天线模式的互异性,则可确定该站点2的最优接收扇区即为该站点2的最优发射扇区。站点2还在第二阶段内,采用OCT,在第一信道上向站点1发送SSW反馈帧,使得站点1采用OCT在第一信道接收该SSW反馈帧。该SSW反馈帧包括:站点1的最优发射扇区的信息,若站点1根据该站点1的扇区扫描参数确定该站点1支持天线互异性以及天线模式的互异性,则可确定该站点1的最优发射扇区即为该站点1的最优接收扇区。
站点1在接收到该SSW反馈帧的情况下,还可采用OCT在第一信道上向站点2反馈SSW确认帧,以指示其接收该SSW反馈帧。
本申请实施例中,还可由网络设备提前在低频信道上向用户设备发送该网络设备的扇区扫描参数,降低了高频信道上信令交互的开销,且使得用户设备可提前获知网络设备的扇区扫描参数,可使得网络设备和用户设备可根据该网络设备的扇区扫描参数在高频信道上进行扇区扫描,实现网络设备和用户设备在高频信道上的精准扇区扫描,而避免了扇区的盲目切换,从而有效减小了高频信道上进行扇区训练的耗时,提高高频扇区训练效率。
如下结合多个示例,对该一种实现方式所提供的扇区扫描方法进行说明。
图12为本申请实施例提供的另一种扇区扫描方法的流程图。如图12所示,该扇区扫描方法可包括如下:
S1201、网络设备在第一信道向用户设备发送信标(Beacon)帧,该信标帧包括:该网络设备的扇区扫描参数。
该网络设备的扇区扫描参数可用于使得用户设备根据该网络设备的扇区扫描参数在第二信道上进行扇区扫描。
该网络设备和该用户设备均可以为双模通信设备,即该网络设备和用户设备在支持第一信道的通信模式的情况下,还可支持第二信道的通信模式。
该第一信道和第二信道的描述与上述实施例中S601中的描述类似,在此不再赘述。
对应的,该方法可包括:
S1202、用户设备在该第一信道上接收来自网络设备的信标帧,该信标帧包括:该网络设备的扇区扫描参数。
S1203、网络设备根据该网络设备的扇区扫描参数,在第二信道上进行扇区扫描,该第二信道的频率高于该第一信道的频率。
S1204、用户设备根据该网络设备的扇区扫描参数,在第二信道上进行扇区扫描,该第二信道的频率高于该第一信道的频率。
网络设备可根据该网络设备的扇区扫描参数,在该第二信道上进行网络设备的发射扇区的扫描,即根据该网络设备的扇区扫描参数,在该第二信道上向用户设备发送训练帧,以进行网络设备的发射扇区扫描。对应的,用户设备可根据网络设备的扇区扫描参数,在该第二信道上接收网络设备发送的训练帧,进行用户设备的接收扇区扫描。
用户设备还可根据该网络设备的扇区扫描参数,在该第二信道上向网络设备发送训练帧,以进行用户设备的发射扇区扫描。对应的,网络设备可根据网络设备的扇区扫描参数,在该第二信道上接收用户设备发送的训练帧,进行网络设备的接收扇区扫描。
该图12所示的实施例中,训练帧可以为信标帧,也可以为SSW帧。若该第一信道上传输的信标帧仅包括低频信标帧的待传输信息,则该训练帧可以为高频信标帧;若该第一信道上传输的信标帧包括:低频信标帧的待传输信息,以及高频信标帧的待传输信息,则该训练帧可以为SSW帧。
通过执行上述S1203以及S1204,可使得网络设备确定该用户设备的最优发射扇区以及网络设备的最优接收扇区,使得用户设备确定用户设备的最优接收扇区以及该网络设备的最优发射扇区。
为使得网络设备和用户设备可获知各自的最优发射扇区,可在进行用户设备的接收扇区扫描后,由用户设备将网络设备的最优发射扇区的信息携带在第二信道上的训练帧中,发送至网络设备,使得网络设备获知该网络设备的最优发射扇区。
并且,在进行网络设备的接收扇区扫描后,可由网络设备将用户设备的最优发射扇区的信息携带在反馈帧如扇区扫描反馈(Sector Sweeping Feedback,SSW Feedback)帧中,发送至用户设备,使得用户设备获知该用户设备的最优发射扇区。该用户设备在接收到该反馈帧后,还可向网络设备发送确认帧,以告知该网络设备,该用户设备已接收到该反馈帧。
网络设备可在第二信道上向用户设备发送包括该用户设备的最优发射扇区的反馈帧,那么,用户设备也可在该第二信道上接收网络设备发送的包括该用户设备的最优发射扇区的反馈帧。
网络设备还可采用OCT在第一信道上向用户设备发送包括该用户设备的最优发射扇区的反馈帧,那么用户设备也需采用OCT在第一信道上接收网络设备发送的包括该用户设备的最优发射扇区的反馈帧。
本申请实施例提供的扇区扫描方法,可通过网络设备在低频信道上向用户设备发送包括该网络设备的扇区扫描参数的信标帧,减小了高频信道上的信令开销,且使得该网络设备和用户设备均可根据该网络设备的扇区扫描参数在该高频信道上进行精准的扇区扫描,避免了扇区的盲目切换,从而有效减小了高频信道上进行扇区训练的耗时,提高扇区训练效率。
在一种实现方式中,如上所示的该网络设备的扇区扫描参数可包括如下中的至少一种信息:
该网络设备进行扇区扫描的起始时间、该网络设备的扇区个数、该网络设备的天线个数、该网络设备的天线互异性的指示信息、该网络设备的天线模式互异性的指示信息、该网络设备进行扇区扫描的训练帧的长度、该网络设备的训练模式指示信息;
该网络设备的扇区扫描参数中包括有该网络设备进行扇区扫描的起始时间以及该网络设备进行扇区扫描的训练帧的长度,可使得网络设备和用户设备基于该起始时间以及该训练帧的长度,实现同步扇区切换,使得网络设备和用户设备采用相同的频率或 节拍进行扇区切换,实现了网络设备和用户设备的精准扇区切换,减小了高频信道上进行扇区扫描的耗时,提高扇区扫描的效率。
其中,该网络设备的扇区个数为该网络设备用于进行扇区扫描的扇区个数。
该网络设备的天线个数为该网络设备用于进行扇区扫描的天线个数。
该网络设备的天线互异性的指示信息用于指示:该网络设备的最优发送天线是否为该网络设备的最优接收天线。示例地,若该网络设备的天线互异性的指示信息用于指示:该网络设备的最优发送天线为该网络设备的最优接收天线,则该网络设备支持天线的互异性。若该网络设备的天线互异性的指示信息用于指示:该网络设备的最优发送天线不为该网络设备的最优接收天线,则该网络设备不支持天线的互异性。
该网络设备的天线模式互异性的指示信息用于指示:该网络设备的发送天线模式对应的天线权重是否为该网络设备的接收天线模式对应的天线权重。示例地,若该网络设备的天线模式互异性的指示信息用于指示:该网络设备的发送天线模式对应的天线权重为该网络设备的接收天线模式对应的天线权重,则该网络设备支持天线模式的互异性。若该网络设备的天线模式互异性的指示信息用于指示:该网络设备的发送天线模式对应的天线权重不为该网络设备的接收天线模式对应的天线权重,则该网络设备不支持天线的互异性。
该网络设备的训练模式指示信息,用于指示该网络设备的训练模式为一端定向的训练模式,还是两端都定向的训练模式。示例地,若该网络设备的训练模式的指示信息为0,则可确定网络设备进行扇区扫描时,网络设备和用户设备中,一端采用定向发送的方式,而另一端采用全向接收的方式,或者,一端采用全向发送的方式,而另一端采用定向接收的方式。若该网络设备的训练模式的指示信息为1,则可确定网络设备进行扇区扫描时,网络设备和用户设备中,一端采用定向发送的方式,而另一端采用定向接收的方式。
可选的,当上述网络设备的扇区扫描参数中,该网络设备的训练模式指示信息用于指示该网络设备的训练模式为两端都定向的训练模式时,该网络设备的扇区扫描参数还可包括:
该网络设备的扇区扫描模式的指示信息,和,重复次数的指示信息;
该网络设备的扇区扫描模式的指示信息,用于指示该用户设备在每个扇区内的发送次数与该网络设备进行扇区扫描次数的对应关系。示例地,该网络设备的扫描模式的指示信息为0,可用于指示该用户设备在每个扇区内发送N次训练帧,而该网络设备进行一次扇区扫描;该网络设备的扫描模式的指示信息为1,可用于指示该用户设备在每个扇区内发送一次训练帧,而在该网络设备重复进行N次扇区扫描。可选的,N可以为网络设备的扇区个数。
该重复次数的指示信息,用于指示该网络设备进行扇区扫描的次数。
可选的,该网络设备的扇区扫描参数还可包括如下至少一种信息:
反馈类型的指示信息、该信标帧是否携带接收端的训练序列的指示信息、该训练序列的长度指示信息;
其中,该反馈类型的指示信息,用于指示该网络设备与该用户设备之间反馈信息的传输方式是否采用OCT。该网络设备反馈至用户设备的反馈信息例如可通过SSW反馈帧传 输,则该反馈类型的指示信息,可用于指示该SSW反馈帧的传输方式是否采用OCT,即用于指示SSW反馈帧是在第二信道上传输,还是采用OCT在第一信道上进行传输。该用户设备至网络设备的反馈信息例如可通过ACK帧传输,则该反馈类型的指示信息,还可用于指示ACK帧的传输方式是否采用OCT,即用于指示ACK帧是在第二信道上传输,还是采用OCT在第一信道上进行传输。
该网络设备的扇区扫描参数可携带于该第一信道上传输的信标帧中多带宽元素(Multi-band element)中的预设子元素(subelement)。例如,在第一信道上的信标帧,又称低频信标帧中增加一个子元素,用于携带该网络设备的扇区扫描参数。
图13为本申请实施例提供的一种信标帧中多带宽元素的预设子元素的结构示意图。如图13所示,该信标帧中多带宽元素的预设子元素可包括:元素标识(Element ID)字段、长度(Length)字段、起始时间(Starting Time)字段、扇区个数(Number of sectors)、天线个数(Number of antennas)字段、TRN-R指示字段、训练帧长(Training frame length)字段、训练模式(TRN mode)字段、扫描模式字段以重复次数字段。其中,TRN-R指示字段、扫描模式字段以重复次数字段,可以为可选的字段,也就是说,在信标帧中的多带宽元素的预设子元素中,可包括该可选的字段,也可不包括该可选的字段。
该起始时间字段可携带,该网络设备进行扇区扫描的起始时间。该扇区个数字段可携带,该网络设备的扇区个数。该天线个数字段可携带,该网络设备的天线个数。
该TRN-R指示字段可携带,该信标帧是否携带接收端的训练序列的指示信息。
该训练帧长字段可携带,该网络设备进行扇区扫描的训练帧的长度。
当该训练模式字段所携带的,该网络设备的训练模式指示信息用于指示该网络设备的训练模式为两端定向的训练模式,如该训练模式字段的值为1,则该预设子元素还可包括扫描模式字段。其中,该扫描模式字段可携带,该网络设备的扫描模式的指示信息。
当该扫描模式字段所携带的该网络设备的扫描模式的指示信息,用于指示该用户设备在每个扇区内发送一次训练帧,而在该网络设备重复进行N次扇区扫描,N为网络设备的扇区个数,则该定向波束赋形训练控制元素还可包括:重复次数字段。
该重复次数的字段可用于指示该网络设备进行扇区扫描的重复次数,即N。
如下通过两个具体示例的对本申请实施例提供的该另一种实现方式,即通过网络设备向用户设备发送网络设备的扇区扫描参数,进而进行扇区扫描的方案进行说明。在如下示例中,以AP作为网络设备,以站点作为用户设备,进行说明。
图14为本申请实施例提供的一种扇区扫描方法中AP和站点进行扇区扫描的信令流程图一。在该图14对应的示例中,AP可在第一信道上向站点发送信标帧,站点在第一信道上接收AP发送的信标帧。该第一信道上传输的信标帧中包括:AP的扇区扫描参数。
AP可在图14所示的信标传输期间(Beacon Transmission Interval)内,根据该AP的扇区扫描参数,在第二信道上以多个发射扇区向站点发送多个信标帧即高频信标帧,使得站点根据AP的扇区扫描参数,在第二信道上以多个接收扇区接收该多个信标帧,继而根据该多个信标帧的接收情况,确定该站点的最优接收扇区,以及AP的最优发射扇区。
站点可在图14所示的关联-波束赋形训练(Association Beamforming Training,A-BFT)期间内,根据该AP的扇区扫描参数,在第二信道上以多个发射扇区向AP发送多个SSW帧,使得AP根据AP1的扇区扫描参数,在第二信道上以多个接收扇区接收该多个SSW 帧,继而根据该多个SSW帧的接收情况,确定该AP的最优接收扇区,以及该站点的最优发射扇区。其中,SSW帧可携带该站点在BTI所确定的该AP的最优发射扇区的信息。
AP在确定该站点的最优发射扇区后,还可在A-BFT期间内,根据在第二信道上向站点发送携带有该站点的最优发射扇区的SSW反馈帧。
站点在接收到该SSW反馈帧的情况下,还可在A-BFT期间内,在第二信道上向AP反馈SSW确认帧,以指示其接收该SSW反馈帧。
图15为本申请实施例提供的一种AP和站点进行扇区扫描的信令流程图二。在该图15的示例中,AP可在第一信道上向站点发送信标帧,站点在第一信道上接收AP发送的信标帧。该第一信道上传输的信标帧中包括:AP的扇区扫描参数。相对于上述图14,在该图15对应的示例中,该第一信道上传输的信标帧中还可包括:第二信道上的信标帧的待传输信息,也称高频信道的信标帧的传输内容。如此第一信道上还传输有该第二信道上的信标帧的待传输信息,可进一步的减少第二信道即高频信道的信令开销。
该图15的示例中,AP与站点在BTI内的操作与上述图14类似,区别在于传输的上述图14中以信标帧作为训练帧,在该图15的示例中,以SSW帧作为训练帧。其相似之处,参见上述,在此不再赘述。
图15的示例中,AP与站点在A-BFT期间内的操作与上述图14类似,具体参见上述,在此不再赘述。
在高频信道的非对称链路的场景中,用户设备可在高频信道上接收到网络设备发送的下行帧,而网络设备可能由于用户设备的发射功率和天线增益较小,而在高频信道上接收不到用户设备发送的上行帧。针对存在非对称链路的网络设备和用户设备,本申请实施例还可提供一种扇区扫描方法,用以实现网络设备与用户设备间的扇区扫描。图16为本申请实施例提供的又一种扇区扫描方法中AP与站点进行扇区扫描的信令流程图。图16的示例中,继续以AP作为网络设备,以站点作为用户设备,AP可在第二信道上以多个发射扇区向站点发送多个信标帧即高频信标帧,使得站点在第二信道上以多个接收扇区接收该多个信标帧,根据该多个信标帧的接收情况,确定该站点的最优接收扇区,以及AP的最优发射扇区。
然而,由于非对称链路的存在,站点在第二信道上向AP传输的信息,AP可能无法接收到。因此,站点可采用OCT,在第一信道上向AP传输SSW反馈帧。AP可采用OCT,在第二信道上接收站点发送的SSW反馈帧,确定该AP的最优发射扇区。
AP还可采用OCT,在第一信道上向站点发送SSW确认帧,以指示该AP接收到该SSW反馈帧。对应的,站点可采用OCT,在第一信道上接收该SSW确认帧。该第一信道可以为低频信道,该第二信道可以为高频信道。
该SSW反馈帧可携带有该接收扇区的参数。在该实施例中,该接收扇区的参数可包括:接收扇区的标识、该接收扇区对应的天线标识等。该SSW反馈帧中可包括:条目数(Number of iterms)字段、N个接收扇区对应的信息字段。其中,每个接收扇区对应的信息字段可包括:扇区标识字段以及天线标识字段。其中,该扇区标识字段可携带该每个接收扇区的标识。该天线标识字段可携带该每个接收扇区对应的天线的标识。
站点在接收到该SSW确认帧后,便可根据该SSW反馈中指示的接收扇区的参数,在 该AP的最优发射扇区对应的时间段内,采用站点的最优接收扇区向AP发送SSW帧。该SSW反馈帧中可包括:AP的最优发射扇区的信息。
AP便可根据该SSW反馈帧所指示的接收扇区的参数,决定其在每个接收扇区内的停留时间,在该第二信道上接收站点发送的SSW帧,实现AP的接收扇区扫描,确定该AP的最优接收扇区,以及站点的最优发射扇区。
在该实施例的方案中,站点可采用OCT在低频信道上向AP传输该接收扇区的参数,使得AP基于该接收扇区的参数,在高频信道上接收站点发送的SSW帧,避免了非对称链路的不可达问题,使得站点和AP在高频信道上进行精准的扇区扫描,而避免了扇区的盲目切换,从而有效减小了高频信道上进行扇区扫描的耗时,提高扇区扫描的效率。
本申请实施例还可提供一种发起方设备,该发起方设备可具有上述图5-图16中任一项方法中所涉及的发起方的任意功能或网络设备的任意功能。图17为本申请实施例提供的一种扇区扫描装置的结构示意图一。如图17所示,该扇区扫描装置1700可包括:
在一种实现方式中,低频模块1701,用于在第一信道上向响应方发送第一帧;该第一帧包括:该发起方的扇区扫描参数;在该第一信道上接收该响应方发送的第二帧,该第二帧包括:该响应方的扇区扫描参数;
高频模块1702,用于根据该响应方的扇区扫描参数,在第二信道上进行扇区扫描;该第二信道的频率高于该第一信道的频率。
在另一种实现方式中,低频模块1701,用于在第一信道上向用户设备发送信标帧;该信标帧包括:该网络设备的扇区扫描参数;
高频模块1702,用于根据该网络设备的扇区扫描参数,在第二信道上进行扇区扫描;该第二信道的频率高于该第一信道的频率。
上述该扇区扫描装置1700还包括:处理模块1703,用以生成待发送的信息,和/或对接收的信息进行处理,还可以用于根据网络设备的扇区扫描参数,控制高频模块1702在第二信道上进行扇区扫描。
应理解,该扇区扫描装置1700具有上述图5-图16任一所述的方法中的发起方或网络设备的任意功能,所述任意功能可参考上述图5-图16任一所述的方法,此处不再赘述。
上述的本申请实施例提供的扇区扫描装置,可以有多种产品形态来实现,例如,所述扇区扫描装置可配置成通用处理系统;例如,所述扇区扫描装置可以由一般性的总线体系结构来实现;例如,所述扇区扫描装置可以由ASIC(专用集成电路)来实现等等。以下提供本申请实施例扇区扫描装置可能的几种产品形态,应当理解的是,以下仅为举例,不限制本申请实施例可能的产品形态仅限于此。
图18为本申请实施例所述的扇区扫描装置可能的产品形态的结构图一。
作为一种可能的产品形态,所述扇区扫描装置包括处理器1802和收发器1804;可选地,所述扇区扫描装置还可以包括存储介质1803。收发器1804包括低频收发器和高频收发器。低频收发器用于支持发起方设备与响应方设备之间在低频信道上的通信,以在低频信道上向响应方设备发送上述方法中所涉及的信息或指令,并低频信道上接收响应方设备发送的信息或指令;或者,用于支持网络设备和用户设备之间在低频信道上的通信,以在低频信道上向用户设备发送信标帧。高频收发器,用于支持该发起方和该响应方在高频信道上的扇区扫描;或者,用于支持网络设备和用户设备在高频信道上的扇区扫描。
作为另一种可能的产品形态,扇区扫描装置也由通用处理器来实现,即俗称的芯片来实现。该通用处理器包括:处理器1802和收发接口1805/收发管脚1806;可选地,该通用处理器还可以包括存储介质1803。收发接口1805包括低频收发接口和高频收发接口。低频收发接口用于支持发起方设备与响应方设备之间在低频信道上的通信,以在低频信道上向响应方设备发送上述方法中所涉及的信息或指令,并低频信道上接收响应方设备发送的信息或指令;或者,用于支持网络设备和用户设备之间在低频信道上的通信,以在低频信道上向用户设备发送信标帧。高频收发接口,用于支持该发起方和该响应方在高频信道上的扇区扫描;或者,用于支持网络设备和用户设备在高频信道上的扇区扫描。
收发管脚1806包括低频收发管脚和高频收发管脚。低频收发管脚用于支持发起方设备与响应方设备之间在低频信道上的通信,以在低频信道上向响应方设备发送上述方法中所涉及的信息或指令,并低频信道上接收响应方设备发送的信息或指令;或者,用于支持网络设备和用户设备之间在低频信道上的通信,以在低频信道上向用户设备发送信标帧。高频收发管脚,用于支持该发起方和该响应方在高频信道上的扇区扫描;或者,用于支持网络设备和用户设备在高频信道上的扇区扫描。
作为另一种可能的产品形态,扇区扫描装置也可以使用下述来实现:一个或多个现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑器件(Programmable Logic Device,PLD)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
可选的,本申请实施例还提供一种计算机可读存储介质。该计算机可读存储介质可包括:指令,当其在计算机上运行时,使得计算机执行上述实施例中图5-图16中任一发起方执行的扇区扫描方法。
可选的,本申请实施例还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例中图5-图16中任一发起方或网络设备执行的信扇区扫描方法。
该计算机程序产品的各功能可以通过硬件或软件来实现,当通过软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读存储介质上的一个或多个指令或代码进行传输。
本申请实施例的扇区扫描装置、计算机可读存储介质及计算机程序产品,可执行上述图5-图16中任一发起方或网络设备执行的扇区扫描方法,其具体的实现过程及有益效果参见上述,在此不再赘述。
本申请实施例还可提供一种扇区扫描装置,该扇区扫描装置可具有上述图5-图16中任一项方法中所涉及的响应方或用户设备的任意功能。图19为本申请实施例提供的一种扇区扫描装置的结构示意图二。如图19所示,该扇区扫描装置1900可包括:
在一种实现方式中,低频模块1901,用于在第一信道上接收来自发起方的第一帧,该第一帧包括:该发起方的扇区扫描参数;在该第一信道上向该发起方发送第二帧,该第二帧包括:该响应方的扇区扫描参数;
高频模块1902,根据该发起方的扇区扫描参数,在第二信道上进行扇区扫描;该第二信道的频率高于该第一信道的频率。
在另一种实现方式中,低频模块1901,用于在第一信道上接收来自网络设备的信标帧, 该信标帧包括:该网络设备的扇区扫描参数;
高频模块1902,根据该网络设备的扇区扫描参数,在第二信道上进行扇区扫描;该第二信道的频率高于该第一信道的频率。
上述该扇区扫描装置1900还包括:
处理模块1903,用以生成待发送的信息,和/或对接收的信息进行处理,还可以用于根据该网络设备的扇区扫描参数,控制高频模块1902在第二信道上进行扇区扫描。
应理解,该扇区扫描装置1900具有上述图5-图16任一所述的方法中的响应方或用户设备的任意功能,所述任意功能可参考上述图5-图16任一所述的方法,此处不再赘述。
上述的本申请实施例提供的扇区扫描装置,可以有多种产品形态来实现,例如,所述扇区扫描装置可配置成通用处理系统;例如,所述扇区扫描装置可以由一般性的总线体系结构来实现;例如,所述扇区扫描装置可以由ASIC(专用集成电路)来实现等等。以下提供本申请实施例扇区扫描装置可能的几种产品形态,应当理解的是,以下仅为举例,不限制本申请实施例可能的产品形态仅限于此。
图20为本申请实施例所述的扇区扫描装置可能的产品形态的结构图二。
作为一种可能的产品形态,所述扇区扫描装置包括处理器2002和收发器2004;可选地,所述响扇区扫描装置还可以包括存储介质2003。收发器2004包括低频收发器和高频收发器。低频收发器用于支持发起方设备与响应方设备之间在低频信道上的通信,以在低频信道上向发起方设备发送上述方法中所涉及的信息或指令,并低频信道上接收发起方设备发送的信息或指令;或者,用于支持网络设备与用户设备之间在低频信道上的通信,以在低频信道上接收网络设备发送的信标帧。高频收发器,用于支持该发起方和该响应方在高频信道上的扇区扫描;或者,用于支持网络设备和用户设备在高频信道上的扇区扫描。
作为另一种可能的产品形态,扇区扫描装置也由通用处理器来实现,即俗称的芯片来实现。该通用处理器包括:处理器2002和收发接口2005/收发管脚2006;可选地,该通用处理器还可以包括存储介质2003。收发接口2005包括低频收发接口和高频收发接口。低频收发接口用于支持发起方设备与响应方设备之间在低频信道上的通信,以在低频信道上向发起方设备发送上述方法中所涉及的信息或指令,并低频信道上接收发起方设备发送的信息或指令;或者,用于支持网络设备与用户设备之间在低频信道上的通信,以在低频信道上接收网络设备发送的信标帧。高频收发接口,用于支持该发起方和该响应方在高频信道上的扇区扫描;或者,用于支持网络设备和用户设备在高频信道上的扇区扫描。
收发管脚2006包括低频收发管脚和高频收发管脚。低频收发管脚用于支持发起方设备与响应方设备之间在低频信道上的通信,以在低频信道上向发起方设备发送上述方法中所涉及的信息或指令,并低频信道上接收发起方设备发送的信息或指令;或者,用于支持网络设备与用户设备之间在低频信道上的通信,以在低频信道上接收网络设备发送的信标帧。高频收发管脚,用于支持该发起方和该响应方在高频信道上的扇区扫描;或者,用于支持网络设备和用户设备在高频信道上的扇区扫描。
作为另一种可能的产品形态,扇区扫描装置也可以使用下述来实现:一个或多个FPGA、PLD、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
可选的,本申请实施例还提供一种计算机可读存储介质。该计算机可读存储介质可包 括:指令,当其在计算机上运行时,使得计算机执行上述实施例中图5-图16中任一响应方或用户设备执行的扇区扫描方法。
可选的,本申请实施例还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例中图5-图16中任一响应方或用户设备执行的信扇区扫描方法。
该计算机程序产品的各功能可以通过硬件或软件来实现,当通过软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读存储介质上的一个或多个指令或代码进行传输。
本申请实施例的扇区扫描装置、计算机可读存储介质及计算机程序产品,可执行上述图5-图16中任一响应方或用户设备执行的扇区扫描方法,其具体的实现过程及有益效果参见上述,在此不再赘述。
本申请实施例还可提供一种网络系统,该网络系统可包括发起方设备和响应方设备。发起方设备和响应方设备连接;发起方设备可以为上述图17或18任一所述的扇区扫描装置,以执行上述图5-图11中任一发起方执行的扇区扫描方法,具体实现参照上述,在此不再赘述。响应方设备可以为上述图19或20任一所述的扇区扫描装置,以执行上述图5-图11中任一响应方执行的扇区扫描方法,具体实现参照上述,在此不再赘述。
该系统可实现上述任一实施例发起方与响应方间的扇区扫描方法,其具体的实现过程及有益效果参见上述,在此不再赘述。
本申请实施例还可提供一种网络系统,该网络系统可包括网络设备和用户设备。网络设备和用户设备连接;网络设备可以为上述图17或18任一所述的扇区扫描装置,以执行上述图12-图16中任一网络设备执行的扇区扫描方法,具体实现参照上述,在此不再赘述。用户设备可以为上述图19或20任一所述的扇区扫描装置,以执行上述图12-图16中任一用户设备执行的扇区扫描方法,具体实现参照上述,在此不再赘述。
该系统可实现上述任一实施例网络设备与用户设备间的扇区扫描方法,其具体的实现过程及有益效果参见上述,在此不再赘述。
需要说明的是,在以上实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令包括存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。

Claims (20)

  1. 一种扇区扫描方法,其特征在于,包括:
    发起方在第一信道上向响应方发送第一帧;所述第一帧包括:所述发起方的扇区扫描参数;
    所述发起方在所述第一信道上接收所述响应方发送的第二帧,所述第二帧包括:所述响应方的扇区扫描参数;
    所述发起方根据所述响应方的扇区扫描参数,在第二信道上进行扇区扫描;所述第二信道的频率高于所述第一信道的频率。
  2. 一种扇区扫描方法,其特征在于,包括:
    响应方在第一信道上接收来自发起方的第一帧,所述第一帧包括:所述发起方的扇区扫描参数;
    所述响应方在所述第一信道上向所述发起方发送第二帧,所述第二帧包括:所述响应方的扇区扫描参数;
    所述响应方根据所述发起方的扇区扫描参数,在第二信道上进行扇区扫描;所述第二信道的频率高于所述第一信道的频率。
  3. 根据权利要求1或2所述的方法,其特征在于,所述发起方的扇区扫描参数包括如下中的至少一种信息:
    所述发起方进行扇区扫描的起始时间、所述发起方的扇区个数、所述发起方的天线个数、所述发起方的天线互异性的指示信息、所述发起方的天线模式互异性的指示信息、所述发起方进行扇区扫描的训练帧的长度、所述发起方的训练模式指示信息;
    其中,所述发起方的扇区个数为所述发起方用于进行扇区扫描的扇区个数;
    所述发起方的天线个数为所述发起方用于进行扇区扫描的天线个数;
    所述发起方的天线互异性的指示信息用于指示:所述发起方的最优发送天线是否为所述发起方的最优接收天线;
    所述发起方的天线模式互异性的指示信息用于指示:所述发起方的发送天线模式对应的天线权重是否为所述发起方的接收天线模式对应的天线权重;
    所述发起方的训练模式指示信息,用于指示所述发起方的训练模式为一端定向的训练模式,还是两端都定向的训练模式。
  4. 根据权利要求3所述的方法,其特征在于,当所述发起方的训练模式指示信息用于指示所述发起方的训练模式为两端都定向的训练模式时,所述发起方的扇区扫描参数还包括:
    所述发起方的扇区扫描模式的指示信息;
    其中,所述发起方的扇区扫描模式的指示信息,用于指示所述响应方在每个扇区内的发送次数与所述发起方进行扇区扫描次数的对应关系。
  5. 根据权利要求3或4所述的方法,其特征在于,所述发起方的扇区扫描参数还包括如下至少一种信息:
    所述第一帧的帧类型、所述发起方是否请求进行发射扇区扫描的指示信息、所述发起方是否请求进行接收扇区扫描的指示信息、反馈类型的指示信息、所述第一帧是否携带接收端的训练序列的指示信息、所述训练序列的长度指示信息;
    其中,所述反馈类型的指示信息,用于指示所述发起方与所述响应方之间反馈信息的传输方式是否采用隧道透传机制OCT。
  6. 根据权利要求1或2所述的方法,其特征在于,所述响应方的扇区扫描参数包括如下中的至少一种信息:
    所述响应方进行扇区扫描的起始时间、所述响应方的扇区个数、所述响应方的天线个数、所述响应方的天线互异性的指示信息、所述响应节点的天线模式互异性的指示信息、所述响应方进行扇区扫描的训练帧的长度、所述响应方的训练模式指示信息;
    其中,所述响应方的扇区个数为所述响应方用于进行扇区扫描的扇区个数;
    所述响应方的天线个数为所述响应方用于进行扇区扫描的天线个数;
    所述响应方的天线互异性的指示信息用于指示:所述响应方的最优发送天线是否为所述响应方的最优接收天线;
    所述响应方的天线模式互异性的指示信息用于指示:所述响应方的发送天线模式对应的天线权重是否为所述响应方的接收天线模式对应的天线权重;
    所述响应方的训练模式指示信息,用于指示所述响应方的训练模式为一端定向的训练模式,还是两端都定向的训练模式。
  7. 根据权利要求6所述的方法,其特征在于,当所述响应方的训练模式指示信息用于指示所述响应方的训练模式为两端都定向的训练模式时,所述响应方的扇区扫描参数还包括:
    所述响应方的扇区扫描模式的指示信息;
    其中,所述响应方的扇区扫描模式的指示信息,用于指示所述发起方在每个扇区内的发送次数与所述响应方进行扇区扫描次数的对应关系。
  8. 根据权利要求6或7所述的方法,其特征在于,所述响应方的扇区扫描参数还包括如下至少一种信息:
    所述第二帧的帧类型、所述响应方是否请求进行发射扇区扫描的指示信息、所述响应方是否请求进行接收扇区扫描的指示信息、反馈类型的指示信息、所述第二帧是否携带接收端的训练序列的指示信息、所述训练序列的长度指示信息;
    其中,所述反馈类型的指示信息,用于指示所述发起方与所述响应方之间反馈信息的传输方式是否采用隧道透传机制OCT。
  9. 一种发起方侧的扇区扫描装置,其特征在于,包括:
    低频模块,用于在第一信道上向响应方发送第一帧;所述第一帧包括:所述发起方的扇区扫描参数;在所述第一信道上接收所述响应方发送的第二帧,所述第二帧包括:所述响应方的扇区扫描参数;
    处理模块,用于根据所述响应方的扇区扫描参数,控制高频模块在第二信道上进行扇区扫描;所述第二信道的频率高于所述第一信道的频率。
  10. 一种响应方侧的扇区扫描装置,其特征在于,包括:
    低频模块,用于在第一信道上接收来自发起方的第一帧,所述第一帧包括:所述发起方的扇区扫描参数;在所述第一信道上向所述发起方发送第二帧,所述第二帧包括:所述响应方的扇区扫描参数;
    处理模块,用于根据所述发起方的扇区扫描参数,控制高频模块在第二信道上进行扇 区扫描;所述第二信道的频率高于所述第一信道的频率。
  11. 根据权利要求9或10所述的装置,其特征在于,所述发起方的扇区扫描参数包括如下中的至少一种信息:
    所述发起方进行扇区扫描的起始时间、所述发起方的扇区个数、所述发起方的天线个数、所述发起方的天线互异性的指示信息、所述发起方的天线模式互异性的指示信息、所述发起方进行扇区扫描的训练帧的长度、所述发起方的训练模式指示信息;
    其中,所述发起方的扇区个数为所述发起方用于进行扇区扫描的扇区个数;
    所述发起方的天线个数为所述发起方用于进行扇区扫描的天线个数;
    所述发起方的天线互异性的指示信息用于指示:所述发起方的最优发送天线是否为所述发起方的最优接收天线;
    所述发起方的天线模式互异性的指示信息用于指示:所述发起方的发送天线模式对应的天线权重是否为所述发起方的接收天线模式对应的天线权重;
    所述发起方的训练模式指示信息,用于指示所述发起方的训练模式为一端定向的训练模式,还是两端都定向的训练模式。
  12. 根据权利要求11所述的装置,其特征在于,当所述发起方的训练模式指示信息用于指示所述发起方的训练模式为两端都定向的训练模式时,所述发起方的扇区扫描参数还包括:
    所述发起方的扇区扫描模式的指示信息;
    其中,所述发起方的扇区扫描模式的指示信息,用于指示所述响应方在每个扇区内的发送次数与所述发起方进行扇区扫描次数的对应关系。
  13. 根据权利要求11或12所述的装置,其特征在于,所述发起方的扇区扫描参数还包括如下至少一种信息:
    所述第一帧的帧类型、所述发起方是否请求进行发射扇区扫描的指示信息、所述发起方是否请求进行接收扇区扫描的指示信息、反馈类型的指示信息、所述第一帧是否携带接收端的训练序列的指示信息、所述训练序列的长度指示信息;
    其中,所述反馈类型的指示信息,用于指示所述发起方与所述响应方之间反馈信息的传输方式是否采用隧道透传机制OCT。
  14. 根据权利要求9或10所述的装置,其特征在于,所述响应方的扇区扫描参数包括如下中的至少一种信息:
    所述响应方进行扇区扫描的起始时间、所述响应方的扇区个数、所述响应方的天线个数、所述响应方的天线互异性的指示信息、所述响应节点的天线模式互异性的指示信息、所述响应方进行扇区扫描的训练帧的长度、所述响应方的训练模式指示信息;
    其中,所述响应方的扇区个数为所述响应方用于进行扇区扫描的扇区个数;
    所述响应方的天线个数为所述响应方用于进行扇区扫描的天线个数;
    所述响应方的天线互异性的指示信息用于指示:所述响应方的最优发送天线是否为所述响应方的最优接收天线;
    所述响应方的天线模式互异性的指示信息用于指示:所述响应方的发送天线模式对应的天线权重是否为所述响应方的接收天线模式对应的天线权重;
    所述响应方的训练模式指示信息,用于指示所述响应方的训练模式为一端定向的训练 模式,还是两端都定向的训练模式。
  15. 根据权利要求14所述的装置,其特征在于,当所述响应方的训练模式指示信息用于指示所述响应方的训练模式为两端都定向的训练模式时,所述响应方的扇区扫描参数还包括:
    所述响应方的扇区扫描模式的指示信息;
    其中,所述响应方的扇区扫描模式的指示信息,用于指示所述发起方在每个扇区内的发送次数与所述响应方进行扇区扫描次数的对应关系。
  16. 根据权利要求14或15所述的装置,其特征在于,所述响应方的扇区扫描参数还包括如下至少一种信息:
    所述第二帧的帧类型、所述响应方是否请求进行发射扇区扫描的指示信息、所述响应方是否请求进行接收扇区扫描的指示信息、反馈类型的指示信息、所述第二帧是否携带接收端的训练序列的指示信息、所述训练序列的长度指示信息;
    其中,所述反馈类型的指示信息,用于指示所述发起方与所述响应方之间反馈信息的传输方式是否采用隧道透传机制OCT。
  17. 一种扇区扫描方法,其特征在于,所述方法包括:
    网络设备在第一信道向用户设备发送包括有所述网络设备的扇区扫描参数的信标帧;
    所述网络设备根据所述网络设备的扇区扫描参数,在第二信道上进行扇区扫描,所述第二信道的频率高于所述第一信道的频率。
  18. 一种扇区扫描方法,其特征在于,所述方法包括:
    用户设备在第一信道上接收来自网络设备的包括所述网络设备的扇区扫描参数的信标帧;并根据所述网络设备的扇区扫描参数,在第二信道上进行扇区扫描,所述第二信道的频率高于所述第一信道的频率。
  19. 一种扇区扫描装置,其特征在于,所述装置包括处理器和存储器,所述存储器包括指令,所述处理器运行所述指令时,以使得所述扇区扫描装置执行权利要求1至8以及17至18中任一项所述的方法。
  20. 一种装置,用于实现执行权利要求1至8以及17至18中任一项所述的方法。
PCT/CN2019/103978 2018-09-07 2019-09-02 扇区扫描方法及相关装置 WO2020048417A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811044765.XA CN110890910B (zh) 2018-09-07 2018-09-07 扇区扫描方法及相关装置
CN201811044765.X 2018-09-07

Publications (1)

Publication Number Publication Date
WO2020048417A1 true WO2020048417A1 (zh) 2020-03-12

Family

ID=69722763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103978 WO2020048417A1 (zh) 2018-09-07 2019-09-02 扇区扫描方法及相关装置

Country Status (2)

Country Link
CN (1) CN110890910B (zh)
WO (1) WO2020048417A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023215121A1 (en) * 2022-05-06 2023-11-09 Qualcomm Incorporated 60 ghz operating mode for wireless local area networks (wlans)
WO2023226713A1 (zh) * 2022-05-23 2023-11-30 华为技术有限公司 一种通信的方法和装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745844B (zh) * 2021-09-01 2024-04-12 杭州腓腓科技有限公司 一种基于可重构全息超表面的波束优化方法及系统
CN117811628A (zh) * 2022-09-30 2024-04-02 华为技术有限公司 一种通信方法及装置
CN117895980A (zh) * 2022-09-30 2024-04-16 华为技术有限公司 一种扇区扫描方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105052235A (zh) * 2013-03-15 2015-11-11 交互数字专利控股公司 用于无线lan系统的多频带操作
WO2017003172A1 (ko) * 2015-07-01 2017-01-05 삼성전자주식회사 무선 통신시스템의 빔 선택 장치 및 방법
CN106464336A (zh) * 2014-05-08 2017-02-22 高通股份有限公司 用于发现和同步以及波束成形的低频载波和毫米波信道之间的合作技术
CN107636983A (zh) * 2015-06-01 2018-01-26 华为技术有限公司 用于无线网络中有效链路发现的系统与方法
WO2018123700A1 (ja) * 2016-12-28 2018-07-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 無線端末装置の通信方法、無線基地局装置の通信方法、無線端末装置、および無線基地局装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8743838B2 (en) * 2009-09-15 2014-06-03 Intel Corporation Millimeter-wave communication station and method for scheduling association beamforming training with collision avoidance
WO2017113093A1 (zh) * 2015-12-29 2017-07-06 华为技术有限公司 一种波束赋形训练的方法和设备以及控制器
CN108023627B (zh) * 2016-11-03 2021-08-20 华为技术有限公司 波束赋形训练方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105052235A (zh) * 2013-03-15 2015-11-11 交互数字专利控股公司 用于无线lan系统的多频带操作
CN106464336A (zh) * 2014-05-08 2017-02-22 高通股份有限公司 用于发现和同步以及波束成形的低频载波和毫米波信道之间的合作技术
CN107636983A (zh) * 2015-06-01 2018-01-26 华为技术有限公司 用于无线网络中有效链路发现的系统与方法
WO2017003172A1 (ko) * 2015-07-01 2017-01-05 삼성전자주식회사 무선 통신시스템의 빔 선택 장치 및 방법
WO2018123700A1 (ja) * 2016-12-28 2018-07-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 無線端末装置の通信方法、無線基地局装置の通信方法、無線端末装置、および無線基地局装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023215121A1 (en) * 2022-05-06 2023-11-09 Qualcomm Incorporated 60 ghz operating mode for wireless local area networks (wlans)
WO2023226713A1 (zh) * 2022-05-23 2023-11-30 华为技术有限公司 一种通信的方法和装置

Also Published As

Publication number Publication date
CN110890910B (zh) 2022-12-27
CN110890910A (zh) 2020-03-17

Similar Documents

Publication Publication Date Title
WO2020048417A1 (zh) 扇区扫描方法及相关装置
TWI680680B (zh) 波束管理方法及其使用者設備
US11240682B2 (en) Split sector level sweep using beamforming refinement frames
US20220046735A1 (en) Secondary cell activation method and apparatus
WO2018228532A1 (zh) 通信方法、终端及网络设备
US10848218B2 (en) Fast beam refinement phase for periodic beamforming training
US11240794B2 (en) Method for indicating PDSCH receiving information, data receiving method, and apparatus
WO2018126794A1 (zh) 一种资源指示方法、装置及系统
WO2019006730A1 (zh) 波束赋形训练的方法、接收设备和发送设备
US10560165B2 (en) Communication system, method of controlling communication system, base station apparatus, and wireless terminal apparatus
WO2020001454A1 (zh) 波束赋形训练的方法和装置
US11646779B2 (en) Beamforming training method and apparatus
US9942778B2 (en) Virtual base station apparatus and communication method
US9967019B2 (en) Communication system, communication method, base station device, and terminal device
CN108988925B (zh) 无线网络中天线极化方向的指示方法和装置
WO2020199902A1 (zh) 一种选择接收波束的方法及装置
WO2018099328A1 (zh) 通信方法、基站和终端设备
CN111934736B (zh) 一种发送波束优化协议包的方法及设备
CN109121206B (zh) 通信方法及通信节点
WO2023050472A1 (zh) 用于寻呼的方法和装置
WO2018081926A1 (zh) 训练波束的方法、发起设备和响应设备
CN110912594A (zh) 波束训练方法及装置
WO2021081770A1 (zh) 一种测量方法及装置
WO2020057472A1 (zh) 数据通信的方法和装置
US11012123B2 (en) Beamforming training method, initiating device, and responding device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857612

Country of ref document: EP

Kind code of ref document: A1