WO2017113093A1 - 一种波束赋形训练的方法和设备以及控制器 - Google Patents

一种波束赋形训练的方法和设备以及控制器 Download PDF

Info

Publication number
WO2017113093A1
WO2017113093A1 PCT/CN2015/099414 CN2015099414W WO2017113093A1 WO 2017113093 A1 WO2017113093 A1 WO 2017113093A1 CN 2015099414 W CN2015099414 W CN 2015099414W WO 2017113093 A1 WO2017113093 A1 WO 2017113093A1
Authority
WO
WIPO (PCT)
Prior art keywords
beamforming training
channel
antenna
training
designated
Prior art date
Application number
PCT/CN2015/099414
Other languages
English (en)
French (fr)
Inventor
张永平
李德建
陈佳民
刘劲楠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/099414 priority Critical patent/WO2017113093A1/zh
Publication of WO2017113093A1 publication Critical patent/WO2017113093A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a method and device for beamforming training and a controller.
  • the 2.4 GHz (Gigahertz, English abbreviation: GHz) and 5 GHz bands are already very crowded, while the 60 GHz band has a large number of continuous unlicensed spectrum resources that can be easily implemented.
  • Wireless gigabit rate transmission The 802.11ad standard for the 60 GHz unlicensed band of the Institute of Electrical and Electronics Engineers (English): 802.11ad standard was released in December 2012, and the next generation 60 GHz WLAN communication standard - IEEE 802.11 Ay has also begun to develop.
  • multi-user multiple-input and multiple-output (English name: Multi-user multiple-input and multiple-output) will be introduced in IEEE 802.11ay. )/Single-user multiple-input and multiple-output (English-referred to as: SU-MIMO) technology.
  • SU-MIMO Single-user multiple-input and multiple-output
  • MU-MIMO is a technology for transmitting multiple data streams through different spatially separable paths on the same time-frequency resource.
  • the millimeter wave signal propagates in the same way as the ray propagation, that is, the direct path and the reflection path are dominant, there is no obvious scattering and diffraction phenomenon, and the signal will be scattered in some space.
  • the number of effective paths here is very rare.
  • the multi-user diversity gain can be obtained by means of space division multiplexing (for example, MU-MIMO technology), thereby significantly increasing the capacity of the entire system.
  • the millimeter wave signal Compared with the traditional microwave frequency band, the millimeter wave signal will face strong path propagation loss due to high frequency during the propagation process, and the signal in the 60 GHz band will be absorbed by oxygen, as explained above, in the millimeter wave channel.
  • the signal is mainly transmitted through some discrete paths, which requires the transmitting and receiving parties to find the path with better channel quality from the discrete paths of the space, and the transmitting and receiving parties can form the beam by using the directional antenna or the phased array antenna, so that the beams are made. Align these paths to counter the strong large-scale fading.
  • IEEE 802.11ad the transmitting and receiving parties complete beam alignment by performing beam scanning on both ends of the transmitting and receiving ends.
  • the beam alignment in IEEE 802.11ad is targeted by one A single-link situation consisting of a transmitting end and a receiving end.
  • beam alignment of multiple links needs to be implemented in a system using MU-MIMO technology.
  • Embodiments of the present invention provide a method and device for beamforming training and a controller, which can effectively reduce the time required for beamforming training.
  • an embodiment of the present invention provides a method for beamforming training, including:
  • the first device acquires channel information used by the first device and the at least one second device to perform beamforming training, where the channel information includes: the first device and the at least one second device perform At least one designated channel used by beamforming training;
  • the first device performs beamforming training with the at least one second device on the designated channel.
  • the first device may first acquire channel information used by the first device and the at least one second device to perform beamforming training, where the channel information includes: the first device and the at least one The second device performs at least one designated channel used for beamforming training. Similarly, each of the at least one second device can acquire the second device and the first device for beamforming training. Channel information used. The first device and the at least one second device may perform beamforming training on a designated channel indicated in the channel information. In the embodiment of the present invention, the first device can perform beamforming training with multiple second devices simultaneously on a pre-configured designated channel, so that the time required for beamforming training can be effectively reduced.
  • the acquiring, by the first device, the channel information used by the first device and the at least one second device to perform beamforming training includes:
  • the first device When the first device is a personal basic service set control point PCP or an access point AP, the first device configures a channel used by the first device and the at least one second device for beamforming training Information; or,
  • the first device receives channel information used by the network controller for beamforming training configured by the first device and the at least one second device, where the network controller comprises: a PCP or an AP.
  • the first device receives the network controller as the first device and the second device before the channel information used by the beamforming training of the device configuration, the method further includes:
  • the first device sends service period SP request information to the network controller, where the SP request information includes at least one of the following information: a beamforming training channel bandwidth requested by the first device, the first The specified channel for beamforming training requested by the device, whether to include indication information of the primary channel, and the channel information used by the beamforming training is included in the directed multi-gigabit DMG beacon Beacon frame sent by the network controller Or advertise Announce frames; or,
  • the channel information used by the beamforming training is included in an authorized Grant frame sent by the first device.
  • the method further includes:
  • the first device receives the Grant ACK frame sent by the second device, and the Grant ACK frame carries the second device to receive the beam assignment Confirmation information of the channel information used for the training.
  • an antenna of the first device and an antenna of the second device form an antenna pair, where the first device is in the specified Performing beamforming training on the channel with the at least one second device, including:
  • the first device performs beamforming training on the antenna pair of the first device and the at least one second device on a designated channel in a sector-level scanning SLS phase, and is described in a beam modification protocol BRP phase
  • the first device performs beamforming training on the antenna pair of the first device and the at least one second device on a designated channel; or
  • the first device performs beamforming training on the antenna pair of the first device and the at least one second device on a designated channel.
  • the first device is configured to perform the Performing beamforming training on an antenna pair of the device and the at least one second device, including:
  • the antenna pair includes a first antenna of the first device and a second antenna of the second device, where the first device respectively transmits the first training data packet in all sector directions of the designated channel by using the first antenna;
  • the first device receives, on the first channel, a sector scan acknowledgement SSW-ACK message sent by the second device by using the second antenna on the first antenna.
  • the first device by using the first antenna, respectively, transmits the first direction in all sectors of the designated channel.
  • a training package including:
  • the first device continuously transmits the first training data packet in all sector directions of all the first antennas of the first device in the antenna number order on the designated channel.
  • the first device is separately sent by using the first antenna in a direction of all sectors of the designated channel Shoot the first training packet, including:
  • the first device configures an antenna number of the first device that performs beamforming training using the specified channel, and an antenna number of at least one second device, or the first device acquires the An antenna number of the first device configured by the network controller using the specified channel for beamforming training and an antenna number of at least one second device configured by the network controller;
  • the first device respectively transmits a first training data packet in all sector directions of the first antenna of the first device, and the first device and one antenna pair of the at least one second device complete the beam assignment After the training, the first device according to the antenna number of the first device configured for the first device and the at least one second device, and the antenna number of the at least one second device, The first antenna and the remaining antenna pairs of the at least one second device perform beamforming training.
  • the first device in the BRP phase, the first device and the At least one antenna pair of the second device performs beamforming training, including:
  • the pair of antennas includes a first antenna of a first device and a second antenna of at least one second device, the first device being on the designated channel by the first antenna and a second of the at least one second device
  • the antenna performs multi-sector identification capture MIDC;
  • the designated channel for performing MIDC is determined by: when the BRP phase is after the SLS phase, the first device and the at least one second device perform a specified channel used for beamforming training as Determining a designated channel of the MIDC, or, when the BRP phase is not after the SLS phase, the indication information of the designated channel for performing the MIDC is directed by the first device, the directed multi-gigabit beam optimization element DMG The Beam Refinement element is carried.
  • the method further includes:
  • the first device When the first device performs beamforming training on the antenna pair of the first device and the at least second device on the designated channel, the first device is in the first device and the at least Verifying, by the antenna pair of the first device and the at least one second device, the wave corresponding to the specified channel on a channel other than the designated channel of the plurality of channels bound by the second device Beam shaping training results.
  • the directional multi-gigabit beam optimization element DMG Beam Refinement element is further used to indicate the BRP phase Whether the obtained beamforming training result is applicable to other channels of the bundled channels other than the designated channel.
  • an embodiment of the present invention further provides a method for beamforming training, including:
  • the second device acquires channel information used by the second device and the first device to perform beamforming training, where the channel information includes: the second device and the first device perform beamforming training At least one designated channel;
  • the second device performs beamforming training with the first device on the designated channel.
  • each second device can obtain channel information used by the second device and the first device for beamforming training.
  • the first device and the at least one second device may perform beamforming training on a designated channel indicated in the channel information.
  • the first device can perform beamforming training with multiple second devices simultaneously on a pre-configured designated channel, so that the time required for beamforming training can be effectively reduced.
  • the acquiring, by the second device, the channel information used by the second device and the first device to perform beamforming training includes:
  • the second device acquires beamforming training configured by the first device for the second device and the first device Channel information used; or,
  • the second device acquires channel information used by the network controller for beamforming training configured by the second device and the first device, where the network controller includes: a PCP or an AP.
  • the second device acquires, configured by the network controller, the second device and the first device before the channel information used by the beamforming training, the method further includes:
  • the SP request information includes at least one of the following information: the beamforming training channel bandwidth requested by the first device, the first The specified channel for beamforming training requested by the device, whether to include indication information of the primary channel, and the channel information used by the beamforming training is included in the directed multi-gigabit DMG beacon Beacon frame sent by the network controller Or advertise Announce frame bearers; or,
  • channel information used by the beamforming training is included in an authorized Grant frame sent by the first device.
  • the method further includes:
  • the second device When the second device supports the authorization confirmation Grant ACK frame, the second device sends the Grant ACK frame to the first device, where the Grant ACK frame carries the second device to receive the beamforming Confirmation information of the channel information used for training.
  • the second device performs beamforming training with the first device on the specified channel, including:
  • the second device performs beamforming training on the antenna pair of the second device and the first device on a designated channel in a sector-level scanning SLS phase, and the second in a beam correction protocol BRP phase
  • the device performs beamforming training on the antenna pair of the second device and the first device on a designated channel;
  • the second device performs beamforming training on the antenna pair of the second device and the first device on a designated channel.
  • the second device in the sector-level scanning SLS phase, is configured on the designated channel Performing beamforming training on the antenna pair of the second device and the first device, including:
  • the antenna pair includes a first antenna of the first device and a second antenna of the second device, where the second device receives the first training data packet sent by the first device by using the second antenna, and determines the The initiator's optimal sector number of an antenna;
  • the second device transmits a sector scan acknowledgement SSW-ACK message on a sector corresponding to the responder optimal sector number of the second antenna.
  • the receiving, by the second device, the first training data packet sent by the first device by using the second antenna includes:
  • the second device receives the first training data packet on the designated channel by using the second antenna, and after the second device and one antenna pair of the first device complete beamforming training, the second device And the remaining of the second device and the first device according to an antenna number of the first device configured for the second device and the first device, and an antenna number of the at least one second device
  • the antenna pair performs beamforming training.
  • the second device by using the second antenna, respectively, transmits the first direction in all sectors of the designated channel Two training packets, including:
  • the second device continuously transmits the second training data packet in all the sector directions of the second antennas of the second device in an antenna number sequence, where the second training data packet includes: the first antenna corresponds to The initiator of each of the second antennas of the second device has an optimal sector number.
  • the second device in the BRP phase, the second device and the device on the designated channel Performing beamforming training on the antenna pair of the first device, including:
  • the antenna pair includes a first antenna of the first device and a second antenna of the second device, and the second device performs a multi-sector identification capture MIDC with the first device on the designated channel by using the second antenna;
  • the designated channel for performing the MIDC is determined by: when the BRP phase is after the SLS phase, the designation used by the different antenna pairs between the second device and the first device for beamforming training is performed.
  • the channel is used as the designated channel for performing the MIDC, or when the BRP phase is not after the SLS phase, the indication information of the designated channel for performing the MIDC is carried by the directed multi-gigabit beacon optimization element DMG Beam Refinement element .
  • the method further includes:
  • the second device When the second device performs beamforming training on the antenna pair of the second device and the first device on the designated channel, the second device is in the second device and the first device Performing beamforming training results corresponding to the specified channel on the antenna pair of the second device and the first device on the other channels of the plurality of channels that are bound to the specified channel.
  • the DMG Beam Refinement element is further used to indicate a beamforming training result obtained in the BRP phase Whether it is applicable to other channels than the specified channel among the plurality of bonded channels.
  • an embodiment of the present invention provides a method for beamforming training, including:
  • the network controller receives beamforming training request information sent by at least one first device as a beamforming training initiator, the beamforming training request information comprising: the at least one first device designated as beamforming training At least one second device of the responder, and channel information requested for beamforming training with the at least one second device;
  • the network controller according to the beamforming training request information sent by the at least one first device, shaping channel information used by the training device to configure beamforming training for each pair of beams, where the channel information includes: Determining, by the at least one first device and the at least one second device, K designated channels used for beamforming training, the K being a positive integer, wherein the first device and the first device specify One of said second devices of the beamforming training responder constitutes a pair of beamforming training devices;
  • the network controller sends the channel information used by the configured beamforming training to the at least one first device and the at least one second device, respectively.
  • the network controller shapes the channel information used by the training device to configure the beamforming training for each pair of beams.
  • the first device and the at least one second device may perform beamforming training on a designated channel indicated in the channel information.
  • the first device can perform beamforming training with multiple second devices simultaneously on a pre-configured designated channel, so that the time required for beamforming training can be effectively reduced.
  • the network controller sends the channel information used by the configured beamforming training to the at least one first device and the at least A second device comprising:
  • the network controller respectively allocates service periods SP corresponding to K designated channels;
  • the network controller includes the allocated SP allocation information corresponding to each designated channel in the directional multi-gigabit DMG beacon frame or the advertisement Announce frame, and sends the SP allocation information to the at least one first device and the at least one second device. .
  • the network controller respectively allocates a service period SP corresponding to the K designated channels, including:
  • the network controller respectively allocates SPs that overlap in time or do not overlap in time corresponding to K designated channels, and if the SPs overlap in time, allocate channels to different pairs of beamforming training devices.
  • the numbers are not the same.
  • the beamforming training request information further includes: a beamforming training control BF Control field, where
  • the BF Control field includes at least one of the following: a channel bandwidth of the requested beamforming training, a channel number of the requested beamforming training, and whether the channel of the requested beamforming training includes a primary channel.
  • the network controller is scheduling a When a device or a second device performs beamforming training simultaneously with a plurality of peer devices, the network controller determines that the number of antennas of the one first device or one second device is greater than or equal to a sum of the number of devices of the plurality of peer devices for performing beamforming training by a first device or a second device;
  • the peer device is a device that performs beamforming training with the first device or the second device.
  • an embodiment of the present invention provides a beamforming training device, where the beamforming training device is specifically a first device of a beamforming training initiator, and the beamforming training device includes:
  • An acquiring module configured to acquire channel information used by the first device and the at least one second device to perform beamforming training, where the channel information includes: the first device and the at least one second At least one designated channel used by the device for beamforming training;
  • a beamforming training module configured to perform beamforming training with the at least one second device on the designated channel.
  • the first device may first acquire the first device and the at least one second device.
  • the channel information includes: a designated channel used by the first device and the at least one second device for beamforming training, and similarly, each of the at least one second device Both devices can obtain channel information used by the second device and the first device for beamforming training.
  • the first device and the at least one second device may perform beamforming training on a designated channel indicated in the channel information.
  • the first device can perform beamforming training with multiple second devices simultaneously on a pre-configured designated channel, so that the time required for beamforming training can be effectively reduced.
  • an embodiment of the present invention provides a beamforming training device, where the beamforming training device is specifically a second device of a beamforming training responder, and the beamforming training device includes:
  • An acquiring module configured to acquire channel information used by the second device and the first device to perform beamforming training, where the channel information includes: the second device and the first device perform beamforming training At least one designated channel used;
  • a beamforming training module configured to perform beamforming training with the first device on the designated channel.
  • each second device can obtain channel information used by the second device and the first device for beamforming training.
  • the first device and the at least one second device may perform beamforming training on a designated channel indicated in the channel information.
  • the first device can perform beamforming training with multiple second devices simultaneously on a pre-configured designated channel, so that the time required for beamforming training can be effectively reduced.
  • an embodiment of the present invention provides a network controller, including:
  • a transceiver module configured to receive beamforming training request information sent by at least one first device that is a beamforming training initiator, where the beamforming training request information includes: the at least one first device specifies a beam assignment Forming at least one second device of the responder, and requesting channel information used for beamforming training with the at least one second device;
  • a configuration module configured to: according to the beamforming training request information sent by the at least one first device, shape channel information used by the training device to configure beamforming training for each pair of beams, where the channel information includes: Determining, by the at least one first device and the at least one second device, K designated channels used for beamforming training, the K being a positive integer, wherein the first device and the first device specify One of said second devices of the beamforming training responder constitutes a pair of beamforming training devices;
  • the transceiver module is further configured to send channel information used by the configured beamforming training to the at least one first device and the at least one second device, respectively.
  • the network controller shapes the channel information used by the training device to configure the beamforming training for each pair of beams.
  • the first device and the at least one second device may perform beamforming training on at least one designated channel indicated in the channel information.
  • the first device can perform beamforming training with multiple second devices simultaneously on a pre-configured designated channel, so that the time required for beamforming training can be effectively reduced.
  • FIG. 1 is a schematic diagram of a beamforming training process including MU-MIMO of two users and binding of two channels in an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a method for beamforming training according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart diagram of a method for beamforming training according to another embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a method for implementing beamforming training by an initiator and a responder according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of configuring multi-channel beamforming training according to an embodiment of the present invention.
  • 6-a is a schematic diagram of a beamforming training of an initiator and a responder in an SLS phase according to an embodiment of the present invention
  • 6-b is a schematic diagram of another beamforming training of an initiator and a responder in an SLS phase according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of beamforming training of an initiator and a responder in a BRP phase according to an embodiment of the present invention.
  • FIG. 8-a is a schematic diagram of a channel resource configuration for performing beamforming training by an initiator and a responder according to an embodiment of the present invention
  • FIG. 8-b is a schematic diagram of another channel resource configuration for performing beamforming training by an initiator and a responder according to an embodiment of the present invention
  • FIG. 9 is a schematic flowchart diagram of a method for beamforming training according to another embodiment of the present invention.
  • FIG. 10 is a schematic diagram of performing beamforming training on two different STAs on different channels according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram of simultaneous beamforming training performed by three pairs of STAs on different channels according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of performing beamforming training simultaneously on different channels by multiple initiator STAs and one responder STA according to an embodiment of the present invention
  • FIG. 13 is a schematic structural diagram of a beam shaping training device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of another beam shaping training device according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a network controller according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of another beam shaping training device according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of another beamforming training device according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of another network controller according to an embodiment of the present invention.
  • Embodiments of the present invention provide a method and device for beamforming training and a controller, which can effectively reduce the time required for beamforming training.
  • the beamforming training method provided by the embodiment of the present invention can be applied to the millimeter wave frequency band and simultaneously In the communication system using the MU-MIMO and the channel bonding technology, the device in the embodiment of the present invention can support channel bonding. And the initiator of the beamforming training can perform beamforming training with at least one beamforming training responder.
  • the specific implementation of the first device and/or the second device involved in the embodiment of the present invention may be: the first device may be a wireless local area network (English full name: the first device supports the wireless router of the WIFI function, and the second device may It is a variety of handheld devices that support WIFI, such as mobile phones, notebooks and other devices.
  • FIG. 1 is a schematic diagram of a beamforming training process including MU-MIMO of two users and binding of two channels in the embodiment of the present invention.
  • STA1 is the initiator of the beamforming training
  • STA2 is the responder of the beamforming training.
  • the beam transmitted by STA1 is required to be aligned with the receiving beams of STA2 and STA3 respectively.
  • the transmit beam of STA1 is aligned with the receive beam of STA2 on the reflection path, and the other transmit beam of STA1 is aligned with the receive beam of STA3 on the direct path. Therefore, in the MU-MIMO system, beam alignment of multiple links needs to be implemented.
  • the STA1, the STA2, and the STA3 may first obtain the channel information of the STA1 and the STA2, and the channel information of the STA1 and the STA3, where the channel information may include the designated channel C1 and the designated channel C2, and then STA1 and STA2. Beamforming training is performed between STA1 and STA3 on designated channel C1 and designated channel C2. Next, the beamforming training method performed by the initiator and the responder of the beamforming training in the embodiment of the present invention will be described in detail.
  • the method for beamforming training provided by the embodiment of the present invention is described by the initiator of the beamforming training.
  • the method for beamforming training according to an embodiment of the present invention may include:
  • the first device acquires channel information used by the first device and the at least one second device to perform beamforming training, where the channel information includes: the first device and the at least one second device perform beamforming training. At least one of the specified channels.
  • the first device may be the initiator of the beamforming training
  • the second device is the responder of the beamforming training
  • the first device may perform the beamforming training with a second device.
  • the first device can also perform beamforming training with more than two second devices.
  • the first device before performing the beamforming training, the first device may first acquire channel information used by the first device and the at least one second device for beamforming training.
  • the channel information may include at least one designated channel used by the first device and the at least one second device for beamforming training.
  • the at least one designated channel may include: one designated channel or a plurality of designated channels.
  • the at least one designated channel is a pre-configured channel or channels, and the first device acquires the designated channel used for beamforming training, and then performs step 202.
  • the designated channel is one channel or several channels of the bundled multiple channels.
  • the first device has one or more antennas
  • the second device has one or more antennas.
  • One antenna of the first device and one antenna of the second device may constitute one antenna pair, when both the first device and the second device have one In the case of an antenna, the first device can form a different antenna pair with the plurality of second devices.
  • different antenna pairs of the first device and the second device have different designations in a time period of one beamforming training.
  • the channel, which channel or channels of the plurality of channels to which the first device and the second device are bound may be configured according to a specific application scenario, which is not limited herein.
  • the method for beamforming training provided by the embodiment of the present invention before the first device acquires the channel information used by the first device and the at least one second device to perform beamforming training, the method for beamforming training provided by the embodiment of the present invention further It can include the following steps:
  • the first device sends the first beamforming training capability information to the at least one second device, and receives the second beamforming training capability information sent by the second device, where the first beamforming training capability information includes: Whether the device supports channel bonding, the channel number and channel bandwidth supported by the first device, and the number of antennas supported by the first device, and the second beamforming training capability information includes: at least one second device supports channel bonding, at least The channel number and channel bandwidth supported by one second device, and the number of antennas supported by at least one second device.
  • the first device and the second device may also perform the beamforming training capability information first, or the first device needs to perform the network controller.
  • Beamforming training ability information interaction One of the achievable ways is that the first device can transmit the beacon and the second device can send the acknowledgement information to determine whether both sides of the beamforming training support channel bonding, and information such as supported channel and channel bandwidth.
  • Beam shaping training For the interaction process of the ability information, refer to the prior art, and details are not described herein again.
  • the step 201, the acquiring, by the first device, the channel information used by the first device and the at least one second device to perform beamforming training may include the following steps:
  • the first device when the first device is used as a personal basic service set control point (English full name: Personal basic service set control point, English abbreviation: PCP), or an access point (English full name: Access Point, English abbreviation: AP), the first The device configures channel information used by the beamforming training for the first device and the at least one second device; or
  • the first device receives channel information used by the network controller for beamforming training configured by the first device and the at least one second device, where the network controller includes: a personal basic service set control point (English full name: Personal basic service Set Control Point (English abbreviation: PCP), or access point (English full name: Access Point, English abbreviation: AP).
  • PCP Personal basic service Set Control Point
  • AP Access Point
  • the channel information used by the beamforming training acquired by the first device may be configured by the first device, that is, the first device.
  • the device may configure channel information used by the beamforming training for the first device and the at least one second device, where the first device configures at least one specified channel used by the beamforming training in the channel information, when the first device is configured
  • the first device may send the configured channel information to the second device, and the second device, as a responder of the beamforming training, may acquire the second device and the first device to perform beamforming training.
  • the specified channel used used.
  • the channel information used by the beamforming training acquired by the first device may be configured by a network controller, where the network controller may be PCP or AP.
  • the network controller may configure channel information used by the beamforming training for the first device and the at least one second device, where the network controller configures at least one designated channel used by the beamforming training in the channel information, when the network After the controller is configured to complete the foregoing channel information, the network controller may send the configured channel information to the first device and the second device, and the first device, as the initiator of the beamforming training, may acquire the first device and the at least one device.
  • the second device performs the specified channel used for beamforming training, and the second device as the responder of the beamforming training can acquire the designated channel used by the second device and the first device for beamforming training.
  • the network controller may be a PCP or an AP configured on the first device, or may be a PCP or an AP configured on the second device, and the network controller may also be an independent control device.
  • the network controller may be a PCP or an AP configured on the first device, or may be a PCP or an AP configured on the second device, and the network controller may also be an independent control device.
  • network controller for implementing specific configuration of channel resources used for beamforming training, network The specific implementation of the controller is not limited.
  • the channel information acquired by the first device further includes: performing beamforming using the specified channel.
  • the antenna number of the trained first device and the antenna number of the at least one second device are configured, in addition to the foregoing specified channel.
  • the first device or the network controller may configure the antenna number of the first device and the antenna number of the at least one second device when the channel information used by the beamforming training is configured, that is, the first device or the network controller may Configure antenna pairs that require beamforming training. It can be seen from the foregoing description that one antenna of the first device and one antenna of the second device may constitute one antenna pair, which antenna of the first device and which antenna of the second device constitute an antenna pair that needs to perform beamforming training, After the channel information is acquired by the first device and the second device, it may be determined which antenna in the first device and which antenna in the second device can form an antenna pair that needs beamforming training.
  • the step A2 receives the channel information provided by the embodiment of the present invention before the first device receives the channel information used by the network controller for the beamforming training configured by the first device and the at least one second device.
  • the method of shape training further includes the following steps:
  • the first device sends SP request information to the network controller, where the SP request information includes at least one of the following: a beamforming training channel bandwidth requested by the first device, and a designated channel for beamforming training requested by the first device.
  • the channel information used by the beamforming training is included in the directed multi-gigabit (English full name: Directional Multi-Gigabit, English abbreviation: DMG) beacon transmitted by the network controller (English name: Beacon) ) frame or announcement (English name: Announce) frame; or,
  • the channel information used by the beamforming training is included in the first device.
  • Authorization English name: Grant
  • the first device sends the SP request information to the network controller, and the first device and the at least one second device may complete the acquisition of the channel information used by the beamforming training based on the scheduled transmission mode.
  • the network controller may send a DMG Beacon frame or an Announce frame carrying indication information of a designated channel used by the beamforming training to the first device.
  • the implementation of the indication information of the designated channel used by the beamforming training is not based on this, for example, when the first device and the at least one second device are in the CBAP, the first device and the at least one second device may perform acquisition of channel information used for beamforming training based on the contention transmission mode, for example, the first device may A Grant frame carrying channel information used for beamforming training is transmitted to at least one of the second devices.
  • the method for beamforming training provided by the embodiment of the present invention may further include the following steps:
  • the first device and the at least one second device may perform acquisition of channel information used for beamforming training based on the contention transmission mode, when the second After the device receives the channel information used by the beamforming training, the second device may feed back the confirmation information to the first device and/or the network controller to indicate that the second device receives the channel information used by the bearer beamforming training. Grant frame.
  • the first device performs beamforming training on the designated channel with the at least one second device.
  • the first device obtains the designated channel used by the first device and the at least one second device to perform beamforming training by performing the foregoing step 201, and the first device may be at least one on the designated channel.
  • the second device performs beamforming training. After the first device performs beamforming training on the designated channel with the at least one second device, the beamforming training result corresponding to the designated channel can be obtained. It can be understood that, when the first device performs beamforming training on the designated channel with the at least one second device, the first device needs to send and receive data packets with the second device, and the second device also needs to be the first device.
  • the device performs the sending and receiving of the data packet, and the first device and the at least one second device may perform beamforming training on the antenna pair of the first device and the at least one second device on the designated channel. It should be noted that, if the antenna of the first device and the antenna of the second device form multiple antenna pairs, the first device may perform beaming on different antenna pairs of the first device and the at least one second device on the designated channel. Forming training.
  • one antenna of the first device and one antenna of the second device form an antenna pair, and the first device performs beamforming training on the designated channel with the at least one second device, specifically It can include the following steps:
  • the first device in the sector level scanning (English full name: Sector Level Sweep, English abbreviation: SLS) stage, the first device performs beamforming training on the antenna pair of the first device and the at least one second device on the designated channel, and In the beam correction protocol (English name: Beam Refinement Protocol, BRP), the first device performs beamforming training on the antenna pair of the first device and the at least one second device on the designated channel; or
  • the first device performs beamforming training on the antenna pair of the first device and the at least one second device on the designated channel.
  • the beamforming training of the first device with the at least one second device on the designated channel may refer to the first device and the at least one second device in the SLS phase.
  • the antenna pair performs beamforming training, and after performing beamforming training on the antenna pair of the first device and the at least one second device in the SLS phase, the first device and the at least one second device may also be in the BRP phase.
  • the antenna pair performs beamforming training.
  • the beamforming training of the first device with the at least one second device on the designated channel may also refer to the antenna of the first device and the at least one second device in the BRP phase. Perform beamforming training.
  • the specific implementation manner of performing beamforming training on the antenna pair of the first device and the at least one second device on the designated channel is not limited. Next, the beamforming training in the SLS phase and the BRP phase will be described in detail.
  • step C1 in the implementation scenario of step C1 in the embodiment of the present invention, step C1 is in the SLS phase, the first device pairs the antenna pair of the first device and the at least one second device on the designated channel.
  • the beam shaping training may specifically include the following steps C11 and C12:
  • the antenna pair includes a first antenna of the first device and a second antenna of the second device, and the first device respectively transmits the first training data packet in all sector directions of the designated channel by using the first antenna.
  • the antenna number of the first device indicates the first antenna
  • the antenna number of the second device indicates the second antenna.
  • the first antenna and the second antenna form an antenna pair, and the first device passes the first antenna in the designated channel. Transmitting a first training data packet in all of the sector directions, each sector corresponding to a particular beam or pattern (ie, direction or weight) of the transmitting antenna of the first device, wherein the first training data packet includes a fan Area number.
  • the first device when the first training data packet is transmitted in step C11, the first device may have multiple manners. For example, the first device uses the first antenna to respectively transmit the first training in all sector directions of the designated channel.
  • the data packet may include the following steps C11, C12, C13, C14, wherein each step The specific implementation process is described below.
  • the first device continuously transmits the first training data packet in all the sector directions of all the first antennas of the first device in the antenna number order on the designated channel.
  • the first device may send the first training data packet in a centralized manner, and the first device may acquire different antenna pairs formed by all the first antennas of the first device and one second antenna of the at least one second device.
  • the beamforming uses the channel resources used for the training, and then the first device continuously transmits the first training data packet in all the sector directions of all the first antennas of the first device in the order of the antenna number.
  • the first device uses the centralized method to send the first training data packet. After the channel resource configuration of the beamforming training is completed, the entire beamforming training process can be completed according to the antenna numbering sequence, and no additional signaling overhead is required.
  • the first device uses the first antenna to respectively transmit the first training data packet in all sector directions of the designated channel, and may include the following steps:
  • the first device configures an antenna number of the first device that performs beamforming training using the designated channel, and an antenna number of the at least one second device, or the first device acquires a used channel specified by the network controller from the network controller.
  • the first device separately transmits a first training data packet in all sector directions of the first antenna of the first device, and after the first device and one antenna pair of the at least one second device complete beamforming training, the first device The device performs beam assignment on the remaining antenna pairs of the first device and the at least one second device according to the antenna number of the first device configured for the first device and the at least one second device and the antenna number of the at least one second device Shape training.
  • the first device may send the first training data packet in a distributed manner, and the first device may obtain the antenna number of the first device and the antenna number in the at least one second device, and all the first antennas of the first device and All the second antennas of the at least one second device may constitute different antenna pairs, and the first device uses the distributed to send the first training data packet, that is, the first device firstly pairs the first device and the at least one on a designated channel.
  • An antenna pair of the second device performs beamforming training, and after the antenna pair completes beamforming training, beamforming training is performed on the first antenna and the remaining antenna pairs of the at least one second device.
  • each channel resource can only be used for beamforming training of one antenna pair of the first device and the second device at a time, when completing an antenna pair After beamforming training, another antenna pair is configured to perform beam assignment on the channel resource.
  • Shape training In the embodiment of the present invention, the first device adopts distributed beamforming training, which can be more flexible in the implementation process. The first device, as the initiator of the beamforming training, can flexibly configure the training time and the antenna pair order.
  • the first device receives, by using the first antenna, a second training data packet sent by the second device by using the second antenna on the designated channel, determining a responder optimal sector number of the second antenna, and from the second training data packet. Get the initiator's optimal sector number to the first antenna.
  • the second device receives the first training data packet by using the omnidirectional beam as the responder, and the second device finds the best signal quality from the received first training data packet.
  • a training data packet obtains an initiator optimal sector number to the first antenna, and then the second device transmits a second training data packet in all sector directions of the designated channel through the second antenna, where the second training data packet includes : The initiator's optimal sector number of the first antenna.
  • the first device receives, by using the first antenna, the second training data packet sent by the second device by using the second antenna on the designated channel, and the first device finds the second one with the best signal quality from all the received second training data packets.
  • the data packet is trained to determine the responder optimal sector number of the second antenna, and the first device may also obtain the initiator optimal sector number of the first antenna from the second training data packet.
  • the second training data packet received by the first device further includes: a plurality of channels of the first antenna determined by the second device corresponding to the binding between the first device and the second device The initiator's optimal sector number of the channel other than the designated channel.
  • the second device may be determined that the first antenna corresponds to the initiator optimal sector number of the designated channel, and the second device may also be the second device for improving the measurement efficiency.
  • Measure the optimal sector of the multiple channels bound between the device and the first device determine that the first antenna corresponds to the initiator optimal sector number of the bundled multiple channels, and then the second device passes the second antenna
  • the second training data packet sent on the designated channel includes, in addition to the initiator optimal sector number corresponding to the designated channel, the second training data packet further includes: the first antenna corresponds to the bound multiple The initiator's optimal sector number of the channel other than the designated channel in the channel.
  • the first device by receiving the foregoing second training data packet sent by the second device, may obtain a respective initiator optimal sector number of the first antenna on each of the bound channels.
  • the second device when the second device uses the second training data packet to indicate that the first antenna corresponds to the initiator optimal sector number of the bundled multiple channels, the second device may adopt a plurality of indication manners, for example, the second training data packet received by the first device, specifically: Whether the respective initiator optimal sector number of one antenna corresponding to the channel other than the designated channel among the plurality of bonded channels is the same as or different from the initiator optimal sector number corresponding to the designated channel Instructions. Then, the first device may determine, by using the indication information that is the same in the second training data packet or that has a phase difference result, that the first antenna corresponds to an initiator optimal sector number of each of the bundled multiple channels.
  • the first device of step C12 receives, by using the first antenna, the second training data packet sent by the second device by using the second antenna on the designated channel, and determines the responder optimal sector number of the second antenna. And obtaining the initiator optimal sector number of the first antenna from the second training data packet, which may specifically include the following steps:
  • the first device receives, by using the first antenna, the second training data packet that is sent by the second device in the sequence of the antenna numbers by using the second antennas, and determines the first antenna and the second device corresponding to the first device.
  • the respective responder optimal sector numbers of the second antennas, and the initiator optimal sector numbers of the respective second antennas corresponding to the second antennas of the first antenna are acquired from the second training data packet.
  • the first device may perform the step C111, and the first device may send the first training data packet in a centralized manner.
  • the second device may also receive the first device by using the centralized receiving.
  • the first training data packet the second device can determine, by measurement, that the first antenna corresponds to the initiator optimal sector number of each second antenna of the second device, and then the second device can send the second training in a centralized manner.
  • the data packet that is, the second device sends the second training data packet in the order of the antenna number by using the second antenna, the first device may determine the response of each of the second antennas corresponding to the first antenna and the second device of the second device.
  • the optimal sector number, and the initiator optimal sector number of each of the second antennas corresponding to the second antenna obtained from the second training data packet.
  • the first device sends a sector scan feedback (Sound SWeep-Feedback, English abbreviation: SSW-Feedback) message on a sector corresponding to the initiator's optimal sector number of the first antenna on the designated channel.
  • SSW-Feedback message includes: a responder optimal sector number of the second antenna.
  • the first device After the first device acquires the initiator optimal sector number of the first antenna from the second training data packet, the first device on the designated channel, the sector corresponding to the initiator optimal sector number of the first antenna Transmitting an SSW-Feedback message, carrying the responder of the second antenna in the SSW-Feedback message Optimal sector number.
  • the first device in the step C13, transmitting the SSW-Feedback message on the sector corresponding to the initiator optimal sector number of the first antenna on the designated channel, may include the following steps:
  • the first device sends an SSW-Feedback message on a sector corresponding to an initiator optimal sector number of the first antenna of the first device, where the SSW-Feedback message includes: a responder of each second antenna of the second device.
  • the optimal sector number and the signal-to-noise ratio of each second antenna of the second device (English full name: Signal Noise Ratio, English abbreviation: SNR).
  • the first device performs the step C111 and the step C121, and the second device may send the second training data packet in a centralized manner, and the first device may adopt the centralized receiving second device to follow each of the second antennas.
  • the second training data packet that is sequentially sent by the antenna number is used by the foregoing implementation scenario.
  • the first device may determine the first device corresponding to the first device.
  • the responder's optimal sector number of each antenna and each second antenna of the second device is obtained, and the respective SNRs of the respective second antennas of the second device are obtained.
  • the first device receives, on the designated channel, a sector scan confirmation (English full name: Sector SWeep-ACKnowledgement, SSW-ACK) message transmitted by the second device by using the second antenna.
  • a sector scan confirmation English full name: Sector SWeep-ACKnowledgement, SSW-ACK
  • the second device receives the sector scan feedback SSW-Feedback message sent by the first device, and the second device may obtain the responder optimal sector of the second antenna from the SSW-Feedback message. No.
  • the second device may send an SSW-ACK message to the first device on the sector corresponding to the responder optimal sector number of the second antenna, where the first device may receive the SSW-ACK message sent by the second device. It is determined that the second device has received the SSW-Feedback message.
  • the step C2 performs beamforming training on the antenna pair of the first device and the at least one second device on the designated channel in the BRP phase, which may include the following steps:
  • the antenna pair includes a first antenna of the first device and a second antenna of the at least one second device, where the first device performs multi-sector identification on the designated channel by using the first antenna with the second antenna of the at least one second device. Capture (English full name: Multiple sector ID capture, English abbreviation: MIDC);
  • the designated channel for performing MIDC is determined as follows: when the BRP phase is in SLS After the phase, the first device and the at least one second device perform the specified channel used for beamforming training as the designated channel for performing the MIDC, or when the BRP phase is not after the SLS phase, the indication of the designated channel of the MIDC is performed.
  • the information is carried by a directed multi-gigabit beam optimization element (English name: DMG Beam Refinement element) transmitted by the first device.
  • the first device can implement beam modification through the MIDC sub-phase in the BRP phase, that is, the first device can perform MIDC on the designated channel with the second antenna of the at least one second device by using the first antenna.
  • the BRP phase is in the SLS phase, it means that the first device starts to perform the BRP phase after performing the SLS phase, in which case the first device and the at least one second device perform the specified channel used for beamforming training.
  • the BRP phase does not mean that the first device performs the BRP phase independently after the SLS phase, that is, the first device performs the BRP phase separately, but may not perform the SLS phase.
  • the indication of the specified channel of the MIDC is performed.
  • the information is carried by the DMG Beam Refinement element transmitted by the first device.
  • the method for beamforming training provided by the embodiment of the present invention may further include the following steps:
  • the first device is configured to perform beamforming training on the antenna pair of the first device and the at least the second device on the designated channel
  • the first device is bound by the first device and the at least one second device.
  • the antenna pair of the first device and the at least one second device is verified to perform beamforming training results corresponding to the specified channel on the channel other than the designated channel.
  • the beamforming training result may include: an initiator optimal sector number of the first antenna of the first device on the designated channel, and a responder optimal sector of the second antenna of the second device on the designated channel Numbering. Since the millimeter wave channel has directivity and is consistent in frequency, that is, the signal propagation path is highly consistent at different frequencies, it is necessary to perform beamforming training on the specified channel and apply it to other channels, in order to prevent the above application.
  • the resulting mismatch can further verify that the beam corresponding to the designated channel is formed on the channels other than the designated channel among the multiple channels bound by the first device and the at least one second device.
  • the training result is verified, and the first device may generate whether the beamforming training result obtained in the BRP phase is applicable to the verification result of the channel other than the designated channel among the multiple channels that are bound.
  • the DMG Beam Refinement element is further used to indicate whether the beamforming training result obtained in the BRP phase is applicable to other channels than the designated channel among the plurality of bonded channels.
  • the first device may use the reserved bits in the DMG Beam Refinement element to be used as the channel number of the BRP phase, and use the reserved bits to indicate whether the BRP phase obtains beamforming training results for other than the specified channel. channel.
  • the first device of the first device and the at least one of the plurality of channels bound by the first device and the at least one second device, except for the designated channel, in the step D1 The antenna pair of the second device performs the beamforming training result corresponding to the specified channel, which may include the following steps:
  • the antenna pair includes a first antenna of the first device and a second antenna of the at least one second device, where the first device receives at least one channel other than the designated channel in the bound multiple channels by using the first antenna.
  • a second device measures a signal to noise ratio by using a second antenna to transmit a BRP frame using a beamforming training result corresponding to the specified channel;
  • the first device When the signal to noise ratio is greater than a preset signal to noise ratio threshold, the first device sends a BRP frame including the feedback acknowledgement to the at least one second device.
  • the second device may be used to send a BRP frame, and the first device receives the BRP frame and measures the signal to noise ratio, and the first device compares the measured signal to noise ratio with The signal-to-noise ratio threshold is determined.
  • the first device When the signal-to-noise ratio is greater than the preset signal-to-noise ratio threshold, the first device sends a BRP frame including the feedback acknowledgement to the at least one second device, to indicate that the beamforming training result corresponding to the designated channel can be
  • the other channel of the multiple channels that are applicable to the binding of the first device and the at least one second device, when the signal to noise ratio is less than or equal to the preset signal to noise ratio threshold, indicating that the beamforming training result corresponding to the specified channel is not Applicable to the other channels of the plurality of channels bound by the first device and the at least one second device, so the first device and the second device need to perform beamforming training on the designated channel to regenerate the beam corresponding to the designated channel. Forming training results.
  • the first device of the step D1 is configured on the channel other than the designated channel of the plurality of channels bound by the first device and the at least one second device, and the at least one of the first device and the at least one
  • the antenna pair of the second device performs the beamforming training result corresponding to the specified channel, and specifically includes the following steps:
  • the second device that receives the at least one of the first device sends a BRP frame that includes the feedback acknowledgement when the signal to noise ratio is greater than a preset signal to noise ratio threshold.
  • Step D11 and step D12 describe a manner of verifying the beamforming training result corresponding to the specified channel.
  • the method of step D13 and step D14 may be used to verify the beamforming corresponding to the specified channel. Training results.
  • the first device when verifying the beamforming training result corresponding to the specified channel, the first device may be used to send a BRP frame, the second device to receive the BRP frame and measure the signal to noise ratio, and the second device is to measure. The obtained signal-to-noise ratio and the signal-to-noise ratio threshold are determined.
  • the second device When the signal-to-noise ratio is greater than the preset signal-to-noise ratio threshold, the second device sends a BRP frame including the feedback acknowledgement to the first device to indicate the beamforming corresponding to the specified channel.
  • the training result may be applied to other channels in the multiple channels bound by the first device and the second device.
  • the beamforming training result corresponding to the specified channel is not Applicable to the other channels of the plurality of channels bound by the first device and the second device, so the first device and the second device need to perform beamforming training on the designated channel to regenerate the beamforming training corresponding to the designated channel. result.
  • the method for the beamforming training provided by the embodiment of the present invention is as follows:
  • the first device may first obtain the channel information used by the first device and the at least one second device for performing beamforming training, where the channel information includes:
  • the first device and the at least one second device perform at least one designated channel used for beamforming training, and similarly, each of the at least one second device can acquire the second device and the first device The channel information used for beamforming training.
  • the first device and the at least one second device may perform beamforming training on a designated channel indicated in the channel information.
  • the first device can perform beamforming training with multiple second devices simultaneously on a pre-configured designated channel, so that the time required for beamforming training can be effectively reduced.
  • the foregoing embodiment describes the method of beamforming training provided by the embodiment of the present invention from the first device side.
  • the beamforming training provided by one embodiment of the present invention is next described from the second device side.
  • Methods can include:
  • the second device acquires a channel used by the second device and the first device to perform beamforming training.
  • Information comprises: at least one designated channel used by the second device and the first device for beamforming training.
  • the first device may be the initiator of the beamforming training
  • the second device is the responder of the beamforming training
  • the first device may perform beamforming training with the second device, the first device.
  • Beamforming training can also be performed with more than two second devices, which are described in detail from the perspective of a second device in the embodiment of the present invention.
  • the second device before the second device performs beamforming training, the second device may first acquire channel information used by the second device and the first device for beamforming training.
  • the channel information may include: at least one designated channel used by the second device and the first device for beamforming training.
  • the at least one designated channel includes: a designated channel or a plurality of designated channels, for example, may be a pre-configured channel or a plurality of channels, and the second device acquires a designated channel used for performing beamforming training, and then performs step 302. .
  • the first device and the second device have a plurality of channels bound, and the designated channel is one channel or several channels of the bundled multiple channels.
  • the first device has one or more antennas
  • the second device has one or more antennas.
  • One antenna of the first device and one antenna of the second device may constitute one antenna pair, when both the first device and the second device have one In the case of an antenna, the first device can form a different antenna pair with the plurality of second devices.
  • different antenna pairs of the first device and the second device have different designations in a time period of one beamforming training.
  • the channel, which channel or channels of the plurality of channels to which the first device and the second device are bound may be configured according to a specific application scenario, which is not limited herein.
  • the method for beamforming training provided by the embodiment of the present invention may further include the following step:
  • the second device sends the second beamforming training capability information to the first device, and receives the first beamforming training capability information sent by the first device, where the first beamforming training capability information includes: whether the first device supports Channel binding, channel number and channel bandwidth supported by the first device, number of antennas supported by the first device, and second beamforming training capability information, including: at least one second device supports channel bonding, at least one The channel number and channel bandwidth supported by the second device, and the number of antennas supported by at least one second device.
  • the first The device and the second device may also perform beamforming training capability information first, or the first device needs to perform beamforming training capability information interaction through the network controller.
  • the first device can transmit the beacon and the second device can send the acknowledgement information to determine whether both sides of the beamforming training support channel bonding, and information such as supported channel and channel bandwidth.
  • the second device acquiring the channel information used by the second device and the first device for performing beamforming training may include the following steps:
  • the second device acquires channel information used by the first device to configure beamforming training for the second device and the first device;
  • the second device acquires channel information used by the network controller for the beamforming training configured by the second device and the first device, where the network controller includes: a PCP, or an AP.
  • the channel information used by the beamforming training acquired by the second device may be configured by the first device, that is, the first device may be the first device and the at least one The second device configures channel information used by the beamforming training, and the first device configures a designated channel used by the beamforming training in the channel information. After the first device is configured to complete the channel information, the first device may configure The channel information is sent to the second device, and the second device, as a responder of the beamforming training, can acquire the designated channel used by the second device and the first device for beamforming training.
  • the channel information used by the beamforming training acquired by the second device may be configured by the network controller, that is, the network controller may be the first device and the second device
  • the device configures channel information used by the beamforming training, and the network controller configures a designated channel used by the beamforming training in the channel information.
  • the network controller may configure the foregoing
  • the channel information is sent to the first device and the second device, and the second device, as a responder of the beamforming training, can acquire the designated channel used by the second device and the first device for beamforming training.
  • the network controller may be a PCP or an AP configured on the first device, or may be a PCP or an AP configured on the second device, and the network controller may also be an independent control device.
  • the specific implementation manner of the network controller is not limited.
  • the channel information acquired by the second device includes: The antenna number of the first device that specifies the channel for beamforming training and the antenna number of the second device.
  • the first device or the network controller may configure the antenna number of the first device and the antenna number of the second device when configuring the channel information used by the beamforming training, that is, the first device or the network controller may be configured to perform Antenna pair for beamforming training. It can be seen from the foregoing description that one antenna of the first device and one antenna of the second device may constitute one antenna pair, which antenna of the first device and which antenna of the second device constitute an antenna pair that needs to perform beamforming training, After the channel information is acquired by the first device and the second device, it may be determined which antenna in the first device and which antenna in the second device can form an antenna pair that needs beamforming training.
  • the second device of step E2 obtains the beam information provided by the embodiment of the present invention before acquiring the channel information used by the network controller for the beamforming training configured by the second device and the first device.
  • the shaping training method further includes the following steps:
  • the SP request information includes at least one of the following information: a beamforming training channel bandwidth requested by the first device, and a beamforming training request by the first device.
  • Specifying a channel, including indication information of a primary channel, and channel information used by beamforming training is included in a DMG Beacon frame or an Announce frame sent by the network controller; or
  • the channel information used by the beamforming training is included in the Grant frame sent by the first device.
  • the first device sends the SP request information to the network controller, and the first device and the at least one second device may complete the acquisition of the channel information used by the beamforming training based on the scheduled transmission mode.
  • the network controller may send a DMG Beacon frame or an Announce frame carrying indication information of a designated channel used by the beamforming training to the first device.
  • the implementation of the indication information of the designated channel used by the beamforming training is not based on this, for example, when the first device and the at least one second device are in the CBAP, the first device and at least A second device may perform acquisition of channel information used by the beamforming training based on the contention transmission mode.
  • the first device may send the channel information used by the beamforming training to the at least one second device. Grant frame.
  • the method for beamforming training provided by the embodiment of the present invention may further include the following steps:
  • the second device When the second device supports the Grant ACK frame, the second device sends a Grant ACK to the first device.
  • the frame, the Grant ACK frame carries the confirmation information that the second device receives the channel information used by the beamforming training.
  • the first device and the second device may perform acquisition of channel information used for beamforming training based on the contention transmission mode, when the second device receives the beamforming After training the channel information used, the second device may feed back the acknowledgment information to the first device and/or the network controller to indicate that the second device received the Grant frame carrying the channel information used by the beamforming training.
  • the second device performs beamforming training with the first device on the designated channel.
  • the second device obtains the designated channel used by the first device and the second device to perform beamforming training by performing the foregoing step 301, and the second device may perform beam with the first device on the designated channel.
  • the shaping training after the second device performs beamforming training with the first device on the designated channel, the beamforming training result corresponding to the specified channel can be obtained.
  • the first device when the first device performs beamforming training on the designated channel with the at least one second device, the first device needs to send and receive data packets with the second device, and the second device also needs to be the first device.
  • the device performs transmission and reception of the data packet, and the first device and the second device may perform beamforming training on the antenna pair of the first device and the second device on the designated channel.
  • the antenna of the first device and the antenna of the second device form multiple antenna pairs, the first device may perform beaming on different antenna pairs of the first device and the at least one second device on the designated channel. Forming training.
  • one antenna of the first device and one antenna of the second device form an antenna pair, and the second device performs beamforming training with the first device on the designated channel, which may specifically include the following step:
  • the second device performs beamforming training on the antenna pair of the second device and the first device on the designated channel, and in the BRP phase, the second device on the designated channel pairs the second device and the first device Antenna pair for beamforming training; or,
  • the second device performs beamforming training on the antenna pair of the second device and the first device on the designated channel.
  • the beamforming training of the first device with the first device on the designated channel may refer to beamforming the antenna pairs of the first device and the second device in the SLS phase. Shape training, and after performing beamforming training on the antenna pairs of the first device and the second device in the SLS phase, the antenna pairs of the first device and the second device may also be beamed in the BRP phase. Forming training. In other embodiments of the present invention, the beamforming training of the second device with the first device on the designated channel may also refer to beamforming training of the antenna pair of the first device and the second device in the BRP phase. .
  • the specific implementation manner of performing beamforming training on the antenna pair of the first device and the second device on the designated channel is not limited. Next, the beamforming training in the SLS phase and the BRP phase will be described in detail.
  • step S1 in the implementation scenario of step G1 in the embodiment of the present invention, in step S1, the second device performs beam assignment on the antenna pair of the second device and the first device on the designated channel.
  • the specific training process may include the following steps G11, G12, G13, and G14, wherein the specific implementation process of each step is described as follows.
  • the antenna pair includes a first antenna of the first device and a second antenna of the second device, where the second device receives the first training data packet sent by the first device by using the second antenna, and determines an initiator optimal fan of the first antenna. Area number.
  • the antenna number of the first device indicates the first antenna
  • the antenna number of the second device indicates the second antenna.
  • the first antenna and the second antenna form an antenna pair, and the first device passes the first antenna in the designated channel.
  • the second device as the responder, receives the first training data packet by using the omnidirectional beam, and the second device finds the first training data packet with the best signal quality from the received first training data packet, and obtains the initiation of the first antenna.
  • the optimal sector number is the optimal sector number.
  • the first device may send the first training data packet in multiple manners, for example, the first device is in the direction of all sectors of all the first antennas of the first device in the order of the antenna number on the designated channel. , continuously transmitting the first training data packet.
  • the second device of step G11 receives the first training data packet sent by the first device by using the second antenna, including:
  • the second device continuously receives the first training data packet on the designated channel by using the second antenna.
  • the first device may send the first training data packet in a centralized manner, and the first device may obtain beamforming of different antenna pairs formed by all the first antennas of the first device and one second antenna of the second device. Training the channel resources used, and then the first device continuously transmits the first training data packet in all the sector directions of all the first antennas of the first device according to the antenna number order, and the second device can continuously receive through the second antenna.
  • the second device adopts centralized mode to receive the first training data packet, and when the channel resource configuration of the beamforming training is completed, the whole The beamforming training process can be completed in the order of antenna numbers without additional signaling overhead.
  • the first device may send the first training data packet in multiple manners, for example, the first device configures the antenna number of the first device for performing beamforming training using the designated channel, and at least one The antenna number of the second device, or the first device acquires, from the network controller, the antenna number of the first device configured by the network controller using the designated channel for beamforming training and the antenna number of the at least one second device, first The device respectively transmits a first training data packet in all sector directions of the first antenna of the first device, and after the first device and one antenna pair of the at least one second device complete beamforming training, the first device is configured as The antenna number of the first device configured by the device and the at least one second device and the antenna number of the at least one second device perform beamforming training on the remaining antenna pairs of the first device and the at least one second device.
  • the second device receives the first training data packet sent by the first device by using the second antenna, including:
  • the second device acquires an antenna number of the first device configured by the first device or the network controller and performs beamforming training using the designated channel, and an antenna number of the second device.
  • the second device receives the first training data packet on the designated channel by using the second antenna, and after the second device and one antenna pair of the first device complete beamforming training, the second device is configured as the second device and the first device.
  • the antenna number of the first device configured by the device and the antenna number of the at least one second device perform beamforming training on the second device and the remaining antenna pairs of the first device.
  • the second device may receive the first training data packet in a distributed manner, and the second device may obtain the antenna number of the first device and the antenna number in the second device, and all the first antennas and the second device of the first device All the second antennas may constitute different antenna pairs, and the second device adopts distributed to receive the first training data packet, that is, the second device first beams one antenna pair of the first device and the second device on one designated channel.
  • the shaping training after the antenna pair completes the beamforming training, performs beamforming training on the remaining antenna pairs of the first device and the second device. That is to say, when the first training data packet is distributedly received, each channel resource can only be used for beamforming training of one antenna of the first device and the second device at a time, when the beam for one antenna pair is completed.
  • the second device adopts distributed beamforming training, which can be more flexible in the implementation process.
  • the first device as the initiator of the beamforming training, can flexibly configure the training time and the antenna pair order.
  • the second device separately transmits a second training data packet in a direction of all sectors of the designated channel by using the second antenna, where the second training data packet includes: an initiator optimal sector number of the first antenna.
  • the second device may carry the initiator optimal sector number obtained to the first antenna in the second training data packet, and then pass the second The antenna transmits a second training packet in each of the sector directions of the designated channel.
  • the first device receives, by using the first antenna, the second training data packet sent by the second device by using the second antenna on the designated channel, and the first device finds the second one with the best signal quality from all the received second training data packets.
  • the data packet is trained to determine the responder optimal sector number of the second antenna, and the first device may also obtain the initiator optimal sector number of the first antenna from the second training data packet.
  • the method for beamforming training provided by the embodiment of the present invention is performed in addition to step G12. You can also perform the following steps:
  • the second device measures an optimal sector of the multiple channels bound between the second device and the first device, and determines that the first antenna corresponds to an initiator of the channel other than the designated channel among the multiple channels that are bound
  • the optimal sector number, the second training data packet further includes: the first antenna corresponds to an initiator optimal sector number of the channel other than the designated channel among the plurality of bonded channels.
  • the second device may be determined that the first antenna corresponds to the initiator optimal sector number of the designated channel, and the second device may also be the second device for improving the measurement efficiency.
  • Measure the optimal sector of the multiple channels bound between the device and the first device determine that the first antenna corresponds to the initiator optimal sector number of the bundled multiple channels, and then the second device passes the second antenna
  • the second training data packet sent on the designated channel includes, in addition to the initiator optimal sector number corresponding to the designated channel, the second training data packet further includes: the first antenna corresponds to the bound multiple The initiator's optimal sector number of the channel other than the designated channel in the channel.
  • the first device by receiving the foregoing second training data packet sent by the second device, may obtain a respective initiator optimal sector number of the first antenna on each of the bound channels.
  • the second device when the second device uses the second training data packet to indicate that the first antenna corresponds to the initiator optimal sector number of the bundled multiple channels, the second device may adopt The multiple indication manners, for example, the second training data packet sent by the second device, specifically includes: an initiator optimal sector number of the first antenna corresponding to the channel other than the designated channel among the multiple channels that are bound, Whether there is a difference or the difference between the optimal sector number corresponding to the initiator of the specified channel Instructions for the fruit. Then, the first device may determine, by using the indication information that is the same in the second training data packet or that has a phase difference result, that the first antenna corresponds to an initiator optimal sector number of each of the bundled multiple channels.
  • the second device in step G12 transmits the second training data packet in all the sector directions of the designated channel by using the second antenna, including:
  • the second device continuously transmits the second training data packet in all the sector directions of the second antennas of the second device in the antenna number sequence, where the second training data packet includes: the first antenna corresponds to each of the second devices.
  • the second device performs the step G111, and the second device may receive the first training data packet in a centralized manner.
  • the second device may determine that the first antenna corresponds to the first The initiators of the second antennas of the two devices respectively have an optimal sector number, and then the second device may send the second training data packet in a centralized manner, that is, the second device sends the second training data in sequence according to the antenna number by using the second antennas.
  • the first device may determine a respective responder optimal sector number corresponding to each of the first antenna of the first device and each second antenna of the second device, and obtain the first antenna from the second training data packet corresponding to The initiator of each of the second antennas of the second device has an optimal sector number.
  • the second device receives the SSW-Feedback message sent by the first device on the sector corresponding to the initiator optimal sector number of the first antenna, and obtains the responder optimal sector of the second antenna from the SSW-Feedback message. Numbering.
  • the first device After the first device acquires the initiator optimal sector number of the first antenna from the second training data packet, the first device corresponds to the initiator optimal sector number of the first antenna on the designated channel.
  • the SSW-FeedbaGk message is transmitted on the sector, and the responder optimal sector number of the second antenna is carried in the SSW-FeedbaGk message.
  • the second device may receive the SSW-Feedback message sent by the first device, and obtain the responder optimal sector number of the second antenna from the SSW-Feedback message.
  • the beam provided by the embodiment of the present invention may further comprise the following steps:
  • the second device acquires, from the SSW-Feedback message, a respective responder optimal sector number of each second antenna of the second device, and a respective signal to noise ratio SNR of each second antenna of the second device.
  • the second device performs step G111 and step G121, and the second device
  • the second training data packet can be sent in a centralized manner, and the first device can receive the second training data packet that is sent by the second device in sequence according to the antenna number by using the second antenna.
  • the first device After measuring the second training data packet sent by the second device through each of the second antennas, determining a responder optimal sector number corresponding to each of the first antennas of the first device and the second antennas of the second device, And obtaining the SNR of each second antenna of the second device, where the first device may carry the responder optimal sector number of each second antenna of the second device in the SSW-Feedback message, and each part of the second device The SNR of each of the two antennas.
  • the second device transmits an SSW-ACK message on a sector corresponding to the responder optimal sector number of the second antenna.
  • the second device receives the sector scan feedback SSW-FeedbaGk message sent by the first device, and the second device may obtain the responder optimal sector of the second antenna from the SSW-FeedbaGk message. No.
  • the second device may send an SSW-AGK message to the first device on the sector corresponding to the responder optimal sector number of the second antenna, where the first device may receive the SSW-AGK message sent by the second device. It is determined that the second device has received the SSW-FeedbaGk message.
  • the second device performs beamforming training on the antenna pair of the second device and the first device on the designated channel in the BRP phase, including:
  • the antenna pair includes a first antenna of the first device and a second antenna of the second device, and the second device performs a multi-sector identification capture MIDC with the first device on the designated channel by using the second antenna;
  • the designated channel for performing the MIDC is determined by: when the BRP phase is after the SLS phase, the designated channel used for beamforming training of the different antenna pairs between the second device and the first device is used as the designated channel for performing the MIDC, Or, when the BRP phase is not after the SLS phase, the indication information of the designated channel for performing the MIDC is carried by the DMG Beam Refinement element.
  • the second device can implement beam modification through the MIDC sub-phase in the BRP phase, that is, the second device can perform MIDC on the designated channel with the first antenna of the first device by using the second antenna.
  • the BRP phase is in the SLS phase, it means that the second device starts to perform the BRP phase after performing the SLS phase.
  • the second device and the first device perform the beamforming training using the designated channel as the MIDC designation. channel.
  • the BRP phase is not performed after the SLS phase means that the second device performs the BRP phase independently, that is, the second device performs the BRP phase separately, but may not perform the SLS phase. In this case, the indication of the specified channel of the MIDC is performed.
  • Information by The DMG Beam Refinement element carried by the first device carries.
  • the method for beamforming training provided by the embodiment of the present invention may further include the following steps:
  • the second device when the second device performs beamforming training on the antenna pair of the second device and the first device on the designated channel, the second device divides the designated channel in the multiple channels bound by the second device and the first device. On the other channel, the antenna pair of the second device and the first device is verified to verify the beamforming training result corresponding to the channel.
  • the beamforming training result corresponding to the specified channel may be obtained, and the beam assignment corresponding to the specified channel is obtained.
  • the training result may include an initiator optimal sector number of the first antenna of the first device on the designated channel, and a responder optimal sector number of the second antenna of the second device on the designated channel. Since the millimeter wave channel has directivity and is consistent in frequency, that is, the signal propagation path is highly consistent at different frequencies, it is necessary to perform beamforming training on the specified channel and apply it to other channels, in order to prevent the above application.
  • the beamforming training result corresponding to the specified channel may be further verified on the channels other than the designated channel in the multiple channels bound by the first device and the second device. It is verified that the second device can generate whether the beamforming training result obtained in the BRP phase is applicable to the verification result of the channel other than the designated channel among the plurality of bonded channels.
  • the DMG Beam Refinement element is further used to indicate whether the beamforming training result obtained in the BRP phase is applicable to other channels than the designated channel among the plurality of bonded channels.
  • the first device may use the reserved bits in the DMG Beam Refinement element to be used as the channel number of the BRP phase, and use the reserved bits to indicate whether the BRP phase obtains beamforming training results for other than the specified channel. channel.
  • the second device performs the antenna pair of the second device and the first device on the channel other than the designated channel in the multiple channels bound by the second device and the first device.
  • the method for verifying the beamforming training corresponding to the specified channel may include the following steps:
  • the antenna pair includes a first antenna of the first device and a second antenna of the second device, and the second device uses the specified signal by using the second antenna on the other channels except the designated channel.
  • the beamforming training result corresponding to the channel transmits a BRP frame, so that the first device receives the BRP frame and measures the signal to noise ratio;
  • the second device receives, by the first device, a BRP frame that includes a feedback acknowledgement when the signal to noise ratio is greater than a preset signal to noise ratio threshold.
  • the second device may be used to send a BRP frame, and the first device receives the BRP frame and measures the signal to noise ratio, and the first device compares the measured signal to noise ratio with The signal-to-noise ratio threshold is determined.
  • the first device When the signal-to-noise ratio is greater than the preset signal-to-noise ratio threshold, the first device sends a BRP frame including the feedback acknowledgement to the at least one second device, to indicate that the beamforming training result corresponding to the designated channel can be
  • the other channel of the multiple channels that are applicable to the binding of the first device and the at least one second device, when the signal to noise ratio is less than or equal to the preset signal to noise ratio threshold, indicating that the beamforming training result corresponding to the specified channel is not Applicable to the other channels of the plurality of channels bound by the first device and the at least one second device, so the first device and the second device need to perform beamforming training on the designated channel to regenerate the beam corresponding to the designated channel. Forming training results.
  • the second device of the second device and the second device and the first device are connected to the antenna of the second device and the first device.
  • the method for verifying the beamforming training corresponding to the specified channel may include the following steps:
  • the second device receives the first channel on the other channels than the designated channel by using the second antenna.
  • the device uses the BRP frame sent by the beamforming training result corresponding to the specified channel to measure the signal to noise ratio;
  • the second device sends a BRP frame including the feedback acknowledgement to the first device.
  • Step H11 and step H12 describe a manner of verifying the beamforming training result corresponding to the specified channel.
  • the method of step H13 and step H14 may be used to verify the beamforming corresponding to the specified channel. Training results.
  • the first device may send a BRP frame
  • the second device receives the BRP frame and measures the signal to noise ratio
  • the second device measures The obtained signal-to-noise ratio and the signal-to-noise ratio threshold are determined.
  • the second device When the signal-to-noise ratio is greater than the preset signal-to-noise ratio threshold, the second device sends a BRP frame including the feedback acknowledgement to the first device to indicate the beamforming corresponding to the specified channel.
  • the training result may be applied to other channels in the multiple channels bound by the first device and the second device.
  • the beamforming training result corresponding to the specified channel is not Applicable to the first The other device of the plurality of channels bound by the device and the second device, so the first device and the second device need to perform beamforming training on the designated channel to regenerate the beamforming training result corresponding to the specified channel.
  • the method for beamforming training provided by the embodiment of the present invention may be: the second device may first obtain channel information used by the second device and the first device for beamforming training, where the channel information includes: Similarly, the first device can obtain the channel information used by the first device and the second device for beamforming training. The first device and the second device may perform beamforming training on a designated channel indicated in the channel information. In the embodiment of the present invention, the first device can perform beamforming training with multiple second devices simultaneously on a pre-configured designated channel, so that the time required for beamforming training can be effectively reduced.
  • the embodiments of the present invention are mainly directed to a system in which STAs as initiators and responders all have a channel bonding function.
  • multiple channels are divided.
  • IEEE 802.11ad four channels are defined, each channel having a width of 2.16 GHz.
  • the transmitting and receiving parties can only work on one of the channels.
  • IEEE 802.11ay it is determined that channel bonding technology will be introduced, that is, the transmitting and receiving parties can bind multiple channels, and use multiple binding channels to transmit and receive information.
  • the initiator of the beamforming training may configure the responder of the beamforming training (hereinafter referred to as the responder) to complete the beam assignment on the designated channel in the bound channels.
  • Shape training, the initiator and responder of the beamforming training can also be configured by the PCP or AP to perform beamforming training on the designated channels in these bound channels. In this way, the initiator of the beamforming training can complete the beamforming training process with multiple responders simultaneously by using multiple channels, thereby effectively reducing the time required for beamforming training.
  • the STA can operate in the millimeter wave band and adopt the MU-MIMO and channel bonding technologies.
  • the STA can support channel bonding.
  • FIG. 1 it is a schematic diagram of a scenario in which two users are MU-MIMO and two channels are bound.
  • the system needs to perform beamforming training on the C1 and C2 channels between STA1 and STA2, STA1 and STA3.
  • the following is an example in which the initiator and the responder involved in the embodiment of the present invention are STAs.
  • the STA may be a STA that includes a PCP/AP function.
  • the method for implementing beamforming training by the initiator and the responder according to the embodiment of the present invention may include the following steps 1, step 2, step 3, and step 4. Next, each step will be described in detail.
  • Step 1 Each STA completes the network access and completes the interaction of the beamforming capability information.
  • the beamforming capability information includes but is not limited to the following: whether each STA supports channel bonding, supported channel and channel bandwidth, and supported antennas. Number of information.
  • the specific process of accessing the network is as follows: other STAs listen to the beacon transmitted by the STA with PCP/AP capability on the primary channel, and the beacon includes information required for other STAs to access the network, and the STA receives the beacon ( After the English name: Beacon, the acknowledgment message is sent to the STA with the PCP/AP capability, that is, the access can be completed.
  • the beacon transmitted by the STA with PCP/AP capability and the acknowledgement information transmitted by other STAs include information such as channel binding, supported channel and channel bandwidth.
  • Step 2 The initiator and the responder obtain the channel information used for the beamforming training.
  • the specific configuration process is as follows: when the initiator sends the beacon frame, the beam shaping control in the extended scheduling element (English name: Extended Schedule element) The reserved bits in the English name: Beamforming control are set to the number of the channel used for beamforming training. For different responders, configure different channel numbers.
  • the system includes one initiator that configures two antennas, two responders that configure two antennas, and the initiator and responder respectively perform 2 channel bundle.
  • the two antennas of the initiator are: antenna 1 and antenna 2
  • the two antennas of the first responder are: antenna 3 and antenna 4, respectively
  • the two antennas of the second responder are antenna 5 and antenna 6.
  • the beamforming training needs to adopt the mode of the initiator's antenna 1 (for example, represented by I-A1) (ie, the antenna weight vector (Antenna Weight Vector, English abbreviation: AWV)) and the antenna 3 of the first responder respectively.
  • I-A1 the antenna weight vector
  • AWV antenna weight vector
  • the antennas 4 (represented by R-A11 and R-A12, respectively) and the antennas 5 and 6 of the second responder (represented by R-A21 and R-A22, respectively) are aligned.
  • the mode of the initiator's antenna 2 (represented by I-A2) and the antenna 3 and antenna 4 of the first responder (represented by R-A11 and R-A12, respectively) and the antenna 5 and antenna 6 of the second responder (
  • the pattern alignment is represented by R-A21 and R-A22, respectively.
  • Two specific configurations are shown in Tables 1 and 2, which are shown below. It should be noted that the two configurations are for illustrative purposes only, and the embodiment of the present invention does not limit the specific configuration. method.
  • the initiator and the responder can transmit channel information used by the beamforming training based on different modes. For example, in the scheduled transmission mode, the initiator and each responder receive the Beacon frame sent by the network controller, and in the subsequent beamforming training process, the specified channel configured by the initiator in the Beacon frame is used to perform beam assignment with the initiator. Shape training, it should be noted here that when the initiator device has PCP or AP functions, the network controller and the initiator can be the same entity. In the contention-based transmission mode, after the resource competition is completed, the initiator sends an authorization (English name: Grant) frame to different responders, and the reserved bits in the Beamforming control in the Grant frame are set to be used for beamforming training.
  • an authorization English name: Grant
  • the number of the channel, the same, for different responders Set a different channel number.
  • the responder supports the Grant ACK frame the reserved bit in the Beamforming control that should be sent in the Grant ACK frame is set to the number of the channel configured by the initiator for beamforming training.
  • step three the initiator and the responder complete the sector level beam alignment.
  • the initiator and the responder perform a beamforming training process on the designated channel configured in step 2 (taking Table 2 as an example).
  • FIG. 5 it is a schematic diagram of multi-channel beamforming training according to the configuration of Table 2.
  • the initiator STA1 configures STA2 to perform beamforming training on channel C1, and configures STA3 to perform beamforming on channel C2. Shape training.
  • the beamforming training on the designated channel by the initiator and the responder may specifically include: beamforming training in the SLS phase and beamforming training in the BRP phase, wherein, as shown in FIG. 6-a and FIG. 6-b A schematic diagram of beamforming training of an initiator and a responder in an SLS phase according to an embodiment of the present invention, and a sector-level scanning SLS in a multi-channel beamforming training process in FIG. 6-a and FIG. 6-b, corresponding to The configuration in Table 2. Among them, distributed beamforming training is used in 6-a, and centralized beamforming training is used in Figure 6-b.
  • the white resource block represents channel C1, the black resource block represents channel C2, STA1 is the initiator, and STA2 and STA3 are the first responder and the second responder, respectively.
  • FIG. 7 is a schematic diagram of beamforming training of an initiator and a responder in a BRP phase according to an embodiment of the present invention, and FIG. 7 is a beam refinement BRP phase in a multi-channel beamforming training process, corresponding to Table 2 configuration.
  • the white resource block represents channel C1, the black resource block represents channel C2, STA1 is the initiator, and STA2 and STA3 are the first responder and the second responder, respectively.
  • Figure 6-a, Figure 6-b, and Figure 7 are used to describe the time period and channel resources occupied by different antenna pairs of different STAs in the SLS and BRP phase beam training, but in practice The time required for the beamforming training process between different antenna pairs is not necessarily the same.
  • FIG. 8-a and FIG. 8-b the initiator and the responder are provided with beams according to the embodiment of the present invention.
  • Schematic diagram of the channel resource configuration of the shaping training wherein FIG. 8-a and FIG. 8-b can be an actual multi-channel beamforming training process, FIG. 8-a corresponds to FIG. 6-a, and FIG. 8-b corresponds to the figure. 6-b.
  • Step 1 The initiator transmits data packets for training in all channels and all sector directions, each sector corresponding to a particular beam or pattern (ie direction or weight) of the initiator's transmit antenna,
  • the data packet contains the sector number
  • the responder uses the omnidirectional beam to receive the training data packet, and the responder finds the best quality from the received training data packet, and obtains the corresponding sector number.
  • Initiator_Sector_ID this sector number represents the sector that is optimal for the initiator to transmit to the responder.
  • the responder can receive the corresponding training data packet only on the channel designated by the initiator, obtain the optimal sector on the channel, and can also receive the corresponding training data packet on all channels to obtain the optimal on each channel.
  • the above two modes are not limited in the embodiment of the present invention.
  • Step 2 The responder transmits data packets for training in all sector directions on the channel designated by the initiator, each sector corresponding to a particular beam or pattern of the responder's transmit antenna (ie Direction or weight), where the data packet contains the sector number used by the responder to transmit the current data packet and the initiator's optimal sector Initiator_Sector_ID.
  • the responder when the responder is in the first step for multiple channels The optimal sectors are measured, and a plurality of Initiator_Sector_IDs are obtained, and the responders can process the sector numbers in a data packet transmitted by the responder after some processing, where the above-mentioned processing of the sector numbers can be various. method.
  • the Initiator_Sector_ID1 measured on the channel designated by the initiator is directly included in the data packet, and the Initiator_Sector_ID obtained on the other channel can be compared with the Initiator_Sector_ID1, and the comparison result is the same with the 1-bit feedback. It is also possible to feed back the difference between the Initiator_Sector_ID of the current channel and the Initiator_Sector_ID1, and encode the difference result into the data packet.
  • the encoding can be performed by looking up the table, as shown in Table 3 below:
  • the initiator receives the training data packet by using the omnidirectional beam on the designated channel, and the initiator finds the best quality training data packet from the received training data packet, and obtains the optimal sector for the responder to transmit.
  • Step 3 The initiator transmits sector scan feedback (ie, SSW-Feedback) on the sector Initiator_Sector_ID, and feeds the responder's optimal sector number Responder_Sector_ID to the responder.
  • SSW-Feedback sector scan feedback
  • Step 4 When the responder receives its optimal sector number Responder_Sector_ID, it transmits a sector scan confirmation on the sector Responder_Sector_ID.
  • step 1 the initiator transmits data packets for beamforming training on all sectors of the first and second antennas sequentially on two designated channels, the first responder 2 antennas on channel 1 and second responder simultaneously use omnidirectional beam reception training packets on channel 2, assuming that the first responder obtains 2 corresponding to its two different antennas (R-A11 and R-A12)
  • the sector numbers are Initiator_Sector_ID1 and Initiator_Sector_ID2, respectively.
  • the first responder transmits data packets for training on each of the antennas 3 and 4, respectively, on the channel 1 in sequence, wherein the data packet transmitted by the antenna 3 includes the Initiator_Sector_ID1.
  • the data packet transmitted by antenna 4 contains Initiator_Sector_ID2; the second responder performs similar steps on channel 2.
  • the foregoing transmit sector scan feedback (SSW-Feedback) may be used, and the initiator transmits two sector scan feedback (SSW-Feedback) on the channel Initiator_Sector_ID1 or Initiator_Sector_ID2 on the channel 1, and the first response is performed.
  • the optimal sector numbers Responder_Sector_ID1 and Responder_Sector_ID2 of the antenna 3 and the antenna 4 are fed back to the first responder.
  • the optimal sector number of the antenna 5 and the antenna 6 of the second responder is fed back to the second responder on the channel 2.
  • the SSW-Feedback frame can also be redesigned. Specifically, in the SSW Feedback signaling in the SSW-Feedback frame, the antenna test result of the responder is placed on the original first 17 bits, and the first 3 bits of the 7-bit reserved bits are used to place the Responder_Sector_ID2-Responder_Sector_ID1.
  • processing results were used to place the processing results of SNR2-SNR1 with the last 4 bits (processing is shown in Table 4).
  • a sector scan confirmation is transmitted on the sector Responder_Sector_ID1 or Responder_Sector_ID2.
  • the above distributed and centralized is the adjustment of the order.
  • the distributed is more in beam training.
  • the initiator and responder can flexibly perform beam training for a particular antenna pair during the beam training period.
  • the channel resource configuration of the beam training is completed, the entire training process can be completed in the order of the antenna number, and no additional signaling overhead is required.
  • SNR2-SNR1 Output bit 0 0000 1 0001 -1 0010 2 0011 -2 0100 3 0101 -3 0110 4 0111 -4 1000 5 1001 -5 1010 6 1011 -6 1100 7 1101 -7 1110 Greater than 7 or less than -7 1111
  • the initiator and the different responders perform a multi-sector ID capture (ie, MIDC) sub-phase on the designated channel to implement beam correction.
  • MIDC multi-sector ID capture
  • the channel number on the reserved bit in the Beamforming control in the Extended Schedule element in the Beacon frame is obtained in step 2 (when based on the scheduled transmission mode). Or the channel number on the reserved bit in the Beamforming control in the Grant frame, and when the responder supports the Grant ACK frame, the above channel number has been set by the reserved bit in the Beamforming control in the Grant ACK frame. The manner in which the initiator configures the channel number for beamforming training is confirmed by the responder.
  • the initiator uses the reserved bits in the DMG Beam Refinement element to use the channel number in the BRP phase during the BRP setup phase, and/or uses the reserved bits in the Directional multi-gigabit to indicate The BRP phase obtains whether the alignment result is applicable to other channels than the above-specified channel.
  • Step 4 The beamforming training result completed in step 3 is verified on other channels.
  • the beamforming training result completed on the specified channel completed in step 3 can be applied to other channels.
  • the present invention further designs a verification method.
  • the reserved bits in the DMG Beam Refinement element are used as the channel number of the BRP phase, and the SNR Requested bit in the FBCK-REQ is set to 1, and the 3rd to 5th bits of the N beam in the FBCK-TYPE The bit is set to 001, and then the initiator and the responder will transmit and receive on the particular channel using the antenna pattern obtained in step three to obtain a corresponding signal-to-noise ratio (SNR), when the SNR is greater than a certain threshold. (The threshold is preset here), the initiator will send a BRP frame with feedback to confirm, otherwise the initiator will configure the responder to re-send the beamforming training process in step three on the channel.
  • SNR signal-to-noise ratio
  • the channel configuration method in the above confirmation process corresponds to step two.
  • the configuration method of Table 1 is taken as an example to explain how to configure specifically, as shown in Table 5.
  • I-A1 and R-A11, I-A1 and R-A12, I-A1 and R-A21, I-A1 and R-A22 on channel C1, I-A2 and R-A21 have been completed by the foregoing steps.
  • I-A2 and R-A22, I-A2 and R-A11, I-A2 and R-A12 are trained on the beamforming on the channel C2, and the antenna modes at both ends of the transmitting and receiving are obtained. By this configuration, the antenna pattern will be verified.
  • Table 5 Verification methods in multi-channel beamforming training (corresponding to the configuration of step two shown in Table 1)
  • the channel binding function introduced by IEEE 802.11ay can simultaneously perform the beamforming training process on multiple channel resources, which can effectively reduce the channel resources.
  • the time required for beamforming training Still taking the system in step 2 as an example: in this system, I-A1 and R-A11, I-A1 and R-A12, I-A1 and R-A21, I-A1 and R-A22, I-A2 and R-A21, I-A2 and R-A22, I-A2 and R-A11, I-A2 and R-A12 beamforming training between 8 pairs of antennas, currently 11ad in beamforming training process
  • the antenna selection can be configured in different beamforming training periods, but there is no provision for which channel to use.
  • the cycle while using the method of the present invention, requires only four time periods.
  • the invention requires the STA in the system to configure multiple radio frequency chains, and has the function of channel binding, which can simultaneously transmit and receive on multiple channels.
  • the reserved bits are configured to a specific channel number.
  • the method for beamforming training provided by an embodiment of the present invention may include:
  • the network controller receives beamforming training request information sent by at least one first device that is a beamforming training initiator.
  • the beamforming training request information includes: at least one second device specified by the at least one first device as a beamforming training responder, and channel information used by the requested beamforming training with the at least one second device .
  • the network controller may be a PCP or an AP configured on the first device, or may be a PCP or an AP configured on the second device, and the network controller may also be an independent control device.
  • the specific implementation manner of the network controller is not limited.
  • the initiator of the beamforming training is the first device, and the number of the first device may be one or more, which is not limited herein.
  • the first device is the initiator, at least one first device sends the network controller to the network controller.
  • Sending beamforming training request information wherein each of the at least one second device that can be designated as a beamforming training responder, the first device may perform beamforming with at least one second device by using a beamforming training request information carrying request Channel information used by the training.
  • the beamforming training request information further includes: a beamforming training control (English name: BF Control) field, where
  • the BF Control field is used to indicate at least one of the following: requesting a channel bandwidth for beamforming training, requesting a channel number for beamforming training, and requesting whether a channel for beamforming training includes a primary channel.
  • the BF Control field sent by the at least one first device to the network controller may include: a channel bandwidth requested by the first device, a channel number requested by the first device, and whether the specified channel requested by the first device includes a beam shaping training channel.
  • the BF Control field specifically includes one or two or all of the above information, and is not limited herein depending on the application scenario.
  • the network controller according to the beamforming training request information sent by the at least one first device, shapes channel information used by the training device to configure beamforming training for each pair of beams.
  • the channel information includes: K specified channels used by the at least one first device and the at least one second device for performing beamforming training, where K is a positive integer, where the first device and the first device specify beamforming A second device of the training responder constitutes a pair of beamforming training devices.
  • the network controller After the network controller receives the beamforming training request information sent by the at least one first device, the network controller shapes the channel information used by the training device to configure the beamforming training for each pair of beams, and records the beam shaping training device.
  • the network controller sends the channel information used by the configured beamforming training to the at least one first device and the at least one second device, which may include the following steps:
  • the network controller respectively allocates SPs corresponding to K designated channels
  • the network controller includes the allocated SP allocation information corresponding to each designated channel in the directional multi-gigabit (DMG) beacon frame or announcement (English name: Announce) frame, to at least one first device and at least one The second device sends.
  • DMG directional multi-gigabit
  • announcement English name: Announce
  • the network controller separately allocates SPs of the K designated channels, and the DMG beacon frame or the advertisement frame sent by the network controller to the first device and the second device includes the foregoing SP allocation information. specific, The network controller allocates SPs corresponding to K designated channels, respectively, including:
  • the network controller allocates SPs that overlap in time or do not overlap in time corresponding to the K designated channels. If the SPs overlap in time, the channel numbers assigned to different pairs of beamforming training devices are different.
  • the SPs configured by the network controller for the K designated channel configurations may overlap in time or may not overlap in time, and the channel numbers assigned to different beamforming training device pairs are different, so that K Beamforming training can be performed simultaneously on a given channel.
  • the network controller determines a first device or a second device when scheduling a first device or a second device to perform beamforming training simultaneously with a plurality of peer devices.
  • the number of antennas is greater than or equal to the sum of the number of devices of the plurality of peer devices that simultaneously perform beamforming training with a first device or a second device, so that the first device can use at least one antenna.
  • a pair of beamforming training devices a first device and a second device are included, and the first device and the second device are peer devices.
  • a first The number of antennas that the device has is greater than or equal to the sum of the number of devices of the plurality of peer devices (ie, the second device) that simultaneously perform beamforming training with one first device, and the number of antennas that one second device has is greater than or It is equal to the sum of the number of devices of a plurality of peer devices (ie, the first device) that perform beamforming training with one second device at the same time.
  • the number of antennas may refer to the number of antenna arrays (English name: Antenna Array), and may also refer to the number of polarization modes of antenna arrays that adopt different polarization modes, for example, one uses dual polarization.
  • the number of antennas represented by the antenna array is 2.
  • the network controller sends the channel information used by the configured beamforming training to the at least one first device and the at least one second device, respectively.
  • the network controller may send the configured channel information to the at least one first device and the at least one second device. For example, the network controller may send the configured beamforming in a broadcast manner. Channel information used for training.
  • the network controller can perform the channel according to the beamforming training device pair.
  • the configuration of the information may be combined with the beamforming training described in the foregoing embodiments of the present invention after the first device and the second device receive the channel information configured by the network controller.
  • the method completes beamforming training.
  • the first device can perform beamforming training simultaneously with the plurality of second devices on the pre-configured designated channel, thereby effectively reducing the time required for beamforming training.
  • the AP or PCP assigns K pairs (K>1) STAs that wish to perform beamforming training to K non-overlapping channels for beamforming training, which may be training for SLS or BRP phases, and K pairs Beamforming training between STAs can overlap in time.
  • Case 1 When M ⁇ N, there is a case where the initiator STA performs beamforming training simultaneously with multiple responder STAs. This case belongs to the solution scope of the foregoing embodiment, and the AP or the PCP needs to determine the location when assigning the SP.
  • the number of antennas that the initiator STA or the responder STA has which is greater than or equal to the number of STAs of multiple peer STAs (English name: peer STA) that are simultaneously performing beamforming training with the initiator STA/responder STA
  • a sum such that the initiator STA/responder STA can perform beamforming training with one of the peer STAs with at least one antenna, thereby enabling beamforming training with the plurality of peer STAs simultaneously.
  • M ⁇ N is mainly described in this embodiment.
  • Step 1 The STA identifies the beamforming training capability of other STAs by using the capability information of all STAs in the BSS advertised by the AP or the PCP.
  • the beamforming training capability includes: the number of supported transmitting antennas/receiving antennas, and supports the beam.
  • the number of transmit antennas supported may be carried in a capability element indicating the capabilities of the STA.
  • Step 2 The AP or PCP receives beamforming training request information sent by M (M>1) initiator STAs, and the beamforming training request information specifies M different responder STAs.
  • the beamforming training request information is channel access time request information sent by the initiator STA to the AP or the PCP, that is, the requesting AP or the PCP allocates channel access time for beamforming training to the initiator STA and the responder STA.
  • the SP request information may specifically be an SPR frame, please The AP or PCP is requested to allocate an SP for beamforming training for the initiator STA and the responding STA.
  • the beamforming training request information may be based on the existing content of the BF Control field, and may also use a reserved field of the BF Control field to include a new “BF channel bandwidth” field, which is used to indicate that the requested beam assignment is performed.
  • the channel bandwidth of the shaped training when the "BF channel bandwidth" field is set to 0, indicates that the initiator STA does not select the determined BF channel bandwidth, and when set to 1, 2, 3, ..., the initiator STA expects the bandwidth to be 2.16 GHz.
  • Beamforming training is performed on the channel of 4.32 GHz, 6.48 GHz, .
  • the beamforming training request information may include, in addition to the channel bandwidth of the beamforming training, the indication information including whether the primary channel (English name: Primary Channel) is included, and the indication information may be used.
  • a new "Include Primary Channel” field is added to the reserved field of the BF Control field. When the "Include Primary Channel” field is set to 1, it indicates that the initiator STA requests on the channel indicated by "BF Channel Bandwidth" containing the primary channel. Perform beamforming training. Otherwise, when the "Include Primary Channel” field is set to 0, it means that the initiator STA does not need to include the primary channel for the requested beamforming training, but only needs to meet the "BF channel bandwidth” field indication. Beamforming training can be performed on the bandwidth of the channel.
  • Step 3 The AP or PCP according to the received beamforming training request information sent by the M initiator STAs, and the channel number of the support beamforming training indicated by the initiator STA and the responder STA in the respective STA capability information,
  • the SPs for beamforming training are respectively allocated to the M non-overlapping channels for different STAs.
  • the channel allocation result of the beamforming training is broadcast to the M to the STA by the reserved field of the extended scheduling element (ie, Extended Schedule element).
  • FIG. 10 is a schematic diagram of simultaneous beamforming training performed by two pairs of STAs on different channels.
  • STA1 and STA3 act as initiator STAs, respectively, and want to perform beamforming training with STA2 and STA4, and both STA1 and STA2 support beamforming training on channel C1, and both STA3 and STA4 support beaming on channel C2.
  • Shape training, then AP or PCP can allocate SP1 on channel C1 for STA1 and STA2, and SP2 on channel C2 for STA3 and STA4.
  • SP1 and SP2 may overlap in whole or in part in time, that is, the start or end time of SP1 and SP2 may be the same or different, as shown in FIG.
  • FIG. 11 is a schematic diagram of three pairs of STAs simultaneously performing beamforming training on different channels.
  • Step 4 After receiving the extended scheduling element sent by the AP or the PCP, the M is in accordance with the channel number information of the beamforming training included in the STA, in the assigned SP 1, SP 2, ..., SP M phase Switch to the respective channel to perform beamforming training. If an initiator STA or a responder STA performs beamforming training with only one STA within one SP period, the initiator STA or the responder STA should be fixed on the assigned unique channel for all transmit/receive antennas. Beamforming training.
  • the result of the beamforming training (optimal sector ID or AWV) obtained by a pair of STAs on one channel (eg, channel C1) may be applied to other channels (eg, channel C2).
  • Case 3 When M>N, there are cases where multiple initiator STAs perform beamforming training simultaneously with the same responder STA. If the responder STA that needs to perform beamforming training with multiple initiator STAs at the same time has multiple transmitting antennas and multiple receiving antennas, the responder STA can simultaneously perform beam assignment with multiple initiator STAs on multiple channels. Shape training, the solution to this situation is similar to the previous embodiment. As shown in FIG. 12, a schematic diagram of beamforming training for multiple initiator STAs and one responder STA on different channels simultaneously.
  • the method of performing beamforming training on the same channel (for example, the main channel) in series is improved to the method of training in parallel by using multiple different channels, which can be greatly saved for use.
  • the time overhead of beamforming training For example, if STA1 and STA2 complete beamforming training for T1, STA3 and STA4 complete beamforming training for T2, and two pairs of STAs perform beamforming training on different channels at the same time, beamforming can be performed.
  • the total time is reduced from (T1+T2) to Max(T1, T2), saving time resources for the main channel.
  • the BF Control field of the SP request frame (SPR frame) transmitted to the AP or the PCP includes a beamforming training channel bandwidth "BF channel bandwidth” field, and/or is used to indicate whether A "contained primary channel” field for beamforming training on a channel containing the primary channel, and/or a designated channel for indicating the requested beamformed channel number.
  • the initiator STA sends the "BF Channel Bandwidth” field, it indicates that it agrees that the AP or PCP allocates any channel that conforms to the channel bandwidth indicated by the "BF Channel Bandwidth” field.
  • the "Include Primary Channel” field indicates whether the initiator STA must include the primary channel when requesting the AP or PCP to allocate the designated beamforming training channel.
  • the AP or the PCP may allocate the initiator STA to other channels than the primary channel for beamforming. Training helps save time resources on the primary channel.
  • the AP or PCP When the AP or PCP generates the Beamforming Control in the Extended Schedule element of the DMG Beacon frame or the advertisement frame, the reserved bit is configured to a specific channel number, or, by using the Extended Schedule element
  • the Allocation Type field in the Allocation Control field is used to allocate the designated channel for beamforming training by indicating the channel number of the assigned SP when the SP is allocated.
  • the embodiments of the present invention are applicable to any millimeter wave system that supports MIMO and multi-channel binding, and has multiple RF chains at the transmitting and receiving ends capable of transmitting and receiving simultaneously on multiple channels, and can effectively reduce beamforming training time and improve System performance.
  • a beamforming training device 1300 is provided in the embodiment of the present invention.
  • the beamforming training device 1300 is specifically a first device of a beamforming training initiator, and the beam shaping training device is provided. 1300, comprising: an obtaining module 1301 and a beamforming training module 1302, where
  • the acquiring module 1301 is configured to acquire channel information used by the first device and the at least one second device to perform beamforming training, where the channel information includes: the first device and the at least one At least one designated channel used by the two devices for beamforming training;
  • the beamforming training module 1302 is configured to perform beamforming training with the at least one second device on the designated channel.
  • the acquiring module 1301 is specifically configured to: when the first device is a personal basic service set control point PCP or an access point AP, the first device and the at least one The second device configures channel information used by the beamforming training; or the channel information used by the receiving network controller for beamforming training configured by the first device and the at least one second device, the network control The device includes: PCP or AP.
  • the acquiring module 1301 is specifically configured to: before receiving, by the network controller, channel information used by the beamforming training configured by the first device and the at least one second device, The network controller sends the service period SP request information, where the SP request information includes at least one of the following information: a beamforming training channel bandwidth requested by the first device, the a specified channel for beamforming training requested by the first device, whether to include indication information of the primary channel, and channel information used by the beamforming training is included in the directed multi-gigabit DMG beacon sent by the network controller a Beacon frame or an Announce frame; or, when the first device and the at least one second device are in a contention-based access period CBAP, channel information used by the beamforming training is included in the An authorized Grant frame sent by a device.
  • the SP request information includes at least one of the following information: a beamforming training channel bandwidth requested by the first device, the a specified channel for beamforming training requested by the first device, whether to include indication information of the primary channel, and channel information used by the beamforming training is
  • the beamforming training device further includes: a transceiver module, configured to receive the Grant ACK frame sent by the second device when the second device supports an authorization confirmation Grant ACK frame And the Grant ACK frame carries the confirmation information that the second device receives the channel information used by the beamforming training.
  • a beamforming training module is specifically configured to perform beaming on an antenna pair of the first device and the at least one second device on a designated channel in a sector level scanning SLS phase. Forming training, and performing beamforming training on the antenna pair of the first device and the at least one second device on a designated channel in a beam modification protocol BRP phase; or, on a designated channel in a BRP phase The antenna pair of the first device and the at least one second device performs beamforming training.
  • a beamforming training module 1302 is specifically configured to: the antenna pair includes a first antenna of a first device and a second antenna of a second device, where the first antenna is in a designated channel Transmitting a first training data packet in each of the sector directions; receiving, by the first antenna, a second training data packet sent by the second device by using the second antenna on the designated channel, determining the second antenna a responder optimal sector number, and an initiator optimal sector number of the first antenna obtained from the second training data packet; an initiator optimal at the first antenna on a designated channel Transmitting a sector scan feedback SSW-Feedback message on a sector corresponding to the sector number, the SSW-Feedback message including: a responder optimal sector number of the second antenna; on the designated channel, at the first Receiving, on the antenna, the sector scan acknowledgement SSW-ACK message sent by the second device by the second antenna.
  • the beamforming training module 1302 is specifically configured to continuously transmit the first training in all sector directions of all the first antennas of the first device in the antenna number order on the designated channel. data pack.
  • the beamforming training module 1302 is specifically configured to configure an antenna number of the first device and at least one of the first devices that perform beamforming training using the specified channel.
  • the beamforming training module 1302 is specifically configured to: the antenna pair includes a first antenna of the first device and a second antenna of the at least one second device, where the first antenna is Performing multi-sector identification capture MIDC on the designated channel with the second antenna of the at least one second device;
  • the designated channel for performing MIDC is determined by: when the BRP phase is after the SLS phase, the first device and the at least one second device perform a specified channel used for beamforming training as Determining a designated channel of the MIDC, or, when the BRP phase is not after the SLS phase, the indication information of the designated channel for performing the MIDC is directed by the first device, the directed multi-gigabit beam optimization element DMG The Beam Refinement element is carried.
  • the beamforming training device 1300 includes: a beamforming training verification module, configured by the beamforming training module 1302 to perform beam with the at least second device on the designated channel.
  • a beamforming training verification module configured by the beamforming training module 1302 to perform beam with the at least second device on the designated channel.
  • the directional multi-gigabit beam optimization element DMG Beam Refinement element is further configured to indicate whether a beamforming training result obtained in the BRP phase is applicable to the bound multiple channels Other channels than the specified channel.
  • the beamforming training device 1300 provided by the embodiment of the present invention may also perform the beamforming training method performed by the first device in the foregoing embodiment. For details, refer to the description of the foregoing embodiment.
  • a beam shaping training device 1400 according to an embodiment of the present invention is provided.
  • the beam shaping training device 1400 is specifically a second device of the beamforming training responder, and the beam shaping training device 1400 includes: an obtaining module 1401 and a beam forming training module 1402, wherein
  • the obtaining module 1401 is configured to acquire channel information used by the second device and the first device to perform beamforming training, where the channel information includes: the second device and the first device perform beamforming At least one designated channel used by the training;
  • the beamforming training module 1402 is configured to perform beamforming training with the first device on the designated channel.
  • the obtaining module 1401 is configured to acquire, when the first device is a personal basic service set control point PCP or an access point AP, the first device as the second device and the Channel information used by the beamforming training of the first device configuration; or acquiring channel information used by the network controller for beamforming training configured by the second device and the first device, the network control The device includes: PCP or AP.
  • the obtaining module 1401 is further configured to: before acquiring the channel information used by the network controller for the beamforming training configured by the second device and the first device, when the first When the device sends the service period SP request information to the network controller, the SP request information includes at least one of the following information: a beamforming training channel bandwidth requested by the first device, and a request by the first device
  • the specified channel of the beamforming training includes the indication information of the primary channel, and the channel information used by the beamforming training is included in the directed multi-gigabit DMG beacon Beacon frame or the Announce frame bearer sent by the network controller.
  • the channel information used by the beamforming training is included in an authorized Grant frame sent by the first device.
  • the beamforming training device further includes: a transceiver module, configured to: when the second device supports the authorization confirmation Grant ACK frame, send the Grant ACK frame to the first device,
  • the Grant ACK frame carries the confirmation information that the second device receives the channel information used by the beamforming training.
  • a beamforming training module is specifically configured to perform beamforming training on an antenna pair of the second device and the first device on a designated channel in a sector level scanning SLS phase. And performing beamforming training on the antenna pair of the second device and the first device on a designated channel in a beam modification protocol BRP phase; or, in the BRP phase, on the designated channel to the second device Beamforming training with the antenna pair of the first device.
  • the beamforming training module 1402 is specifically configured to: the antenna pair includes a first antenna of a first device and a second antenna of a second device, where the first antenna is received by the second antenna a first training data packet sent by a device, determining an initiator optimal sector number of the first antenna; and transmitting, by the second antenna, a second training data packet in all sector directions of the designated channel,
  • the second training data packet includes: an initiator optimal sector number of the first antenna; and a sector that is sent by the first device on a sector corresponding to an initiator optimal sector number of the first antenna Scanning a feedback SSW-Feedback message, obtaining a responder optimal sector number of the second antenna from the SSW-Feedback message; transmitting on a sector corresponding to a responder optimal sector number of the second antenna
  • the sector scan confirms the SSW-ACK message.
  • the beamforming training module 1402 is configured to acquire an antenna number of the first device configured by the first device or the network controller to perform beamforming training using the specified channel. And an antenna number of the second device; receiving, by the second antenna, a first training data packet on a designated channel, after the second device and an antenna pair of the first device complete beamforming training, The second device, according to an antenna number of the first device configured for the second device and the first device, and an antenna number of the at least one second device, to the second device and the Beamforming training is performed on the remaining antenna pairs of the first device.
  • the beamforming training module 1402 is configured to continuously transmit a second training data packet in all sector directions of the second antennas of the second device in an antenna number order,
  • the second training data packet includes: the first antenna corresponds to an initiator optimal sector number of each of the second antennas of the second device.
  • the beamforming training module 1402 is specifically configured to: the antenna pair includes a first antenna of a first device and a second antenna of a second device, where the second antenna is on a designated channel. Performing multi-sector identification capture MIDC with the first device;
  • the designated channel for performing the MIDC is determined by: when the BRP phase is after the SLS phase, the designation used by the different antenna pairs between the second device and the first device for beamforming training is performed.
  • the channel is used as the designated channel for performing the MIDC, or when the BRP phase is not after the SLS phase, the indication information of the designated channel for performing the MIDC is carried by the directed multi-gigabit beacon optimization element DMG Beam Refinement element .
  • the beamforming training device 1400 includes: a beamforming training verification module, configured by the beamforming training module 1402 on the designated channel After the first device performs beamforming training, when the second device performs beamforming training on the antenna pair of the second device and the first device on the designated channel, the second device and Performing beamforming training corresponding to the specified channel on the antenna pair of the second device and the first device on the other channels of the plurality of channels bound by the first device except the designated channel result.
  • a beamforming training verification module configured by the beamforming training module 1402 on the designated channel After the first device performs beamforming training, when the second device performs beamforming training on the antenna pair of the second device and the first device on the designated channel, the second device and Performing beamforming training corresponding to the specified channel on the antenna pair of the second device and the first device on the other channels of the plurality of channels bound by the first device except the designated channel result.
  • the DMG Beam Refinement element is further configured to indicate whether a beamforming training result obtained in the BRP phase is applicable to the bound multiple channels except the designated channel. Other channels.
  • the beamforming training device 1400 provided by the embodiment of the present invention can also perform the beamforming training method performed by the second device in the foregoing embodiment.
  • the beamforming training device 1400 provided by the embodiment of the present invention can also perform the beamforming training method performed by the second device in the foregoing embodiment.
  • the beamforming training device 1400 can also perform the beamforming training method performed by the second device in the foregoing embodiment.
  • the description of the foregoing embodiment refer to the description of the foregoing embodiment.
  • the network controller 1500 includes: a transceiver module 1501 and a configuration module 1502, where
  • the transceiver module 1501 is configured to receive beamforming training request information that is sent by at least one first device that is a beamforming training initiator, where the beamforming training request information includes: the at least one first device specifies a beam as a beam Forming at least one second device of the training responder, and requesting channel information used for beamforming training with the at least one second device;
  • the configuration module 1502 is configured to, according to the beamforming training request information sent by the at least one first device, shape channel information used by the training device to configure beamforming training for each pair of beams, where the channel information includes: The at least one first device and the at least one second device perform K designated channels used for beamforming training, the K being a positive integer, wherein the first device and the first device specify One of the second devices as a beamforming training responder constitutes a beamforming training device pair;
  • the transceiver module 1501 is further configured to separately send channel information used by the configured beamforming training to the at least one first device and the at least one second device.
  • the configuration module 1501 is specifically configured to respectively allocate a service period SP corresponding to the K designated channels; the transceiver module 1502 is specifically configured to include the allocated SP allocation information corresponding to each specified channel in the directional direction.
  • the multi-gigabit DMG beacon frame or the advertisement Announce frame is sent to the at least one first device and the at least one second device.
  • the configuration module 1501 is specifically configured to respectively allocate SPs that overlap in time or do not overlap in time corresponding to K designated channels, and if the SPs overlap in time, Different beamforming training device pairs have different channel numbers.
  • the beamforming training request information further includes: a beamforming training control BF Control field, where
  • the BF Control field includes at least one of the following: a channel bandwidth of the requested beamforming training, a channel number of the requested beamforming training, and whether the channel of the requested beamforming training includes a primary channel.
  • the configuration module 1501 determines that the first device or the second device has the following when scheduling a first device or a second device to perform beamforming training simultaneously with multiple peer devices.
  • the number of antennas is greater than or equal to the sum of the number of devices of the plurality of peer devices that are simultaneously performing beamforming training with the one first device or one second device;
  • the peer device is a device that performs beamforming training with the first device or the second device.
  • the network controller 1500 provided by the embodiment of the present invention may also perform the beamforming training method performed by the network controller in the foregoing embodiment. For details, refer to the description of the foregoing embodiment.
  • the embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium stores a program, and the program executes some or all of the steps described in the foregoing method embodiments.
  • the beamforming training device is specifically a first device of a beamforming training initiator. Referring to FIG. 16, the beamforming training device is shown. 1600 includes:
  • the receiver 1601, the transmitter 1602, the processor 1603, and the memory 1604 (wherein the number of processors 1603 in the beamforming training device 1600 may be one or more, and one processor in FIG. 16 is taken as an example).
  • the input device 1601, the output device 1602, the processor 1603, and the memory 1604 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • Memory 1604 can include read only memory and random access memory and provides instructions and data to processor 1603. A portion of the memory 1604 can also include a non-volatile random access memory (English full name: Non-Volatile Random Access Memory, English abbreviation: NVRAM).
  • the memory 1604 stores operating systems and operational instructions, executable modules or data structures, or a subset thereof, or an extended set thereof, wherein the operational instructions can include various operational instructions for implementing various operations.
  • the operating system can include a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 1603 controls the operation of the beamforming training device.
  • the processor 1603 may also be referred to as a central processing unit (English name: Central Processing Unit, English abbreviation: CPU).
  • CPU Central Processing Unit
  • each component of the beamforming training device is coupled together by a bus system.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are referred to as bus systems in the figures.
  • the method disclosed in the foregoing embodiments of the present invention may be applied to the processor 1603 or implemented by the processor 1603.
  • the processor 1603 can be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1603 or an instruction in a form of software.
  • the processor 1603 may be a general-purpose processor, a digital signal processor (English name: digital signal processing, English abbreviation: DSP), an application-specific integrated circuit (English name: Application Specific Integrated Circuit, English abbreviation: ASIC), ready-made programmable Gate array (English name: Field-Programmable Gate Array, English abbreviation: FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • FPGA ready-made programmable Gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 1604, and processor 1603 reads the information in memory 1604 and, in conjunction with its hardware, performs the steps of the above method.
  • the processor 1603 is configured to perform the following steps:
  • Acquiring channel information used by the first device and the at least one second device for beamforming training wherein the channel information comprises: the first device and the at least one second device perform beamforming At least one designated channel used by the training;
  • Beamforming training is performed on the designated channel with the at least one second device.
  • the processor 1603 provided by the embodiment of the present invention may further perform the beamforming training method performed by the first device in the foregoing embodiment. For details, refer to the description of the foregoing embodiment.
  • the beamforming training device is specifically a second device of a beamforming training initiator. Referring to FIG. 17, the beamforming training device is shown. 1700 includes:
  • the receiver 1701, the transmitter 1702, the processor 1703, and the memory 1704 (wherein the number of the processors 1703 in the beamforming training device 1700 may be one or more, and one processor in FIG. 17 is taken as an example).
  • the input device 1701, the output device 1702, the processor 1703, and the memory 1704 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • Memory 1704 can include read only memory and random access memory and provides instructions and data to processor 1703. A portion of the memory 1704 can also include an NVRAM.
  • the memory 1704 stores operating systems and operational instructions, executable modules or data structures, or a subset thereof, or an extended set thereof, wherein the operational instructions can include various operational instructions for implementing various operations.
  • the operating system can include a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 1703 controls the operation of the beamforming training device, which may also be referred to as a central processing unit CPU.
  • each component of the beamforming training device is coupled together by a bus system.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are referred to as bus systems in the figures.
  • the method disclosed in the foregoing embodiment of the present invention may be applied to the processor 1703 or implemented by the processor 1703.
  • the processor 1703 can be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1703 or an instruction in a form of software.
  • the processor 1703 described above may be a general purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • Software modules can be located at random Memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, etc., are well-known storage media in the field.
  • the storage medium is located in memory 1704, and processor 1703 reads the information in memory 1704 and, in conjunction with its hardware, performs the steps of the above method.
  • the processor 1703 is configured to perform the following steps:
  • channel information used by the second device and the first device for performing beamforming training, where the channel information includes: at least one used by the second device and the first device to perform beamforming training Designated channel;
  • Beamforming training with the first device on the designated channel with the first device on the designated channel.
  • the processor 1703 provided by the embodiment of the present invention may further perform the beamforming training method performed by the first device in the foregoing embodiment. For details, refer to the description of the foregoing embodiment.
  • the network controller 1800 includes:
  • the receiver 1801, the transmitter 1802, the processor 1803, and the memory 1804 (wherein the number of the processors 1803 in the network controller 1800 may be one or more, and one processor in FIG. 18 is taken as an example).
  • the input device 1801, the output device 1802, the processor 1803, and the memory 1804 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • Memory 1804 can include read only memory and random access memory and provides instructions and data to processor 1803. A portion of the memory 1804 can also include an NVRAM.
  • the memory 1804 stores operating systems and operational instructions, executable modules or data structures, or a subset thereof, or an extended set thereof, wherein the operational instructions can include various operational instructions for performing various operations.
  • the operating system can include a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 1803 controls the operation of the network controller, and the processor 1803 may also be referred to as a CPU.
  • each component of the network controller is coupled together by a bus system.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are referred to as bus systems in the figures.
  • the method disclosed in the foregoing embodiments of the present invention may be applied to the processor 1803 or implemented by the processor 1803.
  • the processor 1803 can be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1803 or an instruction in a form of software.
  • the processor 1803 described above may be a general purpose processor, a DSP, or ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 1804, and processor 1803 reads the information in memory 1804 and, in conjunction with its hardware, performs the steps of the above method.
  • the processor 1803 is configured to perform the following steps:
  • Beamforming training request information sent by at least one first device as a beamforming training initiator comprising: the at least one first device designated as a beamforming training responder At least one second device, and requested channel information used for beamforming training with the at least one second device;
  • the channel information comprising: the at least one first The device and the at least one second device perform K designated channels used for beamforming training, the K being a positive integer, wherein the first device and the first device specify a beamforming training response One of the second devices of the person constitutes a beam shaping training device pair;
  • the processor 1803 provided by the embodiment of the present invention may further perform the beamforming training method performed by the first device in the foregoing embodiment. For details, refer to the description of the foregoing embodiment.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be Physical units can be located in one place or distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the connection relationship between the modules indicates that there is a communication connection between them, and specifically, one or more communication buses or signal lines can be realized.
  • the technical solution of the present invention which is essential or contributes to the prior art, can be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • a readable storage medium such as a floppy disk of a computer.
  • U disk mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk or optical disk, etc., including a number of instructions to make a computer device (may be A personal computer, server, or network device, etc.) performs the methods described in various embodiments of the present invention.

Abstract

一种波束赋形训练的方法和设备以及控制器。其中,从第一设备侧实现的波束赋形训练的方法,包括:第一设备获取所述第一设备和至少一个的第二设备进行波束赋形训练所使用的信道信息,其中,所述信道信息包括:所述第一设备和所述至少一个的第二设备进行波束赋形训练所使用的至少一个指定信道;所述第一设备在所述指定信道上与所述至少一个的第二设备进行波束赋形训练。

Description

一种波束赋形训练的方法和设备以及控制器 技术领域
本发明实施例涉及通信领域,尤其涉及一种波束赋形训练的方法和设备以及控制器。
背景技术
在当今的无线局域网络技术发展中,2.4千兆赫兹(英文全称:Gigahertz,英文简称:GHz)和5GHz的频段已经非常拥挤,而60GHz频段存在大量的连续的非授权频谱资源,能够轻松的实现无线吉比特速率传输。应用于60GHz非授权频段的电气和电子工程师协会(英文全称:Institute of Electrical and Electronics Engineers,英文简称:IEEE)802.11ad标准已于2012年12月发布,而下一代60GHz WLAN通信标准——IEEE 802.11ay也已经开始制定。与上一代11ad标准相比,为了进一步提高整个系统的容量,在IEEE 802.11ay中将引入多用户多入多出(英文全称:Multi-user multiple-input and multiple-output,英文简称:MU-MIMO)/单用户多入多出(英文全称:Single-user multiple-input and multiple-output,英文简称:SU-MIMO)技术。其中,MU-MIMO就是在相同时频资源上,分别通过不同空间可分的路径发射多个数据流的技术。与传统的微波频段相比,毫米波信号在传播过程中,信号的传播类似于射线传播,即直射径和反射径为主,无明显的散射和绕射现象,信号会在一些空间离散的径上传播,这里的有效径的数量非常稀少。在毫米波这种缺乏散射的信道上,可以通过空分复用的方式(例如MU-MIMO技术)获得多用户分集增益,从而显著提高整个系统的容量。
与传统的微波频段相比,毫米波信号在传播过程中,由于频率很高,会面临强烈的路径传播损耗,并且在60GHz频段的信号还会受到氧气吸收,由前述说明,在毫米波信道中信号主要是通过一些离散的径上传播,这就要求收发双方能够从这些空间离散的径中寻找到信道质量较好的径,收发双方能够利用定向天线或者相控阵列天线形成波束,使得这些波束对准这些径,从而对抗强烈的大尺度衰落。在IEEE 802.11ad中,收发双方通过收发两端分别进行波束扫描的方式完成波束对齐。其中,IEEE 802.11ad中的波束对齐是针对由一个 发射端和一个接收端组成的单链路情况,而从上述有关MU-MIMO的定义可以看出:在采用MU-MIMO技术的系统中需要实现多条链路的波束对齐。
在IEEE 802.11ad中的波束赋形训练的过程中,要完成收发两端的波束赋形训练,需要完成波束级别的对齐。由于毫米波天线波束的宽度比较窄,完成波束赋形训练需要遍历的波束数量非常多,因此需要耗费大量的时间完成整个波束赋形训练过程。在IEEE 802.11ay中,设备将具有多天线能力,其中每一个天线均为一个多阵元天线。多天线的训练如果采用时分的方式进行,相比于单天线将会大幅增加所需的训练时间。而按照现有技术,波束对齐是针对由一个发射端和一个接收端组成的单链路情况,如果采用时间上串行进行波束赋形训练的方式,必将进一步增加波束赋形训练所需的训练时间。
在IEEE 802.11ay引入MIMO技术后,需要完成波束赋形训练的链路数量成倍增加,若在IEEE 802.11ay系统仍然使用IEEE 802.11ad中的波束赋形训练方法,波束赋形训练将会耗费大量的时间,可能出现如下极端情况:在完成波束赋形训练之前,发射端或者接收端的相对位置或者信道中的发射体的位置发生了改变,引起最优链路的路径发生改变,这时候波束赋形训练的结果将会变得很不准确,而毫米波系统的性能依赖于波束赋形的准确度,因此若是仍然采用IEEE 802.11ad的波束赋形训练方法将会制约IEEE 802.11ay的性能。因此,有必要对已有的波束赋形训练提出新的改进方法。
发明内容
本发明实施例提供了一种波束赋形训练的方法和设备以及控制器,能够有效的降低波束赋形训练所需的时间。
第一方面,本发明实施例提供一种波束赋形训练的方法,包括:
第一设备获取所述第一设备和至少一个的第二设备进行波束赋形训练所使用的信道信息,其中,所述信道信息包括:所述第一设备和所述至少一个的第二设备进行波束赋形训练所使用的至少一个指定信道;
所述第一设备在所述指定信道上与所述至少一个的第二设备进行波束赋形训练。
本发明实施例中,第一设备可以首先获取第一设备和至少一个的第二设备进行波束赋形训练所使用的信道信息,该信道信息包括:第一设备和至少一个 的第二设备进行波束赋形训练所使用的至少一个指定信道,同样的,至少一个的第二设备中每一个第二设备都可以获取到到第二设备和第一设备进行波束赋形训练所使用的信道信息。第一设备和至少一个的第二设备可以在信道信息中指示的指定信道上进行波束赋形训练。本发明实施例中,第一设备可以在预先配置的指定信道上同时与多个第二设备进行波束赋形训练,因此能够有效的降低波束赋形训练所需的时间。
结合第一方面,在第一方面的第一种可能的实现方式中,所述第一设备获取所述第一设备和至少一个的第二设备进行波束赋形训练所使用的信道信息,包括:
当所述第一设备作为个人基本服务集合控制点PCP或接入点AP时,所述第一设备为所述第一设备与所述至少一个的第二设备配置波束赋形训练所使用的信道信息;或,
所述第一设备接收网络控制器为所述第一设备和所述至少一个的第二设备配置的波束赋形训练所使用的信道信息,所述网络控制器包括:PCP或AP。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述第一设备接收网络控制器为所述第一设备和所述至少一个的第二设备配置的波束赋形训练所使用的信道信息之前,所述方法还包括:
所述第一设备向所述网络控制器发送服务期SP请求信息,所述SP请求信息包含如下信息中的至少一种:所述第一设备请求的波束赋形训练信道带宽、所述第一设备请求的用于波束赋形训练的指定信道、是否包含主信道的指示信息,所述波束赋形训练所使用的信道信息包含于所述网络控制器发送的定向的多吉比特DMG信标Beacon帧或通告Announce帧;或,
当所述第一设备和所述至少一个的第二设备处于基于竞争的接入期CBAP时,所述波束赋形训练所使用的信道信息包含于所述第一设备发送的授权Grant帧。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述方法还包括:
当所述第二设备支持授权确认Grant ACK帧时,所述第一设备接收所述第二设备发送的所述Grant ACK帧,所述Grant ACK帧携带所述第二设备接收到所述波束赋形训练所使用的信道信息的确认信息。
结合第一方面,在第一方面的第四种可能的实现方式中,所述第一设备的一个天线和所述第二设备的一个天线构成一个天线对,所述第一设备在所述指定信道上与所述至少一个的第二设备进行波束赋形训练,包括:
在扇区级扫描SLS阶段中所述第一设备在指定信道上对所述第一设备与所述至少一个的第二设备的天线对进行波束赋形训练,和在波束修正协议BRP阶段所述第一设备在指定信道上对所述第一设备与所述至少一个的第二设备的天线对进行波束赋形训练;或,
在BRP阶段所述第一设备在指定信道上对所述第一设备与所述至少一个的第二设备的天线对进行波束赋形训练。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,所述在扇区级扫描SLS阶段中所述第一设备在指定信道上对所述第一设备与所述至少一个的第二设备的天线对进行波束赋形训练,包括:
所述天线对包括第一设备的第一天线和第二设备的第二天线,所述第一设备通过所述第一天线在指定信道的所有扇区方向上分别发射第一训练数据包;
所述第一设备通过所述第一天线在指定信道上接收所述第二设备通过所述第二天线发送的第二训练数据包,确定所述第二天线的响应者最优扇区编号,以及从所述第二训练数据包中获取到所述第一天线的发起者最优扇区编号;
所述第一设备在指定信道上,在所述第一天线的发起者最优扇区编号对应的扇区上发射扇区扫描反馈SSW-Feedback消息,所述SSW-Feedback消息包括:所述第二天线的响应者最优扇区编号;
所述第一设备在指定信道上,在所述第一天线上接收所述第二设备通过所述第二天线发射的扇区扫描确认SSW-ACK消息。
结合第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,所述第一设备通过所述第一天线在指定信道的所有扇区方向上分别发射第一训练数据包,包括:
所述第一设备在指定信道上按天线编号顺序在所述第一设备的所有第一天线的所有扇区方向上,连续发射第一训练数据包。
结合第一方面的第五种可能的实现方式,在第一方面的第七种可能的实现方式中,所述第一设备通过所述第一天线在指定信道的所有扇区方向上分别发 射第一训练数据包,包括:
所述第一设备配置使用所述指定信道进行波束赋形训练的所述第一设备的天线编号和至少一个的第二设备的天线编号,或所述第一设备从网络控制器获取到所述网络控制器配置的使用所述指定信道进行波束赋形训练的所述第一设备的天线编号和至少一个的第二设备的天线编号;
所述第一设备在所述第一设备的第一天线的所有扇区方向上分别发射第一训练数据包,所述第一设备与所述至少一个的第二设备的一个天线对完成波束赋形训练之后,所述第一设备根据为所述第一设备和所述至少一个的第二设备配置的所述第一设备的天线编号和所述至少一个的第二设备的天线编号,对所述第一设备和所述至少一个的第二设备的其余天线对进行波束赋形训练。
结合第一方面的第四种可能的实现方式,在第一方面的第八种可能的实现方式中,所述在BRP阶段所述第一设备在指定信道上对所述第一设备与所述至少一个的第二设备的天线对进行波束赋形训练,包括:
所述天线对包括第一设备的第一天线和至少一个的第二设备的第二天线,所述第一设备通过所述第一天线在指定信道上与所述至少一个第二设备的第二天线进行多扇区标识捕获MIDC;
其中,进行MIDC的指定信道通过如下方式确定:当所述BRP阶段处于所述SLS阶段之后时,所述第一设备和所述至少一个的第二设备进行波束赋形训练所使用的指定信道作为所述进行MIDC的指定信道,或,当所述BRP阶段不是在所述SLS阶段之后时,所述进行MIDC的指定信道的指示信息由所述第一设备发射的定向的多吉比特波束优化元素DMG Beam Refinement element承载。
结合第一方面或第一方面的第一种可能或第二种可能或第三种可能或第四种可能或第五种可能或第六种可能或第七种可能或第八种可能的实现方式,在第一方面的第九种可能的实现方式中,所述第一设备在所述指定信道上与所述至少第二设备进行波束赋形训练之后,所述方法还包括:
当所述第一设备在指定信道上对所述第一设备与所述至少第二设备的天线对进行的波束赋形训练完成时,所述第一设备在所述第一设备和所述至少一个的第二设备绑定的多个信道中除所述指定信道以外的其它信道上,对所述第一设备与所述至少一个的第二设备的天线对进行验证所述指定信道对应的波 束赋形训练结果。
结合第一方面的第九种可能的实现方式,在第一方面的第十种可能的实现方式中,所述定向的多吉比特波束优化元素DMG Beam Refinement element,还用于指示在所述BRP阶段得到的波束赋形训练结果是否适用于所述绑定的多个信道中除所述指定信道以外的其它信道。
第二方面,本发明实施例还提供一种波束赋形训练的方法,包括:
第二设备获取所述第二设备和第一设备进行波束赋形训练所使用的信道信息,其中,所述信道信息包括:所述第二设备和所述第一设备进行波束赋形训练所使用的至少一个指定信道;
所述第二设备在所述指定信道上与所述第一设备进行波束赋形训练。
本发明实施例中,每一个第二设备都可以获取到到第二设备和第一设备进行波束赋形训练所使用的信道信息。第一设备和至少一个的第二设备可以在信道信息中指示的指定信道上进行波束赋形训练。本发明实施例中,第一设备可以在预先配置的指定信道上同时与多个第二设备进行波束赋形训练,因此能够有效的降低波束赋形训练所需的时间。
结合第二方面,在第二方面的第一种可能的实现方式中,所述第二设备获取所述第二设备和第一设备进行波束赋形训练所使用的信道信息,包括:
当所述第一设备作为个人基本服务集合控制点PCP或接入点AP时,所述第二设备获取所述第一设备为所述第二设备和所述第一设备配置的波束赋形训练所使用的信道信息;或,
所述第二设备获取网络控制器为所述第二设备和所述第一设备配置的波束赋形训练所使用的信道信息,所述网络控制器包括:PCP或AP。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述第二设备获取网络控制器为所述第二设备和所述第一设备配置的波束赋形训练所使用的信道信息之前,所述方法还包括:
当所述第一设备向网络控制器发送服务期SP请求信息时,所述SP请求信息包含如下信息中的至少一种:所述第一设备请求的波束赋形训练信道带宽、所述第一设备请求的用于波束赋形训练的指定信道、是否包含主信道的指示信息,所述波束赋形训练所使用的信道信息包含于所述网络控制器发送的定向的多吉比特DMG信标Beacon帧或通告Announce帧承载;或,
当所述第二设备和所述第一设备处于基于竞争的接入期CBAP时,所述波束赋形训练所使用的信道信息包含于所述第一设备发送的授权Grant帧。
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述方法还包括:
当所述第二设备支持授权确认Grant ACK帧时,所述第二设备向所述第一设备发送所述Grant ACK帧,所述Grant ACK帧携带所述第二设备接收到所述波束赋形训练所使用的信道信息的确认信息。
结合第二方面,在第二方面的第四种可能的实现方式中,所述第二设备在所述指定信道上与所述第一设备进行波束赋形训练,包括:
在扇区级扫描SLS阶段中所述第二设备在指定信道上对所述第二设备与所述第一设备的天线对进行波束赋形训练,和在波束修正协议BRP阶段中所述第二设备在指定信道上对所述第二设备与所述第一设备的天线对进行波束赋形训练;或,
在BRP阶段中所述第二设备在指定信道上对所述第二设备与所述第一设备的天线对进行波束赋形训练。
结合第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,所述在扇区级扫描SLS阶段中所述第二设备在指定信道上对所述第二设备与所述第一设备的天线对进行波束赋形训练,包括:
所述天线对包括第一设备的第一天线和第二设备的第二天线,所述第二设备通过所述第二天线接收所述第一设备发送的第一训练数据包,确定所述第一天线的发起者最优扇区编号;
所述第二设备通过所述第二天线在指定信道的所有扇区方向上分别发射第二训练数据包,所述第二训练数据包包括:所述第一天线的发起者最优扇区编号;
所述第二设备接收所述第一设备在所述第一天线的发起者最优扇区编号对应的扇区上发送的扇区扫描反馈SSW-Feedback消息,从所述SSW-Feedback消息获取到所述第二天线的响应者最优扇区编号;
所述第二设备在所述第二天线的响应者最优扇区编号对应的扇区上发射扇区扫描确认SSW-ACK消息。
结合第二方面的第五种可能的实现方式,在第二方面的第六种可能的实现 方式中,所述第二设备通过所述第二天线接收所述第一设备发送的第一训练数据包,包括:
所述第二设备获取所述第一设备或网络控制器配置的使用所述指定信道进行波束赋形训练的所述第一设备的天线编号和所述第二设备的天线编号;
所述第二设备通过所述第二天线在指定信道上接收第一训练数据包,当所述第二设备和所述第一设备的一个天线对完成波束赋形训练之后,所述第二设备根据为所述第二设备和所述第一设备配置的所述第一设备的天线编号和所述至少一个的第二设备的天线编号,对所述第二设备和所述第一设备的其余天线对进行波束赋形训练。
结合第二方面的第五种可能的实现方式,在第二方面的第七种可能的实现方式中,所述第二设备通过所述第二天线在指定信道的所有扇区方向上分别发射第二训练数据包,包括:
所述第二设备按天线编号顺序在所述第二设备的各个第二天线的所有扇区方向上连续发射第二训练数据包,所述第二训练数据包包括:所述第一天线对应于所述第二设备的各个第二天线各自的发起者最优扇区编号。
结合第二方面的第四种可能的实现方式,在第二方面的第八种可能的实现方式中,所述在BRP阶段中所述第二设备在指定信道上对所述第二设备与所述第一设备的天线对进行波束赋形训练,包括:
所述天线对包括第一设备的第一天线和第二设备的第二天线,所述第二设备通过所述第二天线在指定信道上与所述第一设备进行多扇区标识捕获MIDC;
其中,进行MIDC的指定信道通过如下方式确定:当所述BRP阶段处于所述SLS阶段之后时,所述第二设备和所述第一设备间的不同天线对进行波束赋形训练所使用的指定信道作为所述进行MIDC的指定信道,或,当所述BRP阶段不是在所述SLS阶段之后时,所述进行MIDC的指定信道的指示信息由定向的多吉比特信标优化元素DMG Beam Refinement element承载。
结合第二方面或第二方面的第一种可能或第二种可能或第三种可能或第四种可能或第五种可能或第六种可能或第七种可能或第八种可能的实现方式,在第二方面的第九种可能的实现方式中,所述第二设备在所述指定信道上与所述第一设备进行波束赋形训练之后,所述方法还包括:
当所述第二设备在指定信道上对所述第二设备与所述第一设备的天线对进行波束赋形训练完成时,所述第二设备在所述第二设备和所述第一设备绑定的多个信道中除所述指定信道以外的其它信道上,对所述第二设备与所述第一设备的天线对进行验证所述指定信道对应的波束赋形训练结果。
结合第二方面的第九种可能的实现方式,在第二方面的第十种可能的实现方式中,所述DMG Beam Refinement element,还用于指示在所述BRP阶段得到的波束赋形训练结果是否适用于所述绑定的多个信道中除所述指定信道以外的其它信道。
第三方面,本发明实施例提供一种波束赋形训练的方法,包括:
网络控制器接收作为波束赋形训练发起者的至少一个第一设备发送的波束赋形训练请求信息,所述波束赋形训练请求信息包括:所述至少一个第一设备指定的作为波束赋形训练响应者的至少一个第二设备,和请求的与所述至少一个第二设备进行波束赋形训练所使用的信道信息;
所述网络控制器根据所述至少一个第一设备发送的波束赋形训练请求信息,为每一对波束赋形训练设备对配置波束赋形训练所使用的信道信息,所述信道信息包括:所述至少一个第一设备和所述至少一个第二设备进行波束赋形训练所使用的K个指定信道,所述K为正整数,其中,所述第一设备和所述第一设备指定的作为波束赋形训练响应者的一个所述第二设备构成一个波束赋形训练设备对;
所述网络控制器将配置的波束赋形训练所使用的信道信息分别发送给所述至少一个第一设备和所述至少一个第二设备。
本发明实施例中,网络控制器根据至少一个第一设备发送的波束赋形训练请求信息,为每一对波束赋形训练设备对配置波束赋形训练所使用的信道信息。第一设备和至少一个的第二设备可以在信道信息中指示的指定信道上进行波束赋形训练。本发明实施例中,第一设备可以在预先配置的指定信道上同时与多个第二设备进行波束赋形训练,因此能够有效的降低波束赋形训练所需的时间。
结合第三方面,在第三方面的第一种可能的实现方式中,所述网络控制器将配置的波束赋形训练所使用的信道信息分别发送给所述至少一个第一设备和所述至少一个第二设备,包括:
所述网络控制器分别分配对应于K个指定信道的服务期SP;
所述网络控制器将分配的对应于各个指定信道的SP分配信息包含于定向的多吉比特DMG信标帧或通告Announce帧内,向所述至少一个第一设备和所述至少一个第二设备发送。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述网络控制器分别分配对应于K个指定信道的服务期SP,包括:
所述网络控制器分别分配对应于K个指定信道的在时间上重叠或者在时间上不重叠的SP,若所述SP在时间上有重叠时,分配给不同的波束赋形训练设备对的信道编号不相同。
结合第三方面,在第三方面的第三种可能的实现方式中,所述波束赋形训练请求信息还包括:波束赋形训练控制BF Control字段,其中,
所述BF Control字段包含如下信息中的至少一个:请求的波束赋形训练的信道带宽、请求的波束赋形训练的信道编号、请求的波束赋形训练的信道是否包含主信道。
结合第三方面或第三方面的第一种可能或第二种可能或第三种可能的实现方式,在第三方面的第四种可能的实现方式中,所述网络控制器在调度一个第一设备或一个第二设备与多个对等设备同时进行波束赋形训练时,所述网络控制器确定所述一个第一设备或一个第二设备具有的天线个数大于或等于同时与所述一个第一设备或一个第二设备进行波束赋形训练的所述多个对等设备的设备个数之和;
其中,所述对等设备为与所述第一设备或所述第二设备进行波束赋形训练的设备。
第四方面,本发明实施例提供一种波束赋形训练设备,所述波束赋形训练设备具体为波束赋形训练发起者的第一设备,所述波束赋形训练设备,包括:
获取模块,用于获取所述第一设备和至少一个的第二设备进行波束赋形训练所使用的信道信息,其中,所述信道信息包括:所述第一设备和所述至少一个的第二设备进行波束赋形训练所使用的至少一个指定信道;
波束赋形训练模块,用于在所述指定信道上与所述至少一个的第二设备进行波束赋形训练。
本发明实施例中,第一设备可以首先获取第一设备和至少一个的第二设备 进行波束赋形训练所使用的信道信息,该信道信息包括:第一设备和至少一个的第二设备进行波束赋形训练所使用的指定信道,同样的,至少一个的第二设备中每一个第二设备都可以获取到到第二设备和第一设备进行波束赋形训练所使用的信道信息。第一设备和至少一个的第二设备可以在信道信息中指示的指定信道上进行波束赋形训练。本发明实施例中,第一设备可以在预先配置的指定信道上同时与多个第二设备进行波束赋形训练,因此能够有效的降低波束赋形训练所需的时间。
第五方面,本发明实施例提供一种波束赋形训练设备,所述波束赋形训练设备具体为波束赋形训练响应者的第二设备,所述波束赋形训练设备,包括:
获取模块,用于获取所述第二设备和第一设备进行波束赋形训练所使用的信道信息,其中,所述信道信息包括:所述第二设备和所述第一设备进行波束赋形训练所使用的至少一个指定信道;
波束赋形训练模块,用于在所述指定信道上与所述第一设备进行波束赋形训练。
本发明实施例中,每一个第二设备都可以获取到到第二设备和第一设备进行波束赋形训练所使用的信道信息。第一设备和至少一个的第二设备可以在信道信息中指示的指定信道上进行波束赋形训练。本发明实施例中,第一设备可以在预先配置的指定信道上同时与多个第二设备进行波束赋形训练,因此能够有效的降低波束赋形训练所需的时间。
第六方面,本发明实施例提供一种网络控制器,包括:
收发模块,用于接收作为波束赋形训练发起者的至少一个第一设备发送的波束赋形训练请求信息,所述波束赋形训练请求信息包括:所述至少一个第一设备指定的作为波束赋形训练响应者的至少一个第二设备,和请求的与所述至少一个第二设备进行波束赋形训练所使用的信道信息;
配置模块,用于根据所述至少一个第一设备发送的波束赋形训练请求信息,为每一对波束赋形训练设备对配置波束赋形训练所使用的信道信息,所述信道信息包括:所述至少一个第一设备和所述至少一个第二设备进行波束赋形训练所使用的K个指定信道,所述K为正整数,其中,所述第一设备和所述第一设备指定的作为波束赋形训练响应者的一个所述第二设备构成一个波束赋形训练设备对;
所述收发模块,还用于将配置的波束赋形训练所使用的信道信息分别发送给所述至少一个第一设备和所述至少一个第二设备。
本发明实施例中,网络控制器根据至少一个第一设备发送的波束赋形训练请求信息,为每一对波束赋形训练设备对配置波束赋形训练所使用的信道信息。第一设备和至少一个的第二设备可以在信道信息中指示的至少一个指定信道上进行波束赋形训练。本发明实施例中,第一设备可以在预先配置的指定信道上同时与多个第二设备进行波束赋形训练,因此能够有效的降低波束赋形训练所需的时间。
附图说明
图1为本发明实施例中包括两个用户的MU-MIMO和绑定2个信道的波束赋形训练过程示意图;
图2本发明一个实施例提供的波束赋形训练的方法的流程示意图;
图3本发明另一个实施例提供的波束赋形训练的方法的流程示意图;
图4为本发明实施例提供的发起者和响应者实现波束赋形训练的方法的流程示意图;
图5为本发明实施例中配置进行多信道波束赋形训练的示意图;
图6-a为本发明实施例提供的发起者和响应者在SLS阶段的一种波束赋形训练示意图;
图6-b为本发明实施例提供的发起者和响应者在SLS阶段的另一种波束赋形训练示意图;
图7为本发明实施例提供的发起者和响应者在BRP阶段的波束赋形训练示意图;
图8-a为本发明实施例中提供的发起者和响应者进行波束赋形训练的一种信道资源配置示意图;
图8-b为为本发明实施例中提供的发起者和响应者进行波束赋形训练的另一种信道资源配置示意图;
图9本发明另一个实施例提供的波束赋形训练的方法的流程示意图;
图10为本发明实施例提供的两对STA在不同的信道上同时进行波束赋形训练的示意图;
图11为本发明实施例提供的三对STA在不同的信道上同时进行波束赋形训练的示意图;
图12本发明实施例提供的多个发起者STA与一个响应者STA在不同的信道上同时进行波束赋形训练的示意图;
图13为本发明实施例提供的一种波束赋形训练设备的组成结构示意图;
图14为本发明实施例提供的另一种波束赋形训练设备的组成结构示意图;
图15为本发明实施例提供的一种网络控制器的组成结构示意图;
图16为本发明实施例提供的另一种波束赋形训练设备的组成结构示意图;
图17为本发明实施例提供的另一种波束赋形训练设备的组成结构示意图;
图18为本发明实施例提供的另一种网络控制器的组成结构示意图。
具体实施方式
本发明实施例提供了一种波束赋形训练的方法和设备以及控制器,能够有效的降低波束赋形训练所需的时间。
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域的技术人员所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本发明的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
本发明实施例提供的波束赋形训练的方法可以应用在毫米波频段并同时 采用MU-MIMO和信道绑定技术的通信系统中,本发明实施例中设备可以支持信道绑定。并且波束赋形训练的发起者可以与至少一个波束赋形训练的响应者进行波束赋形训练。其中,本发明实施例中所涉及的第一设备和/第二设备的具体实现可以是:第一设备可以是支持无线局域网(英文全称:第一设备支持WIFI功能的无线路由器,第二设备可以是各种支持WIFI的手持设备,例如手机、笔记本等设备。
例如,以包括两个用户的MU-MIMO和绑定2个信道的波束赋形训练为例,以包括两个用户的MU-MIMO系统为例,站点设备(英文全称:Station,英文简称:STA)1会分别与STA2和STA3建立链路,在相同的频率资源上,STA1分别在不同的空间离散的径上给STA2和STA3同时发射数据。如图1所示,为本发明实施例中包括两个用户的MU-MIMO和绑定2个信道的波束赋形训练过程示意图。其中,STA1作为波束赋形训练的发起者,STA2作为波束赋形训练的响应者,在数据发射过程中,为了对抗剧烈的大尺度衰落,要求STA1发射的波束与STA2和STA3接收波束分别对齐在同一条的空间离散的径,STA1的发射波束与STA2的接收波束对齐在反射径上,而STA1的另一个发射波束与STA3的接收波束对齐在直射径上。因此在MU-MIMO系统中,需要实现多条链路的波束对齐。在本发明实施例中,STA1、STA2、STA3可以首先分别获取到STA1与STA2的信道信息、STA1与STA3的信道信息,该信道信息中可以包括指定信道C1和指定信道C2,则STA1与STA2、STA1与STA3之间在指定信道C1和指定信道C2上完成波束赋形训练。接下来分别对本发明实施例中波束赋形训练的发起者和响应者执行的波束赋形训练方法进行详细说明。
首先从波束赋形训练的发起者来描述本发明实施例提供的波束赋形训练的方法,请参阅图2所示,本发明一个实施例提供的波束赋形训练的方法,可以包括:
201、第一设备获取第一设备和至少一个的第二设备进行波束赋形训练所使用的信道信息,其中,信道信息包括:第一设备和至少一个的第二设备进行波束赋形训练所使用的至少一个指定信道。
在本发明实施例中,第一设备可以作为波束赋形训练的发起者,第二设备作为波束赋形训练的响应者,第一设备可以与一个第二设备进行波束赋形训 练,第一设备也可以与两个以上的第二设备进行波束赋形训练。本发明实施例中第一设备在进行波束赋形训练之前,第一设备可以首先获取到第一设备和至少一个的第二设备进行波束赋形训练所使用的信道信息。在该信道信息中可以包括:第一设备和至少一个的第二设备进行波束赋形训练所使用的至少一个指定信道。至少一个指定信道可以包括:一个指定信道或多个指定信道。至少一个指定信道是预先配置好的一个信道或多个信道,第一设备获取到进行波束赋形训练所使用的指定信道,然后执行步骤202。
在本发明实施例中,第一设备和第二设备之间绑定多个信道,则该指定信道是绑定的多个信道的其中一个信道或几个信道。第一设备具有一个或多个天线,第二设备具有一个或多个天线,第一设备的一个天线和第二设备的一个天线可以构成一个天线对,当第一设备和第二设备都具有一个天线时,第一设备可以和多个第二设备构成不同的天线对。在本发明实施例中,第一设备获取到的波束赋形训练所使用的信道信息中,在一个波束赋形训练的时间周期内第一设备与第二设备的不同天线对对应有不同的指定信道,第一设备和第二设备绑定的多个信道中哪个信道或哪些信道作为指定信道可以根据具体的应用场景来配置,此处不做限定。
在本发明的一些实施例中,步骤201第一设备获取第一设备和至少一个的第二设备进行波束赋形训练所使用的信道信息之前,本发明实施例提供的波束赋形训练的方法还可以包括如下步骤:
第一设备向至少一个的第二设备发送第一波束赋形训练能力信息,以及接收第二设备发送的第二波束赋形训练能力信息,其中,第一波束赋形训练能力信息包括:第一设备是否支持信道绑定、第一设备支持的信道编号和信道带宽、第一设备支持的天线个数,第二波束赋形训练能力信息包括:至少一个的第二设备是否支持信道绑定、至少一个的第二设备支持的信道编号和信道带宽、至少一个的第二设备支持的天线个数。
其中,本发明实施例中第一设备和第二设备进行波束赋形训练之前,第一设备和第二设备还可以先交互波束赋形训练能力信息,或者第一设备需要通过网络控制器来进行波束赋形训练能力信息的交互。其中一种可实现的方式是第一设备可以发射信标以及第二设备可以发送确认信息,以此来确定波束赋形训练的双方是否支持信道绑定,以及支持的信道和信道带宽等信息。波束赋形训 练能力信息的交互过程可以参阅现有技术,此处不再赘述。
在本发明的一些实施例中,步骤201第一设备获取第一设备和至少一个的第二设备进行波束赋形训练所使用的信道信息,可以包括如下步骤:
A1、当第一设备作为个人基本服务集合控制点(英文全称:Personal basic service set Control Point,英文简称:PCP),或接入点(英文全称:Access Point,英文简称:AP)时,第一设备为第一设备与至少一个的第二设备配置波束赋形训练所使用的信道信息;或,
A2、第一设备接收网络控制器为第一设备和至少一个的第二设备配置的波束赋形训练所使用的信道信息,网络控制器包括:个人基本服务集合控制点(英文全称:Personal basic service set Control Point,英文简称:PCP),或接入点(英文全称:Access Point,英文简称:AP)。
具体的,在本发明的一些实施例中,当第一设备作为PCP或AP时,第一设备获取到的波束赋形训练所使用的信道信息可以由第一设备来配置实现的,即第一设备可以为第一设备和至少一个的第二设备配置波束赋形训练所使用的信道信息,第一设备在该信道信息中配置波束赋形训练所使用的至少一个指定信道,当第一设备配置完成上述信道信息之后,第一设备可以将配置的上述信道信息发送给第二设备,则第二设备作为波束赋形训练的响应者可以获取到第二设备和第一设备进行波束赋形训练所使用的指定信道。在本发明的另一些实施例中,当第一设备不是PCP或AP时,第一设备获取到的波束赋形训练所使用的信道信息可以由网络控制器来配置实现的,网络控制器可以是PCP或者AP。该网络控制器可以为第一设备和至少一个的第二设备配置波束赋形训练所使用的信道信息,网络控制器在该信道信息中配置波束赋形训练所使用的至少一个指定信道,当网络控制器配置完成上述信道信息之后,网络控制器可以将配置的上述信道信息发送给第一设备和第二设备,则第一设备作为波束赋形训练的发起者可以获取到第一设备和至少一个的第二设备进行波束赋形训练所使用的指定信道,以及第二设备作为波束赋形训练的响应者可以获取到第二设备和第一设备进行波束赋形训练所使用的指定信道。
另外本发明实施例中,网络控制器可以是配置在第一设备上的PCP或AP,也可以是配置在第二设备上的的PCP或AP,另外网络控制器还可以是一个独立的控制设备,用于实现对波束赋形训练所使用的信道资源的具体配置,网络 控制器的具体实现方式不做限定。
在本发明的一些实施例中,配置波束赋形训练所使用的信道信息时,除了可以配置上述的指定信道之外,第一设备获取到的上述信道信息还包括:使用指定信道进行波束赋形训练的第一设备的天线编号和至少一个的第二设备的天线编号。
其中,第一设备或网络控制器在配置波束赋形训练所使用的信道信息时,可以配置第一设备的天线编号和至少一个的第二设备的天线编号,即第一设备或网络控制器可以配置需要进行波束赋形训练的天线对。由前述描述可知,第一设备的一个天线和第二设备的一个天线可以构成一个天线对,由第一设备的哪个天线和第二设备的哪个天线构成一个需要进行波束赋形训练的天线对,也可以配置在上述信道信息中,由第一设备和第二设备获取到信道信息之后,可以确定第一设备中哪个天线、第二设备中哪个天线可以组成需要波束赋形训练的天线对。
在本发明的一些实施例中,步骤A2第一设备接收网络控制器为第一设备和至少一个的第二设备配置的波束赋形训练所使用的信道信息之前,本发明实施例提供的波束赋形训练的方法还包括如下步骤:
第一设备向网络控制器发送SP请求信息,SP请求信息包含如下信息中的至少一种:第一设备请求的波束赋形训练信道带宽、第一设备请求的用于波束赋形训练的指定信道、是否包含主信道的指示信息,波束赋形训练所使用的信道信息包含于网络控制器发送的定向的多吉比特(英文全称:Directional Multi-Gigabit,英文简称:DMG)信标(英文名称:Beacon)帧或通告(英文名称:Announce)帧;或,
当第一设备和至少一个的第二设备处于基于竞争的接入期(英文全称:Contention Based Access Period,英文简称:CBAP)时,波束赋形训练所使用的信道信息包含于第一设备发送的授权(英文名称:Grant)帧承载。
其中,第一设备向网络控制器发送SP请求信息,第一设备和至少一个的第二设备可以在基于调度传输模式来完成波束赋形训练所使用的信道信息的获取。例如,网络控制器可以向第一设备发送携带波束赋形训练所使用的指定信道的指示信息的DMG Beacon帧或Announce帧。另外本发明的一些实施例中,波束赋形训练所使用的指定信道的指示信息的实现并不基于此,例如,当 第一设备和至少一个的第二设备处于CBAP时,第一设备和至少一个的第二设备可以在基于竞争传输模式来完成波束赋形训练所使用的信道信息的获取,例如,第一设备可以向至少一个的第二设备发送携带波束赋形训练所使用的信道信息的Grant帧。
进一步的,在本发明的另一些实施例中,当波束赋形训练所使用的指定信道的指示信息由Grant帧承载时,本发明实施例提供的波束赋形训练的方法还可以包括如下步骤:
B1、当第二设备支持授权确认(英文全称:Grant ACKnowledgement,英文简称:Grant ACK)帧时,第一设备接收第二设备发送的Grant ACK帧,Grant ACK帧携带第二设备接收到波束赋形训练所使用的信道信息的确认信息。
其中,当第一设备和至少一个的第二设备处于CBAP时,第一设备和至少一个的第二设备可以在基于竞争传输模式来完成波束赋形训练所使用的信道信息的获取,当第二设备接收到波束赋形训练所使用的信道信息之后,第二设备可以向第一设备和/或网络控制器反馈确认信息,以表示该第二设备接收到了承载波束赋形训练所使用的信道信息的Grant帧。
202、第一设备在指定信道上与至少一个的第二设备进行波束赋形训练。
在本发明实施例中,第一设备通过执行前述步骤201获取到了第一设备和至少一个的第二设备进行波束赋形训练所使用的指定信道,则第一设备可以在指定信道上与至少一个的第二设备进行波束赋形训练,当第一设备在指定信道上与至少一个的第二设备进行波束赋形训练完成之后,可以得到对应于该指定信道的波束赋形训练结果。可以理解的是,第一设备在指定信道上与至少一个的第二设备进行波束赋形训练时,第一设备需要和第二设备进行数据包的发送与接收,第二设备也需要与第一设备进行数据包的发送与接收,则第一设备与至少一个第二设备可以在指定信道上对第一设备与至少一个第二设备的天线对进行波束赋形训练。需要说明的是,若第一设备的天线和第二设备的天线构成了多个天线对时,第一设备可以在指定信道上对第一设备和至少一个的第二设备的不同天线对进行波束赋形训练。
在本发明的一些实施例中,第一设备的一个天线和第二设备的一个天线构成一个天线对,步骤202第一设备在指定信道上与至少一个的第二设备进行波束赋形训练,具体可以包括如下步骤:
C1、在扇区级扫描(英文全称:Sector Level Sweep,英文简称:SLS)阶段中第一设备在指定信道上对第一设备与至少一个的第二设备的天线对进行波束赋形训练,和在波束修正协议(英文全称:Beam Refinement Protocol,英文简称:BRP)阶段第一设备在指定信道上对第一设备与至少一个的第二设备的天线对进行波束赋形训练;或,
C2、在BRP阶段第一设备在指定信道上对第一设备与至少一个的第二设备的天线对进行波束赋形训练。
也就是说,在本发明的一些实施例中,第一设备在指定信道上与至少一个的第二设备进行波束赋形训练可以指的是在SLS阶段对第一设备与至少一个的第二设备的天线对进行波束赋形训练,并且在SLS阶段对第一设备与至少一个的第二设备的天线对进行波束赋形训练之后,还可以在BRP阶段对第一设备与至少一个的第二设备的天线对进行波束赋形训练。在本发明的另一些实施例中,第一设备在指定信道上与至少一个的第二设备进行波束赋形训练也可以指的是在BRP阶段对第一设备与至少一个的第二设备的天线对进行波束赋形训练。第一设备在指定信道上对第一设备与至少一个的第二设备的天线对进行波束赋形训练的具体实现方式不做限定。接下来分别对在SLS阶段和BRP阶段的波束赋形训练进行详细说明。
在本发明的一些实施例中,在本发明实施例中执行步骤C1的实现场景下,步骤C1在SLS阶段中第一设备在指定信道上对第一设备与至少一个的第二设备的天线对进行波束赋形训练,具体可以包括如下步骤C11和C12:
C11、天线对包括第一设备的第一天线和第二设备的第二天线,第一设备通过第一天线在指定信道的所有扇区方向上分别发射第一训练数据包。
其中,以第一设备的天线编号表示第一天线,第二设备的天线编号表示第二天线为例,该第一天线和第二天线构成一个天线对,第一设备通过第一天线在指定信道的所有扇区方向上分别发射第一训练数据包,每个扇区对应于第一设备的发射天线的一个特定的波束或者模式(即方向或权重),其中在第一训练数据包中包含扇区编号。
在本发明实施例中,步骤C11中发射第一训练数据包时,第一设备可以有多种方式,例如,第一设备使用第一天线在指定信道的所有扇区方向上分别发射第一训练数据包,可包括如下步骤C11、C12、C13、C14,其中,各个步 骤的具体实现过程说明如下。
C111、第一设备在指定信道上按天线编号顺序在第一设备的所有第一天线的所有扇区方向上,连续发射第一训练数据包。
其中,第一设备可以采用集中式来发送第一训练数据包,第一设备可以获取到第一设备的所有第一天线与至少一个的第二设备中的一个第二天线构成的不同天线对进行波束赋形训练所使用的信道资源,然后第一设备按照天线编号顺序在第一设备的所有第一天线的所有扇区方向上,连续发射第一训练数据包。第一设备采用集中式来发送第一训练数据包,当波束赋形训练的信道资源配置完成后,整个波束赋形训练过程可以按照天线编号顺序完成,不需要额外的信令开销。
在本发明的另一些实施例中,步骤C11第一设备使用第一天线在指定信道的所有扇区方向上分别发射第一训练数据包,可包括如下步骤:
C112、第一设备配置使用指定信道进行波束赋形训练的第一设备的天线编号和至少一个的第二设备的天线编号,或第一设备从网络控制器获取到网络控制器配置的使用指定信道进行波束赋形训练的第一设备的天线编号和至少一个的第二设备的天线编号;
C113、第一设备在第一设备的第一天线的所有扇区方向上分别发射第一训练数据包,第一设备与至少一个的第二设备的一个天线对完成波束赋形训练之后,第一设备根据为第一设备和至少一个的第二设备配置的第一设备的天线编号和至少一个的第二设备的天线编号,对第一设备和至少一个的第二设备的其余天线对进行波束赋形训练。
其中,第一设备可以采用分布式来发送第一训练数据包,第一设备可以获取到第一设备的天线编号与至少一个的第二设备中的天线编号,第一设备的所有第一天线和至少一个的第二设备的所有第二天线可以构成不同的天线对,第一设备采用分布式来发送第一训练数据包,即第一设备先在一个指定信道上对第一设备和至少一个的第二设备的一个天线对进行波束赋形训练,当该天线对完成波束赋形训练之后,对第一设备和至少一个的第二设备的其余天线对进行波束赋形训练。也就是说,在分布式发送第一训练数据包时,每个信道资源上每次只能用于第一设备和第二设备的一个天线对的波束赋形训练,当完成对一个天线对的波束赋形训练后,再配置另一个天线对在该信道资源上进行波束赋 形训练。本发明实施例中第一设备采用分布式进行波束赋形训练,在实现过程中可以更为灵活,第一设备作为波束赋形训练的发起者可以灵活的配置训练的时间以及天线对顺序。
C12、第一设备通过第一天线在指定信道上接收第二设备通过第二天线发送的第二训练数据包,确定第二天线的响应者最优扇区编号,以及从第二训练数据包中获取到第一天线的发起者最优扇区编号。
其中,第一设备执行完上述步骤C11之后,第二设备作为响应者采用全向波束接收第一训练数据包,第二设备从接收到的第一训练数据包中找到信号质量最好的那个第一训练数据包,获得到第一天线的发起者最优扇区编号,然后第二设备通过第二天线在指定信道的所有扇区方向上分别发射第二训练数据包,第二训练数据包包括:第一天线的发起者最优扇区编号。第一设备通过第一天线在指定信道上接收第二设备通过第二天线发送的第二训练数据包,第一设备从接收到的所有第二训练数据包中找到信号质量最好的那个第二训练数据包,将其确定为第二天线的响应者最优扇区编号,并且,第一设备还可以从第二训练数据包中获取到第一天线的发起者最优扇区编号。
在本发明的一些实施例中,第一设备接收到的第二训练数据包,还包括:第二设备确定的第一天线的对应于第一设备和第二设备之间绑定的多个信道中除指定信道以外的其它信道的发起者最优扇区编号。
也就是说,若第二设备对指定信道的最优扇区进行测量,可以确定第一天线对应于指定信道的发起者最优扇区编号,为了提高测量效率,第二设备也可以对第二设备和第一设备之间绑定的多个信道的最优扇区进行测量,确定第一天线对应于绑定的多个信道的发起者最优扇区编号,则第二设备通过第二天线在指定信道上发送的第二训练数据包除了包括第一天线对应于指定信道的发起者最优扇区编号之外,该第二训练数据包还包括:第一天线对应于绑定的多个信道中除指定信道以外的其它信道的发起者最优扇区编号。第一设备通过接收第二设备发送的上述第二训练数据包,可以获取到第一天线在绑定的各个信道上的各自的发起者最优扇区编号。
进一步的,在本发明的另一些实施例中,第二设备在使用第二训练数据包指示第一天线对应于绑定的多个信道的发起者最优扇区编号时,第二设备可以采用多种指示方式,例如,第一设备接收到的第二训练数据包,具体包括:第 一天线的对应于绑定的多个信道中除指定信道以外的其它信道的各个发起者最优扇区编号,与对应于指定信道的发起者最优扇区编号之间是否相同或存在相差结果的指示信息。则第一设备可以通过第二训练数据包中携带的是否相同或存在相差结果的指示信息确定第一天线对应于绑定的多个信道中每一个信道的发起者最优扇区编号。
在本发明的一些实施例中,步骤C12第一设备通过第一天线在指定信道上接收第二设备通过第二天线发送的第二训练数据包,确定第二天线的响应者最优扇区编号,以及从第二训练数据包中获取到第一天线的发起者最优扇区编号,具体可以包括如下步骤:
C121、第一设备通过第一天线在指定信道上接收第二设备通过各个第二天线按天线编号顺序发送的第二训练数据包,确定对应于第一设备的第一天线与第二设备的各个第二天线各自的响应者最优扇区编号,以及从第二训练数据包中获取到第一天线对应于第二设备的各个第二天线各自的发起者最优扇区编号。
其中,在前述实施例中,第一设备执行步骤C111,第一设备可以采用集中式来发送第一训练数据包,在这种实现方式下,第二设备也可以采用集中式接收第一设备发送的第一训练数据包,则第二设备通过测量可以确定第一天线对应于第二设备的各个第二天线各自的发起者最优扇区编号,然后第二设备可以采用集中式发送第二训练数据包,即第二设备通过各个第二天线按天线编号顺序发送第二训练数据包,则第一设备可以确定对应于第一设备的第一天线与第二设备的各个第二天线各自的响应者最优扇区编号,以及从第二训练数据包中获取到第一天线对应于第二设备的各个第二天线各自的发起者最优扇区编号。
C13、第一设备在指定信道上,在第一天线的发起者最优扇区编号对应的扇区上发射扇区扫描反馈(英文全称:Sector SWeep-Feedback,英文简称:SSW-Feedback)消息,SSW-Feedback消息包括:第二天线的响应者最优扇区编号。
当第一设备从第二训练数据包中获取到第一天线的发起者最优扇区编号之后,第一设备在指定信道上,在第一天线的发起者最优扇区编号对应的扇区上发射SSW-Feedback消息,在SSW-Feedback消息中携带第二天线的响应者 最优扇区编号。
在本发明的一些实施例中,步骤C13第一设备在指定信道上,在第一天线的发起者最优扇区编号对应的扇区上发射SSW-Feedback消息,可以包括如下步骤:
C131、第一设备在第一设备的第一天线的发起者最优扇区编号对应的扇区上发射SSW-Feedback消息,SSW-Feedback消息包括:第二设备的各个第二天线各自的响应者最优扇区编号,和第二设备的各个第二天线各自的信噪比(英文全称:Signal Noise Ratio,英文简称:SNR)。
其中,在前述实施例中,第一设备执行步骤C111和步骤C121,第二设备可以采用集中式发送第二训练数据包,则第一设备可以采用集中式接收第二设备通过各个第二天线按照天线编号顺序发送的第二训练数据包,由前述实现场景可知,第一设备对第二设备通过各个第二天线发送的第二训练数据包进行测量之后,可以确定对应于第一设备的第一天线与第二设备的各个第二天线各自的响应者最优扇区编号,并得到第二设备的各个第二天线各自的SNR。
C14、第一设备在指定信道上,在第一天线上接收第二设备通过第二天线发射的扇区扫描确认(英文全称:Sector SWeep-ACKnowledgement,英文简称:SSW-ACK)消息。
其中,第一设备执行前述步骤C13之后,第二设备接收第一设备发送的扇区扫描反馈SSW-Feedback消息,第二设备可以从SSW-Feedback消息获取到第二天线的响应者最优扇区编号,接下来第二设备可以在第二天线的响应者最优扇区编号对应的扇区上向第一设备发射SSW-ACK消息,第一设备通过接收第二设备发送的SSW-ACK消息可以确定第二设备已经接收到SSW-Feedback消息。
在本发明的一些实施例中,步骤C2在BRP阶段第一设备在指定信道上对第一设备与至少一个的第二设备的天线对进行波束赋形训练,具体可以包括如下步骤:
C21、天线对包括第一设备的第一天线和至少一个的第二设备的第二天线,第一设备通过第一天线在指定信道上与至少一个第二设备的第二天线进行多扇区标识捕获(英文全称:Multiple sector ID capture,英文简称:MIDC);
其中,进行MIDC的指定信道通过如下方式确定:当BRP阶段处于SLS 阶段之后时,第一设备和至少一个的第二设备进行波束赋形训练所使用的指定信道作为进行MIDC的指定信道,或,当BRP阶段不是在SLS阶段之后时,进行MIDC的指定信道的指示信息由第一设备发射的定向的多吉比特波束优化元素(英文名称:DMG Beam Refinement element)承载。
其中,第一设备在BRP阶段可以通过MIDC子阶段实现波束修正,即第一设备可以通过第一天线在指定信道上与至少一个第二设备的第二天线进行MIDC。BRP阶段处于SLS阶段之后意思是第一设备在执行SLS阶段之后就开始执行BRP阶段,在这种情况下,第一设备和至少一个的第二设备进行波束赋形训练所使用的指定信道作为进行MIDC的指定信道。BRP阶段不是在SLS阶段之后意思是第一设备执行BRP阶段是独立进行的,即第一设备单独的执行BRP阶段,而可以不执行SLS阶段,在这种情况下,进行MIDC的指定信道的指示信息由第一设备发射的DMG Beam Refinement element承载。
在本发明的一些实施例中,步骤202第一设备在指定信道上与至少第二设备进行波束赋形训练之后,本发明实施例提供的波束赋形训练的方法还可以包括如下步骤:
D1、当第一设备在指定信道上对第一设备与至少第二设备的天线对进行的波束赋形训练完成时,第一设备在第一设备和至少一个的第二设备绑定的多个信道中除指定信道以外的其它信道上,对第一设备与至少一个的第二设备的天线对进行验证指定信道对应的波束赋形训练结果。
其中,步骤202中第一设备在指定信道上对第一设备与至少一个的第二设备的天线对进行的波束赋形训练完成之后,可以得到指定信道对应的波束赋形训练结果,指定信道对应的波束赋形训练结果可以包括:在该指定信道上第一设备的第一天线的发起者最优扇区编号,和在该指定信道上第二设备的第二天线的响应者最优扇区编号。由于毫米波信道具有方向性,在频率上具有一致性的特点,即信号传播路径在不同频率上高度一致,因此需要在指定信道上完成波束赋形训练结果应用到其他信道上,为了防止上述应用造成的不匹配,本发明实施例中还可以进一步来验证在第一设备和至少一个的第二设备绑定的多个信道中除指定信道以外的其它信道上,对指定信道对应的波束赋形训练结果进行验证,第一设备可以生成在BRP阶段得到的波束赋形训练结果是否适用于绑定的多个信道中除指定信道以外的其它信道的验证结果。
进一步的,本发明的一些实施例中,DMG Beam Refinement element,还用于指示在BRP阶段得到的波束赋形训练结果是否适用于绑定的多个信道中除指定信道以外的其它信道。其中,第一设备可以使用DMG Beam Refinement element中的保留比特位来用作BRP阶段的信道编号,以及使用预留比特位来指示BRP阶段得到波束赋形训练结果是否适用于上述指定信道以外的其他信道。
在本发明的一些实施例中,步骤D1第一设备在第一设备和至少一个的第二设备绑定的多个信道中除指定信道以外的其它信道上,对第一设备与至少一个的第二设备的天线对进行验证指定信道对应的波束赋形训练结果,具体可以包括如下步骤:
D11、天线对包括第一设备的第一天线和至少一个的第二设备的第二天线,第一设备通过第一天线在绑定的多个信道中除指定信道以外的其它信道上,接收至少一个的第二设备通过第二天线使用指定信道对应的波束赋形训练结果发射的BRP帧,测量信噪比;
D12、当信噪比大于预置的信噪比门限,第一设备向至少一个的第二设备发送包括反馈确认的BRP帧。
其中,在验证指定信道对应的波束赋形训练结果时,可以采用第二设备发送BRP帧,第一设备来接收BRP帧并测量信噪比的方式,第一设备对测量得到的信噪比与信噪比门限进行判断,当信噪比大于预置的信噪比门限,第一设备向至少一个的第二设备发送包括反馈确认的BRP帧,以表示指定信道对应的波束赋形训练结果可以适用于第一设备和至少一个的第二设备绑定的多个信道中的其它信道,当信噪比小于或等于预置的信噪比门限时,说明指定信道对应的波束赋形训练结果不适用于第一设备和至少一个的第二设备绑定的多个信道中的其它信道,因此第一设备和第二设备需要在指定信道上重新进行波束赋形训练,重新生成指定信道对应的波束赋形训练结果。
在本发明的另一些实施例中,步骤D1第一设备在第一设备和至少一个的第二设备绑定的多个信道中除指定信道以外的其它信道上,对第一设备与至少一个的第二设备的天线对进行验证指定信道对应的波束赋形训练结果,具体可以包括如下步骤:
D13、天线对包括第一设备的第一天线和至少一个的第二设备的第二天 线,第一设备通过第一天线在绑定的多个信道中除指定信道以外的其它信道上,使用指定信道对应的波束赋形训练结果向第二设备发射BRP帧,以使至少一个的第二设备接收BRP帧,并测量信噪比;
D14、第一设备接收至少一个的第二设备在信噪比大于预置的信噪比门限时发送包括反馈确认的BRP帧。
其中,步骤D11和步骤D12描述了验证指定信道对应的波束赋形训练结果的一种方式,本发明的一些实施例中还可以采用步骤D13和步骤D14的方式来验证指定信道对应的波束赋形训练结果。在步骤D13和步骤D14中,在验证指定信道对应的波束赋形训练结果时,可以采用第一设备发送BRP帧,第二设备来接收BRP帧并测量信噪比的方式,第二设备对测量得到的信噪比与信噪比门限进行判断,当信噪比大于预置的信噪比门限,第二设备向第一设备发送包括反馈确认的BRP帧,以表示指定信道对应的波束赋形训练结果可以适用于第一设备和第二设备绑定的多个信道中的其它信道,当信噪比小于或等于预置的信噪比门限时,说明指定信道对应的波束赋形训练结果不适用于第一设备和第二设备绑定的多个信道中的其它信道,因此第一设备和第二设备需要在指定信道上重新进行波束赋形训练,重新生成指定信道对应的波束赋形训练结果。
通过前述实施例对本发明实施例提供的波束赋形训练的方法可知,第一设备可以首先获取第一设备和至少一个的第二设备进行波束赋形训练所使用的信道信息,该信道信息包括:第一设备和至少一个的第二设备进行波束赋形训练所使用的至少一个指定信道,同样的,至少一个的第二设备中每一个第二设备都可以获取到到第二设备和第一设备进行波束赋形训练所使用的信道信息。第一设备和至少一个的第二设备可以在信道信息中指示的指定信道上进行波束赋形训练。本发明实施例中,第一设备可以在预先配置的指定信道上同时与多个第二设备进行波束赋形训练,因此能够有效的降低波束赋形训练所需的时间。
前述实施例从第一设备侧描述了本发明实施例提供的波束赋形训练的方法,请参阅图3所示,接下来从第二设备侧描述本发明一个实施例提供的波束赋形训练的方法,可以包括:
301、第二设备获取第二设备和第一设备进行波束赋形训练所使用的信道 信息,其中,信道信息包括:第二设备和第一设备进行波束赋形训练所使用的至少一个指定信道。
在本发明实施例中,第一设备可以作为波束赋形训练的发起者,第二设备作为波束赋形训练的响应者,第一设备可以与一个第二设备进行波束赋形训练,第一设备也可以与两个以上的第二设备进行波束赋形训练,接下从本发明实施例中一个第二设备的角度来详细说明。本发明实施例中第二设备在进行波束赋形训练之前,第二设备可以首先获取到第二设备和第一设备进行波束赋形训练所使用的信道信息。在该信道信息中可以包括:第二设备和第一设备进行波束赋形训练所使用的至少一个指定信道。该至少一个指定信道包括:一个指定信道或多个指定信道,例如可以是预先配置好的一个信道或多个信道,第二设备获取到进行波束赋形训练所使用的指定信道,然后执行步骤302。
在本发明实施例中,第一设备和第二设备之间具有绑定的多个信道,则该指定信道是绑定的多个信道的其中一个信道或几个信道。第一设备具有一个或多个天线,第二设备具有一个或多个天线,第一设备的一个天线和第二设备的一个天线可以构成一个天线对,当第一设备和第二设备都具有一个天线时,第一设备可以和多个第二设备构成不同的天线对。在本发明实施例中,第一设备获取到的波束赋形训练所使用的信道信息中,在一个波束赋形训练的时间周期内第一设备与第二设备的不同天线对对应有不同的指定信道,第一设备和第二设备绑定的多个信道中哪个信道或哪些信道作为指定信道可以根据具体的应用场景来配置,此处不做限定。
在本发明的一些实施例中,步骤301第二设备获取第二设备和第一设备进行波束赋形训练所使用的信道信息之前,本发明实施例提供的波束赋形训练的方法还可以包括如下步骤:
第二设备向第一设备发送第二波束赋形训练能力信息,以及接收第一设备发送的第一波束赋形训练能力信息,其中,第一波束赋形训练能力信息包括:第一设备是否支持信道绑定、第一设备支持的信道编号和信道带宽、第一设备支持的天线个数,第二波束赋形训练能力信息包括:至少一个的第二设备是否支持信道绑定、至少一个的第二设备支持的信道编号和信道带宽、至少一个的第二设备支持的天线个数。
其中,本发明实施例中第一设备和第二设备进行波束赋形训练之前,第一 设备和第二设备还可以先交互波束赋形训练能力信息,或者第一设备需要通过网络控制器来进行波束赋形训练能力信息的交互。其中一种可实现的方式是第一设备可以发射信标以及第二设备可以发送确认信息,以此来确定波束赋形训练的双方是否支持信道绑定,以及支持的信道和信道带宽等信息。波束赋形训练能力信息的交互过程可以参阅现有技术,此处不再赘述。
在本发明的一些实施例中,步骤301第二设备获取第二设备和第一设备进行波束赋形训练所使用的信道信息,可以包括如下步骤:
E1、当第一设备作为PCP或AP时,第二设备获取第一设备为第二设备和第一设备配置的波束赋形训练所使用的信道信息;或,
E2、第二设备获取网络控制器为第二设备和第一设备配置的波束赋形训练所使用的信道信息,网络控制器包括:PCP,或AP。
具体的,在本发明的一些实施例中,第二设备获取到的波束赋形训练所使用的信道信息可以由第一设备来配置实现的,即第一设备可以为第一设备和至少一个的第二设备配置波束赋形训练所使用的信道信息,第一设备在该信道信息中配置波束赋形训练所使用的指定信道,当第一设备配置完成上述信道信息之后,第一设备可以将配置的上述信道信息发送给第二设备,则第二设备作为波束赋形训练的响应者可以获取到第二设备和第一设备进行波束赋形训练所使用的指定信道。在本发明的另一些实施例中,第二设备获取到的波束赋形训练所使用的信道信息可以由网络控制器来配置实现的,即网络控制器可以为第一设备和至少一个的第二设备配置波束赋形训练所使用的信道信息,网络控制器在该信道信息中配置波束赋形训练所使用的指定信道,当网络控制器配置完成上述信道信息之后,网络控制器可以将配置的上述信道信息发送给第一设备和第二设备,则第二设备作为波束赋形训练的响应者可以获取到第二设备和第一设备进行波束赋形训练所使用的指定信道。
另外本发明实施例中,网络控制器可以是配置在第一设备上的PCP或AP,也可以是配置在第二设备上的的PCP或AP,另外网络控制器还可以是一个独立的控制设备,用于实现对波束赋形训练所使用的信道资源的具体配置,网络控制器的具体实现方式不做限定。
在本发明的一些实施例中,配置波束赋形训练所使用的信道信息时,除了可以配置上述的指定信道之外,第二设备获取到的上述信道信息还包括:使用 指定信道进行波束赋形训练的第一设备的天线编号和第二设备的天线编号。
其中,第一设备或网络控制器在配置波束赋形训练所使用的信道信息时,可以配置第一设备的天线编号和第二设备的天线编号,即第一设备或网络控制器可以配置需要进行波束赋形训练的天线对。由前述描述可知,第一设备的一个天线和第二设备的一个天线可以构成一个天线对,由第一设备的哪个天线和第二设备的哪个天线构成一个需要进行波束赋形训练的天线对,也可以配置在上述信道信息中,由第一设备和第二设备获取到信道信息之后,可以确定第一设备中哪个天线、第二设备中哪个天线可以组成需要波束赋形训练的天线对。
在本发明的一些实施例中,步骤E2第二设备获取网络控制器为所述第二设备和所述第一设备配置的波束赋形训练所使用的信道信息之前,本发明实施例提供的波束赋形训练方法还包括如下步骤:
当第一设备向网络控制器发送SP请求信息时,SP请求信息包含如下信息中的至少一种:第一设备请求的波束赋形训练信道带宽、第一设备请求的用于波束赋形训练的指定信道、是否包含主信道的指示信息,波束赋形训练所使用的信道信息包含于网络控制器发送的DMG Beacon帧或Announce帧;或,
当第二设备和第一设备处于CBAP时,波束赋形训练所使用的信道信息包含于第一设备发送的Grant帧。
其中,第一设备向网络控制器发送SP请求信息,第一设备和至少一个的第二设备可以在基于调度传输模式来完成波束赋形训练所使用的信道信息的获取。例如,网络控制器可以向第一设备发送携带波束赋形训练所使用的指定信道的指示信息的DMG Beacon帧或Announce帧。另外本发明的一些实施例中,波束赋形训练所使用的指定信道的指示信息的实现并不基于此,例如,当第一设备和至少一个的第二设备处于CBAP时,第一设备和至少一个的第二设备可以在基于竞争传输模式来完成波束赋形训练所使用的信道信息的获取,例如,第一设备可以向至少一个的第二设备发送携带波束赋形训练所使用的信道信息的Grant帧。
进一步的,在本发明的另一些实施例中,当波束赋形训练所使用的指定信道的指示信息由Grant帧承载时,本发明实施例提供的波束赋形训练的方法还可以包括如下步骤:
F1、当第二设备支持Grant ACK帧时,第二设备向第一设备发送Grant ACK 帧,Grant ACK帧携带第二设备接收到波束赋形训练所使用的信道信息的确认信息。
其中,当第一设备和第二设备处于CBAP时,第一设备和第二设备可以在基于竞争传输模式来完成波束赋形训练所使用的信道信息的获取,当第二设备接收到波束赋形训练所使用的信道信息之后,第二设备可以向第一设备和/或网络控制器反馈确认信息,以表示该第二设备接收到了承载波束赋形训练所使用的信道信息的Grant帧。
302、第二设备在指定信道上与第一设备进行波束赋形训练。
在本发明实施例中,第二设备通过执行前述步骤301获取到了第一设备和第二设备进行波束赋形训练所使用的指定信道,则第二设备可以在指定信道上与第一设备进行波束赋形训练,当第二设备在指定信道上与第一设备进行波束赋形训练完成之后,可以得到对应于该指定信道的波束赋形训练结果。可以理解的是,第一设备在指定信道上与至少一个的第二设备进行波束赋形训练时,第一设备需要和第二设备进行数据包的发送与接收,第二设备也需要与第一设备进行数据包的发送与接收,则第一设备与第二设备可以在指定信道上对第一设备与第二设备的天线对进行波束赋形训练。需要说明的是,若第一设备的天线和第二设备的天线构成了多个天线对时,第一设备可以在指定信道上对第一设备和至少一个的第二设备的不同天线对进行波束赋形训练。
在本发明的一些实施例中,第一设备的一个天线和第二设备的一个天线构成一个天线对,步骤302第二设备在指定信道上与第一设备进行波束赋形训练,具体可以包括如下步骤:
G1、在SLS阶段中第二设备在指定信道上对第二设备与第一设备的天线对进行波束赋形训练,和在BRP阶段中第二设备在指定信道上对第二设备与第一设备的天线对进行波束赋形训练;或,
G2、在BRP阶段中第二设备在指定信道上对第二设备与第一设备的天线对进行波束赋形训练。
也就是说,在本发明的一些实施例中,第而设备在指定信道上与第一设备进行波束赋形训练可以指的是在SLS阶段对第一设备与第二设备的天线对进行波束赋形训练,并且在SLS阶段对第一设备与第二设备的天线对进行波束赋形训练之后,还可以在BRP阶段对第一设备与第二设备的天线对进行波束 赋形训练。在本发明的另一些实施例中,第二设备在指定信道上与第一设备进行波束赋形训练也可以指的是在BRP阶段对第一设备与第二设备的天线对进行波束赋形训练。第二设备在指定信道上对第一设备与第二设备的天线对进行波束赋形训练的具体实现方式不做限定。接下来分别对在SLS阶段和BRP阶段的波束赋形训练进行详细说明。
在本发明的一些实施例中,在本发明实施例中执行步骤G1的实现场景下,步骤G1在SLS阶段中第二设备在指定信道上对第二设备与第一设备的天线对进行波束赋形训练,具体可以包括如下步骤G11、G12、G13、G14,其中,各个步骤的具体实现过程说明如下。
G11、天线对包括第一设备的第一天线和第二设备的第二天线,第二设备通过第二天线接收第一设备发送的第一训练数据包,确定第一天线的发起者最优扇区编号。
其中,以第一设备的天线编号表示第一天线,第二设备的天线编号表示第二天线为例,该第一天线和第二天线构成一个天线对,第一设备通过第一天线在指定信道的所有扇区方向上分别发射第一训练数据包,每个扇区对应于第一设备的发射天线的一个特定的波束或者模式(即方向或权重),其中在第一训练数据包中包含扇区编号。第二设备作为响应者采用全向波束接收第一训练数据包,第二设备从接收到的第一训练数据包中找到信号质量最好的那个第一训练数据包,获得到第一天线的发起者最优扇区编号。
在本发明实施例中,第一设备可以有多种方式发送第一训练数据包,例如,第一设备在指定信道上按天线编号顺序在第一设备的所有第一天线的所有扇区方向上,连续发射第一训练数据包。在这种情况下,步骤G11第二设备通过第二天线接收第一设备发送的第一训练数据包,包括:
G111、第二设备通过第二天线在指定信道上连续接收第一训练数据包。
其中,第一设备可以采用集中式来发送第一训练数据包,第一设备可以获取到第一设备的所有第一天线与第二设备中的一个第二天线构成的不同天线对进行波束赋形训练所使用的信道资源,然后第一设备按照天线编号顺序在第一设备的所有第一天线的所有扇区方向上,连续发射第一训练数据包,则第二设备可以通过第二天线连续接收第一设备发送的第一训练数据包。第二设备采用集中式来接收第一训练数据包,当波束赋形训练的信道资源配置完成后,整 个波束赋形训练过程可以按照天线编号顺序完成,不需要额外的信令开销。
在本发明的另一些实施例中,第一设备可以有多种方式发送第一训练数据包,例如,第一设备配置使用指定信道进行波束赋形训练的第一设备的天线编号和至少一个的第二设备的天线编号,或第一设备从网络控制器获取到网络控制器配置的使用指定信道进行波束赋形训练的第一设备的天线编号和至少一个的第二设备的天线编号,第一设备在第一设备的第一天线的所有扇区方向上分别发射第一训练数据包,第一设备与至少一个的第二设备的一个天线对完成波束赋形训练之后,第一设备根据为第一设备和至少一个的第二设备配置的第一设备的天线编号和至少一个的第二设备的天线编号,对第一设备和至少一个的第二设备的其余天线对进行波束赋形训练。
在第一设备按照前述分布式发送第一训练数据包的情况下,步骤G11第二设备通过第二天线接收第一设备发送的第一训练数据包,包括:
G112、第二设备获取第一设备或网络控制器配置的使用指定信道进行波束赋形训练的第一设备的天线编号和第二设备的天线编号;
G113、第二设备通过第二天线在指定信道上接收第一训练数据包,当第二设备和第一设备的一个天线对完成波束赋形训练之后,第二设备根据为第二设备和第一设备配置的第一设备的天线编号和至少一个的第二设备的天线编号,对第二设备和第一设备的其余天线对进行波束赋形训练。
其中,第二设备可以采用分布式来接收第一训练数据包,第二设备可以获取到第一设备的天线编号与第二设备中的天线编号,第一设备的所有第一天线和第二设备的所有第二天线可以构成不同的天线对,第二设备采用分布式来接收第一训练数据包,即第二设备先在一个指定信道上对第一设备和第二设备的一个天线对进行波束赋形训练,当该天线对完成波束赋形训练之后,对第一设备和第二设备的其余天线对进行波束赋形训练。也就是说,在分布式接收第一训练数据包时,每个信道资源上每次只能用于第一设备和第二设备的一个天线的波束赋形训练,当完成对一个天线对的波束赋形训练后,再配置另一个天线对进行波束赋形训练时所使用的信道资源,再配置另一个天线对在该信道资源上进行波束赋形训练。本发明实施例中第二设备采用分布式进行波束赋形训练,在实现过程中可以更为灵活,第一设备作为波束赋形训练的发起者可以灵活的配置训练的时间以及天线对顺序。
G12、第二设备通过第二天线在指定信道的所有扇区方向上分别发射第二训练数据包,第二训练数据包包括:第一天线的发起者最优扇区编号。
其中,第二设备获得到第一天线的发起者最优扇区编号之后,第二设备可以将获得到第一天线的发起者最优扇区编号携带在第二训练数据包,然后通过第二天线在指定信道的所有扇区方向上分别发射第二训练数据包。第一设备通过第一天线在指定信道上接收第二设备通过第二天线发送的第二训练数据包,第一设备从接收到的所有第二训练数据包中找到信号质量最好的那个第二训练数据包,将其确定为第二天线的响应者最优扇区编号,并且,第一设备还可以从第二训练数据包中获取到第一天线的发起者最优扇区编号。
在本发明的一些实施例中,步骤G11第二设备通过第二天线接收第一设备发送的第一训练数据包之后,本发明实施例提供的波束赋形训练的方法除了执行步骤G12之外,还可以执行如下步骤:
第二设备对第二设备和第一设备之间绑定的多个信道的最优扇区进行测量,确定第一天线对应于绑定的多个信道中除指定信道以外的其它信道的发起者最优扇区编号,第二训练数据包还包括:第一天线对应于绑定的多个信道中除指定信道以外的其它信道的发起者最优扇区编号。
也就是说,若第二设备对指定信道的最优扇区进行测量,可以确定第一天线对应于指定信道的发起者最优扇区编号,为了提高测量效率,第二设备也可以对第二设备和第一设备之间绑定的多个信道的最优扇区进行测量,确定第一天线对应于绑定的多个信道的发起者最优扇区编号,则第二设备通过第二天线在指定信道上发送的第二训练数据包除了包括第一天线对应于指定信道的发起者最优扇区编号之外,该第二训练数据包还包括:第一天线对应于绑定的多个信道中除指定信道以外的其它信道的发起者最优扇区编号。第一设备通过接收第二设备发送的上述第二训练数据包,可以获取到第一天线在绑定的各个信道上的各自的发起者最优扇区编号。
进一步的,在本发明的另一些实施例中,第二设备在使用第二训练数据包指示第一天线对应于绑定的多个信道的发起者最优扇区编号时,第二设备可以采用多种指示方式,例如,第二设备发送的第二训练数据包,具体包括:第一天线的对应于绑定的多个信道中除指定信道以外的其它信道的发起者最优扇区编号,与对应于指定信道的发起者最优扇区编号之间是否相同或存在相差结 果的指示信息。则第一设备可以通过第二训练数据包中携带的是否相同或存在相差结果的指示信息确定第一天线对应于绑定的多个信道中每一个信道的发起者最优扇区编号。
在本发明的一些实施例中,步骤G12第二设备通过第二天线在指定信道的所有扇区方向上分别发射第二训练数据包,包括:
G121、第二设备按天线编号顺序在第二设备的各个第二天线的所有扇区方向上连续发射第二训练数据包,第二训练数据包包括:第一天线对应于第二设备的各个第二天线各自的发起者最优扇区编号。
其中,在前述实施例中,第二设备执行步骤G111,第二设备可以采用集中式来接收第一训练数据包,在这种实现方式下,第二设备通过测量可以确定第一天线对应于第二设备的各个第二天线各自的发起者最优扇区编号,然后第二设备可以采用集中式发送第二训练数据包,即第二设备通过各个第二天线按天线编号顺序发送第二训练数据包,第一设备可以确定对应于第一设备的第一天线与第二设备的各个第二天线各自的响应者最优扇区编号,以及从第二训练数据包中获取到第一天线对应于第二设备的各个第二天线各自的发起者最优扇区编号。
G13、第二设备接收第一设备在第一天线的发起者最优扇区编号对应的扇区上发送的SSW-Feedback消息,从SSW-Feedback消息获取到第二天线的响应者最优扇区编号。
其中,当第一设备从第二训练数据包中获取到第一天线的发起者最优扇区编号之后,第一设备在指定信道上,在第一天线的发起者最优扇区编号对应的扇区上发射SSW-FeedbaGk消息,在SSW-FeedbaGk消息中携带第二天线的响应者最优扇区编号。第二设备可以接收第一设备发送的SSW-Feedback消息,从SSW-Feedback消息获取到第二天线的响应者最优扇区编号。
在本发明的一些实施例中,步骤G13第二设备接收第一设备在第一天线的发起者最优扇区编号对应的扇区上发送的SSW-Feedback消息之后,本发明实施例提供的波束赋形训练的方法还可以包括如下步骤:
第二设备从SSW-Feedback消息获取到第二设备的各个第二天线各自的响应者最优扇区编号,和第二设备的各个第二天线各自的信噪比SNR。
其中,在前述实施例中,第二设备执行步骤G111和步骤G121,第二设 备可以采用集中式发送第二训练数据包,则第一设备可以采用集中式接收第二设备通过各个第二天线按照天线编号顺序发送的第二训练数据包,由前述实现场景可知,第一设备对第二设备通过各个第二天线发送的第二训练数据包进行测量之后,可以确定对应于第一设备的第一天线与第二设备的各个第二天线各自的响应者最优扇区编号,并得到第二设备的各个第二天线各自的SNR,第一设备可以在SSW-Feedback消息中携带第二设备的各个第二天线各自的响应者最优扇区编号,和第二设备的各个第二天线各自的SNR。
G14、第二设备在第二天线的响应者最优扇区编号对应的扇区上发射SSW-ACK消息。
其中,第一设备执行前述步骤G13之后,第二设备接收第一设备发送的扇区扫描反馈SSW-FeedbaGk消息,第二设备可以从SSW-FeedbaGk消息获取到第二天线的响应者最优扇区编号,接下来第二设备可以在第二天线的响应者最优扇区编号对应的扇区上向第一设备发射SSW-AGK消息,第一设备通过接收第二设备发送的SSW-AGK消息可以确定第二设备已经接收到SSW-FeedbaGk消息。
在本发明的一些实施例中,步骤G2在BRP阶段中第二设备在指定信道上对第二设备与第一设备的天线对进行波束赋形训练,包括:
G21、天线对包括第一设备的第一天线和第二设备的第二天线,第二设备通过第二天线在指定信道上与第一设备进行多扇区标识捕获MIDC;
其中,进行MIDC的指定信道通过如下方式确定:当BRP阶段处于SLS阶段之后时,第二设备和第一设备间的不同天线对进行波束赋形训练所使用的指定信道作为进行MIDC的指定信道,或,当BRP阶段不是在SLS阶段之后时,进行MIDC的指定信道的指示信息由DMG Beam Refinement element承载。
其中,第二设备在BRP阶段可以通过MIDC子阶段实现波束修正,即第二设备可以通过第二天线在指定信道上与第一设备的第一天线进行MIDC。BRP阶段处于SLS阶段之后意思是第二设备在执行SLS阶段之后就开始执行BRP阶段,在这种情况下,第二设备和第一设备进行波束赋形训练所使用的指定信道作为进行MIDC的指定信道。BRP阶段不是在SLS阶段之后意思是第二设备执行BRP阶段是独立进行的,即第二设备单独的执行BRP阶段,而可以不执行SLS阶段,在这种情况下,进行MIDC的指定信道的指示信息由 第一设备发射的DMG Beam Refinement element承载。
在本发明的一些实施例中,步骤302第二设备在指定信道上与第一设备进行波束赋形训练之后,本发明实施例提供的波束赋形训练的方法还可以包括如下步骤:
H1、当第二设备在指定信道上对第二设备与第一设备的天线对进行波束赋形训练完成时,第二设备在第二设备和第一设备绑定的多个信道中除指定信道以外的其它信道上,对第二设备与第一设备的天线对进行验证指定信道对应的波束赋形训练结果。
其中,步骤302中第二设备在指定信道上对第一设备与第二设备的天线对进行的波束赋形训练完成之后,可以得到指定信道对应的波束赋形训练结果,指定信道对应的波束赋形训练结果可以包括:在该指定信道上第一设备的第一天线的发起者最优扇区编号,和在该指定信道上第二设备的第二天线的响应者最优扇区编号。由于毫米波信道具有方向性,在频率上具有一致性的特点,即信号传播路径在不同频率上高度一致,因此需要在指定信道上完成波束赋形训练结果应用到其他信道上,为了防止上述应用造成的不匹配,本发明实施例中还可以进一步来验证在第一设备和第二设备绑定的多个信道中除指定信道以外的其它信道上,对指定信道对应的波束赋形训练结果进行验证,第二设备可以生成在BRP阶段得到的波束赋形训练结果是否适用于绑定的多个信道中除指定信道以外的其它信道的验证结果。
进一步的,本发明的一些实施例中,DMG Beam Refinement element,还用于指示在BRP阶段得到的波束赋形训练结果是否适用于绑定的多个信道中除指定信道以外的其它信道。其中,第一设备可以使用DMG Beam Refinement element中的保留比特位来用作BRP阶段的信道编号,以及使用预留比特位来指示BRP阶段得到波束赋形训练结果是否适用于上述指定信道以外的其他信道。
在本发明的一些实施例中,步骤H1第二设备在第二设备和第一设备绑定的多个信道中除指定信道以外的其它信道上,对第二设备与第一设备的天线对进行验证指定信道对应的波束赋形训练结果,具体可以包括如下步骤:
H11、天线对包括第一设备的第一天线和第二设备的第二天线,第二设备通过第二天线在绑定的多个信道中除指定信道以外的其它信道上,使用指定信 道对应的波束赋形训练结果发射BRP帧,以使第一设备接收BRP帧,并测量信噪比;
H12、第二设备接收第一设备在信噪比大于预置的信噪比门限时发送包括反馈确认的BRP帧。
其中,在验证指定信道对应的波束赋形训练结果时,可以采用第二设备发送BRP帧,第一设备来接收BRP帧并测量信噪比的方式,第一设备对测量得到的信噪比与信噪比门限进行判断,当信噪比大于预置的信噪比门限,第一设备向至少一个的第二设备发送包括反馈确认的BRP帧,以表示指定信道对应的波束赋形训练结果可以适用于第一设备和至少一个的第二设备绑定的多个信道中的其它信道,当信噪比小于或等于预置的信噪比门限时,说明指定信道对应的波束赋形训练结果不适用于第一设备和至少一个的第二设备绑定的多个信道中的其它信道,因此第一设备和第二设备需要在指定信道上重新进行波束赋形训练,重新生成指定信道对应的波束赋形训练结果。
在本发明的另一些实施例中,步骤H1第二设备在第二设备和第一设备绑定的多个信道中除指定信道以外的其它信道上,对第二设备与第一设备的天线对进行验证指定信道对应的波束赋形训练结果,具体可以包括如下步骤:
H13、当天线对包括第一设备的第一天线和第二设备的第二天线时,第二设备通过第二天线在绑定的多个信道中除指定信道以外的其它信道上,接收第一设备使用指定信道对应的波束赋形训练结果发送的BRP帧,测量信噪比;
H14、当信噪比大于预置的信噪比门限,第二设备向第一设备发送包括反馈确认的BRP帧。
其中,步骤H11和步骤H12描述了验证指定信道对应的波束赋形训练结果的一种方式,本发明的一些实施例中还可以采用步骤H13和步骤H14的方式来验证指定信道对应的波束赋形训练结果。在步骤H13和步骤H14中,在验证指定信道对应的波束赋形训练结果时,可以采用第一设备发送BRP帧,第二设备来接收BRP帧并测量信噪比的方式,第二设备对测量得到的信噪比与信噪比门限进行判断,当信噪比大于预置的信噪比门限,第二设备向第一设备发送包括反馈确认的BRP帧,以表示指定信道对应的波束赋形训练结果可以适用于第一设备和第二设备绑定的多个信道中的其它信道,当信噪比小于或等于预置的信噪比门限时,说明指定信道对应的波束赋形训练结果不适用于第 一设备和第二设备绑定的多个信道中的其它信道,因此第一设备和第二设备需要在指定信道上重新进行波束赋形训练,重新生成指定信道对应的波束赋形训练结果。
通过前述实施例对本发明实施例提供的波束赋形训练的方法可知,第二设备可以首先获取第二设备和第一设备进行波束赋形训练所使用的信道信息,该信道信息包括:第二设备和第一设备进行波束赋形训练所使用的指定信道,同样的,第一设备可以获取到到第一设备和第二设备进行波束赋形训练所使用的信道信息。第一设备和第二设备可以在信道信息中指示的指定信道上进行波束赋形训练。本发明实施例中,第一设备可以在预先配置的指定信道上同时与多个第二设备进行波束赋形训练,因此能够有效的降低波束赋形训练所需的时间。
为便于更好的理解和实施本发明实施例的上述方案,下面举例相应的应用场景来进行具体说明。
本发明实施例主要针对作为发起者和响应者的STA都具有信道绑定(英文名称:channel bonding)功能的系统。在60GHz频段,会划分出多条信道,譬如在IEEE 802.11ad中,定义了4条信道,每条信道宽度为2.16GHz,在IEEE 802.11ad系统中,收发双方只能工作在其中一条信道上,而在IEEE 802.11ay中,确定将引入信道绑定技术,即收发双方可以绑定多个信道,使用多条绑定信道进行信息的发送和接收。本发明实施例中,波束赋形训练的发起者(以下简称为发起者)可以配置波束赋形训练的响应者(以下简称为响应者)在这些绑定的信道中的指定信道上完成波束赋形训练,也可以由PCP或AP配置波束赋形训练的发起者和响应者在这些绑定的信道中的指定信道上完成波束赋形训练。这样,波束赋形训练的发起者可以利用多个信道同时完成与多个响应者完成波束赋形训练过程,从而有效的降低波束赋形训练所需的时间。
本发明实施例中可以工作在毫米波频段并同时采用MU-MIMO和信道绑定技术的通信系统,本发明实施例中所述STA都能够支持信道绑定。例如前述的图1所示,是一个以2用户MU-MIMO和绑定2个信道时的场景示意图。系统需要在STA1与STA2、STA1与STA3之间在C1和C2信道上完成波束赋形训练。接下来以本发明实施例涉及的发起者和响应者为STA为例进行详细 说明,该STA可以为包括带PCP/AP功能的STA。如图4所示,本发明实施例提供的发起者和响应者实现波束赋形训练的方法,可以包括如下步骤一、步骤二、步骤三和步骤四。接下来对各个步骤进行详细说明。
步骤一:各个STA完成入网,并且完成波束赋形能力信息的交互,上述波束赋形能力信息包括但不限于以下内容:各个STA是否支持信道绑定,支持的信道和信道带宽,支持的天线个数等信息。
其中,入网具体过程如下:其它STA在主信道上收听由具有PCP/AP能力的STA发射的信标,该信标中包含其它STA接入到网络所需的信息,上述STA接收到信标(英文名称:Beacon)后,向具有PCP/AP能力的STA发送确认信息,即可以完成接入。需要说明的是,具有PCP/AP能力的STA发射的信标以及其它STA发射的确认信息中包含各自是否支持信道绑定,支持的信道和信道带宽等信息。
步骤二:发起者和响应者获取到波束赋形训练所使用的信道信息。
以发起者配置波束赋形训练所使用的信道信息为例,具体配置过程如下:发起者发送信标帧时,将其中的扩展规划元素(英文名称:Extended Schedule element)中的波束赋形控制(英文名称:Beamforming control)中的预留比特位设置成波束赋形训练所使用的信道的编号。对于不同响应者,配置不同的信道编号。
为了详细说明为不同的响应者配置相应的信道编号,以如下的系统为例:系统包含1个配置2根天线的发起者,2个配置2根天线的响应者,发起者和响应者分别进行了2信道捆绑。发起者的2根天线分别为:天线1和天线2,第1响应者的2根天线分别为:天线3和天线4,第2响应者的2根天线分别为:天线5和天线6。波束赋形训练需要将发起者的天线1(例如用I-A1表示)的模式(即天线权重矢量(英文全称:Antenna Weight Vector,英文简称:AWV))分别与第1响应者的天线3和天线4(分别用R-A11和R-A12表示)和第2响应者的天线5和天线6(分别用R-A21和R-A22表示)的模式进行对齐。发起者的天线2(用I-A2表示)的模式分别与第1响应者的天线3和天线4(分别用R-A11和R-A12表示)和第2响应者的天线5和天线6(分别用R-A21和R-A22表示)的模式对齐。如下所示的表1和表2,分别给出了两种具体配置,需要说明的是,这两种配置只是为了说明,本发明实施例不限制具体配置 方法。
表1:多信道波束赋形训练配置方案一
Figure PCTCN2015099414-appb-000001
表2:多信道波束赋形训练配置方案二
Figure PCTCN2015099414-appb-000002
需要说明的是,发起者和响应者可以基于不同的模式来传输波束赋形训练所使用的信道信息。例如,在基于调度传输模式下,发起者和各个响应者接收网络控制器发送的Beacon帧,在后续的波束赋形训练过程中,使用Beacon帧中发起者配置的指定信道与发起者进行波束赋形训练,这里需要注意的是,当发起者设备具有PCP或AP功能时,网络控制器与发起者可以是同一个实体。在基于竞争传输模式下,在完成资源竞争后,发起者发送授权(英文名称:Grant)帧给不同响应者,在Grant帧中的Beamforming control中的预留比特位设置成波束赋形训练所使用的信道的编号,同样的,对于不同的响应者,配 置不同的信道编号。当响应者支持Grant ACK帧时,应该在发送Grant ACK帧中的Beamforming control中的预留比特位设置成发起者配置的用于波束赋形训练的信道的编号。
步骤三,发起者和响应者完成扇区级波束对齐。
发起者和响应者在步骤二(以表2为例)所配置的指定信道上进行波束赋形训练过程。如图5所示,是根据表2配置进行多信道波束赋形训练的示意图,在图5中,发起者STA1配置STA2在信道C1上进行波束赋形训练,配置STA3在信道C2上进行波束赋形训练。
在发起者和响应者在指定信道上进行波束赋形训练具体可以包括:在SLS阶段的波束赋形训练和在BRP阶段的波束赋形训练,其中,如图6-a和图6-b所示,为本发明实施例提供的发起者和响应者在SLS阶段的波束赋形训练示意图,图6-a和图6-b中多信道波束赋形训练过程中的扇区级扫描SLS,对应于表2的配置。其中6-a中采用分布式的波束赋形训练方式,图6-b中采用集中式的波束赋形训练方式。其中白色的资源块代表信道C1,黑色的资源块代表信道C2,STA1为发起者,STA2和STA3分别为第1响应者和第2响应者。如图7所示,为本发明实施例提供的发起者和响应者在BRP阶段的波束赋形训练示意图,图7表示的是多信道波束赋形训练过程中的波束细化BRP阶段,对应于表2的配置。其中白色的资源块代表信道C1,黑色的资源块代表信道C2,STA1为发起者,STA2和STA3分别为第1响应者和第2响应者。另外需要强调的是:图6-a、图6-b和图7中是为了描述不同STA的不同天线对进行SLS和BRP阶段的波束训练时所占用的时间周期和信道资源,而在实际中,不同天线对之间的波束赋形训练过程所需的时间并不一定完全相同,如图8-a和图8-b所示,为本发明实施例中提供的发起者和响应者进行波束赋形训练的信道资源配置示意图,其中,图8-a和图8-b可以为实际的多信道波束赋形训练流程,图8-a对应于图6-a,图8-b对应于图6-b。
具体的,在SLS阶段:
第1步:发起者在所有信道和所有的扇区方向上分别发射用于训练的数据包,每个扇区对应于发起者的发射天线的一个特定的波束或者模式(即方向或权重),其中数据包中包含扇区编号,响应者采用全向波束接收训练数据包,响应者从接收到的训练数据包中找到质量最好的那个,获得对应的扇区编号 Initiator_Sector_ID,这个扇区编号代表了发起者对响应者发射时最优的扇区。这里响应者可以只在发起者指定的信道上接收相应的训练数据包,获得该信道上最优的扇区,也可以在所有的信道上接收相应的训练数据包,获得每个信道上最优的扇区,本发明实施例对上述两种方式不做限定。
第2步:响应者在发起者指定的信道上,在所有的扇区方向上分别发射用于训练的数据包,每个扇区对应于响应者的发射天线的一个特定的波束或者模式(即方向或权重),其中数据包中包含响应者发射当前数据包所使用的扇区编号以及发起者最优扇区Initiator_Sector_ID,这里需要注意的是,当响应者在第1步中对多个信道的最优扇区都进行了测量,并且获得多个Initiator_Sector_ID,响应者可以将这些扇区编号经过一定处理后包含在上述响应者发射的数据包中,这里上述对扇区编号的处理可以有多种方法。例如:对发起者指定的信道上测量得到的Initiator_Sector_ID1直接包含在数据包中,对于其他信道上得到的Initiator_Sector_ID,可以比较是否与Initiator_Sector_ID1相同,用1bit反馈比较结果是否相同。也可以反馈当前信道的Initiator_Sector_ID与Initiator_Sector_ID1的差值,将差分结果编码包含到数据包中,编码可以采用查表的方式,如下表3所示:
表3:Initiator_Sector_ID编码表
Figure PCTCN2015099414-appb-000003
发起者在指定信道上,采用全向波束接收训练数据包,发起者从接收到的训练数据包中找到质量最好的那个训练数据包,从中可以获得其为响应者发射时最优的扇区编号Initiator_Sector_ID,以及响应者对发起者发射时最优的扇区 编号Responder_Sector_ID。
第3步:发起者在扇区Initiator_Sector_ID上发射扇区扫描反馈(即SSW-Feedback),将响应者的最优扇区编号Responder_Sector_ID反馈给响应者。
第4步:当响应者接收到其最优扇区编号Responder_Sector_ID后,则在扇区Responder_Sector_ID上发射一个扇区扫描确认。
需要说明的是:对于不同天线对而言,上述过程存在两种不同的模式:分布式(图6-a)和集中式(图6-b)。就分布式而言,不同天线对之间只需要重复上述第1步至第4步即可完成相应的SLS。而对于集中式而言,在第1步中,发起者在两个指定信道上按顺序在第一和第二天线的所有扇区上发射用于波束赋形训练的数据包,第一响应者的2个天线在信道1、第二响应者在信道2上同时采用全向波束接收训练数据包,假设第一响应者获得对应于其2个不同天线(R-A11和R-A12)的2个扇区编号分别为Initiator_Sector_ID1和Initiator_Sector_ID2。在第2步中,第1响应者则在信道1上按顺序分别在天线3和天线4上分别在每个扇区上发射用于训练的数据包,其中天线3发射的数据包中包含Initiator_Sector_ID1;天线4发射的数据包中包含Initiator_Sector_ID2;第2响应者在信道2上进行相似步骤。第3步中,可以沿用前述的发射扇区扫描反馈(SSW-Feedback),发起者在信道1上在扇区Initiator_Sector_ID1或者Initiator_Sector_ID2上发射两个扇区扫描反馈(SSW-Feedback),将第1响应者的天线3和天线4的最优扇区编号Responder_Sector_ID1和Responder_Sector_ID2反馈给第1响应者。在信道2上将第2响应者的天线5和天线6的最优扇区编号反馈给第2响应者。也可以对SSW-Feedback帧进行重新设计。具体的,在SSW-Feedback帧中的SSW Feedback信令中,在原始的前17个比特位上放置响应者的天线测试结果,用7位预留比特位中的前3比特放置Responder_Sector_ID2-Responder_Sector_ID1的处理结果(处理方法如表3),用后4比特放置SNR2-SNR1的处理结果(处理如表4)。第4步,当响应者接收到其最优扇区编号Responder_Sector_ID1和Responder_Sector_ID2后,则在扇区Responder_Sector_ID1或者Responder_Sector_ID2上发射一个扇区扫描确认。
上述分布式和集中式是对顺序的调整,比较而言,分布式在波束训练上更 为灵活,发起者与响应者可以灵活的在波束训练周期内进行特定天线对的波束训练。而集中式则相反,当波束训练的信道资源配置完成后,整个训练过程可以按照天线编号,顺序完成,不需要额外的信令开销。
表4:SNR编码表
SNR2-SNR1 输出比特
0 0000
1 0001
-1 0010
2 0011
-2 0100
3 0101
-3 0110
4 0111
-4 1000
5 1001
-5 1010
6 1011
-6 1100
7 1101
-7 1110
大于7或者小于-7 1111
在BRP阶段,发起者和不同的响应者分别在指定信道上进行多扇区ID捕获(即MIDC)子阶段来实现波束修正。对于信道的位置的获得分为两种情况:
当BRP阶段紧跟在SLS阶段后面,则沿用步骤二中得到Beacon帧中的Extended Schedule element中的Beamforming control中用于预留比特位上的信道编号(基于调度的传输模式时)。或者Grant帧中的Beamforming control中的预留比特位上的信道编号,并且当响应者支持Grant ACK帧时,上述的信道编号已经通过在Grant ACK帧中的Beamforming control中的预留比特位设置成发起者配置的用于波束赋形训练的信道编号的方式被响应者确认。
当BRP阶段单独进行时,发起者在BRP建立阶段,使用DMG Beam Refinement element中的预留比特位来用作BRP阶段的信道编号,和/或使用Directional multi-gigabit中的预留比特位来指示BRP阶段得到对齐结果是否适用于上述指定的信道以外的其他信道。
步骤四:对步骤三完成的波束赋形训练结果在其他信道上进行验证。
由于毫米波信道具有方向性在频率上具有一致性的特点,即信号传播路径在不同频率上高度一致,可以将步骤三中完成的在指定信道上完成的波束赋形训练结果应用到其他信道上,为了防止上述应用造成的不匹配,本发明进一步设计了一种验证方法。使用DMG Beam Refinement element中的保留比特位来用作BRP阶段的信道编号,并且在其中的FBCK-REQ中的SNR Requested比特位设为1,FBCK-TYPE中的Nbeam的第3到5个比特位设为001,在随后,发起者和响应者将在该特定的信道上使用步骤三得到的天线模式进行发射和接收,得到相应的信噪比(即SNR),当该SNR大于一定门限时(这里门限为预设的),发起者将发送一个带反馈的BRP帧确认,否则发起者将配置响应者重新在该信道上进行步骤三中的波束赋形训练过程。上述确认过程中的信道配置方法与步骤二相对应,为了便于说明,以表1的配置方法为例,说明具体如何配置,见表5。通过前述步骤已经完成了I-A1与R-A11、I-A1与R-A12、I-A1与R-A21、I-A1与R-A22在信道C1上,I-A2与R-A21、I-A2与R-A22、I-A2与R-A11、I-A2与R-A12在信道C2上的波束赋形训练,获得了收发两端的天线模式,通过该配置,将验证上述天线模式是否适用于I-A2与R-A21、I-A2与R-A22、I-A2与R-A11、I-A2与R-A12在信道C1上,I-A1与R-A11、I-A1与R-A12、I-A1与R-A21、I-A1与R-A22在信道C2上的收发。
表5:多信道波束赋形训练中的验证方法(对应表1中所示的步骤二的配置)
Figure PCTCN2015099414-appb-000004
Figure PCTCN2015099414-appb-000005
相比较本发明实施例通过发起端配置特定的波束赋形训练的信道资源,利用IEEE 802.11ay引入的信道绑定的功能,在多个信道资源上同时进行波束赋形训练过程,能够有效地降低波束赋形训练所需的时间。仍然以步骤二中的系统为例:在这个系统中,需要分别将I-A1与R-A11、I-A1与R-A12、I-A1与R-A21、I-A1与R-A22、I-A2与R-A21、I-A2与R-A22、I-A2与R-A11、I-A2与R-A12这8对天线间的波束赋形训练,目前11ad在波束赋形训练过程中,只能配置在不同的波束赋形训练周期中做天线选择,但是对于具体使用哪个信道没有规定,若11ay沿用此配置,则完成上述8对天线的波束赋形训练,则需要8个时间周期,而采用本发明的方法,则只需要4个时间周期。本发明在硬件上,要求系统中STA配置多条射频链,具备信道绑定功能,能够在多信道上同时发送和接收的能力。相应的,在软件上,在生成DMG Beacon帧的Extended Schedule element中的Beamforming Control和Grant/Grant ACK帧中的Beamforming Control时,将预留比特位配置成特定的信道编号。
前述实施例对本发明实施例提供的波束赋形训练的方法进行了详细说明,接下来请参阅图9所示,本发明一个实施例提供的波束赋形训练的方法,可以包括:
901、网络控制器接收作为波束赋形训练发起者的至少一个第一设备发送的波束赋形训练请求信息。
其中,波束赋形训练请求信息包括:至少一个第一设备指定的作为波束赋形训练响应者的至少一个第二设备,和请求的与至少一个第二设备进行波束赋形训练所使用的信道信息。
在本发明实施例中,网络控制器可以是配置在第一设备上的PCP或AP,也可以是配置在第二设备上的的PCP或AP,另外网络控制器还可以是一个独立的控制设备,用于实现对波束赋形训练所使用的信道资源的具体配置,网络控制器的具体实现方式不做限定。
波束赋形训练发起者为第一设备,第一设备的个数可以一个或者多个,具体此处不做限定。第一设备作为发起者时,至少一个第一设备向网络控制器发 送波束赋形训练请求信息,其中,每个可以指定作为波束赋形训练响应者的至少一个第二设备,第一设备可以通过波束赋形训练请求信息携带请求的与至少一个第二设备进行波束赋形训练所使用的信道信息。
在本发明的一些实施例中,波束赋形训练请求信息还包括:波束赋形训练控制(英文名称:BF Control)字段,其中,
BF Control字段用于指示如下信息中的至少一个:请求用于波束赋形训练的信道带宽、请求用于波束赋形训练的信道编号、请求用于波束赋形训练的信道是否包含主信道。
其中,至少一个第一设备向网络控制器发送的BF Control字段可以包括:第一设备请求的信道带宽、第一设备请求的信道编号和第一设备请求的指定信道是否包括波束赋形训练的主信道。BF Control字段具体包括上述信息的一种或两种或全部,具体取决于应用场景,此处不做限定。
902、网络控制器根据至少一个第一设备发送的波束赋形训练请求信息,为每一对波束赋形训练设备对配置波束赋形训练所使用的信道信息。
其中,信道信息包括:至少一个第一设备和至少一个第二设备进行波束赋形训练所使用的K个指定信道,K为正整数,其中,第一设备和第一设备指定的作为波束赋形训练响应者的一个第二设备构成一个波束赋形训练设备对。
网络控制器接收到至少一个第一设备发送的波束赋形训练请求信息之后,网络控制器为每一对波束赋形训练设备对配置波束赋形训练所使用的信道信息,记波束赋形训练设备对的个数为K对,则网络控制器配置的指定信道可以是K个指定信道。例如,第一设备的个数为M个,第二设备的个数为N个,则K=min{M,N},网络控制器配置的指定信道可以是K个不同的指定信道。
具体的,步骤902网络控制器将配置的波束赋形训练所使用的信道信息分别发送给至少一个第一设备和至少一个第二设备,可以包括如下步骤:
网络控制器分别分配对应于K个指定信道的SP;
网络控制器将分配的对应于各个指定信道的SP分配信息包含于定向的多吉比特(英文简称:DMG)信标帧或通告(英文名称:Announce)帧内,向至少一个第一设备和至少一个第二设备发送。
其中,网络控制器分别分配K个指定信道的SP,网络控制器发送给第一设备和第二设备的DMG信标帧或通告帧包含有上述的SP分配信息。具体的, 网络控制器分别分配对应于K个指定信道的SP,包括:
网络控制器分别分配对应于K个指定信道的在时间上重叠或者在时间上不重叠的SP,若SP在时间上有重叠时,分配给不同的波束赋形训练设备对的信道编号不相同。
在具体实现时,网络控制器配置为K个指定信道配置的SP可以在时间上重叠,也可以在时间上不重叠,分配给不同的波束赋形训练设备对的信道编号不相同,以使K个指定信道可以同时进行波束赋形训练。
在本发明的一些实施例中,网络控制器在调度一个第一设备或一个第二设备与多个对等设备同时进行波束赋形训练时,网络控制器确定一个第一设备或一个第二设备具有的天线个数大于或等于同时与一个第一设备或一个第二设备进行波束赋形训练的多个对等设备的设备个数之和,以使所述一个第一设备能够使用至少一个天线,与所述多个对等设备中的每一个对等设备同时进行波束赋形训练;其中,对等设备为与第一设备或第二设备进行波束赋形训练的设备。在一个波束赋形训练设备对中包括一个第一设备和一个第二设备,则第一设备和第二设备互为对等设备,为了实现对所有的天线对进行波束赋形训练,一个第一设备具有的天线个数大于或等于同时与一个第一设备进行波束赋形训练的多个对等设备(即第二设备)的设备个数之和,一个第二设备具有的天线个数大于或等于同时与一个第二设备进行波束赋形训练的多个对等设备(即第一设备)的设备个数之和。需要说明的是,天线个数既可以指天线阵列(英文名称:Antenna Array)的个数,也可以指采取了不同极化方式的天线阵列的极化方式个数,例如一个采用了双极化的天线阵列表示的天线个数为2。
903、网络控制器将配置的波束赋形训练所使用的信道信息分别发送给至少一个第一设备和至少一个第二设备。
当网络控制器执行步骤902之后,网络控制器可以将配置的信道信息发送给至少一个第一设备和至少一个第二设备,例如,网络控制器可以采用广播的方式来发送配置好的波束赋形训练所使用的信道信息。
通过前述实施例对本发明实施例的举例说明可知,在波束赋形训练发起者和波束赋形训练响应者的设备个数都是至少一个时,网络控制器可以按照波束赋形训练设备对进行信道信息的配置,当第一设备和第二设备接收到网络控制器配置的信道信息之后,可以结合本发明前述实施例中描述的波束赋形训练方 法完成波束赋形训练。第一设备可以在预先配置的指定信道上同时与多个第二设备进行波束赋形训练,因此能够有效的降低波束赋形训练所需的时间。
接下来以另一实施例对本发明实施例提供的波束赋形训练的方法进行说明。AP或PCP将K对(K>1)希望进行波束赋形训练的STA分配至K个不重叠信道进行波束赋形训练,所述波束赋形训练可以为SLS或BRP阶段的训练,并且K对STA之间的波束赋形训练可以在时间上重叠。
假设有M个(M>1)发起者STA,每个发起者一次可以请求与至少一个响应者STA进行波束赋形训练。假设M个(M>1)发起者STA请求与N个响应者STA进行波束赋形训练,考虑到不同的发起者STA可能请求与同一个响应者STA进行波束赋形训练,因而M可以小于、等于或大于N,且有K=min{M,N},即K取值为M,N中的较小值。
情况一:当M<N时,存在一个发起者STA与多个响应者STA同时进行波束赋形训练的情况,这种情况属于前述实施例的解决范围,AP或PCP在分配SP时需要确定所述发起者STA或者响应者STA具有的天线个数,大于或等于与所述发起者STA/响应者STA同时进行波束赋形训练的多个对等STA(英文名称:peer STA)的STA个数之和,以使所述发起者STA/响应者STA能够用至少一个天线与一个所述对等STA进行波束赋形训练,从而能够同时与所述多个对等STA进行波束赋形训练。本实施例中主要描述针对M≥N的情况。
情况二:当M=N时,按照下述步骤将不同的M对的STA分别分配至M个信道。
步骤1:STA通过AP或PCP通告的BSS内所有STA的能力信息,识别其它STA的波束赋形训练能力,所述波束赋形训练能力包括:支持的发送天线/接收天线个数,支持进行波束赋形训练的信道编号,波束赋形训练能采用的MCS等。其中支持的发送天线个数可以携带于表示STA能力的能力元素中。
步骤2:AP或PCP接收到M个(M>1)发起者STA发送的波束赋形训练请求信息,所述波束赋形训练请求信息指定了M个不同的响应者STA。
所述波束赋形训练请求信息为发起者STA向AP或PCP发送的信道接入时间请求信息,即请求AP或PCP为发起者STA和响应者STA分配用于波束赋形训练的信道接入时间。例如,所述SP请求信息具体可以为SPR帧,以请 求AP或PCP为发起方STA和响应方STA分配用于波束赋形训练的SP。
可选地,所述波束赋形训练请求信息在BF Control字段现有内容的基础上,还可使用BF Control字段的保留字段包含新的“BF信道带宽”字段,用于指示所请求进行波束赋形训练的信道带宽,“BF信道带宽”字段设置为0时,表示发起者STA不选择确定的BF信道带宽,设置为1,2,3,…时,表示发起者STA期望在带宽为2.16GHz,4.32GHz,6.48GHz,…的信道上进行波束赋形训练。
可选地,波束赋形训练请求信息除了携带所述请求进行波束赋形训练的信道带宽之外,还可以包含一个是否包含主信道(英文名称:Primary Channel)的指示信息,该指示信息可以用BF Control字段的保留字段中增加新的“包含主信道”字段,当“包含主信道”字段设置为1时,表示发起者STA要求在包含主信道的,由“BF信道带宽”指示的信道上进行波束赋形训练,否则当“包含主信道”字段设置为0时,表示发起者STA对于请求的波束赋形训练,不要求必须包含主信道,而只要求在满足“BF信道带宽”字段指示的带宽的信道上进行波束赋形训练即可。
步骤3:AP或PCP根据接收到的M个发起者STA发送的波束赋形训练请求信息,以及发起者STA和响应者STA在各自的STA能力信息中指示的支持波束赋形训练的信道编号,为M对不同的STA在M个不重叠的信道上分别分配用于波束赋形训练的SP。所述进行波束赋形训练的信道分配结果通过扩展调度元素(即Extended Schedule element)的保留字段向M对STA广播。
例如图10所示,图10为两对STA在不同的信道上同时进行波束赋形训练的示意图。STA1和STA3作为发起者STA,分别希望与STA2和STA4进行波束赋形训练,且STA1和STA2都支持在信道C1上进行赋束赋形训练,STA3和STA4都支持在信道C2上进行赋束赋形训练,则AP或PCP可以为STA1和STA2在信道C1上分配SP1,为STA3和STA4在信道C2上分配SP2。其中SP1和SP2可以在时间上全部或部分重叠,即SP1和SP2的开端或结束时间可以相同,也可以不同,如图11所示。图11为三对STA在不同的信道上同时进行波束赋形训练的示意图。
步骤4:M对STA接收到AP或PCP发出的扩展调度元素后,按照其中包含的波束赋形训练的信道编号信息,在所分配的SP 1,SP 2,…,SP M期 间切换至各自的信道,进行波束赋形训练。如果一个发起者STA或者响应者STA在一个SP时间段内只与一个STA进行波束赋形训练,则发起者STA或响应者STA都应固定于所分配的唯一信道上进行所有发送/接收天线的波束赋形训练。
可选地,一对STA在一个信道(例如信道C1)上获得的赋束赋形训练结果(最优Sector ID或者AWV),可以应用于其它信道(例如信道C2)。
情况三:当M>N时,存在多个发起者STA与同一个响应者STA同时进行波束赋形训练的情况。如果需要同时与多个发起者STA进行波束赋形训练的响应者STA具备多个发送天线和多个接收天线,则可以使响应者STA同时在多个信道上与多个发起者STA进行波束赋形训练,这种情况的解决方案与前述实施例相似。如图12所示,为多个发起者STA与一个响应者STA在不同的信道上同时进行波束赋形训练的示意图。
通过前述举例说明可知,本发明实施例中将原来在同一个信道(例如主信道)串行进行波束赋形训练的方式,改进为利用多个不同信道并行进行训练的方式,可以大幅节省用于波束赋形训练的时间开销。例如,如果STA1和STA2完成波束赋形训练的时间为T1,STA3和STA4完成波束赋形训练的时间为T2,两对STA同时在不同的信道上进行波束赋形训练,则可以将波束赋形总时间由(T1+T2)缩小为Max(T1,T2),为主信道节省了时间资源。
发起者STA在发起波束赋形训练时,向AP或PCP发送的SP请求帧(SPR帧)的BF Control字段里包含波束赋形训练信道带宽“BF信道带宽”字段,和/或用于指示是否在包含主信道的信道上进行波束赋形训练的“包含主信道”字段,和/或用于指示请求的波束赋形信道编号的指定信道。发起者STA发送“BF信道带宽”字段时,表明其同意AP或PCP分其分配符合“BF信道带宽”字段指示的信道带宽的任意信道。“包含主信道”字段指示发起者STA在请求AP或PCP在分配指定的波束赋形训练信道时是否必须包含主信道。发起者STA在请求AP或PCP在分配指定的波束赋形训练信道时,如果不需要包含主信道,则AP或PCP可以将所述发起者STA分配到主信道以外的其它信道上进行波束赋形训练,有助于节省主信道的时间资源。AP或PCP在生成DMG Beacon帧或通告帧的Extended Schedule element中的Beamforming Control时,将预留比特位配置成特定的信道编号,或者,利用Extended Schedule element 中的分配控制(Allocation Control)字段内的分配类型(Allocation Type)字段,通过在分配SP时指示所分配的SP所在的信道编号,从而完成为波束赋形训练分配指定的信道。
本发明实施例适用于任何支持MIMO和多信道绑定、并且收发两端有多条射频链能够在多个信道上同时收发的毫米波系统,并且都能够有效的降低波束赋形训练时间,提高系统性能。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
为便于更好的实施本发明实施例的上述方案,下面还提供用于实施上述方案的相关装置。
请参阅图13所示,本发明实施例提供的一种波束赋形训练设备1300,所述波束赋形训练设备1300具体为波束赋形训练发起者的第一设备,所述波束赋形训练设备1300,包括:获取模块1301和波束赋形训练模块1302,其中,
获取模块1301,用于获取所述第一设备和至少一个的第二设备进行波束赋形训练所使用的信道信息,其中,所述信道信息包括:所述第一设备和所述至少一个的第二设备进行波束赋形训练所使用的至少一个指定信道;
波束赋形训练模块1302,用于在所述指定信道上与所述至少一个的第二设备进行波束赋形训练。
在本发明的一些实施例中,获取模块1301,具体用于当所述第一设备作为个人基本服务集合控制点PCP或接入点AP时,为所述第一设备与所述至少一个的第二设备配置波束赋形训练所使用的信道信息;或,接收网络控制器为所述第一设备和所述至少一个的第二设备配置的波束赋形训练所使用的信道信息,所述网络控制器包括:PCP或AP。
在本发明的一些实施例中,获取模块1301,具体用于接收网络控制器为所述第一设备和所述至少一个的第二设备配置的波束赋形训练所使用的信道信息之前,向所述网络控制器发送服务期SP请求信息,所述SP请求信息包含如下信息中的至少一种:所述第一设备请求的波束赋形训练信道带宽、所述 第一设备请求的用于波束赋形训练的指定信道、是否包含主信道的指示信息,所述波束赋形训练所使用的信道信息包含于所述网络控制器发送的定向的多吉比特DMG信标Beacon帧或通告Announce帧;或,当所述第一设备和所述至少一个的第二设备处于基于竞争的接入期CBAP时,所述波束赋形训练所使用的信道信息包含于所述第一设备发送的授权Grant帧。
在本发明的一些实施例中,波束赋形训练设备,还包括:收发模块,用于当所述第二设备支持授权确认Grant ACK帧时,接收所述第二设备发送的所述Grant ACK帧,所述Grant ACK帧携带所述第二设备接收到所述波束赋形训练所使用的信道信息的确认信息。
在本发明的一些实施例中,波束赋形训练模块,具体用于在扇区级扫描SLS阶段中在指定信道上对所述第一设备与所述至少一个的第二设备的天线对进行波束赋形训练,和在波束修正协议BRP阶段在指定信道上对所述第一设备与所述至少一个的第二设备的天线对进行波束赋形训练;或,在BRP阶段在指定信道上对所述第一设备与所述至少一个的第二设备的天线对进行波束赋形训练。
在本发明的一些实施例中,波束赋形训练模块1302,具体用于所述天线对包括第一设备的第一天线和第二设备的第二天线,通过所述第一天线在指定信道的所有扇区方向上分别发射第一训练数据包;通过所述第一天线在指定信道上接收所述第二设备通过所述第二天线发送的第二训练数据包,确定所述第二天线的响应者最优扇区编号,以及从所述第二训练数据包中获取到所述第一天线的发起者最优扇区编号;在指定信道上,在所述第一天线的发起者最优扇区编号对应的扇区上发射扇区扫描反馈SSW-Feedback消息,所述SSW-Feedback消息包括:所述第二天线的响应者最优扇区编号;在指定信道上,在所述第一天线上接收所述第二设备通过所述第二天线发射的扇区扫描确认SSW-ACK消息。
在本发明的一些实施例中,波束赋形训练模块1302,具体用于在指定信道上按天线编号顺序在所述第一设备的所有第一天线的所有扇区方向上,连续发射第一训练数据包。
在本发明的一些实施例中,波束赋形训练模块1302,具体用于配置使用所述指定信道进行波束赋形训练的所述第一设备的天线编号和至少一个的第 二设备的天线编号,或从网络控制器获取到所述网络控制器配置的使用所述指定信道进行波束赋形训练的所述第一设备的天线编号和至少一个的第二设备的天线编号;在所述第一设备的第一天线的所有扇区方向上分别发射第一训练数据包,所述第一设备与所述至少一个的第二设备的一个天线对完成波束赋形训练之后,根据为所述第一设备和所述至少一个的第二设备配置的所述第一设备的天线编号和所述至少一个的第二设备的天线编号,对所述第一设备和所述至少一个的第二设备的其余天线对进行波束赋形训练。
在本发明的一些实施例中,波束赋形训练模块1302,具体用于所述天线对包括第一设备的第一天线和至少一个的第二设备的第二天线,通过所述第一天线在指定信道上与所述至少一个第二设备的第二天线进行多扇区标识捕获MIDC;
其中,进行MIDC的指定信道通过如下方式确定:当所述BRP阶段处于所述SLS阶段之后时,所述第一设备和所述至少一个的第二设备进行波束赋形训练所使用的指定信道作为所述进行MIDC的指定信道,或,当所述BRP阶段不是在所述SLS阶段之后时,所述进行MIDC的指定信道的指示信息由所述第一设备发射的定向的多吉比特波束优化元素DMG Beam Refinement element承载。
在本发明的一些实施例中,所述波束赋形训练设备1300,包括:波束赋形训练验证模块,用于波束赋形训练模块1302在所述指定信道上与所述至少第二设备进行波束赋形训练之后,当所述第一设备在指定信道上对所述第一设备与所述至少第二设备的天线对进行的波束赋形训练完成时,在所述第一设备和所述至少一个的第二设备绑定的多个信道中除所述指定信道以外的其它信道上,对所述第一设备与所述至少一个的第二设备的天线对进行验证所述指定信道对应的波束赋形训练结果。
在本发明的一些实施例中,所述定向的多吉比特波束优化元素DMG Beam Refinement element,还用于指示在所述BRP阶段得到的波束赋形训练结果是否适用于所述绑定的多个信道中除所述指定信道以外的其它信道。
另外,本发明实施例提供的波束赋形训练设备1300还可以执行前述实施例中由第一设备执行的波束赋形训练方法,详见前述实施例的描述。
请参阅图14所示,本发明实施例提供的一种波束赋形训练设备1400,所 述波束赋形训练设备1400具体为波束赋形训练响应者的第二设备,所述波束赋形训练设备1400,包括:获取模块1401和波束赋形训练模块1402,其中,
获取模块1401,用于获取所述第二设备和第一设备进行波束赋形训练所使用的信道信息,其中,所述信道信息包括:所述第二设备和所述第一设备进行波束赋形训练所使用的至少一个指定信道;
波束赋形训练模块1402,用于在所述指定信道上与所述第一设备进行波束赋形训练。
在本发明的一些实施例中,获取模块1401,用于当所述第一设备作为个人基本服务集合控制点PCP或接入点AP时,获取所述第一设备为所述第二设备和所述第一设备配置的波束赋形训练所使用的信道信息;或,获取网络控制器为所述第二设备和所述第一设备配置的波束赋形训练所使用的信道信息,所述网络控制器包括:PCP或AP。
在本发明的一些实施例中,获取模块1401,还用于获取网络控制器为所述第二设备和所述第一设备配置的波束赋形训练所使用的信道信息之前,当所述第一设备向网络控制器发送服务期SP请求信息时,所述SP请求信息包含如下信息中的至少一种:所述第一设备请求的波束赋形训练信道带宽、所述第一设备请求的用于波束赋形训练的指定信道、是否包含主信道的指示信息,所述波束赋形训练所使用的信道信息包含于所述网络控制器发送的定向的多吉比特DMG信标Beacon帧或通告Announce帧承载;或,当所述第二设备和所述第一设备处于基于竞争的接入期CBAP时,所述波束赋形训练所使用的信道信息包含于所述第一设备发送的授权Grant帧。
在本发明的一些实施例中,波束赋形训练设备,还包括:收发模块,用于当所述第二设备支持授权确认Grant ACK帧时,向所述第一设备发送所述Grant ACK帧,所述Grant ACK帧携带所述第二设备接收到所述波束赋形训练所使用的信道信息的确认信息。
在本发明的一些实施例中,波束赋形训练模块,具体用于在扇区级扫描SLS阶段中在指定信道上对所述第二设备与所述第一设备的天线对进行波束赋形训练,和在波束修正协议BRP阶段中在指定信道上对所述第二设备与所述第一设备的天线对进行波束赋形训练;或,在BRP阶段中在指定信道上对所述第二设备与所述第一设备的天线对进行波束赋形训练。
在本发明的一些实施例中,波束赋形训练模块1402,具体用于所述天线对包括第一设备的第一天线和第二设备的第二天线,通过所述第二天线接收所述第一设备发送的第一训练数据包,确定所述第一天线的发起者最优扇区编号;通过所述第二天线在指定信道的所有扇区方向上分别发射第二训练数据包,所述第二训练数据包包括:所述第一天线的发起者最优扇区编号;接收所述第一设备在所述第一天线的发起者最优扇区编号对应的扇区上发送的扇区扫描反馈SSW-Feedback消息,从所述SSW-Feedback消息获取到所述第二天线的响应者最优扇区编号;在所述第二天线的响应者最优扇区编号对应的扇区上发射扇区扫描确认SSW-ACK消息。
在本发明的一些实施例中,波束赋形训练模块1402,具体用于获取所述第一设备或网络控制器配置的使用所述指定信道进行波束赋形训练的所述第一设备的天线编号和所述第二设备的天线编号;通过所述第二天线在指定信道上接收第一训练数据包,当所述第二设备和所述第一设备的一个天线对完成波束赋形训练之后,所述第二设备根据为所述第二设备和所述第一设备配置的所述第一设备的天线编号和所述至少一个的第二设备的天线编号,对所述第二设备和所述第一设备的其余天线对进行波束赋形训练。
在本发明的一些实施例中,波束赋形训练模块1402,具体用于按天线编号顺序在所述第二设备的各个第二天线的所有扇区方向上连续发射第二训练数据包,所述第二训练数据包包括:所述第一天线对应于所述第二设备的各个第二天线各自的发起者最优扇区编号。
在本发明的一些实施例中,波束赋形训练模块1402,具体用于所述天线对包括第一设备的第一天线和第二设备的第二天线,通过所述第二天线在指定信道上与所述第一设备进行多扇区标识捕获MIDC;
其中,进行MIDC的指定信道通过如下方式确定:当所述BRP阶段处于所述SLS阶段之后时,所述第二设备和所述第一设备间的不同天线对进行波束赋形训练所使用的指定信道作为所述进行MIDC的指定信道,或,当所述BRP阶段不是在所述SLS阶段之后时,所述进行MIDC的指定信道的指示信息由定向的多吉比特信标优化元素DMG Beam Refinement element承载。
在本发明的一些实施例中,所述波束赋形训练设备1400,包括:波束赋形训练验证模块,用于所述波束赋形训练模块1402在所述指定信道上与所述 第一设备进行波束赋形训练之后,当所述第二设备在指定信道上对所述第二设备与所述第一设备的天线对进行波束赋形训练完成时,在所述第二设备和所述第一设备绑定的多个信道中除所述指定信道以外的其它信道上,对所述第二设备与所述第一设备的天线对进行验证所述指定信道对应的波束赋形训练结果。
在本发明的一些实施例中,所述DMG Beam Refinement element,还用于指示在所述BRP阶段得到的波束赋形训练结果是否适用于所述绑定的多个信道中除所述指定信道以外的其它信道。
另外,本发明实施例提供的波束赋形训练设备1400还可以执行前述实施例中由第二设备执行的波束赋形训练方法,详见前述实施例的描述。
请参阅图15所示,本发明实施例提供的一种网络控制器1500,网络控制器1500,包括:收发模块1501和配置模块1502,其中,
收发模块1501,用于接收作为波束赋形训练发起者的至少一个第一设备发送的波束赋形训练请求信息,所述波束赋形训练请求信息包括:所述至少一个第一设备指定的作为波束赋形训练响应者的至少一个第二设备,和请求的与所述至少一个第二设备进行波束赋形训练所使用的信道信息;
配置模块1502,用于根据所述至少一个第一设备发送的波束赋形训练请求信息,为每一对波束赋形训练设备对配置波束赋形训练所使用的信道信息,所述信道信息包括:所述至少一个第一设备和所述至少一个第二设备进行波束赋形训练所使用的K个指定信道,所述K为正整数,其中,所述第一设备和所述第一设备指定的作为波束赋形训练响应者的一个所述第二设备构成一个波束赋形训练设备对;
所述收发模块1501,还用于将配置的波束赋形训练所使用的信道信息分别发送给所述至少一个第一设备和所述至少一个第二设备。
在本发明的一些实施例中,配置模块1501具体用于分别分配对应于K个指定信道的服务期SP;收发模块1502具体用于将分配的对应于各个指定信道的SP分配信息包含于定向的多吉比特DMG信标帧或通告Announce帧内,向所述至少一个第一设备和所述至少一个第二设备发送。
在本发明的一些实施例中,配置模块1501具体用于分别分配对应于K个指定信道的在时间上重叠或者在时间上不重叠的SP,若所述SP在时间上有重叠时,分配给不同的波束赋形训练设备对的信道编号不相同。
在本发明的一些实施例中,所述波束赋形训练请求信息还包括:波束赋形训练控制BF Control字段,其中,
所述BF Control字段包含如下信息中的至少一个:请求的波束赋形训练的信道带宽、请求的波束赋形训练的信道编号、请求的波束赋形训练的信道是否包含主信道。
在本发明的一些实施例中,配置模块1501在调度一个第一设备或一个第二设备与多个对等设备同时进行波束赋形训练时,确定所述一个第一设备或一个第二设备具有的天线个数大于或等于同时与所述一个第一设备或一个第二设备进行波束赋形训练的所述多个对等设备的设备个数之和;
其中,所述对等设备为与所述第一设备或所述第二设备进行波束赋形训练的设备。
另外,本发明实施例提供的网络控制器1500还可以执行前述实施例中由网络控制器执行的波束赋形训练方法,详见前述实施例的描述。
需要说明的是,上述装置各模块/单元之间的信息交互、执行过程等内容,由于与本发明方法实施例基于同一构思,其带来的技术效果与本发明方法实施例相同,具体内容可参见本发明前述所示的方法实施例中的叙述,此处不再赘述。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质存储有程序,该程序执行包括上述方法实施例中记载的部分或全部步骤。
接下来介绍本发明实施例提供的另一种波束赋形训练设备,所述波束赋形训练设备具体为波束赋形训练发起者的第一设备,请参阅图16所示,波束赋形训练设备1600包括:
接收器1601、发射器1602、处理器1603和存储器1604(其中波束赋形训练设备1600中的处理器1603的数量可以一个或多个,图16中以一个处理器为例)。在本发明的一些实施例中,输入装置1601、输出装置1602、处理器1603和存储器1604可通过总线或其它方式连接,其中,图16中以通过总线连接为例。
存储器1604可以包括只读存储器和随机存取存储器,并向处理器1603提供指令和数据。存储器1604的一部分还可以包括非易失性随机存取存储器 (英文全称:Non-Volatile Random Access Memory,英文缩写:NVRAM)。存储器1604存储有操作系统和操作指令、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集,其中,操作指令可包括各种操作指令,用于实现各种操作。操作系统可包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
处理器1603控制波束赋形训练设备的操作,处理器1603还可以称为中央处理单元(英文全称:Central Processing Unit,英文简称:CPU)。具体的应用中,波束赋形训练设备的各个组件通过总线系统耦合在一起,其中总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都称为总线系统。
上述本发明实施例揭示的方法可以应用于处理器1603中,或者由处理器1603实现。处理器1603可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1603中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1603可以是通用处理器、数字信号处理器(英文全称:digital signal processing,英文缩写:DSP)、专用集成电路(英文全称:Application Specific Integrated Circuit,英文缩写:ASIC)、现成可编程门阵列(英文全称:Field-Programmable Gate Array,英文缩写:FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1604,处理器1603读取存储器1604中的信息,结合其硬件完成上述方法的步骤。
本发明实施例中,处理器1603,用于执行如下步骤:
获取所述第一设备和至少一个的第二设备进行波束赋形训练所使用的信道信息,其中,所述信道信息包括:所述第一设备和所述至少一个的第二设备进行波束赋形训练所使用的至少一个指定信道;
在所述指定信道上与所述至少一个的第二设备进行波束赋形训练。
另外,本发明实施例提供的处理器1603还可以执行前述实施例中由第一设备执行的波束赋形训练方法,详见前述实施例的描述。
接下来介绍本发明实施例提供的另一种波束赋形训练设备,所述波束赋形训练设备具体为波束赋形训练发起者的第二设备,请参阅图17所示,波束赋形训练设备1700包括:
接收器1701、发射器1702、处理器1703和存储器1704(其中波束赋形训练设备1700中的处理器1703的数量可以一个或多个,图17中以一个处理器为例)。在本发明的一些实施例中,输入装置1701、输出装置1702、处理器1703和存储器1704可通过总线或其它方式连接,其中,图17中以通过总线连接为例。
存储器1704可以包括只读存储器和随机存取存储器,并向处理器1703提供指令和数据。存储器1704的一部分还可以包括NVRAM。存储器1704存储有操作系统和操作指令、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集,其中,操作指令可包括各种操作指令,用于实现各种操作。操作系统可包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
处理器1703控制波束赋形训练设备的操作,处理器1703还可以称为中央处理单元CPU。具体的应用中,波束赋形训练设备的各个组件通过总线系统耦合在一起,其中总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都称为总线系统。
上述本发明实施例揭示的方法可以应用于处理器1703中,或者由处理器1703实现。处理器1703可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1703中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1703可以是通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机 存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1704,处理器1703读取存储器1704中的信息,结合其硬件完成上述方法的步骤。
本发明实施例中,处理器1703,用于执行如下步骤:
获取所述第二设备和第一设备进行波束赋形训练所使用的信道信息,其中,所述信道信息包括:所述第二设备和所述第一设备进行波束赋形训练所使用的至少一个指定信道;
在所述指定信道上与所述第一设备进行波束赋形训练。
另外,本发明实施例提供的处理器1703还可以执行前述实施例中由第一设备执行的波束赋形训练方法,详见前述实施例的描述。
接下来介绍本发明实施例提供的另一种网络控制器,请参阅图18所示,网络控制器1800包括:
接收器1801、发射器1802、处理器1803和存储器1804(其中网络控制器1800中的处理器1803的数量可以一个或多个,图18中以一个处理器为例)。在本发明的一些实施例中,输入装置1801、输出装置1802、处理器1803和存储器1804可通过总线或其它方式连接,其中,图18中以通过总线连接为例。
存储器1804可以包括只读存储器和随机存取存储器,并向处理器1803提供指令和数据。存储器1804的一部分还可以包括NVRAM。存储器1804存储有操作系统和操作指令、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集,其中,操作指令可包括各种操作指令,用于实现各种操作。操作系统可包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
处理器1803控制网络控制器的操作,处理器1803还可以称为CPU。具体的应用中,网络控制器的各个组件通过总线系统耦合在一起,其中总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都称为总线系统。
上述本发明实施例揭示的方法可以应用于处理器1803中,或者由处理器1803实现。处理器1803可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1803中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1803可以是通用处理器、DSP、 ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1804,处理器1803读取存储器1804中的信息,结合其硬件完成上述方法的步骤。
本发明实施例中,处理器1803,用于执行如下步骤:
接收作为波束赋形训练发起者的至少一个第一设备发送的波束赋形训练请求信息,所述波束赋形训练请求信息包括:所述至少一个第一设备指定的作为波束赋形训练响应者的至少一个第二设备,和请求的与所述至少一个第二设备进行波束赋形训练所使用的信道信息;
根据所述至少一个第一设备发送的波束赋形训练请求信息,为每一对波束赋形训练设备对配置波束赋形训练所使用的信道信息,所述信道信息包括:所述至少一个第一设备和所述至少一个第二设备进行波束赋形训练所使用的K个指定信道,所述K为正整数,其中,所述第一设备和所述第一设备指定的作为波束赋形训练响应者的一个所述第二设备构成一个波束赋形训练设备对;
将配置的波束赋形训练所使用的信道信息分别发送给所述至少一个第一设备和所述至少一个第二设备。
另外,本发明实施例提供的处理器1803还可以执行前述实施例中由第一设备执行的波束赋形训练方法,详见前述实施例的描述。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本发明提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发 明可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本发明而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
综上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照上述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对上述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (30)

  1. 一种波束赋形训练的方法,其特征在于,包括:
    第一设备获取所述第一设备和至少一个的第二设备进行波束赋形训练所使用的信道信息,其中,所述信道信息包括:所述第一设备和所述至少一个的第二设备进行波束赋形训练所使用的至少一个指定信道;
    所述第一设备在所述指定信道上与所述至少一个的第二设备进行波束赋形训练。
  2. 根据权利要求1所述的方法,其特征在于,所述第一设备获取所述第一设备和至少一个的第二设备进行波束赋形训练所使用的信道信息,包括:
    当所述第一设备作为个人基本服务集合控制点PCP或接入点AP时,所述第一设备为所述第一设备与所述至少一个的第二设备配置波束赋形训练所使用的信道信息;或,
    所述第一设备接收网络控制器为所述第一设备和所述至少一个的第二设备配置的波束赋形训练所使用的信道信息,所述网络控制器包括:PCP或AP。
  3. 根据权利要求2所述的方法,其特征在于,所述第一设备接收网络控制器为所述第一设备和所述至少一个的第二设备配置的波束赋形训练所使用的信道信息之前,所述方法还包括:
    所述第一设备向所述网络控制器发送服务期SP请求信息,所述SP请求信息包含如下信息中的至少一种:所述第一设备请求的波束赋形训练信道带宽、所述第一设备请求的用于波束赋形训练的指定信道、是否包含主信道的指示信息,所述波束赋形训练所使用的信道信息包含于所述网络控制器发送的定向的多吉比特DMG信标Beacon帧或通告Announce帧;或,
    当所述第一设备和所述至少一个的第二设备处于基于竞争的接入期CBAP时,所述波束赋形训练所使用的信道信息包含于所述第一设备发送的授权Grant帧。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    当所述第二设备支持授权确认Grant ACK帧时,所述第一设备接收所述第二设备发送的所述Grant ACK帧,所述Grant ACK帧携带所述第二设备接收到所述波束赋形训练所使用的信道信息的确认信息。
  5. 根据权利要求1所述的方法,其特征在于,所述第一设备的一个天线 和所述第二设备的一个天线构成一个天线对,所述第一设备在所述指定信道上与所述至少一个的第二设备进行波束赋形训练,包括:
    在扇区级扫描SLS阶段中所述第一设备在指定信道上对所述第一设备与所述至少一个的第二设备的天线对进行波束赋形训练,和在波束修正协议BRP阶段所述第一设备在指定信道上对所述第一设备与所述至少一个的第二设备的天线对进行波束赋形训练;或,
    在BRP阶段所述第一设备在指定信道上对所述第一设备与所述至少一个的第二设备的天线对进行波束赋形训练。
  6. 根据权利要求5所述的方法,其特征在于,所述在扇区级扫描SLS阶段中所述第一设备在指定信道上对所述第一设备与所述至少一个的第二设备的天线对进行波束赋形训练,包括:
    所述天线对包括第一设备的第一天线和第二设备的第二天线,所述第一设备通过所述第一天线在指定信道的所有扇区方向上分别发射第一训练数据包;
    所述第一设备通过所述第一天线在指定信道上接收所述第二设备通过所述第二天线发送的第二训练数据包,确定所述第二天线的响应者最优扇区编号,以及从所述第二训练数据包中获取到所述第一天线的发起者最优扇区编号;
    所述第一设备在指定信道上,在所述第一天线的发起者最优扇区编号对应的扇区上发射扇区扫描反馈SSW-Feedback消息,所述SSW-Feedback消息包括:所述第二天线的响应者最优扇区编号;
    所述第一设备在指定信道上,在所述第一天线上接收所述第二设备通过所述第二天线发射的扇区扫描确认SSW-ACK消息。
  7. 根据权利要求6所述的方法,其特征在于,所述第一设备通过所述第一天线在指定信道的所有扇区方向上分别发射第一训练数据包,包括:
    所述第一设备在指定信道上按天线编号顺序在所述第一设备的所有第一天线的所有扇区方向上,连续发射第一训练数据包。
  8. 根据权利要求6所述的方法,其特征在于,所述第一设备通过所述第一天线在指定信道的所有扇区方向上分别发射第一训练数据包,包括:
    所述第一设备配置使用所述指定信道进行波束赋形训练的所述第一设备的天线编号和至少一个的第二设备的天线编号,或所述第一设备从网络控制器 获取到所述网络控制器配置的使用所述指定信道进行波束赋形训练的所述第一设备的天线编号和至少一个的第二设备的天线编号;
    所述第一设备在所述第一设备的第一天线的所有扇区方向上分别发射第一训练数据包,所述第一设备与所述至少一个的第二设备的一个天线对完成波束赋形训练之后,所述第一设备根据为所述第一设备和所述至少一个的第二设备配置的所述第一设备的天线编号和所述至少一个的第二设备的天线编号,对所述第一设备和所述至少一个的第二设备的其余天线对进行波束赋形训练。
  9. 根据权利要求5所述的方法,其特征在于,所述在BRP阶段所述第一设备在指定信道上对所述第一设备与所述至少一个的第二设备的天线对进行波束赋形训练,包括:
    所述天线对包括第一设备的第一天线和至少一个的第二设备的第二天线,所述第一设备通过所述第一天线在指定信道上与所述至少一个第二设备的第二天线进行多扇区标识捕获MIDC;
    其中,进行MIDC的指定信道通过如下方式确定:当所述BRP阶段处于所述SLS阶段之后时,所述第一设备和所述至少一个的第二设备进行波束赋形训练所使用的指定信道作为所述进行MIDC的指定信道,或,当所述BRP阶段不是在所述SLS阶段之后时,所述进行MIDC的指定信道的指示信息由所述第一设备发射的定向的多吉比特波束优化元素DMG Beam Refinement element承载。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一设备在所述指定信道上与所述至少第二设备进行波束赋形训练之后,所述方法还包括:
    当所述第一设备在指定信道上对所述第一设备与所述至少第二设备的天线对进行的波束赋形训练完成时,所述第一设备在所述第一设备和所述至少一个的第二设备绑定的多个信道中除所述指定信道以外的其它信道上,对所述第一设备与所述至少一个的第二设备的天线对进行验证所述指定信道对应的波束赋形训练结果。
  11. 根据权利要求10所述的方法,其特征在于,所述定向的多吉比特波束优化元素DMG Beam Refinement element,还用于指示在所述BRP阶段得到的波束赋形训练结果是否适用于所述绑定的多个信道中除所述指定信道以外 的其它信道。
  12. 一种波束赋形训练的方法,其特征在于,包括:
    第二设备获取所述第二设备和第一设备进行波束赋形训练所使用的信道信息,其中,所述信道信息包括:所述第二设备和所述第一设备进行波束赋形训练所使用的至少一个指定信道;
    所述第二设备在所述指定信道上与所述第一设备进行波束赋形训练。
  13. 根据权利要求12所述的方法,其特征在于,所述第二设备获取所述第二设备和第一设备进行波束赋形训练所使用的信道信息,包括:
    当所述第一设备作为个人基本服务集合控制点PCP或接入点AP时,所述第二设备获取所述第一设备为所述第二设备和所述第一设备配置的波束赋形训练所使用的信道信息;或,
    所述第二设备获取网络控制器为所述第二设备和所述第一设备配置的波束赋形训练所使用的信道信息,所述网络控制器包括:PCP或AP。
  14. 根据权利要求13所述的方法,其特征在于,所述第二设备获取网络控制器为所述第二设备和所述第一设备配置的波束赋形训练所使用的信道信息之前,所述方法还包括:
    当所述第一设备向网络控制器发送服务期SP请求信息时,所述SP请求信息包含如下信息中的至少一种:所述第一设备请求的波束赋形训练信道带宽、所述第一设备请求的用于波束赋形训练的指定信道、是否包含主信道的指示信息,所述波束赋形训练所使用的信道信息包含于所述网络控制器发送的定向的多吉比特DMG信标Beacon帧或通告Announce帧承载;或,
    当所述第二设备和所述第一设备处于基于竞争的接入期CBAP时,所述波束赋形训练所使用的信道信息包含于所述第一设备发送的授权Grant帧。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    当所述第二设备支持授权确认Grant ACK帧时,所述第二设备向所述第一设备发送所述Grant ACK帧,所述Grant ACK帧携带所述第二设备接收到所述波束赋形训练所使用的信道信息的确认信息。
  16. 根据权利要求12所述的方法,其特征在于,所述第二设备在所述指定信道上与所述第一设备进行波束赋形训练,包括:
    在扇区级扫描SLS阶段中所述第二设备在指定信道上对所述第二设备与 所述第一设备的天线对进行波束赋形训练,和在波束修正协议BRP阶段中所述第二设备在指定信道上对所述第二设备与所述第一设备的天线对进行波束赋形训练;或,
    在BRP阶段中所述第二设备在指定信道上对所述第二设备与所述第一设备的天线对进行波束赋形训练。
  17. 根据权利要求16所述的方法,其特征在于,所述在扇区级扫描SLS阶段中所述第二设备在指定信道上对所述第二设备与所述第一设备的天线对进行波束赋形训练,包括:
    所述天线对包括第一设备的第一天线和第二设备的第二天线,所述第二设备通过所述第二天线接收所述第一设备发送的第一训练数据包,确定所述第一天线的发起者最优扇区编号;
    所述第二设备通过所述第二天线在指定信道的所有扇区方向上分别发射第二训练数据包,所述第二训练数据包包括:所述第一天线的发起者最优扇区编号;
    所述第二设备接收所述第一设备在所述第一天线的发起者最优扇区编号对应的扇区上发送的扇区扫描反馈SSW-Feedback消息,从所述SSW-Feedback消息获取到所述第二天线的响应者最优扇区编号;
    所述第二设备在所述第二天线的响应者最优扇区编号对应的扇区上发射扇区扫描确认SSW-ACK消息。
  18. 根据权利要求17所述的方法,其特征在于,所述第二设备通过所述第二天线接收所述第一设备发送的第一训练数据包,包括:
    所述第二设备获取所述第一设备或网络控制器配置的使用所述指定信道进行波束赋形训练的所述第一设备的天线编号和所述第二设备的天线编号;
    所述第二设备通过所述第二天线在指定信道上接收第一训练数据包,当所述第二设备和所述第一设备的一个天线对完成波束赋形训练之后,所述第二设备根据为所述第二设备和所述第一设备配置的所述第一设备的天线编号和所述至少一个的第二设备的天线编号,对所述第二设备和所述第一设备的其余天线对进行波束赋形训练。
  19. 根据权利要求17所述的方法,其特征在于,所述第二设备通过所述第二天线在指定信道的所有扇区方向上分别发射第二训练数据包,包括:
    所述第二设备按天线编号顺序在所述第二设备的各个第二天线的所有扇区方向上连续发射第二训练数据包,所述第二训练数据包包括:所述第一天线对应于所述第二设备的各个第二天线各自的发起者最优扇区编号。
  20. 根据权利要求16所述的方法,其特征在于,所述在BRP阶段中所述第二设备在指定信道上对所述第二设备与所述第一设备的天线对进行波束赋形训练,包括:
    所述天线对包括第一设备的第一天线和第二设备的第二天线,所述第二设备通过所述第二天线在指定信道上与所述第一设备进行多扇区标识捕获MIDC;
    其中,进行MIDC的指定信道通过如下方式确定:当所述BRP阶段处于所述SLS阶段之后时,所述第二设备和所述第一设备间的不同天线对进行波束赋形训练所使用的指定信道作为所述进行MIDC的指定信道,或,当所述BRP阶段不是在所述SLS阶段之后时,所述进行MIDC的指定信道的指示信息由定向的多吉比特信标优化元素DMG Beam Refinement element承载。
  21. 根据权利要求12至20中任一项所述的方法,其特征在于,所述第二设备在所述指定信道上与所述第一设备进行波束赋形训练之后,所述方法还包括:
    当所述第二设备在指定信道上对所述第二设备与所述第一设备的天线对进行波束赋形训练完成时,所述第二设备在所述第二设备和所述第一设备绑定的多个信道中除所述指定信道以外的其它信道上,对所述第二设备与所述第一设备的天线对进行验证所述指定信道对应的波束赋形训练结果。
  22. 根据权利要求21所述的方法,其特征在于,所述DMG Beam Refinement element,还用于指示在所述BRP阶段得到的波束赋形训练结果是否适用于所述绑定的多个信道中除所述指定信道以外的其它信道。
  23. 一种波束赋形训练的方法,其特征在于,包括:
    网络控制器接收作为波束赋形训练发起者的至少一个第一设备发送的波束赋形训练请求信息,所述波束赋形训练请求信息包括:所述至少一个第一设备指定的作为波束赋形训练响应者的至少一个第二设备,和请求的与所述至少一个第二设备进行波束赋形训练所使用的信道信息;
    所述网络控制器根据所述至少一个第一设备发送的波束赋形训练请求信 息,为每一对波束赋形训练设备对配置波束赋形训练所使用的信道信息,所述信道信息包括:所述至少一个第一设备和所述至少一个第二设备进行波束赋形训练所使用的K个指定信道,所述K为正整数,其中,所述第一设备和所述第一设备指定的作为波束赋形训练响应者的一个所述第二设备构成一个波束赋形训练设备对;
    所述网络控制器将配置的波束赋形训练所使用的信道信息分别发送给所述至少一个第一设备和所述至少一个第二设备。
  24. 根据权利要求23所述的方法,其特征在于,所述网络控制器将配置的波束赋形训练所使用的信道信息分别发送给所述至少一个第一设备和所述至少一个第二设备,包括:
    所述网络控制器分别分配对应于K个指定信道的服务期SP;
    所述网络控制器将分配的对应于各个指定信道的SP分配信息包含于定向的多吉比特DMG信标帧或通告Announce帧内,向所述至少一个第一设备和所述至少一个第二设备发送。
  25. 根据权利要求24所述的方法,其特征在于,所述网络控制器分别分配对应于K个指定信道的服务期SP,包括:
    所述网络控制器分别分配对应于K个指定信道的在时间上重叠或者在时间上不重叠的SP,若所述SP在时间上有重叠时,分配给不同的波束赋形训练设备对的信道编号不相同。
  26. 根据权利要求23所述的方法,其特征在于,所述波束赋形训练请求信息还包括:波束赋形训练控制BF Control字段,其中,
    所述BF Control字段包含如下信息中的至少一个:请求的波束赋形训练的信道带宽、请求的波束赋形训练的信道编号、请求的波束赋形训练的信道是否包含主信道。
  27. 根据权利要求23至26中任一项权利要求所述的方法,其特征在于,所述网络控制器在调度一个第一设备或一个第二设备与多个对等设备同时进行波束赋形训练时,所述网络控制器确定所述一个第一设备或一个第二设备具有的天线个数大于或等于同时与所述一个第一设备或一个第二设备进行波束赋形训练的所述多个对等设备的设备个数之和;
    其中,所述对等设备为与所述第一设备或所述第二设备进行波束赋形训练 的设备。
  28. 一种波束赋形训练设备,其特征在于,所述波束赋形训练设备具体为波束赋形训练发起者的第一设备,所述波束赋形训练设备,包括:
    获取模块,用于获取所述第一设备和至少一个的第二设备进行波束赋形训练所使用的信道信息,其中,所述信道信息包括:所述第一设备和所述至少一个的第二设备进行波束赋形训练所使用的至少一个指定信道指定信道;
    波束赋形训练模块,用于在所述指定信道上与所述至少一个的第二设备进行波束赋形训练。
  29. 一种波束赋形训练设备,其特征在于,所述波束赋形训练设备具体为波束赋形训练响应者的第二设备,所述波束赋形训练设备,包括:
    获取模块,用于获取所述第二设备和第一设备进行波束赋形训练所使用的信道信息,其中,所述信道信息包括:所述第二设备和所述第一设备进行波束赋形训练所使用的至少一个指定信道指定信道;
    波束赋形训练模块,用于在所述指定信道上与所述第一设备进行波束赋形训练。
  30. 一种网络控制器,其特征在于,包括:
    收发模块,用于接收作为波束赋形训练发起者的至少一个第一设备发送的波束赋形训练请求信息,所述波束赋形训练请求信息包括:所述至少一个第一设备指定的作为波束赋形训练响应者的至少一个第二设备,和请求的与所述至少一个第二设备进行波束赋形训练所使用的信道信息;
    配置模块,用于根据所述至少一个第一设备发送的波束赋形训练请求信息,为每一对波束赋形训练设备对配置波束赋形训练所使用的信道信息,所述信道信息包括:所述至少一个第一设备和所述至少一个第二设备进行波束赋形训练所使用的K个指定信道,所述K为正整数,其中,所述第一设备和所述第一设备指定的作为波束赋形训练响应者的一个所述第二设备构成一个波束赋形训练设备对;
    所述收发模块,还用于将配置的波束赋形训练所使用的信道信息分别发送给所述至少一个第一设备和所述至少一个第二设备。
PCT/CN2015/099414 2015-12-29 2015-12-29 一种波束赋形训练的方法和设备以及控制器 WO2017113093A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/099414 WO2017113093A1 (zh) 2015-12-29 2015-12-29 一种波束赋形训练的方法和设备以及控制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/099414 WO2017113093A1 (zh) 2015-12-29 2015-12-29 一种波束赋形训练的方法和设备以及控制器

Publications (1)

Publication Number Publication Date
WO2017113093A1 true WO2017113093A1 (zh) 2017-07-06

Family

ID=59224281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099414 WO2017113093A1 (zh) 2015-12-29 2015-12-29 一种波束赋形训练的方法和设备以及控制器

Country Status (1)

Country Link
WO (1) WO2017113093A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110890910A (zh) * 2018-09-07 2020-03-17 华为技术有限公司 扇区扫描方法及相关装置
WO2020159770A1 (en) * 2019-01-29 2020-08-06 Qualcomm Incorporated Techniques for coordinated beamforming in millimeter wave systems
CN114745035A (zh) * 2022-05-10 2022-07-12 中国电信股份有限公司 信号传输方法、装置、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101686469A (zh) * 2008-09-25 2010-03-31 中兴通讯股份有限公司 一种实现下行数据波束赋形的方法及其系统
US20100215027A1 (en) * 2009-02-24 2010-08-26 Yong Liu Techniques for Flexible and Efficient Beamforming
CN102160348A (zh) * 2008-08-26 2011-08-17 马维尔国际贸易有限公司 物理层数据单元格式
CN102469605A (zh) * 2010-11-02 2012-05-23 鼎桥通信技术有限公司 在高速分组接入载波上实现e-puch的mu-mimo的方法和系统
CN104734754A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种波束赋形权值训练方法及基站、终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102160348A (zh) * 2008-08-26 2011-08-17 马维尔国际贸易有限公司 物理层数据单元格式
CN101686469A (zh) * 2008-09-25 2010-03-31 中兴通讯股份有限公司 一种实现下行数据波束赋形的方法及其系统
US20100215027A1 (en) * 2009-02-24 2010-08-26 Yong Liu Techniques for Flexible and Efficient Beamforming
CN102469605A (zh) * 2010-11-02 2012-05-23 鼎桥通信技术有限公司 在高速分组接入载波上实现e-puch的mu-mimo的方法和系统
CN104734754A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种波束赋形权值训练方法及基站、终端

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110890910A (zh) * 2018-09-07 2020-03-17 华为技术有限公司 扇区扫描方法及相关装置
CN110890910B (zh) * 2018-09-07 2022-12-27 华为技术有限公司 扇区扫描方法及相关装置
WO2020159770A1 (en) * 2019-01-29 2020-08-06 Qualcomm Incorporated Techniques for coordinated beamforming in millimeter wave systems
US11695462B2 (en) 2019-01-29 2023-07-04 Qualcomm Incorporated Techniques for coordinated beamforming in millimeter wave systems
CN114745035A (zh) * 2022-05-10 2022-07-12 中国电信股份有限公司 信号传输方法、装置、设备及介质
CN114745035B (zh) * 2022-05-10 2024-01-02 中国电信股份有限公司 信号传输方法、装置、设备及介质

Similar Documents

Publication Publication Date Title
US11722191B2 (en) Multiple channel transmission in MMW WLAN systems
KR102344710B1 (ko) 밀리미터파 무선 로컬 영역 네트워크에서 빔 형성 피드백을 위한 시스템 및 방법
CN115296707B (zh) 毫米波wlan系统中的多输入多输出设置
JP6823707B2 (ja) mmW WLANシステムにおけるMIMOモードの適応
CN113691293B (zh) 波束赋形训练方法及装置
JP6190889B2 (ja) ビーム形成方法およびビームを使用するための方法
WO2020063923A1 (zh) 信号传输方法、相关设备及系统
JP5746146B2 (ja) ビームフォーミング・トレーニング遂行方法、ビーム探索遂行方法、無線ネットワーク調整子及び無線ステーション
US10879976B2 (en) Communications method and apparatus
WO2017113093A1 (zh) 一种波束赋形训练的方法和设备以及控制器
WO2018082493A1 (zh) 无线局域网中的调度方法、接入点和站点
EP4209091A1 (en) Apparatus, system, and method of advanced wireless communication
EP3852281A1 (en) Method and device for beam training
CN110912593B (zh) 波束训练的方法和装置
WO2018195903A1 (zh) 竞争期的信道接入方法、相关设备及系统
JP2023521903A (ja) Srsを送信するユーザ装置及び方法
WO2023023946A1 (zh) 无线通信的方法和终端设备
WO2023028988A1 (zh) 无线通信的方法和终端设备
WO2023028987A1 (zh) 无线通信的方法和终端设备
WO2023173319A1 (zh) 子带信息的确定方法、装置、设备及存储介质
WO2023142016A1 (zh) 无线通信的方法及终端设备
WO2023019466A1 (zh) 无线通信的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911724

Country of ref document: EP

Kind code of ref document: A1